DediProg SF Software User Manual SF100, SF200, SF300

V5.7

DediProg Technology Co. LTD

4F., No.7, Ln. 143, Xinming Rd., Neihu Dist., Taipei City 114, Taiwan

Email for technical support: **support@dediprog.com**Email for Sale information: **sales@dediprog.com**

www.DediProg.com

May 10

Table of Content:

I.	Introduction	3
II.	Software Installation Guide	3
A.	Operating System Requirement	
В.	Installation Procedures	
III.	Dediprog SF Software Engineering GUI	7
A.	Prepare the Environment	
В.	Identify the Target SPI Flash	
C.	Tool Bar Description	
D.	Edit Window Description	10
E.	Configuration Window Description	
1	1. Batch Operation Option	
2	2. Program Configurations	
	3. Engineering Mode	
	4. Modify Status Register	
	5. Miscellaneous Settings	
F.	Supported Devices, Software Version, Firmware Version	20
IV.	Dediprog SF Software Production GUI	21
A.	Main GUI	22
	1. Search and Select	
2	2. Batch Config	
3	3. Single Site programming	25
V.	Dediprog Window DOS Command Line	26
A.	Introduction	26
В.	How to Start	28
C.	Basic Usages	29
D.	Basic Switches	
E.	Optional Switches	
VI.	Standalone Mode (SF300)	32
A.	Project Preparation	32
В.	Stand Alone Mode	
C.	Standalone Programmer Operations	33
D.	SF300 Hardware Description	
	1. LCD Display	
2	2. Start Button	
3	3. Reset Counter Button	
	4. USB Connector	
-	5. DIP Socket	
	6. LED Display	
VII.	Revision History	34

Important Notice:

This document is provided as a guide line and must not be disclosed without consent of DediProg. However, no responsibility is assumed for errors that might appear.

DediProg reserves the right to make any changes to the product and/or the specification at any time without notice. No part of this document may be copied or reproduced in any form or by any means without prior written consent of DediProg.

I. Introduction

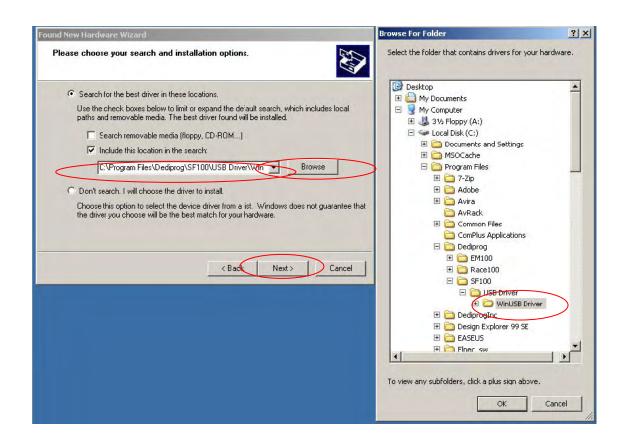
This user manual illustrates the usage of Dediprog SF Software. The device connected when using this software can be SF100, SF200, SF300 and Backup Boot Flash kit. To get more information on our DediProg products and how to use them, please refer to our products specification, presentation and Application notes in our web site: www.DediProg.com

II. Software Installation Guide

A. Operating System Requirement

Windows 7 Windows Server® 2008 Windows Vista® Windows XP Support both 32 bit or 64bit OS

B.Installation Procedures


- 1. Insert the installation CD or download the installation software from www.dediprog.com
- 2. Execute SFx.x.x.msi file and click next until the installation is finished.
- 3. After step 2, plug in the USB cable to your computer and Dediprog programmer, A Hardware wizard will show up as in Fig.1

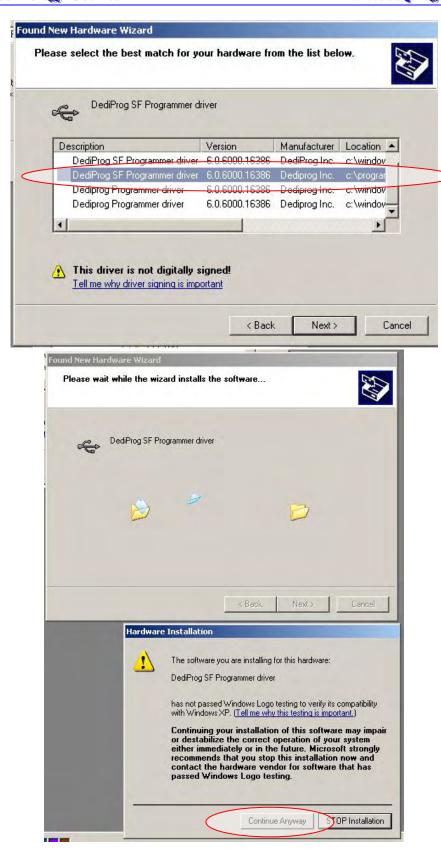
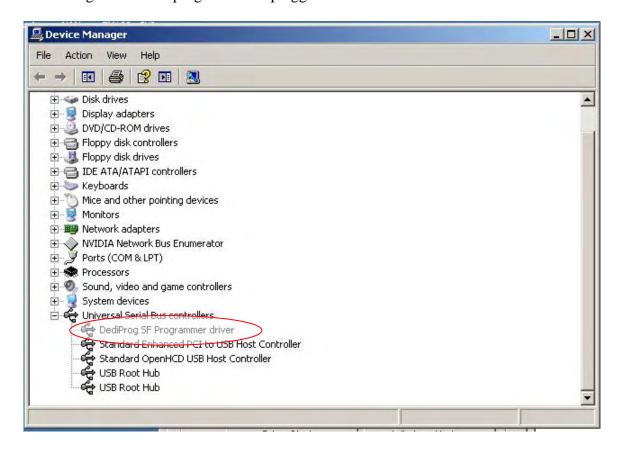


Fig. 1

Follow the steps showed in the snap shots below to complete the installation



If the USB driver is installed properly, users can find "Dediprog SF Programmer driver" under device manager when the programmer is plugged into the PC.

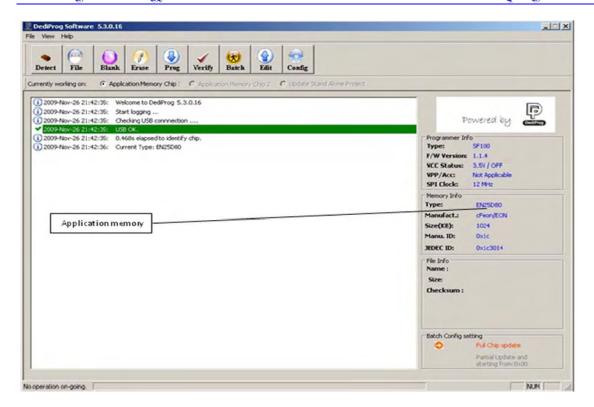
III. Dediprog SF Software Engineering GUI

Dediprog SF software is used together with SF100, SF200, SF300, or Backup Boot Flash Kit. The software can be used to program serial flash memory as well as the downloading configuration contents to the reference SPI Flash embedded in SF300 for standalone programming purpose. After the software and USB driver are installed, please follow the following steps before running the software.

After the software installation, there will be three software icons on your desktop. Icon "Dediprog Engineering" is for the engineering GUI, Icon "Dediprog Production" is for the production GUI, and Icon "DPCMD" is for the command line interface.

A. Prepare the Environment

- 1. Connect the programmer to the PC through a USB cable.
- 2. For SF100 and SF300, connect the ICP cable to the application (please check SF100 specification in case ISP header pin out are not known).
 - For SF200 and SF300, put the appropriate socket adaptor on the DIP socket located on the top of the programmer and insert a serial flash in the socket.
- 3. Double click on the Dediprog software icon on your desktop.

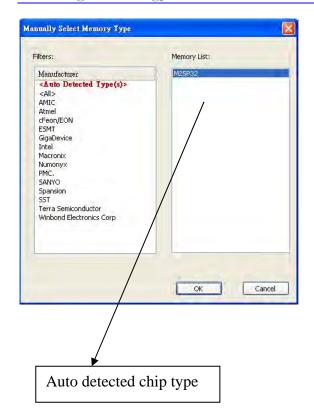


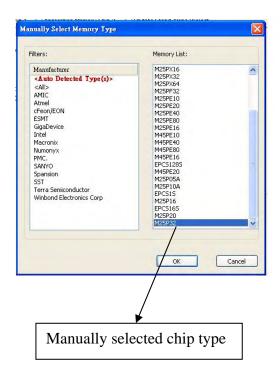
B.Identify the Target SPI Flash

SPI Flash Detection

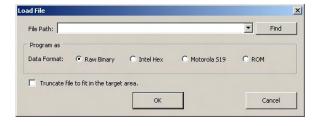
Double Click on the Dediprog software icon on your PC desktop. The detected Serial Flash information as well as the programmer information will be displayed on the right side of the window.

- The "chip1" button on the top left corner of the window is marked by default.
- If the user wants to work on the second target SPI Flash soldered on the application board, he/she has to select Chip2 (note: the board has to be designed with proper schematic and the pin out have to match with DediProg ISP pin outs).
- If the user wants to define a project to configure the SF300 in Stand Alone mode, he/she has to click the "Update the Stand Alone Project"


C. Tool Bar Description


The tool bar provides all SPI Flash operations.

Detect


Detect Chip: when a new SPI Flash is placed, user has to click on this button to identify it and perform operations. The auto detected chip types will be displayed on the right side of the screen. In case user would like to manually select a chip type, he/she can move the mouse over the chip manufacturer on the left screen and then click on the chip type on the right screen.

File

Select image: load the file you intend to program. The loaded file size cannot be larger the application SPI Flash size.

Blank

Blank check: check if the target serial flash is Blank (All Erased)

Erase

Erase SPI Flash: Erase the full content in a Serial Flash. After "Erase" the target serial flash shall be blank.

Prog

Program: Program the selected image into the Serial Flash

Verify

Verify the checksum value of the selected image and the programmed Serial Flash content

Batch

Batch operation: The programmer will perform a pre-configured set of operations such as (reload file + erase + program + verify) all together in one click. The configuration can be set by clicking on the "Config" button. The configuration will not be changed until it is reconfigured.

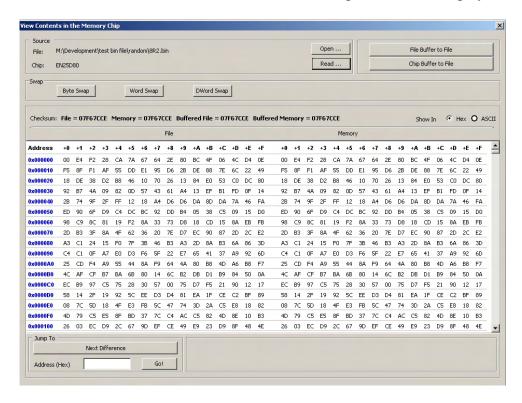
Edit

When click on Edit, the programmer will by default display the selected file content. User can click on "read" to read and display the chip contents. See "Edit window description" for more details.

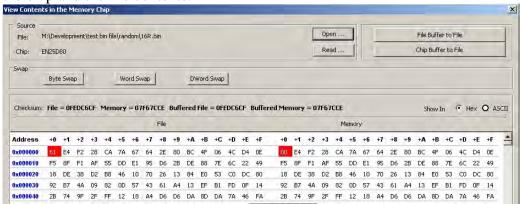
Config

This allows users to configure advanced settings.

See "advanced settings window description" for more details


D. Edit Window Description

SPI Flash content display:


In the edit window, file contents and chip contents can be displayed in the same time so that user can make the comparison. By default the selected file contents are displayed once the user enters into the edit window.

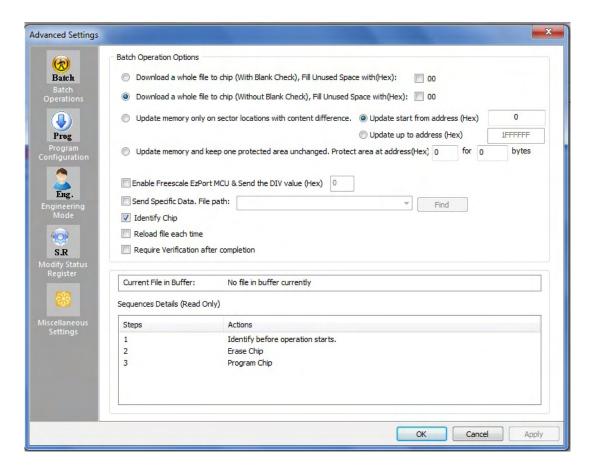
The user can click on "Open" if another file contents are to be shown.

The user can click on "Read" in order to read the chip contents are display them on the edit window as well. Checksum of file contents and chip contents are displayed.

The difference between file contents and chip contents are highlighted with the "Red Fonts". User can click on the "next difference" button to search for the next different content between the chip and the file contents.

Chip buffer to file

This will save the chip contents into a user named binary file.


File buffer to file

File buffer can be modified in real time. This button will save the file buffer contents into a user named binary file.

E. Configuration Window Description

This feature allows users to configure advanced settings.

1. Batch Operation Option

1. Update a Whole file with Blank check

When the user clicks on Batch button, the following operations will be automatically executed:

- 1) Read the memory content
- 2) Blank check (check if Chip is erased)
- 3) Erase the whole memory if not blank
- 4) Program the whole memory with the file
- 5) Verify if the memory content is identical with the programmed file.

2. Update a Whole file without Blank check

When the user clicks on Batch button, the following operations will be automatically executed:

- 1) Erase the whole memory
- 2) Program the whole memory with the file
- 3) Verify if the memory content is identical with the programmed file.

3. Update memory only on sector locations with contents difference or Smart update

User can select the sector locations to have the file programmed.

- <u>Update start from address (Hex):</u> To program a whole file starting from address 0 of a chip.
- <u>Update up to address (Hex):</u> To program a whole file, ending at the last address of a chip. The default ending address will automatically calculated by the software according to memory size.

When the user clicks on Batch button, the following operations will be automatically executed:

- 1) Read the memory content
- 2) Compare the memory content from the given address with the file at the 64KB sector base
- 3) Erase only the 64KB sectors with some differences
- 4) Program only the erased sectors with the file data of the corresponding address
- 5) Verify the data on the updated 64KB sectors

Smart Update can be used in the following cases:

- A small file can be programmed or updated at a given address without any change on the rest of the memory (local update).
- A file with only minor change compare to the memory content can be quickly updated. The sectors without difference are kept unchanged.

Remark: the file data which are identical with the target memory but with an address shift (after compilation) will be interpreted as different and will not benefit of the Smart update advantages.

4. Update memory and keep one protected area unchanged

When the user clicks on Batch button, the following operations will be automatically executed:

- 1) Read the memory content from the given address for the given length
- 2) Insert the read memory contents into the file buffer
- 3) Erase the whole chip
- 4) Program the whole chip with the updated file in step 2
- 5) Verify the programmed data

5. Enable Freescale EzPort MCU & Send the DIV value (Hex)

If the box is checked, the programmer will automatically enable EzPort. Details please see the « EzPort Support »PDF file on CD-ROM or browse 'Other Documents' on http://www.dediprog.com/framework.php?UID=154

6. Send Specific Data

If the box is checked, the software will load and send the engineering SPI sequence defined and saved in the "Engineering Mode" Configuration window. This option allows user to create his/her own SPI instruction.

7. **Identify Chip**

If the box is checked, the software will identify before operation starts.

8. Reload file each time

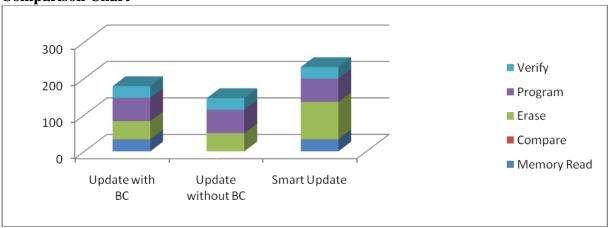
If the box is checked, the software will load the same file from the source destination each time before the batch operations (refresh). This option is helpful when another software update the file in parallel (like compiler).

9. Require Verification after completion

If this box is checked, the software will verify the contents between the source file and the programmed Serial Flash contents after the batch operations.

Methods Comparison:

Case 1: 64Mb Serial flash update with 64Mb file totally different. Memory has been previously programmed and need to be totally erased.

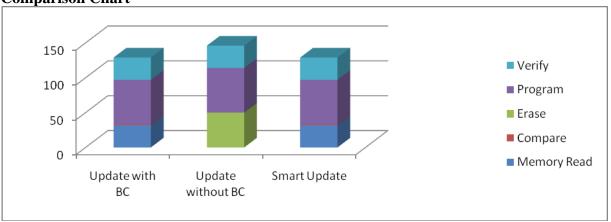

Chip Erase: 50sec

Sector Erase (64KB): 0.8sec

Chip: 128 sectors

	Update with BC	Update without BC	Smart Update
Memory Read	32 sec	none	32 sec
Compare	1 sec	none	1 sec
Erase	50 sec	50 sec	100 sec
Program	64 sec	64 sec	64 sec
Verify	32 sec	32 sec	32 sec
TOTAL	179 seconds	146 seconds	229 seconds

Comparison Chart


Conclusion: If the memory needs to be completely Erased for a file update, the "Update without Blank Check" is the optimum choice.

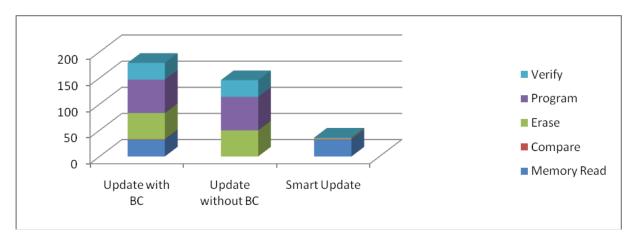
Time Saving: 20%

Case 2: 64Mb Serial flash programming with a 64Mb file. Memory has never been programmed (from supplier).

	Update with BC	Update without BC	Smart Update
Memory Read	32 sec	none	32 sec
Compare	1 sec	none	1 sec
Erase	0 sec	50 sec	0 sec
Program	64 sec	64 sec	64 sec
Verify	32 sec	32 sec	32 sec
TOTAL	129 seconds	146 seconds	129 seconds

Comparison Chart

Conclusion: If the memory is blank (from supplier), the "Update with Blank Check" or "Smart update" is the optimum choice.

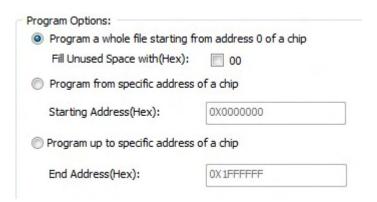

Time Saving: 12%

Case 3: 64Mb Serial flash update with a 64Mb file with only data differences on 2 sectors or a small file of 2 sectors size only at a specified address.

Sector Erase: 0.8 sec Sector Programming: 0.5 sec Sector Verify: 0.25 sec

	Update with BC	Update without BC	Smart Update
Memory Read	32 sec	none	32 sec
Compare	1 sec	none	1 sec
Erase	50 sec	50 sec	1.6 sec
Program	64 sec	64 sec	1 sec
Verify	32 sec	32 sec	0.5 sec
TOTAL	179 seconds	146 seconds	36 seconds

Comparison Chart


Conclusion: If the difference between the memory content and file are small or if the file to be programmed is small, the "Smart update" is the optimum choice.

Time Saving: 75%

2. Program Configurations

- 1. Program a whole file starting from address 0 of a chip
- 2. Program from specific address of a chip: To program a whole file starting from address 0 of a chip.
- 3. Program up to specific address of a chip: To program a whole file, ending at the last address of a chip. The default ending address will automatically calculated by the software according to memory size.

If the file is smaller than the target Serial Flash, user can define how to fill the rest of the SPI Flash. By default FFh or 00h if selected in the interface.

3. Engineering Mode

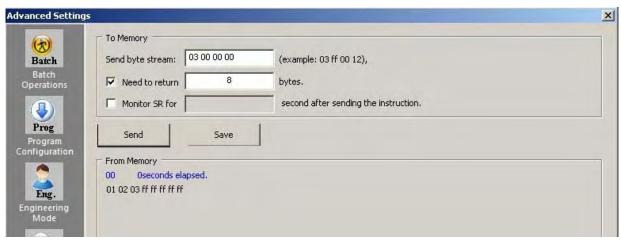
This function allows users to define their own SPI command and send it directly to the target SPI flash. This option is powerful as all the non standard SPI commands can be generated even if not supported by our programmer.

Users can define the data bytes to be sent from the programmer to the SPI Flash and the number of bytes to be returned. Users can also define if the status register WIP bit has to be polled to check if the SPI Flash is busy or ready.

Users can save the stream data for future use by click on the "Save" button.

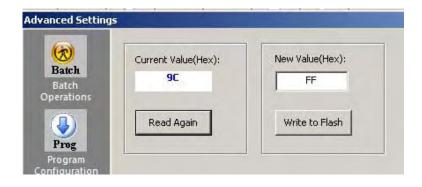
For example:

User wants to write "01 02 03" data bytes at the address "00 00 00" and verify.


First: programmer needs to set the WEL bit by sending the WREN (06h) command to the SPI Flash as described below:

Secondly: programmer needs to send the programming instruction "02h" followed by the address "00 00 00" and the data "01 02 03" and monitor the Status register WIP bit as described below:

Third: The programmer need to verify the SPI Flash content by sending the Read instruction "03h" and the address "00 00 00" then read the return bytes from the SPI Flash (we read 8 bytes in the following example):


The return bytes from the SPI Flash are displayed in the "from SPI Flash" window: "01 02 03 FF FF FF FF FF".

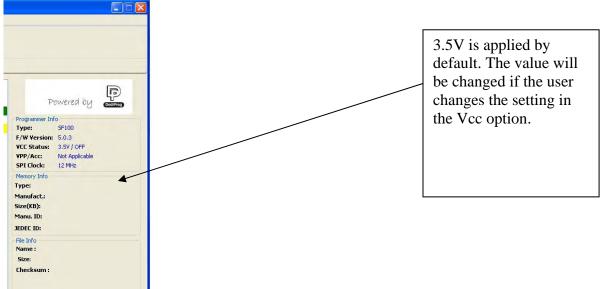
The engineering mode can be used to send any instruction to the SPI Flash.


4. Modify Status Register

This function allows users to modify or read the status register value of the target serial flash. The instructions used are:

- For write: "06h" to set the Write Enable and "01h" and user data" to write the status register
- For Read: "05h" to read the status register

5. Miscellaneous Settings

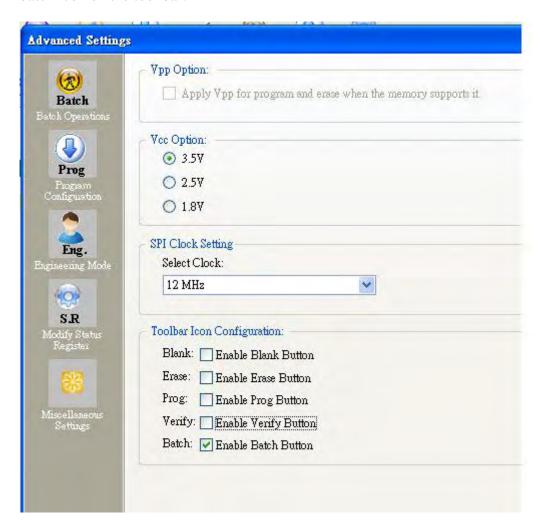

a) Vpp Option

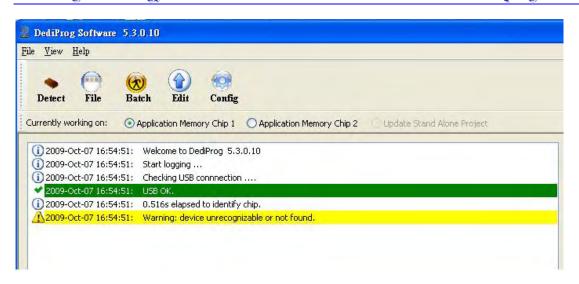
This setting allows user to enable the Vpp option so the High voltage is applied on the SPI Flash Wp pin to reduce the programming and erasing time.

This option can only be enabled on Serial Flash supporting the Vpp feature.

b) Vcc Option

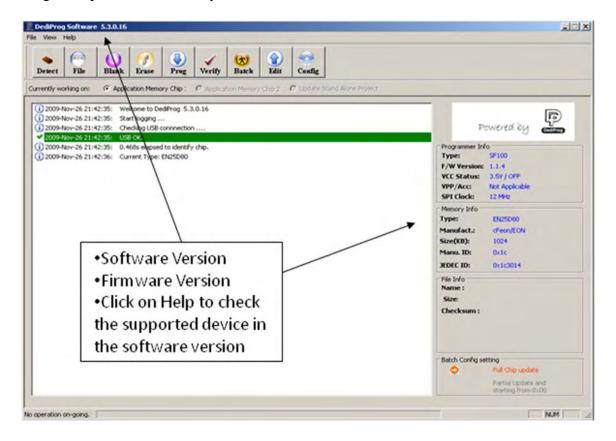
SF100/SF200/SF300 supports 3.5V, 2.5V, and 1.8V Vcc. Default of 3.5V Vcc is applied after the software installation. User is able to change the Vcc configuration here and the Vcc setting will be changed and saved until next modification.


c) SPI Clock Setting


The SPI clock frequency can be adjusted by user to fit the application requirements or SPI Flash performance. Notice that the SPI Flash frequency is defined in the supplier specification for a maximum capacitance usually of 30pf or 15pF max. The application is therefore designed to not exceed this maximum capacitance. In circuit programming does not fulfill anymore this original design as additional capacitance will be added according to the cable length and programmer. Therefore, user cannot expect to program the on board SPI flash according to the maximum frequency of the datasheet as the SPI flash will not be able to drive such capacitance at such high frequency.

In order to comply with the different capacitance and SPI flash driving capability, DediProg provides frequency adjustment of the programmer. Frequency needs to be reduced if the data timings do not comply with the specification.

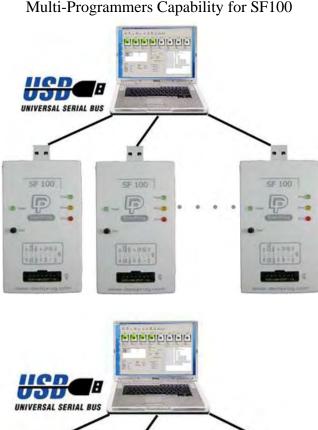
d) Tool Bar ICON Configuration


Users can hide some tool bar icons if they unselect the icon items in the "tool bar icon configuration setting". For example, if the engineer only wants the operators to use batch icon, he/she can leaves only batch icon selected and save the setting. The operators will only see the batch icon on the tool bar.

F. Supported Devices, Software Version, Firmware Version

User can check the Serial flash support list in our web site. This support list is valid for the last software and firmware so user will have to check the current software and firmware version he is using and update it if necessary.

Important: The first digit of the firmware is the Hardware version.


Your hardware must be updated with only new firmware having the same first digit.

IV. Dediprog SF Software Production GUI

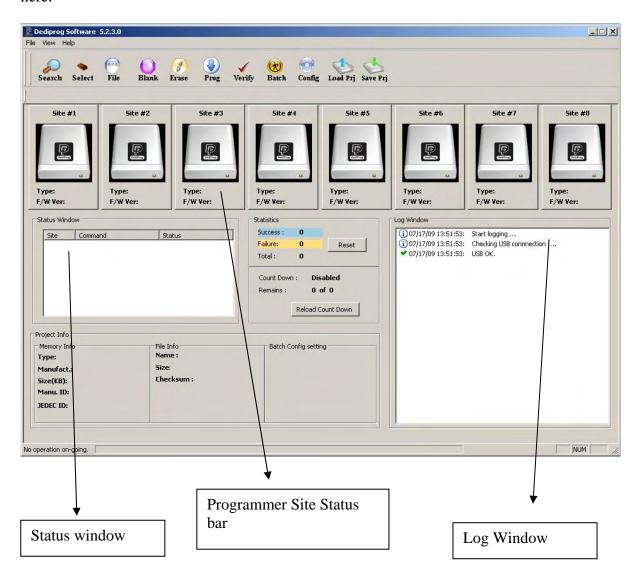
Dediprog SF software production GUI is only available after the software version 5.x.x. The production GUI allows users to plug in and operate multiple SF100/SF200/SF300 in the same time.

The new 5.x.x software will remove the old USB driver when it detects such driver during the installation. New USB driver is required in order to run the 5.x.x software and the driver will come together with the 5.x.x software CD ROM or it can be downloaded from Dediprog website.

In order to run more then one SF100/SF200/SF300 in the same time reliably, USB hub with individual power supply is highly recommended.

Multi-Programmers Capability for SF100

Multi-Programmers Capability for SF200


May 10 21

A. Main GUI

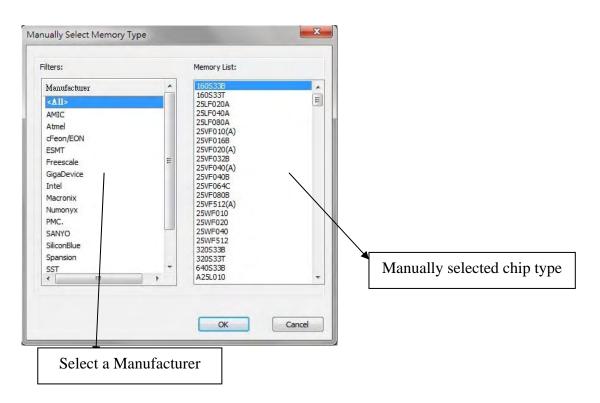
In order to run production GUI, USB plug in of all the intended programmers is required prior to opening the software. It is not recommended to add (plug in) or reduce (unplug) any number of programmers when the software is already opened.

The production software does not provide auto chip detect feature and therefore "programmer search" and "chip select" are required prior to any other operations.

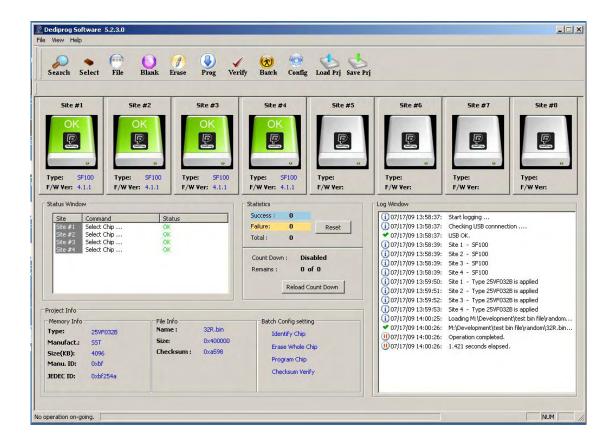
The production GUI manual will only illustrate the items not covered by the engineering GUI. Therefore function explanations such as Program, Erase, Blank check, etc will not be repeated here.

1. Search and Select

When click on "search", the software will detect all the connected SF100 by default. Users have option to search other programmer models if the plugged-in programmers are not SF100.

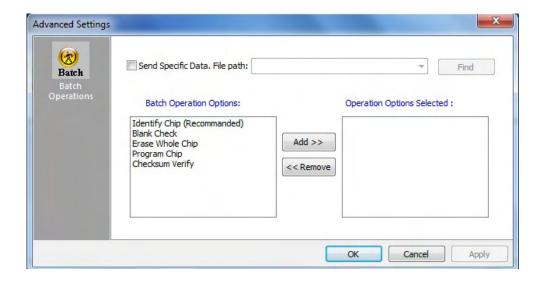

Search Programmer:

The found programmers will be listed along with site number. The site number is given by the Window OS randomly and therefore users can use the "blink" and "up" and "down" button to adjust the real sequence of the connected programmer. When click on "blink", the connected programmer will blink on its green LED once. Users can use this feature to locate the programmer associated with its site number. For programmers with firmware version after 5.x.x, Dediprog will write a serial number in the hardware before shipping out and the serial number will be displayed in the following screen snapshot.



Select Memory Type:

The production software does not provide auto chip detect feature users will need to select the target memory manually.


After the search step and the to-be-programmed chip is selected, the main GUI will have updated information on the Programmer SITE Status bar, the status window and the log window.

2. Batch Config

By clicking on the "config" icon, users can access to configure the batch setting. Users may click on the option "Send Specific Data" for sending the stream data before reading/writing the device. This customized SPI sequence can be created in the "engineering interface".

Users may click on the "Add" or "Remove" for Batch Operation Options directly.

3. Single Site programming

By click on the right mouse button after pointing to a specific Programmer Site number, users will have the access of programming options to the pointed programmer site.

V. Dediprog Window DOS Command Line

A. Introduction

The window command line has been designed to control our programmer from another software. This feature will be convenient to synchronize the two software in development (For example: program the memory automatically after the code has been compiled) or in production (for example: Program automatically the Serial Flash via the ICT tester after the hardware has been checked).

Command result "log.txt" file will be automatically saved under following folders: Windows XP:

C:\Documents and Settings\User\Application Data\DediProg\SF100

Windows Vista and Windows 7:

C:\Users\user\AppData\Roaming\DediProg\SF100

This .txt file has to be checked to make sure that the operation has been successful. Time stamp can also be checked to be sure that the result has been updated with a new value.

To get more information about these methods please contact DediProg.

Window DOS command

```
Basic Usages:
Dpcmd -uxxx
Dpcmd ∕uxxx
Dpcmd --auto=xxx
(space is not needed between the switches and parameters. E.g. dpcmd -ubio.bin)
Basic Switches(switches in this group are mutual exclusive):
 -? [ --help ]
                                show this help message
  --list
                                print supported chip list
 -d [ --detect ]
                                detect chip
                                blank check
 -b [ --blank ]
 -e [ --erase ]
                                erase entire chip
 -r [ --read l arg
                                read chip contents and save to a bin/hex/s19
                                file
                                - use STDOUT for the console.
 -p [ --prog l arg
                                program chip without erase
  -u [ --auto ] arg
                                automatically run the following sequence:
                                - check if the chip is blank or not;
                                - erase the entire chip(if not blank);
                                - program a whole file starting from address 0
 -s [ --sum ]
                                display chip content checksum
 -f [ --fsum l arg
                                display the file checksum
                                - needs to work with a file
                                issue raw serial flash instructions.
 --raw-instruction arg
                                - use spaces(" ") to delimite bytes.
                                - instructions must be enclosed in double
                                quotation marks("")
                                Example:
                                dpcmd --raw-instruction "03 FF 00 12"
  --raw-require-return arg <=0) decimal bytes of result to return in decimal
                                after issuing raw instructions.
                                - used along with --raw-instruction only.
                                dpcmd --raw-instruction "03 FF 00 12" --raw-reg
                                uire-return 1
Optional Switches that add fine-tune ability to Basic Switches:
 -a [ --addr ] arg
                          hexadecimal starting address hexadecimal(e.g.
                          - works with --prog/read/sum/auto only
                          - defaults to 0, if omitted.
                          hexadecimal length to read/program in bytes,
 -1 [ --length ] arg
                          - works with --prog/read/sum/auto only
                          - defaults to whole file if omitted
 -v [ --verify ]
                          verify checksum file and chip
                          - works with --prog/auto only
 -x [ --fill ] arg (=FF) fill spare space with an hex value(e.g.FF),
                          - works with --prog, --auto only
                          Specify a type to override auto detection
 --type arg
                          - use --list arguement to look up supported type.
                          hexadecimal starting address(e.g. 0x1000),
  --lock-start arg
                         - works with --prog/read/sum/auto only
```

```
- defaults to 0, if omitted.
  --lock-length arg
                          hexadecimal length of area that will be kept
                          unchanged while updating
                          - used along with --auto only.
  --blink arg
                          - 0 : Blink green LED 3 times from USB1 to USBn
                          (Default)
                             note: the sequence is assigned by OS during USB
                          plug-in
                          - 1: Blink the programmer connected to USB1 3 times.
                          - n: Blink the programmer connected to USBn 3 times.
                          (work with all Basic Switchs)
  --device arg
                          - 1: activate only the programmer connected to USB1
                          - n: activate only the programmer connected to USBn
                             note: if "--device" is not used, the command will
                          be executed on all connected programmer.
                          Fix programmer serial number with programmer
  --fix-device arg
                          sequence.
                          - instructions must be enclosed in double quotation
                          marks("")
                          Example:
                          dpcmd --fix-device "1 DP000001"
Miscellaneous options:
  -t [ --timeout ] arg (=300) Timeout value in seconds
  -g [ --target ] arg (=1)
                               Target Options
                               Available values:
                                   1, Chip 1(Default)
                                   2. Chip 2
                                   0, reference card
  --vcc arg (=0)
                               specify vcc
                                   0, 3.5V(Default)
                                   1, 2.50
                                   2, 1.80
                               - work with --prog and --erase.
                               apply vpp when the memory chip supports it
  --vpp
                               write operation result into file "%appdata% \dedip
  --log
                               rog\SF100\log.txt"
  -i [ --silent ]
                               supress the display of real-time timer counting

    used when integrating with 3rd-party tools(e.g.

  --spi-clk arg (=2)
                               specify SPI clock:
                                   2, 12 MHz(Default)
                                   0, 24 MHz
                                   1, 8 MHz
                                   3, 3 MHz
                                   4, 2.18 MHz
                                  5, 1.5 MHz
                                   6, 750 KHz
                                   7, 375 KHz
```

B. How to Start

Dediprog window dos command line software is executed by the file "dpcmd.exe." There are three different ways to run the dos command line.

- 1. Double click on the "dpcmd" icon on your desktop and type in dpcmd and enter.
- 2. Change your dos directory to the same location where "dpcmd.exe" is located. C:\program files\dediprog\SF100

3. Type in the following command to auto direct the dpcmd command to the "dpcmd.exe" location.

Set path=%path%;"c:\program files\dediprog\SF100"

C. Basic Usages

1. dpcmd -r"f:\file.bin",

reads the chip and save it into a file "file.bin"

2. dpcmd -rSTDOUT -a0x100 -l0x23,

reads 0x23 bytes starting from 0x100 and display it on the screen

3. dpcmd -ufile.bin,

erases and then program file.bin into the serial flash

4. dpcmd -pfile.bin -a0x100,

writes file.bin into the serial flash starting from address 0x100

5. dpcmd -pfile.bin -x0xaa,

programs file.bin into the serial flash and fill the rest area with 0xaa

Remarks: -a, -l only works with -p, -r, -s

Remarks: -x only works with -p

Remarks: space is not needed between the switches parameters. E.g. dpcmd -ubio.bin

D. Basic Switches

```
-? [ --help ]
                show the help message with examples
-d [ --detect ]
                detect chip
-b [ --blank ]
                blank check
-e [ --erase ]
                erase entire chip
-r [ --read ] arg read chip contents and save to a bin/hex/s19 or STDOUT to the console.
-p [ --prog ] arg program chip without erase
-u [ --auto ] arg automatically run the following sequence:
                      - check if the chip is blank or not);
                      - erase the entire chip (if not blank);
                      - program a whole file starting from address 0
                 display chip content checksum
-s [ --sum ]
-f [ --fsum ] arg display the file checksum(needs to work with a file)
                      issue raw serial flash instructions
--raw-instruction
                      Example:
                      dpcmd –raw-instruction "03 FF 00 12"
                                     decimal bytes of result to return in decimal after issuing
--raw-require-return arg <=0>
                                      raw instructions
                                      - use along with -raw-instruction only
                                      Example:
                                      dpcmd -raw-instruction "03 FF 00 12" -raw-require-
--list
                  print the supported chip list
```

E. Optional Switches

(specify the following switches to change default values):

-i [--silent] suppress the display of real-time timer counting, – used when integrating

with 3rd-party tool(e.g. IDE)

-v[--verify] arg verify the checksum of the file and the target chip

-x[--fill] arg fill the rest of the chip with an hex value, - works with --prog only

-a[--addr] arg starting address(e.g. 0x1000), - works with --prog, --read and --sum only

- defaults to 0, if omitted.

--type arg specify a type to override auto detection

- use --list argument to look up the supported type

--lock-start arg hexadecimal starting address(e.g. 0x1000),

- works with --prog/read/sum/auto only

- defaults to 0, if omitted.

--lock-length arg hexadecimal length of area that will be kept

unchanged while updating - used along with --auto only.

--blink arg

- 0 : Blink green LED 3 times from USB1 to USBn

(Default)

note: the sequence is assigned by OS during USB plug-in
- 1: Blink the programmer connected to USB1 3 times.

n: Blink the programmer connected to USBn 3 times.

- n: Blink the programmer connected to USBn 3 times.

--device arg (work with all Basic Switchs)

- 1: activate only the programmer connected to USB1
- n: activate only the programmer connected to USBn note: if "--device" is not used, the command will

be executed on all connected programmer.

--fix-device arg Fix programmer serial number with programmer sequence.

- instructions must be enclosed in double quotation marks("")

Example:

dpcmd --fix-device "1 DP000001"

Miscellaneous options:

--vcc arg (=0)

-t [--timeout] arg (=300) Timeout value in seconds

-g [--target] arg (=1) Target Options Available values:

1, Chip 1(Default)

2, Chip 2

0, reference card specify vcc 0, 3.5V(Default)

1, 2.5V 2, 1.8V

- work with --prog and --erase.

--vpp apply vpp when the memory chip supports it

--log write operation result into file "%appdata%\dedip rog\SF100\log.txt"

-i [--silent] supress the display of real-time timer counting - used when integrating with 3rd-party tools(e.g. IDE)

--spi-clk arg (=2) specify SPI clock:

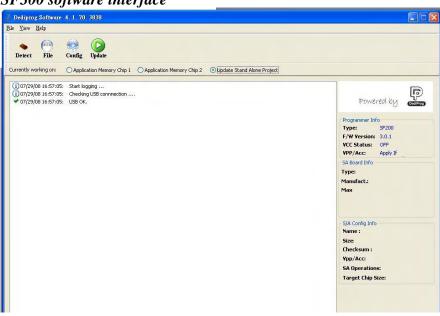
2, 12 MHz(Default)

0, 24 MHz 1, 8 MHz 3, 3 MHz 4, 2.18 MHz 5, 1.5 MHz 6, 750 KHz 7, 375 KHz

VI. Standalone Mode (SF300)

In addition to the functions provided by SF100 and SF200, SF300 further allow users to program serial flash memories in the standalone mode. SF300 embeds a 128Mb memory which allows users to pre-download the reference contents and configurations before performing the programming in standalone mode.

Standalone mode procedures:


- 1. Project preparation
- 2. Mode switch
- 3. Standalone programming

A. Project Preparation

In order to perform standalone programming, the contents and the programming operation procedures have to be pre-downloaded to the SF300 through the USB with the software provided by Dediprog. SF300 has embedded a 128Mb SPI Flash and therefore it is capable of supporting standalone programming for all serial flash equal and under 128Mb.

Prepare a standalone programming project

- 1. connect the SF300 to a PC with SF software installed and make sure the programmer is switched to USB mode
- 2. open the SF software and click on the "update standalone project" tab

SF300 software interface

- 3. Load the file
- 4. click on "Config" to select the target chip type and the standalone operation procedures
 - Erase + Program + Verify
 - Blank Check (Erase if no Blank) + Program + Verify
 - Program + Verify
- 5. click on "Update" to download the project information to the SF300

B. Stand Alone Mode

SF300 provides 2 operation modes through a button switch.

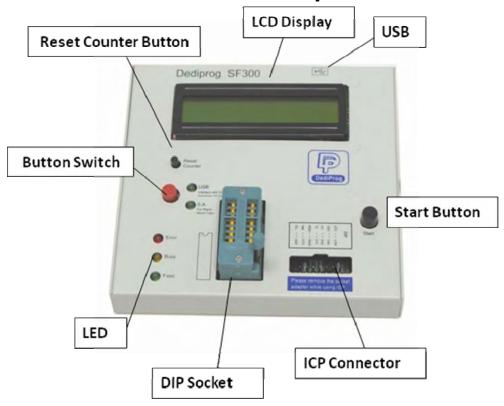
- USB mode: to control the programming via the computer tool
- Stand Alone mode: to work independently from computer

C. Standalone Programmer Operations

When the project is prepared in the SF300 internal Serial Flash and the mode is switched to SA mode, the user will see pass counter, fail counter and the target chip type on the LCD screen. The user can start the standalone programming by the following steps.

- 1. insert the target chip into the socket(or insert the ISP cable header to the target application header for standalone ISP)
- 2. press the start button
- 3. wait for the "PASS" LED ON and remove the chip from the socket

The LCD screen will display information on the programming on going: like pass/fail counter.


Error Handling

When there is programming error occurs, the Red LED will be on. The user can exit the error status by pressing the start button once and SF300 will increment the fail counter.

Reset Counter

By pressing the reset button, SF300 will reset both the pass counter and fail counter to zero.

D. SF300 Hardware Description

1. LCD Display

LCD displays the standalone project related information such as the file checksum, chip type, pass counter, and fail counter.

2. Start Button

By pressing the start button, the SF300 starts to execute the operation procedures defined in the project pre-downloaded to the SF300.

3. Reset Counter Button

The reset button is used to reset the counter information.

4. USB Connector

USB connector is used to communicate with the SF software during the USB mode or to provide the power during the standalone mode.

5. DIP Socket

DIP socket is used to connect to different socket adaptors provided by Dediprog in order to support all serial flash packages.

6. LED Display

Red Led: error

Orange Led: operation on going

Green Led: pass

VII. Revision History

Date	Version	Changes
2010/03/19	5.5	Added: Enable EzPort Function on Configuration; log.txt file available
		on Commend line; Blink/Device/Fix-Device on Dpcmd.
2010/04/14	5.6	Added: Update up to address option on Batch and Program
		Configuration operation options.
2010/05/10	5.7	Minor improvement

For more information please contact us or your motherboard suppliers.

We also recommend motherboard makers to enter in contact with our technical team to create a dedicated document that will take into consideration all your motherboard updating constraints and references. This documentation will then be very helpful to simplify the Bios update and avoid any mistake in the field.

Information furnished is believed to be accurate and reliable. However, DediProg assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. Specifications mentioned in this publication are subject to change without notice.

This publication supersedes and replaces all information previously supplied.

All rights reserved Printed in Taiwan.