
SIMULINK
Dynamic System Simulation for MATLAB

Modeling

Simulation

Implementation

Target Language Compiler Reference Guide
Version 1



How to Contact The MathWorks:

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
24 Prime Park Way
Natick, MA 01760-1500

http://www.mathworks.com Web
ftp.mathworks.com Anonymous FTP server
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
subscribe@mathworks.com Subscribing user registration
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

Target Language Compiler Reference Guide
 COPYRIGHT 1997 by The MathWorks, Inc. All Rights Reserved.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

U.S. GOVERNMENT: If Licensee is acquiring the software on behalf of any unit or agency of the U. S.
Government, the following shall apply:

(a) for units of the Department of Defense:
RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the Government is subject to restric-
tions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software Clause
at DFARS 252.227-7013.
(b) for any other unit or agency:
NOTICE - Notwithstanding any other lease or license agreement that may pertain to, or accompany the
delivery of, the computer software and accompanying documentation, the rights of the Government
regarding its use, reproduction and disclosure are as set forth in Clause 52.227-19(c)(2) of the FAR.
Contractor/manufacturer is The MathWorks Inc., 24 Prime Park Way, Natick, MA 01760-1500.

MATLAB, Simulink, Handle Graphics, and Real-Time Workshop are registered trademarks and Stateflow
and Target Language Compiler are trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: May 1997 First printing for Target Language Compiler 1.0

Contents
Using the Target Language Compiler

with Real-Time Workshop
1
Using the Target Language Compiler 1-2

Introduction . 1-2
A Basic Example . 1-5

Files . 1-10
Target Files . 1-10

System Target Files . 1-10
Block Target Files . 1-11

Where to Go from Here . 1-12

2
Working with the Target Language

Why Use the Target Language Compiler? 2-2

The model.rtw File . 2-3

Compiler Directives . 2-6
Syntax . 2-6
Comments . 2-8
Line Continuation . 2-9
Target Language Values . 2-10
Target Language Expressions . 2-13
Formatting . 2-17
Conditional Inclusion . 2-18

%if . 2-18
%switch . 2-19
i

ii Contents
Multiple Inclusion . 2-19
%foreach . 2-19
%for . 2-20
%roll . 2-22

Object-Oriented Facility for Generating Target Code 2-24
GENERATE and GENERATE_TYPE Functions 2-25

Output File Control . 2-27
Input File Control . 2-28
Errors, Warnings, and Debug Messages 2-29
Built-In Functions and Values . 2-29

FEVAL Function . 2-35
Macro Definition . 2-37
Identifier Definition . 2-37

Creating Records . 2-39
Adding Parameters to an Existing Record 2-40

Scoping . 2-41
Variable Scoping . 2-42

Target Language Functions . 2-44
Variable Scoping Within Functions 2-46
%return . 2-49

Target Language Compiler . 2-50
Command Line Arguments . 2-50
Filenames and Search Paths . 2-51
Target Language Debug Mode . 2-51

3
Writing Target Language Files

A Basic Example . 3-2
Process . 3-2

Target Language Compiler Architecture 3-6
System Target Files . 3-6
Block Functions . 3-7

Coding Conventions . 3-8

Writing a Block Target File . 3-15
TLC Block Setup Functions . 3-15

BlockInstanceSetup . 3-15
BlockTypeSetup . 3-16

TLC Output Block Functions . 3-17
Enable . 3-17
Disable . 3-17
Start . 3-18
InitializeConditions . 3-18
Outputs . 3-18
Update . 3-19
Derivatives . 3-19
Terminate . 3-19

The RTW TLC Function Library . 3-20
LibDefineRWork . 3-21
LibDefineIWork . 3-21
LibDefinePWork . 3-21
LibCacheFunctionPrototype . 3-21
LibCacheDefine . 3-22
LibIsDiscrete . 3-22
LibDataOutputPortWidth . 3-22
LibDataInputPortWidth . 3-22
LibBlockOutputSignal . 3-22
LibBlockInputSignal . 3-23
LibBlockParameter . 3-23
LibBlockParameterAddr . 3-24
LibBlockMatrixParameter . 3-24
LibBlockMatrixParameterAddr . 3-25
LibDiscreteState, LibContinuousState 3-25
LibBlockMode . 3-25
LibBlockRWork, LibBlockIWork, LibBlockPWork 3-26
LibPrevZCState . 3-26
LibDataStoreMemory . 3-26
LibPathName . 3-26
LibIsFinite . 3-26
LibRenameParameter . 3-27
LibBlockOutportLocation . 3-29
iii

iv Contents
LibCacheNonFiniteAssignment . 3-29
Built-In TLC Functions . 3-30

STRINGOF . 3-30
EXISTS . 3-30
SIZE . 3-30

Inlining an S-Function . 3-31
An Example . 3-32
Configurable RTW Variables . 3-40
Matrix Parameters in RTW . 3-41

Loop Rolling . 3-44

4

Target Language Compiler
Function Library Reference

LibBlockFunctionExists . 4-2
LibBlockInputSignal . 4-3
LibBlockIWork . 4-4
LibBlockMatrixParameterAddr . 4-5
LibBlockMatrixParameter . 4-6
LibBlockMode . 4-7
LibBlockOutportLocation . 4-8
LibBlockOutputSignal . 4-10
LibBlockParameter . 4-11
LibBlockParameterAddr . 4-13
LibBlockPWork . 4-14
LibBlockRWork . 4-15
LibBlockSrcSignalIsDiscrete . 4-16
LibCacheDefine . 4-17
LibCacheFunctionPrototype . 4-18
LibCacheGlobalPrmData . 4-19
LibCacheInclude . 4-20
LibCacheNonFiniteAssignment . 4-21
LibContinuousState . 4-22
LibControlPortInputSignal . 4-23
LibConvertZCDirection . 4-24
LibDataInputPortWidth . 4-25

LibDataOutputPortWidth . 4-26
LibDataStoreMemory . 4-27
LibDeclareRollVariables . 4-28
LibDefineIWork . 4-30
LibDefinePWork . 4-31
LibDefineRWork . 4-32
LibDiscreteState . 4-33
LibExternalResetSignal . 4-34
LibHeaderFileCustomCode . 4-35
LibIndexStruct . 4-36
LibIsDiscrete . 4-37
LibIsEmpty . 4-38
LibIsEqual . 4-39
LibIsFinite . 4-40
LibMapSignalSource . 4-41
LibMaxBlockIOWidth . 4-42
LibMaxDataInputPortWidth . 4-43
LibMaxDataOutputPortWidth . 4-44
LibMdlRegCustomCode . 4-45
LibMdlStartCustomCode . 4-46
LibMdlTerminateCustomCode . 4-47
LibOptionalMatrixWidth . 4-48
LibOptionalVectorWidth . 4-49
LibPathName . 4-50
LibPrevZCState . 4-51
LibPrmFileCustomCode . 4-52
LibRegFileCustomCode . 4-53
LibRenameParameter . 4-54
LibSourceFileCustomCode . 4-55
LibSystemDerivativeCustomCode . 4-56
LibSystemDisableCustomCode . 4-57
LibSystemEnableCustomCode . 4-58
LibSystemInitializeCustomCode . 4-59
LibSystemOutputCustomCode . 4-60
LibSystemUpdateCustomCode . 4-61
v

vi Contents
A
model.rtw

Model.rtw File Contents . A-2
Model.rtw File Contents — System Record A-11
Model.rtw File Contents — Block Specific Records A-17
Model.rtw File Contents — Linear Block Specific Records . . . A-51

B
Target Language Compiler

Error Messages

C

Target Language Compiler
Library Error Messages

blkiolib.tlc Error Messages . C-3

blocklib.tlc Error Messages . C-4

hookslib.tlc Error Messages . C-5

paramlib.tlc Error Messages . C-7

rolllib.tlc Error Messages . C-8

utillib.tlc Error Messages . C-11

Using the Target Language Compiler 1-2
Introduction . 1-2
A Basic Example 1-5

Files . . 1-10
Target Files . 1-10

Where to Go from Here 1-12
1

Using the Target Language Compiler
with Real-Time Workshop

1 Using the Target Language Compiler with Real-Time Workshop

1-2
Using the Target Language Compiler

Introduction
The Target Language Compiler™ is a tool that is included with Real-Time
Workshop® (RTW) and enables you to customize the C code generated from any
Simulink® model. Through customization, you can produce platform-specific
code or incorporate algorithmic changes for performance, code size, or
compatibility with existing methods that you prefer to maintain.

Notes: This book describes the Target Language Compiler, its files, and how
to use them together. This information is provided for those users who need to
customize target files in order to generate specialized output. Or, in some
cases, for users who want to inline S-functions so as to improve the
performance of the generated code. If you simply need to generate ANSI C
code from your Simulink model, you can find everything you need to know in
the Real-Time Workshop User’s Guide.

This book refers to the Target Language Compiler either by its complete
name, Target Language Compiler, or TLC, or simply, Compiler.

As an integral component of Real-Time Workshop, the Target Language
Compiler is used to transform an intermediate form of a Simulink block
diagram, called model.rtw, into C code. The Compiler generates its code based
on “target files,” which specify particular code for each block, and “model-wide
files,” which specify the overall code style. The Compiler works like a text
processor, using the target files and the model.rtw file to generate ANSI C
code.

In order to create a target-specific application, Real-Time Workshop also
requires a template makefile that specifies the appropriate C compiler and
compiler options for the build process. A target-specific version of the generic
rt_main file (or grt_main) must also be modified to conform to the target’s
specific requirements such as interrupt service routines. A complete
description of the template makefiles and rt_main is included in the Real-Time
Workshop User’s Guide.

Using the Target Language Compiler
For those familiar with HTML, Perl, and MATLAB®, you will find that the
Target Language Compiler borrows ideas from each of them. It has the
mark-up-like notion of HTML, and the power and flexibility of Perl and other
scripting languages. It has the data handling power of MATLAB. The Target
Language Compiler is designed for one purpose—to convert the model
description file, model.rtw, (or similar files) into target specific code or text.

The code generated by the Compiler is highly optimized and fully commented
C code, and can be generated from any Simulink model, including linear,
nonlinear, continuous, discrete, or hybrid. All Simulink blocks are
automatically converted to code, with the exception of MATLAB function
blocks and S-function blocks that invoke M-files. The Target Language
Compiler uses “block target files” to transform each block in the model.rtw file
and a “model-wide target file” for global customization of the code.

You can incorporate C MEX S-functions, along with the generated code, into
the program executable. You can also write a target file for your C MEX
S-function to “inline” the S-function, thus improving performance by
eliminating function calls to the S-function itself. Inlining an S-function
incorporates the S-function block’s code into the generated code for the model.
When no target file is present for the S-function, its C code file is invoked via a
function call. For more information on inlining S-functions, see “Inlining an
S-Function,” in Chapter 3. You can also write target files for M-files or Fortran
S-functions.

Figure 1-1 shows how the Target Language Compiler works with its target files
and Real-Time Workshop output to produce code. When generating code from
a Simulink model using Real-Time Workshop, the first step in the automated
process is to generate a model.rtw file. The model.rtw file includes all of the
model-specific information required for generating code from the Simulink
model. model.rtw is passed to the Target Language Compiler, which uses the
model.rtw file in combination with a set of included target files to generate the
body source C code (model.c), a header file (model.h), a model registration
include file (model.reg) that registers the model’s SimStruct, and a parameter
include file (model.prm) that contains information about all the parameters
contained in the model.
1-3

1 Using the Target Language Compiler with Real-Time Workshop

1-4
Figure 1-1: The Target Language Compiler Process

Simulink Model (sample.mdl)

Real-Time Workshop

sample.rtw

Target Files

Target Language Compiler

sample.hsample.c sample.prm sample.reg

*.tlc

Using the Target Language Compiler
By modifying the target files (also referred to as TLC files, for example,
basic.tlc), you can customize the output generated by the Target Language
Compiler. For more information on creating TLC files, see Chapter 3, “Writing
Target Language Files.”

A Basic Example
The Real-Time Workshop graphical user interface provides a menu that
automates the entire process of generating a model.rtw file, invoking the
Target Language Compiler, and running the build process to generate an
executable. This example uses command line operation of the Target Language
Compiler in the same way that RTW’s graphical user interface invokes the
Target Language Compiler to show the step-by-step process.

Starting with a simple Simulink model named small.mdl, this example
illustrates how to use the Target Language Compiler on the output that is
generated from the model.

Using this model, Real-Time Workshop generates an .rtw file, small.rtw,
containing all of the model’s information. To generate the file from the
command line, enter:

rtwgen small
1-5

1 Using the Target Language Compiler with Real-Time Workshop

1-6
This file shows the structure of the small.rtw file.

CompiledModel {
 Name "small"
 Version "2.01 (April, 1 1997)"
 GeneratedOn "Fri Apr 11 11:31:25 1997"
 Solver FixedStepDiscrete
 SolverType FixedStep
 StartTime 0
 StopTime 10

<Parameters omitted>
BlockOutputs {
 NumBlockOutputs 1
 BlockOutput {
 Identifier Sine_Wave
 SigSrc [0, 0, 0]
 SigIdx [0, 1]
 SigConnected [1]
 SigLabel ""
 TestPoint no
 Required no
 }
 }
 BlockOutputsMap Matrix(1,2)
[[0, 0];]

<BlockDefaults omitted>
System {
 Type root
 Name "<root>"
 Identifier root
 NumBlocks 2
 Block {
 Type Sin
 Name "<Root>/Sine Wave"
 Identifier Sine_Wave
 TID 0
 RollRegions [0]
 NumDataOutputPorts 1
 DataOutputPortIndices [0]
 Parameters [3, 3, 0]

Using the Target Language Compiler
<Parameters omitted>
}

Block {
 Type Outport
 Name "<Root>/Out"
 Identifier Out
 TID 0
 RollRegions [0]
 NumDataInputPorts 1
 DataInputPort {

Width 1
SignalSrc [B0]

 }
 ParamSettings {

PortNumber 1
OutputLocation Y0

 }
 }
 }

.

.

.
}

1-7

1 Using the Target Language Compiler with Real-Time Workshop

1-8
To use the Target Language Compiler on small.rtw to generate all associated
RTW code, enter:

tlc –r small.rtw MATLAB/rtw/c/grt/grt.tlc –IMATLAB/rtw/c/tlc

Note: To use the Target Language Compiler and its associated files, you must
know where MATLAB is installed on your system. MATLAB provides a
command that returns this information. Whenever you see the directory
MATLAB in this manual, you should replace it with the path returned by the
matlabroot command. For example, if matlabroot returns:

matlabroot
ans =
/usr/apps/matlab

you would use the command:
tlc –r small.rtw /usr/apps/matlab/rtw/c/grt/grt.tlc
–I/usr/apps/matlab/rtw/c/tlc

The Target Language Compiler processes small.rtw using the system target
file, grt.tlc, along with other system target files to generate the RTW code.
The generated output consists of the files: small.h, small.prm, small.c, and
small.reg.

File Purpose

small.c Source file implementing the algorithms defined by
your model.

small.h Header file containing structure declarations. This file
is included by small.c, small.prm, and small.reg.

small.prm Include file containing the default parameters and
global data declarations. This file is included once at
the top of small.c.

small.reg Include file containing the model registration function
and other initialization routines. This file is included
once at the bottom of small.c.

Using the Target Language Compiler
These files contain the fully documented C code that represents your Simulink
model. At this point, you can use the C code as a stand-alone external
simulation on a target machine.

This example shows only the basic operation of the Target Language Compiler.
Numerous options are available and are explained throughout this manual.
1-9

1 Using the Target Language Compiler with Real-Time Workshop

1-1
Files
The Target Language Compiler works with various sets of files to produce its
results. The complete set of these files is called a TLC program. This section
describes the TLC program files.

Target Files
Target files are the set of files that are interpreted by the Target Language
Compiler to transform the intermediate RTW code (model.rtw) produced by
Simulink into target-specific code.

Target files provide you with the flexibility to customize the code generated by
the Compiler to suit your specific needs. By modifying the target files included
with the Compiler, you can dictate what the compiler produces. For example,
if you use the available mdlwide.tlc, you produce generic C code from your
Simulink model. This executable C code is not platform specific. By modifying
mdlwide.tlc, or creating a completely new target file, you could output C code
specific to a particular piece of hardware, or for that matter, output code in
another language.

All of the parameters used in the target files are read from the model.rtw file
and looked up using block scoping rules. You can define additional parameters
within the target files using the %assign statement. The block scoping rules
and the %assign statement are discussed in Chapter 2.

Target files are written using target language directives. Chapter 2, “Working
with the Target Language,” provides complete descriptions of the target
language directives.

Appendix A contains a thorough description of the model.rtw file, which is
useful for creating and/or modifying target files.

System Target Files
System target files are used on a model-wide basis and provide basic
information to the Target Language Compiler, which transforms the RTW file
into target-specific code. The system target file is the “entry point” for the TLC
program, which is analogous to the main() routine of a C program. System
target files oversee the entire code generation process. For example, the system
target file, grt.tlc, sets up some variables for mdlwide.tlc and includes
0

Files
mdlwide.tlc, which contains all of the settings and parameter values that
control generic C code generation.

The set of system target files includes:

Block Target Files
Block target files are files that control a particular Simulink block. Typically,
there is a block target file for each Simulink basic building block. These files
control the generation of inline code for the particular block type. For example,
the target file, gain.tlc, generates corresponding code for the Gain block.

Note: Functions declared inside a block file are local. Functions declared in
all other target files are global.

System Target File Purpose

grt.tlc System target file for generic real-time code
generator

mdlwide.tlc General C code target file provided by
The MathWorks

mdlhdr.tlc Creates everything in the header file, model.h

mdlbody.tlc Creates the source file, model.c

mdlreg.tlc Creates the model registration file, model.reg

mdlparam.tlc Creates the parameters file, model.prm
1-11

1 Using the Target Language Compiler with Real-Time Workshop

1-1
Where to Go from Here
The remainder of this book contains both explanatory and reference material
for the Target Language Compiler. Use this chart to help determine which
chapters are most relevant for you.

Chapter Description

1. Using the Target Language
Compiler with Real-Time
Workshop

Provides overview information of the
Target Language Compiler and its files.

2. Working with the Target
Language

Provides a complete description of the
constructs used to create target lan-
guage files and general coding guide-
lines.

3. Writing Target Language
Files

Describes the process of customizing
target files and inlining S-functions.

4. Target Language Compiler
Function Library Reference

Provides complete descriptions of all
functions used to create block target
files.

Appendix A. model.rtw Complete description of the model.rtw
file generated by Real-Time Workshop
build procedure.

Appendix B. Target Language
Compiler Error Messages

Error messages generated by the Target
Language Compiler and their
descriptions.

Appendix C. Target Language
Compiler Library Error
Messages

Error messages generated when working
with the Target Language Compiler
libraries and their descriptions.
2

Why Use the Target Language Compiler? 2-2

The model.rtw File 2-3

Compiler Directives 2-6
Syntax . 2-6
Comments . 2-8
Line Continuation 2-9
Target Language Values 2-10
Target Language Expressions 2-13
Formatting . 2-17
Conditional Inclusion 2-18
Multiple Inclusion 2-19
Object-Oriented Facility for Generating Target Code 2-24
Output File Control 2-27
Input File Control 2-28
Errors, Warnings, and Debug Messages 2-29
Built-In Functions and Values 2-29
Macro Definition 2-37
Identifier Definition 2-37
Scoping . . 2-41
Target Language Functions 2-44

Target Language Compiler 2-50
Command Line Arguments 2-50
Filenames and Search Paths 2-51
Target Language Debug Mode 2-51
2

Working with the
Target Language

2 Working with the Target Language

2-2
Why Use the Target Language Compiler?
If you simply need to produce ANSI C code from a Simulink model, you do not
need to use the Target Language Compiler. If you need to customize the output
of Real-Time Workshop, the Target Language Compiler is the mechanism that
you would use. Some uses of the Target Language Compiler are:

• You need to change the way code is generated for a particular Simulink
block.

• You need to inline S-functions in your model.

• You need to modify the way code is generated in a global sense.

• You need to perform a large scale customization of the generated code.
For example, you need to output the code in a language other than C.

To produce customized output using the Target Language Compiler, you need
to understand the structure of the model.rtw file and how to modify target files
to produce the desired output. This chapter first introduces the model.rtw file
and then describes the target language directives and their associated
constructs. You will use the TLC directives and constructs to modify existing
target files or create new ones from scratch, depending on your needs. Chapter
3 explains the details of writing target files.

The model.rtw File
The model.rtw File
Real-Time Workshop generates a model.rtw file from your Simulink model.
The model.rtw file is a hierarchical database whose contents provide a
description of the individual blocks within the Simulink model.

model.rtw is an ASCII file of parameter-value pairs stored in a hierarchy of
records defined by your model. A parameter-value pair is specified as:

ParameterName value

where ParameterName, (also called an identifier) is the name of the RTW
identifier and value is a string, scalar, vector, or matrix. For example, in the
parameter-value pair

.

.
NumDataOutputPorts 1

.

.

NumDataOutputPorts is the identifier and 1 is its value.

A record is specified as:

RecordName {
.
.

}

A record contains parameter-value pairs and/or subrecords. For example, this
record contains one parameter-value pair:

DataStores {
 NumDataStores 0
}

The following reduced example shows a record, Block, with several
parameter-value pairs (Type, Name, Identifier, and so on), and three
subrecords, each called Parameter. Block is a subrecord of System, which is a
subrecord of CompiledModel.
2-3

2 Working with the Target Language

2-4
CompiledModel {
Name "gain1"
Version "1.85 (Oct, 30 1996)"

.

.

.
System {

Type root
Name "<root>"
Identifier root
NumBlocks 3
Block {

Type Sin
Name "<Root>/Sine Wave"
Identifier Sine_Wave
TID 0
RollRegions [0]
NumDataOutputPorts 1
DataOutputPortIndices [0]
Parameters [3, 3, 0]
Parameter {

Name "Amplitude"
Value [1]
String "1"

}
Parameter {

Name "Frequency"
Value [1]
String "1"

}
Parameter {

Name "Phase"
Value [0]
String "0"

}
}

.

.
}

}

Scope 4

Scope 3

Scope 2

Scope 1

The model.rtw File
This example shows several records and corresponding subrecords by use of
arrows. Parameter (Scope 4) is a subrecord of Block (Scope 3), which is a
subrecord of System (Scope 2), which in turn is a subrecord of CompiledModel
(Scope 1).

The model.rtw file uses curly braces { and } to open and close scopes. Using
scopes, you can access any value within the model.rtw file. The scope in this
example begins with CompiledModel. You use periods (.) to access values
within particular scopes. For example, to access Name within CompiledModel,
you would use

CompiledModel.Name

To access Identifier within System within CompiledModel, you would use

CompiledModel.System.Identifier

To access Name within the second Parameter record within Block within System
within CompiledModel, you would use

CompiledModel.System.Block.Parameter[2].Name

This process can be simplified by using the %with directive. See the “Scoping”
section later in this chapter for more information.

The identifier and record name become TLC variables when the Target
Language Compiler loads the model.rtw file.

The Target Language Compiler lets you traverse the hierarchy defined by
model.rtw so that you can customize the output to suit your particular needs.
To be able to do this, you must understand the structure of the model.rtw file.
Appendix A contains a complete description of the model.rtw file.
2-5

2 Working with the Target Language

2-6
Compiler Directives

Syntax
A target language file consists of a series of statements of the form

%keyword [argument1, argument2, …]

where keyword represents one of the Target Language Compiler’s directives,
and [argument1, argument2, …] represents expressions that define any
required parameters. For example,

%assign sysNumber = sysIdx + 1

uses the %assign directive to change the value of the sysNumber parameter.
A target language directive must be the first nonblank character on a line and
always begins with the % character. Beginning a line with %% lets you include a
comment on a line.

Table 2-1 shows the complete set of TLC directives. The remainder of this
chapter describes each directive in detail.

Table 2-1: Target Language Compiler Directives

Type Construct

Comments /% %/
%%

Target language
expressions

%<expression>

Formatting %realformat string

Compiler Directives
Conditional inclusion %if constant-expression
%else
%elseif constant-expression
%endif

%switch constant-expression
%case constant-expression
%default
%break

%endswitch

Multiple inclusion %foreach identifier = constant-expression
/* Loops from 0 to N – 1 */

%break
%continue

%endforeach

%roll identifier = roll-vector-expression, identifier =
threshold-expression, block-expression [, type-string
[,expression-list]]

%break
%continue

%endroll

%for identifier = constant-exp, constant-exp, identifier
%body

%break
%continue

%endbody
%endfor

Object-oriented
facility

%generatefile identifier string
%language
%implements

Table 2-1: Target Language Compiler Directives (Continued)

Type Construct
2-7

2 Working with the Target Language

2-8
Comments
You can place comments anywhere within a target file. To include comments,
use the /%...%/ or %% directives. For example,

/%
Abstract: Return the field with [width], if field is wide

%/

or

%endfunction %% Outputs function

Output file control %openfile x optional-string "optional-mode"
%closefile

%selectfile identifier

Input file control %include string
%addincludepath string

Debug statements %error tokens
%warning tokens
%trace tokens
%exit tokens

Macro definition %define identifier opt-argument-list replacement-list
%undef

Identifier definition %assign [::]expression = constant-expression

Scoping %with expression
%endwith

Target language
functions

%function identifier (optional-arguments) [Output | void]
%endfunction
%return

Table 2-1: Target Language Compiler Directives (Continued)

Type Construct

Compiler Directives
Use the /%...%/ construct to delimit comments within your code. Use the %%
construct for line-based comments; all characters from %% to the end of the line
become a comment.

Nondirective lines, that is, lines that do not have % as their first nonblank
character, are copied into the output buffer verbatim. For example,

/* Initialize sysNumber */
int sysNumber = 3;

copies both lines to the output buffer.

To include comments on lines that do not begin with the % character, you can
use the /%...%/ or %% comment directives. In these cases, the comments are not
copied to the output buffer.

Note: If a nondirective line appears within a function, it is not copied to the
output buffer unless the function is an output function or you specifically
select an output file using the %selectfile directive. For more information
about functions, see the “Target Language Functions” section in this chapter.

Line Continuation
You can use the C language \ character or the MATLAB sequence ... to
continue a line. If a directive is too long to fit conveniently on one line, this
allows you to split up the directive on to multiple lines. For example

%roll sigIdx = RollRegions, lcv = RollThreshold, block,\
"Roller", rollVars

or

%roll sigIdx = RollRegions, lcv = RollThreshold, block,...
"Roller", rollVars
2-9

2 Working with the Target Language

2-1
Target Language Values
Table 2-2 shows the types of values you can use within the context of
expressions in your target language files:

Table 2-2: Target Language Values

Value Type
String

Example Description

"Boolean" 1==1 Result of a comparison or
other Boolean operator.
Note: There are no Boolean
constants, and Boolean
values are 1 or 0 as in C. 1 is
still a number and not a
Boolean value.

"File" %openfile x String buffer opened with
%openfile.

"File" %openfile x = "out.c" File opened with %openfile.

"Function" %function foo… A user-defined function.

"Identifier" abc Identifier values can only
appear within the .rtw file
and cannot appear in
expressions (within the
context of an expression,
identifiers are interpreted
as values). To compare
against an identifier value,
use a string; the identifier
will be converted as
appropriate to a string.

"Macro" %define MACRO … A user-defined macro.
0

Compiler Directives
"Matrix" Matrix (3,2) [[1, 2]
[3 , 4] [5, 6]]

Matrices are simply lists of
vectors. The individual
elements of the matrix do not
need to be the same type,
and can be any type except
vectors or matrices.

"Number" 15 An integer number.

"Range" 1:5 A range of integers between
1 and 5, inclusive, cannot be
specified except in the .rtw
file or vector because of
syntactic ambiguity with the
? : operator. Use [1:5][0]
to generate a range.

"Real" 3.14159 A floating-point number
(including exponential
notation).

"Scope" Block { … } A block-scope.

"Special" N/A A special built-in function,
such as FILE_EXISTS.

Table 2-2: Target Language Values (Continued)

Value Type
String

Example Description
2-11

2 Working with the Target Language

2-1
"String" "Hello, World" ASCII character strings. In
all contexts, two strings in a
row are concatenated to form
the final value, as in
"Hello, " "World", which is
combined to form
"Hello, World". These
strings include all of the
ANSI C standard escape
sequences such as \n, \r, \t,
etc.

"Subsystem" <sub1> A subsystem identifier.
Within the context of an
expansion, be careful to
escape the delimiters on a
subsystem identifier as in:
%<x == <sub\>>.

"Vector" [1, 2] OR Vector(2)
[1,2]

Vectors are lists of values.
The individual elements of a
vector do not need to be the
same type, and may be any
type except vectors or
matrices.

Table 2-2: Target Language Values (Continued)

Value Type
String

Example Description
2

Compiler Directives
Target Language Expressions
In any place throughout a target file, you can include an expression of the form
%<expression>. The Compiler replaces expression with a calculated
replacement value based upon its type. Integer constant expressions are folded
and replaced with the resultant value; string constants are concatenated (e.g.,
two strings in a row "a" "b" are replaced with "ab").

%<expression> /* Evaluates the expression.
 * Operators include most standard C
 * operations on scalars. Array indexing
 * is required for certain parameters that
 * are block-scoped within the .rtw file.*/

Within the context of an expression, each identifier must evaluate to a
parameter or function argument currently in scope.

You can use the %< > directive on any line to perform textual substitution. To
include the > character within a replacement, you must escape it with a “\”
character as in:

%<x \> 1 ? "ABC" : "123">

Note: It is not necessary to place expressions in the %< > format when they
appear on directive lines.

Table 2-3 lists the operators that are allowed in expressions. In this table,
expressions are listed in order from highest to lowest precedence. The
horizontal lines distinguish the order of operations.

As opposed to C expressions, conditional operators are not short-circuited.
Therefore, if the expression includes a function call with side effects, the effects
are noticed as if the entire expression was evaluated.

In the Target Language Compiler, you cannot depend on short-circuit
evaluation to avoid errors such as:

%if EXISTS(foo) && foo == 3
2-13

2 Working with the Target Language

2-1
This statement would cause an error if foo was undefined.

Table 2-3: Target Language Expressions

Expression Definition

constant Any constant parameter value, including
vectors and matrices.

variable-name Any valid in-scope variable name, including
the local function scope, if any, and the global
scope.

::variable-name Used within a function to indicate that the
function scope is ignored when looking up the
variable. See “Identifier Definition” on page
2-37.

expr[expr] Index into an array parameter. Array indices
range from 0 to N–1. This syntax is used to
index into vectors, matrices, and repeated
scope variables.

expr([expr[,expr]…]) Function call or macro expansion. The
expression outside of the parentheses is the
function/macro name; the expressions inside
are the arguments to the function or macro.
Note: Since macros are text-based, they
cannot be used within the same expression as
other operators.

expr. expr The first expression must be a valid scope;
the second expression is a parameter name
within that scope.

(expr) Use () to override the precedence of
operations.

!expr Logical negation (always generates 1 or 0 as
in C). The argument must be numeric or
Boolean.
4

Compiler Directives
–expr Unary minus negates the expression. The
argument must be numeric.

+expr No effect; the operand must be numeric.

~expr Bitwise negation of the operand. The
argument must be integral.

expr* expr Multiply the two expressions together; the
operands must be numeric.

expr/ expr Divide the two expressions; the operands
must be numeric.

expr% expr Take the integer modulo of the expressions;
the operands must be integral.

expr+ expr Works on numeric types, strings, vectors,
matrices, and records as follows:

Numeric Types - Add the two expressions
together; the operands must be numeric.

Strings - The strings are concatenated.

Vectors - If the first argument is a vector and
the second is a scalar, it adds the scalar to the
vector.

Matrices - If the first argument is a matrix
and the second is a vector of the same
column-width as the matrix, it adds the
vector as another row in the matrix.

Records - If the first argument is a record, it
adds the second argument as a parameter
identifier (with its current value).

Table 2-3: Target Language Expressions (Continued)

Expression Definition
2-15

2 Working with the Target Language

2-1
expr– expr Subtracts the two expressions; the operands
must be numeric.

expr<< expr Left shifts the left operand by an amount
equal to the right operand; the arguments
must be integral.

expr>>expr Right shifts the left operand by an amount
equal to the right operand; the arguments
must be integral.

expr > expr Tests if the first expression is greater than
the second expression; the arguments must
be numeric.

expr < expr Tests if the first expression is less than the
second expression; the arguments must be
numeric.

expr >= expr Tests if the first expression is greater than or
equal to the second expression; the
arguments must be numeric.

expr <= expr Tests if the first expression is less than or
equal to the second expression; the
arguments must be numeric.

expr == expr Tests if the two expressions are equal.

expr != expr Tests if the two expression are not equal.

expr & expr Performs the bitwise AND of the two
arguments; the arguments must be integral.

expr ^ expr Performs the bitwise XOR of the two
arguments; the arguments must be integral.

expr | expr Performs the bitwise OR of the two
arguments; the arguments must be integral.

Table 2-3: Target Language Expressions (Continued)

Expression Definition
6

Compiler Directives
Formatting
By default, the Target Language Compiler outputs all floating-point numbers
in exponential notation with 16 digits of precision. To override the default, use
the directive:

%realformat string

If string is "EXPONENTIAL", the standard exponential notation with 16 digits
of precision is used. If string is "CONCISE", the Compiler uses a set of internal
heuristics to output the values in a more readable form while maintaining
accuracy. The %realformat directive sets the default format for Real number
output to the selected style for the remainder of processing or until it
encounters another %realformat directive.

expr && expr Performs the logical AND of the two
arguments and returns 1 or 0. This can be
used on either numeric or Boolean
arguments.

expr || expr Performs the logical OR of the two arguments
and returns 1 or 0. This can be used on either
numeric or Boolean arguments.

expr ? expr : expr Tests the first expression for logical truth. If
true, the first expression is returned;
otherwise the second expression is returned.
Note: Both are evaluated.

expr , expr Returns the value of the second expression.

Table 2-3: Target Language Expressions (Continued)

Expression Definition
2-17

2 Working with the Target Language

2-1
Conditional Inclusion
The conditional inclusion directives are

%if constant-expression
%else
%elseif constant-expression
%endif

and

%switch constant-expression
%case constant-expression
%break
%default
%endswitch

%if
The constant-expression must evaluate to an integral expression. It controls
the inclusion of all the following lines until it encounters a %else, %elseif, or
%endif directive. If the constant-expression evaluates to 0, the lines
following the directive are not included. If the constant-expression evaluates
to any other integral value, the lines following the %if directive are included
up until the %endif, %elseif, or %else directives.

When the Compiler encounters an %elseif directive, and no prior %if or
%elseif directive has evaluated to nonzero, the Compiler evaluates the
expression. If the value is 0, the lines following the %elseif directive are not
included. If the value is nonzero, the lines following the %elseif directive are
included up until the subsequent %else, %elseif, or %endif directive.

The %else directive begins the inclusion of source text if all of the previous
%elseif statements or the original %if statement evaluates to 0; otherwise, it
prevents the inclusion of subsequent lines up to and including the following
%endif.

The constant-expression can contain any expression specified in the “Target
Language Expressions” section.
8

Compiler Directives
%switch
The %switch statement evaluates the constant expression and compares it to
all expressions appearing on %case selectors. If a match is found, the body of
the %case is included; otherwise the %default is included.

%case ... %default bodies flow together, as in C, and %break must be used to
exit the switch statement. %break will exit the nearest enclosing %switch,
%foreach, or %for loop in which it appears. For example:

%switch(type)
%case x

/* Matches variable x. */
/* Note: Any valid TLC type is allowed. */

%case "Sin"
/* Matches Sin or falls through from case x. */

%break
/* Exits the switch. */

%case "gain"
/* Matches gain. */

%break
%default

/* Does not match x, "Sin," or "gain." */
%endswitch

In general, this is a more readable form for the %if/%elseif/%else
construction.

Multiple Inclusion

%foreach
The syntax of the %foreach multiple inclusion directive is:

%foreach identifier = constant-expression
%break
%continue

%endforeach

The constant-expression must evaluate to an integral expression, which
then determines the number of times to execute the foreach loop. The
identifier increments from 0 to one less than the specified number. Within
the foreach loop, you can use %<x>, where x is the identifier, to access the
2-19

2 Working with the Target Language

2-2
identifier variable. %break and %continue are optional directives that you can
include in the %foreach directive:

• %break can be used to exit the nearest enclosing %for, %foreach, or %switch
statement.

• %continue can be used to begin the next iteration of a loop.

%for
The syntax of the %for multiple inclusion directive is:

%for ident1 = const-exp1, const-exp2, ident2 = const-exp3
%body

%break
%continue

%endbody
%endfor

The first portion of the %for directive is identical to the %foreach statement in
that it causes a loop to execute from 0 to N–1 times over the body of the loop. In
the normal case, it only includes the lines between %body and %endbody, and
the lines between the %for and %body, and ignores the lines between the
%endbody and %endfor.

The %break and %continue directives act the same as they do in the %foreach
directive.

const-exp2 is a Boolean expression that indicates whether the loop should be
rolled. If const-exp2 is true, identifier1 receives the value of const-exp3,
otherwise it receives the null string. When the loop is rolled, all of the lines
between the %for and the %endfor are included in the output exactly one time.
0

Compiler Directives
identifier2 specifies the identifier to be used for testing whether the loop was
rolled within the body. For example,

%for Index = <NumNonVirtualSubsystems>3, rollvar="i"

 {
 int i;

 for (i=0; i< %<NumNonVirtualSubsystems>; i++)
 {

%body
x[%<rollvar>] = system_name[%<rollvar>];

%endbody

 }
 }
%endfor

If the number of nonvirtual subsystems (NumNonVirtualSubsystems) is greater
than or equal to 3, the loop is rolled, causing all of the code within the loop to
be generated exactly once. In this case, Index = 0.

If the loop is not rolled, the text before and after the body of the loop is ignored
and the body is generated NumNonVirtualSubsystems times.

This mechanism gives each individual loop control over whether or not it
should be rolled.

Note: The %for directive is functional, but it is not recommended. Rather, use
%roll, which provides the same capability in a more open way. RTW does not
make use of the %for construct.
2-21

2 Working with the Target Language

2-2
%roll
The syntax of the %roll multiple inclusion directive is:

%roll ident1 = roll-vector-exp, ident2 = threshold-exp, ...
block-exp [, type-string [,exp-list]]

%break
%continue

%endroll

This statement uses the roll-vector-exp to expand the body of the %roll
statement multiple times as in the %foreach statement. If a range is provided
in the roll-vector-exp and that range is larger than the threshold-exp
expression, the loop will roll. When a loop rolls, the body of the loop is expanded
once and the identifier (ident2) provided for the threshold expression is set to
the name of the loop control variable. If no range is larger than the specified
rolling threshold, this statement is identical in all respects to the %foreach
statement.

For example:

%roll Idx = [1 2 3:5, 6, 7:10], lcv = 10, ablock
%endroll

In this case, the body of the %roll statement expands 10 times as in the
%foreach statement since there are no regions greater than or equal to 10. Idx
counts from 1 to 10, and lcv is set to the null string, "".

When the Target Language Compiler determines that a given block will roll, it
performs a GENERATE_TYPE function call to output the various pieces of the loop
(other than the body). The default type used is Roller; you can override this
type with a string that you specify. Any extra arguments passed on the %roll
statement are provided as arguments to these special-purpose functions. The
called function is one of these four functions:

RollHeader(block, …). This function is called once on the first section of this roll
vector that will actually roll. It should return a string that is assigned to the
lcv within the body of the %roll statement.

LoopHeader(block, StartIdx, Niterations, Nrolled, …). This function is called once for
each section that will roll prior to the body of the %roll statement.
2

Compiler Directives
LoopTrailer(block, Startidx, Niterations, Nrolled, …). This function is called once for
each section that will roll after the body of the %roll statement.

RollTrailer(block, …). This function is called once at the end of the %roll
statement if any of the ranges caused loop rolling.

These functions should output any language-specific declarations, loop code,
and so on as required to generate correct code for the loop. An example of a
Roller.tlc file is:

%implements Roller "C"
%function RollHeader(block) Output

{
int i;

%return ("i")
%endfunction

%function LoopHeader(block,StartIdx,Niterations,Nrolled) Output
 for (i = %<StartIdx>; i < %<Niterations+StartIdx>; i++)

{
%endfunction

%function LoopTrailer(block,StartIdx,Niterations,Nrolled) Output
}

%endfunction

%function RollTrailer(block) Output
}

%endfunction

Note: The Target Language Compiler function library provided with RTW
has the capability to extract references to the Block I/O and other
RTW-specific vectors that vastly simplify the body of the %roll statement.
These functions include LibBlockInputSignal, LibBlockOutputSignal,
LibBlockParameter, LibBlockRWork, LibBlockIWork, LibBlockPWork, and
LibDeclareRollVars. For more details on these functions and other Simulink
functions, see the section on Loop Rolling beginning on page 3-44 along with
the “Target Language Compiler Function Library Reference” chapter. This
library also includes a default implementation of Roller.tlc.
2-23

2 Working with the Target Language

2-2
Extending the former example to a loop that rolls:

%language "C"
%assign ablock = BLOCK { Name "Hi" }
%roll Idx = [1:20, 21, 22, 23:25, 26:46], lcv = 10, ablock

Block[%< lcv == "" ? Idx : lcv>] *= 3.0;
%endroll

This TLC code produces the output:

{
int i;
for (i = 1; i < 21; i++)
{
 Block[i] *= 3.0;
}
Block[21] *= 3.0;
Block[22] *= 3.0;
Block[23] *= 3.0;
Block[24] *= 3.0;
Block[25] *= 3.0;
for (i = 26; i < 47; i++)
{
 Block[i] *= 3.0;
}

}

Object-Oriented Facility for Generating Target Code
The Target Language Compiler provides a simple object-oriented facility. The
language directives are:

%language string
%generatefile
%implements

This facility was designed specifically for customizing the code for Simulink
blocks, but can be used for other purposes as well.

The %language directive specifies the target language being generated. It is
required as a consistency check to ensure that the correct implementation files
are found for the language being generated. The %language directive must
4

Compiler Directives
appear prior to the first GENERATE or GENERATE_TYPE built-in function call.
%language specifies the language as a string. For example:

%language "C"

All blocks in Simulink have a Type parameter. This parameter is a string that
specifies the type of the block, e.g., "Sin" or "Gain". The object-oriented facility
uses this type to search the path for a file that implements the correct block.
By default the name of the file is the Type of the block with .tlc appended, so
for example, if the Type is "Sin" the Compiler would search for "Sin.tlc"
along the path. You can override this default filename using the
%generatefile directive to specify the filename that you want to use to replace
the default filename. For example:

%generatefile "Sin" "sin_wave.tlc"

The files that implement the block-specific code must contain a %implements
directive indicating both the type and the language being implemented. The
Target Language Compiler will produce an error if the %implements directive
does not match as expected. For example,

%implements "Sin" ["Ada", "Pascal"]

causes an error if the initial language choice was C.

You can use a single file to implement more than one target language by
specifying the desired languages in a vector. For example:

%implements "Sin" ["C", "Ada"]

Finally, you can implement several types using the wildcard (*) for the type
field:

%implements * ["C", "Ada"]

Note: The use of the wildcard (*) is not recommended because it relaxes error
checking for the %implements directive.

GENERATE and GENERATE_TYPE Functions
The Target Language Compiler has two built-in functions that dispatch
object-oriented calls, GENERATE and GENERATE_TYPE. You can call any function
2-25

2 Working with the Target Language

2-2
appearing in an implementation file (from outside the specified file) only by
using the GENERATE and GENERATE_TYPE special functions.

The GENERATE function takes two or more input arguments. The first argument
must be a valid scope and the second a string containing the name of the
function to call. The GENERATE function passes the first block argument and any
additional arguments specified to the function being called. The return
argument is the value (if any) returned from the function being called. Note
that the Compiler automatically “scopes” or adds the first argument to the list
of scopes searched as if it appears on a %with directive line. See %with in
“Scoping” beginning on page 2-41. This scope is removed when the function
returns.

The GENERATE_TYPE function takes three or more input arguments. It handles
the first two arguments identically to the GENERATE function call. The third
argument is the type; the type specified in the Simulink block is ignored. This
facility is used to handle S-function code generation by the Real-Time
Workshop. That is, the block type is S-function, but the Target Language
Compiler generates it as the specific S-function specified by GENERATE_TYPE.
For example,

GENERATE_TYPE(block, "Output", "dp_read")

specifies that S-function block is of type dp_read.

The block argument and any additional arguments are passed to the function
being called. Similar to the GENERATE built-in function, the Compiler
automatically scopes the first argument before the GENERATE_TYPE function is
entered and then removes the scope on return.

Within the file containing %implements, function calls are looked up first
within the file and then in the global scope. This makes it possible to have
hidden helper functions used exclusively by the current object.

Note: It is not an error for the GENERATE and GENERATE_TYPE directives to find
no matching functions. This is to prevent requiring empty specifications for all
aspects of block code generation. Use the GENERATE_FUNCTION_EXISTS
directive to determine if the specified function actually exists.
6

Compiler Directives
Output File Control
The structure of the output file control construct is:

%openfile string optional-equal-string optional-mode
%closefile id
%selectfile id

The %openfile directive opens a file or buffer for writing; the required string
variable becomes a variable of type file. For example:

%openfile x /% Opens and selects x for writing. %/
%openfile out = "out.h" /% Opens "out.h" for writing. %/

The %selectfile directive selects the file specified by the variable as the
current output stream. All output goes to that file until another file is selected
using %selectfile. For example:

%selectfile x /% Select file x for output. %/

The %closefile directive closes the specified file or buffer, and if this file is the
currently selected stream, %closefile invokes %selectfile to reselect the last
previously selected output stream.

There are two possible cases that %closefile must handle:

• If the stream is a file, the associated variable is removed as if by %undef.

• If the stream is a buffer, the associated variable receives all the text that has
been output to the stream. For example:

%assign x = "" /% Creates an empty string. %/
%openfile x
"hello, world"
%closefile x /% x = "hello, world\n"%/

If desired, you can append to an output file or string by using the optional
mode, a, as in:

%openfile "foo.c", "a" %% Opens foo.c for appending.
2-27

2 Working with the Target Language

2-2
Input File Control
The input file control directives are:

%include string
%addincludepath string

The %include directive searches the path for the target file specified by string
and includes the contents of the file inline at the point where the %include
statement appears.

The %addincludepath directive adds an additional include path to be searched
when the Target Language Compiler references %include or block target files.
The syntax is:

%addincludepath string

The string can be an absolute path or an explicit relative path. For example,
to specify an absolute path, use:

%addincludepath "C:\directory1\directory2" (PC)
%addincludepath "/directory1/directory2" (UNIX)
%addincludepath "directory1:directory2" (Macintosh)

To specify a relative path, the path must explicitly start with “.” on the PC or
UNIX, or “:” on the Macintosh. For example:

%addincludepath ".\directory2" (PC)
%addincludepath "./directory2" (UNIX)
%addincludepath ":directory2" (Macintosh)

When an explicit relative path is specified, the directory that is added to the
Target Language Compiler search path is created by concatenating the
location of the target file that contains the %addincludepath directive and the
explicit relative path.

The Target Language Compiler searches the directories in the following order
for target or include files:

1 The current directory

2 Any %addincludepath directives

3 Any include paths specified at the command line via –I
8

Compiler Directives
Typically, %addincludepath directives should be specified in your system
target file. Multiple %addincludepath directives will add multiple paths to the
Target Language Compiler search path.

Errors, Warnings, and Debug Messages
The related error, warning, and debug message directives are:

%error tokens
%warning tokens
%trace tokens
%exit tokens

These directives produce error, warning, or trace messages whenever a target
file detects an error condition, or tracing is desired. All of the tokens following
the directive on a line become part of the generated error or warning message.

The Compiler places messages generated by %trace onto stderr if and only if
you specify the verbose mode switch (–v[1|2|3]) to the Compiler. See the
section “Command Line Arguments,” later in this chapter for additional
information about switches.

The %exit directive reports an error and stops further compilation.

Built-In Functions and Values
Table 2-4 lists the built-in functions and values that are added to the list of
parameters that appear in the .rtw file. These TLC functions and values are
2-29

2 Working with the Target Language

2-3
defined in uppercase so that they are visually distinct from other parameters
in the .rtw file, and by convention, from user-defined parameters.

Table 2-4: TLC Built-in Functions and Values

Special Macro Name Expansion

CAST(expr, expr) The first expression must be a string
that corresponds to one of the type
names in the Target Language
Values table, and the second
expression will be cast to that type.
One application of this is to allow
outputs to be generated as
floating-point values.

EXISTS(expr) expr must be a string. If the
identifier is not currently in scope,
the result is 0. If the identifier is in
scope, the result is 1. expr can be a
single identifier or an expression
involving the . and [] operators.

FEVAL(expr1, expr2) Performs an evaluation in MATLAB.
See the “FEVAL Function” section
starting on page 2-35 for more
information.

FILE_EXISTS(expr) expr must be a string. If a file by the
name expr does not exist on the path,
the result is 0. If a file by that name
exists on the path, the result is 1.
0

Compiler Directives
FORMAT(expr1, expr2) The first expression is a Real value to
format. The second expression is
either "EXPONENTIAL" or "CONCISE".
Outputs the Real value in the
designated format where
EXPONENTIAL uses exponential
notation with 16 digits of precision,
and CONCISE outputs the number in a
more readable format while
maintaining numerical accuracy.

GENERATE(expr1, expr2, ...) See the description in the
“Object-Oriented Facility for
Generating Target Code” section, on
page 2-24.

GENERATE_FILENAME(expr) Treats the expression as a Type, and
returns the name of the .tlc file that
will be opened for that Type.

GENERATE_FUNCTION_EXISTS
(expr, expr)

Determines if a given block function
exists. The first expression is the
same as the first argument to
GENERATE, namely a block scoped
variable containing a Type. The
second expression is a string that
should match the function name.

GENERATE_TYPE
(expr1, expr2, expr3)

See the description in the
“Object-Oriented Facility for
Generating Target Code” section, on
page 2-24.

Table 2-4: TLC Built-in Functions and Values (Continued)

Special Macro Name Expansion
2-31

2 Working with the Target Language

2-3
GENERATE_TYPE_FUNCTION_EXISTS
(expr1, expr2, expr3)

Same as
GENERATE_FUNCTION_EXISTS except
it overrides the Type built into the
object. See the description of
GENERATE_TYPE for more information.

IDNUM(expr) expr must be a string. The result is a
vector where the first element is a
leading string (if any) and the second
element is a number appearing at the
end of the input string. For example:

IDNUM("ABC123") yields ["ABC",
123]

NULL_FILE A predefined file for no output that
you can use as an argument to
%selectfile to prevent output.

NUMTLCFILES The number of target files used thus
far in expansion.

OUTPUT_LINES(expr) Accepts a file variable as input and
returns the number of lines that have
been written to the given file or
buffer.

Table 2-4: TLC Built-in Functions and Values (Continued)

Special Macro Name Expansion
2

Compiler Directives
SIZE(expr[,expr]) Calculates the size of the first
expression and generates a
two-element, row vector. If the second
operand is specified, it is used as an
integral index into this row vector;
otherwise the entire row vector is
returned. SIZE(x) applied to any
scalar returns [1 1]. SIZE(x)
applied to any scope returns the
number of repeated entries of that
scope type (e.g., SIZE(Block) returns
[1,<number of blocks>].

STAND_ALONE This can be used to determine if the
FEVAL function is available. When
running from MATLAB, its value is
0; when running from the shell, its
value is 1.

STDOUT A predefined file for stdout output.
You can use as an argument to
%selectfile to force output to
stdout.

STRING(expr) Expands the expression into a string;
the characters \, \n, and " are
escaped by preceding them with \
(backslash). All the ANSI escape
sequences are translated into string
form.

Table 2-4: TLC Built-in Functions and Values (Continued)

Special Macro Name Expansion
2-33

2 Working with the Target Language

2-3
STRINGOF(expr) Accepts a vector of ASCII values and
returns a string that is constructed
by treating each element as the
ASCII code for a single character.
Used primarily for S-function string
parameters in RTW.

SYSNAME(expr) Looks for specially formatted strings
of the form <x>/y and returns x and y
as a 2-element string vector. This is
used to resolve subsystem names in
RTW. For example:

%<sysname("<sub>/Gain")>

returns

["sub","Gain"]

To expand a full Simulink path
name, see LibPathName in the
“Target Language Compiler Function
Library Reference” chapter.

TLCFILES Returns a vector containing the
names of all the target files included
thus far in the expansion. Also, see
NUMTLCFILES.

TLC_TIME The date and time of compilation.

TLC_VERSION The version and date of the Target
Language Compiler.

Table 2-4: TLC Built-in Functions and Values (Continued)

Special Macro Name Expansion
4

Compiler Directives
FEVAL Function
The FEVAL built-in function calls MATLAB M-file functions and
MEX-functions. The structure is:

%assign result = FEVAL(matlab-function-name, rhs1, rhs2, ...
rhs3, ...);

Note: Only a single left-hand-side argument is allowed when calling
MATLAB.

TYPE(expr) Evaluates expr and determines the
result type. The result of this
function is a string that corresponds
to the type of the given expression.
See value type string in the Target
Language Values table for possible
values.

WHITE_SPACE(expr) Accepts a string and returns 1 if the
string contains only whitespace
characters (, \t, \h, \r) and 0
otherwise.

WILL_ROLL(expr1, expr2) The first expression is a roll vector
and the second expression is a
threshold. This function returns true
if the vector contains a range that
will roll.

Table 2-4: TLC Built-in Functions and Values (Continued)

Special Macro Name Expansion
2-35

2 Working with the Target Language

2-3
When calling MATLAB, these conversions are made:

When values are returned from MATLAB, they are converted as follows:

Other value types are not currently supported.

As an example, this statement uses the FEVAL built-in function to call MATLAB
to take the sine of the input argument.

%assign result = FEVAL("sin", 3.14159)

Note: The FEVAL function is only available from the MATLAB command line
version of the Target Language Compiler. It is not available from the shell
version. Use the STAND_ALONE predefined value to determine if FEVAL is
available to you.

TLC Type MATLAB Type

"Boolean" or
"Number" or “Real”

Double Scalar

"String" Char Vector

"Vector" If the vector is entirely strings, then Char Matrix. If
it is entirely numeric, then Double Vector.
Otherwise, it is an error.

MATLAB Type TLC Type

Double Scalar "Number" or "Real" depending on the value

Char Row Vector "String"

Char Matrix or
Char Col Vector

"Vector" of "Strings"

Double Vector "Vector" whose elements are "Number" or "Real"
depending on their values
6

Compiler Directives
Macro Definition
To simplify complicated references, target files can define macros that are
expanded when they appear in subsequent expressions.

%define identifier opt-argument-list replacement-list

To undefine a previously defined macro, use:

%undef identifier

identifier is the name of the macro being defined or undefined;
opt-argument-list is either a C macro argument list or is omitted;
replacement-list is an expansion list similar to a C language macro.

Note: This facility works, but it is not recommended. Rather, use %assign
and %function, which provide the same capabilities in a more open way. RTW
does not make use of macros.

Identifier Definition
To define or change identifiers (TLC variables), use the directive:

%assign [::]expression = constant-expression

This directive introduces new identifiers (variables) or changes the values of
existing ones. The left-hand side can be a qualified reference to a variable using
the . and [] operators, or it can be a single element of a vector or matrix. In the
case of the matrix, only the single element is changed by the assignment.

The %assign directive inserts new identifiers into the local function scope (if
any), or into the global scope. Identifiers introduced into the function scope are
not available within functions being called, and are removed upon return from
the function. Identifiers inserted into the global scope are persistent. Existing
identifiers can be changed by completely respecifying them. The constant
expressions can include any legal identifiers from the .rtw files. You can use
%undef to delete identifiers in the same way that you use it to remove macros.
2-37

2 Working with the Target Language

2-3
Within the scope of a function, variable assignments always create new local
variables unless you use the :: scope resolution operator. For example, given
a local variable foo and a global variable foo:

%function …
…
%assign foo = 3
…
%endfunction

In this example, the assignment always creates a variable foo local to the
function that will disappear when the function exits. Note that foo is created
even if a global foo already exists.

In order to create or change values in the global scope, you must use the ::
operator to disambiguate, as in:

%function …
%assign foo = 3
%assign ::foo = foo
…
%endfunction

The :: forces the compiler to assign to the global foo, or to change its existing
value to 3.

Note: It is an error to change a value from the RTW file without qualifying it
with the scope. This example does not generate an error:

%assign CompiledModel.name = "newname" %% No error

This example generates an error:

%with CompiledModel
%assign name = "newname" %% Error

%endwith
8

Compiler Directives
Creating Records
Use the %assign directive to create new records. For example, if you have a
record called Rec1 that contains a record called Rec2, and you want to add an
additional Rec2 to it, use:

%assign tempVar = Rec2 { Name "Name1"; Type "t1" }
%assign Rec1 = Rec1 + Rec2

The first statement creates the new Rec2 and the second statement adds the
new Rec2 to the existing Rec2. In the first statement, the left-hand side is the
reference to the record and the right-hand side is the new record. Figure 2-1
shows the result of adding the record to the existing one:

Figure 2-1: Creating a New Record

If you want to access the new record, you can use:

%assign myname = tempVar.Name

or

%assign myname = Rec1.Rec2[1].Name

In this same example, if you want to add two records to the existing record, use:

%assign tempVar = Rec2 { Name "Name1"; Type "t1" }
%assign Rec1 = Rec1 + Rec2[0]
%assign tempVar = Rec2 { Name "Name2"; Type "t2" }
%assign Rec1 = Rec1 + Rec2[1]

Rec1 {
 Rec2 {

Name "Name0"
Type "t0"

 }
 Rec2 {

Name "Name1"
Type "t1"

 }
.
.

}

New Record

Existing Record
2-39

2 Working with the Target Language

2-4
This produces:

Figure 2-2: Creating Multiple Records

Adding Parameters to an Existing Record
You can use the %assign directive to add a new parameter to an existing
record. For example,

%assign N = 500
%assign x = Block[Idx] + N /% Adds N with value 500 to Block %/
%assign myn = Block[Idx].N /% Gets the value 500 %/

Rec1 {
 Rec2 {

Name "Name0"
Type "t0"

 }
 Rec2 {

Name "Name1"
Type "t1"

 }
 Rec2 {

Name "Name2"
Type "t2"

 }
.
.

}

First New Record

Existing Record

Second New Record
0

Compiler Directives
adds a new parameter, N, at the end of an existing block with the name and
current value of an existing variable as shown in Figure 2-3. It returns the
block value.

Figure 2-3: Parameter Added to Existing Record

Scoping
The structure of the %with directive is:

%with expression
%endwith

The %with directive adds a new scope to be searched onto the current list of
scopes. This directive makes it easier to refer to block-scoped variables. For
example,

RTW file:

System {
Name "foo"

}

To access the Name parameter without a %with statement, use:

%<System.Name>

or using %with, use:

%with System
%<Name>

%endwith

Block {
.
.
.

N 500
}

New Parameter
2-41

2 Working with the Target Language

2-4
Variable Scoping
The Target Language Compiler uses a form of dynamic scoping to resolve
references to variables. This section illustrates the process that the Target
Language Compiler performs in determining the values of variables.

In the simplest case, to resolve a variable the Target Language Compiler
searches the top-level RTW pool followed by the global pool. This illustration
shows the search sequence that the Target Language Compiler uses.

Figure 2-4: Search Sequence

You can modify the search list and search sequence by using the %with
directive. When you add a construct such as:

%with CompiledModel.system[sysidx]
...

%endwith

Global Pool
%assign a = …
%assign b = …
…

Top-Level RTW Pool
CompiledModel {

…
}

2

1

2

Compiler Directives
The System[Sysidx] scope is added to the search list, and it is searched before
anything else.

Figure 2-5: Modifying the Search Sequence

Using this technique makes it simpler to access embedded definitions. For
example, to refer to the system name without using %with, you would have to
use:

CompiledModel.System[Sysidx].Name

Using the pair of %with statements as in the previous example, you can refer
to the system name simply by:

Name

Global Pool
%assign a = …
%assign b = …
…

Top-Level RTW Pool
CompiledModel {

…
}

%with CompiledModel.
System[Sysidx] 1

2

3

2-43

2 Working with the Target Language

2-4
The scoping rules within functions behave differently. A function has its own
scope, and that scope gets added to the previously described list as depicted in
this figure.

Figure 2-6: Scoping Rules Within Functions

Target Language Functions
The target language function construct is:

%function identifier (optional-arguments) [Output | void]
%return
%endfunction

Functions in the target language are recursive and have their own local
variable space. Target language functions do not produce any output, unless
they explicitly use the %openfile, %selectfile, and %closefile directives, or
are output functions.

Global Pool
%assign a = …
%assign b = …
…

Top-Level RTW Pool
CompiledModel {

…
}

%with CompiledModel.
System[Sysidx] 2

3

4

1

%function function(…)
foo (x,y)
4

Compiler Directives
A function optionally returns a value with the %return directive. The returned
value can be any of the types defined in the Target Language Values table.

In this example, a function, name, returns x, if x and y are equal, and returns
z, if x and y are not equal.

%function name(x,y,z) void

%if x == y
%return x

%else
%return z

%endif

%endfunction

Function calls can appear in any context where variables are allowed.

All %with statements that are in effect when a function is called are available
to the function. Calls to other functions do not include the local scope of the
function, but do include any %with statements appearing within the function.

Assignments to variables within a function always create new, local variables
and can not change the value of global variables unless you use the :: scope
resolution operator.

By default, a function returns a value and does not produce any output. You
can override this behavior by specifying the Output and void modifiers on the
function declaration line, as in:

%function foo() Output
…
%endfunction

In this case, the function continues to produce output to the currently open file,
if any, and is not required to return a value. You can use the void modifier to
indicate that the function does not return a value, and should not produce any
output, as in:

%function foo() void
…
%endfunction
2-45

2 Working with the Target Language

2-4
Variable Scoping Within Functions
Within a function, the left-hand member of any %assign statement defaults to
create a new entry in the function’s block within the scope chain, and does not
affect any of the other entries. That is, it is local to the function. For example,

%function foo (x,y)
%assign local = 3
%endfunction

adds local = 3 to the foo() block in the scope list giving:

Figure 2-7: Scoping Rules Within Functions Containing Local Variables

Global Pool
%assign a = …
%assign b = …
…

Top-Level RTW Pool
CompiledModel {
…
}

%with CompiledModel.
System[Sysidx] 2

3

4

1

%function function(…)
foo (x,y)

local = 3
6

Compiler Directives
You can override this default behavior by using %assign with the :: operator.
For example,

%assign ::global = 3

makes global a global variable and initializes it to 3.

When you introduce new scopes within a function using %with, these new
scopes are used during nested function calls, but the local scope for the function
2-47

2 Working with the Target Language

2-4
is not searched. Also, if a %with is included within a function, its associated
scope is carried with any nested function call. For example,

Figure 2-8: Scoping Rules When Using %with Within a Function

Global Pool
%assign a = …
%assign b = …

Top-Level RTW Pool
CompiledModel {
…
}

%with CompiledModel
System[Sysidx]

6

%with expression2
Block[Blkidx]

%function function1
foo (x,y)

%with expression3
Name[Nmidx]

%function function2
bar ()
%<variableX>

5

4

3

2

1

8

Compiler Directives
%return
The %return statement closes all %with statements appearing within the
current function. In this example, the %with statement is automatically closed
when the %return statement is encountered, removing the scope from the list
of searched scopes.

%function foo(s)
 %with s
 %return(name)
 %endwith
%endfunction
2-49

2 Working with the Target Language

2-5
Target Language Compiler

Command Line Arguments
To call the Target Language Compiler, use:

tlc [switch1 expr1 switch2 expr2 …] filename.tlc

Table 2-5 lists the switches you can use with the Target Language Compiler.
Order makes no difference.

Table 2-5: Target Language Compiler Switches

Switch Meaning

–r filename Reads a database file (such as a .rtw file). Repeat this
option multiple times to load multiple database files into
the Target Language Compiler. Omit this option for
target language programs that do not depend on the
database.

–v[number] Sets the internal verbose level to <number>. Omitting
this option sets the verbose level to 1.

–Ipath Adds the specified directory to the list of paths to be
searched for .tlc files.

–Opath Specifies any and all output produced should be placed in
the designated directory, including files opened with
%openfile and %closefile, and .log files created in
debug mode. To place files in the current directory, use
–O. (dash Capital O period)

–m[number] Specifies the maximum number of errors to report is
<number>. If no –m argument appears on the command
line, it defaults to reporting the first five errors. If the
<number> argument is omitted on this option, 1 is
assumed.
0

Target Language Compiler
As an example, the command line

tlc –r Demo.rtw –v grt.tlc

specifies that Demo.rtw should be read and used to process grt.tlc in verbose
mode.

Filenames and Search Paths
All target files have the .tlc extension. By default, block-level files have the
same name as the Type of the block in which they appear. You can override the
search path for target files with your own local versions. The Compiler finds all
target files along this path. If you specify additional search paths with the –I
switch of the tlc command or via the %addincludepath directive, they will be
searched after the current working directory, and in the order in which you
specify them.

Target Language Debug Mode
When you initiate the debug mode via the –d switch of the tlc command, the
Compiler produces a .log file for every target file used. The .log file contains
usage count information regarding how many times each line is encountered
during execution.

–d[n|g|o] Specifies the level and type of debugging. By default,
debugging is off (–do). –d defaults to –dn, or normal
mode debugging, and –dg is generate mode debugging.

–aident=expr Specifies an initial value for some parameters;
equivalent to the %assign command. Use this to control
template generation by querying its value.

Table 2-5: Target Language Compiler Switches (Continued)

Switch Meaning
2-51

2 Working with the Target Language

2-5
The output of the listing file includes the number of times each line is
encountered followed by a colon.

1: %% Abstract: Gain block target file
1:
1: %implements Gain "C"
1:
1: %% Function: FcnEliminateUnnecessaryParams ==================
1: %% Abstract:
1: %% Elimate unecessary multiplications for following gain
1: %% cases when inlining parameters:
1: %% Zero: memset in registration routine zeroes output
1: %% Positive One: assign output equal to input
1: %% Negative One: assign output equal to unary minus of
1: %% input
1: %%
1: %function FcnEliminateUnnecessaryParams(y,u,k) Output
0: %if LibIsEqual(k, 0.0)
0: %if ShowEliminatedStatements == 1
0: /* %<y> = %<u> * %<k>; */
0: %endif
0: %elseif LibIsEqual(k, 1.0)
0: %<y> = %<u>;
0: %elseif LibIsEqual(k, -1.0)
0: %<y> = -%<u>;
0: %else
0: %<y> = %<u> * %<k>;
0: %endif
1: %endfunction
1:
1:
1: %% Function: Outputs ==
1: %% Abstract:
1: %% Y = U * K
1: %%
1: %function Outputs(block, system) Output
1: /* %<Type> Block: %<Name> */
1: %assign rollVars = ["U", "Y", "P"]
1: %roll sigIdx = RollRegions, lcv = RollThreshold, block, ...

"Roller", rollVars
2

Target Language Compiler
1: %assign y = LibBlockOutputSignal(0, "", lcv, sigIdx)
1: %assign u = LibBlockInputSignal(0, "", lcv, sigIdx)
1: %assign k = LibBlockParameter(Gain, "", lcv, sigIdx)
1: %if InlineParameters == 1
0: %<FcnEliminateUnnecessaryParams(y, u, k)>\
1: %else
1: %<y> = %<u> * %<k>;
1: %endif
1: %endroll
1:
1: %endfunction
1:
1: %% [EOF] gain.tlc

This structure makes it easy to identify branches not taken and to develop new
tests that can exercise unused portions of the target files.
2-53

2 Working with the Target Language

2-5
4

A Basic Example 3-2
Process . 3-2

Target Language Compiler Architecture 3-6
System Target Files 3-6
Block Functions 3-7

Coding Conventions 3-8

Writing a Block Target File 3-15
TLC Block Setup Functions 3-15
TLC Output Block Functions 3-17

The RTW TLC Function Library 3-20
Built-In TLC Functions 3-30

Inlining an S-Function 3-31
An Example . 3-32
Configurable RTW Variables 3-40
Matrix Parameters in RTW 3-41

Loop Rolling . 3-44
3

Writing Target
Language Files

3 Writing Target Language Files

3-2
A Basic Example
This section presents an elementary example of creating a target language file
that generates specific text from an RTW model. This example shows the
sequence of steps that you should follow in creating and using your own target
language files.

Process
Figure 3-1 shows the Simulink model, basic.mdl.

Figure 3-1: Simulink Model

A Basic Example
Selecting Parameters from Simulink’s Simulation menu displays the dialog
box shown in Figure 3-2.

Figure 3-2: Simulation Parameters Dialog
3-3

3 Writing Target Language Files

3-4
Clicking the Build button generates the .rtw file, basic.rtw, and executes the
system target file, basic.tlc with the –v option, that is specified under Code
generation. The structure of basic.rtw is:

CompiledModel {
 Name "basic"
 Version "1.85 (Oct, 30 1996)"
 GeneratedOn "Tue Mar 18 09:53:17 1997"
 Solver FixedStepDiscrete
 SolverType FixedStep
 StartTime 0
 StopTime 10
 FixedStepOpts {
 FixedStep 0.2
 }

.

.

.
NumModelInputs 0

 NumModelOutputs 1
 NumNonVirtBlocksInModel 0
 DirectFeedthrough no
 NumContStates 0
 NumDiscStates 0

.

.

.
BlockOutputs {
 NumBlockOutputs 2
 BlockOutput {

.

.

.
System {
 Type root
 Name "<root>"

.

.

.
}

A Basic Example
The file, basic.tlc, is a TLC file that uses the .rtw code to generate text that
contains the model’s name, generation date, and its number of continuous
states.

Instead of using the Simulation Parameters dialog from Simulink’s
Simulation menu, you could perform the same functions directly from the
MATLAB prompt. To create basic.rtw and execute basic.tlc from the
MATLAB prompt, enter:

rtwgen basic
tlc –r basic.rtw basic.tlc –v

The output of this process is:

As you continue through this chapter, you will learn the details of creating
target files.

%with CompiledModel

My model's name is: %<Name>

It was generated on: %<GeneratedOn>

And it has %<NumContStates> continuous states.

%endwith

basic.tlc

My model's name is: basic

It was generated on: Tue Mar 18 09:53:17 1997

And it has 0 continuous states.
3-5

3 Writing Target Language Files

3-6
Target Language Compiler Architecture

System Target Files
Table 3-1 lists the system target files that generate the RTW code.

Note: The grt.tlc file is in the /MATLAB/rtw/c/grt directory. All the system,
library, and block target files referred to in this section are in the
/MATLAB/rtw/c/tlc directory.

To generate all of the associated generic real-time RTW code, you execute:

tlc –r model.rtw MATLAB/rtw/c/grt/grt.tlc –IMATLAB/rtw/c/tlc

As the names suggest, mdlhdr.tlc creates the model’s header file model.h,
mdlparam.tlc creates the model’s parameters file model.prm, mdlreg.tlc
creates the model’s function registration file, and mdlbody.tlc creates the
model’s source code file model.c. If the code size in model.c reaches the file size
threshold, code generation continues in model1.c. This process continues in
model2.c, and so on.

Table 3-1: System Target Files

System Target File Purpose

grt.tlc Assigns specific variables required for generic
real-time code generation, and is the Target
Language Compiler entry point.

mdlwide.tlc Assigns more generalized variables required for
RTW code generation, and is included by grt.tlc.

mdlbody.tlc Included by mdlwide.tlc.

mdlreg.tlc Included by mdlbody.tlc.

mdlhdr.tlc Included by mdlreg.tlc.

mdlparam.tlc Included by mdlreg.tlc.

Target Language Compiler Architecture
Program flow through the system target files avoids multiple passes through
the RTW file. You should not change the order of code generation without first
performing a thorough analysis of the file dependencies. For example, the
parameters structure is not created until all source code has been generated.
This technique eliminates unused parameters.

Block Functions
The functions declared inside each of the block target files are exercised by the
system target files. In these tables, block refers to a Simulink block name (e.g.,
gain) and system refers to the subsystem in which the block resides.

In object-oriented programming terms, these functions are polymorphic in
nature since each block target file contains the same functions. The Target
Language Compiler dynamically determines at runtime which block function
to execute depending on the block’s type. That is, the system file only specifies
that the Outputs function, for example, is to be executed. The particular
Outputs function is determined by the Target Language Compiler depending
on the block’s type.

Table 3-2: Block Functions Exercised by mdlwide.tlc

BlockInstanceSetup(block, system)

BlockTypeSetup(block, system)

Table 3-3: Block Functions Exercised by mdlbody.tlc

Enable(block, system)

Disable(block, system)

Start(block, system)

InitializeConditions(block, system)

Outputs(block, system)

Update(block, system)

Derivatives(block, system)

Terminate(block, system)
3-7

3 Writing Target Language Files

3-8
Coding Conventions
The following guidelines help ensure that the programming style in each TLC
file is consistent, and hence, more easily modifiable.

1 All identifiers in the RTW file begin with a capital letter. For example,

NumContStates 10
NumBlocks 52

Note that block records that contain a Name identifier should start the name
with a capital letter since the Name identifier is often promoted into the
parent scope. For example, a block snippet may contain

Block {
 :
 TID 0
 NumRWorkDefines 1
 RWorkDefine {
 Name "PrevT"
 Width 1
 }
 PrevT RWorkDefine[0]
 :
}

Since the Name identifier within the RWorkDefine record is promoted to
PrevT in its parent scope, it must start with a capital letter. The promotion

Coding Conventions
of the Name identifier into the parent block scope is currently done for the
Parameter, RWorkDefine, IWorkDefine, and PWorkDefine block records.

The TLC assignment directive (%assign) generates a warning if you assign
a value to an “unqualified” RTW identifier. For example,

%assign TID = 1

will produce an error because TID identifier is not qualified by Block.
However, a “qualified” assignment will not generate a warning.

%assign Block.TID = 1

does not generate a warning because the Target Language Compiler
assumes the programmer is intentionally modifying an identifier since the
assignment contains a qualifier.

2 Global TLC variable assignments should start with uppercase letters. A
global variable is any variable declared in a system target file (grt.tlc,
mdlwide.tlc, mdlhdr.tlc, mdlbody.tlc, mdlreg.tlc, or mdlparam.tlc), or
within a function that uses the :: operator. In some sense, global
assignments have the same scope as RTW variables. An example of a global
TLC variable defined in mdlwide.tlc is

%assign InlineParameters = 1

An example of a global reference in a function is

%function foo() void
 %assign ::GlobalIdx = ::GlobalIdx + 1
%endfunction

3 Local TLC variable assignments should start with lowercase letters. A local
TLC variable is a variable assigned inside a function. For example,

%assign numBlockStates = ContStates[0]

4 Library functions (functions in funclib.tlc) start with Lib when the
function is to be used outside the library file. If the function is only used
3-9

3 Writing Target Language Files

3-1
inside the library file, it should start with Fcn and the function should be
placed at the bottom of funclib.tlc.

%%
%% Global TLC Functions (start with Lib)
%%

%function LibGlobalTLCFunction(...)

%%
%% Local TLC Functions (start with Fcn)
%%

%function FcnLocalTLCFunction(...)

5 Functions declared inside a block.tlc file start with Fcn. For example,

%function FcnMyBlockFunc(...)

Note: Functions declared inside a system file are global; functions declared
inside a block file are local.

6 Do not hard code the variables defined in mdlwide.tlc. All RTW global
variables start with rt and all RTW global functions start with rt_.

Avoid naming global variables in your run-time interface modules that start
with rt or rt_ since they may conflict with RTW global variables and
functions. These TLC variables are declared in mdlwide.tlc.
0

Coding Conventions
Table 3-4: TLC Global Variables Specifying RTW Global Variables

Description TLC Global Variable Default Value

Block I/O tBlockIO rtB

Block Signal Information tModelBlockInfo rtModelBlockInfo

Control Port Index tControlPortIdx controlPortIdx

Data Store Memory tParameters rtP

External Inputs tInput rtU

External Outputs tOutput rtY

Ground (Unconnected block
input)

tGROUND rtGROUND

Infinity tInf rtInf

Integer-Work tRWork rtRWork

Minus Infinity tMinusInf rtMinusInf

Mode Vector tPWork rtPWork

Not a Number tNan rtNan

Pointer-Work tIWork rtIWork

Previous Zero-crossing State tPrevZCSigState rtPrevZCSigState

Real-Work tChildSimStruct rts

Root SimStruct tDataStores rtDSM

S-Function SimStruct tSimStruct rtS

States tState rtX

Task Identifier tTID tid
3-11

3 Writing Target Language Files

3-1
7 This convention creates consistent variables throughout the TLC files. For
example, the Gain block contains the following Outputs function:

%% Function: Outputs ===
%% Abstract:
%% Y = U * K
%%
%function Outputs(block, system) Output
/* %<Type> Block: %<Name> */
%assign rollVars = ["U", "Y", "P"]
%roll sigIdx = RollRegions, lcv = RollThreshold, block,...

"Roller", rollVars
%assign y = LibBlockOutputSignal(0, "", lcv, sigIdx)
%assign u = LibBlockInputSignal(0, "", lcv, sigIdx)
%assign k = LibBlockParameter(Gain, "", lcv, sigIdx)
%<y> = %<u> * %<k>;
%endroll

%endfunction

Table 3-5: TLC Global Variables Specifying RTW Global Functions

Description TLC Global Variable Default Value

Log variable create function tCreateLogVar rt_CreateLogVar

Log variable update function tUpdateLogVar rt_UpdateLogVar

Zero-crossing function tZCFcn rt_ZCFcn

 Note 3

 Note 1
 Note 5

 Notes 4, 6

 Note 2
2

Coding Conventions
Notes about this TLC code:

Note 1 The code section for each block begins with a comment specifying
the block type and name.

Note 2 Include a blank line immediately after the end of the function in
order to create consistent spacing between blocks in the output
code.

Note 3 Try to stay within 80 columns per line for the function banner. You
might set up an 80 column comment line at the top of each function.
As an example, see constant.tlc.

Note 4 For consistency, use the variables sysIdx and blkIdx for system
index and block index, respectively.

Note 5 Use the variable rollVars when using the %roll construct.

Note 6 Use these conventions to name the loop control variables:
- Use sigIdx and lcv when looping over RollRegions.

- Use xidx and xlcv when looping over the states.

Example: Output function in gain.tlc

%roll sigIdx = RollRegions, lcv = RollThreshold, ...
block, "Roller", rollVars

Example: InitializeConditions function in linblock.tlc

%roll xidx = [0:nStates-1], xlcv = RollThreshold,...
block, "Roller", rollVars

8 The Target Language Compiler function library files are conditionally
included so that they may be included multiple times. For example, the main
3-13

3 Writing Target Language Files

3-1
Target Language Compiler function library, funclib.tlc, contains this
TLC code to prevent multiple inclusion:

%if EXISTS("_FUNCLIB_") == 0
%assign _FUNCLIB_ = 1

.

.

.
%endif %% _FUNCLIB_

The name of the variable should be the same as the base filename in
uppercase with additional underscores attached at both ends.
4

Writing a Block Target File
Writing a Block Target File
To write a block target file, use these polymorphic block functions combined
with the Target Language Compiler library functions declared in funclib.tlc.
For a complete list of the Target Language Compiler library functions, see
Chapter 4, “Target Language Compiler Function Library Reference.”

A brief description of the necessary block and library functions follow.

TLC Block Setup Functions

BlockInstanceSetup(block, system)
The BlockInstanceSetup function executes for all the blocks that have this
function defined in their target files in a model. For example, if there are 10
From Workspace blocks in a model, then the BlockInstanceSetup function in
fromwks.tlc executes 10 times, once for each From Workspace block instance.
Use BlockInstanceSetup to generate code for each instance of a given block
type.

See the “Target Language Compiler Function Library Reference” for a list of
relevant functions to call from inside this block function. See fromwks.tlc for
an example of the BlockInstanceSetup function.

Syntax: BlockInstanceSetup(block, system) void

block = Reference to a Simulink block

system = Reference to a nonvirtual Simulink subsystem

As an example, given S-function foo with a scalar parameter representing a
gain and one RWork representing previous inputs, you could define the
following function.
3-15

3 Writing Target Language Files

3-1
%function BlockInstanceSetup(block, system) void

%% Rename S-function parameter so that the TLC and
%% generated code is more readable (P1 --> Gain)

%<LibRenameParameter(block, P1, "Gain")>

%% Define the RWork vector to make the code more
%% readable, and to allow the RWork to be rolled
%% inside the %roll construct.

%<LibDefineRWork(block, "PrevU", LibDataInputPortWidth(0))>

%endfunction

Now you can reference P1 as PrevU in the Target Language Compiler. For
example,

%function Outputs(block, system) Output
%assign PrevU = LibBlockParameter(PrevU, ucv, lcv, sigIdx)
.
.
.

%endfunction

And, the generated code produces "rtP.foo.PrevU" instead of "rtP.foo.P1".

BlockTypeSetup(block, system)
BlockTypeSetup executes once per block type before code generation begins.
That is, if there are 10 Lookup Table blocks in the model, the BlockTypeSetup
function in look_up.tlc is only called one time. Use this function to perform
general work for all blocks of a given type.

See Chapter 4, “Target Language Compiler Function Library Reference,” for a
list of relevant functions to call from inside this block function. See
look_up.tlc for an example of the BlockTypeSetup function.

Syntax: BlockTypeSetup(block, system) void

block = Reference to a Simulink block

system = Reference to a nonvirtual Simulink subsystem
6

Writing a Block Target File
As an example, given S-function foo requiring a #define and two function
declarations in the header file, you could define the following function.

%function BlockTypeSetup(block, system) void

%% Place a #define in the model's header file

%openfile buffer
#define A2D_CHANNEL 0

%closefile buffer

%<LibCacheDefine(buffer)>

%% Place function prototypes in the model's header file

%openfile buffer
void start_a2d(void);
void reset_a2d(void);

%closefile buffer

%<LibCacheFunctionPrototype(buffer)>

%endfunction

TLC Output Block Functions
The remaining block functions are Target Language Compiler output functions
executed by the system target file mdlbody.tlc for each block in the model.

Enable(block, system)
Nonvirtual subsystem Enable functions are created whenever a Simulink
subsystem contains an Enable block. Including the Enable function in a block’s
TLC file places the block’s specific enable code into this subsystem Enable
function. See sin_wave.tlc for an example of the Enable function.

Disable(block, system)
Nonvirtual subsystem Disable functions are created whenever a Simulink
subsystem contains a Disable block. Including the Disable function in a block’s
TLC file places the block’s specific disable code into this subsystem Disable
function. See outport.tlc for an example of the Disable function.
3-17

3 Writing Target Language Files

3-1
Start(block, system)
Include a Start function to place code into MdlStart. The code inside MdlStart
executes once and only once. Typically, you include a Start function to execute
code once at the beginning of the simulation (e.g., initialize values in the work
vectors; see backlash.tlc,) or code that does not need to be re-executed when
the subsystem in which it resides enables. See constant.tlc for an example of
the Start function.

InitializeConditions(block, system)
TLC code that is generated from the block’s InitializeConditions function
ends up in one of two places. The code is placed into MdlStart if the Simulink
block does not reside in a nonvirtual subsystem that requires an Initialize
function. That is, a nonvirtual subsystem contains an Initialize function
when it is configured to reset states on enable. If this is the case, the TLC code
generated from this block function is placed in the subsystem Initialize
function, and MdlStart will call this Initialize function. However, if the
Simulink block resides in root or a nonvirtual subsystem that does not require
an Initialize function, the code generated from this block function is placed
directly (inlined) into MdlStart.

There is a subtle difference between the block functions Start and
InitializeConditions. Typically, you include a Start function to execute code
that does not need to re-execute when the subsystem in which it resides
enables, and you include an InitializeConditions function to execute code
that must re-execute when the subsystem in which it resides enables. See
delay.tlc for an example of the InitializeConditions function.

Outputs(block, system)
A block should generally include an Outputs function. The TLC code generated
by a block’s Outputs function is placed in one of two places. The code is placed
directly in MdlOutputs if the Simulink block does not reside in a nonvirtual
subsystem. The code is placed in a subsystem’s Outputs function if the
Simulink block resides in a nonvirtual subsystem. See gain.tlc for an
example of the Outputs function.

Note: Zero-crossing reset code is placed in the Outputs function.
8

Writing a Block Target File
Update(block, system)
Include an Update function if the block has code that needs to be updated each
major time step. Code generated from this function is either placed into
MdlUpdate or the subsystem’s Update function, depending on whether or not
the block resides in a nonvirtual subsystem. See delay.tlc for an example of
the Update function.

Derivatives(block, system)
Include a Derivatives function when generating code to compute the block’s
states. Code generated from this function is either placed into MdlDerivatives
or the subsystem’s Derivatives function, depending on whether or not the
block resides in a nonvirtual subsystem. See integrat.tlc for an example of
the Derivatives function.

Terminate(block, system)
Include a Terminate function to place any code into MdlTerminate.
User-defined S-function TLC files can use this function to save data, free
memory, reset hardware on the target, and so on. See tofile.tlc for an
example of the Terminate function.
3-19

3 Writing Target Language Files

3-2
The RTW TLC Function Library
The file funclib.tlc contains the RTW TLC function library. This file contains
the necessary TLC functions required to write a block target file.

Chapter 4, “Target Language Compiler Function Library Reference,” contains
detailed descriptions of all the TLC functions. This section focuses on the most
commonly used TLC functions, providing a general description of the functions.

Table 3-6: Common TLC Functions

LibDefineRWork(block, name, width)

LibDefineIWork(block, name, width)

LibDefinePWork(block, name, width)

LibCacheFunctionPrototype(buffer)

LibCacheDefine(buffer)

LibIsDiscrete(tid)

LibDataOutputPortWidth(portIdx)

LibDataInputPortWidth(portIdx)

LibBlockOutputSignal(portIdx, ucv, lcv, sigIdx)

LibBlockInputSignal(portIdx, ucv, lcv, sigIdx)

LibBlockParameter(paramRef, ucv, lcv, sigIdx)

LibBlockParameterAddr(paramRef, ucv, lcv, sigIdx)

LibBlockMatrixParameter(paramRef, rowUcv, rowLcv, rowSigIdx,
colUcv, colLcv, colSigIdx)

LibBlockMatrixParameterAddr(paramRef, ucv, lcv, sigIdx)

LibDiscreteState(ucv, lcv, sigIdx)

LibConinuousState(ucv, lcv, sigIdx)

LibBlockMode(ucv, lcv, sigIdx)

LibBlockRWork(rworkRef, ucv, lcv, sigIdx)
0

The RTW TLC Function Library
LibDefineRWork(block, name, width)
This call should be made from inside the block’s BlockInstanceSetup function,
and adds the specified RWork definition to the block. The function creates and
maintains an internal record for the RWork definition, removing the Simulink
definition if necessary.

LibDefineIWork(block, name, width)
This call should be made from inside the block’s BlockInstanceSetup function,
and adds the specified IWork to the block. The function creates and maintains
an internal record for the IWork definition. For example, a block may have
IWork records for system enable.

LibDefinePWork(block, name, width)
This call should be made from inside the block’s BlockInstanceSetup function,
and adds the specified RWork definition to the block. The function creates and
maintains an internal record for the RWork definition, removing the Simulink
definition if necessary.

LibCacheFunctionPrototype(buffer)
This function should be called from inside BlockTypeSetup to cache a function
prototype. Each call to this function appends your buffer to the existing cache

LibBlockIWork(iworkRef, ucv, lcv, sigIdx)

LibBlockPWork(pworkRef, ucv, lcv, sigIdx)

LibCacheNonFiniteAssignment(assignment)

LibPrevZCState(ucv, lcv, sigIdx)

LibDataStoreMemory(ucv, lcv, varIdx)

LibPathName(name)

LibIsFinite(value)

LibRenameParameter(block, param, newName)

LibBlockOutportLocation(ucv, lcv, sigIdx)

Table 3-6: Common TLC Functions (Continued)
3-21

3 Writing Target Language Files

3-2
buffer. The prototypes are placed inside model.h among other generated
function prototypes.

LibCacheDefine(buffer)
LibCacheDefine should be called from inside BlockTypeSetup to cache a
#define statement. Each call to this function appends your buffer to the
existing cache buffer. The #define statements are placed inside model.h
among other generated #define statements.

LibIsDiscrete(tid)
Based on the block’s TID, this function returns 1 if the block is discrete,
otherwise, it returns 0. For an example of this function, see sin_wave.tlc.

LibDataOutputPortWidth(portIdx)
Based on the output port index, this function returns the width of the data port.
For an example of this function, see css.tlc.

LibDataInputPortWidth(portIdx)
Based on the input port index, this function returns the width of the data port.
For an example of this function, see css.tlc.

LibBlockOutputSignal(portIdx, ucv, lcv, sigIdx)
Based on the output port index (portIdx), the user control variable (ucv), the
loop control variable (lcv), and the signal index (sigIdx), this function returns
a reference to the block I/O data structure. For example,

Given the same set of arguments, this function returns the appropriate
reference to the block’s output signal depending on the state of RTW code
generation. For example, case 1 is generated since the user control variable is
specified. Cases 1 and 2 receive the same arguments, lcv and sigIdx, however,

Case Function May Produce

1 LibBlockOutputSignal(0, "i", "", sigIdx) rtB.blockname[i]

2 LibBlockOutputSignal(0, "", lcv, sigIdx) y0[i1]

3 LibBlockOutputSignal(0, "", lcv, sigIdx) rtB.blockname[0]
2

The RTW TLC Function Library
they generate different results depending on whether RTW is in a loop-rolling
state, or a non loop-rolling state, respectively.

Loop rolling is fully described later in this chapter. In short, however, this
function looks at ucv, lcv, and sigIdx, and the RTW state to determine the
return value. The variable ucv has highest precedence, lcv has the next
highest precedence, and sigIdx has the lowest precedence. That is, if ucv is
specified, it will be used. If ucv is not specified and lcv and sigIdx are
specified, the returned value depends on whether or not RTW is currently
rolling. If RTW is currently in a loop rolling state, lcv is used, otherwise sigIdx
is used. If neither ucv or lcv are not specified, sigIdx is used. For an example
of this function, see gain.tlc.

LibBlockInputSignal(portIdx, ucv, lcv, sigIdx)
The behavior of this function is similar to LibBlockOutputSignal, except it
returns the appropriate reference to a block’s input signal. For example,

For an example of this function, see gain.tlc.

LibBlockParameter(param, ucv, lcv, sigIdx)
The behavior of this function is similar to LibBlockOutputSignal, except it
returns the appropriate reference to a block’s parameter. The function can only
be used for parameters of type Scalar or Vector. For example,

Function May Produce

LibBlockInputSignal(0, "i", "", sigIdx) rtB.blockname[i]

LibBlockInputSignal(0, "", lcv, sigIdx) u0[i1]

LibBlockInputSignal(0, "", lcv, sigIdx) rtB.blockname[0]

Function May Produce

LibBlockParameter(Gain, "i", "", sigIdx) rtP.Gain[i]

LibBlockParameter(Gain, "", lcv, sigIdx) p_Gain[i1]

LibBlockParameter(Gain, "", lcv, sigIdx) rtP.Gain[0]

LibBlockParameter(Gain, "", lcv, sigIdx) 2.5
3-23

3 Writing Target Language Files

3-2
For an example of this function, see gain.tlc.

Note 1: Do not use this function to build the address of a parameter. For
example,

%assign paramAddr = "&%<LibBlockParameter(Gain, ...)>"

This may produce a reference to a constant number, for example &4.95 if the
value of Gain is 4.95, and RTW is configured to inline parameter values. Use
LibBlockParameterAddr to avoid this undesirable behavior.

Note 2: Code generation exits if this function is passed a matrix parameter.
(see LibBlockMatrixParameter).

LibBlockParameterAddr(param, ucv, lcv, sigIdx)
This function returns the appropriate address of a block’s parameter. The
function works similarly to LibBlockParameter except that its returned value
is independent of the inline parameter values configuration. That is,
LibBlockParameterAddr(Gain, "i", "", sigIdx) will return &rtP.Gain[i]
regardless if RTW is configured to inline parameter values. For an example of
this function, see lookup2d.tlc.

Note: Calling this function will force the parameter to stay in memory
regardless of the value of InlineParameters.

LibBlockMatrixParameter(param, rowUcv, rowLcv, rowSigIdx, colUcv,
colLcv, colSigIdx)
This function is similar to LibBlockOutputSignal, except it returns the
appropriate reference to a block’s matrix parameter. These are user control
variables, loop control variables, and signal indices for both the rows and
4

The RTW TLC Function Library
columns of your matrix. This function will degenerate to a vector or scalar, if
needed.

Note: Do not use this function to build the address of a parameter. For
example,

%assign paramAddr = "&%<LibBlockMatrixParameter(TruthTable, ...)>"

This may produce a reference to a constant number, for example, &4.95 f the
value of TruthTable is 4.95, and RTW is configured to inline parameter
values. Instead, use the TLC function LibBlockParameterAddr to avoid this
undesirable behavior. For an example of this function, see cmblogic.tlc.

LibBlockMatrixParameterAddr(param, rowUcv, rowLcv, rowSigIdx,
colUcv, colLcv, colSigIdx)
This function returns the appropriate address of a block’s matrix parameter.
The function is similar to LibBlockParameterAddr. For an example of this
function, see cmblogic.tlc.

Note: Calling this function will force the parameter to stay in memory
regardless of the value of InlineParameters.

LibDiscreteState(ucv, lcv, sigIdx)
LibContinuousState(ucv, lcv, sigIdx)
The behavior of these functions is similar to LibBlockOutputSignal, except
they return the appropriate reference to the block’s discrete/continuous state.
For an example of these functions, see delay.tlc and integrat.tlc.

LibBlockMode(ucv, lcv, sigIdx)
The behavior of this function is similar to LibBlockOutputSignal, except it
returns the appropriate reference to a block’s mode. For an example, see
dintegrt.tlc.
3-25

3 Writing Target Language Files

3-2
LibBlockRWork(rworkRef, ucv, lcv, sigIdx)
LibBlockIWork(iworkRef, ucv, lcv, sigIdx)
LibBlockPWork(pworkRef, ucv, lcv, sigIdx)
The behavior of these functions is similar to LibBlockOutputSignal, except
they return the appropriate reference to the block’s RWork, IWork, and PWork.
The additional arguments, rworkRef, iworkRef, and pworkRef, are references
to the block internal records RWorkDefine, IWorkDefine, and PWorkDefine,
respectively. For an example of LibBlockRWork and LibBlockIWork, see
sin_wave.tlc. For an example of LibBlockPWork, see towks.tlc.

If the block records RWorkDefine, IWorkDefine, and PWorkDefine are not
defined, then the reference to the work records is replaced with a reference to
the block’s vector identifier, RWork, IWork, and PWork, respectively.

LibPrevZCState(ucv, lcv, sigIdx)
The behavior of this function is similar to LibBlockOutputSignal, except it
returns the appropriate reference to a block’s previous zero-crossing state. For
an example, see subsystm.tlc.

LibDataStoreMemory(ucv, lcv, varIdx)
The behavior of this function is similar to LibBlockOutputSignal, except it
returns the appropriate reference to a block’s data store memory element. For
an example, see dsread.tlc.

LibPathName(name)
Given a block or system name, this function returns the full path. For example,
LibPathName("<s5>/foo") may return root_foosystem_fooblock, meaning
that the block’s name is derived from a block named fooblock residing in a
subsystem block named foosystem, residing in the root model. For an example
of this function, see mdlbody.tlc.

LibIsFinite(value)
Given a TLC variable, this function returns 0 if the value of the variable is
rtInf, rtMinusInf, or rtNaN. For an example of this function, see
mdlparam.tlc.
6

The RTW TLC Function Library
LibRenameParameter(block, param, newName)
Given a reference to a block, a reference to a block parameter, and the new
name for the block parameter, this function renames the parameter and
creates a new reference to the parameter. Most likely, you will call this function
from BlockInstanceSetup.

As an example, if you want to rename the S-function parameter P1 defined in
this RTW file:

System {
 Block {
 Name "sfunc"
 Type "S-Function"
 :
 Parameter {
 Name "P1Size"
 Value [1, 1]
 String ""
 }
 Parameter {
 Name "P1"
 Value 2.5
 String "Kp"
 }
 :
 }
}

3-27

3 Writing Target Language Files

3-2
Call LibRenameParameter(Block, Parameter[1], "Kp"), which renames P1 to
Kp and creates a Kp identifier that references the Parameter[1]. The block
record becomes:

System {
 Block {
 Name "sfunc"
 Type "S-Function"
 :
 Parameter {
 Name "P1Size"
 Value [1, 1]
 String ""
 }
 Parameter {
 Name "Kp"
 Value 2.5
 String "Kp"
 }
 Kp Parameter[1]
 :
 }
}

8

The RTW TLC Function Library
Note: By convention, start parameter names with a capital letter since the
Name identifier of the Parameter record is promoted into the parent block
scope. It is not mandatory that you do so, however, the Target Language
Compiler will exit if you attempt this assignment:

%assign kp = LibBlockParameter(kp, "", "", 0)

The Target Language Compiler exits because it does not know if the first kp is
the block identifier kp or a local variable kp. One way to avoid the confusion is
to qualify which kp you are assigning. A valid assignment is:

%assign block.kp = LibBlockParameter(kp, "", "", 0)

Avoid the confusion and stick to the convention by renaming the variable Kp in
the TLC file

%assign kp = LibBlockParameter(Kp, "", "", 0)

LibBlockOutportLocation(ucv, lcv, sigIdx)
The behavior of this function is similar to LibBlockOutputSignal, except it
returns the appropriate reference to a block outport signal. For an example,
see outport.tlc.

LibCacheNonFiniteAssignment(assignment)
This function should be called from inside BlockTypeSetup to cache
assignments that need to be placed in the registration function because of
nonfinite initialization. That is, the rtInfs, rtNaNs, and rtMinusInfs
parameters are initialized to zero until the registration function is called,
re-initializing them to their appropriate value. Each call to this function
appends your buffer to the existing cache buffer.
3-29

3 Writing Target Language Files

3-3
Built-In TLC Functions
The most common built-in TLC functions required to write a block target file
are STRINGOF, EXISTS, and SIZE.

STRINGOF(value)
Given an RTW string vector, this function returns the reconstructed string. For
example, this function returns the string "float".

%<STRINGOF([102, 108, 111, 97, 116])>

The built-in function SIZEOF is commonly used to reconstruct S-function
parameters that are literal strings. For an example of this function, see
MATLAB_ROOT/rtw/c/mwdspace/devices/dp_read.tlc.

EXISTS("name")
This built-in function determines if name exists in the current scope space. Note
that EXISTS commands search the current scope backwards to the root scope.

SIZE(value, n)
The behavior of this built-in function is:

If n = This Function Returns

0 The number of rows in value.

1 The number of columns in value.

2 [nRows, nCols] in value.
0

Inlining an S-Function
Inlining an S-Function
When a Simulink model contains an S-function and a corresponding .tlc file,
Real-Time Workshop inlines the S-function. Inlining an S-function can produce
more efficient code by eliminating the S-function API layer from the generated
code.

S-functions that are not inlined make calls to all of these seven functions, even
if the routine is empty for the particular S-function:

By inlining an S-function, you can eliminate the calls to these possibly empty
functions in the simulation loop. This can greatly improve the efficiency of the
generated code. To inline an S-function called sfunc_name, you create a custom
S-function block target file called sfunc_name.tlc and place it in the same
directory as the S-function’s MEX-file. Then, at build time, the target file is
executed instead of setting up function calls into the S-function’s .c file. The
S-function target file “inlines” the S-function by directing the Target Language
Compiler to insert only the statements defined in the target file.

S-Function Purpose

mdlInitializeSizes Initialize the sizes array.

mdlInitializeSampleTimes Initialize the sample times array.

mdlInitializeConditions Initialize the states.

mdlOutputs Compute the outputs.

mdlUpdate Update discrete states.

mdlDerivatives Compute the derivatives of continuous
states.

mdlTerminate Clean up when the simulation terminates.
3-31

3 Writing Target Language Files

3-3
In general, inlining an S-function is especially useful when:

• The time required to execute the contents of the S-function is small in
comparison to the overhead required to call the S-function.

• Certain S-function routines are empty (e.g., mdlUpdate).

• The behavior of the S-function changes between simulation and code
generation. For example, device driver I/O S-functions may read from the
MATLAB workspace during simulation, but read from an actual hardware
address in the generated code.

An Example
Suppose you have a simple S-function that mimics the Gain block with one
input, one output, and a scalar gain. That is, y = u * p. If the Simulink block’s
name is foo and the name of the S-function is foogain, the C-coded MEX-file
must contain:

#define S_FUNCTION_NAME foogain
#include "simstruc.h"
#define GAIN mxGetPr(ssGetArg(S,0))[0]

static void mdlInitializeSizes(SimStruct *S)
{
 ssSetNumContStates (S, 0);
 ssSetNumDiscStates (S, 0);
 ssSetNumInputs (S, 1);
 ssSetNumOutputs (S, 1);
 ssSetNumInputArgs (S, 1);
 ssSetDirectFeedThrough (S, 1);
 ssSetNumSampleTimes (S, 0);
 ssSetNumIWork (S, 0);
 ssSetNumRWork (S, 0);
 ssSetNumPWork (S, 0);
}

static void
mdlOutputs(real_T *y, const real_T *x, const real_T *u,

SimStruct *S, int_T tid)
2

Inlining an S-Function
{
 y[0] = u[0] * GAIN;
}

static void
mdlInitializeSampleTimes(SimStruct *S){}

static void
mdlInitializeConditions(real_T *x0,SimStruct *S) {}

static void
mdlUpdate(real_T *x, const real_T *u,SimStruct *S, int_T tid) {}

static void
mdlDerivatives(real_T *dx, const real_T *x const real_T *u,

SimStruct *S, int_T tid) {}

static void
mdlTerminate(SimStruct *S) {}

#ifdef MATLAB_MEX_FILE
#include "simulink.c"
#else
#include "cg_sfun.h"
#endif

Without a TLC file to define the S-function specifics, RTW must call the
MEX-file S-function in a manner similar to RTW 1.3. That is, the execution of
the S-function is through the S-function API.

void
MdlStart()
{
 /* S-Function block: foo */
 {
 SimStruct *s = ssGetSFunction(S, 0);
 real_T *sfcnX = ssGetX(s);

 sfcnInitializeConditions(sfcnX, s);
 }
}

Unnecessary call to
empty function
mdlInitializeConditions
in foogain.c.
3-33

3 Writing Target Language Files

3-3
void
MdlOutputs(tid)
{
 /* S-Function block: foo */
 {
 Simstruct *s = ssGetSFunction(S, 0);
 real_T *sfcnU = ssGetU(s);
 real_T *sfcnX = ssGetX(s);
 real_T *sfcnY = ssGetY(s);

 sfcnOutputs(sfcnY, sfcnX, sfcnU, s, tid);
 }
}

void
MdlUpdate(tid)
{
 /* S-Function block: foo */
 {
 Simstruct *s = ssGetSFunction(S, 0);
 real_T *sfcnX = ssGetX(s);
 real_T *sfcnU = ssGetU(s);

 sfcnUpdate(sfcnX, sfcnU, s, tid);
 }
}

Unnecessary call to
empty function
mdlUpdate in foogain.c.
4

Inlining an S-Function
void
MdlDerivatives()
{
 /* S-Function block: foo */
 {
 Simstruct *s = ssGetSFunction(S, 0);
 real_T *sfcnU = ssGetU(s);
 real_T *sfcnX = ssGetX(s);
 real_T *sfcndX = ssGetdX(s);

 sfcnDerivatives(sfcndX, sfcnX,
sfcnU, s, tid);

 }
}

void
MdlTerminate()
{
 /* S-Function block: foo */
 {
 Simstruct *s = ssGetSFunction(S, 0);
 sfcnTerminate(s);
 }
}

/* function to register model in
SimStruct */
Simstruct *
foogain()
{
 :
 :/* Normal model initialization code independent of

S-functions */
 :

/* S-function initialization code required for all S-functions
without corresponding TLC files */

/* set number of children S-Functions */
 ssSetNumSFunctions(S, 1);

Unnecessary call to
empty function
mdlDerivatives in
foogain.c.

Unnecessary call to
empty function
mdlTerminate in
foogain.c.
3-35

3 Writing Target Language Files

3-3
 /* Register children S-Functions (s-funcs without TLC files) */
 {
 static SimStruct childSFunctions[1];
 static SimStruct *childSFunctionPtrs[1];
 ssSetSFunctions(S, (SimStruct **) &childSFunctionPtrs[0]);

 /* S-Function Block: foo */
 {
 static real_T sfcnPeriod[1];
 static real_T sfcnOffset[1];
 static real_T sfcnTsMap[1];
 static mxArray *sfcnParams[1];
 extern void foogain(SimStruct *);
 SimStruct *s = &childrenSFunctions[0];

 memset((char *) s, 0, sizeof(SimStruct));

 ssSetModelName(s, "foogain");
 ssSetPath(s, "foogain");
 ssSetParentSS(s, S);
 ssSetRootSS(s, ssGetRootSS(S));
 ssSetSFcnParamsCount(s, 1);
 ssSetSFcnParamsPtr(s, (const mxArray **) &sfcnParams[0]);
 ssSetSFcnParam(s, 0, (real_T *) &P.foo.P1Sizes[0]);
 ssSetU(s, &rtGround);
 ssSetY(s, &B.foo);
 ssSetMdlInfoPtr(s, ssGetMdlInfoPtr(S));
 ssSetSampleTimePtr(s, (real_T *) &sfcnPeriod[0]);
 ssSetOffsetTimePtr(s, (real_T *) &sfcnOffset[0]);
 ssSetSampleTimeTaskIDPtr(s, (int_T *) &sfcnTsMap[0]);

 sfunctionName(s);

 ssSetSFunction(S, 0, s);
 sfcnInitializeSizes(s);
 sfcnInitializeSampleTimes(s);
 }
 }
}

 Note 3
6

Inlining an S-Function
To avoid unnecessary calls to the S-function and to generate the minimum code
required for the S-function, the following TLC file is provided as an example.

%implements "foogain" "C"

%function BlockInstanceSetup(block, system) void
%<LibRenameParameter(block, P1, "Gain")>

%endfunction

%function Outputs(block, system) Output
 %assign y = LibBlockOutputSignal(0, "", "", 0)
 %assign u = LibBlockInputSignal(0, "", "", 0)
 %assign p = LibBlockParameter(Gain, "", "", 0)
 /* %<Type> block: %<Name> */
 %<y> = %<u> * %<p>;
%endfunction

 Note 1

foogain.tlc
3-37

3 Writing Target Language Files

3-3
By including this simple target file for this S-function block, the code is
generated as:

void
MdlStart(){}

void
MdlOutputs(tid)
{
 /* S-Function block: foo */
 rtB.foo = rtGROUND * rtP.foo.gain;
}

void
MdlUpdate(tid){}

void
MdlTerminate(){}

/* function to register model in SimStruct */
Simstruct *foogain()
{
 :
 : /* Model Registration

(does NOT need to register S-function) */
 :
}

So, including a TLC file drastically decreased the code size and increased the
execution efficiency of the generated code. These notes highlight some
information about the TLC code and the generated output:

Note 1 The TLC directive %implements is required by all block target files, and
must be the first executable statement in the block target file. This
directive guarantees that the Target Language Compiler does not
execute an inappropriate target file for S-function foogain.

 Note 2

 Note 3
8

Inlining an S-Function
Note 2 The input to foo is rtGROUND (an RTW global equal to 0.0) since foo is
the only block in the model, and its input is unconnected. Had it been
connected to block sinewave, the generated line would have been

rtB.foo = rtB.sinewave * rtP.foo.gain;

Note 3 Including a TLC file for foogain eliminated the need for an S-function
registration segment for foogain. This significantly reduces code size.

Note 4 The TLC code will inline the gain parameter when RTW is configured
to inline parameter values. For example, if the S-function parameter is
specified as 2.5 in the S-function dialog box, the TLC Outputs function
generates

rtB.foo = input * 2.5;

Note 5 Use the %generatefile directive if your operating system has filename
size restriction and the name of the S-function is foosfunction (which
exceeds the limit). In this case, you would include the following
statement in the system target file (anywhere prior to a reference to
this S-function’s block target file):

%generatefile foosfunction "foosfunc.tlc"

This statement tells the Target Language Compiler to open foosfunc.tlc
instead of foosfunction.tlc.
3-39

3 Writing Target Language Files

3-4
Configurable RTW Variables
This table lists the configurable RTW variables.

These variables can be changed at the command line. For example,

tlc –r model.rtw MATLAB/rtw/c/grt/grt.tlc
–IMATLAB/rtw/c/tlc –aInlineParameters=1

Or, if you’re using the RTW GUI within Simulink, simply modify the system
target file dialog entry box. For example, to override the default behavior of
FileSizeThreshold, modify the dialog box as:

grt.tlc –aFileSizeThreshold=20000

Table 3-7: Configurable RTW Variables

Variable Purpose

InlineParameters Inlines parameter values in the generated code.
Possible values are 0 or 1 with a default of 0.

FileSizeThreshold Specifies the maximum number of lines to output to
model.c before the file is split into model1.c,
model2.c, etc. Default value is 50,000 lines.

MatFileLogging Creates a MATLAB workspace containing the
output of Outports, Scopes, and To Workspace
blocks. Possible values are 0 or 1 with a default of 1.

ModelBlockInfo Creates a data structure for independently
monitoring signals in the model. Possible values are
0 or 1 with a default of 0.

RollThreshold Specifies the threshold for loop rolling. The %roll
directive uses this value to determine whether a
section of code should be enclosed into a for loop.
0

Inlining an S-Function
Figure 3-3 shows the RTW dialog box with the change to modify the
FileSizeThreshold.

Figure 3-3: RTW Dialog Box

Matrix Parameters in RTW
MATLAB matrices are the transpose of RTW matrices, with the exception of
S-function blocks, which use the MATLAB representation. MATLAB uses
column-major ordering and RTW uses row-major ordering for everything
except S-function blocks. The Target Language Compiler follows this behavior
to ensure backward compatibility.

The Target Language Compiler declares all Simulink block parameters as

real_T mat[nRows][nCols];

with the exception of S-function blocks, which are declared as

real_T mat[nCols][nRows];
3-41

3 Writing Target Language Files

3-4
For example, given the 2-by-3 matrix

model.h defines:

typedef struct Parameters_tag = {
 struct { /* S-function */
 real_T matSize[2];
 real_T mat[3][2];
 } sfuncBlock;

struct { /* any non S-function */
 real_T mat[2][3];
 } nonSfuncBlock;
} Parameters;

model.prm declares:

Paramters rtP = {
 { 2, 3 },
 { 1, 4, 2, 5, 3, 6 },
 { 1, 2, 3, 4, 5, 6 }
};

The Target Language Compiler access routines, LibBlockMatrixParameter
and LibBlockMatrixParameterAddr, return:

LibBlockMatrixParameter(mat, "", "", 0, "", "", 1) returns

non-S-function: 2
S-function: 2

LibBlockMatrixParameterAddr(mat, "", "", 0, "", "", 1) returns

non-S-function: &rtP.nonSfuncBlock[0][1];
S-function: &rtP.sfuncBlock[1][0];

Matrix parameters are like any other TLC parameters in that only those
parameters explicitly accessed by a TLC library function during code
generation are placed in the parameters structure. So, matSize is not declared

1 2 3
4 5 6
2

Inlining an S-Function
unless it is explicitly accessed by LibBlockParameter or
LibBlockParameterAddr.
3-43

3 Writing Target Language Files

3-4
Loop Rolling
The best way to explain loop rolling is by example. Figure 3-4 shows a Simulink
model with a Gain block.

Figure 3-4: Example of Loop Rolling
4

Loop Rolling
The outputs function for the Gain block is:

%% Function: Outputs ===
%% Abstract:
%% Y = U * K
%%
%function Outputs(block, system) Output

/* %<Type> Block: %<Name> */
%assign rollVars = ["U", "Y", "P"]
%roll sigIdx = RollRegions, lcv = RollThreshold, block,...

"Roller", rollVars
%assign y = LibBlockOutputSignal(0, "", lcv, sigIdx)
%assign u = LibBlockInputSignal(0, "", lcv, sigIdx)
%assign k = LibBlockParameter(Gain, "", lcv, sigIdx)

%<y> = %<u> * %<k>;
%endroll

%endfunction

The generated code will roll depending on the block’s RollRegion (specified in
the RTW file) and RollThreshold (specified at the command line). If there are
any regions in RollRegion that are greater than the value specified by
RollThreshold, then those regions will roll. However, any regions in
RollRegion that are less that the value specified by RollThreshold will be
expanded.
3-45

3 Writing Target Language Files

3-4
For example, the Gain block in this example is defined in the RTW file as:

Block {
Type Gain
Name "<Root>/Kp"
Identifier Kp
TID 0
RollRegions [0:99, 100, 101, 102:112]
NumDataInputPorts 1

.

.

.
Parameter {

Name "Gain"
Value [2.5]
String "2.5"

}
}

Note that there are four RollRegions in this example:

• One contiguous region for Constant1 inputs (1)

• Two noncontiguous regions for Constant2 inputs (2 and 3)

• One contiguous region for Constant3 (4)

1 2 3 4
6

Loop Rolling
The generated code for this example is:

/* Gain Block: <Root>/Kp */
 {
 int_T i1;
 real_T *u0 = &rtB.Constant1[0];
 real_T *y0 = &rtB.Kp[0];

 for(i1 = 0; i1 < 100; i1++) {
 y0[i1] = u0[i1] * rtP.Kp.Gain;
 }

rtB.Kp[100] = rtB.Constant2[1] * rtP.Kp.Gain;
rtB.Kp[101] = rtB.Constant2[0] * rtP.Kp.Gain;

 u0 = &rtB.Constant3[0];
 y0 = &rtB.Kp[102];

 for(i1 = 0; i1 < 11; i1++) {
 y0[i1] = u0[i1] * rtP.Kp.Gain;
 }
 }

Note that %roll requires rollVars to be specified. The rollVars variable tells
the loop roller which variables to set up within the roll scope. Note that in this
case P was not declared despite the fact it was specified. This is because it is a
scalar value, hence, it need not be declared.

As you can see the %roll degenerates to %foreach when the code doesn’t roll.
Thus, you should write the TLC code assuming the %foreach case. That is,
don’t special case your code to handle both cases, rather, write the code once

RollRegion 1

RollRegions
2 & 3

RollRegion 4
3-47

3 Writing Target Language Files

3-4
with the %roll that works under both situations. Table 3-8 contains the valid
variables assigned to rollVars.

For example,

%assign rolVars = ["u0" "RWork" "<param>/Gain"]
%roll SigIdx = lcv = RollThreshold, block, "Roller", rollVars

declares the first block input (input zero), all the block’s RWorks, and the Block
parameter, Gain.

Table 3-8: Roll Table Variables

Block Variable Description

Inputs U
ui

All inputs
input i

Outputs Y
yi

All outputs
output i

Parameters P
<param>/name

All parameters
parameter name

RWork RWork
<rwork>/name

All RWorks
name rwork

IWork IWork
<iwork>/name

All IWorks
name iwork

PWork PWork
<pwork>/name

All PWorks
name pwork

Mode M Mode

Previous
Zero-Crossing

PZC Zero-crossings
8

4

Target Language Compiler
Function Library Reference
LibBlockFunctionExists 4-2
LibBlockInputSignal 4-3
LibBlockIWork 4-4
LibBlockMatrixParameterAddr 4-5
LibBlockMatrixParameter 4-6
LibBlockMode 4-7
LibBlockOutportLocation 4-8
LibBlockOutputSignal 4-10
LibBlockParameter 4-11
LibBlockParameterAddr 4-13
LibBlockPWork 4-14
LibBlockRWork 4-15
LibBlockSrcSignalIsDiscrete 4-16
LibCacheDefine 4-17
LibCacheFunctionPrototype 4-18
LibCacheGlobalPrmData 4-19
LibCacheInclude 4-20
LibCacheNonFiniteAssignment 4-21
LibContinuousState 4-22
LibControlPortInputSignal 4-23
LibConvertZCDirection 4-24
LibDataInputPortWidth 4-25
LibDataOutputPortWidth 4-26
LibDataStoreMemory 4-27
LibDeclareRollVariables 4-28
LibDefineIWork 4-30
LibDefinePWork 4-31
LibDefineRWork 4-32
LibDiscreteState 4-33
LibExternalResetSignal 4-34
LibHeaderFileCustomCode 4-35
LibIndexStruct 4-36
LibIsDiscrete 4-37
LibIsEmpty 4-38
LibIsEqual 4-39
LibIsFinite 4-40
LibMapSignalSource 4-41
LibMaxBlockIOWidth4-42
LibMaxDataInputPortWidth 4-43
LibMaxDataOutputPortWidth 4-44
LibMdlRegCustomCode 4-45
LibMdlStartCustomCode 4-46
LibMdlTerminateCustomCode 4-47
LibOptionalMatrixWidth 4-48
LibOptionalVectorWidth4-49
LibPathName 4-50
LibPrevZCState 4-51
LibPrmFileCustomCode4-52
LibRegFileCustomCode 4-53
LibRenameParameter4-54
LibSourceFileCustomCode4-55
LibSystemDerivativeCustomCode4-56
LibSystemDisableCustomCode 4-57
LibSystemEnableCustomCode 4-58
LibSystemInitializeCustomCode 4-59
LibSystemOutputCustomCode 4-60
LibSystemUpdateCustomCode 4-61

LibBlockFunctionExists
LibBlockFunctionExistsPurpose Determines if a given block function exists

Syntax %<LibBlockFunctionExists(block, fcn)>

Arguments block
Reference to a block record.

fcn
Function to check (e.g., "Outputs").

Returns

Description Determines if a given block function exists. LibBlockFunctionExists first
checks to see if the TLC file exists (for S-function blocks). Then it checks to see
if the function exists.

Value Condition

1 Specified function exists.

0 Specified function does not exist, but TLC file does.

–1 TLC file does not exist.
4-2

LibBlockInputSignal
LibBlockInputSignalPurpose Determines the input signal label based on the type of input signal

Syntax %<LibBlockInputSignal(portNum, ucv, lcv, sigIdx)>

Arguments portNum
Integer data input port number.

ucv
User control variable string.

lcv
Loop control variable string.

sigIdx
Integer offset into block signal.

Returns The input signal label based on the type of input signal, i.e., U, X, B, or G.

Description LibBlockInputSignal returns the input signal label based on the type of input
signal, i.e., U, X, B, or G. For example, U.Vin[2] is generated for a wide input
signal named Vin (nonloop rolling case). In general, LibBlockInputSignal
returns:

where Source is U, X, or B.

rtGROUND If input signal is GROUND.

Source.block[ucv] If ucv is specified.

u%<portNum>[lcv] If lcv specified and signal is wide.

Source.block If lcv is specified and signal is scalar.

Source.block[sigIdx] Otherwise, where [sigIdx] is optional for
wide signals.
4-3

LibBlockIWork
LibBlockIWorkPurpose Determines the appropriate iwork element

Syntax %<LibBlockIWork(iwork, ucv, lcv, idx)>

Arguments iwork
Reference to iwork identifier or "" if there are no IWorkDefine records in the
block.

ucv
User control variable string.

lcv
Loop control variable string.

idx
Integer index into this iwork.

Returns The appropriate iwork element.

Description This function returns the appropriate iwork element. In order to roll a block’s
iwork, it must first be defined with LibDefineIWork.

4-4

LibBlockMatrixParameterAddr
LibBlockMatrixParameterAddrPurpose Determines the address of a block’s matrix parameter

Syntax %<LibBlockMatrixParameterAddr(param, rucv, rlcv, ridx, cucv, …
clcv, cidx)>

Arguments param
Reference to a block parameter identifier.

rucv
Row user control variable string.

rlcv
Row loop control variable string (Not Supported).

ridx
Integer row index.

cucv
Column user control variable string.

clcv
Column loop control variable string (Not Supported).

cidx
Integer column index.

Returns The address of a block’s matrix parameter.

Description LibBlockMatrixParameterAddr determines the address of a block’s matrix
parameter. Loop rolling is currently not supported, and generates an error if
requested (i.e., if rlcv or clcv is not null). This also produces an error if the
parameter passed is not of type Matrix.

4-5

LibBlockMatrixParameter
LibBlockMatrixParameterPurpose Determines the appropriate matrix parameter for a block given the row and
column user control variable, loop control variable, and index.

Syntax %<LibBlockMatrixParameter(param, rucv, rlcv, ridx, cucv, …
clcv, cidx)>

Arguments param
Reference to a block parameter identifier.

rucv
Row user control variable string.

rlcv
Row loop control variable string (Not Supported).

ridx
Integer row index.

cucv
Column user control variable string.

clcv
Column loop control variable string (Not Supported).

cidx
Integer column index.

Returns A reference to a block’s matrix parameter.

Description LibBlockMatrixParameter determines the appropriate matrix parameter for a
block given the row and column user control variable, loop control variable, and
index. Loop rolling is currently not supported, and will generate an error if
requested (i.e., if rlcv or clcv is not null). This also produces an error if the
parameter passed is not of type Matrix.

4-6

LibBlockMode
LibBlockModePurpose Determines the appropriate block mode

Syntax %<LibBlockMode(ucv, lcv, modeIdx)>

Arguments ucv
User control variable string.

lcv
Loop control variable string.

modeIdx
Integer mode index.

Returns The appropriate block mode based on ucv, lcv, and modeIdx.

Description LibBlockMode returns the appropriate block mode.

4-7

LibBlockOutportLocation
LibBlockOutportLocationPurpose Determines the appropriate identifier for an outport block

Syntax %<LibBlockOutportLocation(ucv, lcv, sigIdx)>

Arguments ucv
User control variable string.

lcv
Loop control variable string.

sigIdx
Integer offset into block signal.

Returns The appropriate identifier for an outport block.

Description LibBlockOutportLocation returns the appropriate identifier for an outport
block.

Output location is Y:

Y.block[ucv] ucv is specified.

y0[lcv] lcv is specified and signal is wide.

Y.block lcv is specified and signal is scalar.

Y.block[sigIdx] Otherwise.
4-8

LibBlockOutportLocation
Output location is B:

Notes: The index is appropriately replaced with ucv or lcv when specified
(ucv has higher precedence than lcv).

The width of the output port is determined by the width of the input port.

B.block[ucv] ucv is specified.

y0[lcv] lcv is specified and signal is wide.

B.block lcv is specified and signal is scalar.

B.block[sigIdx] Otherwise.
4-9

LibBlockOutputSignal
LibBlockOutputSignalPurpose Determines the block’s output signal.

Syntax %<LibBlockOutputSignal(portIdx, ucv, lcv, sigIdx)>

Arguments portNum
Integer port number.

ucv
User control variable string.

lcv
Loop control variable string.

sigIdx
Integer offset into block signal.

Returns The block’s output signal.

Description LibBlockOutputSignal returns the block’s output signal. The result is
determined by the values of ucv, lcv, and sigIdx. The result is as follows:

Notes: The precedence is ucv, lcv, then sigIdx. That is, if ucv and lcv are
both specified, ucv takes precedence over lcv. Also, the vector index is only
added for wide signals.

B.block[ucv] If ucv is specified.

y%<portIdx>[lcv] If lcv is specified and signal is wide.

B.block If lcv is specified and signal is scalar.

B.block[sigIdx] Otherwise, where [sigIdx] is optional for wide
signals.
4-10

LibBlockParameter
LibBlockParameterPurpose Determines a block’s parameter in the appropriate form depending on the state
of loop rolling

Syntax %<LibBlockParameter(param, ucv, lcv, sigIdx)>

Arguments param
Reference to a block parameter identifier.

ucv
User control variable string.

lcv
Loop control variable string.

sigIdx
Integer offset into signal.

Returns A block’s parameter in the appropriate form depending on the state of loop
rolling, InlineParameters, and the specified index.

Description LibBlockParameter returns a block’s parameter in the appropriate form
depending on the state of loop rolling, InlineParameters, and the specified
index. The user control variable (ucv) has higher precedence than lcv and
sigIdx. That is, the following results if ucv is specified:

%<LibBlockParameter(Gain, "ucv", "", 0)>

Otherwise, the ucv is specified as "", and the result depends on the truth table
below. Note that loop rolling is true whenever the loop control variable (lcv) is
not null.

Assume:

%<LibBlockParameter(Gain, "", "i", 0)>
P.blk.Gain[0] = 4.55

rtP.block.prm If ucv is specified and prm is scalar.

rtP.block.prm[ucv] If ucv is specified and prm is vector.
4-11

LibBlockParameter
Note: Case 4 maintains the parameter even though InlineParameters is
selected.

Do not use this function if you’re using the result to get the address of a
parameter. The reason is that when you’re inlining parameters you’ll end up
referencing a number (i.e., &4.55). To avoid this situation use library function

%<LibBlockParameterAddr(param, ucv, lcv, sigIdx)>

Example Assuming Gain is the second block parameter, these are equivalent

%assign param = LibBlockParameter(Gain, "", "", 0)
%assign param = LibBlockParameter(Parameter[1], "", "", 0)

This routine does not work for matrix parameters. Use
LibBlockMatrixParamter when accessing a block’s matrix parameter. If a
matrix parameter is accessed via this routine, the reported error message is:

%exit %<Type> block %<Name> must access %<param.Name> via…
LibBlockMatrixParameter.

Case Rolling InlineParameters Type Result P Needed in Memory

1 0 1 scalar 4.55 no

2 1 1 scalar 4.55 no

3 0 1 vector 4.55 no

4 1 1 vector p_Gain[i] yes

5 0 0 scalar rtP.blk.Gain no

6 1 0 scalar rtP.blk.Gain no

7 0 0 vector rtP.blk.prm[0] no

8 1 0 vector p_Gain[i] yes
4-12

LibBlockParameterAddr
LibBlockParameterAddrPurpose Determines the address of a block parameter.

Syntax %<LibBlockParameterAddr(param, ucv, lcv, idx)>

Arguments param
Reference to a block parameter identifier.

ucv
User control variable string.

lcv
Loop control variable string.

idx
Integer index.

Returns The address of a block parameter.

Description LibBlockParameterAddr returns the address of a block parameter as:

This routine does not work for matrix parameters. Use
LibBlockMatrixParamterAddr when accessing a block’s matrix parameter.

&P.block.param[ucv] If ucv is specified.

&P.block.param[lcv] If lcv is specified.

&P.block.param[idx] Otherwise.
4-13

LibBlockPWork
LibBlockPWorkPurpose Determines the appropriate pwork element

Syntax %<LibBlockPWork(pwork, ucv, lcv, idx)>

Arguments pwork
Reference to pwork identifier or "" if there are no PWorkDefine records in the
block.

ucv
User control variable string.

lcv
Loop control variable string.

idx
Integer index into this pwork.

Returns The appropriate pwork element.

Description LibBlockPWork returns appropriate pwork element.

4-14

LibBlockRWork
LibBlockRWork Purpose Determines the appropriate rwork element

Syntax %<LibBlockRWork(rwork, ucv, lcv, idx)>

Arguments rwork
Reference to rwork identifier or "" if there are no RWorkDefine records in the
block.

ucv
User control variable string.

lcv
Loop control variable string.

idx
Integer index into this rwork.

Returns The appropriate rwork element.

Description LibBlockRWork returns appropriate rwork element.

4-15

LibBlockSrcSignalIsDiscrete
LibBlockSrcSignalIsDiscretePurpose Determines if the driving signal is discrete

Syntax %<LibBlockSrcSignalIsDiscrete(portNum, sigIdx)>

Arguments portNum
Integer data input port number.

sigIdx
Integer offset into block input signal.

Returns 1 (yes) or 0 (no).

Description LibBlockSrcSignalIsDiscrete determines if the driving signal is discrete.

4-16

LibCacheDefine
LibCacheDefinePurpose Call this function from inside BlockTypeSetup to cache a #define statement.

Syntax %<LibCacheDefine(buffer)>

Arguments buffer
Buffer of #define statements to be cached.

Description LibCacheDefine should be called from inside BlockTypeSetup to cache a
#define statement. Each call to this function appends your buffer to the
existing cache buffer. The #define statements are placed inside model.h.

Example %openfile buffer
#define INTERP(x,x1,x2,y1,y2) (y1+((y2 - y1)/(x2 - x1))*(x-x1))
#define this that
%closefile buffer
%<LibCacheDefine(buffer)>

4-17

LibCacheFunctionPrototype
LibCacheFunctionPrototypePurpose Call this function from inside BlockTypeSetup to cache a function prototype.

Syntax %<LibCacheFunctionPrototype(buffer)>

Arguments buffer
Buffer of function prototypes to be cached.

Description This function should be called from inside BlockTypeSetup to cache a function
prototype. Each call to this function appends your buffer to the existing cache
buffer. The prototypes are placed inside model.h.

Example %openfile buffer
extern int_T fun1(real_T x);
extern real_T fun2(real_T y, int_T i);
%closefile buffer
%<LibCacheFunctionPrototype(buffer)>

4-18

LibCacheGlobalPrmData
LibCacheGlobalPrmDataPurpose Call this function from inside BlockInstanceSetup to cache global block
parameter data.

Syntax %<LibCacheGlobalPrmData(buffer)>

Arguments buffer
Buffer of global data.

Description This function should be called from inside BlockInstanceSetup to cache global
block parameter data. Each call to this function appends your buffer to the
existing cache buffer. The global data is placed inside model.prm.

Example %openfile buffer
real_T A[][] = {

{ 1.0, 0.0, 0.0 }, /* row 1 */
{ 1.0, 2.0, 0.0 }, /* row 2 */
{ 1.0, 0.0, 3.0 } /* row 3 */

}
%closefile buffer
%<LibCacheGlobalPrmData(buffer)>

See Also LibCacheNonFiniteAssignment
4-19

LibCacheInclude
LibCacheIncludePurpose Call this function from inside BlockTypeSetup to cache a #include statement.

Syntax %<LibCacheInclude(buffer)>

Arguments buffer
Buffer of #include statements to be cached.

Description This function should be called from inside BlockTypeSetup to cache a #include
statement. Each call to this function appends your buffer to the existing cache
buffer. The #include statements are placed inside model.h.

Example %openfile buffer
#include "mystuff.h"

%closefile buffer
%<LibCacheInclude(buffer)>

4-20

LibCacheNonFiniteAssignment
LibCacheNonFiniteAssignmentPurpose Call this function from inside BlockInstanceSetup to cache assignments that
need to be placed in the registration function because of nonfinite initialization.

Syntax %<LibCacheNonFiniteAssignment(buffer)>

Arguments buffer
Buffer to be cached for placement inside the model’s registration function.

Description This function should be called from inside BlockInstanceSetup to cache
assignments that need to be placed in the registration function because of
nonfinite initialization. That is, the rtInfs, rtNaNs, and rtMinusInfs
parameters are initialized to zero until the registration function is called,
re-initializing them to their appropriate value. Each call to this function
appends your buffer to the existing cache buffer.

Example %openfile buffer
rtP.block.param_1 = rtInf;
rtP.block.param_i = rtNaN;
rtP.block.param_n = rtMinusInf;

%closefile buffer
%<LibCacheNonFiniteAssignment(buffer)>

4-21

LibContinuousState
LibContinuousStatePurpose Determines the block continuous state with optional scalar expansion

Syntax %<LibContinuousState(ucv, lcv, idx)>

Arguments ucv
User control variable string.

lcv
Loop control variable string.

idx
Integer offset into block states.

Returns The block continuous state with optional scalar expansion.

Description LibContinuousState returns the block continuous state with optional scalar
expansion.

X.c.block[ucv] If ucv is specified.

xc[lcv] If lcv is specified.

X.c.block[idx] Otherwise.
4-22

LibControlPortInputSignal
LibControlPortInputSignalPurpose Determines the appropriate control port input signal depending on the source
of the input signal

Syntax %<LibControlPortInputSignal(portNum, sigIdx)>

Arguments portNum
Integer control port number, starting from 0.

sigIdx
Integer offset into the signal, i.e., current index of foreach.

Returns The appropriate control port input signal depending on the source of the input
signal (i.e., Ui, Xi, Bi, or Gi).

Description LibControlPortInputSignal returns the appropriate control port input signal
depending on the source of the input signal.

4-23

LibConvertZCDirection
LibConvertZCDirectionPurpose Converts Real-Time Workshop zero-crossing direction to a SimStruct
representation

Syntax %<LibConvertZCDirection(direction)>

Arguments direction
Zero-crossing direction identifier from the block ZCEvent record.

Description LibConvertZCDirection converts RTW zero-crossing direction to a SimStruct
representation.

Rising RISING_ZERO_CROSSING

Any ANY_ZERO_CROSSING

Falling FALLING_ZERO_CROSSING
4-24

LibDataInputPortWidth
LibDataInputPortWidthPurpose Determines the width of an input port

Syntax %<LibDataInputPortWidth(portNum)>

Arguments portNum
Integer input port number (starting from 0).

Returns The width of an input port.

Description LibDataInputPortWidth returns the width of an input port.

4-25

LibDataOutputPortWidth
LibDataOutputPortWidth Purpose Determines the width of the block’s output port

Syntax %<LibDataOutputPortWidth(portNum)>

Arguments portNum
Integer port number (starting from 0).

Returns The width of the blocks output port.

Description LibDataOutputPortWidth determines the width of the blocks output port.

4-26

LibDataStoreMemory
LibDataStoreMemoryPurpose Determines the appropriate data store memory value

Syntax %<LibDataStoreMemory(ucv, lcv, variableIdx)>

Arguments ucv
User control variable string.

lcv
Loop control variable string.

variableIdx
Integer index into the data store memory variable.

Returns The appropriate data store memory value.

Description LibDataStoreMemory determines the appropriate data store memory value.

4-27

LibDeclareRollVariables
LibDeclareRollVariablesPurpose Declares the necessary local variables required for loop rolling

Syntax %<LibDeclareRollVariables(block, sigOffset, numIterations,\
rolledCount, rollVars)>

Arguments block
Reference to the block record.

sigOffset
Integer signal offset of current roll region.

numIterations
Integer number of iterations in current roll region.

rolledCount
Integer number of times the Target Language Compiler has called roller for
a given RollRegion.

rollVars
String vector of variables to declare. Table 4-1 lists the valid rollVars.

Table 4-1: Valid rollVars

Declare All Declare Individual

Inputs U ui

Outputs Y yi

Continuous states Xc, Xc

Discrete states Xd, Xd

Parameters P <param>/name

Real-work RWork <rwork>/name

Integer-work IWork <iwork>/name

Pointer-work PWork <pwork>/name

Mode Mode
4-28

LibDeclareRollVariables
For example, rollVars = ["U", "<param>/Gain"] declares all nonscalar block
inputs and the specific parameter "Gain". See gain.tlc for an example of this
function.

Description LibDeclareRollVariables declares the necessary local variables required for
loop rolling.

See Also roller.tlc

Previous zero-crossing PZC

Data store memory DSM

Table 4-1: Valid rollVars (Continued)

Declare All Declare Individual
4-29

LibDefineIWork
LibDefineIWorkPurpose Call this function from inside the block’s BlockInstanceSetup function to
define the specified iwork in the block.

Syntax %<LibDefineIWork(block, name, width)>

Arguments block
Reference to the block record.

name
String that you want to call the iwork.

width
Integer width of the iwork.

Description This call should be made from inside the block’s BlockInstanceSetup function,
and adds the specified iwork to the block. The function creates and maintains
an internal record for the iwork definition. For example, a block may have
iwork records for system enable.

%<LibDefineIWork(block, "SystemEnable", 1)>
%<LibDefineIWork(block, "IcNeedsLoading", 1)>

Internally this creates a block record

NumIWorkDefines 2
IWorkDefine {

Name "SystemEnable"
Width 1

}
IWorkDefine {

Name "IcNeedsLoading"
Width 1

}
SystemEnable IWorkDefine[0]
ICNeeedsLoading IWorkDefine[1]

Note that SystemEnable and IcNeedsLoading are references to
IWorkDefine[0] and IWorkDefine[1], respectively, and are added by the
system file, which executes the block’s BlockInstanceSetup function.

4-30

LibDefinePWork
LibDefinePWorkPurpose Call this function from inside the block’s BlockInstanceSetup function to
define the specified pwork in the block.

Syntax %<LibDefinePWork(block, name, width)>

Arguments block
Reference to the block record.

name
String that you want to call the pwork.

width
Integer width of the pwork.

Description This call should be made from inside the block’s BlockInstanceSetup function,
and adds the specified pwork to the block. The function creates and maintains
an internal record for the pwork definition. For example, a block may have a
pwork record for data logging.

%<LibDefinePWork(block, "LoggedData", 3)>

Internally this creates a block record

NumPWorkDefines 1
PWorkDefine {

Name "LoggedData"
Width 3

}
LoggedDat PWorkDefine[0]

Note that LoggedData is a reference to PWorkDefine[0], which is added by the
system file which executes the block’s BlockInstanceSetup function.

4-31

LibDefineRWork
LibDefineRWorkPurpose Call this function from inside the block’s BlockInstanceSetup function to
define the specified rwork definition in the block.

Syntax %<LibDefineRWork(block, name, width)>

Arguments block
Reference to the block record.

name
String that you want to call the rwork.

width
Integer width of this rwork.

Description This call should be made from inside the block’s BlockInstanceSetup function,
and adds the specified rwork definition to the block. The function creates and
maintains an internal record for the rwork definition, removing the Simulink
definition if necessary.

%<LibDefineRWork(block, "PrevT", 1)>
%<LibDefineRWork(block, "PrevU", 3)>

Internally this creates a block record

NumRWorkDefines 2
RWorkDefine {

Name "PrevT"
Width 1

}
RWorkDefine {

Name "PrevU"
Width 3

}
PrevT RWorkDefine[0]
PrevU RWorkDefine[1]

Note that PrevT and PrevU are references to RWorkDefine[0] and
RWorkDefine[1], respectively, and are added by the system file, which executes
the block’s BlockInstanceSetup function.

4-32

LibDiscreteState
LibDiscreteStatePurpose Determines a block’s discrete state with optional scalar expansion

Syntax %<LibDiscreteState(ucv, lcv, idx)>

Arguments ucv
User control variable string.

lcv
Loop control variable string.

idx
Integer offset into block states.

Returns Block’s discrete state with optional scalar expansion.

Description LibDiscreteState return a block’s discrete state with optional scalar
expansion.

X.d.block[ucv] If ucv is specified.

xd[lcv] If lcv is specified.

X.d.block[idx] Otherwise.
4-33

LibExternalResetSignal
LibExternalResetSignalPurpose Determines the appropriate reset signal into the reset port depending on the
source of input signal

Syntax %<LibExternalResetSignal(portNum, sigIdx)>

Arguments portNum
Integer reset port number, starting from 0.

sigIdx
Integer offset into the signal, i.e., current index of foreach.

Returns The appropriate reset signal into the reset port depending on the source of
input signal.

Description LibExternalResetSignal returns the appropriate reset signal into the reset
port depending on the source of input signal (i.e., Ui, Xi, Bi, or Gi).

4-34

LibHeaderFileCustomCode
LibHeaderFileCustomCodePurpose Places code at the top or bottom of the model’s header file

Syntax %<LibHeaderFileCustomCode(buffer, location)>

Arguments buffer
Buffer to append to internal cache buffer.

location
"header" (place at top of file).
"trailer" (place at bottom of file).

Description Use this function to place code at the top or bottom of the model’s header file
by specifying "header" or "trailer", respectively. Each call to this function
appends your buffer to the internal cache buffer.

4-35

LibIndexStruct
LibIndexStructPurpose Returns an optional index for a structure field

Syntax %<LibIndexStruct(width, ucv, lcv, idx)>

Arguments width
Integer width of variable.

ucv
User control variable string.

lcv
Loop control variable string.

idx
Integer index.

Returns An optional index for a structure field.

Description LibIndexStruct returns an optional index for a structure field. An index into
to the signal is returned for wide signals. Nothing is returned for scalar signals
(this scalar expands them).

"" Signal is scalar (width == 1).

[ucv] Width > 1, ucv is specified.

[lcv] Width > 1, lcv is specified.

[idx] Otherwise.
4-36

LibIsDiscrete
LibIsDiscretePurpose Determines if a block is discrete based on its task identifier (TID)

Syntax %<LibIsDiscrete(tid)>

Arguments tid
Task identifier (i.e., integer index into SampleTime).

Returns 1 if discrete, otherwise returns 0.

Description Determines if a block is discrete based on its TID. Note that TIDs equal to
triggered or constant are not discrete.

4-37

LibIsEmpty
LibIsEmptyPurpose Determines if input is an empty string, an empty vector, or an empty matrix
array

Syntax %<LibIsEmpty(input)>

Arguments input
Input variable.

Returns 1 if input is an empty string: "", an empty vector: [], or an empty matrix array:
[[] []].

Description LibIsEmpty returns 1 if input is an empty string: "", or an empty vector: [],
or an empty matrix array: [[] []].

4-38

LibIsEqual
LibIsEqualPurpose Determines if expr1 equals expr2

Syntax %<LibIsEqual(expr1, expr2)>

Arguments expr1
First expression.

expr2
Second expression.

Returns 1 if expr1 equals expr2, otherwise 0 is returned.

Description LibIsEqual returns 1 if expr1 equals expr2, otherwise it returns 0. Note that
different type expressions always return 0. That is, “0” does not equal 0.

4-39

LibIsFinite
LibIsFinitePurpose Determines if the number is finite

Syntax %<LibIsFinite(value)>

Arguments value
Any number including rtInf, rtMinusInf, and rtNaN.

Returns 1 if the number is finite, otherwise, it returns 0.

Description LibIsFinite returns 1 if the number is finite, otherwise, it returns 0.

4-40

LibMapSignalSource
LibMapSignalSourcePurpose Determines the appropriate source signal given the mapping source and
mapping index

Syntax %<LibMapSignalSource(mappingSource, mappingIndex, ucv, lcv)>

Arguments mappingSource
String "U", "X", "B", or "G".

mappingIndex
Integer index into the map for U, X, B, or G.

ucv
User control variable string.

lcv
Loop control variable string.

Returns The appropriate source signal given the mapping source and mapping index.

Description LibMapSignalSource returns the appropriate source signal given the mapping
source and mapping index. Valid mapping sources are U, X, B, and G. The
mapping index is the index into these maps.

Example A wide input signal named Vin may produce the following result for
LibMapSignalSource(U, mappingIndex, "", "")

U.Vin[2]

4-41

LibMaxBlockIOWidth
LibMaxBlockIOWidthPurpose Determines the maximum width of the input or output ports

Syntax %<LibMaxBlockIOWidth()>

Arguments none

Returns The maximum width of the output or input ports.

Description If the block has output ports, LibMaxBlockIOWidth returns the maximum
width of the output ports, otherwise, it returns the maximum width of its input
ports.

4-42

LibMaxDataInputPortWidth
LibMaxDataInputPortWidthPurpose Determines the maximum width of all the input ports

Syntax %<LibMaxDataInputPortWidth()>

Arguments none

Returns The maximum width of all the input ports.

Description LibMaxDataInputPortWidth returns the maximum width of all the input ports.

4-43

LibMaxDataOutputPortWidth
LibMaxDataOutputPortWidthPurpose Determines the maximum width of all the output ports.

Syntax %<LibMaxDataOutputPortWidth()>

Arguments none

Returns The maximum width of all the output ports.

Description LibMaxDataOutputPortWidth returns the maximum width of all the output
ports.

4-44

LibMdlRegCustomCode
LibMdlRegCustomCodePurpose Places code at the top or bottom of the model’s registration function

Syntax %<LibMdlRegCustomCode(buffer, location)>

Arguments buffer
Buffer to append to internal cache buffer.

location
"header" (place at top of function).
"trailer" (place at bottom of function).

Description Use this function to place code at the top or bottom of the model’s registration
function by specifying "header" or "trailer", respectively. Each call to this
function appends your buffer to the internal cache buffer.

4-45

LibMdlStartCustomCode
LibMdlStartCustomCodePurpose Places code at the top or bottom of the MdlStart function

Syntax %<LibMdlStartCustomCode(buffer, location)>

Arguments buffer
Buffer to append to internal cache buffer.

location
"header" (place at top of function).
"trailer" (place at bottom of function).

Description Use this function to place code at the top or bottom of the MdlStart function by
specifying "header" or "trailer", respectively. Each call to this function
appends your buffer to the internal cache buffer.

4-46

LibMdlTerminateCustomCode
LibMdlTerminateCustomCodePurpose Places code at the top or bottom of the MdlTerminate function

Syntax %<LibMdlTerminateFcnCustomCode(buffer, location)>

Arguments buffer
Buffer to append to internal cache buffer.

location
"header" (place at top of function).
"trailer" (place at bottom of function).

Description Use this function to place code at the top or bottom of the MdlTerminate
function by specifying "header" or "trailer", respectively. Each call to this
function appends your buffer to the internal cache buffer.

4-47

LibOptionalMatrixWidth
LibOptionalMatrixWidthPurpose Determines the optional width of a matrix

Syntax %<LibOptionalMatrixWidth(nRows, nCols)>

Arguments nRows
Integer number of rows.

nCols
Integer number of columns.

Returns

Description LibOptionalMatrixWidth returns the optional width of a matrix.

Returned Value Data Type

Nothing Scalars

[nRows] or [nCols] Row or column vector

[nRows][nCols] Matrices
4-48

LibOptionalVectorWidth
LibOptionalVectorWidthPurpose Determines if length is greater than 1

Syntax %<LibOptionalVectorWidth(length)>

Arguments length
Integer vector length.

Returns [length] if length is greater than 1, otherwise it returns an empty string.

Description LibOptionalVectorWidth returns [length] if length is greater than 1,
otherwise it returns an empty string.

4-49

LibPathName
LibPathNamePurpose Determines the full path of a system

Syntax %<LibPathName(name)>

Arguments name
String name of system (e.g., "<S5>/foo_system").

Returns The full path of a system.

Description LibPathName returns the full path of a system. This is a recursive function.
Note that the expanded name can be used to locate a Simulink block using
open_system at the MATLAB prompt with the result of this function.

4-50

LibPrevZCState
LibPrevZCStatePurpose Determines the appropriate element for previous zero-crossing state based on
ucv, lcv, and pzcIdx.

Syntax %<LibPrevZCState(ucv, lcv, pzcIdx)>

Arguments ucv
User control variable string.

lcv
Loop control variable string.

pzcIdx
Integer previous zero-crossing index.

Returns The appropriate element for the previous zero-crossing state based on ucv, lcv,
and pzcIdx.

Description LibPrevZCState returns the appropriate element for previous zero-crossing
state based on ucv, lcv, and pzcIdx.

4-51

LibPrmFileCustomCode
LibPrmFileCustomCodePurpose Places code at the top or bottom of the model’s parameter file

Syntax %<LibPrmFileCustomCode(buffer, location)>

Arguments buffer
Buffer to append to internal cache buffer.

location
"header" (place at top of file).
"trailer" (place at bottom of file).

Description Use this function to place code at the top or bottom of the model’s parameter
file by specifying "header" or "trailer", respectively. Each call to this func-
tion appends your buffer to the internal cache buffer.

4-52

LibRegFileCustomCode
LibRegFileCustomCodePurpose Places code at the top or bottom of the model’s registration file

Syntax %<LibRegFileCustomCode(buffer, location)>

Arguments buffer
Buffer to append to internal cache buffer.

location
"header" (place at top of file).
"trailer" (place at bottom of file).

Description Use this function to place code at the top or bottom of the model’s registration
file by specifying "header" or "trailer", respectively. Each call to this func-
tion appends your buffer to the internal cache buffer.

4-53

LibRenameParameter
LibRenameParameterPurpose Renames the parameter and creates a new reference to the parameter

Syntax %<LibRenameParameter(block, param, newName)>

Arguments block
Reference to the block record.

param
Reference to the block parameter identifier.

newName
New string name for the parameter.

Description This call should be made from inside the block’s BlockInstanceSetup function.
This function

• Renames the parameter to the name specified.

• Creates a new reference to the parameter by that name.

4-54

LibSourceFileCustomCode
LibSourceFileCustomCode Purpose Places code at the top of the model’s source file

Syntax %<LibSourceFileCustomCode(buffer, location)>

Arguments buffer
Buffer to append to internal cache buffer.

location
"header" (place at top of file).

Description Use this function to place code at the top of the model’s source file by specifying
"header". Custom code is not allowed at the bottom of model.c since placing it
at the top of model.reg has the same effect (model.c includes model.reg as its
last statement).

Be careful placing code in model.c if file splitting is an issue. When code is
needed in each split file, place it in model.h instead of model.c.

Each call to this function appends your buffer to the internal cache buffer.

4-55

LibSystemDerivativeCustomCode
LibSystemDerivativeCustomCodePurpose Places code at the top or bottom of a system’s derivative function

Syntax %<LibSystemDerivativeCustomCode(buffer, location)>

Arguments buffer
Buffer to append to internal cache buffer.

location
"header" (place at top of function).
"trailer" (place at bottom of function).

Description Use this function to place code at the top or bottom of a system’s derivative
function by specifying "header" or "trailer", respectively.

This function generates an error if you attempt to add code to a subsystem that
does not have any continuous states. Each call to this function appends your
buffer to the internal cache buffer.

4-56

LibSystemDisableCustomCode
LibSystemDisableCustomCodePurpose Places code at the top or bottom of a system’s disable function

Syntax %<LibSystemDisableCustomCode(buffer, location)>

Arguments buffer
Buffer to append to internal cache buffer.

location
"header" (place at top of function).
"trailer" (place at bottom of function).

Description Use this function to place code at the top or bottom of a system’s disable
function by specifying "header" or "trailer", respectively.

This function generates an error if you attempt to add code to a subsystem that
does not have a disable function. Each call to this function appends your buffer
to the internal cache buffer.

4-57

LibSystemEnableCustomCode
LibSystemEnableCustomCodePurpose Places code at the top or bottom of a system’s enable function

Syntax %<LibSystemEnableCustomCode(buffer, location)>

Arguments buffer
Buffer to append to internal cache buffer.

location
"header" (place at top of function).
"trailer" (place at bottom of function).

Description Use this function to place code at the top or bottom of a system’s enable function
by specifying "header" or "trailer", respectively.

This function generates an error if you attempt to add code to a subsystem that
does not have an enable function. Each call to this function appends your buffer
to the internal cache buffer.

4-58

LibSystemInitializeCustomCode
LibSystemInitializeCustomCodePurpose Places code at the top or bottom of a system’s initialize function

Syntax %<LibSystemInitializeCustomCode(buffer, location)>

Arguments buffer
Buffer to append to internal cache buffer.

location
"header" (place at top of function).
"trailer" (place at bottom of function).

Description Use this function to place code at the top or bottom of a system’s initialize
function by specifying "header" or "trailer", respectively. Note that enable
systems that are not configured to reset on enable, get inlined into MdlStart.
For this case, the system’s custom code is found in MdlStart above and below
the enable system’s initialization code.

Attempting to add initialization code to the root system will generate an error.
For this case, use library function LibMdlStartFcnCustomCode.

Each call to this function appends your buffer to the internal cache buffer.

4-59

LibSystemOutputCustomCode
LibSystemOutputCustomCodePurpose Places code at the top or bottom of a system’s output function

Syntax %<LibSystemOutputCustomCode(buffer, location)>

Arguments buffer
Buffer to append to internal cache buffer.

location
"header" (place at top of function).
"trailer" (place at bottom of function).

Description Use this function to place code at the top or bottom of a system’s output function
by specifying "header" or "trailer", respectively. Each call to this function
appends your buffer to the internal cache buffer.

4-60

LibSystemUpdateCustomCode
LibSystemUpdateCustomCodePurpose Places code at the top or bottom of a system’s update function

Syntax %<LibSystemUpdateCustomCode(buffer, location)>

Arguments buffer
Buffer to append to internal cache buffer.

location
"header" (place at top of function).
"trailer" (place at bottom of function).

Description Use this function to place code at the top or bottom of a system’s update
function by specifying "header" or "trailer", respectively. Each call to this
function appends your buffer to the internal cache buffer.

4-61

LibSystemUpdateCustomCode
4-62

Model.rtw File Contents A-2
Model.rtw File Contents — System Record A-11
Model.rtw File Contents — Block Specific Records A-17
Model.rtw File Contents — Linear Block Specific Records . . A-51
A

model.rtw

A model.rtw

A-2
Model.rtw File Contents

This appendix describes the contents of the model.rtw file, which is created
from your block diagram during the Real-Time Workshop build procedure, and
is for use with the Target Language Compiler. The contents of the model.rtw
file is a “compiled” version of your block diagram. This appendix is provided so
that you can modify the existing code generation or even create a new “code
generator” to suit your needs. The general format of the model.rtw file is:

CompiledModel {
<TLC variables and records describing the compiled model>

}

The contents of the model.rtw file may change from release to release. The
MathWorks will make every effort to keep the model.rtw file compatible with
previous releases. Changes will be documented with each release.

Table A-1: Model.rtw File Contents

Variable/Record Name Description

Name Name of the Simulink model from which this model.rtw file was
generated.

Version Version of the model.rtw file.

GeneratedOn Date and time when the model.rtw file was generated.

Solver Name of solver as entered in the Simulink Parameters dialog
box.

SolverType FixedStep or VariableStep.

StartTime Simulation start time as entered in the Simulink Parameters
dialog box.

StopTime Simulation stop time.

FixedStepOpts { Only written if SolverType is FixedStep.

FixedStep Step size to be used.

}

VariableStepOpts { Only written if SolverType is VariableStep.

model.rtw
RelTol Relative tolerance.

AbsTol Absolute tolerance.

Refine Refine factor.

MaxStep Maximum step size.

InitialStep Initial step size.

MaxOrder Maximum order for ode15s.

}

DataLoggingOpts { Data logging record describing the settings of Simulink
simulation. (Parameters, workspace, I/O settings)

LogT Name of Time variable or "" if not selected to be saved.

LogX Name of State variable or "" if not selected to be saved.

LogY Name of output variable, variable list "output1,output2", or
"" if not selected to be saved.

LogYNCols Number of columns in output variable. Not written if
LogY == "".

LogXFinal Name of final state variable or "" if not selected to be saved.

MaxRows Maximum number of rows or 0 for no limit.

Decimation Data logging interval.

}

NumModelInputs Sum of all root-level import block widths. This is the length of the
external input vector, U.

NumModelOutputs Sum of all root-level outport block widths. This is the length of
the external output vector, Y.

NumNonVirtBlocksInModel Total number of nonvirtual blocks in the model.

Table A-1: Model.rtw File Contents (Continued)

Variable/Record Name Description
A-3

A model.rtw

A-4
DirectFeedthrough Does model require its inputs in the MdlOutput function (yes/no)?

NumContStates Total number of continuous states in the model. Continuous
states appear in your model when you use continuous components
(i.e., an Integrator block) that have state(s) that must be
integrated by a solver such as ode45.

NumDiscStates Total number of discrete states in the model. Discrete states
appear in your model when you use discrete components (i.e., a
Unit Delay block) that have state(s). The model state vector, X, is
of length NumContStates plus NumDiscStates and contains the
continuous states followed by the discrete states.

NumModes Length of the model mode vector (modeVect). The mode vector is
used by blocks that need to keep track of how they are operating.
For example, the discrete integrator configured with a reset port
uses the mode vector to determine how to operate when an
external reset occurs.

ZCFindingDisabled Is zero-crossing event location (finding) disabled (yes/no)?
This is always yes for fixed-step solvers.

NumNonsampledZCs Length of the model nonsampled zero-crossing vectors, one for the
zero-crossing signals (nonsampledZCs) and one for the
zero-crossing directions (nonsampledZCdirs). Nonsampled
zero-crossings are derived from continuous signals that have a
discontinuity in their first derivative. Nonsampled zero-crossings
only exist for variable step solvers. The Abs block is an example of
a block that has an intrinsic, nonsampled zero-crossing to detect
when its input crosses zero.

NumZCEvents Length of the model zero-crossing event vector (zcEvents).

NumRWork Length of the model real-work vector (rwork). Real-work elements
are used by blocks that need to keep track of “real” variables
between simulation steps. An example of a block that uses
real-work elements is the Discrete Sine Wave block, which has
discrete coefficients that are needed across simulation steps.

Table A-1: Model.rtw File Contents (Continued)

Variable/Record Name Description

model.rtw
NumIWork Length of the model integer-work vector (iwork). Integer-work
elements are used by blocks that need to keep track of “integer”
variables between simulation steps. An example of a block that
uses integer-work elements is the Discrete Time Integrator block
configured with an external initial condition source. The
integer-work element is used as a Boolean to determine when to
load the initial condition.

NumPWork Length of the model pointer-work vector (pwork). Pointer-work
elements are used by blocks that need to keep track of “pointer”
variables between simulation steps. An example of a block that
uses pointer-work elements is the To Workspace block, which
uses a pointer-work element to keep track of logged data.

NumDataStoreElements Total number of data store elements. This is the sum of the
widths of all data store memory blocks in your model.

NumBlockSignals Sum of the widths of all output ports of all nonvirtual blocks in
the model. This is the length of the block I/O vector, blockIO.

NumBlockParams Number of modifiable parameter elements (params). For example,
the Gain block parameter contains modifiable parameter
elements.

NumAlgebraicLoops Number of algebraic loops in the model.

InvariantConstants yes if invariant constants (i.e., inline-parameters) is “on”, no if
invariant constants is off.

FundamentalStepSize Fundamental step size or 0.0 if one cannot be determined.
Variable step solvers may have a fundamental step size of 0.0.

NumSampleTimes Number of sample times in the model followed by SampleTime
info records, giving the TID (task ID), an index into the sample
time table, and the period and offset for the sample time.

SampleTime { One record for each sample time.

TID Task ID for this sample time.

Table A-1: Model.rtw File Contents (Continued)

Variable/Record Name Description
A-5

A model.rtw

A-6
PeriodAndOffset Period and offset for this sample time.

}

RootSignals { Signal and block information in the root “window.”

NumSignals Number of block output signals (including virtual) blocks.

Signal { One record for each signal.

Block [sysIdx, blockIdx] or block name string if a virtual block.

SigLabel Signal label if present.

OutputPort [outputPortIndex, outputPortWidth].

SignalSrc Vector of length outputPortWith giving the location of the signal
source.

}

NumBlocks Number of nonvirtual blocks in the root window of your model.

BlockSysIdx System index for blocks in this subsystem.

BlockMap Vector of length NumBlocks giving the blockIdx for each
nonvirtual block in the subsystem.

}

NumVirtualSubsystems Total number of virtual subsystems in the model.

NumNonvirtalSubsystems Total number of nonvirtual subsystems in the model.

Subsystem { One record for each subsystem.

SysId System identifier. Each subsystem in the model is given a unique
identifier of the form S# (e.g., S3).

Name Block name preceded with a <root> or <S#> token. The ID/Name
values define an associative pair giving a mapping to the block
full path block.

Table A-1: Model.rtw File Contents (Continued)

Variable/Record Name Description

model.rtw
SLName Unmodified Simulink name. This is only written if it is not equal
to Name.

Virtual Whether or not the subsystem is virtual.

NumSignals Number of block output signals (including virtual) blocks.

Signal { One record for each signal.

Block [sysIdx, blockIdx] or block name string if a virtual block.

OutportBlock This is only present if the signal is emanating from a subsystem.
It is the Outport block name corresponding to the output signal of
a subsystem block.

SigLabel Signal label if present.

OutputPort [outputPortIndex, outputPortWidth].

SignalSrc Vector of length outputPortWith giving the location of the signal
source.

}

NumBlocks Number of nonvirtual blocks in the subsystem.

BlockSysIdx System index for blocks in this subsystem.

BlockMap Vector of length NumBlocks giving the blockIdx for each
nonvirtual block in the subsystem.

}

DataStores { List of data stores in the block diagram.

NumDataStores Number of named data stores.

DataStore { One for each data store.

Name Name of block declaring the data store.

Table A-1: Model.rtw File Contents (Continued)

Variable/Record Name Description
A-7

A model.rtw

A-8
SLName Unmodified Simulink name. This is only written if it is not equal
to Name.

MemoryName Name of the data store memory region.

Identifier Unique identifier across all data stores.

Index [dataStoreIndex, dataStoreWidth].

InitValue Initial value for the data store.

}

}

ExternalInputs { External inputs to the block diagram.

NumExternalInputs Number of external input records that follow.

ExternalInput { One for each external input signal.

Identifer Unique name across all external inputs.

SigIdx [externalInputVectorIndex, signalWidth].

SigLabel Signal label entered by user.

}

}

ExternalInputsMap Matrix of dimension (NumModelInputs,2), which gives a
mapping from external input vector index (Ui) into the
ExternalInputs structure: [externalInputsIndex,
signalOffset]. Only written if NumModelInputs > 0.

BlockOutputs { List of block output signals in the block diagram.

NumBlockOutputs Number of data output port signals.

BlockOutput { One for each data output signal.

Table A-1: Model.rtw File Contents (Continued)

Variable/Record Name Description

model.rtw
Identifier Unique variable name across all block outputs.

SigSrc [systemIndex, blockIndex, outputPortIndex].

SigIdx [blockIOVectorIndex, signalWidth].

SigConnected Vector of length signalWith where each element is either a 1 or 0
indicating whether or not the corresponding output signal is
connected.

SigLabel Signal label entered by user.

TestPoint yes/no. Has this signal been marked as a test point in the block
diagram?

Required yes/no. Is this signal required to be in the block I/O structure
(i.e., the signal is needed across function boundaries)?

}

}

BlockOutputsMap Matrix of dimension (NumBlockSignals,2), which gives a
mapping from a block I/O vector index (Bi) into the BlockOutputs
structure: [blockOutputsIndex, signalOffset]. Only written if
NumBlockSignals > 0.

StatesMap Matrix of dimension (NumContStates,3), which gives a mapping
from a continuous or discrete state vector index (Xi) to a block:
[systemIndex, blockIndex, stateOffset]. If stateOffset is
less than ContStates[0], then Xi maps to the continuous state at
stateOffset in the block, otherwise Xi maps to the discrete state
at stateOffset–ContStates[0] in the block. Only written if
NumContStates+NumDiscStates > 0.

BlockDefaults { Record for default values of block variables that aren’t explicitly
written in the block records. The block records only contain
nondefault values for the following variables.

IllegalMTaskTrans no

Table A-1: Model.rtw File Contents (Continued)

Variable/Record Name Description
A-9

A model.rtw

A-1
InMask no

AlgebraicLoopId 0

ContStates [0,0]

DiscStates [0,0]

RWork [0,0]

IWork [0,0]

PWork [0,0]

ModeVector [0,0]

NonsampledZCs [0,0]

ZCEvents [0,0]

RollRegions []

NumDataInputPorts 0

NumControlPorts 0

NumDataOutputPorts 0

Parameters [0,0,0]

NumRWorkDefines 0

NumIWorkDefines 0

NumPWorkDefines 0

}

Table A-1: Model.rtw File Contents (Continued)

Variable/Record Name Description
0

model.rtw
Model.rtw File Contents — System Record

In general, a model can consist of multiple systems. There is one system for the
root and one for each nonvirtual subsystem. Each descendent system of the root
system is written out using Pascal ordering (deepest first) to avoid forward ref-
erences. Within each system is a sorted list of blocks.

Table A-2: Model.rtw File Contents — System Record

Variable/Record Name Description

System { One for each system in the model.

Type root, enable, trigger, enable_with_trigger, or function-call.

Tag Only written if block has a non-empty Simuilnk “tag” property.

Name Name of system.

SLName Unmodified Simulink name. This is only written if it is not equal
to Name.

Identifier Unique identifier across all blocks.

SubsystemBlockIdx [systemIndex, blockIndex]. Not present if Type is root.

InitializeFcn Name of initialize function for enable systems that are configured
to reset states.

OutputFcn Name of output function for enable systems.

UpdateFcn Name of update function for enable systems.

DerivativeFcn Name of derivative function for enable systems that have
continuous states.

EnableFcn Name of disable function for enable or enable_with_trigger
systems.

DisableFcn Name of disable function for enable or enable_with_trigger
systems.

ZeroCrossFcn Name of nonsampled zero-crossing function for enable systems
using variable step solver.
A-11

A model.rtw

A-1
OutputUpdateFcn Name of output/update function for trigger or
enable_with_trigger systems.

NumBlocks Number of blocks in the system.

Block { One for each block in the system.

Type Block type, i.e., Gain.

InMask Yes if this block “lives” within a mask.

MaskType Only written out if block is masked. If this property is yes, this
block is either masked or resides in a masked subsystem. The
default for MaskType is no meaning the block does not have a
mask or reside in a masked subsystem.

Name Block name preceded with a <root> or <S#> token.

SLName Unmodified Simulink name. This is only written if it is not equal
to Name.

Identifier Unique identifer across all blocks.

TID Task ID, which can be one of:
• Integer >= 0, giving the index into the sample time table.
• Vector of two or more elements indicating that this block has

multiple sample times.
• constant indicating that the block is constant and doesn’t

have a task ID.
• triggered indicating that the block is triggered and doesn’t

have a task ID.
• Subsystem indicating that this block is a conditionally

executed subsystem and the TID transitions are to be handled
by the corresponding system.

SubsystemTID Only written if TID equals Subsystem. This is the actual value of
the subsystem TID (i.e., integer, vector, constant, or triggered).

Table A-2: Model.rtw File Contents — System Record (Continued)

Variable/Record Name Description
2

model.rtw
FundamentalTID Only written for multirate or hybrid enabled subsystems. This
gives the sample time as the greatest common divisor of all
sample times in the system.

SampleTimeIdx Actual sample time of block. Only written for zero order hold and
unit delay blocks.

IllegalMTaskTrans yes if there is a sample time transition that would cause
multitasking problems. no if transition is fine. "No-RatesEqual"
if there is a continuous to discrete or discrete to continuous, but
the rates are equal.

AlgebraicLoopId This ID identifies the loop this block is in. If this field is not
present, the ID is 0 and the block is not part of an algebraic loop.

ContStates Specified as [N,I] where N is number of continuous states and I
is the index into the state vector, X. Not present if N==0.

DiscStates Specified as [N,I] where N is number of discrete states and I is
the index into the state vector, X. Not present if N==0.

RWork Specified as [N,I] where N is the number of real-work elements
and I is the index into rwork. Not present if N==0.

IWork Specified as [N,I] where N is the number of integer-work
elements and I is the index into iwork. Not present if N==0.

PWork Specified as [N,I] where N is the number of pointer-work
elements and I is the index into pwork. Not present if N==0.

ModeVector Specified as [N,I] where N is the number of modes and I is the
index into modeVect. Not present if N==0.

NonsampledZCs Specified as [N,I], where N is the number of nonsampled
zero-crossings and I is the index into the nonsampledZCs and
nonsampledZCdirs vectors.

NonsampledZC { One record for each nonsampled zero-crossing.

Index Index of the block’s zero-crossing.

Table A-2: Model.rtw File Contents — System Record (Continued)

Variable/Record Name Description
A-13

A model.rtw

A-1
Direction Direction of zero-crossing: Falling, Any, Rising.

}

ZCEvents Specified as [N,I], where N is the number of zero-crossing events
and I is the index into the zcEvents vector.

ZCEvent { One record for each zero-crossing event.

Type Type of zero-crossing: DiscontinuityAtZC, ContinuityAtZC,
TriggeredDisconAtZC.

Direction Direction of zero-crossing: Falling, Any, Rising.

}

RollRegions RollRegions is the contiguous regions defined by the inputs and
“block width.” Block width is the overall width of a block after
scalar expansion. RollRegions is provided for use by the %roll
construct.

RollRegions1 This is equivalent to RollRegions shifted left by 1. It is present
for the blocks that collapse a vector to a scalar such as the vector
Sum, Product, and MinMax blocks.

NumDataInputPorts Number of data input ports. Only written if nonzero.

DataInputPort { One record for each data input port.

Width Length of the signal entering this input port.

SignalSrc A vector of length Width where each element specifies the source
signal. This is an index into the block I/O vector (Bi), an index
into the state vector (Xi), an index into the external input vector
(Ui), or unconnected ground (G0).

}

NumControlPorts Number of control (e.g., trigger or enable) input ports. Only
written if nonzero.

Table A-2: Model.rtw File Contents — System Record (Continued)

Variable/Record Name Description
4

model.rtw
ControlPort { One record for control input port.

Type Type of control port: enable, trigger, or function-call.

Width Length of the signal entering this input port.

SignalSrc A vector of length Width where each element specifies the source
signal. This is an index into the block I/O vector (Bi), an index
into the state vector (Xi), an index into the external input vector
(Ui), or unconnected ground (G0).

SignalSrcTID Vector of length Width giving the TID as an integer index,
trigger, or constant identifier for each signal entering this
control port.

}

NumDataOutputPorts Number of output ports. Only written if nonzero.

DataOutputPortIndices Indices into BlockOutputs record. Only written if
NumDataOutputPorts > 0.

Parameters Specified as [N,M,I] where N is the number of Parameter records
that follow, M is the number of modifiable parameter elements,
and I is the starting index into the params vector. Not present if
N==0.

Parameter { One record for each parameter.

Name Name of the parameter.

Value Value of the parameter.

String String entered in the Simulink block dialog box.

Table A-2: Model.rtw File Contents — System Record (Continued)

Variable/Record Name Description
A-15

A model.rtw

A-1
StringType One of:
• "Computed" indicating the parameter is computed from values

entered in the Simulink dialog box.
• "Variable" indicating the parameter is derived from a single

MATLAB variable.
• "Expression" indicating the parameter is a MATLAB

expression.

}

ParamSettings { Optional record specific to block.

blockSpecificName Block specific settings.

}

}

BlockParamChecksum This is a hash-based checksum for the block parameter values
and identifier names.

ModelChecksum This is a hash-based checksum for the model structure.

}

Table A-2: Model.rtw File Contents — System Record (Continued)

Variable/Record Name Description
6

model.rtw
Model.rtw File Contents — Block Specific Records

The following table describes the block specific records written for the Simulink
blocks.

Table A-3: Model.rtw File Contents — Block Specific Records

Block Type: AbsoluteValue

No block specific records.

Block Type: Backlash (example with a backlash width of 2.08 and an
initial output of [1.86, 2.38])

Parameter {

Name "BacklashWidth"

Value [2.08]

String "2.08"

StringType "Expression"

}

 ParamSettings {

InitialOutput [1.86, 2.38]

}

NumRWorkDefines 1

RWorkDefine { Used to store previous output and time values.

Name PrevTY

Width 3

}

Block Type: Clock

No block specific records.
A-17

A model.rtw

A-1
Block Type: CombinatorialLogic (example of 8-by-2 table):

Parameter {

Name "TruthTable"

Value Matrix(8,2)

[[0, 0]; [0, 1]; [0, 1]; [1, 0]; [0, 1]; [1, 0]; [1, 0]; [1,1];

String "[0 0;0 1;0 1;1 0;0 1;1 0;1 0;1 1]"

StringType "Expression"

}

Block Type: Constant (example of a constant of 1:5):

Parameter {

Name "Value"

Value [1, 2, 3, 4, 5]

String "1:5"

StringType "Expression"

}

Block Type: DataStoreMemory

Virtual. Not written to RTW file.

Block Type: DataStoreRead

ParamSettings {

DataStore Region index into data stores list.

Table A-3: Model.rtw File Contents — Block Specific Records (Continued)
8

model.rtw
}

Block Type: DataStoreWrite

ParamSettings {

DataStore Region index into data stores list.

}

Block Type: Deadzone (example of a deadzone block with a lower value of –3.3503 and an upper
value of 1.4864).

Parameter {

Name "LowerValue"

Value [–3.3503]

String "–3.3503"

StringType "Expression"

}

Parameter {

Name "UpperValue"

Value [1.4864]

String "1.4864"

StringType "Expression"

}

Block Type: Demux

Virtual. Not written to model.rtw file.

Table A-3: Model.rtw File Contents — Block Specific Records (Continued)
A-19

A model.rtw

A-2
Block Type: Derivative
The Derivative block computes its derivative by using the approximation

(input–prevInput)/deltaT

Two “banks” of history are needed to keep track of the previous input. This is because the input
history is updated prior to integrating states. To guarantee correctness when the output of the
Derivative block is integrated directly or indirectly, two banks of the previous inputs are needed.
This history is saved in the real-work vector. The following is an example of what will appear in the
model.rtw file for an input of width 5.

NumRWorkDefines 4

RWorkDefine {

Name TimeStampA

Width 1

}

RworkDefine {

Name LastUAtTimeA

Width 5

}

RworkDefine {

Name TimeStampB

Width 1

}

RworkDefine {

Name LastUAtTimeB

Width 5

Table A-3: Model.rtw File Contents — Block Specific Records (Continued)
0

model.rtw
}

Block Type: DigitalClock

No block specific records.

Block Type: DiscreteFilter

See Model.rtw File Contents — Linear Block Specific Records on page A-51.

Block Type: DiscreteIntegrator (shown below is a limited integrator configured with an internal
initial condition of 0, an upper limit of ".75", and a lower limit of "[–.25 0 –.75]").

Parameter {

Name "InitialCondition"

Value [0]

String "0"

StringType "Expression"

}

Parameter {

Name "UpperSaturationLimit"

Value [0.75]

String ".75"

StringType "Expression"

}

Parameter {

Name "LowerSaturationLimit"

Table A-3: Model.rtw File Contents — Block Specific Records (Continued)
A-21

A model.rtw

A-2
Value [–0.25, 0, –0.75]

String "[–.25 0 –.75]"

StringType "Expression"

}

NumRWorkDefines 0, 1, or 2.

RworkDefine { Present if NumRWorkDefines is greater than 0.

Name PrevT

Width 1

}

RWorkDefine { Present if NumRWorkDefines is 2.

Name PrevU

Width Equal to the width of the signal being integrated.

}

ParamSettings {

IntegratorMethod ForwardEuler, BackwardEuler, or Trapezoidal

ExternalReset none, rising, falling, or either

InitialConditionSource internal or external

LimitOutput on or off

ShowSaturationPort on or off

ShowStatePort on or off

ExternalX0 Only written when initial condition (IC) source is external.
This is the initial value of the signal entering the IC port.

}

Table A-3: Model.rtw File Contents — Block Specific Records (Continued)
2

model.rtw
BlockType: DiscretePulseGenerator (shown below is a discrete pulse generator with an
amplitude of 1, a period of 2 samples, a pulse width of 1 sample, and a phase delay of 0 samples).

 Parameter {

Name "Amplitude"

Value [1]

String "1"

StringType "Expression"

}

Parameter {

Name "Period"

Value [2]

String "2"

StringType "Expression"

}

Parameter {

Name "PulseWidth"

Value [1]

String "1"

StringType "Expression"

}

ParamSettings {

PhaseDelay [0]

}

Table A-3: Model.rtw File Contents — Block Specific Records (Continued)
A-23

A model.rtw

A-2
NumIWorkDefines 1 (There is one integer work for each output signal.)

IWorkDefine {

Name "ClockTicksCounter"

Width 1

}

Block Type: DiscreteStateSpace

See Model.rtw File Contents — Linear Block Specific Records on page A-51.

Block Type: DiscreteTransferFcn

See Model.rtw File Contents — Linear Block Specific Records on page A-51.

Block Type: DiscreteZeroPole

See Model.rtw File Contents — Linear Block Specific Records on page A-51.

Block Type: Display

No block specific records.

Block Type: ElementaryMath

ParamSettings {

Operator One of sin, cos, tan, asin, acos, atan, atan2, sinh, cosh, tanh,
exp, log, log10, floor, ceil, sqrt, reciprocal, pow, or hypot

}

Block Type: EnablePort

Table A-3: Model.rtw File Contents — Block Specific Records (Continued)
4

model.rtw
Virtual. Not written to model.rtw file.

Block Type: From

Virtual. Not written to model.rtw file.

Block Type: FromFile

ParamSettings {

NumPoints Number of data points.

TUdata Data from the .mat file.

}

Block Type: FromWorkspace

ParamSettings {

NumPoints Number of data points.

TUdata Data from the workspace variable(s).

}

Block Type: Fcn

The Fcn block is written out as an abstract syntax tree (AST). The following is an example for
the expression "sin(u(1))+10".

ParamSettings {

Expr "sin(u(1)) + 10"

}

ASTNode {

Op "+"

Table A-3: Model.rtw File Contents — Block Specific Records (Continued)
A-25

A model.rtw

A-2
LHS {

Op "SIN"

LHS {

Op "U"

LHS {

Op "NUM"

Value 1

}

}

}

RHS {

Op "NUM"

Value 10

}

}

Block Type: Gain (example of a gain of 1:5).

Parameter {

Name "Gain"

Value [1, 2, 3, 4, 5]

String "1:5"

StringType "Expression"

}

Table A-3: Model.rtw File Contents — Block Specific Records (Continued)
6

model.rtw
Block Type: Goto

Virtual. Not written to model.rtw file.

Block Type: Ground

Virtual. Not written to model.rtw file.

Block Type: HitCross (example of a hit crossing block with an offset of 0).

Parameter {

Name "HitCrossingOffset"

Value [0]

String "0"

StringType "Expression"

}

Block Type: InitialCondition (example of an initial condition block with an initial value of 1:5).

NumRWorkDefines 1

RWorkDefine {

Name "FirstOutputTime"

Width 1

}

ParamSettings {

Value [1, 2, 3, 4, 5]

}

Table A-3: Model.rtw File Contents — Block Specific Records (Continued)
A-27

A model.rtw

A-2
Block Type: Inport

Virtual. Not written to model.rtw file.

Block Type: Integrator (shown below is a limited integrator configured with an internal initial
condition of 0, an upper limit of ".75", and a lower limit of "[–.25 0 –.75]").

Parameter {

Name "InitialCondition"

Value [0]

String "0"

StringType "Expression"

}

Parameter {

Name "UpperSaturationLimit"

Value [0.75]

String ".75"

StringType "Expression"

}

Parameter {

Name "LowerSaturationLimit"

Value [–0.25, 0, –0.75]

String "[–.25 0 –.75]"

StringType "Expression"

}

Table A-3: Model.rtw File Contents — Block Specific Records (Continued)
8

model.rtw
ParamSettings {

ExternalReset none, rising, falling, or either

InitialConditionSource internal or external

LimitOutput on or off

ShowSaturationPort on or off

ShowStatePort on or off

ExternalX0 Only written when initial condition (IC) source is external. This
is the initial value of the signal entering the IC port.

}

Block Type: Logic

ParamSettings {

Operator AND, OR, NAND, NOR, XOR, or NOT

}

Block Type: Lookup (example of a look up with [–5:0] for input values and [0:5] for output
values).

Parameter { The input values, x, to the function
y = f(x).

Name "InputValues"

Value [–5, –4, –3, –2, –1, 0]

String "[–5:0]"

StringType "Expression"

}

Table A-3: Model.rtw File Contents — Block Specific Records (Continued)
A-29

A model.rtw

A-3
Parameter { The output values, y, of the function
y = f(x).

Name "OutputValues"

Value [0, 1, 2, 3, 4, 5]

String " [0:5]"

StringType "Expression"

}

Parameter { This is (y(i+1)–y(i))/(x(i+1)–x(i))

Name "Slopes"

Value [1, 1, 1, 1, 1, 0]

String ""

StringType "Computed"

}

Parameter { This is the output of the block when the input to the block is
zero.

Name "OutputAtZero"

Value [5]

String ""

StringType "Computed"

}

Block Type: Lookup2d (example of a look up with 1:2 and 1:3 for row and column input values and
[[4, 5 6]; [16, 18, 20]] for output table values).

Parameter { The “row” input values, x, to the function z = f(x,y).

Table A-3: Model.rtw File Contents — Block Specific Records (Continued)
0

model.rtw
Name "RowIndex"

Value [1, 2]

String "1:2"

StringType "Expression"

}

Parameter { The “column” input values, y, to the function z = f(x,y).

Name "ColumnIndex"

Value [1, 2, 3]

String "1:3"

StringType "Expression"

}

Parameter { The “table” output values, z, to the function z = f(x,y).

Name "OutputValues"

Value Matrix(2,3)

[[4, 5, 6]; [16, 18, 20];]

String "[[4, 5, 6]; [16, 18, 20]]"

StringType "Expression"

}

Parameter { This is the output of the block when the row input, x, to the
block is zero.

Name "OutputAtRowZero"

Value [–8, –8, –8]

String ""

Table A-3: Model.rtw File Contents — Block Specific Records (Continued)
A-31

A model.rtw

A-3
StringType "Computed"

}

ParamSettings {

ColZeroTechnique NormalInterp, AverageValue, or MiddleValue

ColZeroIndex 0

}

Block Type: Math

ParamSettings {

Operator exp, log, 10^u, log10, square, sqrt, pow, reciprocal, hypot,
rem, or mod

}

Block Type: MATLABFcn

There is no support for the MATLAB Fcn block in RTW.

Block Type: Memory (example of a memory block with an initial condition of 0).

Parameter {

Name "X0"

Value [0]

String "0"

StringType "Expression"

}

NumRWorkDefines 1

Name "PrevU"

Table A-3: Model.rtw File Contents — Block Specific Records (Continued)
2

model.rtw
Width 2

}

Block Type: MinMax

ParamSettings {

Function min or max.

}

Block Type: MultiPortSwitch

No block specific records.

Block Type: Mux

Virtual. Not written to model.rtw file.

Block Type: Outport

ParamSettings {

PortNumber Port number as entered in the dialog box.

OutputLocation Specified as Yi if root-level outport; otherwise specified as Bi.

OutputWhenDisabled Only written when in an enabled subsystem and will be held or
reset.

}

Block Type: Probe

ParamSettings {

ProbeWidth on or off

Table A-3: Model.rtw File Contents — Block Specific Records (Continued)
A-33

A model.rtw

A-3
ProbeSampleTime on or off

}

Block Type: Product

No block specific records.

Block Type: Quantizer (example of a quantizer block with a quantization interval of .5).

Parameter {

Name "QuantizationInterval"

Value [.5]

String "0.5"

}

Block Type: RandomNumber (example of a random number block with a mean of 0, a variance of 1,
and an initial seed of 0).

Parameter {

Name "Mean"

Value [0]

String "0"

StringType "Expression"

}

Parameter {

Name "StandardDeviation"

Value [1]

String ""

Table A-3: Model.rtw File Contents — Block Specific Records (Continued)
4

model.rtw
StringType "Computed"

}

NumIWorkDefines 1

IWorkDefine {

Name "RandSeed"

Width 1

}

NumRWorkDefines 1

RWorkDefine {

Name "NextOutput"

Width 1

}

Block Type: RateLimiter (example of a rate limiter block with a rising slew limit of 1, and a falling
slew limit of –1).

Parameter {

Name "RisingSlewLimit"

Value [1]

String "1"

StringType "Expression"

}

Parameter {

Name "FallingSlewLimit"

Value [–1]

Table A-3: Model.rtw File Contents — Block Specific Records (Continued)
A-35

A model.rtw

A-3
String "–1"

StringType "Expression"

}

ParamSettings {

Signal Limit the rate of change of the output or input signal.

}

NumRWorkDefines 1

RWorkDefine { Used to keep track of last time, output and input.

Name "PrevTYU"

Width 2*blockWidth+1 or 2*(2*blockWidth+1) where block width is
the width of the input port after scalar expansion.

}

Block Type: Reference

Will never appear in model.rtw.

Block Type: RelationalOperator

ParamSettings {

Operator One of ==, ~=, <, <=, >=, >.

}

Block Type: Relay (example of a relay block with Switch on and off point of eps. Output is 1 when
on and 0 when off).

Parameter {

Name "OnSwitchValue"

Table A-3: Model.rtw File Contents — Block Specific Records (Continued)
6

model.rtw
Value [2.220446049250313e–16]

String "eps"

StringType "Variable"

}

Parameter {

Name "OffSwitchValue"

Value [2.220446049250313e–16]

String "eps"

StringType "Variable"

}

Parameter {

Name "OnOutputValue"

Value [1]

String "1"

StringType "Expression"

}

Parameter {

Name "OffSwitchValue"

Value [0]

String "0"

StringType "Expression"

}

Table A-3: Model.rtw File Contents — Block Specific Records (Continued)
A-37

A model.rtw

A-3
Block Type: ResetIntegrator

No support for the obsoleted Reset Integrator block.

Block Type: Rounding

ParamSettings {

Operator floor, ceil, round, or fix.

}

Block Type: Saturate
The following is an example of a saturation block configured with an upper limit of 0.5 and a lower
limit of –.5,

Parameter {

Name "UpperLimit"

Value [0.5]

String "–0.5"

}

Parameter {

Name "UpperLimit"

Value [0.5]

String "–0.5"

}

Block Type: Scope

ParamSettings {

Table A-3: Model.rtw File Contents — Block Specific Records (Continued)
8

model.rtw
SaveToWorkspace If scope is configured to save its data, then yes, otherwise no.

SaveName Name of variable used to save scope data.

MaxRows Maximum number of rows to save or 0 for no limit.

Decimation Data logging interval.

}

Block Type: Selector

Virtual. Not written to model.rtw file.

Block Type: S-Function.

Parameter { For each S-function parameter entered in the dialog box, there
is a P#Size and P# parameter giving the size and value of the
parameter, where # is the index starting at 1 of the parameter
in the dialog box.

Name Name is of the form P#Size.

Value Value is dependent upon user data.

String ""

StringType "Computed"

}

Parameter {

Name Name is of the form P#.

Value Value is dependent upon user data.

String ""

StringType "Computed"

}

Table A-3: Model.rtw File Contents — Block Specific Records (Continued)
A-39

A model.rtw

A-4
ParamSettings {

FunctionName Name of S-function.

FunctionType Type of S-function: "M-File", "C-MEX", or "FORTRAN-MEX".

DirectFeedthrough yes or no

UsingUPtrs Is the C MEX S-function using ssGetUPtrs(S) or ssGetU(S)?

InputContiguous yes or no

SampleTimesToSet M-by-2 matrix of sample time indices indicating any sample
times specified by the S-function in
mdlInitializeSampleTimes, which get updated. The first
column is the S-function sample time index, and the second
column is the corresponding SampleTime record of the model
giving the PeriodAndOffset. For example, an inherited sample
time will be assigned the appropriate sample time such as that
of the driving block. In this case, the SampleTimesToSet will be
[0, i] where "i" is the specific SampleTime record for the
model.

DynamicallySizedVectors Vector containing any of: "U", "Y", "Xc", "Xd", "RWork",
"IWork", or "PWork". For example ["U", "Y"].

}

NumSFcnSysOutputCalls Number of calls to subsystems of type "function-call".

SFcnSystemOutputCall { One record for each call.

OutputElement Index of the output element that is doing the function call.

FcnPortElement Index of the subsystem function port element that is being
“called.”

BlockToCall [systemIndex, blockIndex] or unconnected.

}

Table A-3: Model.rtw File Contents — Block Specific Records (Continued)
0

model.rtw
Block Type: SignalGenerator (example of a signal generator with an amplitude of 1 and a
frequency of 1).

Parameter {

Name "Amplitude"

Value [1]

String "1"

StringType "Expression"

}

Parameter {

Name "Frequency"

Value [1]

String "1"

StringType "Expression"

}

ParamSettings {

WaveForm sine, square, or sawtooth

TwoPi 6.283185307179586

StringType "Expression"

}

Block Type: Signum

No block specific records.

Table A-3: Model.rtw File Contents — Block Specific Records (Continued)
A-41

A model.rtw

A-4
Block Type: Sin (The following is an example for the Sine Wave block configured with a discrete
sample time of 1 second):

Parameter {

Name "Amplitude"

Value [1]

String "1"

StringType "Expression"

}

Parameter {

Name "Frequency"

Value [1]

String "1"

StringType "Expression"

}

Parameter {

Name "Phase"

Value [0]

String "0"

StringType "Expression"

}

Parameter { This is a discrete sine coefficient and is only written when the
Sine Wave block has a discrete sample time.

Name "sin_h"

Table A-3: Model.rtw File Contents — Block Specific Records (Continued)
2

model.rtw
Value [0.009999833334166664]

String ""

StringType "Computed"

}

Parameter { This is a discrete sine coefficient and is only written when the
Sine Wave block has a discrete sample time.

Name "cos_h"

Value [0.9999500004166653]

String ""

StringType "Computed"

}

Parameter { This is a discrete sine coefficient and is only written when the
Sine Wave block has a discrete sample time.

Name "sin_phi"

Value [–0.009999833334166664]

String ""

StringType "Computed"

}

Parameter { This is a discrete sine coefficient and is only written when the
Sine Wave block has a discrete sample time.

Name "cos_phi"

Value [0.9999500004166653]

String ""

StringType "Computed"

Table A-3: Model.rtw File Contents — Block Specific Records (Continued)
A-43

A model.rtw

A-4
}

Block Type: StateSpace

See Model.rtw File Contents — Linear Block Specific Records on page A-51.

Block Type: Sum

ParamSettings {

Inputs A vector of the form ["+", "+", "–"] corresponding to the
configuration of the block.

}

Block Type: SubSystem

ParamSettings {

SystemIdx Index of this system in the model.rtw file.

StatesWhenEnabling held or reset. Only written if enable port is present.

TriggerBlock Block index of TriggerPort block in system.

SystemContStates Specified as [N,I] where N is the number of continuous states
and I is the index into the state vector, X.

}

Block Type: Switch (Example of a switch with a threshold of 0).

Parameter {

Name "Threshold"

Value [0]

String "0"

Table A-3: Model.rtw File Contents — Block Specific Records (Continued)
4

model.rtw
StringType "Expression"

}

Block Type: ToFile
The following is an example of a ToFile block configured with a filename of untitled.mat, and a
matrix name of ans. The IWork contains two fields; one is for tracking the number of rows written
(Count) and the other is for determining when to log the data at the input (Decimation).

NumIWorkDefines 2

IWorkDefine {

Name "Count"

Width 1

}

IWorkDefine {

Name "Decimation"

Width 1

}

NumRWorkDefines 1

RWorkDefine {

Name "FilePtr"

}

ParamSettings {

Filename "untitled.mat"

MatrixName "ans"

Decimation 1

Table A-3: Model.rtw File Contents — Block Specific Records (Continued)
A-45

A model.rtw

A-4
}

Block Type: ToWorkspace

ParamSettings {

VariableName Name of variable used to save scope data.

Buffer Maximum number of rows to save or 0 for no limit.

Decimation Data logging interval.

InputContiguous yes or no

}

Block Type: Terminator

Virtual. Not written to model.rtw file.

Block Type: TransferFcn

See Model.rtw File Contents — Linear Block Specific Records on page A-51.

Block Type: TransportDelay (example of a transport delay with a time delay of 1, an initial output
of 0, and an initial buffer size of 1024).

Parameter {

Name "DelayTime"

Value [1]

String "1"

StringType "Expression"

}

ParamSettings {

Table A-3: Model.rtw File Contents — Block Specific Records (Continued)
6

model.rtw
InitialInput [0]

BufferSize [1024]

}

NumIWorkDefines 1

IWorkDefine {

Name "BufferIndices"

Width 4

}

NumPWorkDefines 1

PWorkDefine {

Name "TUbuffer"

Width 2

}

Block Type: TriggerPort

ParamSettings { Only written if the number of output ports is one.

TriggerType This will be one of "rising", "falling", "either", or
"function-call".

}

Block Type: Trigonometry

ParamSettings {

Operator sin, cos, tan, asin, acos, atan, atan2, sinh, cosh, or tanh

}

Table A-3: Model.rtw File Contents — Block Specific Records (Continued)
A-47

A model.rtw

A-4
Block Type: UniformRandomNumber (example of a uniform random number block with minimum of
–1, maximum of 1, initial seed of 0).

Parameter {

Name "Minimum"

Value [–1]

String "–1"

StringType "Expression"

}

Parameter {

Name "MaxMinusMin"

Value [2]

String ""

StringType "Computed"

}

NumIWorkDefines 1

IWorkDefine {

Name "RandSeed"

Width 1

}

NumRWorkDefines 1

RWorkDefine {

Name "NextOutput"

Width 1

Table A-3: Model.rtw File Contents — Block Specific Records (Continued)
8

model.rtw
}

Block Type: UnitDelay (example of a unit delay with an initial condition of 0).

Parameter {

Name "X0"

Value [0]

String "0"

StringType "Expression"

}

Block Type: VariableTransportDelay (example of a variable transport delay with a maximum
delay of 10, an initial input of 0, and a buffer size of 1024).

Parameter {

Name "Maximum"

Value [10]

String "10"

StringType "Expression"

}

ParamSettings {

InitialInput [0]

BufferSize [1024]

}

NumIWorkDefines 1

IWorkDefine {

Table A-3: Model.rtw File Contents — Block Specific Records (Continued)
A-49

A model.rtw

A-5
Name "BufferIndices"

Width 4

}

NumPWorkDefines 1

PWorkDefine {

Name "TUbuffer"

Width 2

}

Block Type: Width

No block specific records.

Block Type: ZeroPole

See Model.rtw File Contents — Linear Block Specific Records on page A-51.

Block Type: ZeroOrderHold

No block specific records.

Table A-3: Model.rtw File Contents — Block Specific Records (Continued)
0

model.rtw
Model.rtw File Contents — Linear Block Specific Records

The following table describes the block specific records written for the Simulink
linear blocks.

Table A-4: Model.rtw File Contents — Linear Block Specific Records

Parameter { Vector of nonzero terms of the A matrix if realization is sparse,
otherwise it is the first row of the A matrix.

Name "Amatrix"

Value Vector that could be of zero length.

String ""

StringType "Computed"

}

Parameter { Vector of nonzero terms of the B matrix.

Name "Bmatrix"

Value Vector that could be of zero length.

String ""

StringType "Computed"

}

Parameter { Vector of nonzero terms of the C matrix if realization is sparse,
else it is the full C 2-D matrix.

Name "Cmatrix"

Value Vector that could be of zero length.

String ""

StringType "Computed"

}

Parameter { Vector of nonzero terms of the D matrix.
A-51

A model.rtw

A-5
Name "Dmatrix"

Value Vector that could be of zero length.

String ""

StringType "Computed"

}

Parameter { Initial condition vector or [].

Name "X0"

Value Vector that could be of zero length.

String ""

StringType "Computed"

}

ParamSettings {

NumNonZeroAInRow Vector of the number of nonzero elements in each row of the A
matrix.

ColIdxOfNonZeroA Column index of the nonzero elements in the A matrix.

NumNonZeroBInRow Vector of the number of nonzero elements in each row of the B
matrix.

ColIdxOfNonZeroB Column index of the nonzero elements in the B matrix.

NumNonZeroCInRow Vector of the number of nonzero elements in each row of the C
matrix.

ColIdxOfNonZeroC Column index of the nonzero elements in the C matrix.

NumNonZeroDInRow Vector of the number of nonzero elements in each row of the D
matrix.

Table A-4: Model.rtw File Contents — Linear Block Specific Records (Continued)
2

model.rtw
ColIdxOfNonZeroD Column index of the nonzero elements in the D matrix.

}

Table A-4: Model.rtw File Contents — Linear Block Specific Records (Continued)
A-53

A model.rtw

A-5
4

B

Target Language Compiler
Error Messages

B Target Language Compiler Error Messages

B-2
This appendix lists and describes error messages generated by the Target
Language Compiler. Use this reference to:

• Confirm that an error has been reported.

• Determine possible causes for an error.

• Determine possible ways to correct an error.

%closefile or %selectfile argument must be a valid open file
When using %closefile or %selectfile, the argument must be a valid file
variable opened with %openfile.

%error directive: text
Code containing the %error directive generates this message. It normally
indicates some condition that the code was unable to handle and displays the
text following the %error directive.

%exit directive: text
Code containing the %exit directive causes this message. It typically indicates
some condition that the code was unable to handle and displays the text
following the %exit directive. Note: This directive causes the Target
Language Compiler to terminate regardless of the –mnumber command line
option.

%trace directive: text
The %trace directive produces this error message and displays the text
following the %trace directive. Trace directives are only reported when the –v
option (verbose mode) appears on the command line. Note: %trace directives
are not considered errors and do not cause the Target Language Compiler to
stop processing.

%warning directive: %s
The %warning directive produces this error message and displays the text
following the %warning directive. Note: %warning directives are not considered
errors and do not cause the Target Language Compiler to stop processing.

A %implements directive must appear within a block template file and
must match the %language and type specified
A block template file was found, but it did not contain a %implements directive.
A %implements directive is required to ensure that the correct language and
type are implemented by this block template file. See “Object-Oriented Facility
for Generating Target Code” in Chapter 2 for more information.
B-3

B Target Language Compiler Error Messages

B-4
A language choice must be made using the %language directive prior to
using GENERATE or GENERATE_TYPE
To use the GENERATE or GENERATE_TYPE built-in functions, the Target Language
Compiler requires that you first specify the language being generated. It does
this to ensure that the block-level target file implements the same language
and type as specified in the %language directive.

Ambiguous reference to identifier - must use array index to refer to one
of multiple scopes
When using a repeated scope identifier from a database file, you must specify
an index in order to disambiguate the reference. For example:

Database file:
block
{

Name "Abc2"
Parameter {

Name "foo"
Value 2

}
}
block
{

Name "Abc3"
Parameter {

Name "foo"
Value 3

}
}

TLC file:
%assign y = block

In this example, the reference to block is ambiguous because multiple repeated
scopes named “block” appear in the database file. Use an index to disambiguate
it, as in

%assign y = block[0]

Argument to identifier must be a string
The following built-in functions expect a string and report this error if the
argument passed is not a string:

Arguments to TLC from the MATLAB command line must be strings
An attempt was made to invoke the Target Language Compiler from MATLAB
and some of the arguments that were passed were not strings.

Assignment to scope identifier is only allowed when using the + operator
to add members
Scope assignment must be scope = scope + variable.

Attempt to define a function identifier on top of an existing variable or
function
The name of a function cannot be defined prior to encountering the definition
of the function.

Attempt to divide by zero
The Target Language Compiler does not allow division by zero.

CAST GENERATE_FILENAME

EXISTS GENERATE_FUNCTION_EXISTS

FILE_EXISTS GENERATE_TYPE

FORMAT IDNUM

GENERATE SYSNAME
B-5

B Target Language Compiler Error Messages

B-6
Bad cast - unable to cast this expression to "type"
The Target Language Compiler does not know how to cast this expression from
its current type to the specified type. For example, the Target Language
Compiler is not able to cast a string to a number as in:

%assign x = "1234"
%assign y = CAST("Number", x);

Cannot convert string string to a number
Cannot convert the string to a number.

Cannot redefine existing symbol identifier (use %undef)
You cannot redefine a macro without using %undef first.

Changing value of identifier from the RTW file
You have overwritten the value that appeared in the RTW file.

Error opening "filename"
The Target Language Compiler could not open the file specified on the
command line.

Errors occurred - aborting
This error message is always the last error to be reported. It occurs when:

• The number of error messages exceeds the error message threshold
(5 by default)

or

• Processing completes and errors have occurred.

Expansion directives %<> cannot span multiple lines; use \ at end of line
An expansion directive cannot span multiple lines. To work around this
restriction, use the \ line continuation character. For example:

%<CompiledModel.System[Sysidx].Block[BlkIdx].Name +
"Hello">

is illegal, whereas:

%<CompiledModel.System[Sysidx].Block[BlkIdx].Name + \
"Hello">

is correct.

Extra arguments to the function-name built-in function were ignored
(Warning)
The following built-in functions report this warning when too many arguments
are passed to them:

format is not a legal format value
The specified format was not legal for the %realformat directive. Valid format
strings are "EXPONENTIAL" and "CONCISE".

Function argument mismatch; function function-name expects number
arguments
When calling a function, too many arguments were passed to it.

CAST NUMTLCFILES

EXISTS OUTPUT_LINES

FILE_EXISTS SIZE

FORMAT STRING

GENERATE_FILENAME STRINGOF

GENERATE_FUNCTION_EXISTS SYSNAME

IDNUM TLCFILES

ISFINITE TYPE

ISINF WHITE_SPACE

ISNAN WILL_ROLL
B-7

B Target Language Compiler Error Messages

B-8
Function reached the end and did not return a value
Functions that are not declared as void or Output must return a value. If a
return value is not desired, declare the function as void, otherwise ensure that
it always returns a value.

Identifier identifier used on a %foreach statement was already in scope
(Warning)
The argument to a %foreach statement cannot be defined prior to entering the
%foreach.

Incorrect number of arguments to a macro (number expected)
When invoking a function-like macro, too many arguments were passed to it.
The extra arguments were ignored.

Indices must be constant integral numbers
An index used in a [] expression must be an integral number.

Invalid type for unary operator
This error occurs for the following operators under the given conditions:

Operator Reason for error

! Operand to the logical not operator (!) must be a Number,
Real, or Boolean.

- Operand to the unary negation operator (-) must be a
Number or Real.

+ Operand to the unary plus operator (+) must be a Number
or Real.

~ Operand to the bitwise negation operator (~) must be a
Number.

It is illegal to return functions or macros from a function
A function or macro value cannot be returned from a function call.

Named value identifier already exists within this scope-identifier; use
%assign to change the value
You cannot use the block addition operator + to add a value that is already a
member of the indicated block. Use %assign to change the value of an existing
value. This example produces this error:

%assign x = BLK { a 1; b 2 }
%assign a = 3
%assign x = x + a

Only macros, function calls, and built-in functions can be used with the
function call syntax ()
The function call syntax () can only be used with functions. This error means
that you attempted to call a nonfunction. For example:

%assign x = 1
%assign y = x(1)

This code produces this error because you cannot use the function call syntax
for nonfunction variables.

Only one output is allowed from the TLC
An attempt was made to receive multiple outputs from the MATLAB version of
the Target Language Compiler.

Only strings of length 1 can be assigned using the [] notation
The right-hand side of a string assignment using the [] operator must be a
string of length 1. You can only replace a single character using this notation.

Only vectors of the same length as the existing vector value can be
assigned using the [] notation
When using the [] notation to replace a row of a matrix, the row must be a
vector of the same length as the existing rows.
B-9

B Target Language Compiler Error Messages

B-1
Output file identifier opened with %openfile was not closed
Output files opened with %openfile must be closed with %closefile.
identifier is the name of the variable specified in the %openfile directive.

Syntax error
The indicated line contains a syntax error, See Chapter 2, “Working with the
Target Language,” for information on the syntax.

Syntax error detected in EXISTS function called with "string"
The EXISTS function parses and evaluates the string passed to it. The function
reports this error when it is unable to parse the input string successfully. To
better diagnose the error, you can try to define the symbol and then type the
identical expression inside an expansion directive. For example:

%if EXISTS("x[100].y")
%% If this fails, try
%<x[100].y>
%% In order to receive a better diagnosis of the problem.

The %break directive can only appear within a %foreach, %for, %roll, or
%switch statement
The %break directive can only be used in a %foreach, %for, %roll, or %switch
statement.

The %case and %default directives can only be used within the %switch
statement
A %case or %default directive can only appear within a %switch statement.

The %codeblock, %endcodeblock, and %generate directives are obsolete;
use %function and %<GENERATE() instead.
All of the directives listed here are obsolete; use %<GENERATE()> instead.
0

The %continue directive can only appear within a %foreach, %for, or %roll
statement
The %continue directive can only be used in a %foreach, %for, or %roll
statement.

The %foreach statement expects a constant numeric argument
The argument of a %foreach must be a numeric type. For example:

%foreach Index = [1 2 3 4]
…
%endforeach

%foreach cannot accept a vector as input.

The %if statement expects a constant numeric argument
The argument of a %if must be a numeric type. For example:

%if [1 2 3]
…
%endif

%if cannot accept a vector as input.

The %implements directive expects a string or string vector as the list of
languages
You can use the %implements directive to specify a string for the language
being implemented, or to indicate that it implements multiple languages by
using a vector of strings. You cannot specify any other argument type to the
%implements directive.

The %implements directive specifies type as the type where type was
expected
The type specified in the %implements directive must exactly match the type
specified in the block or on the GENERATE_TYPE directive. If you want to specify
that the block accept multiple input types, use the %implements * directive, as
in:

%implements * "C" %% I accept any type and generate C code
B-11

B Target Language Compiler Error Messages

B-1
The %implements language does not match the language currently being
generated (language)
The language or languages specified in the %implements directive must exactly
match the %language directive.

The %return statement can only appear within the body of a function
A %return statement can only be in the body of a function.

The :: operator can only be used within a function (Warning)
The :: operator (used to specify global scope within a function) should not be
used outside of a function body.

The == and != operators can only be used to compare values of the same
type
The == and != operator arguments must be the same type. You can use the
CAST() built-in function to change them into the same type.

The argument for %openfile must be a valid string
When opening an output file, the name of the file must be a valid string.

The argument for %with must be a valid scope
The argument to %with must be a valid scope identifier. For example:

%assign x = 1
%with x
…
%endwith

In this code, the %with statement argument is a number and produces this
error message.

The argument for an [] operation must be a repeated scope symbol, a
vector, or a matrix
When using the [] operator to index, the expression on the left of the brackets
must be a vector, matrix, string, numeric constant, or a repeated scope
2

identifier. When using array indexing on a scalar, the constant is automatically
scalar expanded and the value of the scalar is returned. For example:

%openfile x
%assign y = x[0]

This example would cause this error because x is a file and is not valid for
indexing.

The argument to %include must be a valid string
The argument to the input file control directive must be a valid string.

The begin directive must be in the same file as the corresponding end
directive.
These Target Language Compiler begin directives must appear in the same file
as their corresponding end directives: %function, %switch, %foreach, %roll,
and %for. Place the construct entirely within one Target Language Compiler
source file.

The begin directive on this line has no matching end directive
For block-scoped directives, this error is produced if there is no matching end
directive. This error can occur for the following block-scoped Target Language
Compiler directives:

Begin
Directive

End
Directive

Description

%if %endif Conditional inclusion (page 2-18)

%foreach %endforeach Looping (page 2-19)

%roll %endroll Loop Rolling (page 2-22)

%with %endwith Scoping directive (page 2-41)

%switch %endswitch Switch directive (page 2-18)

%function %endfunction Function declaration directive
(page 2-44)
B-13

B Target Language Compiler Error Messages

B-1
The error is reported on the line that opens the scope and has no matching end
scope.

Note: Nested scopes must be closed before their parent scopes. Failure to
include an end for a nested scope often causes this error, as in:

%if Block.Name == "Sin 3"
%foreach idx = Block.Width

%endif %% Error reported here that the %foreach was not terminated

The directive block that begins on this line has no corresponding end
This error message indicates that a block-scoped directive (%if, %with,
%foreach, %for, %roll, %function, or %switch) had no corresponding end
directive (%endif, %endwith, %endforeach, %endfor, %endroll, %endfunction
or %endswitch). Note: You must end blocks in the Target Language Compiler
in the same order that you begin them. The most common cause of this error is
improperly nested constructs, for example:

%if x == 3
 %with scope %% Error on this line
%endif
%endwith

The FEVAL() function can accept only 2-dimensional arrays from MATLAB,
not identifier dimensions
Return values from MATLAB can have at most two dimensions.

The FEVAL() function can accept vectors of numbers or strings only when
calling MATLAB
Vectors passed to MATLAB can be numbers or strings.

The FEVAL() function requires the name of a function to call
FEVAL requires a function to call. This error only appears inside MATLAB.
4

The final argument to %roll must be a valid block scope
When using %roll, the final argument (prior to extra user-specified
arguments) must be a valid block scope. See Chapter 2 for a complete
discussion of the %roll construct.

The first argument of a ? : operator must be a Boolean expression
The ? : operator must have a Boolean expression as its first operand.

The first argument to GENERATE or GENERATE_TYPE must be a valid scope
When calling GENERATE or GENERATE_TYPE, the first argument must be a valid
scope. See “GENERATE and GENERATE_TYPE Functions” on page 2-25 for
more information and examples.

The GENERATE function requires at least two arguments
When calling the GENERATE built-in function, the first two arguments must be
the block and the name of the function to call.

The GENERATE_TYPE function requires at least three arguments
When calling the GENERATE_TYPE built-in function, the first three arguments
must be the block, the name of the function to call, and the type.

The ISINF(), ISNAN(), and ISFINITE() functions expect a real valued
argument
These functions expect a Real as the input argument.

The language being implemented cannot be changed within a block
template file
You cannot change the language using the %language directive within a block
template file.
B-15

B Target Language Compiler Error Messages

B-1
The language being implemented has changed from old-language to
new-language (Warning)
The language being implemented should not be changed in midstream because
GENERATE function calls that appear prior to the %language directive may cause
generate functions to load for the prior language. Only one language directive
should appear in a given file.

The left-hand side of a . operator must be a valid scope identifier
When using the . operator, the left-hand side of the . operator must be a valid
in-scope identifier. For example:

%assign x = 1
%assign y = x.y

In this code, the reference to x.y produces this error message because x is not
defined as a scope.

The left-hand side of an assignment must be a simple expression com-
prised of ., [], and identifiers
Illegal left-hand side of assignment.

The number of columns specified (specified-columns) did not match the
actual number of columns in all of the rows (actual-columns)
When specifying a Target Language Compiler matrix, the number of columns
specified did not match the actual number of columns in the matrix. For
example:

%assign mat = Matrix(2,1) [[1 2] [2 3]]

In this case, the number of columns in the declaration of the matrix (1) did not
match the number of rows seen in the matrix (2). Either change the number of
rows in the matrix, or change the matrix declaration.
6

The number of rows specified (specified-rows) did not match the actual
number of rows seen in the matrix (actual-rows)
When specifying a Target Language Compiler matrix, the number of rows
specified did not match the actual number of rows in the matrix. For example:

%assign mat = Matrix(1,2) [[1 2] [2 3]]

In this case, the number of rows in the declaration of the matrix (i.e., 1) did not
match the number of rows seen in the matrix (i.e., 2). Either change the
number of rows in the matrix, or change the matrix declaration.

The operator operator only works on numeric arguments
The arguments to the following operators both must be either Number or Real:
<, <=, >, >=, +, –, *, /. In addition, the FORMAT built-in function expects either a
Number or Real argument.

The operator operator only works on integral arguments
The &, ^, |, <<, >> and % operators only work on numbers.

The operator operator only works on Boolean arguments
The && and || operators work on Boolean values only.

The return value from the RollHeader function must be a string
When using %roll, the RollHeader() function specified in Roller.tlc must
return a string value. See Chapter 2 for a complete discussion of the %roll
construct.

The roll argument to %roll must be a nonempty vector of numbers or
ranges
When using %roll, the roll vector cannot be empty and must contain
Numbers or Ranges of Numbers. See Chapter 2 for a complete discussion of the
%roll construct.
B-17

B Target Language Compiler Error Messages

B-1
The specified index (index) was out of the range
0 to number-of-elements – 1
This error occurs when indexing into any nonscalar beyond the end of the
variable. For example:

%assign x = [1 2 3]
%assign y = x[3]

This example would cause this error. Remember, in the Target Language
Compiler, array indices start at 0 and go to the number of elements minus 1.

The STRINGOF built-in function expects a vector of numbers as its
argument
The STRINGOF function expects a vector of numbers. The function treats each
number as the ASCII value of a valid character.

The SYSNAME built-in function expects an input string of the form
<xxx>/yyy
The SYSNAME function takes a single string of the form <xxx>/yyy as it appears
in the .rtw file and returns a vector of two strings xxx and yyy. If the input
argument does not match this format, it returns this error.

The threshold on a %roll statement must be a single number
When using %roll, the roll threshold specified must be a single number. See
Chapter 2 for a complete discussion of the %roll construct.

The WILL_ROLL built in function expects a range vector and an integer
threshold
The WILL_ROLL function expects two arguments: a range vector and a
threshold.
8

There was no type associated with the given block for GENERATE
The scope specified to GENERATE must include a Type parameter that indicates
which template file should be used to generate code for the specified scope. For
example:

%assign scope = block { Name "foo" }
%<GENERATE(scope, "Output")>

This example produces the error message because the scope does not include
the parameter Type. See page 2-25 for more information and examples on using
the GENERATE built-in function.

Unable to find identifier within the scope-identifier scope
The given identifier was not found in the scope specified. For example:

%assign scope = ascope { x 5 }
%assign y = scope.y

In this code, the reference to scope.y produces this error message.

Unable to open %include file filename
The file included in a %include directive was not found on the path. Either
locate the file and use the –I command line option to specify the correct
directory, or move the file to a location on the current path.

Unable to open block template file filename from GENERATE or
GENERATE_TYPE
When using GENERATE, the given filename was not found on the Target
Language Compiler path. You may:

• Add the file into a directory on the path.

• Use the %generatefile directive to specify an alternative filename for this
block type that is on the path.

• Add the directory in which this file appears to the command line options
using the –I switch.
B-19

B Target Language Compiler Error Messages

B-2
Unable to open output file filename
Unable to open the specified output file; either an invalid filename was
specified or the file was read only.

Undefined identifier identifier
The identifier specified in this expression was undefined.

Unknown type "type" in CAST expression
When calling the CAST built-in function, the type must be one of the valid
Target Language Compiler types found in the Target Language Values table
on pages 2-10 through 2-13.

Unrecognized directive "directive-name" seen
An illegal % directive was encountered. The valid directives are:

Table B-1: Valid Directives

%assign %for

%break %foreach

%case %function

%closefile %generatefile

%continue %if

%default %implements

%define %include

%else %language

%elseif %openfile

%endbody %realformat

%endfor %return

%endforeach %roll

%endfunction %selectfile
0

Unrecognized type "output-type" for function
The function type modifier was not Output or void. For functions that do not
produce output, the default without a type modifier indicates that the function
should produce no output.

Unterminated string
A string must be closed prior to the end of an expansion directive or the end of
a line.

%endif %switch

%endroll %trace

%endswitch %undef

%endwith %warning

%error %with

%exit

Table B-1: Valid Directives (Continued)
B-21

B Target Language Compiler Error Messages

B-2
Usage: tlc [options] file

A command line problem has occurred. The error message contains a list of all
of the available options.

Value of type type cannot be compared
The specified type (i.e., scope) cannot be compared.

Values of type type cannot be expanded
The specified type cannot be used on an expansion directive. Files and scopes
cannot be expanded.

Message Description

–r <name> Specify the Real-Time Workshop file to read.

–v[N] Specify the verbose level to be N (1 by
default).

–I<path> Specify a search path to look for %include
and %generate files.

–m[N|a] Specify the maximum number of errors (a is
all) default is 5.

–O<path> Specify the path used to create output files.

–d[g|n|o] Specify debug mode (generate, normal, or
off).

–a<ident>=<expression> Assign a variable to a specified value.
2

When appending to a buffer stream, the variable must be a string
You can specify the append option for a buffer stream only if the variable
currently exists as a string. Do not use the append option if the variable does
not exist or is not a string. This example produces this error:

%assign x = 1
%openfile x , "a"
%closefile x
B-23

B Target Language Compiler Error Messages

B-2
4

blkiolib.tlc Error Messages C-3

blocklib.tlc Error Messages C-4

hookslib.tlc Error Messages C-5

paramlib.tlc Error Messages C-7

rolllib.tlc Error Messages C-8

utillib.tlc Error Messages C-11
C

Target Language Compiler
Library Error Messages

C Target Language Compiler Library Error Messages

C-2
This appendix lists and describes error messages that may be generated when
working with the Target Language Compiler libraries. In this appendix, the
error messages are grouped by the libraries because they are reported by
library. For example, this error message is generated by the rolllib.tlc
library.

rolllib.tlc:345: There are no modes to roll in ?? block: test1

Each error message contains three components:

• Error message text

• Function(s) that generates the error message (in parentheses)

• Description of the error message

blkiolib.tlc Error Messages
blkiolib.tlc Error Messages

Invalid map source (mappingSource) specified for Type block: Name
(LibMapSignalSource) Real-Time Workshop does not generate a mapping
matrix for the specified source. Valid map sources are:

Invalid port number (portNum) specified for Type block: Name
(LibDataOutputPortWidth, LibDataInputPortWidth) The specified output
port does not exist for this block.

Map Source Description

U External inputs map

X States map

B Block I/O map

G Ground
C-3

C Target Language Compiler Library Error Messages

C-4
blocklib.tlc Error Messages

Don't know how to roll IWork for Type block: Name
(LibBlockIWork) In order to roll a block’s IWork it must first be defined with
LibDefineIWork.

Don't know how to roll PWork for Type block: Name
(LibBlockPWork) In order to roll a block’s PWork it must first be defined with
LibDefinePWork.

Don't know how to roll RWork for Type block: Name
(LibBlockRWork) In order to roll a block’s RWork it must first be defined with
LibDefineRWork.

Invalid control port (id) specified for Type block: Name
(LibControlPortIndexNumber) Valid IDs are enable, trigger, and
function-call.

hookslib.tlc Error Messages
hookslib.tlc Error Messages

Add root initialization code with LibMdlStartCustomCode
(LibSystemInitializeCustomCode) The root system initialization function is
MdlStart. Therefore, use LibMdlStartCustomCode for placement of root system
initialization code.

Invalid location: location
(LibHeaderFileCustomCode, LibPrmFileCustomCode,
LibRegFileCustomCode, LibMdlStartFcnCustomCode,
LibMdlTerminateCustomCode, LibRegFcnCustomCode,
LibSystemInitializeCustomCode, LibSystemOutputCustomCode,
LibSystemUpdateCustomCode, LibSystemDerivativeCustomCode,
LibSystemEnableCustomCode, LibSystemEnableCustomCode)
Valid locations for code placement:
header
trailer

Invalid location: location
(LibSourceFileCustomCode)
Valid locations for code placement:
header

System system.Name does not have Derivatives function
(LibSourceFileCustomCode) The subsystem’s derivative function is eliminated
if there are no residing states.
C-5

C Target Language Compiler Library Error Messages

C-6
System system.Name does not have Disable function
(LibSystemDisableCustomCode) The subsystems types that have a disable
function are:
Purely enable subsystems
Enable with trigger subsystems

The system types that do not have a disable function are:
Function-call
Trigger
Root

System system.Name does not have Enable function
(LibSystemEnableCustomCode) The subsystems types that have an enable
function are:
Purely enable subsystems
Enable with trigger subsystems

The system types that do not have an enable function are:
Function-call
Trigger
Root

paramlib.tlc Error Messages
paramlib.tlc Error Messages

Loop rolling not supported for param.Name in Type block Name
(LibBlockMatrixParamter, LibBlockMatrixParameterAddr) Loop rolling of
matrix parameters is not supported. The arguments are passed into this
routine as protection for future support of this feature.

Parameter param.Name must be of type Matrix
(LibBlockMatrixParamter, LibBlockMatrixParameterAddr) This routine only
works for matrix parameters. Use LibBlockParameter to access a vector or
scalar block parameter.

Type block Name must access param.Name via
LibBlockMatrixParameter
(LibBlockParameter) This routine does not work for matrix parameters. Use
LibBlockMatrixParamter when accessing a block’s matrix parameter.

Type block Name must access param.Name via
LibBlockMatrixParameterAddr
(LibBlockParameterAddr) This routine does not work for matrix parameters.
Use LibBlockMatrixParamterAddr when accessing a block’s matrix
parameter.
C-7

C Target Language Compiler Library Error Messages

C-8
rolllib.tlc Error Messages

1-- The inputs for Type block Name are not rollable, or do not exist
(LibDeclareRollVariables) The variable rollVars contains U (declare all
inputs), but the block does not have any inputs to declare.

2-- uuIdx for Type block Name is not rollable, or does not exist
(LibDeclareRollVariables) The variable rollVars contains ui (declare input
i), but input i does not exist.

3-- The outputs for Type block Name are not rollable
(LibDeclareRollVariables) The variable rollVars contains Y (declare all
outputs), but the block does not have any outputs to declare. The Outport block
is the only block that is allowed to do this.

4-- yyIdx for Type block Name is not rollable
(LibDeclareRollVariables) The variable rollVars contains yi (declare
output i), but the block does not have any outputs to declare. The Outport block
is the only block that is allowed to do this.

5-- There are no discrete states to roll in Type block: Name
(LibDeclareRollVariables) The variable rollVars contains xd or Xd (declare
discrete states), but the block does not have any discrete states to declare.

6-- There are no continuous states to roll in Type block: Name
(LibDeclareRollVariables) The variable rollVars contains xc or Xc (declare
continuous states), but the block does not have any continuous states to
declare.

7-- There are no parameters to roll in Type block: Name
(LibDeclareRollVariables) The variable rollVars contains P (declare all
parameters), but the block does not have any parameters to declare.

rolllib.tlc Error Messages
8-- Unable to declare roll variable p_name for Type block Name
(LibDeclareRollVariables) The variable rollVars contains <param>/p
(declare parameter p), but p is not a valid block parameter.

9-- Unable to roll RWork for Type block Name. RWork must be defined
(LibDeclareRollVariables) The variable rollVars contains RWork (declare all
real-work), but the block does not have any real-work to declare.

10-- Unable to declare roll variable rw_name for Type block Name
(LibDeclareRollVariables) The variable rollVars contains <rwork>/r
(declare real-work r), but r is not a valid real-work name.

11-- Unable to roll IWork for Type block Name. IWork must be defined
(LibDeclareRollVariables) The variable rollVars contains IWork (declare all
integer-work), but the block does not have any integer-work to declare.

12-- Unable to declare roll variable iw_name for Type block Name
(LibDeclareRollVariables) The variable rollVars contains <iwork>/i
(declare integer-work i), but i is not a valid integer-work name.

13-- Unable to roll PWork for Type block Name. PWork must be defined
(LibDeclareRollVariables) The variable rollVars contains PWork (declare all
pointer-work), but the block does not have any pointer-work to declare.

14-- Unable to declare roll variable pw_name for Type block Name
(LibDeclareRollVariables) The variable rollVars contains <pwork>/p
(declare pointer-work p), but p is not a valid pointer-work name.

15-- There are no modes to roll in Type block: Name
(LibDeclareRollVariables) The variable rollVars contains Mode (declare
block modes), but the block does not have a modes vector to declare.
C-9

C Target Language Compiler Library Error Messages

C-1
16-- There are no previous zero-crossings to roll in Type block: Name
(LibDeclareRollVariables) The variable rollVars contains PZC (declare
block previous zero-crossing vector), but the block does not have a zero-crossing
vector to declare.

17-- There are no data store memory values to roll in Type block: Name
(LibDeclareRollVariables) The variable rollVars contains DSM (declare data
store memory variables), but the block does not have any data store memory
variables to declare.

18-- Unknown roll variable (rollVarArg) specified by Type block: Name
(LibDeclareRollVariables) The rollVars argument is not recognized.
0

utillib.tlc Error Messages
utillib.tlc Error Messages

Invalid matrix size (nRows x nCols) for Type block: Name
(LibOptionalMatrixWidth) Either nRows or nCols is less than 1.

Invalid vector length (length) specified for Type block: Name
(LibOptionalVectorWidth) The value of length is less than 1.

Invalid zc direction (direction) specified for Type block: Name
(LibConvertZCDirection) RTW zero-crossings are either Rising, Falling, or
Any. An unrecognized zero-crossing was specified.
C-11

C Target Language Compiler Library Error Messages

C-1
2

Index
Symbols
! 2-14
% 2-6, 2-13
... character 2-9
.c file 1-3
.h file 1-3
.log 2-51
.prm file 1-3
.reg file 1-3
.rtw file 1-3, 2-29

structure 2-3
.tlc files 1-11
\ character 2-9

A
%addincludepath 2-28
architecture 3-6
array index 2-14
%assign 2-37, 3-9

defining parameters 1-10

B
block

customizing Simulink 2-24
Disable 3-17
Enable 3-17

block function 3-7
InitializeConditions 3-18
Start 3-18

block I/O data structure 3-22
block mode 4-7
block target file 1-3, 1-11, 3-7

function in 3-10
writing 3-15

BlockInstanceSetup 3-15
block-scoped variable 2-41
BlockTypeSetup 3-16
%body 2-20
Boolean 2-10
%break 2-19, 2-20
%continue 2-19
buffer

close 2-27
writing 2-27

built-in functions 2-29

C
C MEX S-function 1-3
%case 2-19
CAST 2-30
%closefile 2-27
code

intermediate 1-10
coding conventions 3-8
comment

target language 2-8
CompiledModel 2-5
compiler

Target Language (TLC) 1-2
conditional inclusion 2-18
conditional operator 2-13
configurable RTW variables 3-40
constant

integer 2-13
string 2-13

continuation
line 2-9

%continue 2-20
I-1

Index

I-2
customizing
code generation 1-10
Simulink block 2-24

D
debug

message 2-29
mode 2-51

%default 2-19
%define 2-37
Derivatives 3-19
directive 1-10, 2-6

object-oriented 2-24
splitting 2-9

Disable 3-17
dynamic scoping 2-42

E
%else 2-18
%elseif 2-18
Enable 3-17
%endbody 2-20
%endfor 2-20
%endforeach 2-19
%endfunction 2-44
%endif 2-18
%endswitch 2-19
%endwith 2-41
%error 2-29
error message 2-29

library C-2
Target Language Compiler B-2

EXISTS 2-30, 3-30
%exit 2-29
expressions 2-13
operators in 2-13
precedence 2-13

F
FEVAL 2-30
File 2-10
file

.c 1-3

.h 1-3

.prm 1-3

.reg 1-3

.rtw 1-3
appending 2-27
block target 1-3, 1-11
close 2-27
funclib.tlc 3-20
header 3-6
inline 2-28
library 3-9
model description. See model.rtw
model-wide 1-2
parameter 3-6
registration 3-6
size threshold 3-6
source code 3-6
system target 1-10, 1-11
target 1-2, 1-10
target language 1-10
used to customize code 1-10
writing 2-27

FILE_EXISTS 2-30
FileSizeThreshold 3-40
%for 2-20
%foreach 2-19, 3-47
FORMAT 2-31

Index
formatting 2-17
Function 2-10
%function 2-44
function

built-in TLC 3-30
C MEX S-function 1-3
call 2-14
GENERATE 2-25
GENERATE_TYPE 2-25
global 1-11
library 3-9, 3-13
local 1-11
output 2-45, 3-17
scope 2-44
target language 2-44
Target Language Compiler 2-29–2-35

function library reference 4-1–4-61

G
GENERATE 2-25, 2-31
GENERATE_FILENAME 2-31
GENERATE_FUNCTION_EXISTS 2-31
GENERATE_TYPE 2-25, 2-31, 2-32
%generatefile 2-24
global function 1-11
grt.tlc 1-8, 1-11, 3-6

I
identifier 3-8

changing 2-37
defining 2-37

IDNUM 2-32
%if %endif 2-18
%implements 2-24
%include 2-28

inclusion
conditional 2-18
multiple 2-19

index 2-14
Initialize 3-18
InitializeConditions 3-18
InlineParameters 3-40
inlining S-function 3-31
input file control 2-28
Inputs 3-48
integer constant 2-13
intermediate code 1-10
IWork 3-48, 4-4

L
%language 2-24
LibBlockFunctionExists 4-2
LibBlockInputSignal 3-23, 4-3
LibBlockIWork 3-26, 4-4
LibBlockMatrixParameter 3-24, 3-42, 4-6
LibBlockMatrixParameterAddr 3-42, 4-5
LibBlockMode 3-25, 4-7
LibBlockOutportLocation 3-29, 4-8
LibBlockOutputSignal 3-22, 4-10
LibBlockParameter 3-23, 4-11
LibBlockParameterAddr 3-24, 3-25, 4-13
LibBlockPWork 3-26, 4-14
LibBlockRWork 3-26, 4-15
LibBlockSrcSignalIsDiscrete 4-16
LibCacheDefine 3-22, 4-17
LibCacheFunctionPrototype 3-21, 4-18
LibCacheGlobalPrmData 4-19
LibCacheInclude 4-20
LibCacheNonFiniteAssignment 3-29, 4-21
LibContinuousState 3-25, 4-22
LibControlPortInputSignal 4-23
I-3

Index

I-4
LibConvertZCDirection 4-24
LibDataInputPortWidth 3-22, 4-25
LibDataOutputPortWidth 3-22, 4-26
LibDataStoreMemory 3-26, 4-27
LibDeclareRollVariables 4-28
LibDefineIWork 3-21, 4-30
LibDefinePWork 3-21, 4-31
LibDefineRWork 3-21, 4-32
LibDiscreteState 3-25, 4-33
LibExternalResetSignal 4-34
LibHeaderFileCustomCode 4-35
LibIndexStruct 4-36
LibIsDiscrete 3-22, 4-37
LibIsEmpty 4-38
LibIsEqual 4-39
LibIsFinite 3-26, 4-40
LibMapSignalSource 4-41
LibMaxBlockIOWidth 4-42
LibMaxDataInputPortWidth 4-43
LibMaxDataOutputPortWidth 4-44
LibMdlStartFcnCustomCode 4-46
LibMdlTerminateCustomCode 4-47
LibOptionalMatrixWidth 4-48
LibOptionalVectorWidth 4-49
LibPathName 3-26, 4-50
LibPrevZCState 3-26, 4-51
LibPrmFileCustomCode 4-52
library file 3-9
library function 3-9
LibRegFcnCustomCode 4-45
LibRegFileCustomCode 4-53
LibRenameParameter 3-27, 4-54
LibSourceFileCustomCode 4-55
LibSystemDerivativeCustomCode 4-56
LibSystemDisableCustomCode 4-57
LibSystemEnableCustomCode 4-58
LibSystemInitializeCustomCode 4-59
LibSystemOutputCustomCode 4-60
LibSystemUpdateCustomCode 4-61
local function 1-11
loop rolling 3-44

threshold 3-40

M
Macro 2-10
macro

defining 2-37
expansion 2-14

makefile
template 1-2

MatFileLogging 3-40
matrices

MATLAB 3-41
RTW 3-41
S-function 3-41

Matrix 2-11
matrix parameter

address 4-5
matSize 3-42
mdlbody.tlc 1-11, 3-6
MdlDerivatives

Derivatives 3-19
mdlDerivatives (S-function) 3-31
mdlhdr.tlc 1-11, 3-6
mdlInitializeConditions 3-31
mdlInitializeSampleTimes 3-31
mdlInitializeSizes 3-31
MdlOutputs

Outputs 3-18
mdlOutputs (S-function) 3-31
mdlparam.tlc 1-11, 3-6
mdlreg.tlc 1-11, 3-6

Index
MdlStart

InitializeConditions 3-18
Start 3-18

MdlTerminate

Terminate 3-19
mdlTerminate (S-function) 3-31
MdlUpdate

Update 3-19
mdlUpdate (S-function) 3-31
mdlwide.tlc 1-11, 3-6, 3-10

variables 3-10
Mode 3-48
model description file. See model.rtw
model.c 3-40
model.rtw file 1-2

parameter-value pair 2-3
record 2-3
scope 2-5
structure 2-3

ModelSignalInfo 3-40
model-wide file 1-2
modifier

Output 2-45
void 2-45

monitor signal 3-40
multiple inclusion 2-19

N
negation operator 2-14
nested function

scope within 2-48
NULL_FILE 2-32
Number 2-11
NUMTLCFILES 2-32

O
object-oriented directive 2-24
%openfile 2-27
operations

precedence 2-14
operator

- 2-15
– 2-16
!= 2-16
% 2-15
& 2-16
&& 2-17
() 2-14
* 2-15
+ 2-15
, 2-17
. 2-14
/ 2-15
:: 2-14, 2-38, 3-9
< 2-16
<< 2-16
<= 2-16
== 2-16
> 2-16
>= 2-16
>> 2-16
? : 2-17
^ 2-16
| 2-16
|| 2-17
~ 2-15
conditional 2-13
negation 2-14

operators 2-13
outports 3-40
output file control 2-27
Output modifier 2-45
I-5

Index

I-6
OUTPUT_LINES 2-32
Outputs 3-18, 3-48

P
parameter

defining 1-10
inlining 3-40
value pair 2-3

Parameters 3-48
path

specifying absolute 2-28
specifying relative 2-28

port index
input 3-22
output 3-22

precedence
expressions 2-13
operations 2-14

Previous Zero-Crossing 3-48
program 1-10
PWork 3-48

R
Range 2-11
Real 2-11
%realformat 2-17
Real-Time Workshop 1-2

generate code 3-6
record 2-3
resolving variables 2-42
%return 2-44, 2-49
%roll 2-22, 3-40, 3-47
RollRegion 3-45
RollThreshold 3-40, 3-45
rollVars 3-47
rt 3-10
rt_ 3-10
RTW

identifier 3-8
RWork 3-48

S
Scope 2-11
scope 2-41

accessing values in 2-5
close 2-5
closing 2-49
dynamic 2-42
function 2-14, 2-44
model.rtw file 2-5
open 2-5
within function 2-44, 2-46

scopes 3-40
search path 2-51

adding to 2-28
overriding 2-51
sequence 2-28
specifying absolute 2-28
specifying relative 2-28

%selectfile 2-27
S-function

C MEX 1-3
inlining 3-31
matrices 3-41
user-defined 3-19

short-circuit evaluation 2-13
signal

monitor 3-40

Index
Simulink
and Real-Time Workshop 1-2
block parameters 3-41
generating code 1-3

SIZE 2-33, 3-30
Special 2-11
STAND_ALONE 2-33
Start 3-18
STDOUT 2-33
STRING 2-33
String 2-12
string constant 2-13
STRINGOF 2-34, 3-30
substitution

textual 2-13
Subsystem 2-12
%switch 2-19
syntax 2-6
SYS_NAME 2-34
system target file 1-10, 1-11, 3-6

T
target file 1-2, 1-10

and customizing code 1-10
block 1-11, 3-7
naming 2-51
necessary block functions 3-20
system 1-10, 1-11, 3-6

target language
comment 2-8
directive 1-10, 2-6
expression 2-13–2-17
file 2-6
formatting 2-17
function 2-44
line continuation 2-9

program 1-10
syntax 2-6
value 2-10–2-12

Target Language Compiler
architecture 3-6
built-in functions 3-30
command line arguments 2-50
directives 2-6–2-8
error messages B-2
function library 3-13
generating code 1-8
introducing 1-2
library error messages C-2
matrices 3-41
switches 2-50
uses of 2-2
variables 3-10

template makefile 1-2
Terminate 3-19
textual substitution 2-13
TLC program 1-10
TLC_TIME 2-34
TLC_VERSION 2-34
TLCFILES 2-34
to_workspace 3-40
%trace 2-29
tracing 2-29
TYPE 2-35

U
%undef 2-37
Update 3-19
I-7

Index

I-8
V
values 2-10
variables

block-scoped 2-41
global 3-9
local 3-9
RTW 3-40

Vector 2-12
void modifier 2-45

W
%warning 2-29
warning message 2-29
WHITE_SPACE 2-35
WILL_ROLL 2-35
%with 2-41

Z
zero-crossing

reset code 3-18

	Using the Target Language Compiler with Real-Time ...
	Using the Target Language Compiler
	Introduction
	A Basic Example

	Files
	Target Files
	System Target Files
	Block Target Files

	Where to Go from Here

	Working with the Target Language
	Why Use the Target Language Compiler?
	The model.rtw File
	Compiler Directives
	Syntax
	Comments
	Line Continuation
	Target Language Values
	Target Language Expressions
	Formatting
	Conditional Inclusion
	%if
	%switch

	Multiple Inclusion
	%foreach
	%for
	%roll
	RollHeader(block, …)
	LoopHeader(block, StartIdx, Niterations, Nrolled, ...
	LoopTrailer(block, Startidx, Niterations, Nrolled,...
	RollTrailer(block, …)

	Object-Oriented Facility for Generating Target Cod...
	GENERATE and GENERATE_TYPE Functions

	Output File Control
	Input File Control
	Errors, Warnings, and Debug Messages
	Built-In Functions and Values
	FEVAL Function

	Macro Definition
	Identifier Definition
	Creating Records
	Adding Parameters to an Existing Record

	Scoping
	Variable Scoping

	Target Language Functions
	Variable Scoping Within Functions
	%return

	Target Language Compiler
	Command Line Arguments
	Filenames and Search Paths
	Target Language Debug Mode

	Writing Target Language Files
	A Basic Example
	Process

	Target Language Compiler Architecture
	System Target Files
	Block Functions

	Coding Conventions
	Writing a Block Target File
	TLC Block Setup Functions
	BlockInstanceSetup(block, system)
	BlockTypeSetup(block, system)

	TLC Output Block Functions
	Enable(block, system)
	Disable(block, system)
	Start(block, system)
	InitializeConditions(block, system)
	Outputs(block, system)
	Update(block, system)
	Derivatives(block, system)
	Terminate(block, system)

	The RTW TLC Function Library
	LibDefineRWork(block, name, width)
	LibDefineIWork(block, name, width)
	LibDefinePWork(block, name, width)
	LibCacheFunctionPrototype(buffer)
	LibCacheDefine(buffer)
	LibIsDiscrete(tid)
	LibDataOutputPortWidth(portIdx)
	LibDataInputPortWidth(portIdx)
	LibBlockOutputSignal(portIdx, ucv, lcv, sigIdx)
	LibBlockInputSignal(portIdx, ucv, lcv, sigIdx)
	LibBlockParameter(param, ucv, lcv, sigIdx)
	LibBlockParameterAddr(param, ucv, lcv, sigIdx)
	LibBlockMatrixParameter(param, rowUcv, rowLcv, row...
	LibBlockMatrixParameterAddr(param, rowUcv, rowLcv,...
	LibDiscreteState(ucv, lcv, sigIdx) LibContinuousSt...
	LibBlockMode(ucv, lcv, sigIdx)
	LibBlockRWork(rworkRef, ucv, lcv, sigIdx) LibBlock...
	LibPrevZCState(ucv, lcv, sigIdx)
	LibDataStoreMemory(ucv, lcv, varIdx)
	LibPathName(name)
	LibIsFinite(value)
	LibRenameParameter(block, param, newName)
	LibBlockOutportLocation(ucv, lcv, sigIdx)
	LibCacheNonFiniteAssignment(assignment)
	Built-In TLC Functions
	STRINGOF(value)
	EXISTS("name")
	SIZE(value, n)

	Inlining an S-Function
	An Example
	Configurable RTW Variables
	Matrix Parameters in RTW

	Loop Rolling

	Target Language Compiler Function Library Referenc...
	LibBlockFunctionExists
	LibBlockInputSignal
	LibBlockIWork
	LibBlockMatrixParameterAddr
	LibBlockMatrixParameter
	LibBlockMode
	LibBlockOutportLocation
	LibBlockOutputSignal
	LibBlockParameter
	LibBlockParameterAddr
	LibBlockPWork
	LibBlockRWork
	LibBlockSrcSignalIsDiscrete
	LibCacheDefine
	LibCacheFunctionPrototype
	LibCacheGlobalPrmData
	LibCacheInclude
	LibCacheNonFiniteAssignment
	LibContinuousState
	LibControlPortInputSignal
	LibConvertZCDirection
	LibDataInputPortWidth
	LibDataOutputPortWidth
	LibDataStoreMemory
	LibDeclareRollVariables
	LibDefineIWork
	LibDefinePWork
	LibDefineRWork
	LibDiscreteState
	LibExternalResetSignal
	LibHeaderFileCustomCode
	LibIndexStruct
	LibIsDiscrete
	LibIsEmpty
	LibIsEqual
	LibIsFinite
	LibMapSignalSource
	LibMaxBlockIOWidth
	LibMaxDataInputPortWidth
	LibMaxDataOutputPortWidth
	LibMdlRegCustomCode
	LibMdlStartCustomCode
	LibMdlTerminateCustomCode
	LibOptionalMatrixWidth
	LibOptionalVectorWidth
	LibPathName
	LibPrevZCState
	LibPrmFileCustomCode
	LibRegFileCustomCode
	LibRenameParameter
	LibSourceFileCustomCode
	LibSystemDerivativeCustomCode
	LibSystemDisableCustomCode
	LibSystemEnableCustomCode
	LibSystemInitializeCustomCode
	LibSystemOutputCustomCode
	LibSystemUpdateCustomCode

	model.rtw
	Model.rtw File Contents
	Model.rtw File Contents — System Record
	Model.rtw File Contents — Block Specific Records
	Model.rtw File Contents — Linear Block Specific Re...

	Target Language Compiler Error Messages
	%closefile or %selectfile argument must be a valid...
	%error directive: text
	%exit directive: text
	%trace directive: text
	%warning directive: %s
	A %implements directive must appear within a block...
	A language choice must be made using the %language...
	Ambiguous reference to identifier - must use array...
	Argument to identifier must be a string
	Arguments to TLC from the MATLAB command line must...
	Assignment to scope identifier is only allowed whe...
	Attempt to define a function identifier on top of ...
	Attempt to divide by zero
	Bad cast - unable to cast this expression to "type...
	Cannot convert string string to a number
	Cannot redefine existing symbol identifier (use %u...
	Changing value of identifier from the RTW file
	Error opening "filename"
	Errors occurred - aborting
	Expansion directives %<> cannot span multiple line...
	Extra arguments to the function-name built-in func...
	format is not a legal format value
	Function argument mismatch; function function-name...
	Function reached the end and did not return a valu...
	Identifier identifier used on a %foreach statement...
	Incorrect number of arguments to a macro (number e...
	Indices must be constant integral numbers
	Invalid type for unary operator
	It is illegal to return functions or macros from a...
	Named value identifier already exists within this ...
	Only macros, function calls, and built-in function...
	Only one output is allowed from the TLC
	Only strings of length 1 can be assigned using the...
	Only vectors of the same length as the existing ve...
	Output file identifier opened with %openfile was n...
	Syntax error
	Syntax error detected in EXISTS function called wi...
	The %break directive can only appear within a %for...
	The %case and %default directives can only be used...
	The %codeblock, %endcodeblock, and %generate direc...
	The %continue directive can only appear within a %...
	The %foreach statement expects a constant numeric ...
	The %if statement expects a constant numeric argum...
	The %implements directive expects a string or stri...
	The %implements directive specifies type as the ty...
	The %implements language does not match the langua...
	The %return statement can only appear within the b...
	The :: operator can only be used within a function...
	The == and != operators can only be used to compar...
	The argument for %openfile must be a valid string
	The argument for %with must be a valid scope
	The argument for an [] operation must be a repeate...
	The argument to %include must be a valid string
	The begin directive must be in the same file as th...
	The begin directive on this line has no matching e...
	The directive block that begins on this line has n...
	The FEVAL() function can accept only 2-dimensional...
	The FEVAL() function can accept vectors of numbers...
	The FEVAL() function requires the name of a functi...
	The final argument to %roll must be a valid block ...
	The first argument of a ? : operator must be a Boo...
	The first argument to GENERATE or GENERATE_TYPE mu...
	The GENERATE function requires at least two argume...
	The GENERATE_TYPE function requires at least three...
	The ISINF(), ISNAN(), and ISFINITE() functions exp...
	The language being implemented cannot be changed w...
	The language being implemented has changed from ol...
	The left-hand side of a . operator must be a valid...
	The left-hand side of an assignment must be a simp...
	The number of columns specified (specified-columns...
	The number of rows specified (specified-rows) did ...
	The operator operator only works on numeric argume...
	The operator operator only works on integral argum...
	The operator operator only works on Boolean argume...
	The return value from the RollHeader function must...
	The roll argument to %roll must be a nonempty vect...
	The specified index (index) was out of the range 0...
	The STRINGOF built-in function expects a vector of...
	The SYSNAME built-in function expects an input str...
	The threshold on a %roll statement must be a singl...
	The WILL_ROLL built in function expects a range ve...
	There was no type associated with the given block ...
	Unable to find identifier within the scope-identif...
	Unable to open %include file filename
	Unable to open block template file filename from G...
	Unable to open output file filename
	Undefined identifier identifier
	Unknown type "type" in CAST expression
	Unrecognized directive "directive-name" seen
	Unrecognized type "output-type" for function
	Unterminated string
	Usage: tlc [options] file
	Value of type type cannot be compared
	Values of type type cannot be expanded
	When appending to a buffer stream, the variable mu...

	Target Language Compiler Library Error Messages
	blkiolib.tlc Error Messages
	Invalid map source (mappingSource) specified for T...
	Invalid port number (portNum) specified for Type b...

	blocklib.tlc Error Messages
	Don't know how to roll IWork for Type block: Name
	Don't know how to roll PWork for Type block: Name
	Don't know how to roll RWork for Type block: Name
	Invalid control port (id) specified for Type block...

	hookslib.tlc Error Messages
	Add root initialization code with LibMdlStartCusto...
	Invalid location: location
	Invalid location: location
	System system.Name does not have Derivatives funct...
	System system.Name does not have Disable function
	System system.Name does not have Enable function

	paramlib.tlc Error Messages
	Loop rolling not supported for param.Name in Type ...
	Parameter param.Name must be of type Matrix
	Type block Name must access param.Name via LibBloc...
	Type block Name must access param.Name via �LibBlo...

	rolllib.tlc Error Messages
	1-- The inputs for Type block Name are not rollabl...
	2-- uuIdx for Type block Name is not rollable, or ...
	3-- The outputs for Type block Name are not rollab...
	4-- yyIdx for Type block Name is not rollable
	5-- There are no discrete states to roll in Type b...
	6-- There are no continuous states to roll in Type...
	7-- There are no parameters to roll in Type block:...
	8-- Unable to declare roll variable p_name for Typ...
	9-- Unable to roll RWork for Type block Name. RWor...
	10-- Unable to declare roll variable rw_name for T...
	11-- Unable to roll IWork for Type block Name. IWo...
	12-- Unable to declare roll variable iw_name for T...
	13-- Unable to roll PWork for Type block Name. PWo...
	14-- Unable to declare roll variable pw_name for T...
	15-- There are no modes to roll in Type block: Nam...
	16-- There are no previous zero-crossings to roll ...
	17-- There are no data store memory values to roll...
	18-- Unknown roll variable (rollVarArg) specified ...

	utillib.tlc Error Messages
	Invalid matrix size (nRows x nCols) for Type block...
	Invalid vector length (length) specified for Type ...
	Invalid zc direction (direction) specified for Typ...

