
RealCT Direct API
Developer Guide

Document Number 934-010-82
Printed August 2001

General Notices

Copyright© 2001, Brooktrout Technology, a Brooktrout Company.
All rights reserved.
This product may not, in whole or in part, be copied, photocopied, reproduced, translated, or reduced
to any electronic medium or machine readable form without prior consent, in writing, from
Brooktrout Technology.
Brooktrout Technology reserves the right to make improvements and/or changes in the products
and programs described in this Developer Guide at any time without notice. Every attempt has been
made to insure that the information contained in this document is accurate and complete.
Brooktrout Technology will not be responsible for any inaccuracies or omissions in this or any of its
other technical publications.
Printed in the United States of America.

Trademarks

Brooktrout Inc., Brooktrout Technology, Netaccess, Instant RAS, Instant ISDN, and TruFax are
registered trademarks of Brooktrout, Inc.
RDSP Series, RealBLOCs Series, RTNI Series, Ensemble Series, Vantage DSPM, Vantage PCI
Series, Vantage Series, AccuCall, AccuSwitch, AccuSpan, AccuLock, AccuTalk, AccuDigit,
AccuRate, AccuPitch, AccuTone, AccuPulse, RDSPtest, RFAX, RTNI, Prelude, RealCT, CTMedic,
Prompt Studio, and VEdit are trademarks of Brooktrout, Inc.
Windows, Windows NT, Windows 95, Windows 98, and Visual C++ are registered trademarks of
Microsoft Corporation.
UNIX is a registered trademark licensed exclusively through X/Open Company, Ltd.
MVIP is a trademark of Go-MVIP, Inc.
Pentium and Intel are registered trademarks of Intel Corporation.
Adobe and Acrobat are registered trademarks of Adobe Systems Incorporated.

Other company or product names mentioned herein may be trademarks or registered trademarks of
their respective companies.

International Notice

Due to differing national regulations and approval requirements, certain Brooktrout products are
designed for use only in specific countries, and may not function properly in a country other than the
country of designated use. As a user of these products, you are responsible for ensuring that the
products are used only in the countries for which they were intended. For information on specific
products, contact Brooktrout Technology.
151 Albright Way
Los Gatos, CA 95032-1801
408-370-0881
www.brooktrout.com

Brooktrout Technical Support

For Brooktrout Technical Support, see Getting Help on page xxi.

Limited Warranty

Brooktrout, Inc. (“Brooktrout”) warrants the hardware component of the product described in this
documentation (the “Product”) to be free from defects in materials and workmanship under normal
and proper use for a period of five years from the date of purchase from Brooktrout. Brooktrout also
warrants the disk on which software and firmware are recorded to be free from defects in materials
and workmanship under normal and proper use for a period of 90 days from the date of purchase
from Brooktrout. This warranty does not apply to the software and firmware themselves.
This warranty also does not apply to any expendable components, any damage resulting from abuse
of the Product, or normal wear and tear. In the event of a warranty claim, the item, if in the opinion
of Brooktrout it is proved to be defective, will be repaired or replaced with a functionally equivalent
item, at Brooktrout's sole option, upon delivery to Brooktrout of the defective item, together with a
dated proof of purchase and specification of the problem. Brooktrout is not responsible for
transportation and related charges in connection with shipment of items to Brooktrout for warranty
service. Brooktrout reserves the right to charge for inspection at Brooktrout's then prevailing rates
of returned items if it is determined that the items were not defective within the terms of the
warranty. To obtain warranty service return the Product, contact Brooktrout Technical Support.
With respect to software and firmware, it should be understood that these components are complex
works which may contain undiscovered defects. Although the software and firmware provided with
the Product contain substantially the features described in the documentation, to the extent
applicable to the product purchased, Brooktrout does not warrant that the operation of such
software and firmware will meet the user’s requirements or be uninterrupted or free of errors.
No oral or written information or advice given by Brooktrout or its authorized representatives will
create a warranty or increase the scope of this warranty. No representative, agent, dealer or
employee of Brooktrout is authorized to give any other warranty or to assume for Brooktrout any
other liability in connection with the sale and service of the Product. Except as expressly agreed
by Brooktrout in writing, Brooktrout makes no representations or warranties of any
kind, express or implied, with respect to the Product or any hardware, software or
firmware components thereof. In particular, but without limitation of the foregoing,
Brooktrout disclaims all implied warranties of merchantability or fitness for a particular
purpose and there are no warranties that extend beyond the description or duration of
this warranty. Some states or countries do no allow the exclusion of implied warranties so the
above exclusion may not apply to you.
In no event shall Brooktrout be liable for loss of profits or indirect, special, incidental, or
consequential damages arising out of the use of or inability to use the Product. The sole and
exclusive remedy, in contract, tort or otherwise, available for a breach of this warranty and for any
and all claims arising out of or in any way connected with the purchase of the Product shall be
limited to the repair or replacement of any defective item or, at Brooktrout's sole option, the
payment of actual direct damages not to exceed the payments made to Brooktrout for the Product in
question. Some states do not allow the limitation or exclusion of liability for incidental or
consequential damages, so the above limitation and exclusion may not apply to you.
This warranty gives you specific legal rights. You may also have other rights which vary from
state-to-state or country-to-country. Any provision of this warranty that is prohibited or
unenforceable in any jurisdiction shall, as to such jurisdiction, be ineffective to the extent of such
prohibition or unenforceability without invalidating the remaining provisions hereof or affecting the
validity of enforceability of such provision in any other jurisdiction.
BEFORE USING THIS SOFTWARE, YOU SHOULD CAREFULLY READ THE FOLLOWING
LICENSE AGREEMENT WHICH APPLIES TO THE SOFTWARE PRODUCT IN THE PACKAGE
(THE “SOFTWARE”). USING THIS SOFTWARE INDICATES YOUR ACCEPTANCE OF THIS
LICENSE AGREEMENT AND ESTABLISHES A BINDING AGREEMENT BETWEEN THE
PERSON ACQUIRING THE SOFTWARE (THE “USER”) AND BROOKTROUT TECHNOLOGY
(“BROOKTROUT”). IF YOU DO NOT ACCEPT THE LICENSE AGREEMENT, YOU SHOULD
PROMPTLY RETURN THE SOFTWARE UNUSED AND YOUR MONEY WILL BE REFUNDED.

Brooktrout Technology Multi-Use License Agreement

Proprietary Rights

The Software is subject to the protection of the copyright laws of the U.S. and foreign jurisdictions,
which prohibit unauthorized copying and distribution of copyrighted works. Certain uses of the
Software are covered by one or more of the patents listed on the media and associated packaging.
The Software incorporates proprietary and confidential algorithms and techniques that are subject
to legal protection as trade secrets. Brooktrout is the sole owner of all proprietary rights in the
Software, except for certain portions that are proprietary to third party licensors of Brooktrout. The
User is granted only those rights expressly conferred by this License Agreement.

License

Brooktrout licenses the User to use the Software subject to and in accordance with the following
provisions. The software is distributed with voice and/or fax processing boards and/or other
computer hardware manufactured and sold by Brooktrout (“Brooktrout Hardware”), and is licensed
solely for use in connection with the Brooktrout Hardware. The Software, and modified versions
thereof, may be operated only on the central processing unit of any computer served by one or more
items of Brooktrout Hardware and may, where appropriate in connection with such use, be
downloaded into memory located on Brooktrout Hardware, and may be modified (if modification is
otherwise permitted pursuant to the following provisions), reproduced and distributed only for
purposes of such use. Any other use, modification, reproduction or distribution is expressly
prohibited.
Licensing provisions applicable to particular Software products are as follows:

1. API, Application, and Driver software distributed in the form of object code:

a. Users may incorporate the Software into their own work providing functional and value
enhancements and may duplicate and distribute the resulting work as they choose provided
that the resulting work is designated solely for use in connection with Brooktrout Hardware.

b. Users may not modify the Software nor decompile, reverse engineer, disassemble, or otherwise
reduce the Software to a human perceivable form.

c. When Users incorporate the Software into their products, Brooktrout’s copyright notice must
be included in the new work.

d. With respect to algorithms (such as, but not limited to, voice encoding methods, facsimile
processing, and tone processing) included in the Software that are used for operations on the
Digital Signal Processors (DSPs) of the Brooktrout Hardware, (i) Users may only use or
incorporate such algorithms as components of the Software in the form originally supplied by
Brooktrout, and may not extract any such algorithms from the Software or use them for any
other purpose or permit any end user customer of the Users to have direct access to such
algorithms for any purpose; and (ii) Users may only use or incorporate into their products
those algorithms that have been licensed under a purchase agreement between the Users and
Brooktrout in connection with the specific items of Brooktrout Hardware on which the
Software containing such algorithms is to be distributed, and only to the extent of the quantity
of Brooktrout Hardware having a total number of ports equal to the number of ports for which
the licenses to such Software and the included algorithms have been paid.

2. API, Application, and Driver software distributed in the form of source code:

a. Users may modify the Software and must incorporate it into their own work to provide
functional and value enhancements. Users may duplicate and distribute the resulting work in
object code form only, provided that the resulting work is designated solely for use in
connection with Brooktrout Hardware. Users may not distribute the Software in source form.

b. The Software is confidential and proprietary to Brooktrout and Users must protect it in a
manner similar to the protection they affords their own confidential and proprietary
information.

c. When Users incorporate the Software into their products, Brooktrout’s copyright notice must
be included in the new work.

d. With respect to algorithms (such as, but not limited to, voice encoding methods, facsimile
processing, and tone processing) included in the Software that are used for operations on the
Digital Signal Processors (DSPs) of the Brooktrout Hardware, (i) Users may only use or
incorporate such algorithms as components of the Software in the form originally supplied by
Brooktrout, and may not extract any such algorithms from the Software or use them for any
other purpose or permit any end user customer of the Users to have direct access to such
algorithms for any purpose; and (ii) Users may only use or incorporate into their products
those algorithms that have been licensed under a purchase agreement between the Users and
Brooktrout in connection with the specific items of Brooktrout Hardware on which the
Software containing such algorithms is to be distributed, and only to the extent of the quantity
of Brooktrout Hardware having a total number of ports equal to the number of ports for which
the licenses to such Software and the included algorithms have been paid.

The reproduction, distribution, and modification rights provided above apply only to Brooktrout
Software packaged herewith that bears the label “Multi-Use License Agreement applies.” All other
Software distributed by Brooktrout is subject to additional restrictions on reproduction,
distribution, and modification.

Distribution

Any distribution of the Software (including modified versions) that is authorized hereby shall be
made (a) in object form only; (b) only to purchasers of units of Brooktrout Hardware, or of products
including Brooktrout Hardware, for which appropriate payment (including payment for the
Software that has been distributed) has been made in accordance with the purchase agreement
between the Users and Brooktrout and (c) only pursuant to license agreements containing, at a
minimum, the following provisions: (i) express acknowledgement of Brooktrout’s and its licensors'
proprietary rights in the Software, (ii) a license to use the Software only as installed on the units of
Brooktrout Hardware purchased by the licensee, (iii) the express prohibition of any reproduction,
modification, or distribution of the Software, (iv) a prohibition on reverse engineering of the
Software equivalent to that set forth above, and (v) provisions regarding Termination, Disclaimer of
Warranties, and Limitation of Liability, expressed for the benefit of Brooktrout, substantially in the
form set forth below. Except as expressly permitted hereby, Users may not distribute the Software,
or any copy, by transfer, lease, loan or any other means.

Termination

A User's license to use the Software may be terminated by Brooktrout in the event of any failure to
comply with the above restrictions or any other terms of this License Agreement. In the event of
termination of the license, the User must destroy or return to Brooktrout all copies of the Software
in his possession.

Limited Warranty

Brooktrout warrants for a period of 90 days following delivery that the media on which the Software
is recorded is free from defects in materials and workmanship. Brooktrout does not warrant that
operation of the Software will be uninterrupted or error-free, or that it will satisfy the User's
requirements. BROOKTROUT DISCLAIMS ALL OTHER WARRANTIES EXPRESSED OR
IMPLIED, INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

Limitation of Liability

Brooktrout's entire liability and the User's exclusive remedy in connection with the Software will be
the replacement of any media not meeting the above limited warranty upon return of the media to
Brooktrout. In no event will Brooktrout be liable for damages, including any lost profits or other
incidental or consequential damages, arising out of or related to the Software and its use, even if
Brooktrout has been advised of the possibility of such damages.

Table of Contents
Preface . xvii
About this Manual. xviii

Typographical Conventions . xix

Related Manuals . xix

Getting Help . xxi

Chapter 1 – Architecture . 1

How RealCT Interfaces With Your System . 2

Interfacing With Windows Platforms . 2

Reviewing the Key System Components . 3

Computer Telephony Boards . 4

Digital Signal Processor . 5

Firmware . 5

Devices . 6

Application Programming Interface . 8

Application Architecture .11

Processes and Threads .11

Application Design . 13

Chapter 2 – Digit Handling . 15

Using Digits . 16

Defining Digit Types . 17

Defining Rotary Digits . 17

Defining DTMF Signals . 18

Defining MF Signals . 19

Defining R2 Signals . 20
vii

Contents
Sending and Receiving Digits . 29

Handling Rotary Digits . 29

Handling DTMF and MF Digits . 30

Handling R2 Digits . 31

Flushing the Digit Buffer . 35

Troubleshooting . 36

Chapter 3 – T1 Networking . 37

Understanding T1 Trunks . 38

Transmitting Digital Data . 38

Organizing the T1 Data . 42

Configuring the T1 Environment . 47

Setting the Clock . 47

Loading the Line Protocol. 48

Configuring the Carrier . 52

Handling Incoming and Outgoing Calls. 57

Processing Calls . 57

Handling Incoming Calls . 58

Handling Outbound Calls . 68

Using Internal Signaling Streams . 75

Testing the T1 Setup . 76

Testing the Installation . 76

Testing the Application . 78

Troubleshooting . 81

Handling Synchronization Errors . 81

Handling Protocol Errors . 84

Using Loopbacks . 88

Chapter 4 – E1 Networking . 91

Understanding E1 Trunks . 92

Transmitting Digital Data . 92

Organizing the E1 Data . 94

Configuring the E1 Environment . 100

Setting the Clock . 100

Loading The Line Protocol . 101

Configuring the Carrier . 105

Handling Incoming and Outgoing Calls. 110
viii RealCT Direct API Developer Guide

Contents
Processing Calls .110

Handling Incoming Calls .111

Handling Outbound Calls . 123

Using Internal Signaling Streams . 128

Testing the E1 Setup . 129

Testing the Installation . 129

Testing the Application . 131

Troubleshooting . 134

Handling Synchronization Errors . 135

Handling Protocol Errors . 137

Using Loopbacks . 140

Chapter 5 – MVIP-90 . 143

Defining MVIP-90 . 144

Working with MVIP-90 Data Streams . 145

Understanding MVIP-90 Architecture. 145

Numbering MVIP Streams . 147

Understanding Framing . 148

Configuring Boards in the MVIP Bus . 149

Configuring the MVIP-90 Clock . 150

Understanding Clocking Signals . 150

Setting the Clock Parameters . 151

Setting up the System . 152

Mapping MVIP-90 Resources. 155

Mapping RTNI Resources . 155

Mapping RDSP/xx000, Vantage VRS, and Vantage VPS Resources 157

Enabling or Disabling Resources . 162

Switching Calls through the MVIP-90 Bus . 165

Establishing Connections. 167

Making Connections in an Application . 178

Identifying the Timeslot Mode . 180

Chapter 6 – MVIP-95 . 183

Working with Computer Telephony Buses . 184

Defining MVIP-95 . 186

Understanding H.100 Architecture . 188

Connecting Boards in an H.100 bus. 190
August 2001 ix

Contents
Numbering Streams . 190

Mapping Board Resources . 191

Mapping RealBLOCs Resources . 193

Configuring Boards in the CT bus . 196

Enabling or Disabling Resources . 197

Configuring the H.100 Clock. 199

Configuring the H.100 Bus Speed . 204

Switching Data . 206

Connecting Boards in an MVIP-90 Bus. 212

Mapping Resources for MVIP-90 . 212

Configuring the H.100 Clock for the MVIP-90 Bus . 216

Configuring the H.100 Stream Speed for the MVIP-90 Bus 217

Switching Data . 218

Appendix A – T1 Line Protocols . 223

Overview of Protocols . 224

Immediate Start . 225

Wink Start . 226

Double Wink Start . 229

Loop Start . 231

Ground Start . 233

Appendix B – E1 Line Protocols . 235

Overview of Protocols . 236

R2-CCITT . 237

R2-CCITT - Chinese Implementation . 239

R2-CCITT - Brazilian Implementation . 239

R2-CCITT - Central European Implementation. 240

Index . 1
x RealCT Direct API Developer Guide

List of Figures
Figure Page

Basic Components of a Computer Telephony System . 3
Hardware and Logical Resources on an RDSP/432 Board . 7
Two Processes With Threads . 12
Frequencies in DTMF Digits . 18
The R2 Compelled Signaling Sequence . 21
T1 Line Coding Methods . 39
A Bipolar Violation in an AMI Signal . 40
The B8ZS Replacement Pattern . 41
A T1 Line . 42
A T1 Frame Carrying 24 8-bit Timeslots . 43
A 12 Frame D3/d4 Superframe Showing the F-bit Sequence . 44
An ESF Superframe . 46
Connecting Trunks A and B in T1 . 80
Local and Remote Loopbacks . 88
CSU Loopback . 89
A Cabling Loopback in T1 . 89
A Bipolar Violation in AMI Coding . 93
An E1 Line . 94
An E1 Frame Carrying 32 8-bit Timeslots . 95
A CEPT Multiframe . 96
Connecting Trunks A and B in E1 . 133
Remote and Local Loopbacks in E1 . 140
Cabling Loopbacks in E1 . 141
Data Streams in an MVIP-90 Bus . 145
Data Stream Numbering . 147
Timeslots in an MVIP Frame . 148
Disabled VP and LS Resources . 162
Enabled VP and LS Resources . 162
A Board in an MIVP Bus . 166
A Call Transfer Between Two Internal Timeslots . 171
xi

List of Figures
A Call Switched to VP Resources . 172
Two Boards Transmitting on the Same Stream . 175
A Drop and Insert Connection . 176
A Broadcast Connection and Distribution . 177
A T1 Board Receives a Call . 178
The T1 Transfers the Call to a VP Resource . 178
The T1 Transfers the Call to the Appropriate Extension . 179
Data Streams in an H.100 Bus . 188
Timeslots in an H.100 Frame . 189
Local Streams on a Vantage PCI Board . 191
A Board in a CT bus . 206
A Full-duplex Connection With the Vantage PCI . 207
A Connection Between Local Resources . 208
Vantage PCI internal Stream Numbering in MVIP-90 . 214
A Vantage PCI Transferring a Call to a Vantage VRS . 221
A Drop and Insert Connection With a Vantage PCI . 222
xii RealCT Direct API Developer Guide

List of Tables
Table Page

Typographical Conventions . xix
Device Type Names and Boards . 6
Hardware/Logical Resources Mapped to Devices . 7
API Calls . 10
MF Tones . 19
R2 Tones . 23
Group I Signals . 25
Group II Signals . 26
Group A Signals . 27
Group B Signals . 28
Protocol File Names . 49
API Functions Used in T1 Signaling . 57
RHT_WAIT_LINE_ON Sequence . 58
RHT_OFF_HOOK Sequence . 62
RHT_DISCONNECT Sequence . 66
RHT_SEIZE_LINE Sequence . 68
Timeslot 0 in a CEPT Multiframe . 97
Si1 and Si2 Bits in a CEPT Multiframe . 98
Timeslot 16 Signaling Bits in a CEPT Multiframe . 99
Protocol File Names . 102
API Functions Used in E1 Signaling. . 110
RHT_WAIT_LINE_ON Sequence . 111
RHT_OFF_HOOK Sequence . 115
RHT_DISCONNECT Sequence . 119
RHT_SEIZE_LINE Sequence . 123
Resource Mapping . 159
VP Resources and Their Associated Timeslots . 160
MVIP Stream Numbering . 169
Functions Specific to Either MVIP-90 or MVIP-95 . 187
Stream Assignments for Vantage PCI Boards . 192
xiii

List of Tables
RealBLOCs MVIP-95 Local Stream Assignments . 193
Comparing Vantage PCI Internal Stream Numbering . 213
RealBLOCs Local MVIP-90 Stream Assignments . 215
H.100 Compatibility Clocks . 216
Relationship Between MVIP-90 and MVIP-95 Stream Numbering. 220
Immediate Start: CO Calls CPE . 225
Wink Start: CO Calls CPE . 226
Double Wink Start: CO Calls CPE . 229
Loop Start: CO Calls Station . 231
Loop Start: station Calls CO . 232
Ground Start: CO Calls Station . 233
Ground Start: Station Calls CO . 234
R2-CCITT: CO Calls CPE . 237
R2-CCITT Central European: CO Calls CPE . 240
xiv RealCT Direct API Developer Guide

List of Examples
Example Page

RHT_DIAL_R2 Sample Code . 33
RHT_LOAD_PROTOCOL Sample Code . 50
CONFIG_CARRIER Sample Code . 55
Monitoring for Answer . 72
RHT_LOAD_PROTOCOL Sample Code . 103
CONFIG_CARRIER Sample Code . 108
CONFIG_CLOCK Sample Code . 154
RHT_CONFIG_MVIP Sample Code . 164
RHT_SET_OUTPUT Sample Code . 173
RHT_QRY_OUTPUT Sample Code . 180
MVIP95_CMD_SET_SWITCH Sample Code . 197
MVIP95_CMD_CONFIG_BOARD_CLOCK (H.100) Sample Code 201
MVIP95_CMD_CONFIG_STREAM_SPEED Sample Code . 205
MVIP95_CMD_SET_OUTPUT Sample Code . 209
xv

Preface

This manual describes how to write applications using the
RealCT Direct API. It includes information about the
architecture of the API, and how to use the MVIP-90 and H.100
computer telephony buses.

This chapter contains the following sections:

n About this Manual

n Getting Help
 xvii

About this Manual

This guide contains the following chapters:

Chapter 1 Describes how to write applications using the application
architecture.

Chapter 2 This chapter describes how to send and receive digit. It provides
information about rotary, DTMF, MF, and R2 signaling.

Chapter 3 This chapter describes T1 networking.

Chapter 4 This chapter describes E1 networking.

Chapter 5 Describes how to use the MVIP-90 bus to switch data between
telephony resources.

Chapter 6 Describes how to use the MVIP-95 bus to switch data between
telephony resources.

Appendix A This appendix describes the signaling bits transmitted in the
most common T1 line protocols.

Appendix B This appendix describes the signaling bits transmitted in the
most common E1 line protocols.
xviii RealCT Direct API Developer Guide

About this Manual
Typographical Conventions

This manual uses the typographical conventions shown in the
following table:

Table 1. Typographical Conventions

Related Manuals

Refer to the following documents for additional information as
you develop computer telephony applications:

n Introduction to Computer Telephony

Provides an introduction to computer telephony.
n The hardware installation guide for your hardware type

Describes how to install hardware into your system.
n RealCT Direct API Installation and Configuration Guide

Explains how to install and configure your software and
hardware.

n RealCT Direct API Reference Manual (two volumes)

Describes all functions and data structures in the RealCT
Direct API.

n Voice Utilities User Guide for Windows Environments

Contains information about AccuCall Plus, AccuCall
Wizard, CTMedic, ShowJump, and Prompt Studio.

Convention Type of Information Examples

Italic type A book or a manual

A file, path, or program

A data structure

Voice Utilities User Guide

C:\RHT\

VPconfigCallerID_s

Monospaced
font

Code

A command

hVP = CreateFile

HANDLE hVP

SMALL CAPS A code constant BRKT_DEVICE_VP

Single
quotes

A digit

A field

‘7’

‘Timeout’
August 2001 xix

Documentation Feedback

Brooktrout is committed to continuously improving the
technical accuracy and usability of our product documentation.
All suggestions, comments, or corrections are welcome. Send
your feedback to emgtechpubs@brooktrout.com. Include the
following information in your correspondence:

n Document number, located on the title page

n Release date, located on the title page

n Your telephone number if you would like us to contact you
personally

Your comments help us provide the most accurate
documentation possible.
xx RealCT Direct API Developer Guide

Getting Help
Getting Help

If you encounter problems, contact Brooktrout technical
support. You must give technical support your customer
number. If you do not know your customer number, you can get
it from your Brooktrout sales representative.

U.S.A. Brooktrout Technology. VTD
151 Albright Way
Los Gatos, California 95032

Phone: +1 408 874-4040
8:00 A.M. to 5:00 P.M. Pacific time, Monday through Friday
Fax: +1 408 370-1171
Email: support@brooktrout.com
Website: www.brooktrout.com

United Kingdom Brooktrout Technology
Centennial Court
Easthampstead Road
Bracknell, Berkshire RG12 1YQ
United Kingdom

Phone: +44 1344 380 280
Fax: +44 1344 380 288
August 2001 xxi

1
Architecture

This chapter describes how the API interacts with the operating
systems that this API supports, discusses how the systems are
designed, and explains how the components of the system are
connected to and operate with each other.

This chapter includes the following topics:

n How RealCT Interfaces With Your System

n Reviewing the Key System Components

n Application Architecture
1

Chapter 1: Architecture
How RealCT Interfaces With Your System

Interfacing With Windows Platforms

The Win32 Application Programming Interface (API) provides a
set of functions and defines how those functions behave.
Microsoft provides two platforms that support the Win32 API:
Windows NT and Windows 2000. Since each of these platforms
support a common set of Win32 API functions, you can write one
application for all platforms. However, the three platforms
implement functions differently and to different degrees.

Windows NT Windows NT supports the full functionality of the Win32 API.
This full support means that Windows NT applications are
robust and fast. Windows NT can also run on machines with
different CPUs such as MIPS R4000, a DEC alpha, or
Motorola’s PowerPC.

Windows 2000 To be supplied.

Header File To interface to the Brooktrout Direct device manager library,
your application must include the following header file:

“brktddm.h”

This header file also includes other header files that define
function tags, data structures, parameter values, and error
values for the device drivers.

Library You must compile and link your application program with the
RealCT Direct Device Manager (DDM) library. Brooktrout
recommends using the Microsoft C/C++ compiler, versions 6.0
and later, for the RealCT Direct API. The library file is:

brktddm.lib

Note: Ensure that you have installed the brktddm.dll file
during the installation process.
2 RealCT Direct API Developer Guide

Reviewing the Key System Components
Reviewing the Key System Components

A PC-based computer telephony system consists of the following
basic components as shown in Figure 1:

n One or more computer telephony boards

n Firmware on the board

n Device drivers

n RealCT Direct API (Application Programming Interface)
files

n Application source code

During installation, download the firmware to the digital signal
processor (DSP) on the board and load the device drivers. Your
application makes a call to the device driver through the
Brooktrout DirectDM library. In turn, the device driver
communicates with the firmware on the DSP.

Figure 1. Basic Components of a Computer Telephony
System

Brooktrout DirectDM DLL

Application Program

Application
Source Code

Brooktrout DirectDM
Header File and Library

Compiler

Device Drivers

Firmware

Computer Telephony Boards
August 2001 3

Chapter 1: Architecture
Computer Telephony Boards

Voice processing (VP) boards, such as the Prelude, RDSP, or
Vantage products, provide the voice processing and telephony
hardware for your computer telephony system.

The RTNI series boards provide either analog or digital line
capabilities that combine with a voice processing board to
expand and enhance the versatility of the voice processing
system. The PRI-ISALC boards provide single or dual span E1
and T1 digital line capabilities.

The RealBLOCs series board features modules that provide
analog trunk, analog station, or passive tap lines on a single
board.

The DST-16 provides digital station passive tap capability for
call recording applications when combined with a Vantage VRS
board. Different versions of the board provide support for the
following PBXs:

n Nortel M1

n Nortel Norstar

n NEC

n Aspect

n Lucent/Siemens 2 wire

n Lucent 4 wire

n Panasonic
4 RealCT Direct API Developer Guide

Reviewing the Key System Components
Digital Signal Processor

The Digital Signal Processor (DSP) is a microprocessor
dedicated to manipulating digital signals. Each DSP supports
four voice processing (VP) resources, also referred to as
channels. A board such as the RDSP/432, which provides two or
four VP resources, has only one DSP. A board such as the
VRS-32, which provides 32 VP resources, has eight DSPs.

Firmware

The firmware is a set of algorithms that run on the DSP. The
firmware provides voice processing features such as tone
detection and generation, file compression and expansion, pulse
detection, and playback speed and volume control. The
firmware algorithms operate simultaneously but independently
of each other, allowing boards to perform multiple functions.

You download firmware to the DSP when you load the drivers.
August 2001 5

Chapter 1: Architecture
Devices

The API identifies devices and boards by a device name as
follows.

Table 2. Device Type Names and Boards

Voice processing boards provide voice resources on the digital
signal processors (DSP) and loop start (LS) line resources on the
line interfaces (except the RDSP 24000 and Vantage VRS series
boards that provide only voice resources). Further, each DSP is
logically divided into four VP resources. Figure 2 shows this
division of the hardware and logical resources on a typical board

Device Device Type Name Telephony Boards

Voice processing BRKT_DEVICE_RDSP_BOARD

BRKT_DEVICE_RDSP

BRKT_DEVICE_VP

Prelude Series

RDSP 400 Series
RDSP 9400 Series
RDSP 24000 Series

Vantage™ PCI Series
Vantage Volare
Vantage VPS Series
Vantage VRS Series

Loop start line BRKT_DEVICE_LS_LINE Prelude Series

RDSP 400 Series
RDSP 9400 Series

Vantage PCI Series
Vantage Volare
Vantage VPS Series

Analog station
interface and
analog loop start
trunk interface

BRKT_DEVICE_ATSI_BOARD

BRKT_DEVICE_ASI_LINE

BRKT_DEVICE_ATI_LINE

RTNI-ATI/ASI Series

RealBLOCs ASI and ATI PCI
Series

Digital E1 BRKT_DEVICE_E1_BOARD

BRKT_DEVICE_E1_LINE

PRI-ISALC-1E or E or E1

Digital T1 BRKT_DEVICE_T1_BOARD

BRKT_DEVICE_T1_LINE

PRI-ISALC-1T or -2T or
RTNI-2T1
6 RealCT Direct API Developer Guide

Reviewing the Key System Components
(RDSP/432). More information about the capabilities of each
board can be obtained in the Introduction to Computer
Telephony manual.

Figure 2. Hardware and Logical Resources on an
RDSP/432 Board

The API models these hardware and logical resources as
devices. Table 3 shows how the hardware and logical resources
of the RDSP/432 board map to devices.

Table 3. Hardware/Logical Resources Mapped to Devices

RDSP/432

DSP

VP VP

VP

Line Interface

Line Interface

Line Interface

Line Interface

VP

Hardware and Logical
Resource Device Device Name

VP board

DSP

Board device

DSP device

BRKT_DEVICE_RDSP_BOARD

BRKT_DEVICE_RDSP

4 VP resources VP devices BRKT_DEVICE_VP

4 LS lines LS line devices BRKT_DEVICE_LS_LINE
August 2001 7

Chapter 1: Architecture
Application Programming Interface

The Application Programing Interface (API) is the interface
between an application and the device drivers. The interface is
a set of commands the application issues to the device driver.
The device driver then sends the commands to the firmware on
the board. The RealCT Direct API is defined by a set of C header
files consisting of the following:

n Function Tags

n Data structures

n Parameters

n Errors

You can find detailed information about the RealCT Direct API
in the RealCT Direct API Reference Manual.

Function Tags

Function tags are the tags used with the BrktDeviceIoControl ()
API call. Each of the device drivers has exclusive and
non-exclusive function tags. Exclusive functions prevent other
exclusive functions from running simultaneously on a specific
device. This means that you can call only one exclusive function
at a time for any specific device.

Function tags used to set parameters or retrieve status from the
driver are non-exclusive. You can call non-exclusive functions
while an exclusive function is running.

Data Structures

The data structures contain the parameters and data used by or
returned by the drivers. When you call a driver function that
passes parameter values like RHT_SET_GLOB or
RHT_SET_PARAM in its data structure, these values override
standard parameter values set when the device driver is loaded.
8 RealCT Direct API Developer Guide

Reviewing the Key System Components
Parameters

The API includes both global and device-specific parameters
that determine the behavior of the driver functions. Each time
you load the device drivers, these parameters are automatically
set to the values specified through the Configuration Wizard.

You can set any parameter value for your application by calling
the RHT_SET_GLOB or RHT_SET_PARAM function tags. The
application uses the new values unless an overriding value for
RHT_SET_GLOB or RHT_SET_PARAM is passed in a data
structure. Data structure parameter values override set
parameter values for the duration of the function call. The set
parameter values remain in effect for as long as the device
driver is loaded or until they are reset through another call.

Errors

The device drivers set an error code when errors occur. Use
BrktGetLastError () to get the error value for the last system
call or the driver function that returned a value of FALSE.

The application uses the standard operating system error
return codes to report the status of the API call to the
application.
August 2001 9

Chapter 1: Architecture
API Calls

RealCT Direct uses the API calls listed in Table 4 to
communicate with the devices.

Table 4. API Calls

BrktDeviceIoControl ()

The BrktDeviceIoControl () API call sends a function tag to the
device driver, causing the device to perform the specified
operation. If the function succeeds, then the return value is
TRUE. If the function does not succeed, it returns FALSE. If the
function returns FALSE, use the BrktGetLastError () function to
find out what error occurred.

System Calls Description

BrktOpenDevice () Opens the device file.

BrktCloseDevice () Closes the device file.

BrktDeviceIoControl () Sends the function tag to device driver
to perform specified operation.

BrktGetLastError () Returns the last operating system
error code for calling thread.
10 RealCT Direct API Developer Guide

Application Architecture
Application Architecture

Processes and Threads

An instance of an executing application is a process. For
example, a word processing program and a spreadsheet that are
executing simultaneously are both processes. You can have
many processes running at once. Each process consists of data,
code, and one or more threads. The processes cannot share data
directly.

Each process can have associated threads that execute
functions of the process. Each process can have more than one
thread, each of which has CPU registers and a stack. The
threads share data as shown in Figure 3.

For example, within the word processing process, you can have
threads for printing, saving, and receiving keyboard data. These
threads can execute simultaneously. The first thread, called the
primary thread, is created when the application starts and
starts executing from the program’s entry point. This thread
can generate new threads, which can generate threads of their
own.
August 2001 11

Chapter 1: Architecture
A process must have at least one thread. When the last thread
terminates, the process also terminates, but terminating the
primary thread does not terminate the process as long as there
is one thread executing. When the process terminates, all
threads associated with that process also terminate.

Figure 3. Two Processes With Threads

Process 1

Process 2

Data

Code

Threads

Data

Code

Threads
12 RealCT Direct API Developer Guide

Application Architecture
Application Design

Although you can call the BrktDeviceIoControl () function in
either synchronous or asynchronous mode, we only recommend
using synchronous mode. This means that when the application
calls a function, it cannot proceed until that function completes.
If you use one thread and one process, a call on line one prevents
the application from processing calls on other lines.

There are two ways to design an application with synchronous
drivers: with or without multi-threading.

Non-multithreaded

Non-multithreaded applications run a separate instance of a
process for each channel. For example, the four-port RDSP/432
would require four instances of the same telephony application.
With this model, any functions running in the first instance of
the application do not block another instance from processing a
call on a different line.

Non-multithreaded applications are quick to write and are quite
stable, since if one instance of the process terminates
unexpectedly, all other processes are not affected. However,
running several instances of a single process uses system
resources inefficiently. Also, since different processes don’t
easily share data with each other, applications that require
knowledge of the status of two or more channels, such as
switching functions, are more difficult to implement.
August 2001 13

Chapter 1: Architecture
Multithreaded

Multithreaded applications use system resources more
efficiently. In multithreaded applications, a single process runs
multiple threads. Each thread executes a separate function.
When the application begins, it immediately starts one thread
for each channel. These threads constantly monitor the line.
Then, if a particular thread needs to execute simultaneous
functions, it can start additional threads.

For example, when you call a bank to retrieve information, a
single thread requests your user information, then provides
customer options. If you request information from a database,
that single thread creates a second thread to search the
database while the original thread plays pre-recorded music.
Since separate threads execute the two functions, they do not
block each other. An application that is not multithreaded
cannot run the two functions simultaneously.

Multithreading provides flexibility in the application and allows
threads to share data more easily. However, if one thread
causes an exception error, the entire application fails.
Synchronization can also become an issue.
14 RealCT Direct API Developer Guide

2
Digit Handling

This chapter describes how to send and receive digits. It
provides information about rotary, DTMF, MF, and
R2 signaling.

All boards that provide VP resources can send and receive
digits.

This chapter includes the following sections:

n Using Digits

n Defining Digit Types

n Sending and Receiving Digits

n Troubleshooting
15

Chapter 2: Digit Handling
Using Digits

A person using a telephone or a telephony application begins a
call by seizing the line, then sending digits to the receiving end.
When you place a call on a standard analog phone, these digits
are the ones you dial on your telephone key pad. They tell the
central office (CO) where to direct the call. The CO then
communicates with the other COs in the public network to route
the call. Once the call is established, the receiving end processes
the call. During a call, you can navigate through information or
control functions of a voice mail application using the same
digits.

There are four common ways to send digits: Rotary, Dual Tone
Multi-Frequency (DTMF), Multi-Frequency (MF), and R2
compelled signaling.

n Rotary digits are the signals sent by rotary phones or by
your touch tone phone when you set it to send rotary
signals.

n DTMF tones are on your telephone key pad.

n MF and R2 signals are used in communication between two
COs or between COs and digital telephony boards.

Brooktrout boards with voice processing capabilities can handle
the four types of signals regardless of the interface.
16 RealCT Direct API Developer Guide

Defining Digit Types
Defining Digit Types

The four methods of sending digits all convey the same
information to the CO about which digit the transmitting end
dialed. Some methods, such as R2 signaling, convey additional
information about the call such as call priority or line status.

When you dial a number on a standard analog phone, the CO
receives the digits and routes the call to the appropriate
destination. If necessary, the CO communicates with COs in
route to the far end using the appropriate signaling method for
that line such as MF or R2 digits. For example, if you call a
telephony application that uses a T1 line, you dial DTMF digits
on your touchpad. The CO then establishes the call with the far
end using MF digits. Once the audio path is established, you
navigate the application using DTMF digits.

Defining Rotary Digits

Rotary digits are the ones you dial on a rotary phone. As the dial
turns, the loop current is interrupted once for each number. For
example, when you dial ‘7’, the telephone briefly opens and
closes the hook relay seven times, which results in pulses of loop
current. You hear two ticking sounds for each pulse, one when
the loop current is interrupted and one when it is reestablished,
for a total of 14 ticks when you dial the number ‘7’.

Although you can place calls using rotary digits, not all
telephony applications recognize rotary digits so you cannot
always use them to navigate through the system.
August 2001 17

Chapter 2: Digit Handling
Defining DTMF Signals

DTMF digits are the ones on your telephone keypad. Figure 4
shows the combination of two out of eight possible frequencies
that make up each digit. All digits in a given row share the same
low frequency. All digits in a given column share the same high
frequency.

Figure 4. Frequencies in DTMF Digits

For example, if you press ‘7’, your phone sends a dual-frequency
tone made up of 852 Hz and 1209 Hz to the CO. When you dial
out, the CO uses the digit as part of an address. During a call,
applications recognize DTMF tones as a way to navigate
through information. All Brooktrout boards can recognize and
send DTMF digits.

DTMF digits include the standard twelve keypad digits, along
with additional ‘A’, ‘B’, ‘C’, and ‘D’ signals. Phone systems use
these additional signals to assign priority to a call.

1 2 3

54 6

7 8 9

0 #*

A

B

C

D

1209 1336 1477 1633

697

770

852

941
18 RealCT Direct API Developer Guide

Defining Digit Types
Defining MF Signals

MF digits use combinations of 6 frequencies to make a total of
15 dual-frequency tones, as Table 5 shows. MF signals are also
called R1-MF.

Table 5. MF Tones

COs in the United States, Canada, and Japan generally use MF
digits to establish calls. Telephony systems that use T1 lines
also use MF digits to communicate with the CO. Once the call is
established, callers use DTMF digits to navigate telephony
applications.

MF signaling uses five signals in addition to digits 0 through 9.
The key pulse (KP) signal comes at the beginning of any digit
string and prepares the receiving end to accept the digits. The
start signal (ST) signal comes at the end of any digit string. The
remaining three signals (spare) are reserved for the national
identity of the receiving end.

Digits Frequencies

700 900 1100 1300 1500 1700

1 x x

2 x x

3 x x

4 x x

5 x x

6 x x

7 x x

8 x x

9 x x

0 x x

spare x x

spare x x

KP x x

spare x x

ST x x
August 2001 19

Chapter 2: Digit Handling
Defining R2 Signals

COs outside the United States, Canada, and Japan generally
use R2 digits to establish calls. Digital telephony systems in
these countries also use R2 digits to communicate with the CO.
R2 signals, which are also called R2-MF, involve a compelled
handshake between the transmitting and receiving ends to
confirm that each end receives the signal. Once the call is
established, callers use DTMF digits to navigate telephony
applications.

Although R2 signals are often used over E1 lines, there is no
relationship between the R2-CCITT line protocols used by E1
lines and the R2 signaling.

Timing the Signals

In R2 inter-register signaling, each signal from the transmitting
end requires an acknowledgment from the receiving end. The
handshaking process ensures that both ends receive the signal
properly.

The end that originates the call has outgoing registers and
sends forward inter-register signals. The end that receives the
call has incoming registers and sends backward inter-register
signals. A compelled signal between outgoing and incoming
registers uses the following steps:

1. The outgoing R2 register starts transmitting a forward
signal.

2. The incoming R2 register sends a backward
acknowledgment signal as soon as it receives the forward
signal.

3. The outgoing R2 register stops sending the forward signal
when it receives the acknowledgment.

4. The incoming R2 register stops sending the
acknowledgment when it stops receiving the forward signal.

5. The outgoing register transmits the next R2 signal when it
stops receiving the previous backward acknowledgment
signal.

Figure 5 shows the sequence of events in R2 compelled
signaling.
20 RealCT Direct API Developer Guide

Defining Digit Types
Figure 5. The R2 Compelled Signaling Sequence

Each end waits for an acknowledgment or end of signal until it
times out. This handshaking makes compelled signaling more
robust than other non-compelled signaling methods.

The speed of compelled signaling depends on the quality of the
link. If the lines are good, then detection time and overall
performance is fast, but bad lines delay detection and slow down
the signaling. In non-compelled signaling, you would have to set
the digit duration high enough to account for bad lines, which
makes signaling consistently slow even if the lines are good.
August 2001 21

Chapter 2: Digit Handling
Assigning Frequencies

The forward and backward signals use a different set of six
frequencies for a total of 15 possible forward and backward
tones.

n Forward frequencies: 1380, 1500, 1620, 1740, 1860 and
1980 Hz

n Backward frequencies: 1140, 1020, 900, 780, 660 and 540
Hz

Networks can also operate using only five forward frequencies
for a total of ten signals, and four or five backward frequencies
for a total of six or ten signals. Mexico and China, for example,
use only four backward frequencies.
22 RealCT Direct API Developer Guide

Defining Digit Types
Table 6 shows how the frequencies combine to form signals
1 through 15 for forward and backward signals. Each frequency
is assigned a value for index (x) and a weight (y). As Table 6
shows, adding the index value and the weight value gives a
number from 1 to 15. For example, to form the digit one, add the
frequency for x=0 and y=1, or 1380 Hz and 1500 Hz for a
forward signal.

Table 6. R2 Tones

Combination Frequencies

x+y= No. Forward 1380 1500 1620 1740 1860 1980

Backward 1140 1020 900 780 660 540

Index (x) x=0 x=1 x=2 x=3 x=4 x=5

Weight (y) y=0 y=1 y=2 y=4 y=7 y=11

0+1= 1 x y

0+2= 2 x y

1+2= 3 x y

0+4= 4 x y

1+4= 5 x y

2+4= 6 x y

0+7= 7 x y

1+7= 8 x y

2+7= 9 x y

3+7= 10 x y

0+11= 11 x y

1+11= 12 x y

2+11= 13 x y

3+11= 14 x y

4+11= 15 x y
August 2001 23

Chapter 2: Digit Handling
Meaning of R2 Frequencies

The forward and backward signals each have two different
meanings, depending on when the signal is sent. The forward
signals are divided into Group I and Group II. The backward
signals are divided into Group A and Group B.

The first forward signal always has the Group I meaning, which
the incoming register acknowledges with a Group A response.
To switch over to using Group II and Group B meanings, the
incoming register sends a signal that prepares the outgoing
register to both send Group II signals and receive Group B
signals. When the signaling switches groups, the frequencies
used remain the same but their meaning changes. In systems
with only four or five backward frequencies, forward and
backward signals are usually divided into three groups.
Increasing the number of groups makes up for the smaller
number of available signals.

Since each tone has two meanings, R2 signaling can convey
more information than other signaling methods without using
additional frequencies.

Some signals are reserved to be defined locally, so check with
the local carrier for information about what the signals mean in
that area. Because of regional differences, you might need to
customize applications for each country.
24 RealCT Direct API Developer Guide

Defining Digit Types
Group I Signals

Table 7 shows the meaning of the Group I signals as they are
defined in the ITU-T standards. These signals convey
information about the country or the language of the originating
call or the digits in a number. The meaning of Group I signals
depends on whether they are sent at the beginning of a call or
in response to a Group A request for information.

Table 7. Group I Signals

Signal Meaning 1 Meaning 2

1 Language: French Digit 1

2 Language: English Digit 2

3 Language: German Digit 3

4 Language: Russia Digit 4

5 Language: Spanish Digit 5

6 Spare (language) Digit 6

7 Spare (Language) Digit 7

8 Spare (Language) Digit 8

9 Spare (Discriminating) Digit 9

10 Discriminating digit Digit 0

11 Country code: outgoing
half-echo suppressor
required

Access to incoming operator

12 Country code: no
echo-suppressor required

i) Access to delay operator

ii) Request not accepted

13 Test call indicator i) Access to test equipment

ii) Satellite link not included

14 Country code: outgoing
half-echo suppressor
inserted

i) Incoming half-echo
suppressor required

ii) Satellite link included

15 Signal not used End of identification
August 2001 25

Chapter 2: Digit Handling
Group II Signals

The outgoing register switches to Group II signals after the
incoming register sends signal A-3 or A-5. These signals tell the
receiving end the call category: subscriber, operator, or data.
Table 8 shows the meanings of the Group II signals.

Table 8. Group II Signals

Signal Meaning Comments

1 Subscriber without priority Used nationally

2 Subscriber with priority

3 Maintenance equipment

4 Spare

5 Operator

6 Data transmission

7 Subscriber, or operator
without forward transfer
facility

Used internationally

8 Data transmission

9 Subscriber with priority

10 Operator with forward
transfer facility

11 Spare for national use

12

13

14

15
26 RealCT Direct API Developer Guide

Defining Digit Types
Group A Signals

The incoming register sends Group A signals in
acknowledgment to the Group I signals sent by the outgoing
register. These signals request additional information from the
transmitting end. Signals A-3 and A-5 prepare the outgoing
register to both receive Group B signals and send Group II
signals. Systems that use 6 or 10 backward signals have
significantly different meaning for the signals. Table 9 shows
the meanings of the Group A signals in a system that uses 15
signals.

Table 9. Group A Signals

Signal Meaning

1 Send next digit (n+1)

2 Send last but one digit (n-1)

3 Change to receive Group B signals

4 Congestion in the national network

5 Send calling party’s category

6 Address complete, charge, set up speech conditions

7 Send last but two digit (n-2)

8 Send last but three digit (n-3)

9 Spare for national use

10 Spare for national use

11 Send country code indicator

12 Send language or discriminating digit

13 Send nature of circuit

14 Request information about whether an incoming
half-echo suppressor is required

15 Congestion in an international exchange or at its
output
August 2001 27

Chapter 2: Digit Handling
Group B Signals

The incoming register sends Group B signals after sending A-3
or A-5. The Group B signals provide information about the
subscriber’s line. Table 10 shows the meanings of the Group B
signals.

Table 10. Group B Signals

Signal Meaning

1 Spare for national use

2 Send special information tone

3 Congestion encountered after changing from Group
A to Group B signals

4 Unallocated number

5 Subscriber’s line free, charge

6 Subscriber’s line free, no charge

7 Subscriber’s line out of order

8 Spare for national use

9

10

11

12

13

14

15
28 RealCT Direct API Developer Guide

Sending and Receiving Digits
Sending and Receiving Digits

Handling Rotary Digits

Boards with VP resources can receive rotary digits but cannot
dial rotary digits.

Each phone is connected to a line with unique electrical
characteristics, and phones send digits with slightly different
timing. For the application to properly receive rotary digits from
different phones, it must train to recognize the way that phone
sends rotary pulses. The best way to recognize the digits is to
train at the beginning of a call by asking the caller to press ‘0’ if
they have a rotary phone. The application then uses the ‘0’ digit
to learn the timing of that phone. The application can then
recognize any rotary digits from that phone.

Use the following procedure to receive rotary digits:

1. Specify what type of digits the application receives using
RHT_SET_DIGIT_MODE.
Set the mode to EN_ROTARY to receive rotary digits. You
can specify that your application also receive DTMF or
MF digits.

2. Train rotary digits using RHT_TWAIT_DIGIT or
RHT_PRE_REC.
These functions both use the data structure VPstartStop_s,
which has a field for rotary training. Set that field to train
on digit ‘7’, ‘8’, ‘9’, or ‘0’. For most operations, ‘0’ provides the
best training. In the application, ask customers to dial the
digit you specify in VPstartStop_s.

3. Check the status of rotary training using
RHT_GET_ROTARY_INFO.

4. Receive rotary digits using RHT_TWAIT_DIGIT,
RHT_READ_DIGIT, RHT_PLAY, or RHT_REC.
Once you have trained the application to recognize pulse
characteristics from that phone, it can recognize any rotary
digit.
August 2001 29

Chapter 2: Digit Handling
Handling DTMF and MF Digits

To send and receive DTMF and MF tones, use the following
procedure:

1. Specify what type of digits the application receives using
RHT_SET_DIGIT_MODE.
Set the mode to EN_DTMF for DTMF digits or EN_MF for
MF digits.
You can enable rotary detection with DTMF or MF
detection, but the application cannot detect both MF and
DTMF digits. The two signaling methods use similar
frequencies, which could lead to inaccurate signal detection.

2. Receive tones using RHT_TWAIT_DIGIT or
RHT_READ_DIGIT.
These functions use the RHT_SET_DIGIT_MODE to
determine what type of digit to receive.
RHT_TWAIT_DIGIT and RHT_READ_DIGIT clear the
digit from the digit buffer.

3. Send digits using RHT_DIAL.
If you specify a VP device, RHT_DIAL sends DTMF digits
by default. To send MF digits, use an ‘M’ in the string passed
to RHT_DIAL. To specify DTMF digits, use a ‘T’ in the
string. For example, the string “123M456T7” specifies
DTMF digits 1, 2, 3, then MF digits 4, 5, 6, then DTMF
digit 7.
30 RealCT Direct API Developer Guide

Sending and Receiving Digits
Handling R2 Digits

To send and receive R2 digits, use a similar procedure to
handling DTMF and MF digits, except use RHT_DIAL_R2 to
send R2 tones. RHT_DIAL_R2 handles all aspects of the
compelled protocol. When it returns, the application can proceed
to send or receive the next signal.

Send R2 digits in either compelled or pulse mode. In compelled
mode, RHT_DIAL_R2 sends the digit until it detects the
appropriate acknowledgment from the other end. In pulse
mode, the function sends the digit for an amount of time
specified by VPdialR2_s.Pulse, regardless of signals received
from the far end.

Before sending or receiving digits, use
RHT_SET_DIGIT_MODE to specify whether the application
detects forward or backward signals. RHT_DIAL_R2 also uses
this setting to determine which digits to send. If
RHT_SET_DIGIT_MODE specifies to detect backward signals,
then RHT_DIAL_R2 dials forward signals and vice versa.

The following steps show how to handle R2 signaling if the
application receives a call:

1. Set RHT_SET_DIGIT_MODE to EN_R2_FORWARD.
The application receives forward signals and sends
backward signals.

2. Specify the maximum time to wait for the forward digit to
terminate using RHT_SET_GLOB.

3. Detect forward digits using RHT_TWAIT_DIGIT with a
digit count of 1 and a timeout of 15 seconds.
RHT_TWAIT_DIGIT returns when it detects a forward
digit. It clears the digit from the digit buffer.

4. Transmit the appropriate backward signal using
RHT_DIAL_R2.
If RHT_DIAL_R2 returns successfully and more signals are
expected, return to step 3.
August 2001 31

Chapter 2: Digit Handling
The following steps show how to handle R2 signaling if the
application transmits a call:

1. Set RHT_SET_DIGIT_MODE to EN_R2_BACKWARD.

The application receives backward signals and sends
forward signals.

2. Specify the maximum time to wait for a backward digit
using RHT_SET_GLOB.

3. Transmit the forward signal using RHT_DIAL_R2.
RHT_DIAL_R2 terminates when it detects the backward
signal.

4. Read the digit using RHT_TWAIT_DIGIT or
RHT_READ_DIGIT with a digit count of 1.
Since RHT_DIAL_R2 has already detected a digit,
RHT_TWAIT_DIGIT should return immediately and
successfully. RHT_TWAIT_DIGIT clears the digit from the
digit buffer.

5. If the application needs to send more digits, return to step 3.
32 RealCT Direct API Developer Guide

Sending and Receiving Digits
Example 1 shows how to send digits using RHT_DIAL_R2.

Example 1. RHT_DIAL_R2 Sample Code

#include “brktddm.h”

int main(int argc, char **argv)

{

BRKT_HANDLE VpHandle; /* VP device handle */

BOOLEAN IoctlResult; /* Result of IOCTL call */

BRKT_SIZE_T BytesReturned; /* Bytes returned from IOCTL call*/

USHORT DigitMode;

struct VPdialR2_s Dial;

/* Open VP device */

VpHandle = BrktOpenDevice (BRKT_DEVICE_VP, 0);

/* Set digit mode to detect forward R2 digits */

DigitMode = EN_R2_FORWARD;

IoctlResult = BrktDeviceIoControl (

VpHandle,

RHT_SET_DIGIT_MODE,

&DigitMode, /* Buffer to driver */

sizeof(DigitMode),

NULL,

0,

&BytesReturned,

NULL); /* Wait until I/O is complete */
August 2001 33

Chapter 2: Digit Handling
Example 1. RHT_DIAL_R2 Sample Code (Continued)

/* Dial R2 backward digit. Synchronous call. */

memset (&Dial, 0 sizeof (Dial));

Dial.R2Digit = 2; /* Dial R2 backward digit 2 */

Dial.Pulse = 0; /* Use compelled mode */

IoctlResult = BrktDeviceIoControl (

VpHandle,

RHT_DIAL_R2,

&Dial, /* Buffer to driver */

sizeof(Dial),

NULL,

0,

&BytesReturned,

NULL); /* Wait until I/O is complete */

if (!IoctlResult)

printf ("RHT_DIAL_R2 failed: BrktGetLastError = %d\n",
BrktGetLastError (VpHandle));

BrktCloseDevice (VpHandle);

}

34 RealCT Direct API Developer Guide

Sending and Receiving Digits
Flushing the Digit Buffer

Before detecting new digits from an incoming call, flush the
digit buffer using RHT_FLUSH_DIGIT. In a well designed
application there should never be digits remaining in the buffer
after a call, since the digits are deleted after the application
reads them. However, if the application does not run properly,
then extra digits might remain in the buffer even after you
terminate the application, remove any bugs, and run it again.

Flushing the digit buffer is particularly important in handling
R2 digits. If digits remain in the digit buffer from a previous
call, the application inappropriately responds to the digits
although no digits have been sent on the line. The resulting
protocol violation causes the carrier to drop the call.

The best time to flush digits is after going on-hook but before
monitoring for a new call using RHT_WAIT_LINE_ON. If you
flush digits after calling RHT_WAIT_LINE_ON, your thread
could get pre-empted. If that happens, the function might not
execute until after the application has started receiving digits
from a new call. When the application eventually flushes the
digit buffer, it clears digits that are already stored so the
application doesn’t receive the entire digit string. In R2
signaling, the application waits for a new digit rather than
acknowledging any of the deleted received digits. However, the
other end doesn’t send a new digit until it receives an
acknowledgment. The function eventually times out when
neither end receives the expected signal.

The timing of when to flush digits is less important if the
application is sending the call. However, it is best to flush digits
before beginning the call. This way, if you ever reuse the code as
the receiving end, the application will not flush digits at the
wrong time.
August 2001 35

Chapter 2: Digit Handling
Troubleshooting

The RHT_DIAL_R2 function returns successfully when it sends
the R2 signal and detects a digit of the opposite type. When
RHT_DIAL_R2 returns, you should check the termination
condition in RHT_GET_STATUS. Call RHT_GET_STATUS for
either a VP or line device. It returns the VP termination type in
the structure VPchanStatus_s, or the line termination type in
RTNI_lineStatus_s.

Some possible VP termination conditions when making an R2
call include:

T_RHT_N_DIGITS Indicates that RHT_TWAIT_DIGIT detected an R2 digit.

T_RHT_TIMEOUT Indicates that RHT_DIAL_R2 did not detect a backward digit
within the time specified by VPP_R2_TIMEOUT, or that it did
detect a digit but the digit did not terminate within the time
specified by VPP_R2_TIMEOUT after the forward signal
stopped.

This termination condition should only happen with
RHT_DIAL_R2, and not with RHT_TWAIT_DIGIT. Since the
application doesn’t call RHT_TWAIT_DIGIT until
RHT_DIAL_R2 has detected a digit, RHT_TWAIT_DIGIT
should never experience timeouts.

T_RHT_LINEOFF Indicates the function terminated due to a condition detected on
the line. In this situation, call RHT_GET_STATUS for the line
device to find the termination type for the line. Some common
termination types include:

LOOP_OFF Indicates that the remote end
disconnected. In this case, the
application should terminate the call.

UNEXPECTED_CALL_ANSWERED

Indicates the far end answered the call
during the R2 signaling. This
termination generally indicates that
you are trying to send too many digits.

For a complete list of error codes returned by
RHT_GET_STATUS, see the RealCT Direct API Reference
Manual. For most line terminations types, you should end the
call using RHT_DISCONNECT.
36 RealCT Direct API Developer Guide

3
T1 Networking

This chapter describes T1 networking in your system
environment.

The T1 and NetAccess board provides two T1 trunks for
high-speed communications. The T1 board provides only T1 line
resources. It must be in a system with a board that provides
voice processing resources over a CT bus such as the Vantage
series products.

This chapter includes the following sections:

n Understanding T1 Trunks

n Configuring the T1 Environment

n Handling Incoming and Outgoing Calls

n Using Internal Signaling Streams

n Testing the T1 Setup

n Troubleshooting
37

Chapter 3: T1 Networking
Understanding T1 Trunks

T1 trunks provide digital communications in North America,
Japan, and Hong Kong. A T1 trunk carries 24, 64 Kb/s lines. An
additional 8 Kb/s signal provides synchronization information.
The combination of the 24 lines plus the synchronization
information yields a 1.544 Mb/s signal:

(24 X 64 Kb/s) + 8 Kb/s = 1,544 Kb/s or 1.544 Mb/s

The T1 board provides two 24-line T1 trunks for a total of
48 T1 lines. The T1 board only provides T1 line resources; RDSP
or Vantage series boards provide voice processing resources
through the MVIP bus.

Transmitting Digital Data

Digital data is composed of zeros and ones that the CO and CPE
transmit as an electrical signal. The waveform used to indicate
zeros and ones is called line coding. The CO and CPE must use
the same line coding method in order to communicate properly.
There are three basic types of line codes: Binary, Polar, and
Bipolar.

n The Binary signal, also called unipolar, uses two voltage
levels to represent zero and one bits. In Figure 6, 0V
represents zero and +3V represents one. This line coding
method is called unipolar because it is not symmetrical
around 0V.

n The Polar signal uses the positive and negative voltage of a
certain value to represent zero and one. In Figure 6, –1.5V
represents zero and +1.5V represents one. This code is also
called a non-return to zero (NRZ).

In polar and binary signals, the signal level remains
constant throughout the time that the bits are transmitted
on the line. For example, if four ones are transmitted, the
signal remains at some positive voltage for the duration of
the ones transmission.
38 RealCT Direct API Developer Guide

Understanding T1 Trunks
n The Bipolar signal, also called Alternate Mark Inversion
(AMI), uses 0V to represent zero and alternating positive
and negative pulses to represent ones. AMI is the default
line coding method for T1 boards.

Figure 6 shows the three line coding methods.

Figure 6. T1 Line Coding Methods

1 0 1 0 1 1 1 1 1 1 10 0 0 0 0 0 0

Bit Stream Code

Binary Signal (Unipolar)

Bipolar (AMI - Alternate Mark Inversion)

Polar Signal

0V
+3V

0V
+1.5V

-1.5V

0V
+3V

-3V
August 2001 39

Chapter 3: T1 Networking
Notice that in AMI line coding, each one alternates polarity and
the voltage returns to zero between pulses. Two subsequent
ones with the same polarity are called a bipolar violation.
Figure 7 shows a proper AMI signal and two bipolar violations.
Bipolar violations could lead to crackling on the line. To check
for bipolar violations, call RHT_GET_STATUS. See
Troubleshooting on page 81 for more information about how to
handle bipolar violations.

Figure 7. A Bipolar Violation in an AMI Signal

In AMI signaling, a long series of zeros is represented by a
constant 0V signal. The two ends can lose timing if there is no
signal on the line to synchronize them. To maintain ones
density on the line, some carriers replace zeros on the line with
ones. T1 devices support two line coding methods for
maintaining the appropriate ones density: ZCS and B8ZS.

In ZCS (Zero Count Substitution), the transmitting end replaces
the most significant bit of each eight-bit timeslot with a one,
regardless of whether the bit was a one or a zero. This method
is also called bit stuffing.

0 0 1 1 0 0 11 0

ar Violation
40 RealCT Direct API Developer Guide

Understanding T1 Trunks
In B8ZS (Binary 8-Zero Substitution), the transmitting end
replaces a series of eight zeros with a ones-rich pattern. B8ZS
coding inserts a bipolar violation as a signal to the receiving end
to reinsert the original zeros. Figure 8 shows the B8ZS
replacement patterns. Notice that the replacement pattern that
is inserted depends on the polarity of the preceding one.

Figure 8. The B8ZS Replacement Pattern

0 0 1 1 00 1 1

0 0 0 0 0 000 Original pattern

Replacement pattern

Replacement pattern
depends on polarity
of the preceding 1.
August 2001 41

Chapter 3: T1 Networking
Organizing the T1 Data

Organizing Data into T1 Frames

The T1 line carries data from 24 channels over two pairs of
wires (one to transmit data and one to receive it). At the
transmitting end, a multiplexer receives a 64 Kb/s signal from
each of the 24 channels. It interleaves 8 bits of data from each
channel into a single serial stream of data. To carry 24 64 Kb/s
channels plus an 8 Kb/s signal, the T1 line runs at 1.544 Mb/s.
The process of interleaving data from each channel is called
time division multiplexing (TDM).

Figure 9 shows data entering a multiplexer and being
transmitted on the line. The multiplexer at the far end
separates the data into the original 24 lines.

Figure 9. A T1 Line

The transmitting end formats the T1 data into frames so the
receiving end can interpret the data. One frame contains 8 bits
of data for each channel in 24 8-bit timeslots. The T1 timeslots
in a frame are numbered sequentially beginning with 0 (0
through 23). The timeslots correspond to line number, so
timeslot 0 carries 8 bits of data for channel 0. A single 64 Kb/s
channel (made up of one timeslot from each frame) is called the
DS0 signal.

Multiplexer

1.544 Mb/s

MultiplexerLine 0 (64 Kb/s)
 - - -
Line 23 (64 Kb/s)

Line 0 (64 Kb/s)
 - - -
Line 23 (64 Kb/s)
42 RealCT Direct API Developer Guide

Understanding T1 Trunks
A single bit at the beginning of each frame contains
synchronization information. This bit is also called the F-bit or
framing bit. Figure 10 shows a single T1 frame with the
24 timeslots and a single F-bit. The 24 64 Kb/s lines plus the
F-bit make up a DS1 signal.

Figure 10. A T1 Frame Carrying 24 8-bit Timeslots

Each frame has a period of 125 µs, or 8000 frames per second.
This means that each channel receives 8000 8-bit timeslots per
second, or 64 Kb/s:

8000 timeslots/second x 8 bits/timeslot = 64 Kb/s

0 1 2 3 23222120

00101101

8-bit timeslot

F2322 10F

DS1 125 S

Line 0 - - -Line 23

Line 0 - - -Line 23
August 2001 43

Chapter 3: T1 Networking
Organizing Frames into D3/D4 and
ESF Superframes

The 24-timeslot frames are grouped into one of two types of
superframes: D3/D4 or ESF.

D3/D4 Superframes

D3/D4 superframes consist of 12 frames. The framing bits at the
beginning of each frame form the sequence: 100011011100. For
example, the F-bit for the first frame is a 1, for the second frame
it is a 0, and so on through the 12-bit sequence for the 12 frames,
as shown in Figure 11.

Figure 11. A 12 Frame D3/d4 Superframe Showing the F-bit
Sequence

D3/D4 superframes use the least significant bit from each
timeslot in the sixth and twelfth frames for signaling. This is
called robbed bit signaling, since the signaling bits are
essentially robbed from the voice data. In robbed bit signaling,
two bits from each channel are robbed per superframe. The first,
in the sixth frame, is called the A bit. The second, in the twelfth
frame, is called the B bit.

The A and B bit carry information about the line state, such as
on hook, off hook, disconnected, or answered. For information
about the A and B bit settings in the different protocols, see
Appendix A, T1 Line Protocols, on page 223.

0

0 0 0 0 0 0

F 1

1 1 1 1 1 1

2 23222120

01100111
8-bit timeslot

T1 Frame 125 S

D3/D4 Superframe
44 RealCT Direct API Developer Guide

Understanding T1 Trunks
ESF Superframe

Extended superframes (ESF) consist of 24 frames. Unlike
D3/D4 frames, the F-bits are not all used for synchronization.
Only the F-bits for frames 3, 7, 11, 15, 19, and 23 carry
synchronization information. These follow the pattern: 001011.
For example, the F-bit for the fourth frame is a 0, and for the
eighth frame it is a 0, and for twelfth frame it is a 1, and so on
through the sequence, as shown in Figure 12.

The F-bit for frames 1, 5, 13, 17, and 21 carries error checking
information (CRC). For each superframe, the transmitting end
calculates a cyclic redundancy checksum for the data and places
the results in the following superframe. The remaining frames
carry network information.

As with D3/D4 superframes, ESF superframes rob the least
significant bit for each timeslot of every sixth frame for
signaling information. With 24 frames in a superframe, this
means that four bits per channel are used for signaling, as
shown in Figure 12. The first is bit A, the second bit B, the third
bit C, and the fourth is bit D. In most signaling protocols, C is
set to equal A, and D is set to equal B. However, in proprietary
protocols, these bits can be set to different values to indicate line
state.
August 2001 45

Chapter 3: T1 Networking
Figure 12 shows a single timeslot within an ESF superframe.
Each timeslot in the superframe follows the same pattern for
signaling bits.

Figure 12. An ESF Superframe

T1 devices support both D3/D4 and ESF framing. Be sure your
application uses the same framing method as your carrier.
Using the wrong framing method causes the two ends not to
synchronize.

Data

Data
CRC

0 1 2 3 4 5 6 7
0

0
Data

Data
CRC

0
Data

Data
CRC

1
Data

Data
CRC

0
Data

Data
CRC

1
Data

Data
CRC

1

1
2
3
4
5 A

B

C

D D

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

F

Bits in timeslot 0

Frame
number

Through timeslot 23

C

46 RealCT Direct API Developer Guide

Configuring the T1 Environment
Configuring the T1 Environment

Configuring the T1 environment involves the following steps:

1. Setting the clock
2. Loading the line protocol
3. Configuring the carrier

Setting the Clock

T1and E1 boards must have their clock synchronized with the
network and with other boards connected in a CT bus. In a
CT bus, one board drives the clock and all other boards retrieve
the clock from the bus. If the system contains T1 or E1 boards,
one drives the clock based on the signal it receives from its
network trunk A or B. This synchronizes the CT bus with the T1
or E1 network. Otherwise, an RTNI-ATSI or Vantage PCI board
uses its internal oscillator to set the CT bus clock.

Configure the clock using CONFIG_CLOCK. For specific
information about setting the clock for boards in an CT bus,
examples of system configurations, and sample code, see
Configuring the MVIP-90 Clock on page 150.

If you do not set the clock correctly or if you specify more than
one board to drive the clock, you could either lose data or
transfer data improperly to other boards in the CT bus. An
incorrect clock setting can also lead to crackling noise on the
line.
August 2001 47

Chapter 3: T1 Networking
Loading the Line Protocol

The line protocols determine how the central office (CO) and
customer premise equipment (CPE) communicate using the A
and B signaling bits. Both ends must use the same protocol in
order to communicate properly. The most common protocols are
Wink Start, Double Wink Start, Immediate Start, Loop Start,
and Ground Start.

The protocol files convert the API functions such as
RHT_ON_HOOK and RHT_OFF_HOOK into appropriate
signaling patterns and timing for the protocol. For example, if
an application calls RHT_ON_HOOK, the protocol file handles
any signaling or timing involved in going on hook for the current
protocol. An application can load a protocol at run time, so one
application can use different protocols without modifying any
code. Be sure to load the protocol before configuring the line
carrier.

Specify the protocol your application uses either when you
configure drivers with the Configuration Wizard or by calling
RHT_LOAD_PROTOCOL. The T1 driver uses the Wink Start
protocol by default. The two T1 trunks on an T1 board can each
run different protocols, but all lines on a specific trunk use the
same protocol. To find out what protocol file is currently loaded
on a given trunk, call RHT_GET_STATUS. This function also
provides the file version, source file name, and compiler version
used to generate the protocol.

Once loaded, a protocol stays in effect until it is overwritten by
a new protocol or the drivers stop. An application should always
load the appropriate protocol at runtime to prevent a previously
loaded protocol from causing the application to malfunction.

Table 11 shows the protocols Brooktrout supports and the
protocol file names. These files are distributed with the T1
drivers. For specific information about the A and B bit patterns
in the T1 line protocols, see Appendix A, T1 Line Protocols, on
page 223.
48 RealCT Direct API Developer Guide

Configuring the T1 Environment
Table 11. Protocol File Names

The Immediate Start, Wink Start, and Double Wink Start
protocols are symmetrical. The CO and CPE transmit identical
bit patterns for each line state. Your application uses the same
protocol file whether it functions as a CPE or emulates a CO.

The Loop Start and Ground Start protocols are asymmetrical.
The CO and CPE transmit a different bit pattern to indicate the
same condition. For example, the bit pattern the CO transmits
to indicate answer is different from the bit pattern the CPE
transmits to indicate answer. If you use these protocols, you
load a different protocol file depending on whether your
application acts as a CPE or CO.

If your system is in a loopback configuration using a
asymmetrical protocols, one trunk uses the CO protocol file and
the other trunk uses the CPE protocol file.

Protocol File name

Wink Start wink.mto

Double Wink Start wink.mto (same as wink start)

Immediate Start imdt.mto

Loop Start stlpst.mto and colpst.mto

Ground Start stgndst.mto and cogndst.mto
August 2001 49

Chapter 3: T1 Networking
Example 2 shows how to load the Wink Start protocol using
RHT_LOAD_PROTOCOL.

Example 2. RHT_LOAD_PROTOCOL Sample Code

#include “brktddm.h”

int main(int argc, char **argv)

{

BRKT_HANDLE BoardHandle;

FILE* ProtocolFile;

BOOLEAN IoctlResult;

BRKT_SIZE_T BytesReturned;

BRKT_SIZE_T FileSize, BytesRead;

USHORT* pProtocolBuffer;

struct LoadProtocol_s Protocol;

BoardHandle = BrktOpenDevice (BRKT_DEVICE_T1_BOARD, 0);

/* Open Protocol File */

ProtocolFile = fopen ("WINK.MTO", "rb");

FileSize = _filelength (_fileno (ProtocolFile);

pProtocolBuffer = malloc (FileSize);

if (pProtocolBuffer == NULL)

{

printf ("Can't allocate memory for protocol.\n");

return;

}

BytesRead = fread (pProtocolBuffer, sizeof (UCHAR), FileSize,
ProtocolFile);

fclose (ProtocolFile);
50 RealCT Direct API Developer Guide

Configuring the T1 Environment
Example 2. RHT_LOAD_PROTOCOL Sample Code
(Continued)

memset (&Protocol, 0, sizeof (Protocol));

Protocol.Length = FileSize;

Protocol.Protocol = pProtocolBuffer;

Protocol.Trunk = M_TRUNK0; /* Trunk 0 */

IoctlResult = BrktDeviceIoControl (

BoardHandle,

RHT_LOAD_PROTOCOL,

&Protocol, /* Buffer to driver */

sizeof(Protocol), /* Length */

NULL, /* Buffer from driver */

0, /* Length */

&BytesReturned,

NULL); /* Wait till I/O complete */

if (!IoctlResult)

printf ("LOADPR failed: BrktGetLastError = %d\n",
BrktGetLastError (BoardHandle));

else

printf ("LOADPR done \n");

BrktCloseDevice(BoardHandle);

}

August 2001 51

Chapter 3: T1 Networking
Configuring the Carrier

The carrier parameters determine what framing methods, line
coding methods, and other parameters the board uses to send
and receive data. The parameters you set must match those of
the carrier.

There are several ways to configure carrier parameters.
Configure all channels on a given trunk to use the same values,
using CONFIG_CARRIER. To configure the robbed bit, invert,
or loopback parameters separately for individual channels, use
CONFIG_CHANNEL and RHT_CONFIG_CHANNEL.
However, since there is rarely a need to configure these
parameters separately, we recommend using
CONFIG_CARRIER. To configure only line coding and framing
for all channels on a given trunk, use the Configuration Wizard.

For all parameters, contact your carrier for information about
the appropriate settings.

Configuring the Framing Method

T1 boards support D3/D4 and ESF framing, as described in
Organizing the T1 Data on page 42. Setting the incorrect
framing mode can cause a loss of synchronization, so be sure
your configuration matches your carrier.

Configuring the Line Coding Method

T1 boards support AMI, AMI with ZCS, or AMI with B8ZS line
coding, as described in Organizing the T1 Data on page 42.
Setting the incorrect line coding method can cause bipolar
violations or noise on the line, so be sure your configuration
matches your carrier.
52 RealCT Direct API Developer Guide

Configuring the T1 Environment
Configuring Debounce

When debouncing is enabled, the board waits for the signaling
bits to be stable before relaying the information to the drivers.
Waiting for the bits to stabilize prevents errors from being
handled as if they were valid signals. Debouncing, which is also
called deglitching, should always be enabled.

The 6 to 9 ms wait is less than the minimum time used for signal
recognition protocols, so enabling debouncing should not
decrease performance. In fact, it should increase performance,
despite the delay, since the driver does not have to handle
spurious signals. The driver adds an additional debouncing time
at a higher software layer, which further reduces the risk of
spurious signals reaching the application.

Configuring the Loopback Mode

There are two software loopbacks set using
CONFIG_CARRIER: remote and local. These are used to test a
board or the data link. For information about additional
hardware loopbacks, see Troubleshooting on page 81.

n In a remote loopback, the board immediately transmits all
data it receives back to the CO. If all connections are
working, the CO should receive the same information it
transmitted. If any transmission errors disappear in the
remote loopback configuration, the problem is with the
clock or carrier settings in your application. If the problem
does not disappear, the problem is either the cabling or at
the carrier end.

n In a local loopback, the board receives the same data it
transmits, without passing through any cabling. If placing
your board in a local loopback fixes problems you
experienced on the line, the problem is with the cabling or
with the carrier. If a local loopback does not fix errors, then
the board is not sending valid data.

When you first load the driver, it has both loopback modes
enabled by default. In this configuration, both the board and the
CO only receive the data they transmit. This configuration lets
you verify that both the board and CO can send and receive
valid data. For normal operation, remove both loopbacks so that
the board and CO can transmit and receive data.
August 2001 53

Chapter 3: T1 Networking
Configuring the Line State

When loaded, each protocol automatically transmits the bit
pattern corresponding to the idle state. The drivers ignore the
‘Hook’ field in the carrier parameters.

Transmitting the proper line state is one reason to load the
protocols before configuring the carrier parameters. If you
configure the carrier first, the board might transmit an invalid
hook pattern on the line. This invalid signal could trigger
alarms at the CO. Although the alarms would disappear when
you load the line protocol and begin transmitting the
appropriate bit pattern, the CO switch might have blocked the
line in response to the alarm.

Configuring Invert

The invert parameter sets whether to invert the polarity of data
sent and received on the trunks. Invert should be always set to
0 (don’t invert) unless technical support explicitly requests that
you set it to invert the data.

Configuring Robbed Bit Signaling

Robbed bit signaling should always be enabled if your T1 trunk
is connected to a CO. In this mode, your board and the CO use
the A and B bits to signal information about the line as
described in Organizing the T1 Data on page 42. Disable robbed
bit signaling only if there is another way to communicate
signaling information. Normally, you would only disable robbed
bit signaling if the T1 trunk links different company premises
using a proprietary protocol.
54 RealCT Direct API Developer Guide

Configuring the T1 Environment
Example 3 shows how to configure the first trunk of the first
T1 board for D3/D4 framing, B8ZS coding, and default values
for all other fields.

Example 3. CONFIG_CARRIER Sample Code

#include “brktddm.h”

int main(int argc, char **argv)

{

BRKT_HANDLE BoardHandle; /* T1 board device handle */

BOOLEAN IoctlResult; /* Result of IOCTL call */

BRKT_SIZE_T BytesReturned; /* Bytes returned from IOCTL call*/

struct RTNI_T1carrierParam_s Carrier;

/* Open T1 board device */

BoardHandle = BrktOpenDevice (BRKT_DEVICE_T1_BOARD, 0);

/* Configure T1 carrier */

/* Set up same parameters for both trunks */

memset (&Carrier, 0, sizeof (Carrier));

Carrier.Size = sizeof(struct RTNI_T1carrierParam_s;

Carrier.Trunk = M_ALL_TRUNK;

Carrier.Frame = DT_D4; /* D3/D4 framing */

Carrier.Code = DT_AMI; /* Coding method: AMI with no ZCS */

Carrier.Debounce = 1; /* Enable debounce (deglitch) */

Carrier.Loopback = 0; /* Disable loopback */

Carrier.Invert = 0; /* Normal polarity */

Carrier.RobbedBit = 1; /* Enable robbed bit signaling */
August 2001 55

Chapter 3: T1 Networking
Example 3. CONFIG_CARRIER Sample Code (Continued)

IoctlResult = BrktDeviceIoControl (

BoardHandle,

CONFIG_CARRIER,

&Carrier, /* Buffer to driver */

sizeof(Carrier),

NULL,

0,

&BytesReturned,

NULL); /* Wait until I/O is complete */

if (!IoctlResult)

printf ("CONFIG_CARRIER failed: BrktGetLastError = %d\n",
BrktGetLastError (BoardHandle));

BrktCloseDevice(BoardHandle);

Return(0);
56 RealCT Direct API Developer Guide

Handling Incoming and Outgoing Calls
Handling Incoming and Outgoing Calls

Processing Calls

Call processing involves setting up and tearing down calls. Calls
have to be processed before they are connected, so be sure to
verify call processing in the early stages of development.

Table 12 shows the functions used in sending and receiving calls
over a T1 line. These functions are the same as those used in
analog telephony. The protocol files translate these functions
into the specific bit patterns and handshaking signals used by
the T1 protocols, as described in Loading the Line Protocol on
page 48.

Table 12. API Functions Used in T1 Signaling

Function Description

RHT_WAIT_LINE_ON Waits for an incoming call and
automatically acknowledges
it.

RHT_OFF_HOOK

RHT_SEIZE_LINE

Answers an incoming call or
initiates an outgoing call.

RHT_ON_HOOK

RHT_DISCONNECT

Terminates incoming or
outgoing calls.

RHT_STOP Terminates a function.

RHT_WAIT_LINE_OFF Monitors the line waiting for a
disconnect.

RHT_WAIT_ANSWER Monitors the line waiting for
an answer.

RHT_WAIT_IDLE Waits for an idle pattern on
the line.
August 2001 57

Chapter 3: T1 Networking
Handling Incoming Calls

Handling incoming calls involves the following steps:

n Detect an incoming call

n Detect digits

n Send control tones

n Answer the call

n Monitor for a disconnect

n Terminate the call

Detecting an Incoming Call

The application calls RHT_WAIT_LINE_ON when it is ready to
receive a call. This function waits until it receives a seizure or a
ring, then sends any acknowledgment signals required by the
protocol. After acknowledging the call, if required, the function
waits for an amount of time specified by the
RDG_LOCAL_ACK_GUARD_TIME parameter, then returns.
The application is then ready to start receiving digits. The
series of events involved in detecting an incoming call is shown
in Table 13.

Table 13. RHT_WAIT_LINE_ON Sequence

Action Duration

Receive seizure or ring

Send acknowledgment
(if required)

Wait RDG_LOCAL_ACK_GUARD_TIME

Return
58 RealCT Direct API Developer Guide

Handling Incoming and Outgoing Calls
The function automatically sends any acknowledgments
required by the protocol. This serves two purposes. First, it
isolates the application from the protocol. You can communicate
with different carriers simply by switching protocol files rather
than making changes to the application. Second, it improves
timing. In a heavily loaded system, threads and processes can
be preempted at almost any time, and it might take several
seconds before they can run again. If one function detected a call
and another sent the acknowledgment, the two signals could be
several seconds apart. This delay might exceed the maximum
allowed by the originating end.

The guard time adds a space between two consecutive line
function calls so the remote end can detect a change in the
signaling bits. One example of when a guard time is necessary
is in an application designed to answer a call, play a file, then
disconnect. If the application cannot play the file, it
immediately hangs up. If the answer is on the line for a very
short amount of time before the disconnect, the remote end
might mistake the on hook/off hook/on hook pattern as a wink
rather than an answer followed by a disconnect. A guard time
after going on hook guarantees that the signal was on the line
long enough for the remote end to recognize the signal.
Although a guard time is not necessary in
RHT_WAIT_LINE_ON, it is available for consistency. It is set
to 0 by default.

If the application calls RHT_WAIT_LINE_ON when the line is
in a state other than idle, the function returns an error.

RHT_WAIT_LINE_ON should continuously wait for a call, even
though you can limit the function’s run time with the parameter
MDP_WAIT_LINE_ON_TIMEOUT. If you use this timeout to
monitor for other conditions, you could miss incoming calls. Use
another thread to do any necessary monitoring. To terminate
RHT_WAIT_LINE_ON, use RHT_STOP. The application is
notified that the function terminated and will take any
appropriate action.
August 2001 59

Chapter 3: T1 Networking
Detecting Digits

Once the application acknowledges the incoming call, the CO
usually sends call setup digits. In T1 applications, the CO
generally sends call setup information using MF or DTMF
digits, although Brooktrout boards with voice processing
capabilities recognize rotary, DTMF, MF, or R2 digits.

Before detecting new digits from an incoming call, flush the
digit buffer using RHT_FLUSH_DIGIT. Otherwise, digits
stored in the buffer from a previous call could be handled in the
new call.

The best time to flush digits is after going on hook but before
calling RHT_WAIT_LINE_ON. If you flush digits after calling
RHT_WAIT_LINE_ON, your thread could get pre-empted and
rescheduled for after the application has started receiving digits
from a new call. When the application eventually flushes the
digit buffer, it clears digits from the current call and loses that
data.

For more information about handling digits, see Chapter 2,
Digit Handling, on page 15.
60 RealCT Direct API Developer Guide

Handling Incoming and Outgoing Calls
Sending Control Tones

In the Wink Start, Double Wink Start, or Immediate Start
protocols, your application emulates both the receiving end CO
and subscriber. The CO portion sends control tones such as
ringback and busy to indicate the status of the call to the other
end. In Loop Start or Ground Start protocols, your system acts
only as a subscriber and does not send control tones.

When a subscriber receives a call, the CO emulation part of the
application should determine the status of the line and send the
appropriate line signaling bits and either a busy or ringback
tone back to the caller. It also sends the hangup tone when the
subscriber initiates the call disconnection. Many applications
skip sending control tones and instead send the answer signal
immediately after receiving the incoming call, leaving the line
silent until the application is ready to start playing prompts or
a person can handle the call. If a calling party does not hear
control tones, they might think the call was lost and hang up,
especially if the application had to perform a lengthy task such
as querying a data base or checking the status of agents at a call
center.

Sending control tones also improves the timing of the call if
there are many transit COs between the calling party and your
application. In this case, it could take several hundred
milliseconds to establish an audio path between the two ends. If
the application immediately begins playing audio prompts after
receiving a call, the caller could lose the first portion of the
prompt that was played while the audio path was being
established. Sending control tones establishes a path before the
application begins playing so the caller hears the entire audio
prompt.
August 2001 61

Chapter 3: T1 Networking
Answering Calls

Answer calls detected by RHT_WAIT_LINE_ON using
RHT_OFF_HOOK or RHT_SEIZE_LINE. Only the underlined
functions are interchangeable, so all discussion of
RHT_OFF_HOOK also applies to RHT_SEIZE_LINE.

When RHT_OFF_HOOK answers a call, it automatically
transmits the appropriate answer supervision signal towards
the switch directly connected to your system. The switch relays
this information back to the preceding switching equipment and
so on until the information reaches the originating equipment.
This serves as a signal to the originating office to start billing
the caller.

After transmitting the off hook or answer supervision bit
pattern, RHT_OFF_HOOK waits for a duration specified by
RDG_LOCAL_ANSWER_GUARD_TIME before returning, as
shown in Table 14.

Table 14. RHT_OFF_HOOK Sequence

The guard time is important in case your application needs to
hang up immediately after answering a call. Without a guard
time, the off hook pattern would be on the line for a very short
period of time. The CO could misinterpret the resulting on
hook/off hook/on hook pattern as a wink or some other error
condition and not recognize that the line is idle. The CO
continues waiting for your application to answer while your
application waits for a new incoming call. This deadlock
continues until the CO times out (which might not happen) or
you reset your system.

In Loop Start or Ground Start protocols, audio connection is not
established until you call RHT_OFF_HOOK. If the application
fails to answer the call properly, the caller does not hear any
files the application plays.

Action Duration

Transmit answer signal

Wait RDG_LOCAL_ANSWER_GUARD_TIME

Return
62 RealCT Direct API Developer Guide

Handling Incoming and Outgoing Calls
In Wink Start, Double Wink Start, and Immediate start
protocols, the audio path is established soon after the CO sends
digits so the remote end can hear the control tones. With the
audio path established, the remote end will also hear any files
the application plays even if the application fails to call
RHT_OFF_HOOK. If the CO does not receive the answer signal,
however, it times out within two to four minutes and terminates
the call. To the application and the caller, it appears that the
call was being handled properly until the line suddenly
disconnected. If your application reports that it received a
disconnect after two to four minutes while it was processing the
call, check to be sure the application called RHT_OFF_HOOK to
answer the call.

If you are sure that your application called RHT_OFF_HOOK,
consider the other extreme. The application might call
RHT_OFF_HOOK too soon after it detects digits. In this case
the switches down the path might not be ready to receive the
answer signal, so they do not detect it. The application should
send control tones after receiving digits so the COs in the path
are ready to receive the answer signal.
August 2001 63

Chapter 3: T1 Networking
Monitoring for Disconnect

Whether you received or originated the call, you should
continuously monitor the line for disconnect using
RHT_WAIT_LINE_OFF. The sooner you detect the disconnect,
the sooner the line is free for new calls, allowing you to reach
more people in the same amount of time without increasing the
number of lines. RHT_WAIT_LINE_OFF returns successfully
when it detects a disconnect or returns an error if it detects
other conditions. If RHT_WAIT_LINE_OFF returns an error,
use RHT_GET_STATUS for more information about the
termination.

When the application detects a disconnect, it should terminate
what it is doing, update some information, and hang up in
preparation for a new call. Wink Start, Double Wink Start, and
Immediate Start protocols provide reliable disconnect signals.
Loop Start and Ground Start protocols usually don’t provide
disconnect information. In these protocols, only the CO receives
answer and disconnect signals. We recommend that you use one
of the protocols that provide disconnect information if that
protocol is available from your carrier.

If the application is running a voice processing function when it
detects disconnect, it should terminate that function
immediately. There are two ways to terminate a function. The
first uses two threads (or processes) per channel: one to run the
line monitoring function and another the run the voice
processing function. The main thread synchronizes these two
threads.

A better way to terminate VP functions is to run the functions
so they terminate automatically when the application detects a
disconnect. To do this, set the field ‘LineTerm0’ in the
VPstartStop_s or RhtDialDigit_s structures. This field provides
a way for the VP driver and the T1 driver to communicate.
64 RealCT Direct API Developer Guide

Handling Incoming and Outgoing Calls
With ‘LineTerm0’ set, the T1 driver automatically runs
RHT_WAIT_LINE_OFF. It continues monitoring the line until
the VP driver sends a signal that the VP function terminated or
until the T1 driver detects a disconnect. When it detects a
disconnect, the T1 driver signals the VP driver to terminate the
function. When the VP function terminates, check the condition
that caused termination using RHT_GET_STATUS. A
T_RHT_LINE_OFF condition means that RHT_WAIT_LINE_OFF
caused the function to terminate.

This second approach is easier to implement because it does not
involve separate threads. However, RHT_WAIT_LINE_OFF
only runs when a VP function is running. If the application
spends long periods of time performing non-VP functions, a
disconnect would not be reported until the next VP or line
function runs. This could keep the line busy longer than
necessary. If this delay is not acceptable, then use a separate
thread to monitor the line while no VP functions are running.

Since RHT_WAIT_LINE_OFF is an exclusive function, you
cannot start any other exclusive functions when you start a VP
function with ‘LineTerm0’ set.
August 2001 65

Chapter 3: T1 Networking
Terminating an Inbound Call

Terminate calls using RHT_ON_HOOK or
RHT_DISCONNECT. These functions are interchangeable, so
all discussion of RHT_DISCONNECT also applies to
RHT_ON_HOOK.

RHT_DISCONNECT transmits a disconnect (idle) pattern for
the time specified by RDG_LOCAL_IDLE_DUR. It then waits
for the remote end to disconnect for a time specified by
RDG_REMOTE_IDLE_TIMEOUT. After it receives the
disconnect, RHT_DISCONNECT waits for a time specified by
RDG_LOCAL_IDLE_GUARD_TIME then returns. Table 15
shows the sequence involved in terminating a call.

Table 15. RHT_DISCONNECT Sequence

Both RDG_LOCAL_IDLE_DUR and
RDG_LOCAL_IDLE_GUARD_TIME guarantee that the
disconnect pattern is present on the line for a certain amount of
time.

The remote end only sends an idle pattern when the other party
hangs up. If the other person does not know that your
application has disconnected, it might take a while for them to
hang up. An application should play a busy signal when it hangs
up so the other party knows you have disconnected.

If the remote end disconnects first and your application calls
RHT_DISCONNECT in response to their disconnect signal, it
will return almost immediately. The only delays are those
caused by RDG_LOCAL_IDLE_DUR and
RDG_LOCAL_IDLE_GUARD_TIME.

Action Duration

Transmit disconnect RDG_LOCAL_IDLE_DUR

Wait for disconnect RDG_REMOTE_IDLE_TIMEOUT

Guard time RDG_LOCAL_IDLE_GUARD_TIME

Return
66 RealCT Direct API Developer Guide

Handling Incoming and Outgoing Calls
If your end disconnects first, RHT_DISCONNECT waits for the
other party to disconnect for a time specified by
RDG_REMOTE_TIMEOUT, which is usually infinite.
However, the CO the other party is connected to usually times
out in one to four minutes if the other party does not disconnect.
When it times out, the CO transmits a disconnect signal on its
own. If the CO does not have a timer, it does not transmit a
disconnect and your application must wait for the other party to
hang up.

If RHT_DISCONNECT does not return within a few seconds, it
is probably because the other party has not hung up rather than
a problem with the application. Call RHT_GET_STATUS to see
the signaling bits currently present on the line if you think the
function is taking too long to return. For most protocols, if the A
and B bits are both 1, the other party has not yet hung up. When
the line is idle, both bits are usually set to 0.

The reason RHT_DISCONNECT waits for a disconnect before
returning is so the application knows when the line is free. If
RHT_DISCONNECT returned immediately, the application
would not know when the line could be used for new calls. The
application would have to call RHT_WAIT_IDLE to monitor the
line for disconnect after RHT_DISCONNECT returns.

You can change RDG_REMOTE_IDLE_TIMEOUT to be less
than infinite, but this does not free the line any faster. If
RHT_DISCONNECT does not receive the disconnect signal
within a time specified by RDG_REMOTE_IDLE_TIMEOUT,
the function returns an error and the application resumes
executing. However, the application cannot make or receive
another call until the line is idle, so you do not gain anything by
regaining control. Any exclusive line functions also return an
error until the line becomes idle. The only way the application
knows then the line becomes free is by calling
RHT_WAIT_IDLE. This function returns when the line
becomes idle, and the application can proceed. Since
RHT_WAIT_IDLE is built into RHT_DISCONNECT, it is most
efficient to wait for RHT_DISCONNECT to detect the idle and
return.
August 2001 67

Chapter 3: T1 Networking
Handling Outbound Calls

Handling outbound calls involves the following steps:

n Seize a line

n Dial out

n Monitor the line for answer

n Process the call

n Terminate the call

Seizing a Line

Seize an idle line using either RHT_SEIZE_LINE or
RHT_OFF_HOOK. These functions are interchangeable, so all
discussion of RHT_SEIZE_LINE also applies to
RHT_OFF_HOOK.

RHT_SEIZE_LINE transmits the line seize signal and waits for
an acknowledgment from the remote end for a time defined by
RDG_REMOTE_ACK_TIMEOUT. It then waits for a time
determined by RDG_LOCAL_SEIZE_GUARD_TIME and
returns. If RHT_SEIZE_LINE does not receive an
acknowledgment, it returns the hook to idle and returns an
error. Table 16 shows the sequence of seizing a line.

Table 16. RHT_SEIZE_LINE Sequence

Action Duration

Transmit line seize

Wait for acknowledgment RDG_REMOTE_ACK_TIMEOUT

Wait RDG_LOCAL_SEIZE_GUARD_TIME

Return
68 RealCT Direct API Developer Guide

Handling Incoming and Outgoing Calls
Only Wink Start and Double Wink Start protocols require a
wink to acknowledge the line seizure. A wink is on hook/off
hook/on hook sequence where the duration of the off hook must
be within a range defined by RDG_REMOTE_MIN_WINK and
RDG_REMOTE_MAX_WINK. This wink must be sent within a
time specified by RDG_REMOTE_ACK_TIMEOUT after the
seizure.

If RHT_SEIZE_LINE does not receive an appropriate wink, it
abandons the call, sends an idle pattern, and returns an error.
If RHT_SEIZE_LINE repeatedly returns an error indicating
that the wink received was out of specification, the wink
parameters are probably not set correctly.

In Immediate, Loop and Ground Start protocols, no
acknowledgment is necessary.

Glare Resolution

If the line is not idle when the application calls
RHT_SEIZE_LINE, BrktGetLastError() returns
BRKT_ERROR_CODE(IO_DEVICE). See Troubleshooting on page 81
for more information on how to handle the error.

It is possible for the application to try to seize the line as the CO
tries to send a call. In this situation, called a glare,
RHT_SEIZE_LINE returns an error but does not set the line
back to idle. In order to accept the incoming call, the application
calls RHT_OFF_HOOK. If it does not accept the call, it calls
RHT_DISCONNECT to set the line back to idle. Check with
your carrier to see how they want applications to handle glare
situations (also called glare resolution).
August 2001 69

Chapter 3: T1 Networking
Dialing Out

After the application seizes the line, it dials the appropriate
number using RHT_DIAL. It can dial out using either MF or
DTMF tones. While dialing, the application monitors the line by
setting field in the RhtDialDigit_s structure as described in
Monitoring for Disconnect on page 64.

If the function returns successfully, the application monitors
the call for answer. If the function returns T_RHT_LINEOFF, then
the function terminated because of a line condition. Call
RHT_GET_STATUS to find out what line condition occurred.
Other codes indicate more serious error conditions. You should
abandon the call using RHT_DISCONNECT and try the call
again.

For more information about how T1 applications dial digits, see
Chapter 2, Digit Handling, on page 15.

Monitoring for Call Answer

To detect the answer supervision signal in Wink Start, Double
Wink Start, or Immediate Start protocols, use
RHT_WAIT_ANSWER. RHT_WAIT_ANSWER monitors for
the answer bit pattern and informs the application when the
remote end answers.

RHT_WAIT_ANSWER returns successfully if it detects an
answer pattern or returns an error if it detects any other
pattern such as a disconnect or bit errors. If
RHT_WAIT_ANSWER does not detect a bit change, it continues
running until the application terminates it. In Ground Start
and Loop Start protocols, which do not return an answer
supervision signal, the function runs forever or until an error
occurs.

In some protocols, the bit patterns are the same when dialing
out and when the remote end sends a disconnect signal. To
distinguish between these, call RHT_WAIT_ANSWER
immediately after dialing out and before calling any other line
function. After RHT_WAIT_ANSWER detects the answer, call
RHT_WAIT_LINE_OFF to detect disconnect. Calling the
functions in this specific order allows the driver to keep track of
the call history and to differentiate between ambiguous bit
patterns based on their context.
70 RealCT Direct API Developer Guide

Handling Incoming and Outgoing Calls
RHT_WAIT_ANSWER only monitors for answer based on the
answer supervision signal. If the application does not use a
protocol that sends the answer supervision signal, such as Loop
Start or Ground Start, or if the application needs more
information about the call than whether it was answered, use
RHT_START_PCPM. RHT_START_PCPM accesses the
Programmable Call Progress Monitoring (PCPM) algorithm
that runs on the board’s DSP. PCPM monitors the line for
control tones, voice, or silence on the line and determines the
status of the call. Since PCPM monitors all audio on the line, it
can provide information about busy, no answer, or other line
conditions.

Since PCPM uses only sound or silence to determine the call
status, it cannot be absolutely accurate in detecting answer. For
example, if a busy switch plays a recording saying that all
circuits are busy, the PCPM algorithm might recognize the
human voice and determine that the call has been answered.
For this reason, you should run RHT_WAIT_ANSWER and
RHT_START_PCPM simultaneously. RHT_WAIT_ANSWER
provides accurate answer detection while RHT_START_PCPM
provides other information about the status of the call.

If the application starts RHT_START_PCPM with
VPstartStop_s.LineTerm0 set, the VP driver automatically
requests that the T1 driver run RHT_WAIT_LINE_OFF.
RHT_WAIT_LINE_OFF monitors the line for a disconnect, but
it also detects answer. When RHT_WAIT_LINE_OFF detects
an answer or disconnect, it terminates RHT_START_PCPM.
The application then calls RHT_GET_STATUS to determine
the status of the line.
August 2001 71

Chapter 3: T1 Networking
Example 4 shows the steps involved in using
RHT_START_PCPM to detect answer.

Example 4. Monitoring for Answer

1. The application starts RHT_START_PCPM with
VPstartStop_s fields ‘LineTerm0’ and ‘Timeout’ set.

2. When RHT_START_PCPM returns, the application calls
RHT_GET_STATUS for the VP device and checks
VPchanStatus_s.TermType.

3. If VPchanStatus_s.TermType contains T_RHT_PCPM, then
RHT_START_PCPM determined the line state. The field
VPchanStatus_s.PCPMtype contains the line status
information.

4. If VPchanStatus_s.TermType contains T_RHT_TIMEOUT, then
RHT_START_PCPM did not detect any condition within the
allotted amount of time.

5. If VPchanStatus_s.TermType contains T_RHT_LINEOFF, the
CO either answered the call or disconnected before
answering the call. The application calls
RHT_GET_STATUS for the line device and checks
RTNI_lineStatus_s.TermType. This field contains
information about the status of the line.

Terminating an Outbound Call

Terminating an outbound call uses exactly the same procedure
as terminating an inbound call. For more information, see
Terminating an Inbound Call on page 66.
72 RealCT Direct API Developer Guide

Handling Incoming and Outgoing Calls
Transferring Calls

You can transfer calls on digital lines if the equipment
connected to your system supports call transfers. Most COs do
not support call transfer if your application is emulating
another CO. However, if your application is emulating customer
equipment, the CO might allow call transfers if you have the
service enabled. In most cases, you can do call transfers if you
have Centrex lines or if your system is connected to a PBX that
supports digital lines as extensions. You will need support from
your PBX manufacturer, but you can transfer calls to any
destination your PBX supports. Loop Start and Ground Start
protocols are the only two that normally do call transfers.

Use RHT_HOOK_FLASH to transfer calls. This is the same
function used in analog lines. When you call
RHT_HOOK_FLASH, the driver uses the protocol file to send
the appropriate bit patterns and timings for the digital hook
flash.

To perform a hook flash, the channel must be off hook and
transmitting the appropriated bit pattern for that protocol. A
brief on hook pattern is transmitted for the duration specified
by RDG_LOCAL_FLASH_DUR, followed by the off hook
pattern again for the duration specified by
RDG_LOCAL_FLASH_GUARD_TIME.

The only requirements for a protocol to support a hook flash are
on hook and off hook bit patterns that differ from each other.
However, the flash signal might be ignored or interpreted as a
disconnect followed by a line seizure if the CO does not support
call transfer. The only protocols that cannot transmit a flash
hook signal are the CO versions of Loop Start and Ground Start.
August 2001 73

Chapter 3: T1 Networking
Sending and Detecting Winks

The Wink Start and Double Wink Start protocols use wink
signals as part of their call setup process. In order to perform a
wink, the channel must be in the on hook state, transmitting the
appropriate bit pattern for that protocol. An off hook pattern is
transmitted for the duration specified by
RDG_LOCAL_WINK_DUR, followed by the on hook pattern for
the duration specified by RDG_LOCAL_WINK_GUARD_TIME.

In the Wink Start protocol, the driver uses the protocol file to
automatically send or detect the wink that acknowledges line
seizure. In the Double Wink Start protocol, however, a second
wink must be sent by the receiving end after receiving all digits
and before answering. Since the timing of this second wink is
determined by when the application finishes receiving digits
and not by the protocol, the driver cannot send the wink
automatically. Use the RHT_SEND_WINK and
RHT_WAIT_WINK functions to send or receive this second
wink in the Double Wink Start protocol. Add a pause after the
second wink in the Double Wink Start protocol so the CO can
distinguish between the wink and the answer signal. Check
with your carrier provider for the duration of the pause.

In order to detect a wink, the channel detects an off hook
pattern on the line for a period of time within a range defined by
RDG_REMOTE_MIN_WINK and
RDG_REMOTE_MAX_WINK. RHT_WAIT_WINK returns an
error if the wink duration does not match the specifications.
Unlike the wink detection performed when seizing a line,
RHT_WAIT_WINK does not set a maximum time for the wink
to be received. It waits until it detects a wink, a signaling error
occurs, or the function is stopped externally.

If the application needs even more control over a Wink Start or
Double Wink Start protocol, it can load the Immediate Start
protocol file instead and manage sending and receiving all
winks manually.
74 RealCT Direct API Developer Guide

Using Internal Signaling Streams
Using Internal Signaling Streams

The T1 board has internal streams that hold data received on
the line. The board holds data for lines 0 through 23 in internal
streams 16 and 18, timeslots 0 through 23. It holds signaling
bits (ABCD) for lines 0 through 23 in internal timeslots 17 and
19, timeslots 0 through 23.

Access the signaling bits using the SET_OUTPUT and
SAMPLE_INPUT MVIP functions. Applications can use these
functions to set and retrieve signaling bits directly from the
hardware instead of relying on higher level driver functions
such as RHT_GET_LINE and RHT_GET_STATUS. Access to
low level signaling bits should only be used for tracing purposes,
since it can interfere with normal driver functions such as
RHT_ON_HOOK.

To write bits to a specific internal stream/timeslot, put the
timeslot in message mode and use SET_OUTPUT. The
hardware takes the bits you write to the signaling streams and
sends them as signaling bits. To read bits from a specific
stream/timeslot, use SAMPLE_INPUT. See the RealCT Direct
API Reference Manual for more information about
SET_OUTPUT and SAMPLE_INPUT.

For information about switching data received in streams 16
and 18 over the CT bus, see Chapter 5, MVIP-90, on page 143,
and Chapter 6, MVIP-95, on page 183.
August 2001 75

Chapter 3: T1 Networking
Testing the T1 Setup

Testing the Installation

Use the samples that came with your software to test your
boards, drivers, and installation before you write your
application. You can use the provided source code to help
develop your application. The samples are located in
subdirectory \RHT\SAMP\T1.

The most useful samples are:

T1INIT Sets the clock, initializes carrier parameters and checks carrier
status.

Older code samples set the clock reference to be Trunk A, and
configured the carrier for D4 framing and AMI line coding. If
your installation requires different values, make sure to alter
the samples accordingly. Newer samples configure most
parameters using the command line. The defaults are the same
as earlier samples.

WAITRING [line] Waits for a call on the specified line (0 by default).

OFFHOOK [line] Answers an inbound call or initiates an outbound call on the
specified line (0 by default).

ONHOOK [line] Disconnects a call on the specified line (0 by default).

WAITANS [line] Waits for the remote end to answer on the specified line (0 by
default).

WAITOFF [line] Monitors for a disconnect on the specified line (0 by default).

LSB [line] Displays all relevant information about a line
(structure RTNI_lineStatus_s).

PLAYT [line] [file] Plays a file while monitoring for a disconnect on the line
(default: line 0, file test.vox).

DIAL [line] [digits] Dials digits while monitoring for a disconnect on the line. Both
command arguments are necessary.

BSTAT Queries carrier status.

BINFO Displays board and driver information.
76 RealCT Direct API Developer Guide

Testing the T1 Setup
CONN <output stream>
<output timeslot>
<input stream>
<input timeslot>

Makes MVIP connections.

QC <output stream>
<output timeslot>

Queries MVIP connections.

DIGIT [line] Reads digits sent by the CO (line 0 by default). In subdirectory
\RHT\SAMP\STD.

TWAIT [line] Waits for digits (line 0 by default). It must be modified to
monitor a T1 line for disconnect instead of an LS line. In
subdirectory \RHT\SAMP\STD.

Run these samples either individually or as a batch file. For
example, the following batch file initializes the T1 line, makes
the MVIP connection between line 0 and VP 0, receives an
inbound call, plays a file, and then disconnects:

T1INIT

CONN 16 0 6 1

CONN 6 1 16 0

WAITRING 0

TWAIT 0

OFFHOOK 0

PLAYT 0 TEST.VOX

ONHOOK 0

In this example, TWAIT has to be modified to monitor a T1 line
rather than an LS line.
August 2001 77

Chapter 3: T1 Networking
Testing the Application

There are four basic ways of testing your application:

n Using AccuSpan

n Placing calls over a live T1 line

n Using a T1 simulator

n Connecting trunks A and B

Using AccuSpan

AccuSpan is the best way to test the overall robustness and
fault tolerance of your system. AccuSpan is a DOS-based utility
that gives you full control over the carrier configuration, alarms,
and bit patterns sent and received. It can also receive or
generate calls. By changing the carrier parameters, you can test
different scenarios for your application. For example, you can
see what kinds of errors you receive if you configure your
application to use ESF framing and the CO uses D3/D4. You can
also transmit alarm conditions to see how the remote end
responds. To use AccuSpan, connect two back to back computers
with one running the application and the other running
AccuSpan.

The most powerful feature that AccuSpan provides is signaling
mode. In signaling mode you can transmit any possible bit
pattern to the application, where the received bit pattern is
always shown on screen. By sending certain bit patterns at
specific times, you can manually generate all events the protocol
supports, such as line seizure, answer, or disconnect. You can
then send valid events at invalid times, send invalid bit
patterns at several different states of the call progress, or send
signals that are too long or too short and check how the
application responds. Using signaling mode requires a good
understanding of the protocols. If you are not already familiar
with the protocols, view the bit patterns sent or received on the
line during normal operation to see how the protocol operates.
Appendix A, T1 Line Protocols, on page 223, also provides
information about bit patterns used in the line protocols.
78 RealCT Direct API Developer Guide

Testing the T1 Setup
Placing Calls over a T1 Line

Testing your application over a live T1 line gives you a
controlled environment and requires no special knowledge of
the protocols. If the application passes a few tests such as
making simultaneous calls or consecutive calls on the same line,
the application will probably work for real calls. However, when
testing the application over a real T1 line, the telephone
company controls the environment so there is little chance to
test error conditions. Before testing an application on a live
T1 line, you should use AccuSpan to eliminate as many error
conditions as possible.

Using a T1 Bulk Call Generator

Using a T1 bulk call generator is a good way to stress-test your
application. Most bulk call generators allow at least four trunks,
or 96 lines, to place calls simultaneously. However, using a
call generator should not replace other tests, particularly tests
over a real line. The bulk call generator usually does not provide
a way of testing error handling since they follow scripts that
you determine and send the correct signals on the line. They
might also handle exceptions and timing issues differently than
your CO.
August 2001 79

Chapter 3: T1 Networking
Connecting Trunks A and B

When you connect trunks A and B, you receive data on one
trunk that you send from the other trunk. Using this
configuration, you can test samples that complement your
application or use the samples that came with your software.
Using either your own or provided samples, you can test
inbound and outbound call processing, send events out of order
to see how the application reacts, and stress test the
application.

When you connect both trunks, be sure that the transmit leads
from one cable connect to the receive leads of the other cable,
and vice versa. There are two ways to be sure the cables connect
properly. The first is to use a crossover cable, which connects the
transmit and receive leads of one cable to the appropriate leads
on the other cable. The other way (available only with
RTNI-2T1 or -2E1 boards) is to set the mode of the trunk using
hardware jumpers, then connect the trunks using a regular
cable. Set one trunk to user mode and the other trunk to
network mode, as described in your hardware installation
guide. For normal operation, both trunks should be set to user
mode. Figure 13 shows trunks A and B connected by a cable. In
this configuration, trunk A and B transmit and receive data
from each other rather than the CO.

Figure 13. Connecting Trunks A and B in T1

Board
80 RealCT Direct API Developer Guide

Troubleshooting
Troubleshooting

If a line function returns an error code, use BrktGetLastError ()
to determine what caused the error. The two most common
errors are lost synchronization or a protocol error.

n In a synchronization error,
BrktGetLastError(DeviceHandle) returns
BRKT_ERROR_CODE(UNEXP_NET_ERROR)

n In a protocol error, BrktGetLastError(DeviceHandle)
returns BRKT_ERROR_CODE(IO_DEVICE)

Handling Synchronization Errors

When a trunk loses synchronization, any bits the trunk receives
are invalid. After a loss of synchronization, terminate all calls
and check the trunk status using QUERY_CARRIER_STAT.
When the trunk is synchronized with the network the
application can proceed.

QUERY_CARRIER_STAT returns information about the
current alarm and synchronization status of the line in the
structure RTNI_T1carrierStatus_s. It also returns any errors
that have occurred since the last time the application called that
function. This information can help you measure the quality of
the link to the network. If the data returned indicates the line
is not synchronized or that alarms are present and the condition
persists for longer than a few hundred milliseconds, the
application should terminate all calls and issue an error
message.

RTNI_T1carrierStatus_s returns the following information
about the line:

Alarm Indicates whether there are any alarms on the line. There are
three alarm types:

Red A red alarm indicates that the trunk is not receiving a valid
signal or is receiving no signal at all.
August 2001 81

Chapter 3: T1 Networking
Yellow The CO sends a yellow alarm to indicate that it is not receiving
a valid signal from your system. If the T1 board receives a
yellow alarm, then the connection from the remote end to the
local end is good, and the problem is in the data transmitted to
the remote end from the local end.

One reason for a yellow alarm is faulty wiring. The connection
uses one pair of wires to transmit data and one pair to receive
data. A yellow alarm could happen if the wire pair that
transmits data from the board to the CO is broken or
disconnected but the other wire is in good condition. To see if the
wiring is faulty, set the board in a remote loopback where all
data transmitted by the CO is immediately transmitted back to
the CO by the board. If all the wiring is good, the CO receives
the same data it generates, and the alarm it generates should
disappear. In this case, the problem is probably that the board
is sending faulty data.

If the CO continues generating a yellow alarm in a remote
loopback, the wire could be faulty anywhere from the board to
the CO. To identify if the problem is with the network lines or
with the customer premise lines, use a CSU loopback. In this
mode, all data transmitted by the CO is immediately
transmitted back to the CO by the CSU. If the problem
disappears, the faulty line lies between the CO and the T1
board. If the problem does not disappear, the problem is with
the network lines.

Blue A blue alarm is a signal containing all ones. If the framing bits
are also ones, then the blue alarm is an unframed all ones. If the
framing bit follows the appropriate pattern then the signal is a
framed all ones.

Either end can send a blue alarm to test the data link. You can
also send a blue alarm to test a trunk that cannot send calls. In
either direction, when the blue alarm is removed, the alarm
should clear and synchronization should be restored. If the
alarm clears but the ends are still not synchronized, then your
application and the CO are probably using a different framing
method. See Configuring the Carrier on page 52 for more
information on how to set the correct framing method.

Slips Buffer slips indicate that the T1 board is not reading and
writing data to the line at the same rate as the remote end.
Usually, an incorrect clock setting or faulty clock source is
responsible for buffer slips. For more information about setting
the clock, see Setting the Clock on page 47.
82 RealCT Direct API Developer Guide

Troubleshooting
Bipolar Violation In AMI line coding, ones alternate positive and negative
polarity, as described in Transmitting Digital Data on page 38.
A bipolar violation occurs when a one is the same polarity as the
preceding one.

Bipolar violations indicate that the application and the remote
end are not using the same line coding method, or the signal is
too weak for the board to detect it properly. Be sure the line
coding method your application uses is the same one used by the
carrier, as described in Configuring the Carrier on page 52. If
the line coding method is correct, then the signal might be too
weak for the board to detect it. Since the CO can handle weaker
signals, the CO might not experience bipolar violations. If the
board reports errors and the CO does not, a weak signal is
probably the cause.

Having a mismatch in the length of the CSU to board cable and
the equalization setting on the board can also lead to bipolar
violations. Check the equalization setting on the board as
described in your hardware installation guide to be sure they
are set for the correct length cable.

Sync The synchronization field indicates whether or not the network
and T1 board are synchronized. If they are not synchronized, it
means that the board is not receiving framing information. This
can happen if there is no signal on the line, if the board is
receiving an invalid or test signal (such as blue alarm), or if the
framing mode is not set properly. Be sure that you have set the
appropriate clock mode and framing method, as described in
Configuring the T1 Environment on page 47.

If changing the clock mode or framing method doesn’t restore
synchronization, the cable might be improperly installed or the
CSU is in loopback mode. Use a remote and a local loopback to
isolate whether the problem originates at the CO or your
system. For more information about loopbacks, see Configuring
the Loopback Mode on page 53 and Using Loopbacks on page 88.
August 2001 83

Chapter 3: T1 Networking
Handling Protocol Errors

A protocol error occurs when the signaling bits read from the
line don’t match what was expected at that time. For example,
a function detects call answer while monitoring for disconnect.
An unexpected event is not necessarily an error, since there are
times when more than one event could happen. However, the
driver returns an error if any event other than the one the
function is waiting for takes place.

The best way to recover from a protocol error is to call
RHT_DISCONNECT to set the local end to idle, then call
RHT_WAIT_IDLE and wait for it to return. When that
happens, both ends are in an idle state and are ready to send or
receive calls. When the line is idle, the application can continue.

Call RHT_GET_STATUS for more information about what
caused the protocol error. RHT_GET_STATUS returns
information about the protocol and compiler version as well as
the termination code and line function information in the
structure RTNI_lineStatus_s.

The ‘TermType’, ‘RawPattern’, and ‘Function’ fields in
RTNI_lineStatus_s contain information to help you handle
protocol errors. Providing these fields to technical support
greatly reduces the time it takes to diagnose a problem.

TermType ‘TermType’ contains the terminating code for the last T1 line
function. If the function is still running, ‘TermType’ contains an
intermediate message or the protocol code for the previous
function. Some protocol codes indicate that the previous
function terminated correctly. For example, a protocol code
might indicate that the RHT_WAIT_LINE_ON function
terminated because it received a call.

Other protocol codes indicate a protocol error. For example, the
protocol code might indicate that the RHT_SEND_WINK
function terminated because the protocol does not support
sending winks. The RealCT Direct API Reference Manual
contains a complete list of protocol codes and information about
how to interpret these values for different functions.

Two common protocol codes are BAD_STATE_ERROR and
SIGNALING_BIT_ERROR.
84 RealCT Direct API Developer Guide

Troubleshooting
BAD_STATE_ERROR

A BAD_STATE_ERROR indicates that the function could not
execute because the line was in the wrong state for that
function. For example, ‘TermType’ would report a bad state
error if the application tries to wait for a call or send a wink
when the line is not idle. In a bad state error, the CO's
interpretation of the previous signal on the line probably didn't
match your application's interpretation.

A bad state error could also occur if the application expects a
certain event that does not occur, such as a wink after seizing
the line in some protocols. Sometimes the signal is not sent
because the CO and the application are in different states. This
could happen if the application sends a signal that does not
meet a minimum time requirement, so the CO does not
recognize the signal. The application would be in one state,
having sent the signal, but since the CO did not recognize the
signal it would not change states. Guard times generally
prevent this situation.

The field ‘RawPattern’ contains the signaling bits being sent
and received on the line. This information can help determine
why a bad state error occurred, but doesn’t explain why the
situation arose.
August 2001 85

Chapter 3: T1 Networking
SIGNALING_BIT_ERROR

A signaling bit error occurs when a bit pattern that does not
belong in the protocol was present on the line. The invalid bit
pattern must be present for longer than the debouncing and
deglitching timings in order to generate this error.

If you receive a signaling bit error, compare the bit pattern in
RTNI_lineStatus.RawPattern to the ones expected by the
protocol to be sure your application and the CO are using the
same protocol. Call the carrier for more information about their
protocol, or use AccuSpan to get more information about the
signaling.

If you frequently get a signaling bit error that isn’t related to
any particular event, you might have a problem with the
connection. In this case the application should monitor the
status of the carrier. If the number of bipolar violations and
buffers slips is high, the line quality is poor. Check the gain your
CSU is set to provide, the length of cable, and the equalization
parameters set on the hardware.

RawPattern ‘RawPattern’ contains the received and transmitted signaling
bits. The upper byte contains the received pattern while the
lower byte contains the transmitted pattern. Each of these bytes
contains only four significant bits. These bits contain the value
for signaling bits A, B, C, and D. Bit A is the most significant bit,
while bit D is the least significant bit.

For example, if ‘RawPattern’ contains 0x0F05, then the receive
pattern is 0x0F and the transmit pattern is 0x05.

Receive= 0x0F=1111, and A=B=C=D=1
Transmit= 0x05=0101, and A=C=0 and B=D=1

Only ESF framing uses all four signaling bits. If your
application uses D3/D4 framing, bits C and D are undefined. For
example, if ‘RawPattern’ contains 0x0F05 and you are using
D3/D4 framing, then

Receive= 0x0F=1111, and A=B=1
Transmit= 0x05=0101, and A=0 and B=1

and you ignore bits C and D.

Follow the same conventions when using AccuSpan in signaling
mode. In D3/D4 framing, bits C and D are not used. If you want
to transmit a pattern AB=10, transmit ABCD=10XX =0x08,
0x09, 0x0A, or 0x0B.
86 RealCT Direct API Developer Guide

Troubleshooting
In ESF framing, bit A generally equals C and B equals D. So, if
you want to transmit a pattern AB=10, set CD=AB and transmit
the following:

ABCD=ABAB=1010=0x0A

Function ‘Function’ shows which function is currently running, or which
function terminated last. You need to know the function name
in order to understand the terminating code listed in
‘TermType’.

The ‘Function’ field is particularly useful in finding out the
cause of BRKT_ERROR_CODE(BUSY). This error means that the
line function specified by the ‘Function’ field was already
running when the application called another line function.
BRKT_ERROR_CODE(BUSY) is usually a result of a programming
error.
August 2001 87

Chapter 3: T1 Networking
Using Loopbacks

Loopback configurations loop data back to where it originated.
These configurations help troubleshoot where errors occur.
There are several forms of loopbacks, depending on what you
want to test.

Set software configurable loopbacks using CONFIG_CARRIER
as described in Configuring the Carrier on page 52. There are
two loopback modes that you specify with CONFIG_CARRIER:

n Test whether the board’s receiver and transmitter work
properly using a local loopback. In this mode, a trunk
receives the same data it transmits without passing
through any cabling. To do a local loopback, set the
loopback mode in CONFIG_CARRIER to local.

n Test the cabling and verify that the CO can send and
receive valid data using a remote loopback. In this mode,
the board immediately transmits all data it receives back
to the CO. To do a remote loopback, set the loopback mode
in CONFIG_CARRIER to remote.

Figure 14 shows local and remote loopbacks.

Figure 14. Local and Remote Loopbacks

Board

Board CSU
Data stream to trunk A

Data stream from trunk A

CO

Remote Loopback

Local Loopback
88 RealCT Direct API Developer Guide

Troubleshooting
For other loopback modes, disable both local and remote
loopbacks in CONFIG_CARRIER.

n Test the cabling between the CSU and either the board or
the CO using a CSU loopback. In this mode, the CSU
immediately transmits all data it receives back to the CO
or board, depending on which end transmitted the data. To
do a CSU loopback, follow instructions from your CSU
manufacturer. Figure 15 shows two CSU loopbacks: one
looping data back to the CO and the other looping data
back to the board.

Figure 15. CSU Loopback

n Test individual regions of the cabling using a cable to
connect transmit and receive leads at points along a trunk.
This mode loops data back to either the board or CO
depending on which end transmits the data and how you
set up the crossover cable.

For example, if you have identified that there is a problem
with the cabling between the CSU and the board, loop data
back at some point along the damaged cable. If the board
receives the same data it transmits, the cabling is good
between the loopback and the board. The problem lies
between the cable and the CSU. Continue testing until you
isolate the problem. Figure 16 shows a loopback using a
cable to physically connect the transmit and receive leads
along trunk A.

Figure 16. A Cabling Loopback in T1

Board CSU
Data stream to trunk A

Data stream from trunk A

CO

Board CSU
Data stream to trunk A

Data stream from trunk A

CO
August 2001 89

4
E1 Networking

This chapter describes E1 networking in your system
environment.

The E1 board (RTNI-2E1 or NetAccess E1 board) provides two
E1 trunks for high-speed communications. The E1 board
provides only E1 line resources. It must be in a system with a
board that provides voice processing resources over a CT bus
such as the Vantage series products.

This chapter includes the following sections:

n Understanding E1 Trunks

n Configuring the E1 Environment

n Handling Incoming and Outgoing Calls

n Using Internal Signaling Streams

n Testing the E1 Setup

n Troubleshooting
91

Chapter 4: E1 Networking
Understanding E1 Trunks

E1 trunks provide digital communications in South America,
Europe, and Asia. An E1 trunk carries 30 64 Kb/s lines. Two
additional 64 Kb/s lines provide signaling information. The
combination of the 30 lines and the signaling channels yields a
2.048 Mb/s signal:

32 x 64 Kb/s = 2048 Kb/s or 2.048 Mb/s

The E1 board provides two 30-line E1 trunks for a total of 60 E1
lines. The E1 board only provides E1 line resources; RDSP or
Vantage series boards provide voice processing resources
through the MVIP bus.

Transmitting Digital Data

Digital data is composed of zeros and ones that the CO and CPE
transmit as an electrical signal. The waveform used to indicate
zeros and ones is called line coding. The CO and CPE must use
the same line coding method in order to communicate properly.
As with T1, the E1 boards support Alternate Mark Inversion
(AMI) line coding. In AMI, zeros are transmitted as 0V, and
ones alternate negative and positive pulses, as Figure 17 shows.

Two subsequent ones with the same polarity are called a bipolar
violation. Figure 17 shows a proper AMI signal, with
alternating negative and positive ones pulse and two bipolar
violations. Bipolar violations could lead to crackling on the line.
92 RealCT Direct API Developer Guide

Understanding E1 Trunks
To check for bipolar violations, call RHT_GET_STATUS. See
Troubleshooting on page 134 for more information about how to
handle bipolar violations.

Figure 17. A Bipolar Violation in AMI Coding

In AMI signaling, a long series of zeros is represented by a
constant 0V signal. The two ends can lose timing if there is no
signal on the line to synchronize them. To maintain ones
density on the line, some carriers use a coding method called
HDB3 that replace a series of four zeros with a ones-rich
pattern. In HDB3 signaling, an inserted one forms a bipolar
violation which flags that pattern to be replaced by a series of
zeros at the remote end.

E1 boards support line coding with or without HDB3. You set
which line coding method your system uses when you configure
the carrier as described in Configuring the Carrier on page 105.

0 0 1 1 0 0 11 0

r Violation
August 2001 93

Chapter 4: E1 Networking
Organizing the E1 Data

Organizing Data into E1 Frames

The E1 line carries data from 30 data channels plus two
channels for framing and signaling over two pairs of wires. At
the transmitting end, a multiplexer receives a 64 Kb/s signal
from each the 30 lines. It interleaves 8 bits of data from each
data channel plus signaling and framing information into a
single serial stream of data. The process of interleaving data
from each data channel is called time division multiplexing
(TDM).

Figure 18 shows data entering a multiplexer and being
transmitted on the line. The multiplexer at the far end
separates the data into the original 30 data channels plus
signaling and framing information.

Figure 18. An E1 Line

A multiplexer at the remote end reassembles the multiplexed
data into 30 individual data channels plus signaling and
framing information.

Multiplexer

2.048 Mb/s

MultiplexerLine 0 (64 Kb/s)
 - - -
Line 29 (64 Kb/s)

Line 0 (64 Kb/s)
 - - -
Line 29 (64 Kb/s)
94 RealCT Direct API Developer Guide

Understanding E1 Trunks
The transmitting end formats the E1 data into frames so the
receiving end can interpret the data. One frame consists of
32 8-bit timeslots. Timeslots 0 and 16 are reserved for framing
and signaling information. The remaining 30 timeslots each
carry 8 bits of information for a single E1 channel. Timeslots
1RDG_15 carry data for channels 0-14, and timeslots 17-31
carry data for channels 15-29, as shown in Figure 19.

Figure 19. An E1 Frame Carrying 32 8-bit Timeslots

Each frame has a period of 125 µs, or 8000 frames per second.
This means that each channel receives 8000 8-bit timeslots per
second and operates at 64 Kb/s,

8000 timeslots/second x 8 bits/timeslot = 64 Kb/s

0 1 2 3 4 3130 102928273130 2625

01100111

8-bit timeslot

DS1 125 S
August 2001 95

Chapter 4: E1 Networking
Organizing Frames into CEPT Multiframes

The E1 frames are organized into CEPT multiframes. Each
multiframe consists of 16 E1 frames, as Figure 20 shows.
Within the multiframes, timeslots 0 and 16 of each frame carry
a specific pattern of information.

Figure 20. A CEPT Multiframe

Timeslot 0

Timeslot 0 carries framing and CRC information. The bit
patterns alternate every other frame.

n In even frames, bits 2-8 follow the framing synchronization
pattern: 0011011. The first bit carries cyclic redundancy
check (CRC) data.

n In odd frames, the first bit is a CRC alignment signal, the
second bit is always 1, the third bit carries alarm
information, and the remaining bits are reserved.

Table 17 shows the bit patterns for odd and even timeslot 0 in a
CEPT multiframe. The multiframe is divided into two
sub-multiframes of eight frames each.

0

0

1

1

2

2

31302928

01100111
8-bit timeslot

E1 Frame 125 S

CEPT Multiframe

3 4 5 6 7 8 9 10 11 12 13 14 15
96 RealCT Direct API Developer Guide

Understanding E1 Trunks
Table 17. Timeslot 0 in a CEPT Multiframe

A=Alarmed

R=Reserved

Framing

The bit pattern in the odd frames synchronizes the transmitting
and receiving ends. If a line loses synchronization, the board
identifies the framing pattern, then searches for the 1 in the
second bit of the next frame. If the board identifies the one, it
has regained synchronization.

Frame # 1 2 3 4 5 6 7 8

0 Framing I CRC1 0 0 1 1 0 1 1

1 Non-Framing 0 1 A R R R R R

2 Framing CRC2 0 0 1 1 0 1 1

3 Non-Framing 0 1 A R R R R R

4 Framing CRC3 0 0 1 1 0 1 1

5 Non-Framing 1 1 A R R R R R

6 Framing CRC4 0 0 1 1 0 1 1

7 Non-Framing 0 1 A R R R R R

8 Framing II CRC1 0 0 1 1 0 1 1

9 Non-Framing 1 1 A R R R R R

0 Framing CRC2 0 0 1 1 0 1 1

11 Non-Framing 1 1 A R R R R R

12 Framing CRC3 0 0 1 1 0 1 1

13 Non-Framing Si1 1 A R R R R R

14 Framing CRC4 0 0 1 1 0 1 1

15 Non-Framing Si2 1 A R R R R R
August 2001 97

Chapter 4: E1 Networking
CRC

The CRC process treats the bits from one sub-multiframe as a
single binary number. It performs a calculation and transmits
the remainder in the first bit of each odd frame in the following
subframe. The receiving end performs the same calculation and
compares its results to the transmitted CRC from the remote
end. If the two ends calculate the same value, the lines are
communicating properly. If the receiving end calculates a
different value, the two ends are not communicating properly.

The first bit of the first six even frames contains a fixed
alignment signal. The first bit of the last two even frames, called
Si1 and Si2, are reserved to transmit the result of the CRC
comparison to the remote end. Table 18 shows the meanings for
Si1 and Si2.

Table 18. Si1 and Si2 Bits in a CEPT Multiframe

Si1 Si2 Meaning

1 1 CRC results are error free.

1 0 CRC results for SMFII contains errors.

CRC results for SMFI are error free.

0 1 CRC results for SMFI contains errors.

CRC results for SMFII are error free.

0 0 CRC results for both SMFI and SMFII contain
errors.
98 RealCT Direct API Developer Guide

Understanding E1 Trunks
Timeslot 16

Timeslot 16 of each frame carries the A, B, C, and D signaling
bits for each of the 30 data channels. These bits carry
information about the line, such as on hook or off hook status.
The first four bits of timeslot 16 carry signaling bits for one
channel, n, and the second four bits carry signaling bits for
channel n + 15. For example, timeslot 16 of frame 1 carries
signaling bits for channels 0 and 15 (Timeslots 1 and 17
respectively).

Table 19 shows the frame number and the two channels for
which that timeslot carries signaling bits.

Table 19. Timeslot 16 Signaling Bits in a CEPT Multiframe

Frame Data Channel n Data Channel n+15

0 Reserved Reserved

1 0 (TS 1) 15 (TS 17)

2 1 (TS 2) 16 (TS 18)

3 2 (TS 4) 17 (TS 19)

4 3 (TS) 18 (TS 20)

5 4 (TS 5) 19 (TS 21)

6 5 (TS 6) 20 (TS 22)

7 6 (TS 7) 21 (TS 23)

8 7 (TS 8) 22 (TS 24)

9 8 (TS 9) 23 (TS 25)

10 9 (TS 10) 24 (TS 26)

11 10 (TS 11) 25 (TS 27)

12 11 (TS 12) 26 (TS 28)

13 12 (TS 13) 27 (TS 29)

14 13 (TS 14) 28 (TS 30)

15 14 (TS 15) 29 (TS 31)
August 2001 99

Chapter 4: E1 Networking
Configuring the E1 Environment

Configuring the E1 environment involves the following steps:

1. Set the clock.
2. Load the line protocol.
3. Configure the carrier.

Setting the Clock

T1 and E1 boards must have their clock synchronized with the
network and with other boards connected in a CT bus. In a
CT bus, one board drives the clock and all other boards retrieve
the clock from the bus. If the system contains T1 or E1 boards,
the first such board drives the clock based on the signal it
receives from its network trunk A or B. This synchronizes the
CT bus with the T1 or E1 network. Otherwise, a RealBLOCS,
RTNI-ATSI, or Vantage PCI board uses its internal oscillator to
set the CT bus clock.

Configure the clock using CONFIG_CLOCK or using the
Configuration Wizard. For specific information about setting
the clock for boards in an CT bus, examples of system
configurations, and sample code see Configuring the MVIP-90
Clock on page 150.

If you do not set the clock correctly or if you specify more than
one board to drive the clock, you could either lose data or
transfer data improperly to other boards in the CT bus. An
incorrect clock setting can also lead to crackling on the line.
100 RealCT Direct API Developer Guide

Configuring the E1 Environment
Loading The Line Protocol

The line protocols determine how the central office (CO)
communicates with the customer premise equipment (CPE).
Both ends must use the same protocol in order to communicate
properly. E1 boards support the R2-CCITT standard protocol,
and variations for China, Brazil, and Central Europe.

The protocol files convert the API functions such as
RHT_ON_HOOK and RHT_OFF_HOOK into the appropriate
signaling patterns and timing for the protocol. For example, if
an application calls RHT_ON_HOOK, the protocol file handles
any signaling or timing involved in going on hook for the current
protocol. An application can load a protocol at run time, so one
application can use different protocols without modifying any
code. Be sure to load the protocol before configuring the line
carrier.

Specify the protocol your application uses either when you
configure devices with the Configuration Wizard or by calling
RHT_LOAD_PROTOCOL. The E1 device uses the R2-CCITT
protocol by default. The two E1 trunks on an E1 board can each
run different protocols, but all lines on a specific trunk use the
same protocol. To find out what protocol file is currently loaded
on a given trunk, call RHT_GET_STATUS. This function also
provides the file version, source file name, and compiler version
used to generate the protocol.

Once loaded, a protocol stays in effect until it is overwritten by
a new protocol or the drivers stop. An application should always
load the appropriate protocol at runtime to prevent a previously
loaded protocol from causing the application to misbehave.

Table 20 shows the protocols that Brooktrout supports and the
protocol file names. These files are distributed with the E1
devices. For more information about the E1 line protocols, see
Appendix B, E1 Line Protocols on page 235.
August 2001 101

Chapter 4: E1 Networking
Table 20. Protocol File Names

The R2-CCITT protocols are symmetrical. The CO and CPE
transmit identical bit patterns for each line state. Your
application uses the same protocol whether it functions as a
CPE or emulates a CO.

Protocol File name

R2-CCITT r2_ccitt.mto

R2-CCITT (Chinese) r2_china.mto

R2-CCITT (Brazilian) r2_brz.mto

R2-CCITT (Central Europe) r2_eur.mto
102 RealCT Direct API Developer Guide

Configuring the E1 Environment
Example 5 shows how to load the R2-CCITT protocol using
RHT_LOAD_PROTOCOL.

Example 5. RHT_LOAD_PROTOCOL Sample Code

#include “brktddm.h”

int main(int argc, char **argv)

{

BRKT_HANDLE BoardHandle;

FILE* ProtocolFile;

BOOLEAN IoctlResult;

BRKT_SIZE_T BytesReturned;

BRKT_SIZE_T FileSize, BytesRead;

USHORT* pProtocolBuffer;

struct LoadProtocol_s Protocol;

BoardHandle = BrktOpenDevice (BRKT_DEVICE_E1_BOARD, 0);

/* Open Protocol File */

ProtocolFile = fopen ("R2_CCITT.MTO", "rb");

FileSize = _filelength (_fileno (ProtocolFile);

pProtocolBuffer = malloc (FileSize);

if (pProtocolBuffer == NULL)

{

printf ("Can't allocate memory for protocol.\n");

return(2);

}

BytesRead = fread (pProtocolBuffer, sizeof (UCHAR), FileSize,
ProtocolFile);

fclose (ProtocolFile);
August 2001 103

Chapter 4: E1 Networking
Example 5. RHT_LOAD_PROTOCOL Sample Code
(Continued)

memset (&Protocol, 0, sizeof (Protocol));

Protocol.Length = FileSize;

Protocol.Protocol = pProtocolBuffer;

Protocol.Trunk = M_TRUNK0; /* Trunk 0 */

IoctlResult = BrktDeviceIoControl (

BoardHandle,

RHT_LOAD_PROTOCOL,

&Protocol, /* Buffer to driver */

sizeof(Protocol), /* Length */

NULL, /* Buffer from driver */

0, /* Length */

&BytesReturned,

NULL); /* Wait till I/O complete */

if (!IoctlResult)

printf ("LOADPR failed: BrktGetLastError = %d\n",
BrktGetLastError (BoardHandle));

else

printf ("LOADPR done \n");

BrktCloseDevice(BoardHandle);

return(0);

}

104 RealCT Direct API Developer Guide

Configuring the E1 Environment
Configuring the Carrier

Configure the carrier parameters for your line using the
function CONFIG_CARRIER, or configure only line coding and
CRC using the Configuration Wizard. Using
CONFIG_CARRIER, you configure all channels on a given
trunk to use the same values. To configure the ADI, invert, or
loopback parameters separately for individual channels, use
CONFIG_CHANNEL and RHT_CONFIG_CHANNEL.
However, since there is rarely a need to configure these
parameters separately, we recommend using
CONFIG_CARRIER.

For all parameters, contact your carrier for information about
the appropriate settings.

Configuring CRC

You can enable or disable your system to transmit CRC data
and the CRC error report. The CRC calculation and error report
provide a good way to verify the data transmitted on the line
and to analyze the data link in both directions.

Setting the CRC parameter incorrectly causes the board to
indicate framing errors, which causes line functions to fail.

Configuring the Line Coding Method

E1 boards support line coding with or without HDB3. Setting
the incorrect line coding method can cause bipolar violations or
noise on the line, so be sure your configuration matches the
specifications of your carrier.
August 2001 105

Chapter 4: E1 Networking
Configuring Debounce

When debouncing is enabled, the board waits for the signaling
bits to be stable before relaying the information to the devices.
Waiting for the bits to stabilize prevents errors from being
handled as if they were valid signals. Debouncing, which is also
called deglitching, should always be enabled.

The ‘6’ to ‘9’ msec wait is less than the minimum time used for
signal recognition protocols, so enabling debouncing should not
impact performance. In fact, it should increase performance,
despite the delay, since the software does not have to handle
spurious signals. The software adds an additional debouncing
time at a higher layer, which further reduces the risk of
spurious signals reaching the application.

Configuring the Loopback Mode

There are two software loopbacks set using
CONFIG_CARRIER: remote and local. These are used to test a
board or the data link. For information about additional
hardware loopbacks, see Troubleshooting on page 134.

n In a remote loopback, the board immediately transmits all
data it receives back to the CO. If all connections are
working, the CO should receive the same information it
transmitted. If any transmission errors disappear in the
remote loopback configuration, the problem is with the
clock or carrier settings in your application. If the problem
does not disappear, the problem is either the cabling or at
the carrier end.

n In a local loopback, the board receives the same data it
transmits, without passing through any cabling. If placing
your board in a local loopback fixes problems you
experienced on the line, the problem is with the cabling or
with the carrier. If a local loopback does not fix errors, then
the board is not sending valid data.

When you first load the driver, it has both loopback modes
enabled by default. In this configuration, both the board and the
CO only receive the data they transmit. This configuration lets
you verify that both the board and CO can send and receive
valid data. For normal operation, remove both loopbacks so that
the board and CO can transmit and receive data.
106 RealCT Direct API Developer Guide

Configuring the E1 Environment
Configuring the Hook State

When loaded, each protocol automatically transmits the bit
pattern corresponding to the idle state. The devices ignore the
‘Hook’ field in the carrier parameters.

Transmitting the proper hook state is one reason to load the
protocols before configuring the carrier parameters. If you
configure the carrier first, the board might transmit an invalid
hook pattern on the line. This invalid signal could trigger
alarms at the CO. Although the alarms would disappear when
you load the line protocol and begin transmitting the
appropriate bit pattern, the CO switch might have blocked the
line in response to the alarm.

Configuring ADI

Alternate Digit Inversion (ADI) consists of analyzing the data
transmitted in each channel and making sure it does not go
beyond certain amplitude limit. If it does, the signal is
automatically modified so that it remains inside a
pre-determined range. For audio data, ADI should always be
enabled.
August 2001 107

Chapter 4: E1 Networking
Example 6. CONFIG_CARRIER Sample Code

#include “brktddm.h”

int main(int argc, char **argv)

{

BRKT_HANDLE BoardHandle; /* E1 board device handle */

BOOLEAN IoctlResult; /* Result of IOCTL call */

BRKT_SIZE_T BytesReturned; /* Bytes returned from IOCTL call*/

struct RTNI_E1carrierParam_s Carrier;

/* Open T1 board device */

BoardHandle = BrktOpenDevice (BRKT_DEVICE_E1_BOARD, 0);

/* Configure E1 carrier */

/* Set up same parameters for both trunks */

memset (&Carrier, 0, sizeof (Carrier));

Carrier.Size = sizeof(struct RTNI_E1carrierParam_s;

Carrier.Trunk = M_ALL_TRUNK;

Carrier.CRC = 1; /* Enable CRC calculation */

Carrier.Code = DT_HDB3; /* Coding method: HDB3 encoding */

Carrier.Debounce = 1; /* Enable debounce (deglitch) */

Carrier.CCS = 0; /* No CCS. Use CAS signaling */

Carrier.Loopback = 0; /* Disable loopback */

Carrier.Alarm = 0; /* Do not send alarms */

Carrier.Hook = H_ON; /* On-hook (idle) state */

Carrier.ADI = TRUE; /* Enable ADI encoding */

Carrier.TxGain = 0; /* Sets trunk’s transmit gain at 0 dB */

Carrier.RxGain = 0; /* Sets trunk’s receive gain at 0 dB */
108 RealCT Direct API Developer Guide

Configuring the E1 Environment
Example 6. CONFIG_CARRIER Sample Code (Continued)

IoctlResult = BrktDeviceIoControl (

BoardHandle,

CONFIG_CARRIER,

&Carrier, /* Buffer to driver */

sizeof(Carrier),

NULL,

0,

&BytesReturned,

NULL); /* Wait until I/O is complete */

if (!IoctlResult)

printf ("CONFIG_CARRIER failed: BrktGetLastError = %d\n",
BrktGetLastError (BoardHandle));

BrktCloseDevice(BoardHandle);

return(0);

}

August 2001 109

Chapter 4: E1 Networking
Handling Incoming and Outgoing Calls

Processing Calls

Call processing involves setting up and tearing down calls. Calls
have to be processed before they go through, so be sure to verify
call processing in the early stages of development.

Table 21 shows the functions used in sending and receiving calls
over an E1 line. These functions are the same as those used in
analog telephony. The protocol files translate these functions
into the specific bit patterns and handshaking signals used by
the E1 protocols, as described in Loading The Line Protocol on
page 101.

Table 21. API Functions Used in E1 Signaling.

Function Description

RHT_WAIT_LINE_ON Waits for an incoming call and
automatically acknowledges it.

RHT_OFF_HOOK

RHT_SEIZE_LINE

Answers and incoming call or initiates
an outgoing call.

RHT_ON_HOOK

RHT_DISCONNECT

Terminates incoming or outgoing calls.

RHT_STOP Terminates a function.

RHT_BLOCK_LINE Blocks the line, preventing the line
from receiving incoming calls.

RHT_FORCED_RELEASE Terminates an incoming call by
transmitting a Forced Release signal
on the line.

RHT_WAIT_LINE_OFF Monitors the line waiting for a
disconnect

RHT_WAIT_ANSWER Monitors the line waiting for an
answer.

RHT_WAIT_IDLE Waits for an idle pattern on the line.
110 RealCT Direct API Developer Guide

Handling Incoming and Outgoing Calls
Handling Incoming Calls

Handling incoming calls involves the following steps:

1. Detect an incoming call.
2. Handle call setup signaling.
3. Send control tones.
4. Answer the call.
5. Process the call, while monitoring for disconnect.
6. Terminate the call.

You can block a channel at any time to prevent further incoming
calls.

Detecting an Incoming Call

When the application is ready to receive a call, it calls
RHT_WAIT_LINE_ON. This function waits until the device
receives a seizure signal, then sends a seizure acknowledgment.
The function waits for an amount of time specified by the
RDG_LOCAL_ACK_GUARD_TIME parameter, then returns
an acknowledgment signal. The application is then ready to
receive digits. The series of events involved in detecting an
incoming call is shown in Figure 22.

Table 22. RHT_WAIT_LINE_ON Sequence

Action Duration

Receive seizure or ring

Send acknowledgment (if
required)

Wait RDG_LOCAL_ACK_GUARD_TIME

Send acknowledgment

Return
August 2001 111

Chapter 4: E1 Networking
RHT_WAIT_LINE_ON automatically sends any
acknowledgments required by the protocol, which serves two
purposes:

n First, it isolates the application from the protocol. You can
communicate with different carriers simply by switching
protocol files rather than making changes to the
application.

n Second, it improves timing. In a heavily loaded system,
threads and processes can be preempted at almost any
time, and it might take several seconds before they can run
again. If there were separate functions to detect the call
and send the acknowledgment, the two signals could be
several seconds apart. This delay might exceed the
maximum allowed by the originating end.

If the application calls RHT_WAIT_LINE_ON when the line is
in a state other than idle, the function returns an error.

RHT_WAIT_LINE_ON should continuously wait for a call, even
though you can limit the function’s run time with the
MDP_WAIT_LINE_ON_TIMEOUT parameter. If you use this
timeout to monitor for other conditions, you could miss incoming
calls. Use another thread to do any necessary monitoring. To
terminate RHT_WAIT_LINE_ON, use RHT_STOP. The
application is notified that the function terminated and will
take any appropriate action.
112 RealCT Direct API Developer Guide

Handling Incoming and Outgoing Calls
Detecting Digits

When an application receives an incoming call, it generally
receives information about the call setup from the originating
end. The method used to send these digits depends on the way
the CO has configured the line. Most COs use R2 compelled
signaling, but some use DTMF or MF tones to send digits.

Despite the name, there is no association between the
R2-CCITT line signaling protocols and the R2 inter-register
signaling. Any board with voice processing capabilities can
handle R2 inter-register signaling, regardless of the type of line
interface. Likewise, an E1 line configured to use an R2-CCITT
line protocol can receive digits through a different method of
inter-register signaling. However, most E1 systems use R2
inter-register signaling. For more information about R2
inter-register signaling, see Chapter 2, Digit Handling, on
page 15.

Before detecting new digits from an incoming call, flush the
digit buffer using RHT_FLUSH_DIGIT. Otherwise, digits
stored in the buffer from a previous call could be handled in the
new call. The best time to flush digits is after going on hook but
before calling RHT_WAIT_LINE_ON. If you flush digits after
calling RHT_WAIT_LINE_ON, your thread could get
pre-empted and rescheduled for after the application has
started receiving digits from a new call. When the application
eventually flushes the digit buffer it clears digits from the
current call and loses that data.

Once the application receives call setup information, it answers
the call. If the inter-register signaling fails, then the circuit is
released.
August 2001 113

Chapter 4: E1 Networking
Sending Control Tones

In R2-CCITT protocols, your application emulates both the
receiving end CO and subscriber. The CO portion sends control
tones such as ringback and busy to indicate the status of the call
to the other end.

When a subscriber receives a call, the CO emulation part of the
application should determine the status of the line and send
either a busy or ringback tone back to the caller. It should also
send the hangup tone when the subscriber hangs up. Many
applications skip sending control tones and instead send the
answer signal immediately after receiving the incoming call,
leaving the line silent until the application is ready to start
playing prompts or a live person can handle the call. If a calling
party does not hear control tones, they might think the call was
lost and hang up, especially if the application had to perform a
lengthy task such as querying a data base or checking the status
of agents at a call center.

Sending control tones also improves the timing of the call if
there are many transit COs between the calling party and your
application. In this case, it could take several hundred
milliseconds to establish an audio path between the two ends. If
the application immediately begins playing audio prompts after
receiving a call, the caller could lose the first portion of the
prompt that was played while the audio path was being
established. Sending control tones establishes the audio path
before the application begins playing, so the caller hears the
entire audio prompt.

Although adding the control tones might add some complexity,
some countries require that your application meets some
minimum requirements before live traffic is routed to it.
114 RealCT Direct API Developer Guide

Handling Incoming and Outgoing Calls
Answering Calls

Answer calls detected by RHT_WAIT_LINE_ON using
RHT_OFF_HOOK or RHT_SEIZE_LINE. These functions are
interchangeable, so all discussion of RHT_OFF_HOOK also
applies to RHT_SEIZE_LINE.

When RHT_OFF_HOOK answers a call, it automatically
transmits the appropriate answer supervision signal towards
the switch directly connected to your system. The switch relays
this information back to the preceding switching equipment and
so on until the information reaches the originating equipment.
This serves as a signal to the originating office to start billing
the caller.

After transmitting the off hook or answer supervision bit
pattern, RHT_OFF_HOOK waits for a duration specified by
RDG_LOCAL_ANSWER_GUARD_TIME before returning, as
shown in Table 23.

Table 23. RHT_OFF_HOOK Sequence

The guard time is important in case your application needs to
hang up immediately after answering a call. Without a guard
time, the off hook pattern would be on the line for a very short
period of time. The CO could ignore that signal, or consider the
transmission to be an error. Although this situation is correctly
handled in most protocols, it could be a problem in some specific
scenarios.

Action Duration

Transmit answer signal

Wait RDG_LOCAL_ANSWER_GUARD_TIME

Return
August 2001 115

Chapter 4: E1 Networking
In the early stages of development, it might be hard to tell if the
application fails to call RHT_OFF_HOOK. The audio path is
established soon after the CO sends digits so the remote end can
hear the control tones. With the audio path established, the
remote end will also hear any files the application plays even if
the application fails to call RHT_OFF_HOOK. If the CO does
not receive the answer signal, however, it times out within two
to four minutes and terminates the call. To the application and
the caller, it appears that the call was being handled properly
until the call is suddenly terminated. If your application
consistently reports that it received a disconnect after two to
four minutes while it was processing the call, check to be sure
the application called RHT_OFF_HOOK to answer the call.

If you are sure that your application called RHT_OFF_HOOK,
consider the other extreme. The application might call
RHT_OFF_HOOK too soon after it detects digits. In this case
the switches down the path might not be ready to receive the
answer signal, so they do not detect it. The application should
send control tones after receiving digits so the COs in the path
are ready to receive the answer signal.
116 RealCT Direct API Developer Guide

Handling Incoming and Outgoing Calls
Monitoring For Disconnection

Whether you received or originated the call, you should
continuously monitor the line for disconnect using
RHT_WAIT_LINE_OFF. The sooner you detect the disconnect,
the sooner the line is free for new calls, allowing you to reach
more people in the same amount of time without increasing the
number of lines. RHT_WAIT_LINE_OFF returns successfully
when it detects a disconnect or returns an error if it detects
other conditions. If RHT_WAIT_LINE_ON returns an error, use
RHT_GET_STATUS for more information about the
termination.

If the application is running a voice processing function when it
detects disconnect, it should terminate that function
immediately. There are two ways to terminate a function. The
first uses two threads (or processes) per channel: one to run the
line monitoring function and another the run the voice
processing function. The main thread synchronizes these two
threads.

A better way to terminate VP functions is to run the functions
so they terminate when the application detects a disconnect. To
do this, set the field ‘LineTerm0’ in the VPstartStop_s or
RhtDialDigit_s structures. This field provides a way for the VP
driver and the E1 device to communicate.

With ‘LineTerm0’ set, the E1 device automatically runs
RHT_WAIT_LINE_OFF. It continues monitoring the line until
the VP driver sends a signal that the VP function terminated or
until the E1 device detects a disconnect. When it detects a
disconnect, the E1 device signals the VP driver to terminate the
function. When the VP function terminates, check the condition
that caused termination using RHT_GET_STATUS. A
T_RHT_LINE_OFF condition means that RHT_WAIT_LINE_OFF
caused the function to terminate.
August 2001 117

Chapter 4: E1 Networking
This second approach is easier to implement because it does not
involve separate threads. However, RHT_WAIT_LINE_OFF
only runs when a VP function is running. If the application
spends long periods of time performing non-VP functions, a
disconnect would not be reported until the next VP or line
function runs. This could keep the line busy longer than
necessary. If this delay is not acceptable, then use a separate
thread to monitor the line while no VP functions are running.

Since RHT_WAIT_LINE_OFF is an exclusive function, you
cannot start any other exclusive functions when you start a VP
function with ‘LineTerm0’ set.
118 RealCT Direct API Developer Guide

Handling Incoming and Outgoing Calls
Terminating an Inbound Call

Terminate calls using RHT_ON_HOOK or
RHT_DISCONNECT. These functions are interchangeable, so
all discussion of RHT_DISCONNECT also applies to
RHT_ON_HOOK.

RHT_DISCONNECT transmits a disconnect (idle) pattern for
the time specified by RDG_LOCAL_IDLE_DUR. It then waits
for the remote end to disconnect for a time specified by
RDG_REMOTE_IDLE_TIMEOUT. After it receives the
disconnect, RHT_DISCONNECT waits for a time specified by
RDG_LOCAL_IDLE_GUARD_TIME then returns. Table 24
shows the sequence involved in terminating a call.

Table 24. RHT_DISCONNECT Sequence

In the R2 CCITT protocol, the protocol sends a Clear Back
disconnect signal to terminate incoming calls. Outgoing calls
terminate using a Clear Forward signal.

If the remote end disconnects first and your application calls
RHT_DISCONNECT in response to their disconnect signal, it
returns almost immediately. The only delays are those caused
by RDG_LOCAL_IDLE_DUR and
RDG_LOCAL_IDLE_GUARD_TIME.

The remote end only sends an idle pattern when the calling
party hangs up. If the caller does not know that your application
has disconnected, it might take a while for them to hang up. An
application should play a busy signal when it hangs up so the
calling party knows you have disconnected.

Action Duration

Transmit disconnect RDG_LOCAL_IDLE_DUR

Wait for disconnect RDG_REMOTE_IDLE_TIMEOUT

Wait RDG_LOCAL_IDLE_GUARD_TIME

Return
August 2001 119

Chapter 4: E1 Networking
If your end disconnects first, RHT_DISCONNECT waits for a
duration specified by RDG_REMOTE_IDLE_TIMEOUT for the
other party to disconnect. This parameter is set to infinite by
default. However, the CO the other party is connected to usually
times out in one to four minutes if the other party does not
disconnect. When it times out, the CO transmits a disconnect
signal on its own. If the CO does not have a timer, it does not
transmit a disconnect and your application must wait for the
other party to hang up.

If RHT_DISCONNECT does not return within a few seconds, it
is probably because the other party has not hung up rather than
a problem with the application. Call RHT_GET_STATUS to see
the signaling bits currently present on the line if you think the
function is taking too long to return.

The reason RHT_DISCONNECT waits for a disconnect before
returning is so the application knows when the line is free. If
RHT_DISCONNECT returned immediately, the application
would not know when the line could be used for new calls. The
application would have to call RHT_WAIT_IDLE to monitor the
line for disconnect after RHT_DISCONNECT returns.

You can change RDG_REMOTE_IDLE_TIMEOUT to be less
than infinite, but doing this does not free the line any faster. If
RHT_DISCONNECT does not receive the disconnect signal
within a time specified by RDG_REMOTE_IDLE_TIMEOUT,
the function returns an error and the application resumes
executing. However, the application cannot make or receive
another call until the line is idle, so you do not gain anything by
regaining control. Any exclusive line functions also return an
error until the line becomes idle. The only way the application
knows when the line becomes free is by calling
RHT_WAIT_IDLE. This function returns when the line
becomes idle and the application can proceed. Since
RHT_WAIT_IDLE is built into RHT_DISCONNECT, it is most
efficient to wait for RHT_DISCONNECT to detect the idle and
return.
120 RealCT Direct API Developer Guide

Handling Incoming and Outgoing Calls
If you are using R2 inter-register signaling and you use
RHT_DISCONNECT to terminate a call, the protocol sends a
Clear Back signal to disconnect. This signal uses the same bit
pattern as the Seizure Acknowledgment signal (A=1, B=1). The
far end can not distinguish between the two signals, so the Clear
Back has no effect if the application called RHT_DISCONNECT
from the seizure acknowledgment state. The far end continues
inter-register signaling, which eventually fails because the near
end does not respond. When inter-register signaling fails, the
far end terminates the call and releases the line for future calls.

Some countries extend the CCITT R2 protocol to support the
Forced Release signal, which provides an alternate way to
terminate inbound calls. The Forced Release signal has a bit
pattern that is different from other backward signals, so it is
easily recognizable to the remote end. Use the
RHT_FORCED_RELEASE function to transmit the Forced
Release signal. This function returns an error if is called to
terminate an outbound call.

The Forced Release signal is not part of the CCITT
recommendations, and is not always supported. Check with
your carrier to find out it they support Forced Release.
August 2001 121

Chapter 4: E1 Networking
Blocking a Circuit

It might be necessary for an application to stop receiving calls,
for example if the system is down for maintenance. In an analog
environment, the system can simply ignore incoming calls. In
an E1 environment using R2 line signaling, however, ignoring
calls could lead to problems with the CO.

When the far end sends a Seizure signal, the application
responds with a Seizure Acknowledgment. If the application
cannot accept calls and does not send a Seizure
Acknowledgment, the CO might consider the circuit to be faulty
and take the line out of service.

To prevent the CO from taking lines out of service, Block the
line using RHT_BLOCK_LINE. The Block signal also acts as a
Clear Back signal, terminating any incoming calls. Check with
your carrier to find out how the Block signal handles outgoing
calls. In some systems you need to terminate outgoing calls
before blocking the line. Once the application is ready to start
processing calls, call RHT_ON_HOOK to transmit an Idle
pattern on the line.

If your application tries to make an outbound call and detects a
blocked line, the line function returns error
BRKT_ERROR_CODE(IO_DEVICE). The application calls
RHT_WAIT_IDLE to detect when the circuit is Idle and can
receive calls.
122 RealCT Direct API Developer Guide

Handling Incoming and Outgoing Calls
Handling Outbound Calls

Handling outbound calls involves the following steps:

1. Seize a line.
2. Send call-setup information (R2 Inter-register Signaling or

other proprietary methods).
3. Monitor the line for answer.
4. Process the call.
5. Terminate the call.

Seizing a Line

Seize an idle line using either RHT_SEIZE_LINE or
RHT_OFF_HOOK. These functions are interchangeable, so all
discussion of RHT_SEIZE_LINE also applies to
RHT_OFF_HOOK.

RHT_SEIZE_LINE transmits the line seize signal and waits for
an acknowledgment from the remote end for a time defined by
RDG_REMOTE_ACK_TIMEOUT. It then waits for a time
determined by RDG_LOCAL_SEIZE_GUARD_TIME and
returns. If RHT_SEIZE_LINE does not receive an
acknowledgment, it returns the hook to idle and returns an
error. Table 25 shows the sequence of seizing a line.

Table 25. RHT_SEIZE_LINE Sequence

Action Duration

Transmit line seize

Wait for acknowledgment RDG_REMOTE_ACK_TIMEOUT

Wait RDG_LOCAL_SEIZE_GUARD_TIME

Return
August 2001 123

Chapter 4: E1 Networking
Glare Resolution

If the line is not idle when the application calls
RHT_SEIZE_LINE, BrktGetLastError (DeviceHandle), returns
BRKT_ERROR_CODE(IO_DEVICE). See Troubleshooting on page 134
for more information on how to handle the error.

It is possible for the application to try to seize the line as the CO
tries to send a call. In this situation, called a glare,
RHT_SEIZE_LINE returns an error but does not set the line
back to idle. In order to accept the incoming call, the application
calls RHT_OFF_HOOK. If it does not accept the call, it calls
RHT_DISCONNECT to set the line back to idle. Check with
your carrier to see how they want applications to handle glare
situations (also called glare resolution).

Sending Call Setup Information

After the application seizes the line, it transmits call setup
information using RHT_DIAL_R2. Call setup is usually done
using R2-MF tones, also called MFC. RHT_DIAL_R2 handles
all aspects of the compelled protocol.

While dialing, the application monitors the line by setting field
‘LineTerm0’ in the VPdialR2_s structure as described in
Monitoring For Disconnection on page 117.

If the function returns successfully, the application monitors
the call for answer. If the function returns T_RHT_LINEOFF, then
the function terminated because of a line condition. Call
RHT_GET_STATUS to find out what line condition occurred.
Other codes indication more serious error conditions. You
should abandon the call using RHT_DISCONNECT and try the
call again.

For more information about how E1 applications dial digits, see
Chapter 2, Digit Handling, on page 15.
124 RealCT Direct API Developer Guide

Handling Incoming and Outgoing Calls
Monitoring For Call Answer

Determine the status of a call using either RHT_START_PCPM
or RHT_WAIT_ANSWER. RHT_WAIT_ANSWER returns
successfully if it detects an answer pattern or returns an error
if it detects any other pattern such as a disconnect or bit errors.
If RHT_WAIT_ANSWER does not detect a bit change, it
continues running until the application terminates it through a
call to RHT_STOP.

In some protocols, the bit patterns are the same when dialing
out and when the remote end sends a disconnect signal. To
distinguish between these, call RHT_WAIT_ANSWER
immediately after dialing out and before calling any other line
function. After RHT_WAIT_ANSWER detects the answer, call
RHT_WAIT_LINE_OFF to detect disconnect. Calling the
functions in this specific order allows the device to keep track of
the call history and to differentiate between ambiguous bit
patterns based on their context.

RHT_WAIT_ANSWER only monitors for an answer based on
the answer supervision signal. If the application needs more
information about the call than whether it was answered, use
RHT_START_PCPM. RHT_START_PCPM accesses the
Programmable Call Progress Monitoring (PCPM) algorithm
that runs on the board’s DSP. PCPM monitors the line for
control tones, voice, or silence on the line and determines the
status of the call. Since PCPM monitors all audio on the line, it
can provide information about busy, no answer, or other line
conditions.

In systems using R2 inter-register signaling, an R2 signal
indicates whether the line is busy. Also, a bit change in the line
signaling protocol reports when the line becomes free, so PCPM
is not necessary to detect busy. For more information about R2
signaling, see Chapter 2, Digit Handling, on page 15.
August 2001 125

Chapter 4: E1 Networking
The main reason to run PCPM algorithms in R2 systems would
be detecting special tones such as Fax tones or operator
intercept not accompanied by an R2 register signal. However,
proprietary protocols running on E1 lines might require PCPM.
RHT_START_PCPM only monitors audible signals on the line
and runs independently of the type of line being used.

Since PCPM uses only sound or silence to determine the call
status, it cannot be absolutely accurate in detecting answer. For
example, if a busy switch plays a recording saying that all
circuits are busy, the PCPM algorithm might recognize the
human voice and determine that the call has been answered.
For this reason, you should run RHT_WAIT_ANSWER and
RHT_START_PCPM simultaneously. RHT_WAIT_ANSWER
provides accurate answer detection while RHT_START_PCPM
provides other information about the status of the call.

If the application starts RHT_START_PCPM with
VPstartStop_s.LineTerm0 set, the VP driver automatically
requests that the E1 device run RHT_WAIT_LINE_OFF.
RHT_WAIT_LINE_OFF monitors the line for a disconnect, but
it also detects answer. When RHT_WAIT_LINE_OFF detects
an answer or disconnect, it terminates RHT_START_PCPM.
The application then calls RHT_GET_STATUS to determine
the status of the line.
126 RealCT Direct API Developer Guide

Handling Incoming and Outgoing Calls
The following example shows the steps involved in using
RHT_START_PCPM to detect answer.

1. The application starts RHT_START_PCPM with
VPstartStop_s fields ‘LineTerm0’ and ‘Timeout’ set.

2. When RHT_START_PCPM returns, the application calls
RHT_GET_STATUS for the VP device and checks
VPchanStatus_s.TermType.

Interpreting Results

1. If VPchanStatus_s = T_RHT_PCPM, then
RHT_START_PCPM determined the line state. The
VPchanStatus_s.PCPMtype field contains the line status
information.

2. If VPchanStatus_s.TermType = T_RHT_TIMEOUT, then
RHT_START_PCPM did not detect any condition within the
allotted amount of time.

3. If VPchanStatus_s.TermType = T_RHT_LINEOFF, the CO
either answered or disconnected the call before answering.
The application calls RHT_GET_STATUS for the line
device and checks RTNI_lineStatus_s.TermType. This field
contains information about the status of the line.

Terminating an Outbound Call

Terminating an outbound uses the same procedure as
terminating an inbound call, except that outbound calls
terminate using a Clear Forward rather than a Clear Back
signal. RHT_DISCONNECT handles this distinction. For more
information about terminating calls, see Terminating an
Inbound Call on page 119.
August 2001 127

Chapter 4: E1 Networking
Using Internal Signaling Streams

The E1 board has internal streams that hold data received on
the line. Streams 17 and 19 hold signaling bits from trunks A
and B, respectively. Streams 16 and 18 hold data from trunks A
and B, respectively.

Within streams 17 and 19, 8-bit timeslots hold the signaling
data. The internal MVIP timeslots hold signaling bits the same
way they are transmitted in the E1 timeslot 16: the first nibble
holds signaling bits for line n and the second nibble holds
signaling bits for line n+15.

For example, timeslot 0 in stream 17 holds signaling bits for line
0 and line 15. Timeslot 1 holds signaling bits for line 1 and line
16, and so on through timeslot 14, which holds signaling bits for
lines 14 and 29. If timeslot 0 transmits the value 0x9D, then line
0 is transmitting ABCD=0x9=1001, and line 15 is transmitting
ABCD=0xD=1101.

Access the signaling bits using the SET_OUTPUT and
SAMPLE_INPUT MVIP functions. Applications can use these
functions to set and retrieve signaling bits directly from the
hardware instead of relying on higher level device functions
such as RHT_GET_LINE and RHT_GET_STATUS. Access to
low level signaling bits should only be used for tracing purposes,
since it can interfere with normal device functions such as
RHT_ON_HOOK.

To write bits to a specific internal stream/timeslot, put the
timeslot in message mode and use SET_OUTPUT. The
hardware takes the bits you write to the signaling streams and
sends them as signaling bits. To read bits from a specific
stream/timeslot, use SAMPLE_INPUT. See the RealCT Direct
API Reference Manual for more information about
SET_OUTPUT and SAMPLE_INPUT.

The E1 board receives data for lines 0 through 29 in internal
streams 16 and 18, timeslots 0 through 29. For information
about switching data received in streams 16 and 18 over the
CT bus, see Chapter 5, MVIP-90, on page 143, and Chapter 6,
MVIP-95, on page 183.
128 RealCT Direct API Developer Guide

Testing the E1 Setup
Testing the E1 Setup

Testing the Installation

Use the samples that came with your software to test your
boards, devices, and installation before you write your
application. You can use the provided source code to help
develop your application. The samples are located in
subdirectory \RHT\SAMP\E1.

The most useful samples are:

E1INIT Sets the clock, initializes carrier parameters, and checks carrier
status.

Older samples set the clock reference as being Trunk A and
configured the carrier to disable HDB3 and CRC. If your
installation requires different values, make sure to alter the
samples accordingly. Newer samples configure most of the
parameters using the command line. The defaults are the same
as those in the older samples.

WAITRING [line] Waits for a call on the specified line (0 by default).

OFFHOOK [line] Answers an inbound call or initiates an outbound call.

ONHOOK [line] Disconnects a call on the specified line (0 by default).

DISLN [line] Disconnects a call on the specified line (0 by default).

WAITANS [line] Waits for the remote end to answer on the specified line (0 by
default).

BLKLN [line] Blocks the line.

FRLN [line] Sends a Forced Release signal to terminate the call.

WAITOFF [line] Monitors for a disconnect on the specified line (0 by default).

WAITIDLE [line] Waits for an idle pattern on the line (0 by default).

LSB [line] Displays all relevant information about a line (structure
RTNI_lineStatus_s).

PLAYE [line] [file] Plays a file while monitoring for a disconnect on the line
(default: line 0, file test.vox).
August 2001 129

Chapter 4: E1 Networking
DIALR2 [line] [digits] Dials R2 digits while monitoring for a disconnect on the line
(0 by default).

BSTAT Queries carrier status.

BINFO Displays board and device information.

CONN Makes MVIP connections.
Usage: Conn<output stream> <output timeslot>
<input stream> <input timeslot>

QUERY Queries MVIP connections.
Usage: Query<output stream> <output timeslot>

DIGIT [line] In subdirectory \RHT\SAMP\STD. Reads digits sent by the
CO.

TWAIT [line] In subdirectory \RHT\SAMP\STD. Waits for digits. It must be
modified so that it monitors an E1 line for disconnect instead of
a LS line.

SETDM [line] In subdirectory \RHT\SAMP\STD. Selects the type of digits to
detect. Call this to enable R2 forward or R2 backward digits
before you call DIALR2.

Run these samples either individually or as a batch file. For
example, the following batch file initializes the E1 line, makes
the MVIP connection between line 0 and VP0, receives an
inbound call, plays a file, and then disconnects:

E1INIT

CONN 16 0 6 1

CONN 6 1 16 0

WAITRING 0

TWAIT 0

DIALR2 0

Repeat the above two steps until signaling is
complete

OFFHOOK 0

PLAYE 0 TEST.VOX

ONHOOK 0

In this example, TWAIT has to be modified to monitor an
E1 line rather than an LS line. Modify DIALR2 to handle
multiple digits instead of just one.
130 RealCT Direct API Developer Guide

Testing the E1 Setup
Testing the Application

There are four basic ways of testing your application:

n Using AccuSpan

n Placing calls over a live E1 line

n Using an E1 simulator

n Connecting trunks A and B (Loopback)

Using AccuSpan

AccuSpan is the best way to test the overall robustness and
fault tolerance of your system. AccuSpan is a command line
utility that gives you full control over the carrier configuration,
alarms, and bit patterns sent and received. It can also receive or
generate calls. By changing the carrier parameters such as clock
settings, line coding methods, or CRC transmission, you can test
different scenarios for your application. You can also transmit
alarm conditions to see how the remote end responds. To use
AccuSpan, connect two back to back computers with one
running the application and the other running AccuSpan.

The most powerful feature that AccuSpan provides for
exception-handling tests is signaling mode. In signaling mode
you can transmit any possible bit pattern to the application,
where the received bit pattern is always shown on screen. By
sending certain bit patterns at specific times you can manually
generate all events the protocol supports, such as line seizure,
answer, or disconnect. You can than send valid events at invalid
times, send invalid bit patterns at several different states of the
call progress, or send signals that are too long or too short and
check how the application responds. Using signaling mode
requires a good understanding of the protocols. If you are not
already familiar with the protocols, view the bit patterns sent or
received on the line during normal operation to see how the
protocol operates.
August 2001 131

Chapter 4: E1 Networking
Placing Calls over an E1 Line

Testing your application over a live E1 line gives you a
controlled environment and requires no special knowledge of
the protocols. If the application passes a few tests such as
making simultaneous calls or consecutive calls on the same line,
the application will probably work for real calls. However, when
testing the application over a real E1 line, the telephone
company controls the environment so there is little chance to
test error conditions. Before testing an application on a live E1
line you should use AccuSpan to eliminate as many error
conditions as possible.

Using an E1 Bulk Call Generator

Using an E1 bulk call generator is a good way to stress-test your
application. Most E1 bulk call generators allow at least four
trunks, or 120 lines, to place calls simultaneously. However,
using a call generator should not replace other tests,
particularly tests over a real line. The bulk call generator
usually does not provide a way of testing error handling since
they follow scripts that you determine and send the correct
signals on the line. They might also handle exceptions and
timing issues differently than your CO.
132 RealCT Direct API Developer Guide

Testing the E1 Setup
Connecting Trunks A and B

When you connect trunks A and B, you receive data on one
trunk that you send from the other trunk. Using this
configuration, you can test samples that compliment your
application or use the samples that came with your software.
Using either your own or provided samples, you can test
inbound and outbound call processing, send events out of order
to see how the application reacts, and stress test the
application. A loopback configuration is normally used as an
initial test, but it cannot test line handling features of the
application.

When you connect both trunks, be sure that the transmit leads
from one cable connect to the receive leads of the other cable,
and vice versa. There are two ways to be sure the cables connect
properly. The first is to use a crossover cable, which connects the
transmit and receive leads of one cable to the appropriate leads
on the other cable. The other way (available on RTNI-2T1 and
RTNI-2E1 boards only) is to set the mode of the trunk using
hardware jumpers, then connect the trunks using a regular
cable. Set one trunk to user mode and the other trunk to
network mode, as described in your hardware installation
guide. For normal operation, both trunks should be set to user
mode. Figure 21 shows trunks A and B connected by a cable.

Figure 21. Connecting Trunks A and B in E1

Board
August 2001 133

Chapter 4: E1 Networking
Troubleshooting

If a line function returns an error code, use BrktGetLastError ()
to determine what caused the error. The two most common
errors are lost synchronization or a protocol error.

n In a synchronization error, BrktGetLastError () returns
BRKT_ERROR_CODE (UNEXP_NET_ERROR).

n In a protocol error, BrktGetLastError() returns
BRKT_ERROR_CODE(IO_DEVICE).
134 RealCT Direct API Developer Guide

Troubleshooting
Handling Synchronization Errors

When a trunk loses synchronization, any bits the trunk receives
are invalid. After a loss of synchronization, terminate all calls
and check the trunk status using QUERY_CARRIER_STAT.
When the trunk is synchronized with the network, the
application can proceed.

QUERY_CARRIER_STAT returns information about the
current alarm and synchronization status of the line in the
structure RTNI_E1carrierStatus_s. It also returns any errors
that have occurred since the last time the application called that
function. This information can help you measure the quality of
the link to the network. If the data returned indicates the line
is not synchronized or that alarms are present and the condition
persists for longer than a few hundred milliseconds, the
application should terminate all calls and issue an error
message.

RTNI_E1carrierStatus_s returns the following information
about the line:

Alarm Indicates whether there are any alarms on the line. There are
three alarm types:

Frame Zero Timeslot 16 of frame zero contains an alarm bit. The remote end
sets this bit to signal an alarm.

Timeslot 16 All Ones Indicates that all bits in timeslot 16 are ones. Since timeslot 16
carries signaling bits for all channels, a timeslot 16 all ones
means that the signaling bits are not valid.

This alarm is usually accompanied by a loss of synchronization,
since the framing information on timeslot 16 is necessary to
identify the E1 multiframe.

All Ones Indicates that all bits received are ones. In this situation, all
framing information is lost. An all ones signal is usually sent as
a test pattern to verify the quality of the data link.

Slips Buffer slips indicate that the E1 board is not reading and
writing data to the line at the same rate as the remote end.
Usually, an incorrect clock setting or faulty clock source are
responsible for buffer slips. For more information about setting
the clock, see Setting the Clock on page 100.
August 2001 135

Chapter 4: E1 Networking
Sync The synchronization field indicates whether or not the network
and E1 board are synchronized. If they are not synchronized, it
means that the board is not receiving framing information. This
can happen if there is no signal on the line, if the board is
receiving an invalid or test signal, or if the framing mode is not
set properly. Be sure that you have set the appropriate clock
mode, CRC mode, and framing method, as described in
Configuring the E1 Environment on page 100.

If changing the clock mode, CRC mode, or framing method
doesn’t restore synchronization, the cable might be improperly
installed. Use a remote and local loopback to isolate whether the
problem originates at the CO or your system. For more
information about loopbacks, see Using Loopbacks on page 140.

CRCerrorCount A CRC error indicates that the CRC calculated for one
particular submultiframe did not match the value transmitted
by the far end. Since the far end and your board perform the
same calculation, the data was corrupted during transmission.

One reason for CRC errors is if the signal level received at your
premises is low, so some one bits were interpreted as zero bits.
Be sure the equalization parameters on the board are set
incorrectly for the cable length, as described in the hardware
installation card for your E1 board. Improper equalization
settings can cause low signal levels. Also, check the signal level
provided by the carrier and increase it if possible.

CRC error indications are only meaningful if your system is
synchronized with the far end. Buffer slips have no effect on
CRC calculations.

Simux The Simux bits report the result of the CRC comparison at the
far end. If there are too many errors, the E1 board might be
transmitting poor quality of data or there might be a problem
with the cables.

The Simux values are only meaningful if you are receiving a
clear signal, without synchronism errors or excessive CRC
errors. If you receive a clear signal, it means that the lines from
the CO to the E1 board are good, so any cabling problems are
from the E1 board to the CO.
136 RealCT Direct API Developer Guide

Troubleshooting
Handling Protocol Errors

A protocol error occurs when the signaling bits read from the
line don’t match what was expected at that time. For example,
a function detects call answer while monitoring for disconnect.
An unexpected event is not necessarily an error, since there are
times when more than one event could happen. However, the
software returns an error if any event other than the one the
function is waiting for takes place.

The best way to recover from a protocol error is to call
RHT_DISCONNECT to set the local end to idle, then call
RHT_WAIT_IDLE and wait for it to return. When that
happens, both ends are in an idle state and are ready to send or
receive calls. When the line is idle, the application can continue.
Call RHT_GET_STATUS for more information about what
caused the protocol error. RHT_GET_STATUS returns
information about the protocol and compiler version as well as
the termination code and line function information in the
structure RTNI_lineStatus_s.

The ‘TermType’, ‘RawPattern’, and ‘Function’ fields in
RTNI_lineStatus_s contain information to help you handle
protocol errors. Providing these fields to technical support
greatly reduces the time it takes to diagnose a problem.

TermType ‘TermType’ contains the terminating code for the last E1 line
function. If the function is still running, ‘TermType’ contains an
intermediate message or the protocol code for the previous
function. Some protocol codes indicate that the previous
function terminated correctly. For example, a protocol code
might indicate that the RHT_WAIT_LINE_ON function
terminated because it received a call.

Other protocol codes indicate a protocol error. The RealCT
Direct API Reference Manual contains a complete list of protocol
codes and information about how to interpret these values for
different functions.

The protocol codes BAD_STATE_ERROR and SIGNALING_BIT_ERROR
are common in protocol errors.
August 2001 137

Chapter 4: E1 Networking
BAD_STATE_ERROR

A BAD_STATE_ERROR indicates that the function could not
execute because the line was in the wrong state for that
function. For example, ‘TermType’ would report a bad state
error if the application tries to wait for a call when the line is not
idle. In a bad state error, the CO's interpretation of the previous
signal on the line probably didn't match your application's.

A bad state error could also occur if the application expects a
certain event that does not occur, such as a seizure
acknowledgment after seizing the line. Sometimes the signal is
not sent because the CO and the application are in different
states. This could happen if the application sends a signal that
does not meet a minimum time requirement, so the CO does not
recognize the signal. The application would be in one state,
having sent the signal, but since the CO did not recognize the
signal, it would not change states. Guard times generally
prevent this situation.

The field ‘RawPattern’ contains the signaling bits being sent
and received on the line. This information can help determine
why a bad state error occurred, but doesn’t explain why the
situation arose.

SIGNALING_BIT_ERROR

A signaling bit error occurs when a bit pattern that does not
belong in the protocol was present on the line. The invalid bit
pattern must be present for longer than the debouncing and
deglitching timings in order to generate this error.

If you receive a signaling bit error, compare the bit pattern in
RTNI_lineStatus.RawPattern to the ones expected by the
protocol in case your carrier is using a variation on the protocol.
Call the carrier for more information about their protocol, or use
AccuSpan to get more information about the signaling.

If you frequently get a signaling bit error that isn’t related to
any particular event, you might have a problem with the
connection. In this case the application should monitor the
status of the carrier. If the number of CRC errors or buffers slips
is high, the line quality is poor. Check the gain your carrier is
set to provide, the length of cable, and the equalization
parameters set on the hardware.
138 RealCT Direct API Developer Guide

Troubleshooting
RawPattern ‘RawPattern’ contains the received and transmitted signaling
bits. The upper byte contains the received pattern while the
lower byte contains the transmitted pattern. Each of these bytes
contains only four significant bits. These bits contain the value
for signaling bits A, B, C, and D. Bit A is the most significant bit,
while bit D is the least significant bit.

For example, if ‘RawPattern’ contains 0x0F05, then the receive
pattern is 0x0F and the transmit pattern is 0x05.

Receive = 0x0F=1111, and A=B=C=D=1
Transmit = 0x05=0101, and A=C=0 and B=D=1

If you are transmitting signaling bits when using AccuSpan in
signaling mode, follow the same conventions.

Function ‘Function’ shows which function is currently running or which
function terminated last. You need to know the function name
in order to understand the terminating code listed in
‘TermType’.

The ‘Function’ field is particularly useful in finding out the
cause of BRKT_ERROR_CODE(BUSY). This error means that the line
function specified by the ‘Function’ field was already running
when the application called another line function.
BRKT_ERROR_CODE(BUSY) is usually a result of a programming
error.
August 2001 139

Chapter 4: E1 Networking
Using Loopbacks

Loopback configurations loop data back to where it originated.
These configurations help troubleshoot where errors occur.
There are several forms of loopbacks, depending on what you
want to test.

Set software loopbacks using CONFIG_CARRIER as described
in Configuring the Carrier on page 105. There are two software
loopbacks:

n Test whether the board’s receiver and transmitter work
properly using a local loopback. In this mode, the board
receives the same data it transmits without passing
through any cabling. To do a local loopback, set the
loopback mode in CONFIG_CARRIER to local.

n Test the cabling and verify that the CO can send and
receive valid data using a remote loopback. In this mode,
the board immediately transmits all data it receives back
to the CO. To do a remote loopback, set the loopback mode
in CONFIG_CARRIER to remote.

Figure 22 shows remote and local loopbacks.

Figure 22. Remote and Local Loopbacks in E1

Board

Board CSU
Data stream to trunk A

Data stream from trunk A

CO

Remote Loopback

Local Loopback
140 RealCT Direct API Developer Guide

Troubleshooting
Test individual regions of the cabling using a cable to connect
transmit and receive leads at points along a trunk. This mode
loops data back to either the board or CO depending on which
end transmits the data and how you set up the loopback.
Figure 23 shows a loopback using a cable to physically connect
the transmit and receive leads along trunk A.

Figure 23. Cabling Loopbacks in E1

Board
Data stream to trunk A

Data stream from trunk A

CO
August 2001 141

5
MVIP-90

This chapter describes how to develop applications for systems
using the Multi-Vendor Integration Protocol (MVIP). It
discusses the MVIP-90 software and hardware standard used
by the MVIP-compliant RDSP, Vantage VPS, Vantage VRS, and
RTNI boards.

This chapter includes the following topics:

n Defining MVIP-90

n Working with MVIP-90 Data Streams

n Understanding Framing

n Configuring Boards in the MVIP Bus

n Configuring the MVIP-90 Clock

n Mapping MVIP-90 Resources

n Enabling or Disabling Resources

n Switching Calls through the MVIP-90 Bus
143

Chapter 5: MVIP-90
Defining MVIP-90

Multi-Vendor Integration Protocol (MVIP) provides
communications standards that allow boards in a PC to
communicate with each other. MVIP works independently of
other computer buses. It can work in a PC, between PCs, in a
PBX, and in other computer-based hardware.

The MVIP bus provides a way to interconnect telephony
resources, even if those resources are provided by different
vendors. With voice, fax, video, and automatic speech
recognition cards connected in a single bus, you can develop
fully-integrated computer telephony applications.

MVIP is comprised of two main parts: the MVIP bus, and the
MVIP switch block. The MVIP bus provides the physical
connection between boards. The MVIP switch block provides the
mechanism for data switching between telephony resources.

Only the RTNI series network boards and Vantage PCI boards
provide a switch block and can make physical connections
between resources. RTNI series boards do not provide VP
resources, but they can switch calls to VP resources on other
boards. The Vantage VPS, Vantage VRS, and RDSP/xx000
boards do not have a switch block. They provide VP resources
over the MVIP bus.

Brooktrout supports two levels of MVIP: MVIP-90 and
MVIP-95. RDSP, Vantage VPS, Vantage VRS, and RTNI boards
all use the MVIP-90 software and hardware standard.
Applications written using the MVIP-90 software standard only
support MVIP-90 hardware. The Vantage PCI series boards
support the MVIP-95 software standard. The MVIP-95
standard supports both MVIP-90 and H.100 hardware.

The API for Windows operating systems has functions for both
the MVIP-90 and MVIP-95 standards. Be sure you use the
functions appropriate for the boards in your system.

� Use MVIP-90 functions for RTNI, RDSP, Vantage VPS
or Vantage VRS boards.

� Use MVIP-95 functions for Vantage PCI and
RealBLOCs PCI boards.

For more information about the MVIP-95 standard, see
Chapter 6, MVIP-95, on page 183.
144 RealCT Direct API Developer Guide

Working with MVIP-90 Data Streams
Working with MVIP-90 Data Streams

Understanding MVIP-90 Architecture

The MVIP-90 bus supports eight bidirectional 2.048 Mb/s
streams for a total of 16 data streams, as shown in Figure 24.
These streams carry data to and from MVIP resources. Each
MVIP stream has 32 64-Kb/s time division multiplexed slots,
each of which supports a single resource (32 slots x 64 Kb/s/slot
= 2.048 Mb/s). Each slot within a specific stream is called a
timeslot.

Figure 24. Data Streams in an MVIP-90 Bus

Each 2.048 Mb/s stream supports all channels on a voice
processing resource card, one resource per timeslot. You set
which stream a board uses through either hardware or
software, depending on the board. The single stream serves as a
data highway between the network interface and resource
board assigned to that stream. Timeslots in the stream are like
mailboxes, carrying information to the resource mapped to that
address. See Mapping MVIP-90 Resources on page 155 for more
information about specifying MVIP streams and timeslots.

A

A

32 Timeslots

8 Streams
August 2001 145

Chapter 5: MVIP-90
Boards with switching capability such as the RTNI or Vantage
PCI series boards are not assigned to a particular stream. These
boards can place or retrieve data on any stream or timeslot.

An application specifies the streams and timeslots to switch
data between resources. The RTNI or Vantage PCI switch block
then performs the switching.

For example, in a voice mail system, the application instructs
the MVIP switch block to route data from the stream and
timeslot associated to the inbound line where the call was
received to the stream and timeslot used by the voice processing
resource that plays the pre-recorded welcome message. Then, to
form a bidirectional connection, the application instructs the
switch block to make the reverse connection: from the VP
resource back to the line resource.
146 RealCT Direct API Developer Guide

Working with MVIP-90 Data Streams
Numbering MVIP Streams

Of the 16 data streams, the first eight are input and the second
eight are output. Together, the first input (0) and first output (8)
streams form the bidirectional stream 0, as shown in Figure 25.
The second input (1) and second output (9) form the
bidirectional stream 1, and so on through the eighth input (7)
and eighth output (15), which form the bidirectional stream 7.
Although the driver uses 16 streams, the application only sees
the eight bidirectional streams.

Input and output streams are designated as DSix and DSox
where DS stands for data stream; i stands for in; o stands for
out; and x stands for the number of the bidirectional stream, 0
through 7. For example, an application would refer to the input
and output streams that make up the seventh bidirectional
stream as DSi6 and DSo6. The driver interprets these stream
assignments as streams 6 and 14, as shown in Figure 25.

Figure 25. Data Stream Numbering

The terms ‘input’ and ‘output’ are used in reference to the
resource board. A DSix stream carries data from the network to
the resource board (input to the resource) while DSox streams
carry data from the resource to the network (output from the
resource). Network boards transmit data on input streams and
receive data on output streams.

0
8

1
9

 2
10

 3
11
 4
12

 5
13
 6
14
 7
15

DSi0
DSo0

Input
Output

Input
Output

Input
Output

Input
Output
Input
Output

Input
Output

Input
Output

Input
Output

DSi1
DSo1

DSi2
DSo2

DSi3
DSo3
DSi4
DSo4

DSi5
DSo5
DSi6
DSo6

DSi7
DSo7

Stream 0

Stream 1

Stream 2

Stream 3

Stream 4

Stream 5

Stream 6

Stream 7
August 2001 147

Chapter 5: MVIP-90
Understanding Framing

Data in DSix or DSox streams are formatted into frames. Each
frame contains 8 bits of information for each of the 32 timeslots,
as shown in Figure 26. Each 8 bit timeslot has a period of 125
µs, for a total of 8000 timeslots per second (8 bits/timeslot x 8000
timeslots/second = 64 Kb/s).

.

Figure 26. Timeslots in an MVIP Frame

The MVIP-90 clock carries timing information to synchronize
the frames. The clocking information travels on a dedicated pair
of wires rather than taking up space in the stream. Since
streams are devoted to transmitting data rather than signaling
information, they are called clear channels. For more
information on setting the MVIP clocks, see Configuring the
MVIP-90 Clock on page 150.

TS0 TS1 TS2 TS3 TS4 TS28 TS31TS30TS29

Frame 1 Frame 3 Frame 4Frame 2

8 bits per timeslot
148 RealCT Direct API Developer Guide

Configuring Boards in the MVIP Bus
Configuring Boards in the MVIP Bus

There are several steps to configuring your MVIP bus. The
following sections in this chapter discuss these steps in more
detail.

1. Configure the MVIP clock.
The MVIP bus uses a clock to synchronize frames. Set the
clock for all boards in the bus except Vantage VRS or
RDSP/xx000 boards. These boards have no clock and cannot
drive the MVIP clock.

2. Map resources to streams and timeslots.
Resource boards are mapped to a specific stream on the
MVIP bus. You set the stream assignment either during
hardware or software configuration. Resources are mapped
to specific timeslots on the assigned stream. Although
network boards such as the RTNI or Vantage PCI boards
are not mapped to a specific stream, their internal resources
are assigned to timeslots on internal streams.
Resource mapping for the Vantage PCI and RTNI boards is
pre-configured. This step is only needed if you have Vantage
VPS, Vantage VRS, or RDSP/xx000 boards.

3. Enable or disable resources.
By default, resources on Vantage VPS or Vantage PCI
boards are not available to the MVIP bus. Enable these
resources before performing switching functions.

4. Establish connections.
When you switch calls, you establish connections between a
board’s resources and the MVIP bus.
August 2001 149

Chapter 5: MVIP-90
Configuring the MVIP-90 Clock

Understanding Clocking Signals

Boards connected in an MVIP-90 bus use an 8-kHz clock signal
to synchronize frames.

The MVIP-90 bus uses the following clocks:

n /F0 is the primary 8-kHz framing signal
n /C4 is the bus 4.096 MHz clock
n /C2 is the bus 2.048 MHz clock
n SEC8K is a secondary 8-kHz signal

An RTNI board in the system drives the /F0 clock, which other
boards use as a reference. You can also specify that boards use
SEC8K as a backup signal. SEC8K acts as a fallback in case the
/F0 signal fails. You do not configure either the /C4 or /C2 clocks.

Setting the Clock for T1
or E1 Boards

T1 and E1 boards receive T1 and E1 data in frames. These
frames must be synchronized with the network clock. For this
reason, if a system contains an T1 or E1 board, that board must
set the MVIP clock from the signal received on the first or
second network trunk. All other boards in the system extract
their clock from the MVIP bus.

Setting the Clock for
RTNI-ATSI Boards

An RTNI-ATSI board sets the MVIP clock only if an T1 or E1 is
not present in the system. The RTNI-ATSI uses its internal
oscillator to generate the clock signal.

Setting the Clock for
Vantage PCI Boards

Vantage PCI boards set the MVIP clock only if an T1 or E1 is not
present in the system. The Vantage PCI board uses its internal
oscillator to drive the clock. Set the Vantage PCI board’s clock
using MVIP-95 functions described in Chapter 6, MVIP-95, on
page 183.

Setting the Clock for
Vantage VPS Boards

Vantage VPS boards set the MVIP clock only if an T1 or E1 is
not present in the system. The Vantage VPS board takes the
clock from the internal oscillator. Set the Vantage VPS board’s
clock using the RHT_SET_CLOCK function.

Setting the Clock for
RDSP and Vantage VRS
Boards

RDSP and Vantage VRS boards cannot set the MVIP clock.
They must retrieve the clock signal from the MVIP bus.
150 RealCT Direct API Developer Guide

Configuring the MVIP-90 Clock
Setting the Clock Parameters

Set the MVIP clock during driver installation and configuration
using the Configuration Wizard. For specific information about
how to set the MVIP clock during driver configuration, see the
RealCT API Installation and Configuration Guide.

If you need to change the clock parameters after software
installation, run the Configuration Wizard or use the functions
CONFIG_CLOCK for RTNI boards, or RHT_SET_CLOCK for
Vantage VPS boards, as described in the RealCT Direct API
Reference Manual.

When you use CONFIG_CLOCK, first configure the board
setting the MVIP clock. Then configure any other RTNI,
Vantage PCI, or Vantage VPS boards in the system.

For each board, specify one of the following as the clock source:

CLOCK_REF_NET1 Drives the clock from the first
network trunk.

CLOCK_REF_NET2 Drives the clock from the second
network trunk.

CLOCK_REF_OSC Drives the clock from the internal
oscillator.

CLOCK_REF_MVIP Takes the clock from the /F0 signal.
CLOCK_REF_SEC8K Takes the clock from the SEC8K

signal. We don’t recommend taking
the primary clock from the SEC8K
signal.

For each board, you also set whether it drives the SEC8K as a
backup signal as follows:

SEC8K_NOT_DRIVEN Board does not drive the SEC8K
clock.

SEC8K_DRIVEN_BY_OSC Board drives the SEC8K clock from
the internal oscillator.

SEC8K_DRIVEN_BY_NET1 Board drives the SEC8K clock from
the first network trunk.

SEC8K_DRIVEN_BY_NET2 Board drives the SEC8K signal from
the second network trunk.
August 2001 151

Chapter 5: MVIP-90
Setting up the System

The following examples show how to set the MVIP clock for
common scenarios:

n If you have a system with a T1, an RTNI-ATSI, one
Vantage VPS, and one Vantage VRS, you would set the
clock in the following order:

a. Set the T1 board to set the MVIP clock based on the first
network trunk and to retrieve the SEC8K signal as a
backup:

CLOCK_REF_NET1 | SEC8K_NOT_DRIVEN

(use the RHT_SET_CLOCK function)
b. Set the RTNI-ATSI board to retrieve the clock from the

MVIP bus and to drive the SEC8K clock based on its
internal oscillator:

CLOCK_REF_MVIP | SEC8K_DRIVEN_BY_OSC

(use the RHT_SET_CLOCK function)
c. Set the Vantage VPS board to take the clock from the

MVIP bus:

CLOCK_REF_MVIP

(use the RHT_SET_CLOCK function)
d. There is no need to set the Vantage VRS board clock

n If you have a single T1 or E1 board used in loopback mode
(trunk A connected to trunk B)

CLOCK_REF_OSC | SEC8K_NOT_DRIVEN

(use the RHT_SET_CLOCK function)
152 RealCT Direct API Developer Guide

Configuring the MVIP-90 Clock
n If you have multiple T1 or E1 boards connected in loopback
mode:

a. Set the first T1 or E1 board to drive the MVIP clock from
the internal oscillator and drive SEC8K from the first
network trunk:

CLOCK_REF_OSC | SEC8K_DRIVEN_BY_NET1

(use the RHT_SET_CLOCK function)
b. Set all other boards to take the clock from the MVIP bus:

CLOCK_REF_MVIP | SEC8K_NOT_DRIVEN

(use the RHT_SET_CLOCK function)

Example 7 shows how to set the clock for an T1 board using
CONFIG_CLOCK. In Example 7, the T1 board sets the primary
and SEC8K clock from the first network trunk. This code could
also be used for an E1 board by changing the name of the device.
August 2001 153

Chapter 5: MVIP-90
Example 7. CONFIG_CLOCK Sample Code

#include “brktddm.h”

int main(int argc, char **argv)

{

BRKT_HANDLE BoardHandle; /* T1 board device handle */

BOOLEAN IoctlResult; /* Result of IOCTL call */

BRKT_SIZE_T BytesReturned; /* Bytes returned from IOCTL call*/

USHORT ClockValue;

/* Open T1 board device */

BoardHandle = BrktOpenDevice (BRKT_DEVICE_T1_BOARD, 0);

/* Configure MVIP clock. Synchronous call. */

ClockValue = CLOCK_REF_NET1 | SEC8K_DRIVEN_BY_NET1;

IoctlResult = BrktDeviceIoControl (

BoardHandle,

CONFIG_CLOCK,

&ClockValue, /* Buffer to driver */

sizeof(ClockValue),

NULL,

0,

&BytesReturned,

NULL); /* Wait until I/O is complete */

if (!IoctlResult)

printf ("CONFIG_CLOCK failed: BrktGetLastError = %d\n",
BrktGetLastError (BoardHandle));

BrktCloseDevice(BoardHandle);

}

154 RealCT Direct API Developer Guide

Mapping MVIP-90 Resources
Mapping MVIP-90 Resources

RDSP, Vantage VPS, and Vantage VRS boards each use a single
data stream in the MVIP bus to send and receive data. Within
that stream, the driver assigns VP and line resources on these
boards to use a specific timeslot.

RTNI and Vantage PCI boards use internal streams for their
internal line and VP resources. Resources are pre-configured to
specific timeslots on those streams.

Mapping RTNI Resources

Mapping RTNI Streams

The RTNI series boards map the data received or transmitted
on its lines to data streams called internal streams. In T1 and
E1 boards, Trunk 0 uses internal stream 16 to transmit and
receive and Trunk 1 uses internal stream 18 to transmit and
receive. RTNI-ATSI boards only use stream 16.

Timeslots on these internal streams can be connected to
timeslots on any stream in the MVIP bus. When you send a
command to an MVIP switch block, you specify a board handle.
The switch block then switches data from the internal streams
on the board referred to by the board handle to the MVIP bus.
August 2001 155

Chapter 5: MVIP-90
Mapping RTNI Internal Resources

Line resources on RTNI boards are assigned to timeslots on
internal streams sequentially, starting with 0. For example, on
trunk 0, the resource 0 is assigned to timeslot 0 on stream 16;
resource 1 is assigned to timeslot 1 on stream 16, and so on
through resource 23, which is assigned to timeslot 23 on stream
16.

On E1 boards, only the 30 E1 channels that carry data are
mapped to the internal streams (E1 timeslots 1-15, 17-31).
These are mapped to internal timeslots 0-29. E1 timeslots 0 and
16, which carry signaling data, are not mapped to internal
timeslots.
156 RealCT Direct API Developer Guide

Mapping MVIP-90 Resources
Mapping RDSP/xx000, Vantage VRS, and
Vantage VPS Resources

Mapping Boards to Streams

RDSP/xx000, Vantage VRS, and Vantage VPS boards do not use
internal streams. Resources on these boards are mapped
directly to streams and timeslots on the MVIP bus.

RDSP/xx000

Set the MVIP stream assignment for RDSP/xx000 series boards
using hardware jumpers. These jumpers are factory configured
to stream 6. To change the stream assignment, follow the
instructions in the hardware installation guide that came with
your board. Be sure each RDSP/xx000 is assigned to a unique
stream on the MVIP bus.

Vantage VRS

Set the MVIP stream assignment for Vantage VRS boards using
the Configuration Wizard during driver configuration. If you
need to change the settings after driver configuration, run the
Configuration Wizard again or use the RHT_CONFIG_MVIP
function. All boards use stream 6 by default. Be sure each
Vantage VRS is assigned to a unique stream on the MVIP bus.

Each DSP on a board uses the same stream. If you attempt to
assign DSPs on one board to different streams, all DSPs on the
board use the last stream you select.
August 2001 157

Chapter 5: MVIP-90
Vantage VPS

Set the MVIP stream assignment for Vantage VPS boards using
the RHT_CONFIG_MVIP function. When you call
RHT_CONFIG_MVIP, set the stream assignment for the line
and the VP resources separately. Set both the VP and line
resources to use the same bidirectional stream. For example, if
you set VP resources to use stream 6 (an input stream), set the
line resources to use stream 14 (the corresponding output
stream). Be sure each Vantage VPS is assigned to a unique
stream on the MVIP bus.
158 RealCT Direct API Developer Guide

Mapping MVIP-90 Resources
Mapping Resources to Timeslots

RDSP, Vantage VPS, and Vantage VRS boards use one timeslot
on their assigned MVIP stream per resource. Table 26 shows
how resources are assigned to timeslots. VP indicates the VP
resource number and TS indicates the timeslot used by that
resource.

Table 26. Resource Mapping

VP resource 1 VP resource 2 VP resource 3 VP resource 4

DSP1 VP: 0

TS: 1

VP: 1

TS: 9

VP: 2

TS: 17

VP: 3

TS: 25

DSP2 VP: 4

TS: 2

VP: 5

TS: 10

VP: 6

TS: 18

VP: 7

TS: 26

DSP3 VP: 8

TS: 3

VP: 9

TS: 11

VP: 10

TS: 19

VP: 11

TS: 27

DSP4 VP: 12

TS: 4

VP: 13

TS: 12

VP: 14

TS: 20

VP: 15

TS: 28

DSP5 VP: 16

TS: 5

VP: 17

TS: 13

VP: 18

TS: 21

VP: 19

TS: 29

DSP6 VP: 20

TS: 6

VP: 21

TS: 14

VP: 22

TS: 22

VP: 23

TS: 30

DSP7 VP: 24

TS: 7

VP: 25

TS: 15

VP: 26

TS: 23

VP: 27

TS: 31

DSP8 VP: 28

TS: 0

VP: 29

TS: 8

VP: 30

TS: 16

VP: 31

TS: 24
August 2001 159

Chapter 5: MVIP-90
Table 27 shows the VP resource number in the top row and their
associated timeslots in the bottom row.

Table 27. VP Resources and Their Associated Timeslots

Since Vantage VPS boards only have one DSP, they only use
timeslots 1, 9, 17, 25 by default. RDSP/xx000 and Vantage VRS
boards use a varying number of timeslots, depending on the
number of resources that board provides.

Although RDSP/xx000, Vantage VPS, and Vantage VRS
resources use the timeslots shown in Table 27, you can offset
the timeslot assignments for Vantage VRS and Vantage VPS
boards when you call RHT_CONFIG_MVIP to map boards to a
stream.

The default timeslot assignment shown in Table 26 and
Table 27 uses an offset of ‘1’. Notice that resource 0 uses
timeslot 1. Using an offset of ‘4’, resource 0 would use timeslot 4.
When designing an application, do not confuse resource
numbers with timeslot numbers. For example, if you switch a
call from an RTNI board to timeslot 1 of an RDSP/24000, you
would use VP resource 0 not VP resource 1 to record that call.
This is because timeslot 1 corresponds to resource 0.

The equation for timeslot assignment is as follows:

timeslot = [(VP/4) + offset]%8 + [(VP%4) *8]

where the default offset is 1.

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

1 9 1
7

2
5

2 1
0

1
8

2
6

3 1
1

1
9

2
7

4 1
2

2
0

2
8

5 1
3

2
1

2
9

6 1
4

2
2

3
0

7 1
5

2
3

3
1

0 8 1
6

2
4

160 RealCT Direct API Developer Guide

Mapping MVIP-90 Resources
In applications, the easiest way to determine the timeslot
assignment is with an array:

int mapping []= 1, 9,17,25

 2,10,18,26

 3,11,19,27

 4,12,20,28

 5,13,21,29

 6,14,22,30

 7,15,23,31

 0, 8,16,24

timeslot=mapping[VP%32]

For VPS boards you call RHT_CONFIG_MVIP twice: once to set
stream and timeslot assignments for VP resources and once to
set stream and timeslot assignments for line resources. If you
set both line and VP resources to use the same timeslot offset
and stream, they are connected in channels through the MVIP
bus.

For example, if you set line and VP resources to use an offset
of 1, the first line resource will use the timeslot 1 of the DSox
stream and the first VP resource will use timeslot 1 of the
DSix stream. If you set the line and VP resources to have
different offsets, the network board controls how the line and
VP resources are used.
August 2001 161

Chapter 5: MVIP-90
Enabling or Disabling Resources

Boards that provide both line and VP resources, such as the
Vantage VPS, have their resources connected to form channels.
In this state, a call that comes in on line 0 is automatically
processed by VP 0, as shown in Figure 27. The resources are not
available to the MVIP bus.

Figure 27. Disabled VP and LS Resources

To make these resources available to the MVIP bus, enable the
resources using RHT_CONFIG_MVIP and
RHT_MVIP_SETTING. Figure 28 shows the resources enabled.

Figure 28. Enabled VP and LS Resources

MVIP Bus Connector

VP0 Line 0

VP1 Line 1

VP2 Line 2

VP3 Line 3

VP LS

MVIP Bus Connector

VP0 Line 0

VP1 Line 1

VP2 Line 2

VP3 Line 3

VP LS
162 RealCT Direct API Developer Guide

Enabling or Disabling Resources
Enable resources before you set the clock or switch data to
resources on the Vantage VPS board. There are two ways to
enable or disable line and VP resources.

n When you call RHT_CONFIG_MVIP to set stream and
timeslot assignments, enable or disable resources.

n If you have already set the stream and timeslot
assignments, enable and disable resources using
RHT_MVIP_SETTING.

The two functions enable and disable resources in the same
way. When you enable VP resources, you enable all resources at
once. You can enable line resources individually. To make all
resources available to the MVIP bus, call either
RHT_CONFIG_MVIP or RHT_MVIP_SETTING twice: once for
the line resources and once for the VP resources.

You can also enable just the VP or just the line resources. You
would enable line resources individually if you want to bridge a
call between the Vantage VPS line and a line on a network
board. You would enable VP resources if a network board needs
to switch data to a VP resource. All VP resources are enabled
even if you just need to use a single resource.

Example 8 shows how to use RHT_CONFIG_MVIP to configure
LS lines on a Vantage VPS board. In this example, the line
resources are mapped to use stream 8 (the first transmit
stream). The first resource is mapped to timeslot 0.
August 2001 163

Chapter 5: MVIP-90
Example 8. RHT_CONFIG_MVIP Sample Code

#include “brktddm.h”

int main(int argc, char **argv)

{

BRKT_HANDLE BoardHandle; /* DSP board device handle */

BOOLEAN IoctlResult; /* Result of IOCTL call */

BRKT_SIZE_T BytesReturned; /* Bytes returned from IOCTL call*/

struct MVIPconfig_s Config;

/* Open DSP device */

BoardHandle = BrktOpenDevice (BRKT_DEVICE_RDSP_BOARD, 0);

/* Configure Vantage LS lines to MVIP. Synchronous call. */

memset (&Config,0,sizeof (Config));

Config.Resource = RDSP_LINE;

Config.Stream = 8; /* LS lines are connected to
streams 8-15 in the opposite
direction of VP devices */

Config.Timeslot = 0;

IoctlResult = BrktDeviceIoControl (

BoardHandle,

RHT_CONFIG_MVIP,

&Config, /* Buffer to driver */

sizeof(Config),

NULL,

0,

&BytesReturned,

NULL); /* Wait until I/O is complete */

if (!IoctlResult)

printf ("RHT_CONFIG_MVIP failed: BrktGetLastError = %d\n",
BrktGetLastError (BoardHandle));

BrktCloseDevice (BoardHandle);

}

164 RealCT Direct API Developer Guide

Switching Calls through the MVIP-90 Bus
Switching Calls through the MVIP-90 Bus

When a computer telephony system processes a call, it connects
the inbound or outbound line with the appropriate resource,
such as VP or another line. That other resource can be on the
same board, or on a different board in the system. The process
of routing data between resources on different boards is called
switching. All line resources have a CODEC, which
codes/decodes the analog voice signal to digital data. It is the
digital representation of the analog signal that a switch block
switches between resources.

Only boards with a switch block, such as the RTNI or Vantage
PCI boards, can perform switching functions. Although the
RDSP/xx000, Vantage VPS, and Vantage VRS boards can
connect to the MVIP bus, they do not have a switch block and
can not switch data.

Boards with switching capabilities have access to all MVIP
streams and timeslots. The Vantage VPS, Vantage VRS, and
RDSP/xx000 boards, on the other hand, can only access their
assigned streams. Data placed on the DSix stream goes directly
to the resources of the board assigned to that stream. The
resource places data on the DSox stream.

Boards with switching capability use internal data streams for
their line or VP resources. These internal streams carry data
from lines coming in to the RTNI board. They do not connect to
the MVIP bus and cannot be accessed by resources outside the
board they are internal to. When you make a connection
between an internal resource and the MVIP bus, you specify a
board handle so the application knows which switch block
transfers data from its internal stream.
August 2001 165

Chapter 5: MVIP-90
Throughout this section, boards connected in an MVIP bus are
depicted as shown in Figure 29.

Figure 29. A Board in an MIVP Bus

In Figure 29, the arrows above the boards represent streams in
the MVIP bus. Streams running within the board to and from
internal line or VP resources represent local streams. The
rectangle with an X is the switch block. Arrows connecting
MVIP bus and local resources through the switch block show
which streams the switch block is switching data between.
Numbers beside the switching arrows define the stream and
timeslot that the switch block is switching data between.

Trunk 0Local Stream 16

RTNI-2T1

(16, 0)(16, 0)

(6, 1)(6, 1)

DSi6
DSo6

MVIP Bus
166 RealCT Direct API Developer Guide

Switching Calls through the MVIP-90 Bus
Establishing Connections

Establish or disconnect an MVIP connection using the function
SET_OUTPUT. When the application calls SET_OUTPUT, it
specifies the stream and slot to connect as output and the
stream and slot to connect as input. It also specifies the timeslot
mode.

You can set the OutputParam_s.Mode field to either disable
mode, connect mode, or pattern mode.

n When OutputParam_s.Mode is in CONNECT_MODE, use
SET_OUTPUT to connect the timeslot defined by
OutputParam_s.OutputStream and
OutputParam_s.OutputSlot to the timeslot defined by
OutputParam_s.InputStream and
OutputParam_s.InputSlot. This connection allows the
timeslot defined by OutputStream, OutputSlot to receive
data from the InputStream, InputSlot timeslot. To make a
bidirectional connection, swap the input and output
timeslots in the OutPutParam_s data structure and call
SET_OUTPUT again.

n When OutputParam_s.Mode is in PATTERN_MODE,
SET_OUTPUT repeatedly transmits
OutputParam_s.Message to the timeslot defined by the
OutputParam_s.OutputStream and
OutputParam_s.OutputSlot.

n When OutputParam_s.Mode is in DISABLE_MODE, use the
function SET_OUTPUT to disconnect the timeslot defined
by OutputParam_s.OutputStream and
OutputParam_s.OutputSlot from the MVIP bus and
internal streams. You cannot disconnect an ATSI
connection using DISABLE_MODE. Instead, use PATTERN_MODE
and transmit a silence.
August 2001 167

Chapter 5: MVIP-90
When you use SET_OUTPUT to make a connection, you
automatically break any previous connection that used the
same resource as output. This is because a resource can only
have one input source. For example, if an T1 board is switching
data to the second VP resource on a Vantage VRS, and a second
RTNI board also switches data to the second VP resource, the
first connection will be broken.

If two resources are both using the same MVIP bus timeslot as
output, the connection is not broken. In this case, both resources
input data to the same timeslot, but the two sources cancel each
other, resulting in no audio output.
168 RealCT Direct API Developer Guide

Switching Calls through the MVIP-90 Bus
Using Stream Numbers

When calling any MVIP function, you refer to streams by a 0-15
numbering scheme rather than by their DSix and DSox
numbers, as shown in Table 28. When you use streams in their
conventional direction, the reference number is the same as the
stream number. When you use streams in the reverse direction,
you use the stream number plus eight. For examples of when
you would use a stream in a reverse direction, see Connecting
Line Resources on page 175. The driver use the number
assignment and whether the stream is being used as input or
output to select the appropriate DSix or DSox stream.

Table 28. MVIP Stream Numbering

Used as

Stream Input
Stream

Output
Stream

DSi0 8 0

DSi1 9 1

DSi2 10 2

DSi3 11 3

DSi4 12 4

DSi5 13 5

DSi6 14 6

DSi7 15 7

DSo0 0 8

DSo1 1 9

DSo2 2 10

DSo3 3 11

DSo4 4 12

DSo5 5 13

DSo6 6 14

DSo7 7 15
August 2001 169

Chapter 5: MVIP-90
Keep in mind that the conventional direction uses the resource
board as a reference, so resource boards transmit on the DSo
streams and receive on the DSi streams. When you call
SET_OUTPUT, you define input and output from the network
board’s perspective, since the switch block is part of the network
board. From the network board’s perspective, the conventional
direction uses DSi as output (input to the resource board) and
DSo as input (output from the resource board).

For example, if you transfer a call from a T1 to a Vantage VRS
using stream 1, you would use DSi1 as OutputStream (input to
the VRS) in SET_OUTPUT, and DSo1 as InputStream (output
from the VRS). As Table 28 shows, using DSi1 as output and
DSo1 as input, you would use the stream assignment 1 for both
OutputStream and InputStream.
170 RealCT Direct API Developer Guide

Switching Calls through the MVIP-90 Bus
Connecting Local Resources

An RTNI board can connect a line to a remote resource through
the MVIP bus, or connect two lines on the same board. For
example, the T1 board in Figure 30 is connecting an incoming
call from its second line (16, 1) with its fourth line (16, 3). In this
example, the T1 board’s switch block does not contact the MVIP
bus. When you call SET_OUTPUT to make this connection, you
would specify the board handle of the T1 board you want to use.

Figure 30. A Call Transfer Between Two Internal Timeslots

Make the half-duplex connection shown in Figure 30 as follows:

SET_OUTPUT (INPUT {16,1}

OUTPUT {16,3})

Trunk 1

(16, 3) (16, 1)

Local Stream 16

MVIP Bus

RTNI-2T1
August 2001 171

Chapter 5: MVIP-90
Connecting a Call to a Resource Board

When an RTNI board receives a call, it can transfer that call to
a VP resource on a resource board such as a Vantage VRS or
RDSP/24000. To make the connection, the RTNI board’s switch
block switches the call from its internal line to the MVIP stream
assigned to the resource board. Figure 31 shows an T1 board
connecting a call from its first line resource to the first resource
on a Vantage VRS that’s assigned to use stream 6.

Figure 31. A Call Switched to VP Resources

Make the connection shown in Figure 31 as follows:

SET_OUTPUT (INPUT {16,0}

OUTPUT {6,1})

SET_OUTPUT (INPUT {6,1}

OUTPUT {16,0})

Vantage VRS, Vantage VPS, and RDSP/xx000 boards
automatically have access to data that a network board places
on their assigned stream. There is no need to make a connection
with the resource board and the MVIP bus.

VP

DSi6DSo6

Trunk 0Local Stream 16

RTNI-2T1 Vantage VRS

(16, 0)(16, 0)

(6, 1)(6, 1)
172 RealCT Direct API Developer Guide

Switching Calls through the MVIP-90 Bus
Example 9. RHT_SET_OUTPUT Sample Code

#include “brktddm.h”

int main(int argc, char **argv)

{

BRKT_HANDLE LineHandle; /* T1 line device handle */

BOOLEAN IoctlResult; /* Result of IOCTL call */

BRKT_SIZE_T BytesReturned; /* Bytes returned from IOCTL call
*/

struct OutputParam_s Output;

/* Open T1 line device */

LineHandle = BrktOpenDevice (BRKT_DEVICE_T1_LINE, 0);

/* Make the first unidirectional connection. */

memset (&Output, 0, sizeof (Output));

Output.OutputStream = 0;

Output.OutputSlot = 1;

Output.Mode = CONNECT_MODE;

Output.InputStream = STREAM_MYSELF;

IoctlResult = BrktDeviceIoControl (

LineHandle,

RHT_SET_OUTPUT,

&Output, /* Buffer to driver */

sizeof(Output),

NULL,

0,

&BytesReturned,

NULL);

if (!IoctlResult)

printf("RHT_SET_OUTPUT failed: BrktGetLastError = %d\n",
BrktGetLastError (LineHandle));
August 2001 173

Chapter 5: MVIP-90
Example 9. RHT_SET_OUTPUT Sample Code (Continued)

/* Make the second unidirectional connection. */

Output.OutputStream = STREAM_MYSELF;

Output.InputStream = 0;

Output.InputSlot = 1;

IoctlResult = BrktDeviceIoControl (

LineHandle,

RHT_SET_OUTPUT,

&Output,

sizeof(Output),

NULL,

0,

&BytesReturned,

NULL);

if (!IoctlResult)

printf ("RHT_SET_OUTPUT failed: BrktGetLastError = %d\n",
BrktGetLastError (LineHandle));

BrktCloseDevice (LineHandle);

}

174 RealCT Direct API Developer Guide

Switching Calls through the MVIP-90 Bus
Connecting Line Resources

When you connect resources from two boards with switching
capability in a full-duplex connection, you connect the internal
resource on one board to the internal resource on another board
using an intermediate MVIP stream. These types of connections
are called drop and insert. You drop a call from one internal
resource onto an unused MVIP timeslot, then you insert that
call into an internal resource on the second board.

One example of a drop and insert connection is when you call a
call center such as a mail order center. Your call reaches the call
center through one of their inbound lines (through a T1 line, for
example). The T1 board connects your call to a VP resource on
another board. The system prompts you to enter information
such as zip code, social security number, or customer number,
then places your call on hold. When a customer representative
is available, the T1 board switches your call to a timeslot on the
MVIP bus. Another board, such as an RTNI-ATSI switches the
call from the MVIP bus to an outbound line to the customer
representative. In this scenario, your call is connected through
the MVIP bus to an outbound line on another board.

When you perform a drop and insert, one board uses the stream
in the reverse direction. For example, Figure 32 shows what
would happen if two RTNI boards transmitted data on a DSix
stream and received data on a DSox stream (the conventional
direction). Since both boards place data on DSi0, neither
receives data from the other board.

Figure 32. Two Boards Transmitting on the Same Stream

Trunk 0Local Stream 16

RTNI-2T1 RTNI ATSI

DSi0
DSo0

External
Lines

(0, 0)

(, 0)16 ()16, 0

(0, 0)

Local Stream 16

(0, 0)

(16,)3 (16, 3)

(0, 0)
August 2001 175

Chapter 5: MVIP-90

l

If one network board transmits on the DSix stream and receives
on the DSox stream (the conventional direction), then the other
network board must transmit on the DSox stream and receive
on the DSix stream, as Figure 33 shows. In this configuration,
the boards can connect two lines through the MVIP bus.

Figure 33. A Drop and Insert Connection

In Figure 33, the RTNI-ATSI board uses the streams in the
reverse direction. When you call SET_OUTPUT to make a
full-duplex connection between the input stream (DSi0) and the
internal resource, you would use the stream reference number 8
for InputSlot, as Table 28 shows. The higher of the two stream
numbers applies when you use a stream in the reverse direction.
Again, since input and output are in reference to the resource
boards, a network board using a DSi stream as input is using
the stream in the reverse direction.

Make the connection shown in Figure 33 as follows:

ATSI board

SET_OUTPUT (INPUT {16,3}

OUTPUT {8,0})

SET_OUTPUT (INPUT {8,0}

OUTPUT {16,3})

T1 board

SET_OUTPUT (INPUT {16,0}

OUTPUT {0,0})

SET_OUTPUT (INPUT {0,0}

OUTPUT {16,0})

Trunk 0Local Stream 16

RTNI-2T1 RTNI ATSI

DSi0
DSo0

Externa
Lines

(0, 0)

(, 0)16 ()16, 0

(0, 0)

Local Stream 16

(8, 0)

(16 3,) (16, 3)

(8, 0)
176 RealCT Direct API Developer Guide

Switching Calls through the MVIP-90 Bus
Making a Broadcast Connection

In a broadcast connection, a resource transmits data to a
specified stream and timeslot, then several other resources
receive data from that timeslot. In Figure 34, a board places
data on stream 4, timeslot 2 (4, 2). Then several boards take
data from that timeslot.

Figure 34. A Broadcast Connection and Distribution

One example of a broadcast is a hold message. One VP resource
continuously plays a hold message over a specified stream and
timeslot. In Figure 34, board A is transmitting the data on
stream 4, timeslot 2. When calls on boards B, C, and D are put
on hold, they are connected through the MVIP bus to take the
hold message from stream 4 timeslot 2. Any number of
resources can be connected to the broadcast timeslot at any
time.

Board A can broadcast to several different boards, as shown in
Figure 34. Or, board A can broadcast a call to other resources on
that board.

To perform a broadcast, make a half-duplex connection between
the internal resource and a timeslot on the MVIP bus. Then
make a half-duplex connection between the timeslot carrying
the transmitted data and the timeslots for resources to receive
data.

MVIP Bus

A

(4, 2) (4, 2) (4, 2) (4, 2)

B C D

DSi4
DSo4
August 2001 177

Chapter 5: MVIP-90
Making Connections in an Application

An application makes and breaks connections as a call
progresses. For example, the following illustrations show an
incoming call to an automated attendant.

First, the T1 board receives a call, as shown in Figure 35.

Figure 35. A T1 Board Receives a Call

Next, the T1 board connects the incoming call to a resource on a
Vantage VPS board assigned to use stream 6, as shown in
Figure 36. The application directs the voice resource to play a
recorded message requesting an extension number.

Figure 36. The T1 Transfers the Call to a VP Resource

Trunk 0

RTNI-2T1 RTNI ATSI

(16, 0)

DSi5
DSo5
DSi6
DSo6

Stream 16 Stream 16

Vantage VRS

VP

Trunk 0

RTNI-2T1 RTNI ATSI

(16, 0) (16, 0)

DSi5
DSo5
DSi6
DSo6

(6, 1) (6, 1)

Stream 16 Stream 16

Vantage VRS

VP
178 RealCT Direct API Developer Guide

Switching Calls through the MVIP-90 Bus
After the caller enters an extension, the application determines
which line that extension uses and makes the appropriate
connection. In this example, the requested extension uses the
fourth resource on the RTNI-ATSI.

The T1 board breaks the connection with the Vantage VRS and
makes a connection with stream 5 on the MVIP bus. The
RTNI-ATSI board also makes a full-duplex connection with
stream 5. The RTNI-ATSI board then rings the extension
selected by the caller.

Figure 37. The T1 Transfers the Call to the Appropriate
Extension

Trunk 0

RTNI-2TI RTNI ATSI Vantage VRS

(16, 3) (16, 3)(16, 0) (16, 0)
VP

DSi5
DSo5
DSi6
DSo6

Stream 16 Stream 16

(13, 0) (13, 0)(5, 0) (5, 0)
August 2001 179

Chapter 5: MVIP-90
Identifying the Timeslot Mode

To find out the mode of a timeslot or connections associated with
that timeslot, use the QUERY_OUTPUT function.

QUERY_OUTPUT returns the mode and connections for the
specified MVIP timeslot. QUERY_OUTPUT uses
OutputParam_s.OutputStream and
OutputParam_s.OutputSlot to identify the timeslot. Then it
populates the OutputParam_s.Mode,
OutputParam_s.InputStream, OutputParam_s.InputSlot and
OutputParam_s.Message fields depending on the connection
mode. See the RealCT Direct API Reference Manual for more
information about OutputParam_s.

The RHT_QRY_OUTPUT function is similar to
QUERY_OUTPUT except that QUERY_OUTPUT uses a board
file handle while RHT_QRY_OUTPUT uses a line file handle.
Using a line file handle allows RHT_QRY_OUTPUT to use the
STREAM_MYSELF value for OutputParam_s.OutputStream.
RHT_QRY_OUTPUT is not MVIP compliant.

Example 10 shows how to use QUERY_OUTPUT to identify the
timeslot connection and mode of the first T1 line.

Example 10. RHT_QRY_OUTPUT Sample Code

#include “brktddm.h”

int main(int argc, char **argv)

{

BRKT_HANDLE LineHandle; /* T1 line device handle */

BOOLEAN IoctlResult; /* Result of IOCTL call */

BRKT_SIZE_T BytesReturned; /* Bytes returned from IOCTL call */

struct OutputParam_s Output;

/* Open T1 line device */

LineHandle = BrktOpenDevice (BRKT_DEVICE_T1_LINE, 0);
180 RealCT Direct API Developer Guide

Switching Calls through the MVIP-90 Bus
Example 10. RHT_QRY_OUTPUT Sample Code (Continued)

/*Query unidirectional MVIP connection. Synchronous call.*/

memset(&Output, 0, sizeof(Outout));

Output.OutputStream = STREAM_MYSELF;

IoctlResult = BrktDeviceIoControl (

LineHandle,

RHT_QRY_OUTPUT,

&Output, /* Buffer to driver */

sizeof(Output),

&Output, /* Buffer to driver */

sizeof(Output),

&BytesReturned,

NULL); /* Wait until I/O is complete */

if (!IoctlResult)

printf ("RHT_QRY_OUTPUT failed: BrktGetLastError = %d\n",
BrktGetLastError (LineHandle));

else

{

if (Output.Mode == CONNECT_MODE)

printf("Connect: (%d,%d) <-- (%d,%d)\n",
Output.OutputStream,

Output.OutputSlot, Output.InputStream,
Output.InputSlot);

else if (Output.Mode == PATTERN_MODE)

printf("Pattern = %X.\n", Output.Message);

else

printf("Disabled (%d,%d).\n", Output.OutputStream,
Output.OutputSlot);

}

BrktCloseDevice (LineHandle);

}

August 2001 181

6
MVIP-95

This chapter describes the MVIP-95 driver standard used by
your H.100 bus compliant board. It includes information about
the H.100 hardware standard that MVIP-95 supports.

It includes the following topics:

n Working with Computer Telephony Buses

n Defining MVIP-95

n Connecting Boards in an H.100 bus

n Mapping Board Resources

n Configuring Boards in the CT bus

n Configuring the H.100 Clock

n Configuring the H.100 Bus Speed

n Enabling or Disabling Resources

n Switching Data
183

Chapter 6: MVIP-95
Working with Computer Telephony Buses

The computer telephony (CT) bus provides a way to transfer
calls between telephony resources, even if those resources are
provided by different vendors. With voice, fax, video, and
automatic speech recognition cards connected in a single bus,
you can develop fully-integrated computer telephony
applications.

A CT bus is comprised of two main parts: the physical bus and
the switch block. The bus provides the physical connection
between boards. The switch block provides the mechanism for
switching data between telephony resources.

Only the RTNI series boards, RealBLOCs series boards, and
Vantage PCI boards provide a switch block and can make
physical connections between resources. RTNI series boards do
not provide VP resources, but they can switch data to VP
resources on other boards. The Vantage VPS, Vantage VRS, and
RDSP/xx000 boards do not provide switching capability. They
provide VP resources over the CT bus. The following table
outlines board properties:

Board Family MVIP 90 MVIP 95 MVIP 90 bus H.100 bus

RDSP x x

RTNI x x

Vantage PCI x x x x

RealBLOCs PCI x x x x
184 RealCT Direct API Developer Guide

Working with Computer Telephony Buses
Brooktrout supports two levels of MVIP:

n RDSP, Vantage VRS, Vantage VPS, and RTNI boards all
use the MVIP-90 software and hardware standard.

n The Vantage PCI and RealBLOCs products support the
H.100 Computer Telephony (CT) bus. H.100 is a hardware
standard. The MVIP-95 software standard supports the
H.100, MVIP-90, and H-MVIP buses.

The RealCT Direct API Reference Manual has functions for both
the MVIP-90 and MVIP-95 standards. Be sure you use the
functions appropriate for the boards in your system.

n Use MVIP-90 functions for all boards if they are connected
in an MVIP-90 bus. For more information about the
MVIP-90 standard, see Chapter 5, MVIP-90, on page 143.

n Use MVIP-95 functions for boards connected in an H.100
bus.
August 2001 185

Chapter 6: MVIP-95
Defining MVIP-95

MVIP-95 is a software device driver standard that supports the
MVIP-90, and H.100 hardware standards.

You can connect an H.100 compliant board to RTNI or Vantage
VRS and VPS products using the MVIP bus, or to boards that
support H.100 using an H.100 bus.

If you have several H.100 bus compliant PCI boards connected
in an H.100 bus, use MVIP-95 functions for all boards in the
system. If you have an H.100 bus compliant PCI board
connected to MVIP-90 compliant boards through an MVIP bus,
you would use MVIP-90 functions for all boards, including the
H.100 bus compliant board.

MVIP-95 has the following changes from MVIP-90:

n Supports H.100

n Removes directionality from stream numbers

n Changes the numbering convention for streams

n Separates CT bus clock and SEC8K configuration
186 RealCT Direct API Developer Guide

Defining MVIP-95
The RealCT Direct API includes 14 functions for MVIP-95
switching as shown in Table 29.

Table 29. Functions Specific to Either MVIP-90 or MVIP-95

MVIP-90 Functions MVIP-95 Functions

RESET_SWITCH MVIP95_CMD_RESET_SWITCH

SAMPLE_INPUT MVIP95_CMD_SAMPLE_INPUT

SET_OUTPUT MVIP95_CMD_SET_OUTPUT

CONFIG_CLOCK MVIP95_CMD_CONFIG_BOARD_CLOCK

CONFIG_CLOCK MVIP95_CMD_CONFIG_SEC8K_CLOCK

no MVIP-90 equivalent MVIP95_CMD_CONFIG_NETREF_CLOCK

no MVIP-90 equivalent MVIP95_CMD_CONFIG_STREAM_SPEED

QUERY_OUTPUT MVIP95_CMD_QUERY_OUTPUT

no MVIP-90 equivalent MVIP95_CMD_QUERY_BOARD_INFO

no MVIP-90 equivalent MVIP95_CMD_QUERY_DRIVER_INFO

no MVIP-90 equivalent MVIP95_CMD_QUERY_BOARD_CLOCK

no MVIP-90 equivalent MVIP95_CMD_QUERY_STREAM_SPEED

QUERY_SWITCH_CAPS MVIP95_CMD_QUERY_SWITCH_CAPS

TRISTATE_SWITCH MVIP95_CMD_SET SWITCH

DUMP_SWITCH DUMP_SWITCH
August 2001 187

Chapter 6: MVIP-95
Understanding H.100 Architecture

H.100 is a high-speed hardware standard. Previous to H.100
there were two telephony bus standards: MVIP and SCSA.
Boards with an MVIP bus could not communicate with boards
using a SCSA bus. Boards using either the MVIP or SCSA
standard can communicate through the H.100 bus, however,
allowing developers to have boards from different vendors in a
single bus.

The H.100 bus supports 32 8.192-Mb/s streams, as shown in
Figure 38. Each H.100 stream has a maximum of 128 64-Kb/s
time division multiplexed slots, each of which supports a single
resource. (128 slots x 64 Kb/s/slot = 8.192 Mb/s). Each slot
within a specific stream is called a timeslot. Each timeslot on
the H.100 bus can carry voice data between resources.

Figure 38. Data Streams in an H.100 Bus

When you adjust the stream speed, you change the number of
timeslots the stream allocates. This provides compatibility with
the MVIP bus, which only provides 32 timeslots per stream. For
more information about how to adjust the stream speed, see
Configuring the H.100 Bus Speed on page 204.

A

A

32 Streams

12
8

Ti
m

es
lo

ts
188 RealCT Direct API Developer Guide

Understanding H.100 Architecture
Data in individual streams are formatted into frames. Each
frame contains 8 bits of information for each of the timeslots, as
shown in Figure 39. Each 8-bit timeslot has a period of 125 µs,
for a total of 8000 timeslots per second (8 bits/slot x 8000
slots/second = 64 Kb/s).

Figure 39. Timeslots in an H.100 Frame
August 2001 189

Chapter 6: MVIP-95
Connecting Boards in an H.100 bus

This section provides information about the H.100 bus,
including information about how to set clocks and stream
speeds for boards connected in an H.100 bus.

This section only applies to boards that are physically connected
in an H.100 bus to other H.100-compliant boards. For
information about connecting your H.100-compliant board in an
MVIP bus, see Connecting Boards in an MVIP-90 Bus on
page 212.

Numbering Streams

The MVIP-95 standard defines CT bus and local streams.

n CT bus streams are streams that connect the boards in a
CT bus. These are the streams running through the
physical H.100 connector.

n Local streams carry the board’s internal line and VP
resources.

Both sets of streams are numbered sequentially, starting
with 0.

Streams in an H.100 bus are not directional; boards can
transmit or receive data on any stream. This lack of
directionality in H.100 streams is in contrast to MVIP-90
streams, where the streams are divided into DSix (input) and
DSox (output) directions, as described in Working with MVIP-90
Data Streams on page 145. However, when a board that uses
the H.100 standard is connected through an MVIP bus, the
application adheres to the MVIP stream directionality.
190 RealCT Direct API Developer Guide

Connecting Boards in an H.100 bus
Mapping Board Resources

The MVIP-95 board uses four internal data streams for a
four-port board, eight internal data streams for an eight-port
board, or 12 internal data streams for a 12-port board. Each
stream carries four resources and uses four timeslots on the
stream. The stream and timeslot assignments are set by the
hardware and are not configurable.

In the case of the Vantage PCI board, the first four VP resources
use streams 0 and 1 to transmit and receive data. The first four
line resources use streams 2 and 3 to transmit and receive data.
The second four VP resources use streams 4 and 5 to transmit
and receive data. The second four line resources use streams 6
and 7 to transmit and receive data. Figure 40 shows local
streams numbered on a Vantage PCI board.

Figure 40. Local Streams on a Vantage PCI Board

The resources on each stream are assigned sequentially to
timeslots 0, 8, 16, and 24, as shown in Table 30. For example,
the first VP resource would transmit data on input stream 0,
timeslot 0. It would receive data on output stream 1, timeslot 0.
The second VP resource would receive data on stream 0,
timeslot 8.

As Table 30 shows, the streams are designated input and
output. Those designations are in reference to the switch block.
A resource transmits data on the input stream (input to the
switch block) and receives data on the output stream (output
from the switch block).

4

Lines 0, 1

Lines 2, 3

Lines 6, 7

Lines 4, 5
5

7
6

1
0

3
2

Vantage PCI

DSP0
VP 0-3

DSP1
VP 4-7
August 2001 191

Chapter 6: MVIP-95
Table 30. Stream Assignments for Vantage PCI Boards

Stream number Assignment Resource Timeslot

0 Input VP0 0

VP1 8

VP2 16

VP3 24

1 Output VP0 0

VP1 8

VP2 16

VP3 24

2 Input Line0 0

Line1 8

Line2 16

Line3 24

3 Output Line0 0

Line1 8

Line2 16

Line3 24

4 Input VP4 0

VP5 8

VP6 16

VP7 24

5 Output VP4 0

VP5 8

VP6 16

VP7 24
192 RealCT Direct API Developer Guide

Connecting Boards in an H.100 bus
Mapping RealBLOCs Resources

This section lists the MVIP-95 local stream assignments.

Table 31. RealBLOCs MVIP-95 Local Stream Assignments

6 Input Line4 0

Line5 8

Line6 16

Line7 24

7 Output Line4 0

Line5 8

Line6 16

Line7 24

Stream number Assignment Resource Timeslot

Stream number Assignment Resource Timeslot

0 Input Line0 0

Line1 8

Line2 16

Line3 24

1 Output Line0 0

Line1 8

Line2 16

Line3 24
August 2001 193

Chapter 6: MVIP-95
2 Input Line4 0

Line5 8

Line6 16

Line7 24

3 Output Line4 0

Line5 8

Line6 16

Line7 24

4 Input Line8 0

Line9 8

Line10 16

Line11 24

5 Output Line8 0

Line9 8

Line10 16

Line11 24

6 Input Line12 0

Line13 8

Line14 16

Line15 24

7 Output Line12 0

Line13 8

Line14 16

Line15 24

Stream number Assignment Resource Timeslot
194 RealCT Direct API Developer Guide

Connecting Boards in an H.100 bus
8 Input VP16 0

VP17 8

VP18 16

VP19 24

9 Output Line16 0

Line17 8

Line18 16

Line19 24

10 Input Line20 0

Line21 8

Line22 16

Line23 24

11 Output Line20 0

Line21 8

Line22 16

Line23 24

Stream number Assignment Resource Timeslot
August 2001 195

Chapter 6: MVIP-95
Configuring Boards in the CT bus

There are several steps to configuring your CT bus. The
following sections in this chapter discuss these steps in more
detail.

1. Enable or disable resources.
By default, the Vantage PCI switch block is not available to
the CT bus. Enable the switch block before using the switch
block. The RealBLOCs board does not provide the switch
enable option. The switch is always enabled.

2. Configure the CT bus clock.
The CT bus uses a clock to synchronize frames. You set
which board drives the clock for the system.

3. Configure the CT bus speed.
The H.100 streams can operate at different speeds. Select a
bus speed that is compatible with the other boards in the
system.

4. Establish connections.
When you switch calls, you establish connections between a
board’s resources and the CT bus.
196 RealCT Direct API Developer Guide

Connecting Boards in an H.100 bus
Enabling or Disabling Resources

By default, the entire Vantage PCI board switch block is not
available to the CT bus. To enable or disable the MVIP-95
switch block, use the MVIP95_CMD_SET_SWITCH function.
The RealBLOCs board does not provide the switch enable
option. The switch is always enabled.

In their default state, lines and VP resources on a Vantage PCI
board are combined to make channels. Enabling the switch
block on a Vantage PCI board makes the VP and LS resources
available to the bus.

Enable the Vantage PCI switch block before you configure the
clock, set the stream speed, or establish connections for that
board. Example 11 shows how to enable the switch block on a
Vantage PCI board.

Example 11. MVIP95_CMD_SET_SWITCH Sample Code

#include “brktddm.h”

int main(int argc, char **argv)

{

BRKT_HANDLE BoardHandle;

BOOLEAN IoctlResult;

BRKT_SIZE_T BytesReturned;

struct MVIP95_SET_SWITCH_PARMS SwitchParams;

BoardHandle = BrktOpenDevice(BRKT_DEVICE_RDSP_BOARD, 0);

if (BoardHandle == BRKT_INVALID_HANDLE_VALUE)

return;

memset(&SwitchParams, 0, sizeof(SwitchParams));

SwitchParams.bus_enable_state = TRUE;
August 2001 197

Chapter 6: MVIP-95
Example 11. MVIP95_CMD_SET_SWITCH Sample Code
(Continued)

IoctlResult = BrktDeviceIoControl(

BoardHandle,

MVIP95_CMD_SET_SWITCH,

&SwitchParams,

sizeof(SwitchParams),

NULL,

0,

&returned,

NULL);

if (!IoctlResult)

printf("MVIP95_CMD_SET_SWITCH failed:"
"BrktGetLastError = %d\n",
BrktGetLastError (BoardHandle));

BrktCloseDevice (BoardHandle);

} /* main */
198 RealCT Direct API Developer Guide

Connecting Boards in an H.100 bus
Configuring the H.100 Clock

You can connect an H.100 compliant board to either the MVIP
or H.100 bus. You set the clocks differently depending on which
bus your board is connected to.

Boards connected in an H.100 bus use two primary clocks to
synchronize frames. These are the A clock and the B clock. The
H.100 bus also provides NETREF to synchronize boards with a
digital interface to the network. Since the H.100 compliant
boards do not have a digital interface, you can not set the
NETREF clock for those boards.

In an H.100 bus, one board drives the A clock, another board
drives the B clock, and all other boards take the clock from
either A or B.
August 2001 199

Chapter 6: MVIP-95
Setting the Primary Clock

Set the H.100 clock during driver configuration using the
Configuration Wizard. For specific information about how to set
the H.100 clock during driver configuration, see the installation
and configuration guide that came with your software.

If you need to change clock parameters after installation, use
the MVIP95_CMD_CONFIG_BOARD_CLOCK function. If your
board is connected to an H.100 bus, use the H.100 data
structure to set the primary clock.

In the H.100 data structure you specify whether the board sets
the A clock, sets the B clock, or receives the clock signal from
either the A or B primary clock. In most systems, it is best to
have one board drive the A clock, one board drive the B clock,
and all other boards use the A clock as a reference.

If the A clock fails, all boards in the system switch to using the
B clock as long as the boards have fallback enabled. The clocks
stay in this mode until reprogrammed by the application.

For example, if you have a system with three H.100 compliant
boards, set the clock as follows:

1. Set the first board to drive the A clock
(MVIP95_H100_MASTER_A) and to drive the clock from the
internal oscillator (MVIP95_SOURCE_INTERNAL)

2. Set the second board to drive the B clock
(MVIP95_H100_MASTER_B) and to drive the clock from the
internal oscillator (MVIP95_SOURCE_INTERNAL)

3. Set the third board to receive the clock from the A clock on
the H.100 bus ((MVIP95_H100_SLAVE),
(MVIP95_SOURCE_H100_A).
200 RealCT Direct API Developer Guide

Connecting Boards in an H.100 bus
Example 12 shows how to set the H.100_A clock from its
internal oscillator.

Example 12. MVIP95_CMD_CONFIG_BOARD_CLOCK
(H.100) Sample Code

#include “brktddm.h”

int main(int argc, char **argv)

{

BRKT_HANDLE BoardHandle;

BOOLEAN IoctlResult;

BRKT_SIZE_T BytesReturned;

struct MVIP95_CONFIG_H100_BOARD_CLOCK_PARMS Param;

BoardHandle = BrktOpenDevice(BRKT_DEVICE_RDSP_BOARD, 0);

if (BoardHandle == BRKT_INVALID_HANDLE_VALUE)

return;

memset (&Param, 0, sizeof(Param));

Param.size = sizeof(Param);

Param.clock_type = MVIP95_H100_CLOCKING;

Param.clock_source = MVIP95_SOURCE_INTERNAL;

Param.h100_clock_mode = MVIP95_H100_MASTER_A;

Param.auto_fall_back = MVIP95_H100_DISABLE_AUTO_FB;

/* Set H100 clock */

IoctlResult = BrktDeviceIoControl(

BoardHandle,

MVIP95_CMD_CONFIG_BOARD_CLOCK,

&Param,

sizeof(Param),

NULL,

0,

&BytesReturned,

NULL);
August 2001 201

Chapter 6: MVIP-95
Example 12. MVIP95_CMD_CONFIG_BOARD_CLOCK
(H.100) Sample Code (Continued)

if (!IoctlResult)

printf("MVIP95_CMD_CONFIG_BOARD_CLOCK failed:"
"BrktGetLastError = %d\n",
BrktGetLastError (BoardHandle));

BrktCloseDevice (BoardHandle);

} /* main */
202 RealCT Direct API Developer Guide

Connecting Boards in an H.100 bus
Setting the NETREF Clock

The NETREF clock synchronizes the CT bus clock with a digital
network. Since an H.100 compliant board does not have a digital
network, you cannot set the NETREF clock for that board.

If you have a board with a digital trunk in your system, use the
MVIP95_CMD_CONFIG_NETREF_CLOCK function to
determine which board sets the NETREF clock.
August 2001 203

Chapter 6: MVIP-95
Configuring the H.100 Bus Speed

The H.100 hardware specification supports three possible bus
speeds. These speeds control how many timeslots the streams
use as follows:

n If the streams use all 128 timeslots, each carrying data at
64 Kb/s, the stream operates at 128 x 64 Kb/s = 8.192 Mb/s.

n If the streams use 64 timeslots, each carrying data at
64 Kb/s, the stream operates at 64 x 64 Kb/s = 4.096 Mb/s.

n If the streams use 32 timeslots, each carrying data at
64 Kb/s, the stream operates at 32 x 64 Kb/s = 2.048 Mb/s.

These different stream speeds provide compatibility with
MVIP-90, H-MVIP, and SCSA buses.

To set the bus speed, use the
MVIP95_CMD_CONFIG_STREAM_SPEED function. You set
the stream speed for the first 16 streams in groups of four, so
you would set the speed for streams 0-3 together; 4-8 together;
9-12 together; and 13-16 together. You can choose between a
stream speed of 8 (8.192 MHz), 4 (4.096 MHz), or 2 (2.048 MHz).
Streams 0-15 have a default speed of 2.048 MHz.

The last 16 streams have an undefined stream speed. They are
not available unless you assign a stream speed.

If you have several H.100 compliant boards connected in an
H.100 bus, all boards should be using a bus speed of 8 to take
full advantage of the H.100 bus. However, if you do adjust the
speed for one board, adjust all boards so they are using the same
speed.

To find out what bus speed the CT bus is using, use the
MVIP95_CMD_QUERY_STREAM_SPEED function.

Example 13 shows how to configure the streams to use the
fastest stream speed.
204 RealCT Direct API Developer Guide

Connecting Boards in an H.100 bus
Example 13. MVIP95_CMD_CONFIG_STREAM_SPEED
Sample Code

#include “brktddm.h”

int main(int argc, char **argv)

{

BRKT_HANDLE BoardHandle;

BOOLEAN IoctlResult;

BRKT_SIZE_T BytesReturned;

struct MVIP95_CONFIG_STREAM_SPEED_PARMS Speed;

BoardHandle = BrktOpenDevice(BRKT_DEVICE_RDSP_BOARD, 0);

if (BoardHandle == BRKT_INVALID_HANDLE_VALUE)

return;

memset(&Speed, 0, sizeof(Speed));

Speed.size = sizeof(Speed);

Speed.speed = MVIP95_8MBPS_STREAM_SPEED;

Speed.stream[0] = 0;

/* Configure the speed of a group of streams on the CT bus */

IoctlResult = BrktDeviceIoControl(

BoardHandle,

MVIP95_CMD_CONFIG_STREAM_SPEED,

&Speed, /* Buffer to driver */

sizeof(Speed), /* Length of buffer */

NULL,

0,

&BytesReturned,

NULL); /* Wait until I/O complete */

if (!IoctlResult)

printf("MVIP95_CMD_CONFIG_STREAM_SPEED failed:"
"BrktGetLastError = %d\n",
BrktGetLastError (BoardHandle));

BrktCloseDevice (BoardHandle);

} /* main */
August 2001 205

Chapter 6: MVIP-95
Switching Data

A board with a switch block can transfer data between resources
on any board connected through the CT bus. A board such as the
RTNI series, which only provides line resources, would switch a
call to a Vantage VRS to process the call. Only the RTNI,
RealBLOCs, and Vantage PCI series boards provide switch
blocks. Although Vantage VRS, Vantage VPS, and RDSP/xx000
boards connect to the CT bus, they do not have a switch block
and can only process data switched to their resources by another
board.

Throughout this section, boards connected in a CT bus are
depicted as shown in Figure 41.

Figure 41. A Board in a CT bus

In Figure 41, the arrows above the boards represent streams in
the CT bus. Streams running within the board to and from
internal line or VP resources represent local streams. The
rectangle with an X is the switch block. Arrows connecting
CT bus and local resources through the switch block show which
streams the switch block is switching data between. Numbers
beside the arrows define the stream and timeslot that the
switch block is switching data between.

(1, 8) (0, 8)

(0, 9) (1, 9)

Local Stream 0
Local Stream 1

Vantage PCI

CT Bus
Stream 0
Stream 1

DSP1
206 RealCT Direct API Developer Guide

Connecting Boards in an H.100 bus
Using MVIP-95 Switching Functions

When you switch calls using the MVIP-95 switch block, use the
MVIP95_CMD_SET_OUTPUT function. Unlike SET_OUTPUT
in MVIP-90, MVIP95_CMD_SET_OUTPUT requires that you
specify CT_Bus or local stream, since stream numbering for
both begins with 0.

For example, Figure 42 shows a full duplex connection between
the second VP resource and the CT bus.

Figure 42. A Full-duplex Connection With the Vantage PCI

Make the full-duplex connection shown in Figure 42 as follows:

MVIP95_CMD_SET_OUTPUT (input {LOCAL,0,8}

output {CT_Bus,1,9})

MVIP95_CMD_SET_OUTPUT (input {CT_Bus,0,9}

output {LOCAL,1,8})

(1, 8) (0, 8)

(0, 9) (1, 9)

Local Stream 0
Local Stream 1

Vantage PCI

CT Bus
Stream 0
Stream 1

DSP1
August 2001 207

Chapter 6: MVIP-95
Establishing Connections

Connections Between Local Resources

An H.100 compliant board can establish connections between
local resources. For example, if a call comes in on the first line,
the switch block can connect that call to any VP resource. If the
switch block is enabled, the first line resource is not
automatically connected to the first VP resource to form a
channel.

In Figure 43, a Vantage PCI board switch block has established
a full-duplex connection between the first incoming line and the
third internal VP resource, forming a channel.

Figure 43. A Connection Between Local Resources

Make the full-duplex connection shown in Figure 43 as follows:

MVIP95_CMD_SET_OUTPUT (input {LOCAL,0,16}

output {LOCAL,3,0})

MVIP95_CMD_SET_OUTPUT (input {LOCAL,2,0}

output {LOCAL,1,16})

(1, 16) (0, 16)

(3, 0)(2, 0)

Local Stream 0
Local Stream 1

Local Stream 2
Local Stream 3

Vantage PCI

DSP1

Line 1
208 RealCT Direct API Developer Guide

Connecting Boards in an H.100 bus
Connections Through the CT bus

See Switching Calls through the MVIP-90 Bus on page 165 for a
description of connections that you can establish through a
CT bus, such as drop and insert and broadcast connections. The
concepts described in that section apply to switching calls using
the H.100 bus. However, in H.100 there is no need to worry
about stream direction.

Example 14 shows how to use the
MVIP95_CMD_SET_OUTPUT function to make a full-duplex
connection with the first line resource on a Vantage PCI and the
first and second CT_bus stream.

Example 14. MVIP95_CMD_SET_OUTPUT Sample Code

#include “brktddm.h”

/* The following setup allows 2 connections to be made with
one device driver request */

typedef struct

{

struct MVIP95_SET_OUTPUT_PARMS Parms;

struct MVIP95_OUTDESC AdditionalOutputs[1];

} SET_OUTPUT_PARMS;

int main(int argc, char **argv)

{

BRKT_HANDLE BoardHandle;

BOOLEAN IoctlResult;

BRKT_SIZE_T BytesReturned;

struct MVIP95_OUTDESC *pOutput;

struct SET_OUTPUT_PARMS Connect;

BoardHandle = BrktOpenDevice(BRKT_DEVICE_RDSP_BOARD, 0);

if (BoardHandle == BRKT_INVALID_HANDLE_VALUE)

return;
August 2001 209

Chapter 6: MVIP-95
Example 14. MVIP95_CMD_SET_OUTPUT Sample Code
(Continued)

memset(&Connect, 0, sizeof(Connect));

Connect.parms.size = sizeof(Connect);

/* Connect { CT_BUS, 1, 1 } <= { LOCAL, 2, 0 } */

pOutput = &(Connect.parms.output[0]);

pOutput->mode = MVIP95_CONNECT_MODE;

/* Output stream / timeslot */

pOutput->terminus.bus = MVIP95_CT_BUS;

pOutput->terminus.stream = 1;

pOutput->terminus.timeslot = 1;

/* Input stream / timeslot */

pOutput->connected_from.bus = MVIP95_LOCAL_BUS;

pOutput->connected_from.stream = 2;

pOutput->connected_from.timeslot = 0;

/* Connect { LOCAL, 3, 0 } <= { CT_BUS, 0, 1 } */

pOutput = &(Connect.parms.output[1]);

pOutput->mode = MVIP95_CONNECT_MODE;

/* Output stream / timeslot */

pOutput->terminus.bus = MVIP95_LOCAL_BUS;

pOutput->terminus.stream = 3;

pOutput->terminus.timeslot = 0;

/* Input stream / timeslot */

pOutput->connected_from.bus = MVIP95_CT_BUS;

pOutput->connected_from.stream = 0;

pOutput->connected_from.timeslot = 1;
210 RealCT Direct API Developer Guide

Connecting Boards in an H.100 bus
Example 14. MVIP95_CMD_SET_OUTPUT Sample Code
(Continued)

/* Perform a FULL-DUPLEX connection */

IoctlResult = BrktDeviceIoControl(

BoardHandle,

MVIP95_CMD_SET_OUTPUT,

&Connect,

sizeof(Connect),

NULL,

0,

&BytesReturned,

NULL);

if (!IoctlResult)

printf("MVIP95_CMD_SET_OUTPUT failed:"
"BrktGetLastError = %d\n",
BrktGetLastError (BoardHandle));

BrktCloseDevice (BoardHandle);

} /* main */
August 2001 211

Chapter 6: MVIP-95
Connecting Boards in an MVIP-90 Bus

This section provides information about connecting an H.100
compliant board in an MVIP-90 bus. When you connect an
H.100 compliant board to boards in an MVIP-90 bus, you use
different bus speeds, clock settings, stream numbering, and
switching functions than if the board is connected in an H.100
bus.

You also use the MVIP-90 functions when an H.100 compliant
board is connected in an MVIP-90 bus. Use the following
MVIP-90 functions with an H.100 compliant board:

n RESET_SWITCH

n QUERY_SWITCH_CAPS

n SET_OUTPUT

n QUERY_OUTPUT

n SAMPLE_INPUT

n CONFIG_CLOCK

n TRISTATE_SWITCH

Before reading this section, be sure you are familiar with the
information and function examples in Chapter 5, MVIP-90, on
page 143.

Mapping Resources for MVIP-90

When you use MVIP-90 functions with an H.100 compliant
board, you also use equivalent MVIP-90 local stream
numbering. Table 32 shows the relationship between MVIP-90
and MVIP-95 local stream numbering on the Vantage PCI
board. Table 32 shows the MVIP-95 local stream numbering on
the RealBLOCs board.

Vantage PCI resources As Table 32 shows, all VP resources use stream 16 and all line
resources use stream 18. Resources are assigned to timeslots
sequentially starting with 0. For example, the eight VP
resources use timeslots 0 through 7 on stream 16. The eight line
resources use timeslots 0 through 7 on stream 18.
212 RealCT Direct API Developer Guide

Connecting Boards in an MVIP-90 Bus
Table 32. Comparing Vantage PCI Internal Stream
Numbering

Resource MVIP-90 Numbering MVIP-95 Numbering

Stream Timeslot Streams Timeslot

input output

VP0 16 0 0 1 0

VP1 16 1 0 1 8

VP2 16 2 0 1 16

VP3 16 3 0 1 24

VP4 16 4 4 5 0

VP5 16 5 4 5 8

VP6 16 6 4 5 16

VP7 16 7 4 5 24

LS0 18 0 2 3 0

LS1 18 1 2 3 8

LS2 18 2 2 3 16

LS3 18 3 2 3 24

LS4 18 4 6 7 0

LS5 18 5 6 7 8

LS6 18 6 6 7 16

LS7 18 7 6 7 24
August 2001 213

Chapter 6: MVIP-95
Figure 44 shows the internal stream numbering for a Vantage
PCI board.

Figure 44. Vantage PCI internal Stream Numbering
in MVIP-90

4

Lines 0, 1

Lines 2, 3

Lines 6, 7

Lines 4, 5
5

7
6

1
0

3
2

Vantage PCI

DSP0
VP 0-3

DSP1
VP 4-7
214 RealCT Direct API Developer Guide

Connecting Boards in an MVIP-90 Bus
RealBLOCs resources Table 33 lists the MVIP-90 local stream assignments.

Table 33. RealBLOCs Local MVIP-90 Stream Assignments

Resource MVIP-90 Numbering MVIP-95 Numbering

Stream Timeslot Streams Timeslot

input output

Line 0 16 0 16 0 0

Line 1 16 1 16 1 8

Line 2 16 2 16 2 16

Line 3 16 3 16 3 24

Line 4 16 4 16 4 0

Line 5 16 5 16 5 8

Line 6 16 6 16 6 16

Line 7 16 7 16 7 24

Line 8 18 8 18 8 0

Line 9 18 9 18 9 8

Line 10 18 10 18 10 16

Line 11 18 11 18 11 24

Line 12 16 12 16 12 16

Line 13 16 13 16 13 24

Line 14 18 14 18 14 0

Line 15 18 15 18 15 8

Line 16 18 16 18 16 16

Line 17 16 17 16 17 16

Line 18 16 18 16 18 24

Line 19 18 19 18 19 0

Line 20 18 20 18 20 8

Line 21 18 21 18 21 16

Line 22 18 22 18 22 24

Line 23 18 23 18 23 8
August 2001 215

Chapter 6: MVIP-95
Configuring the H.100 Clock for the MVIP-90 Bus

Defining H.100 Compatibility Clocks

Boards connected in an MVIP bus use an 8-kHz clock signal to
synchronize frames. One H.100 compliant board in the bus
drives the clock. All other boards receive their clock signal
through the 8-kHz clock signal set by the H.100 compliant
board.

The H.100 provides clocks that are compatible with the
MVIP-90 clocks. These are shown in Table 34:

Table 34. H.100 Compatibility Clocks

If you have an T1 or E1 board in the system, that board should
drive the /F0 clock. These boards get timing information for T1
and E1 signals from the network. All other boards in the system
should receive the clock signal from the MVIP bus. If there are
no T1 or E1 boards in the system, an H.100 compliant board can
use the internal oscillator to drive the clock. Vantage VRS,
Vantage VPS, and RDSP/xx000 boards can not set the MVIP
clock. They must receive the clock from the MVIP bus.

You can also specify that boards use SEC8K as a backup signal.
SEC8K is used as a fallback if the primary signal fails. As with
the primary signal, only one board drives the SEC8K clock.

H.100 clock MVIP-90 Clock

/FR_COMP /F0

/C4 /C4

C2 C2

CT_NETREF SEC8K
216 RealCT Direct API Developer Guide

Connecting Boards in an MVIP-90 Bus
Setting the Clock Parameters

Configure the clock parameters using the Configuration Wizard
during software installation. For specific information about the
Configuration Wizard, see the installation and configuration
guide that came with your software.

If you want to change your configuration after software
installation, use the MVIP-90 function CONFIG_CLOCK, as
described in Configuring the MVIP-90 Clock on page 150. You
would set the clock for the Vantage PCI board similar to an
RTNI-ATSI or RealBLOCs board: It should only drive the clock
if there is no T1 or E1 in the system and it drives the clock from
its internal oscillator.

You can also use the
MVIP95_CMD_CONFIG_BOARD_CLOCK MVIP-95 function
to set the clock. Use the MVIP data structure to set the
compatibility clocks for MVIP-90. We do not recommend using
the MVIP-95 function if your H.100 compliant board is
connected in an MVIP-90 bus.

Configuring the H.100 Stream Speed for the
MVIP-90 Bus

The MVIP-90 standard only supports 32 timeslots and 16
streams, so an H.100 compliant board connected in an MVIP-90
bus can also only use 32 timeslots, or a speed of 2 MHz, for its
first 16 streams.

For example, if you have a Vantage PCI or RealBLOCs board
and an RTNI-ATSI connected in an MVIP-90 bus, set the first
16 streams of the Vantage PCI or RealBLOCs board to use a bus
speed of 2 MHz, which is the default value for those streams.

For an example of how to configure stream speeds, see
Example 13 on page 205.
August 2001 217

Chapter 6: MVIP-95
Switching Data

If a Vantage PCI or RealBLOCs board is connected in an MVIP
bus, you adhere to the stream directionality of the MVIP bus.
We recommend that you use the MVIP-90 function
SET_OUTPUT to switch data over the MVIP-90 bus, but you
can also use the MVIP-95 functions for the Vantage PCI or
RealBLOCs board. You would use the MVIP-90 functions for
any MVIP-90 board in the system.

Using MVIP-90 functions

When you connect a Vantage PCI or RealBLOCs board to the
MVIP-90 bus, use the MVIP-90 function SET_OUTPUT and the
MVIP-90 stream directionality and stream numbering. The
Vantage PCI or RealBLOCs board functions like an RTNI board
with VP resources; it uses internal streams 16 and 18, and uses
DSix and DS0x streams to switch data over the CT bus.

All the concepts described in Switching Calls through the
MVIP-90 Bus on page 165 apply to the Vantage PCI or
RealBLOCs board when it is connected in an MVIP-90 bus. This
includes stream numbering and how connections are made.
When you switch data using MVIP-90 functions, you use the
internal stream 16 and 18 as described in Mapping Resources
for MVIP-90 on page 212 or, for the RealBLOCs board, see Table
33 on page 215.
218 RealCT Direct API Developer Guide

Connecting Boards in an MVIP-90 Bus
Using MVIP-95 functions

We do not recommend that you use MVIP-95 functions when
you connect the Vantage PCI or RealBLOCs board to an
MVIP-90 bus. However, if you do choose to use the
MVIP95_CMD_SET_OUTPUT function, use MVIP-95 stream
numbering when you switch data.

Although MVIP-90 and MVIP-95 number streams differently,
the streams are physically connected. Table 35 shows the
relationship between MVIP-90 and MVIP-95 stream numbering
August 2001 219

Chapter 6: MVIP-95
Table 35. Relationship Between MVIP-90 and MVIP-95
Stream Numbering.

For example, if a Vantage VRS or RealBLOCs board is using
stream 6, transmit a call to that board from a Vantage PCI
using the MVIP-95 equivalent to DSi6, which is stream 13.

MVIP-90 MVIP-95

DSo0 0

DSi0 1

DSo1 2

DSi1 3

DSo2 4

DSi2 5

DSo3 6

DSi3 7

DSo4 8

DSi4 9

DSo5 10

DSi5 11

DSo6 12

DSi6 13

DSo7 14

DSi7 15
220 RealCT Direct API Developer Guide

Connecting Boards in an MVIP-90 Bus
Figure 45 shows an H.100 compliant board connecting a call to
a Vantage VRS that is assigned to use stream 6. The MVIP-95
function to switch the call uses stream numbers 13 and 12,
which correspond to DSi6 and DSo6.

Figure 45. A Vantage PCI Transferring a Call to a
Vantage VRS

Make the full-duplex connection shown in Figure 45 as follows:

MVIP95_CMD_SET_OUTPUT (input {LOCAL,2,0}

output {CT_Bus,13,1})

MVIP95_CMD_SET_OUTPUT (input {CT_Bus,12,1}

output {LOCAL,3,0})
August 2001 221

Chapter 6: MVIP-95
Figure 46 shows a connection between a Vantage PCI and an
RTNI-ATSI. In this connection, both boards have a switch block.
You would use the MVIP-95 function and MVIP-95 stream
numbering to make the full-duplex connection between the
Vantage PCI board’s internal resources and the MVIP stream.
Then you would use the MVIP-90 functions and MVIP-90
stream numbering to make a full-duplex connection between
the RTNI board’s internal resources and the MVIP stream.

Figure 46. A Drop and Insert Connection With a Vantage PCI

Make the full-duplex connection shown in Figure 46 as follows:

MVIP95_CMD_SET_OUTPUT (input {LOCAL,2,0}

output {CT_Bus,8,0})

MVIP95_CMD_SET_OUTPUT (input {CT_Bus,9,0}

output {LOCAL,3,0})

SET_OUTPUT (input {4,0}

output {16,0})

SET_OUTPUT (input {16,0}

output {4,0})

Local Stream 2
Local Stream 3

RTNI ATSIVantage PCI

(2, 0)(3, 0)

(8, 0)(9, 0)

Local Stream 16

(16, 0)(16, 0)

(4, 0)(4, 0)

DSi4
DSo4
222 RealCT Direct API Developer Guide

Appendix A
T1 Line Protocols

This appendix describes the signaling bits transmitted in the
most common T1 line protocols.

It includes the following sections:

n Overview of Protocols

n Immediate Start

n Wink Start

n Double Wink Start

n Loop Start

n Ground Start
223

Appendix A: T1 Line Protocols
Overview of Protocols

The Immediate Start, Wink Start, and Double Wink Start
protocols are symmetrical. The central office (CO) and customer
premise equipment (CPE) transmit identical bit patterns for
each line state. Your application uses the same protocol file
whether it functions as a CPE or emulates a CO.

The Loop Start and Ground Start protocols are asymmetrical.
The CO and CPE transmit a different bit pattern to indicate the
same condition. For example, the bit pattern the CO transmits
to indicate idle is different from the bit pattern the CPE
transmits to indicate idle. If you use these protocols, you load a
different protocol file depending on whether your application
acts as a CPE or CO.

If your system is in a loopback configuration using the Loop
Start or Ground Start protocols, the trunk emulating the CO
uses the CO protocol file and the trunk emulating the CPE uses
the CPE protocol file.

In Tables 36 through 42, the values indicate the A and B bits
transmitted by each party. The arrows point to the end
receiving the bits. The driver has several parameters that
control timing. For more information about the timing
parameters, see the RealCT Direct API Reference Manual.
224 RealCT Direct API Developer Guide

Immediate Start
Immediate Start

Table 36 shows the pattern of bits transmitted by the CO and
CPE in the Immediate Start protocol.

Table 36. Immediate Start: CO Calls CPE

In the Immediate Start protocol, both ends transmit 00 in the
idle state. When the CO seizes the line, it transmits 11, and
continues to transmit that pattern throughout the conversation.
The CO waits a certain amount of time after seizing the line
then sends digits, without confirming that the receiving end is
ready. After the CO sends digits, the CPE answers the call by
transmitting 11. To disconnect, both ends transmit 00.

The CO usually starts sending digits within 200 ms of the line
seizure, so the application must be ready to receive digits almost
immediately after receiving the seizure. When the application
initiates a call, it sends digits 200 ms after seizing the line.

When the CPE disconnects, RHT_DISCONNECT or
RHT_ON_HOOK waits for the CO to disconnect to a maximum
time specified by RDG_REMOTE_IDLE_TIMEOUT.

If the network you are connected to accepts call transfers, the
HookFlash duration is determined by
RDG_LOCAL_FLASH_DUR.

Status CO CPE Timing Parameter

Idle 00 00

Seizure 11 --> 00

CO sends digits 11 00

Answer 11 <-- 11

Conversation 11 11

CPE disconnects 11 <-- 00

CO disconnects 00 --> 00 RDG_REMOTE_IDLE_TIMEOUT

HookFlash 11 <-- 11/00/11 RDG_LOCAL_FLASH_DUR

11/00/11 --> 11
August 2001 225

Appendix A: T1 Line Protocols
Wink Start

Table 37 shows the pattern of bits transmitted by the CO and
CPE in the Wink Start protocol.

Table 37. Wink Start: CO Calls CPE

In the Wink Start protocol, both ends transmit 00 in the idle
state. When the CO seizes the line, it transmits 11, and
continues to transmit that pattern throughout the conversation.
The CPE transmits a wink to acknowledge the seizure, then the
CO begins sending digits. The CPE transmits 11 when it
answers the call. To disconnect, both ends transmit 00.

Status CO CPE Timing Parameters

Idle 00 00

Seizure 11 --> 00

Wink 11 <-- 00/11/00 RDG_REMOTE_MIN_SEIZE,
RDG_LOCAL_WINK_DUR

CO sends digits 11 00

Answer 11 <-- 11

Conversation 11 11

CPE disconnects 11 <-- 00

CO disconnects 00 --> 00 RDG_REMOTE_IDLE_TIMEOUT

HookFlash 11 <-- 11/00/11 RDG_LOCAL_FLASH_DUR

11/00/11 --> 11
226 RealCT Direct API Developer Guide

Wink Start
The timing parameters for the wink depend on whether the
application places the call or receives the call:

n When the application receives a call, it sends a wink after
the time specified by RDG_REMOTE_MIN_SEIZE. The
wink has a duration specified by
RDG_LOCAL_WINK_DUR. The RHT_WAIT_LINE_ON
function automatically sends the wink, so there is no need
for the application to call RHT_SEND_WINK.

n When the application initiates a call, it waits for a wink for
the time specified by RDG_REMOTE_ACK_TIMEOUT.
The wink must have a duration between the minimum of
RDG_REMOTE_MIN_WINK and the maximum
RDG_REMOTE_MAX_WINK.

When the CPE disconnects, RHT_DISCONNECT or
RHT_ON_HOOK waits for the CO to disconnect for a maximum
time specified by RDG_REMOTE_IDLE_TIMEOUT.

If the network you are connected to accepts call transfers, the
HookFlash duration is determined by
RDG_LOCAL_FLASH_DUR.

When the application answers a call, it should not send the
answer signal too soon after sending the wink. This should not
be a problem if the application waits for digits, but a modified
application that does not wait for digits after the wink should
involve a delay time. The problem comes if there is too little time
between the signals, so the application sends the pattern
00/11/00/11. The CO might ignore the second 00 because of its
short duration and only acknowledge receiving the sequence
00/11. The CO interprets this as a very long wink and waits for
it to end. Since the application has already sent the answer, it
waits for digits from the CO.

When the application eventually hangs up, the CO considers the
drop in the bits to be the end of the wink and waits for an
answer. The application, on the other hand, has terminated the
call and is ready to receive a new call. COs handle this situation
differently. Some COs might consider this situation to be faulty
signaling and block the circuit, while others continue waiting
for the answer signal, producing a deadlock that prevents calls
from being received in that circuit.
August 2001 227

Appendix A: T1 Line Protocols
In the Wink Start protocol it is possible for the application to
control when to send the wink. Since Wink Start is a derivative
of Immediate Start, load the Immediate Start protocol then use
RHT_SEND_WINK to send a wink in an inbound call or
RHT_WAIT_WINK to receive a wink on an outbound call.
Controlling the wink through the application can cause
problems if the application gets preempted after
RHT_SEIZE_LINE and before RHT_WAIT_WINK. The
application does not receive any wink sent while the application
was preempted since bits are only monitored while a function is
running. With the Wink Start protocol loaded, the driver
handles all timing issues. We recommend loading the
appropriate Wink Start protocol rather than letting the
application send or receive winks.
228 RealCT Direct API Developer Guide

Double Wink Start
Double Wink Start

Table 38 shows the pattern of bits transmitted by the CO and
CPE in the Double Wink Start protocol.

Table 38. Double Wink Start: CO Calls CPE

In the Double Wink Start Protocol, both ends transmit 00 in the
idle state. When the CO seizes the line, it transmits 11 and
continues to transmit that pattern throughout the conversation.
The CPE transmits a wink to acknowledge the seizure, and
another wink to acknowledge receiving digits. The CPE begins
transmitting 11 when it answers the call. To disconnect, both
ends transmit 00.

Status CO CPE Timing Parameters

Idle 00 00

Seizure 11 --> 00

Wink 11 <-- 00/11/00 RDG_REMOTE_MIN_SEIZE,
RDG_LOCAL_WINK_DUR

CO sends digits 11 00

Wink 11 <-- 00/11/00 RDG_REMOTE_MIN_SEIZE,
RDG_LOCAL_WINK_DUR

Answer 11 <-- 11

Conversation 11 11

CPE disconnects 11 <-- 00

CO disconnects 00 --> 00 RDG_REMOTE_IDLE_TIMEOUT

HookFlash 11 <-- 11/00/11 RDG_LOCAL_FLASH_DUR

11/00/11 --> 11
August 2001 229

Appendix A: T1 Line Protocols
Double Wink Start is used mainly in Canada. It is a variation of
the Wink Start Protocol in which the end receiving a call
transmits a second wink after receiving digits. Since the timing
for the second wink depends on the application, it requires a
minor modification of the source code to explicitly send the
second wink after receiving the digits.

The timing parameters for the wink depend on whether the
application places the call or receives the call:

n When the application receives a call, it sends a wink after
the time specified by RDG_REMOTE_MIN_SEIZE. The
wink has the duration specified by
RDG_LOCAL_WINK_DUR. The second wink follows the
same timing.

n When the application initiates a call, it waits for a wink
within the time specified by
RDG_REMOTE_ACK_TIMEOUT. The wink must have a
duration between the minimum of
RDG_REMOTE_MIN_WINK and the maximum
RDG_REMOTE_MAX_WINK. After dialing out, the
application calls RHT_WAIT_WINK to detect the second
wink. The duration of the second wink must be in the same
range as the first, but RHT_WAIT_WINK does not have a
maximum time to run. The application terminates the
function after a reasonable time has elapsed.

When the CPE hangs up, RHT_DISCONNECT or
RHT_ON_HOOK waits for the CO to hang up for a maximum
time specified by RDG_REMOTE_IDLE_TIMEOUT.

If the network you are connected to accepts call transfers, the
HookFlash duration is determined by
RDG_LOCAL_FLASH_DUR.

As in the Wink Start protocol, be sure to include a delay between
the second wink and the answer so the remote end receives the
wink properly.
230 RealCT Direct API Developer Guide

Loop Start
Loop Start

Tables 39 and 40 show the pattern of bits transmitted by the
CO and the station in the Loop Start protocol. Table 39 shows
the pattern when the CO calls the station.

Table 39. Loop Start: CO Calls Station

In the Loop Start Protocol, both ends transmit 01 in the idle
state. When the CO calls the station, it transmits 00 then
returns to 01 when the station sends the 11 answer signal. The
station disconnects by returning to the 01 state.

The CO indicates a ring pattern by toggling the B bit from 0 to
1. The cadence is the same as the ring for analog lines, 2000 ms
ring present, 4000 ms ring absent, where 0 indicates ring
present and 1 indicates ring absent.

The CO does not send digits to the station unless the line is
configured to provide Caller ID information. There is no
information when the calling party disconnects.

Status CO Station Timing Parameter

Idle 01 01

Seizure: Ringing 00 --> 01

Answer 01 <-- 11

Conversation 01 11

Station disconnects 01 <-- 01

HookFlash 01 <-- 11/01/11 RDG_LOCAL_FLASH_DUR
August 2001 231

Appendix A: T1 Line Protocols
Table 40 shows the pattern of bits transmitted when the station
calls the CO.

Table 40. Loop Start: station Calls CO

In the Loop Start protocol, both ends transmit 01 in the idle
state. When the station calls the CO, the CO continuously sends
a 01 signal. The station seizes the line using a 11 signal, then
disconnects by returning to the idle 01 state.

When the station disconnects, RHT_DISCONNECT or
RHT_ON_HOOK terminates immediately, since there is no bit
change that the CO needs to perform.

When the application initiates a call, it waits for a dial tone,
then dials digits. There is no signal from the CO to acknowledge
the outgoing call, indicate an answer by the called party, or
indicate that the called party disconnected.

If the network you are connected to accepts call transfers, the
HookFlash duration is determined by
RDG_LOCAL_FLASH_DUR.

Status CO Station Timing Parameter

Idle 01 01

Seizure 01 <-- 11

Dialtone from CO 01 11

Digits from Station 01 11

Answer 01 11

Conversation 01 11

Station disconnects 01 <-- 01

HookFlash 01 <-- 11/01/11 RDG_LOCAL_FLASH_DUR
232 RealCT Direct API Developer Guide

Ground Start
Ground Start

Tables 41 and 42 show the pattern of bits transmitted by the
CO and station in the Ground Start protocol. Table 39 shows the
pattern when the CO calls the station.

Table 41. Ground Start: CO Calls Station

In the Ground start protocol, the CO indicates idle with a
11 pattern, and the station indicates idle with a 01. The CO
seizes the line with a 01 pattern, then rings by toggling the B bit
from 0 to 1. The cadence is the same as the ring for analog lines,
2000 ms ring present, 4000 ms ring absent, where 0 indicates
ring present and 1 indicates ring absent. When the station
answers with a 11 pattern, the CO transmits a 01 for the
remainder of the call. The station and CO disconnect by
returning to the idle state.

The CO does not send digits to the station unless the line is
configured to provide Caller ID information. When the station
hangs up, RHT_DISCONNECT or RHT_ON_HOOK waits for
the CO to hang up for a maximum time specified by
RDG_REMOTE_IDLE_TIMEOUT.

Status CO Station Timing Parameter

Idle 11 01

Seizure: Ground on Tip 01 --> 01

Ringing 00 --> 01

Answer 01 <-- 11

Conversation 01 11

Station disconnects 01 <-- 01

CO disconnects 11 --> 01 RDG_REMOTE_IDLE_TIMEOUT

HookFlash 01 <-- 11/01/11 RDG_LOCAL_FLASH_DUR

01/11/01 --> 11
August 2001 233

Appendix A: T1 Line Protocols
Table 42 shows the pattern of bits transmitted when the station
calls the CO.

Table 42. Ground Start: Station Calls CO

In the Ground start protocol, the CO indicates idle with a 11
pattern, and the station indicates idle with a 01. The station
seizes the line by transmitting a 00, and the CO acknowledges
by transmitting 01, which it continues to transmit throughout
the call. The station then transmits 11, which it transmits
throughout the call. This handshaking in built into
RHT_SEIZE_LINE and RHT_OFF_HOOK so there is no need
for the application to be involved in the handshaking process.
The CO then provides dial tone to indicate that it is ready to
receive digits. There is no signal from the CO to indicate an
answer by the called party. The CO or station disconnects by
returning to the idle state.

If the network you are connected to accepts call transfers, the
HookFlash duration is determined by
RDG_LOCAL_FLASH_DUR.

Status CO Station Timing Parameter

Idle 11 01

Seizure: Ground on Ring 11 <-- 00

Ground on tip from CO 01 --> 00

Station removes ground 01 <-- 11

Dialtone from CO 01 11

Digits from Station 01 11

Answer 01 11

Conversation 01 11

CO disconnects 11 --> 01

HookFlash 01 <-- 11/01/11 RDG_LOCAL_FLASH_DUR

01/11/01 --> 11
234 RealCT Direct API Developer Guide

Appendix B
E1 Line Protocols

This appendix describes the signaling bits transmitted in the
most common E1 line protocols.

It includes the following sections:

n Overview of Protocols
n R2-CCITT
n R2-CCITT - Chinese Implementation
n R2-CCITT - Brazilian Implementation
n R2-CCITT - Central European Implementation
235

Appendix B: E1 Line Protocols
Overview of Protocols

The R2-CCITT protocols are symmetrical. The central
office (CO) and customer premise equipment (CPE) transmit
identical bit patterns for each line state. Your application uses
the same protocol whether it functions as a CPE or emulates a
CO.

In Tables 43 through 44, the values indicate the A and B
signaling bits transmitted by each party. The arrows point to
the end receiving the bits. The driver has several parameters
that control timing. For more information about the timing
parameters, see the RealCT Direct API Reference Manual.
236 RealCT Direct API Developer Guide

R2-CCITT
R2-CCITT

Table 43 shows the pattern of bits transmitted by the CO and
CPE in the R2-CCITT protocol.

Table 43. R2-CCITT: CO Calls CPE

In the R2-CCITT line protocol, bits C and D are fixed, C=0, D=1.
Both ends transmit 10 in the idle state. The CO seizes the line
with 00, which it continues to transmit throughout the call. The
CPE acknowledges the seizure with 11. It continues to transmit
11 through the inter-register signaling, then transmits 01 to
answer the call. At the end of the call, the CPE transmits a 11
to clear the line, then returns to idle.

All bit transitions are recognized after the time specified by
RDG_LINE_DEGLITCH_TIME parameter.

Status CO CPE Timing Parameter

Idle 10 10

Seizure 00 --> 10

Acknowledgment 00 <-- 11 RDG_LOCAL_MIN_SEIZURE_ACK,
RDG_LOCAL_ACK_GUARD_TIME

R2 Inter-register
Signaling

00 11

Answer 00 <-- 01 RDG_LOCAL_ANSWER_DUR,
RDG_LOCAL_ANSWER_GUARD_TIME

Conversation 00 01

Clear Back 00 <-- 11 RDG_LOCAL_CLEAR_BACK_DUR

Clear Forward 10 --> 11 RDG_LOCAL_CLEAR_BACK_DUR

Release 10 <-- 10

Blocked 10 11

Hook Flash 00 <-- 01/11/01 RDG_LOCAL_FLASH_DUR

00/10/00 --> 01

Forced Release 00 <-- 00
August 2001 237

Appendix B: E1 Line Protocols
When the application is the incoming end, the application
immediately recognizes the incoming call and the protocol sends
an acknowledgment signal for at least
RDG_LOCAL_MIN_SEIZURE_ACK. Then, the function waits
for RDG_LOCAL_ACK_GUARD_TIME and returns.

To answer a call, the protocol sends the answer signal for at
least RDG_LOCAL_ANSWER_DUR, then the function waits
for RDG_LOCAL_ANSWER_GUARD_TIME and returns.

The application can disconnect a call using a Clear Back or a
Forced Release. The Forced Release signal causes fewer delays
on the line, but is not supported by all carriers. To disconnect
using a Clear Back, the signal must be present on the line for at
least RDG_LOCAL_CLEAR_BACK_DUR. When the
application receives the Clear Forward (or after
RDG_REMOTE_IDLE_TIMEOUT, whichever happens first),
the function waits for RDG_LOCAL_CLEAR_BACK_GUARD_TIME
and returns.

To disconnect using a Forced Release, the signal must be
present on the line for at least
RDG_LOCAL_CLEAR_BACK_DUR. When the application
detects the Clear Forward signal (or after
RDG_REMOTE_IDLE_TIMEOUT, whichever happens first),
the function waits for RDG_LOCAL_CLEAR_BACK_GUARD_TIME
and returns.

If the application is the outgoing end, it seizes the line, waits for
an acknowledgment for a time defined by
RDG_REMOTE_ACK_TIME, then waits
RDG_LOCAL_SEIZE_GUARD_TIME and returns. If the
application does not receive the seizure acknowledgment, it
transmits an idle signal and the function returns.

A disconnect signal (Clear Back, Forced Release or Clear
Forward, depending on whether the application is the incoming
or outgoing end), must be present on the line for at least
RDG_REMOTE_MIN_DISCONNECT. A Clear Back present on
the line after a clear forward is sent for more than
RDG_REMOTE_BLOCK_MIN is considered to be a Block
signal.

The Hook Flash signal has the duration specified by
RDG_LOCAL_FLASH_DUR. The guard time at the end of the
function is specified by RDG_LOCAL_FLASH_GUARD_TIME.
238 RealCT Direct API Developer Guide

R2-CCITT - Chinese Implementation
R2-CCITT - Chinese Implementation

The Chinese implementation of the R2-CCITT protocol uses the
same timing and bit patterns as the R2-CCITT shown in
Table 43. The only difference is that signaling bits C and D are
both set to 1.

R2-CCITT - Brazilian Implementation

The Brazilian implementation of the R2-CCITT protocol uses
the same timing and bit patterns as the R2-CCITT, except the
receiving end answers the line by transmitting 01/11/01. This
pattern is an answer, followed by a Clear Back, then a second
answer. The receiving end transmits the answer for
RDG_LOCAL_DOUBLE_ANSWER_ON. It transmits the Clear
Back for RDG_LOCAL_DOUBLE_ANSWER_OFF. The Clear
Back signal in this double answer procedure disconnects any
collect calls.
August 2001 239

Appendix B: E1 Line Protocols
R2-CCITT - Central European Implementation

The Central European implementation of the R2-CCITT
protocol uses the same timing and bit patterns as the R2-CCITT
but with a different disconnect procedure, as shown in Table 44.

Table 44. R2-CCITT Central European: CO Calls CPE

(*) Incoming end initiating disconnect.

(**) Outgoing end initiating disconnect.

Status CO CPE

Idle 10 10

Seizure 00 --> 10

Acknowledgment 00 <-- 11

R2 Inter-register
Signaling

00 11

Answer 00 <-- 01/11/01

Conversation 00 01

Clear Back 00 <-- 11

Clear Forward * 10 --> 11

Clear Forward 10 --> 01

Release Guard 10 <-- 11

Release ** 10 <-- 10

Blocked 10 11

Hook Flash 00 <-- 01/11/01

00/10/00 --> 01
240 RealCT Direct API Developer Guide

R2-CCITT - Central European Implementation
When the outgoing end terminates the call, it sends a Clear
Forward signal. When the incoming end detects the Clear
Forward, it transmits an intermediate signal called a Release
Guard before releasing the line. The Release Guard acts as an
intermediate signal to prevent bits A and B from both changing
at one time. An Answer Signal (01) followed by an Idle signal
(10) requires both bits A and B to change, called a double bit
change. By using a Release Guard (11), only one bit changes at
a time. Most implementations of R2-CCITT interpret a Release
Guard as a temporary Block signal on the line. Although this
transition is not necessary in other implementations, it does not
cause problems.
August 2001 241

Index
Symbols
/C4 150
/F0 150
/FR_COMP 216

A
A digit

DTMF 18
accuspan

to test E1 applications 131
to test T1 applications 78

ADI configuration 107
alarms

E1 135
T1 81–82

all ones
E1 troubleshooting 135
T1 troubleshooting 82

alternate mark inversion 39, 92
AMI 39, 92
answer

incoming call in E1 115
incoming call in T1 62
monitoring for in E1 125
monitoring for in T1 70

API calls
BrktCloseDevice() 10
BrktDeviceIoControl() 10
BrktGetLastError() 10
BrktOpenDevice() 10

API overview 3
application programming interface (API) 8–10

B
B digit

DTMF 18
B8ZS line coding 41
backward signal 20
BAD_STATE_ERROR

E1 protocol error 138
T1 protocol error 85

binary line coding 38
BINFO sample

E1 130
T1 76

bipolar violation
description 40, 92
T1 troubleshooting 83

bit stuffing 40
BLKLN sample 129
blocked circuit 122
blue alarm 82
boards

Brooktrout 6
RealBLOCs 6
Vantage 6

BrktCloseDevice() 10
BrktDeviceIoControl() 10
BrktGetLastError

E1 synchronization error 134
T1 synchronization error 81

BrktGetLastError() 10
BrktOpenDevice() 10
broadcast connection 177
Brooktrout products 6, 7
BSTAT sample

E1 130
T1 76
243

C

buffer slips

E1 troubleshooting 135
T1 troubleshooting 82

bulk call generator
to test E1 applications 132
to test T1 applications 79

C
C digit

DTMF 18
C2 150
call detection

E1 111
T1 58

call termination
E1 119
T1 66

call transfer
T1 73

carrier configuration
E1 105
T1 52

CEPT multiframe
description 96
timeslot 0 96
timeslot 16 99

clear back 121
clock

setting for H.100 199–203
setting for MVIP-90 150–153

clock signals
/C4 150
/F0 150
/FR_COMP 216
C2 150
CT_NETREF 216
H.100_A 199
H.100_B 199
NETREF 199
SEC8K 150

compelled handshake, in R2 20
compiler 2
CONFIG_CARRIER 52, 105
CONFIG_CHANNEL 52, 105
CONN sample

E1 130
T1 77

control tones, sending
E1 114
T1 61

CRC reporting
E1 98
T1 45

crossover cable 89
CSU cable configuration 83
CSU loopback

T1 89
CT_NETREF 216

D
D digit

DTMF 18
D3/D4 superframe 44
data structure 8
debounce

E1 configuration 106
T1 configuration 53

deglitch
E1 configuration 106
T1 configuration 53

device 6
drivers 6

dial out
E1 124
T1 70

DIAL sample 76
DIALR2 sample 130
digit buffer

flushing in E1 113
flushing in T1 60

digit buffer, flushing 35
digit detection

E1 113
T1 60

DIGIT sample
E1 130
T1 77

digital signal processor (DSP) 5
digits

description 16
DTMF 18
MF 19
R2 20
receiving 30
rotary 17
sending 30

disable resources
Vantage PCI 197
Vantage VPS 163

DISNL sample 129
244 RealCT Direct API Developer Guide

H

documentation feedback xx
double wink start 229
drop and insert 175–176
DS0 signal 42
DS1 signal 43
DSP 5
DTMF 18
dual tone multi-frequency 18

E
E1

application tests 131
carrier configuration 105
CEPT multiframe 96
CRC reporting 98
debounce 106
deglitch 106
frame 0 alarm 135
framing 94
HDB3 93
internal signaling stream 128
line coding 92
line protocol configuration 101
mapping resources 155
network mode 133
ones density 93
protocol errors 137
samples 129
setting the clock for 150
Si1, Si2 98
signaling bits 99
speed 92
synchronization errors 135
timeslot 0 96
timeslot 16 99
timeslot use 95
trunks on RTNI boards 92
user mode 133

E1INIT sample 129
EN_DTMF 30
EN_MF 30
EN_R2_BACKWARD 32
EN_R2_FORWARD 31
EN_ROTARY 29
enable resources

Vantage PCI 197
Vantage VPS 163

equalization setting configuration 83
ERROR_UNEXP_NET_ERR

E1 synchronization error 134
T1 synchronization error 81

errors 9
ESF superframe 45

F
F-bit

description 43
pattern in D3/D4 superframes 44
pattern in ESF superframes 45

files 2
header 2

firmware 5
forced release 121
forward signal 20
frame 0 alarm 135
framing

E1 description 95
T1 configuration 52
T1 description 42

FRCRL sample 129
functions

exclusive and non exclusive 8
tags 8

G
getting help xxi
glare resolution

E1 124
T1 69

ground start 233

H
H.100

clock signals 199
definition 188
frames 189
stream speed 204, 217
streams 188
switching 206
timeslots 188

HDB3 line coding 93
header file 2
hook state

E1 configuration 107
T1 configuration 54
August 2001 245

I

I
immediate start protocol 225
incoming register 20
input streams 147
internal streams

RTNI 165
signaling streams 75, 128
Vantage PCI 191

internal timeslots
RTNI 156
Vantage PCI 191

inter-register signaling 20

L
line coding

B8ZS 40–41
bipolar violation

E1 92
T1 40

E1 92–93
HDB3 93
T1 38–41
ZCS 40

line protocol
E1

description 101
loading 101
R2-CCITT 237
R2-CCITT, Brazilian 239
R2-CCITT, Central European 240
R2-CCITT, Chinese 239

T1
description 48
double wink start 229
ground start 233
immediate start 225
loading 48
loop start 231
wink start 226

LineTerm0
to terminate E1 functions 117
to terminate T1 functions 64

local loopback
T1 53, 106

loop start 231

loopback
configuration

T1 53
to test E1 applications 133
to test T1 applications 80
to troubleshoot a yellow alarm 82

LSB sample
E1 129
T1 76

M
mapping resources

E1 155
MVIP-90 155–161
RDSP/xx000 157
T1 155
Vantage PCI

for MVIP-90 212
for MVIP-95 191

Vantage VPS 157
Vantage VRS 157

MF digits 19
multi-frequency digits 19
multithread 14
MVIP-90

board support 185
clock signals 150
definition 144
frames 147
input streams 147
mapping resources 155–161
output streams 147
stream compatibility with MVIP-95 218, 219
stream numbering 147
stream speed 145
timeslots 145

MVIP-90 functions
QUERY_OUTPUT 180
RHT_CONFIG_MVIP 157
RHT_MVIP_SETTING 163
RHT_SET_GLOB 8
RHT_SET_PARAM 8
SET_OUTPUT 167
when to use 144
246 RealCT Direct API Developer Guide

R

MVIP-95

board support 185
changes from MVIP-90 186
compatibility clocks 216
definition 186
functions 187
stream compatibility with MVIP-90 218, 219
stream numbering 190

MVIP-95 functions
when to use 144

MVIP95_CMD_CONFIG_BOARD_CLOCK 200
MVIP95_CMD_CONFIG_NETREF_CLOCK

description 203
example 201, 202

MVIP95_CMD_CONFIG_STREAM_SPEED
description 204
example 205

MVIP95_CMD_SET_OUTPUT
description 207

MVIP95_CMD_SET_SWITCH
description 197
example 197

N
network mode

E1 133
T1 80

O
OFFHOOK sample

E1 129
T1 76

ones density
E1 93
T1 40

ONHOOK sample
E1 129
T1 76

outgoing register 20
output streams 147

P
parameter 9
platforms

Windows 95 2
Windows NT 2

PLAYE sample 129

PLAYT sample 76
polar line coding 38
primary thread 11
process 11
products, Brooktrout 6, 7
protocol error

E1 137
T1 84

Q
QC sample 77
QUERY sample 130
QUERY_CARRIER_STAT

E1 135
T1 81

QUERY_OUTPUT
sample code 180
to identify timeslot mode 180

R
R1-MF 19
R2 digits 20
R2 signaling

backward signal 20
forward signal 20
frequencies 22
group A signals 27
group B signals 28
group I signals 25
group II signals 26
incoming register 20
outgoing register 20
receiving 31
sending 31

R2-CCITT 237
R2-CCITT, Brazilian 239
R2-CCITT, Central European 240
R2-CCITT, Chinese 239
RawPattern

E1 protocol error troubleshooting 139
T1 protocol error troubleshooting 86

RDG_LOCAL_ACK_GUARD_TIME
E1 111
T1 58

RDG_LOCAL_ANSWER_GUARD_TIME
E1 115
T1 62

RDG_LOCAL_FLASH_DUR
T1 73
August 2001 247

S

RDG_LOCAL_FLASH_GUARD_TIME

T1 73
RDG_LOCAL_IDLE_DUR

E1 119
T1 66

RDG_LOCAL_IDLE_GUARD_TIME
E1 119
T1 66

RDG_LOCAL_SEIZE_GUARD_TIME
E1 123
T1 68

RDG_LOCAL_WINK_DUR 74
RDG_LOCAL_WINK_GUARD_TIME 74
RDG_REMOTE_ACK_TIMEOUT

E1 123
T1 68

RDG_REMOTE_IDLE_TIMEOUT
E1 119
T1 66

RDG_REMOTE_MAX_WINK 69, 74
RDG_REMOTE_MIN_WINK 69, 74
RDSP/xx000

setting the clock for 150
stream assignment 157
timeslot assignment 159

RealBLOCs PCI board 6
red alarm 81
remote loopback

T1 53, 106
RHT_BLOCK_LINE 122
RHT_CONFIG_CHANNEL 52, 105
RHT_CONFIG_MVIP

sample code 164
to set stream assignment 158
to set timeslot offset 160

RHT_DIAL 30
T1 70

RHT_DIAL_R2 31
RHT_DISCONNECT

E1 119
T1 66

RHT_FLUSH_DIGIT
E1 113
T1 60

RHT_FORCED_RELEASE 121
RHT_GET_ROTARY_INFO 29
RHT_GET_STATUS

E1 troubleshooting 137
T1 troubleshooting 84

RHT_HOOK_FLASH
T1 73

RHT_MVIP_SETTING 163

RHT_OFF_HOOK
E1 115, 123
T1 62, 68

RHT_ON_HOOK
E1 119
T1 66

RHT_QUERY_STATUS 40, 93
RHT_READ_DIGIT 30
RHT_SEIZE_LINE

E1 115, 123
T1 62, 68

RHT_SEND_WINK 74
RHT_SET_DIGIT_MODE 30
RHT_SET_GLOB 8
RHT_SET_GLOBAL 31
RHT_SET_PARAM 8
RHT_START_PCPM

E1 125
T1 71

RHT_TWAIT_DIGIT 30, 31
RHT_WAIT_ANSWER

E1 125
T1 70

RHT_WAIT_LINE_OFF
E1 117
T1 64

RHT_WAIT_LINE_ON
E1 111
T1 58

RHT_WAIT_WINK 74
robbed bit signaling

configuration 54
D3/D4 44
ESF 45

rotary digits 17
RTNI

internal stream numbering 155
internal timeslot use 156

RTNI_lineStatus_s
E1 troubleshooting 137
T1 troubleshooting 84

S
SAMPLE_INPUT

to read E1 signaling bits 128
to read T1 signaling bits 75

samples
E1 129
T1 76

SCSA 188
248 RealCT Direct API Developer Guide

T

SEC8K 150
seize line

E1 123
T1 68

SET_OUTPUT
sample code 173
to switch data 167
to write E1 signaling bits 128
to write T1 signaling bits 75

SETDM sample 130
signaling bits 44
signaling stream

E1 128
T1 75

SIGNALING_BIT_ERROR
E1 protocol error 138
T1 protocol error 86

stream assignment
RDSP/xx000 157
Vantage VPS 158
Vantage VRS 157

stream description
H.100 188
MVIP-90 145

stream numbering
DSix/DSox 147
MVIP-90 147

conventional direction 169
reverse direction 169

MVIP-90 vs. MVIP-95 218, 219
MVIP-95 190
RTNI internal 155
Vantage PCI

in H.100 191
in MVIP-90 212

stream speed
H.100 options 204
setting for an MVIP-90 bus 217

superframe
D3/D4 44
ESF 45

switch block 165
switching

between local resources 171
broadcast 177
drop and insert 175–176
in an application 178
MVIP-90 165–179
MVIP-95 206–209

synchronization error
E1 135
T1 81

T
T_RHT_LINEOFF

E1 124
T1 72

T1
application tests 78
B8ZS 40
blue alarm 82
carrier configuration 52
CRC reporting 45
D3/D4 superframe 44
debounce 53
deglitch 53
DS0 signal 42
DS1 signal 43
ESF superframe 45
F-bit 43
framing 42
framing configuration 52
internal signaling stream 75
line coding methods 38–41
line protocol configuration 48
loopback mode 53
mapping resources 155
network mode 80
ones density 40
protocol errors 84
red alarm 81
robbed bit signaling 44, 45
samples 76
setting the clock for 150
speed 38
superframe 44
synchronization errors 81
timeslot use 42
trunks on RTNI boards 38
user mode 80
yellow alarm 82
ZCS 40

T1INIT sample 76
TermType

E1 protocol error troubleshooting 137
T1 protocol error troubleshooting 84

thread 11
timeslot assignment

RDSP/xx000 159
Vantage VPS 159
Vantage VRS 159

timeslot offset 160
August 2001 249

U

timeslot use

E1 95
H.100 188
MVIP-90 145
T1 42

TWAIT sample
E1 130
T1 77

U
user mode

E1 133
T1 80

V
Vantage PCI

enable/disable resources 197
in an H.100 bus 190–209
in an MVIP-90 bus 212–222
internal stream numbering

MVIP-90 190, 212
MVIP-95 191

internal timeslot assignment
MVIP-90 212
MVIP-95 191

setting the clock for 150
setting the clock in an H.100 bus 199
setting the clock in an MVIP-90 bus 216
switching

H.100 bus 206
MVIP-90 bus 218

Vantage VPS
enable/disable resources 163
setting the clock for 150
stream assignment 158
timeslot assignment 159

Vantage VRS
setting the clock for 150
stream assignment 157
timeslot assignment 159

W
WAITANS sample

E1 129
T1 76

WAITIDLE sample 129
WAITOFF sample

E1 129
T1 76

WAITRING sample
E1 129
T1 76

Win32 API 2
Windows 95 2
Windows NT 2
Windows platforms 2
wink start 226
wink, manual sending and receiving 74

Y
yellow alarm 82

Z
ZCS line coding 40
250 RealCT Direct API Developer Guide

	Title Page
	Warranty
	License Agreement

	Table of Contents
	List of Figures
	List of Tables
	List of Examples
	Preface
	About this Manual
	Typographical Conventions
	Related Manuals

	Getting Help

	Architecture
	How RealCT Interfaces With Your System
	Interfacing With Windows Platforms

	Reviewing the Key System Components
	Computer Telephony Boards
	Digital Signal Processor
	Firmware
	Devices
	Application Programming Interface
	Function Tags
	Data Structures
	Parameters
	Errors
	API Calls

	Application Architecture
	Processes and Threads
	Application Design
	Non�multithreaded
	Multithreaded

	Digit Handling
	Using Digits
	Defining Digit Types
	Defining Rotary Digits
	Defining DTMF Signals
	Defining MF Signals
	Defining R2 Signals
	Timing the Signals
	Assigning Frequencies
	Meaning of R2 Frequencies

	Sending and Receiving Digits
	Handling Rotary Digits
	Handling DTMF and MF Digits
	Handling R2 Digits
	Flushing the Digit Buffer

	Troubleshooting

	T1 Networking
	Understanding T1 Trunks
	Transmitting Digital Data
	Organizing the T1 Data
	Organizing Data into T1 Frames
	Organizing Frames into D3/D4 and ESF Superframes

	Configuring the T1 Environment
	Setting the Clock
	Loading the Line Protocol
	Configuring the Carrier
	Configuring the Framing Method
	Configuring the Line Coding Method
	Configuring Debounce
	Configuring the Loopback Mode
	Configuring the Line State
	Configuring Invert
	Configuring Robbed Bit Signaling

	Handling Incoming and Outgoing Calls
	Processing Calls
	Handling Incoming Calls
	Detecting an Incoming Call
	Detecting Digits
	Sending Control Tones
	Answering Calls
	Monitoring for Disconnect
	Terminating an Inbound Call

	Handling Outbound Calls
	Seizing a Line
	Glare Resolution
	Dialing Out
	Monitoring for Call Answer
	Terminating an Outbound Call
	Transferring Calls
	Sending and Detecting Winks

	Using Internal Signaling Streams
	Testing the T1 Setup
	Testing the Installation
	Testing the Application
	Using AccuSpan
	Placing Calls over a T1 Line
	Using a T1 Bulk Call Generator
	Connecting Trunks A and B

	Troubleshooting
	Handling Synchronization Errors
	Handling Protocol Errors
	Using Loopbacks

	E1 Networking
	Understanding E1 Trunks
	Transmitting Digital Data
	Organizing the E1 Data
	Organizing Data into E1 Frames
	Organizing Frames into CEPT Multiframes

	Configuring the E1 Environment
	Setting the Clock
	Loading The Line Protocol
	Configuring the Carrier
	Configuring CRC
	Configuring the Line Coding Method
	Configuring Debounce
	Configuring the Loopback Mode
	Configuring the Hook State
	Configuring ADI

	Handling Incoming and Outgoing Calls
	Processing Calls
	Handling Incoming Calls
	Detecting an Incoming Call
	Detecting Digits
	Sending Control Tones
	Answering Calls
	Monitoring For Disconnection
	Terminating an Inbound Call
	Blocking a Circuit

	Handling Outbound Calls
	Seizing a Line
	Glare Resolution
	Sending Call Setup Information
	Monitoring For Call Answer
	Terminating an Outbound Call

	Using Internal Signaling Streams
	Testing the E1 Setup
	Testing the Installation
	Testing the Application
	Using AccuSpan
	Placing Calls over an E1 Line
	Using an E1 Bulk Call Generator
	Connecting Trunks A and B

	Troubleshooting
	Handling Synchronization Errors
	Handling Protocol Errors
	Using Loopbacks

	MVIP�90
	Defining MVIP�90
	Working with MVIP�90 Data Streams
	Understanding MVIP�90 Architecture
	Numbering MVIP Streams

	Understanding Framing
	Configuring Boards in the MVIP�Bus
	Configuring the MVIP�90 Clock
	Understanding Clocking Signals
	Setting the Clock Parameters
	Setting up the System

	Mapping MVIP�90 Resources
	Mapping RTNI Resources
	Mapping RTNI Streams
	Mapping RTNI Internal Resources

	Mapping RDSP/xx000, Vantage VRS, and Vantage VPS Resources
	Mapping Boards to Streams
	Mapping Resources to Timeslots

	Enabling or Disabling Resources
	Switching Calls through the MVIP�90 Bus
	Establishing Connections
	Using Stream Numbers
	Connecting Local Resources
	Connecting a Call to a Resource Board
	Connecting Line Resources
	Making a Broadcast Connection

	Making Connections in an Application
	Identifying the Timeslot Mode

	MVIP�95
	Working with Computer Telephony Buses
	Defining MVIP�95
	Understanding H.100 Architecture
	Connecting Boards in an H.100 bus
	Numbering Streams
	Mapping Board Resources
	Mapping RealBLOCs Resources
	Configuring Boards in the CT�bus
	Enabling or Disabling Resources
	Configuring the H.100 Clock
	Setting the Primary Clock
	Setting the NETREF Clock

	Configuring the H.100 Bus Speed
	Switching Data
	Using MVIP�95 Switching Functions
	Establishing Connections

	Connecting Boards in an MVIP�90 Bus
	Mapping Resources for MVIP�90
	Configuring the H.100 Clock for the MVIP�90 Bus
	Defining H.100 Compatibility Clocks
	Setting the Clock Parameters

	Configuring the H.100 Stream Speed for the MVIP�90 Bus
	Switching Data
	Using MVIP�90 functions
	Using MVIP�95 functions

	T1 Line Protocols
	Overview of Protocols
	Immediate Start
	Wink Start
	Double Wink Start
	Loop Start
	Ground Start

	E1 Line Protocols
	Overview of Protocols
	R2�CCITT
	R2�CCITT � Chinese Implementation
	R2�CCITT � Brazilian Implementation
	R2�CCITT � Central European Implementation

	Index

