
CS485G classnotes

Raphael Finkel

May 4, 2015

1 Intro

Lecture 1, 1/14/2015

1. Handout 1 — My names

2. Plagiarism — read aloud

3. E-mail list: cs485@cs.uky.edu

4. Labs: about five throughout the semester, typically on Fridays. The
first one is this Friday. Labs count toward your grade; you must do
them during the lab session.

5. Projects on web at https://www.cs.uky.edu/˜raphael/courses/
CS485.html. First project — Review of the C language

6. Accounts in MultiLab if you want; every student will have a virtual
machine as well, at name@name.netlab.uky, where name is your
LinkBlue account name.

7. Text: Randal E. Bryant and David R. O’Hallaron, Computer Systems:
A Programmer’s Perspective (2nd edition) – required.

2 Software tools

Implementation

Use (client)

Spec

Programmer

Compiler

Language

1

CS485G Spring 2015 2

3 Abstraction and reality

1. Most CS and CE courses emphasize abstraction; it matches how we
think, and it lets us hide implementation details and complexity.

2. But hardware has limits that our abstractions lack (maximum size of
an integer, for instance). If we hide implementation details, we are at
risk of inefficiency and inability to cooperate with other components.

3. Examples

(a) C int is not an integer: 50000*50000 = 2500000000, but the int
is -1794967296.

(b) C float is not real: 1e20 + 3.14 - 1e20 = 3.14, but the float result
is 0.0.

(c) Programming languages hide the instructions that are executed
(d) Layout in memory affects performance (caches, pages). Exam-

ple:

1 #define BIG 10000
2 void copyij(int src[BIG][BIG], int dst[BIG][BIG])
3 {
4 int row, col;
5 for (row = 0; row < BIG; row += 1) // reorder?
6 for (col = 0; col < BIG; col += 1) // reorder?
7 dst[row][col] = src[row][col];
8 }
9 int from[BIG*BIG], to[BIG*BIG];

10 copyij(from, to);

One experiment shows that in the order given, user time is 0.22
seconds; with interchanged order, user time is 1.13 seconds.

4. We no longer teach assembler-language programming, because com-
pilers are much better and more patient than assembler-language
programmers.

5. But you need to understand computation at the assembler level.

(a) When your program has a bug, high-level models can fail.
(b) To improve performance, you need to understand what opti-

mizations the compiler can and cannot do.
(c) When you write system software, what actually runs is machine

code.

CS485G Spring 2015 3

(d) Operating systems need to deal with the intricacies of machine
code as they manipulate processes (keeping track of floating
point registers, the program counter, memory mapping tables)

(e) Malware is often written in x86 assembler.

4 Memory-referencing bugs

1. C (and C++) are subject to memory-referencing bugs.

(a) Array references out of bounds. Example (the actual result is
architecture-specific; the results shown are on x86 64)

1 void fun(int index)
2 {
3 volatile double d[1] = {3.14};
4 volatile long int a[2];
5 a[index] = 9223372036854775803L; // index out of bounds?
6 printf("%lf\n", d[0]);
7 }
8 fun(0); // 3.14
9 fun(1); // 3.14

10 fun(-1); // 3.14
11 fun(-2); // 0.0
12 fun(2); // nan (not a number)
13 fun(-3); // 3.14
14 fun(3); // 3.14 followed by fault during the return

Reason: a and d are adjacent on the stack. When you go past the
end of a, you might modify d, or you might access saved state
on the stack, ruining the return address.

(b) Lecture 2, 1/16/2015 : lab 1

(c) Lecture 3, 1/21/2015
(d) Dereferencing invalid pointers
(e) Improper allocating and deallocating memory regions
(f) Unfortunately, the symptoms may be unrelated to the causes,

and the effect might be visible only long after it is generated.
(g) Some languages prevent such errors: Java, Ruby, Haskell, ML,

but they are not usually used for systems programming.

CS485G Spring 2015 4

(h) There are tools to help you detect referencing errors (such as
valgrind).

5 Binary representation

1. Bits are represented by two voltages, one for 0 and another for 1. A
typical representation would be .3V for 0 and 3.0V for 1, but every
architecture bases the values on the particular kind of transistors it
uses. When a voltage changes from one value to the other, there is
an intermediate time at which its value is indeterminate; hardware
carefully avoids inspecting the voltage then.

2. We usually think of numbers in decimal (base 10), but for systems
programming, we sometimes need to use binary (base 2) or hexadec-
imal (base 16) representation.

(a) Base 2 uses only digits 0 and 1. Represent, for instance, 5.25 as
101.012. Some numbers can be represented exactly in decimal
but not in binary: 5.3 = 101.0100110011...2.

(b) Base 16 uses digits 0 . . . 9,A,B,C,D,E,F. The letters are usually
written in capital letters. Each hex digit corresponds to four bits.
285.3 = 11D.4CCCCCCCC16 . . .

3. A byte is usually 8 bits. (The official name, used in computer
networks, is octet, but we’ll just say “byte”). When treated as
an unsigned integer, a byte has values ranging from 0 to 255 (or
111111112 = FF16).

4. Signed integers using n bits can store numbers in the
range −2n−1 . . . 2n−1 − 1. For n = 32, the range is
−2147483648 . . . 2147483647 or (−8000000016 . . . 7FFFFFFF16).

5. It’s pretty easy to see how many distinct values you can store in n
bits. Since every bit can be 0 or 1, there are 2n possibilities. Luckily,
210 ≈ 103, so 232 = 22 × 230 = 4 × (210)3 ≈ 4 × (103)3 = 4 × 109 = 4
billion. Or just remember that
210 = 1024 ≈ 103 = 1 thousand (kilo or K);
220 = 1048576 ≈ 106 = 1 million (mega or M);
230 = 1073741824 ≈ 109 = 1 billion (giga or G);
240 ≈ 1012 = 1 trillion (tera or T);
250 ≈ 1015 = 1 quadrillion (peta or P);
So 232 = 4G.

CS485G Spring 2015 5

6. What is the largest signed integer you can store in 16 bits? (Answer:
215 − 1 = 32767)

7. How many bits do you need to store 4893? It’s about 4 × 103, so
about 12 bits. (The right answer is 13 bits, but in a 2’s complement
representation, at least 14 bits.)

6 C types and their sizes

1. Unfortunately, C declarations are machine-specific. Here is the size
in bytes of various declarations.
C declaration x86 x86-64
char 1 1
short 2 2
int 4 4
long 4 8 !
long long 8 8
float 4 4
double 8 8
long double 12 16 !
pointer 4 8 !

7 Byte ordering

1. If a word has more than one byte, what is the order?

2. Example: 19088743 = 0123456716

3. Big-endian: Least significant byte has the highest address. (Sun,
PPC, Mac, Internet). The bytes, in order, are 0x01, 0x23, 0x45, 0x67.

4. Little-endian: Least significant byte has the lowest address. (x86).
The bytes, in order, are 0x67, 0x45, 0x23, 0x01.

5. You can use the od program to show a file in bytes, characters, inte-
gers, ...

6. Lecture 4, 1/23/2015 Lab 2

7. Lecture 5, 1/26/2015

CS485G Spring 2015 6

8. You can also use a program:

1 typedef unsigned char *pointer;
2 void show_bytes(pointer start, int len){
3 int i;
4 for (i = 0; i < len; i += 1) {
5 printf("%p\t0x%.2x\n",start+i, start[i]);
6 }
7 printf("\n");
8 }
9 int a = 15213;

10 printf("int a = %d;\n", a);
11 show_bytes((pointer) &a, sizeof(int));

The output is:

int a = 15213;
0x11ffffcb8 0x6d
0x11ffffcb9 0x3b
0x11ffffcba 0x00
0x11ffffcbb 0x00

8 Memory organization

1. We usually address memory in bytes, although older computers used
to measure in “words”, which could be of any length (PDP-10: 36 bits
per word).

2. When a program is running, we call it a process.

3. From a process’s point of view, memory looks like a long array, start-
ing at byte address 0 and going to some limit determined by the op-
erating system. (On Linux for x86, memory is limited to 3GB.)

4. The operating system creates a separate address space for each pro-
cess. We say that process address spaces are virtual, because when a
process refers to address n, it is very likely not at physical address n.

5. Because processes get individual address spaces, they cannot read or
write in each other’s address spaces, although the operating system
can also arrange for some sharing.

CS485G Spring 2015 7

6. The operating system allocates physical space, which also looks like
an array ranging from address 0 to a limit determined by how much
physical memory the machine has.

7. Within a process, the program uses memory for various purposes.
The compiler decides where in memory to put various items, includ-
ing the instructions, initialized data, uninitialized data, stack, and
heap.

8. A 32-bit architecture generally means that integers are contained in
32 bits, and that virtual addresses use 32 bits (unsigned). The max-
imum address is therefore 4G-1. That memory size is too small for
some applications.

9. A 64-bit architecture generally means that integers are contained in
64 bits, and that virtual addresses use 64 bits (unsigned). The max-
imum address is therefore about 1.8 × 1019. The x86 64 architecture
supports only 48-bit addresses, which gives 256TB.

10. Architectures generally support multiple data formats. So a 64-bit
architecture might be able to manipulate 8-bit, 16-bit, 32-bit, 64-bit,
and 128-bit integers.

9 Strings and Buffers

1. A C string is an array of bytes, each representing a single character,
terminated by a null (zero) byte.

2. Declaration

(a) char *myString;

(b) char myString[];

(c) char myString[200];

3. The representation is typically 7-bit ASCII.

4. Some representations, such as UTF-8, might use several bytes for a
single Unicode character. So the length of the array is not necessarily
the number of characters.

5. There is no need to worry about byte ordering; the start of the string
always has the lowest address in memory.

CS485G Spring 2015 8

6. A buffer is also an array of bytes, typically used to hold data sub-
ject to I/O. The bytes hold arbitrary binary values, not necessarily
printable values.

7. Declaration

(a) char *myBuffer;

(b) char myBuffer[];

(c) char myBuffer[4096];

8. Buffers are not null-terminated; you need a separate variable to re-
member how much data is in the buffer.

10 Boolean algebra

1. Lecture 6, 1/28/2015

2. Named after George Boole (1815–1864).

3. A computer’s circuitry uses pieces that accomplish Boolean func-
tions in order to build both combinatorial and sequential circuits.

4. We are familiar with the truth tables for and (in C: &), or (|), not (˜).
We might not be familiar with exclusive or (xor, ˆ).

5. When one operates on bytes (or larger chunks such as integers) with
Boolean functions, they are applied bitwise. Examples:

01101001 105
&01010101 85
========
01000001 65

6. Instead of interpreting 32 bits as an integer, we can interpret it as a
subset of {0, . . . , 31}. Each 1 bit represents a number in that range
that is in the set; every 0 bit represents a number that is not in the set.
So 1001 represents the set 0, 3. Then:

(a) & is intersection.
(b) | is union.
(c) ˆ is symmetric difference.
(d) ˜ is complement.

CS485G Spring 2015 9

7. One can use the Boolean operators in C and apply them to any inte-
gral data type: char, short, int, long, long long.

8. Don’t confuse these operators with logical operators &&, ||, and !.
In C, 0 is understood to mean false, and any other value is true. The
logical operators always return either 0 or 1. They use short-circuit
semantics.

11 Shifting operators

1. Left shift: x << y Left-shifts bits in x by y positions; new positions
on the right are filled with 0. Warning: In C (and Java), if y is equal
to or greater than the number of bits n in the type of x, the shift
distance is y mod n. So shifting a 32-bit integer by 34 bits only shifts
it 34 mod 32 = 2 bits.

2. Right shift: x >> y Right-shifts bits in x by y positions; new posi-
tions on the left are filled with the sign bit. The same warning ap-
plies.

12 Encoding integers

1. Given n bits, there are 2n possible integers.

2. In unsigned form, these range from 0 (represented as all 0 bits) to
2n − 1 (represented by all 1 bits).

3. In signed form, these range from −2n−1 to 2n−1 − 1.

(a) 0 is represented by all 0 bits.
(b) The most significant bit is 0 for positive numbers. The largest

positive number has n− 1 bits set, representing 2n−1 − 1.
(c) The most significant bit is 1 for negative numbers. The smallest

negative number has only that bit set, representing −2n−1.
(d) To negate a number (either a positive or negative one), invert all

the bits and add 1 to the result, ignoring overflow.
(e) 4-bit examples

i. 00002 = 0
ii. 01102 = 6

iii. 10102 = −6

CS485G Spring 2015 10

iv. 10002 = −8. Try to negate this number.
v. 01112 = 7.

vi. 10012 = −7.

13 Compilation and disassembly in Linux

1. Compiler for C: gcc. Compiler for C++: g++.

2. Command-line options are by Unix convention marked with -.
-o filename put the output of compilation in filename
-E Don’t compile; just run the preprocessor
-S Compile but don’t assemble; result is filename.s
-c Compile and assemble, but don’t link; result is filename.o
-g Add debugging information to the result.
-On Turn on optimization level n (from 0 to 3)

3. Tools to inspect compiled code

(a) objdump -d filename: disassembles filename
(b) gdb filename: runs the debugger on filename; can disassemble
(c) nm filename: shows location and type of identifiers in filename
(d) strings filename: shows all the ASCII strings in filename.
(e) od filename: displays filename in numeric or character format.
(f) ldd filename: tells what dynamic libraries filename uses.
(g) dissy filename: graphical tool to inspect filename. You can in-

stall dissy by using apt-get.

14 Machine basics

1. Lecture 7, 1/30/2015 Lab 3

2. Lecture 8, 2/2/2015

3. An architecture, also called an instruction-set architecture (ISA), is
the part of a processor design that you need to know to read/write
assembler code. It includes the instruction set and the characteristics
of registers. Examples: x86 (also called IA-32), IPF (also called IA-64:
Itanium), x86 64.

CS485G Spring 2015 11

4. The microarchitecture describes how the architecture is implemented.
It includes the sizes of caches and the frequency at which the ma-
chine operates. It is not important for programming in assembler.

5. Components of importance to the assembler programmer

(a) Program counter (PC): a register containing the address of the
next instruction. Called EIP (x86) or RIP (x86 64)

(b) Registers, used for heavily-accessed data, with names specific
to the architecture. The set of all registers is sometimes called
the register file.

(c) Condition codes store information about the most recent arith-
metic operation, such as “greater than zero”, useful for condi-
tional branch instructions.

(d) Memory, addressed by bytes, containing code (also called “text”
in Unix), data, and a stack (to support procedures).

15 Steps in converting C to object code

1. Say the code is in two files: p1.c and p2.c

2. To compile: gcc p1.c p2.c -o p, which puts the compiled pro-
gram in a file called p.

3. The gcc compiler first creates assembler files (stored in /tmp, but
we can imagine they are called p1.s and p2.s).

4. It then runs the as assembler on those files, creating p1.o and p2.o.

5. It then runs the ld linker to combine those files with libraries (pri-
marily the C library libc) to create an executable file p. Libraries
provide code for malloc, printf, and others.

6. Some libraries are dynamically linked when the program starts to ex-
ecute, saving space in the executable file and allowing the operating
system to share code among processes.

7. Sample code:

1 int sum(int x, int y)
2 {
3 int t = x+y;
4 return t;
5 }

CS485G Spring 2015 12

8. Generated x86 assembler (using -O1)

sum:
movl 8(%esp),%eax
addl 4(%esp),%eax
ret

9. Interpretation: x is at 8(%ebp); y is at 4(%ebp); t is in register %eax.

10. Output of objdump:

080483ed <sum>:
80483ed: 8b 44 24 08 mov 0x8(%esp),%eax
80483f1: 03 44 24 04 add 0x4(%esp),%eax
80483f5: c3 ret

11. Same thing with gdb, using command “disassemble sum”:

0x080483ed <+0>: mov 0x8(%esp),%eax
0x080483f1 <+4>: add 0x4(%esp),%eax
0x080483f5 <+8>: ret

12. Same thing with gdb, using command “x/9xb sum”:

0x80483ed <sum>: 0x8b 0x44 0x24 0x08 0x03 0x44 0x24 0x04
0x80483f5 <sum+8>: 0xc3

13. One can even disassemble .EXE files (from Win32 complations) with
objdump

16 IA32 = x86 architecture

1. 32-bit architecture.

2. You can compile for it even on an x86 64 with the -m32 flag.

CS485G Spring 2015 13

3. Registers
32-bit 16-bit 8-bit original purpose
eax ax ah/al accumulator
ebx bx bh/bl base
ecx cx ch/cl counter
edx dx dh/dl data
esi source index
edi destination index
esp sp stack pointer
ebp bp base pointer

4. Moving data: mov1 source dest

5. Operand types

(a) Immediate: integer constant, such as $0x400 or $-533 The
actual constant is represented in 1, 2, or 4 bytes, depending on
size; the assembler chooses the right representation. The source
may be immediate, but not the destination.

(b) Register: any of the 8 integer registers, such as: %ecx (although
%esp and %ebp have special purposes). Either source or desti-
nation or both may be register.

(c) Lecture 9, 2/4/2015
(d) Memory: 4 bytes of memory whose first byte is addressed by

any register, such as (%eax) (note the parentheses). Either source
or destination, but not both, may be memory.

(e) Displacement: 4 bytes of memory whose first byte is addressed
by any register plus some constant, such as 8(%eax). Either
source or destination, but not both, may be memory or displace-
ment.

6. Example in C: Swap

1 void swap(int *xp, int *yp)
2 {
3 int t0 = *xp;
4 int t1 = *yp;
5 *xp = t1;
6 *yp = t0;
7 }

7. Same thing in assembler

CS485G Spring 2015 14

pushl %ebp # save base pointer
movl %esp,%ebp # new base pointer
pushl %ebx # save old contents of %ebx
movl 8(%ebp), %edx # edx = xp
movl 12(%ebp), %ecx # ecx = yp
movl (%edx), %ebx # ebx = *t0 = *xp
movl (%ecx), %eax # eax = *t1 = *yp
movl %eax, (%edx) # *xp = t1
movl %ebx, (%ecx) # *yp = t0
popl %ebx # restore %ebx
popl %ebp # restore %ebp
ret # return

17 More complex memory-addressing modes

(a) We saw memory and displacement.
(b) This is the most general form: D(Rb,Ri,S)

i. D is the displacement, in bytes, such as 1, 2, 80.
ii. Rb is the base register: any of the 8 integer registers.

iii. Ri is the index register, any register by %esp, and you most
likely don’t want to use %ebp, either

iv. S is a scale, which is any of 1, 2, 4, or 8.

(c) The value it references is Mem[Reg[Rb]+S*Reg[Ri]+D].
(d) Example

i. %edx: 0xf000
ii. %ecx: 0x0100

iii. 0x8(%edx): 0xf000 + 0x8 = 0xf008
iv. (%edx,%ecx): 0xf000 + 0x0100 = 0xf100
v. (%edx,%ecx,4): 0xf000 + 4*0x0100 = 0xf400

vi. 0x80(,%edx,2): 2*0xf000 + 0x80 = 0x1e080

18 Address computation without referencing

(a) One can compute an address and save it without actually refer-
encing it.

(b) leal src, dest

CS485G Spring 2015 15

(c) Load Effective Address of src and put it in dest.
(d) Purpose: translate p = &x[i]

(e) Purpose: compute arithmetic expressions like x+k*y where k is
1, 2, 4, or 8.

i. Example: x*12
ii. leal (%eax,%eax,2), %eax # x = x+2x

sall $2, %eax # x = x << 2

19 Arithmetic operations

1. Two-operand instructions
instruction meaning
addl dest = dest + src
subl dest = dest − src
imull dest = dest × src
sall dest = dest << src
sarl dest = dest >> src (arithmetic)
shrl dest = dest >> src (logical)
xorl dest = dest ⊕ src (bitwise)
andl dest = dest ∧ src (bitwise)
orl dest = dest ∨ src (bitwise)

2. Lecture 10, 2/6/2015

3. Be careful of parameter order for asymmetric operations.

4. There is no distinction between signed and unsigned integers.

5. One-operand instructions
instruction meaning
incl dest = dest + 1
decl dest = dest − 1
negl dest = −dest
notl dest = ¬ dest (bitwise)

6. Example

CS485G Spring 2015 16

1 int arith(int x, int y, int z)
2 {
3 int t1 = x+y;
4 int t2 = z+t1;
5 int t3 = x+4;
6 int t4 = y * 48;
7 int t5 = t3 + t4;
8 int rval = t2 * t5;
9 return rval;

10 }

7. Result of compilation

pushl %ebp # save base pointer
movl %esp,%ebp # new base pointer
movl 8(%ebp), %ecx # $c = x
movl 12(%ebp), %edx # $d = y
leal (%edx,%edx,2), %eax # $a = 3y
sall $4, %eax # $a = 48y [t4]
leal 4(%ecx,%eax), %eax # $a = x + 48y + 4 [t5]
addl %ecx, %edx # $d = x + y [t1]
addl 16(%ebp), %edx # $d = x + y + z [t2]
imull %edx, %eax # $a = (x+y+z)*(x+48y+4)
popl %ebp # restore base pointer
ret # return $a [rval]

8. Optimization converts multiple expressions to a single statement,
and a single expression might require multiple instructions.

9. The compiler generates the same code for (x+y+z)*(x+4+48*y).

10. Example

1 int logical(int x, int y)
2 {
3 int t1 = xˆy;
4 int t2 = t1 >> 17;
5 int mask = (1<<13) - 7; // 8185
6 int rval = t2 & mask;
7 return rval;
8 }

CS485G Spring 2015 17

11. Result of compilation

pushl %ebp # save base pointer
movl %esp,%ebp # new base pointer
movl 12(%ebp),%eax # $a = y
xorl 8(%ebp),%eax # $a = y ˆ x [t1]
sarl $17,%eax # $a = (y ˆ x) >> 17 [t2]
andl $8185,%eax # $a = t2 & mask [rval]
popl %ebp # retore base pointer
ret # return

20 Control based on condition codes

1. The four condition codes, each Boolean

(a) CF: Carry flag
(b) ZF: Zero flag
(c) SF: Sign flag
(d) OF: Overflow flag (for signed integers)

2. Arithmetic operations implicitly set these flags, but the lea instruc-
tion does not set them.

3. Example: addition t = a+ b

(a) sets CF if there is a carry from most significant bit
(b) sets ZF if the t is zero
(c) sets SF if the top bit of t is set (t < 0)
(d) sets OF if there is a two’s complement overflow:

(a > 0 ∧ b > 0 ∧ t < 0) ∨ (a < 0 ∧ b < 0 ∧ t > 0)

4. The compare instruction (cmpl b, a) also sets the flags; it’s like
computing a− b without modifying the destination.

(a) sets CF if there is a carry from most significant bit
(b) sets ZF if a = b

(c) sets SF if a− b < 0

(d) sets OF if there is a two’s complement overflow:
(a > 0 ∧ b < 0 ∧ (a− b) < 0) ∨ (a < 0 ∧ b > 0 ∧ (a− b) > 0)

CS485G Spring 2015 18

5. The test instruction (testl b, a) also sets the flags; it’s like com-
puting a&b without modifying the destination. Usually, one of the
two operands is a mask.

(a) sets ZF if a ∧ b = 0

(b) sets SF if a ∧ b < 0

6. Many instructions in the setXX dest family test the condition codes
and set the destination (a single byte) to 0 or 1 based on the result.
sete ZF Equal/Zero
setne ¬ZF Not Equal / Not Zero
sets SF Negative
setns ¬SF Nonnegative
setg ¬(SF⊕OF)∧¬ZF Greater (Signed)
setge ¬(SF⊕OF) Greater or Equal (Signed)
setl (SF⊕OF) Less (Signed)
setle (SF⊕OF)∨ZF Less or Equal (Signed)
seta ¬CF∧¬ZF Above (unsigned)
setb CF Below (unsigned)

7. Many instructions in the jXX dest family jump depending on the con-
dition codes.
jmp true Unconditional
je ZF Equal/Zero
jne ¬ZF Not Equal / Not Zero
js SF Negative
jns ¬SF Nonnegative
jg ¬(SF⊕OF)∧¬ZF Greater (Signed)
jge ¬(SF⊕OF) Greater or Equal (Signed)
jl (SF⊕OF) Less (Signed)
jle (SF⊕OF)∨ZF Less or Equal (Signed)
ja ¬CF∧¬ZF Above (unsigned)
jb CF Below (unsigned)

8. Lecture 11, 2/9/2015

9. Example

CS485G Spring 2015 19

1 int absdiff(int x, int y)
2 {
3 int result;
4 if (x > y) {
5 result = x-y;
6 } else {
7 result = y-x;
8 }
9 return result;

10 }

absdiff:
pushl %ebp # save base pointer
movl %esp,%ebp # new base pointer
movl 8(%ebp), %edx # d = x
movl 12(%ebp), %eax # a = y
cmpl %eax, %edx # x <> y ?
jle .L6 # jump if x <= y
subl %eax, %edx # x = x - y
movl %edx, %eax # a = x - y
jmp .L7 # jump

.L6:
subl %edx, %eax # a = y - x

.L7:
popl %ebp # restore %ebp
ret # return

10. Example:

1 int absDiff(int x, int y)
2 {
3 int result;
4 if (x <= y) goto elsepoint;
5 result = x-y;
6 goto exitpoint;
7 elsepoint:
8 result = y-x;
9 exitpoint:

10 return result;

CS485G Spring 2015 20

absDiff:
pushl %ebp # save base pointer
movl %esp,%ebp # new base pointer
movl 8(%ebp), %edx # d = x
movl 12(%ebp), %eax # a = y
cmpl %eax, %edx # x <> y?
jle .L6 # jump if x <= y
subl %eax, %edx # d = x - y
movl %edx, %eax # a = x - y
jmp .L7 # goto exitpoint

.L6: # elsepoint
subl %edx, %eax # a = y - x

.L7: # exitpoint
popl %ebp # restore %ebp
ret # return

11. C can sometimes use a single conditional expression to han-
dle such cases:

1 val = x>y ? x-y : y-x;

21 do while loops

1. C code to count how many 1’s in a parameter

1 int countOnes(unsigned x) {
2 int result = 0;
3 do {
4 result += x & 0x1;
5 x >>= 1;
6 } while (x);
7 return result;
8 }

2. Same thing, represented with goto

CS485G Spring 2015 21

1 int countOnes(unsigned x)
2 {
3 int result = 0;
4 loop:
5 result += x & 0x1;
6 x >>= 1;
7 if (x)
8 goto loop;
9 return result;

10 }

3. Partial assembler listing

movl 8(%esp),%edx # d = x
movl $0, %ecx # result = 0

.L2: # loop:
movl %edx, %eax # a = x
andl $1, %eax # a = x & 1
addl %eax, %ecx # result += x & 1
shrl $1, %edx # x >>= 1
jne .L2 # If !0, goto loop
movl %ecx, %eax # a = result

4. for loops are very similar

5. The compiler can generate better code by replacing the uncondi-
tional jump at the end of the loop with a conditional jump.

22 Procedures

1. Lecture 12, 2/11/2015

2. In order to handle recursion, languages are compiled to use a stack.

3. Each invocation of a procedure pushes a new frame on the stack.

4. When the procedure returns, the frame is popped and the space it
occupied is available for another procedure.

5. The frame contains storage private to this instance of the procedure.

(a) return address

CS485G Spring 2015 22

(b) parameters
(c) local variables
(d) temporary locations (that don’t fit in registers)

6. On the x86, the %epb register points to the start of the frame, and the
%esp register points to the current top of the stack.

7. The stack (for Unix, at least), grows downward.

(a) pushl src subtracts 4 from %esp and writes the operand at the
new address.

(b) popl dest puts (%esp) in the destination and then adds 4 to
%esp.

(c) call label pushes the return address and then jumps to the la-
bel. The return address is the address of the instruction after
the call.

(d) ret pops the return address and then jumps to it.

8. Example:

804854e: e8 3d 06 00 00 call 8048b90 <main>
8048553: 50 pushl %eax
...
8048591: c3 ret

when %esp %eip
before call 0x108 0x804854e
after call 0x104 0x8048b90
before return 0x104 0x8048591
after return 0x108 0x8048553

9. Linux C frame contents, starting at bottom (right after caller’s frame)

(a) return address (placed by call)
(b) old %ebp

(c) saved registers and local variables
(d) parameters for the next call (“argument build”), last parameter

first
(e) %esp points to the last parameter.

10. Lecture 13, 2/13/2015

CS485G Spring 2015 23

11. Linkage at the calling point for swap(&course1, &course2);

subl $8,%esp # make room for two parameters
movl $course2, 4%esp) # parameter 2
movl $course1, (%esp) # parameter 1
call swap # call

12. When a procedure is called, after the procedure pushes %ebp, the
following values apply.
location meaning
0(%esp) old %ebp
4(%esp) return address
8(%esp) first parameter
12(%esp) second parameter

13. If a local register, such as %ebx, has then been pushed, the %esp
register is not as good a base as the %ebp register for accessing pa-
rameters.

23 Register-saving conventions

1. The compiler writer determines what registers are meant to survive
procedure calls (”non-volatile registers”) and which can be used for
temporary storage by the procedure (”volatile registers”).

2. This convention prevents one procedure call from corrupting an-
other’s data.

3. Say A (the caller) is calling B (the callee).

(a) If A has been using a volatile register, it must save it (on the
stack) before calling B, and pop it when B returns. This situation
is called caller save.

(b) If B needs to use a non-volatile register, it should save it (on the
stack) before doing its work and pop it before returning. This
situation is called callee save.

4. The convention that gcc follows for the x86:

(a) %eax, %ecx, %edx are volatile (caller-save) general-purpose reg-
isters.

CS485G Spring 2015 24

(b) %ebx, %esi, %edi are non-volatile (callee-save) general-purpose
registers.

(c) %esp and %ebp are non-volatile (callee-save) special-purpose
registers.

5. Example

1 int bitCount(unsigned x) {
2 if (x == 0)
3 return 0;
4 else
5 return (x & 1) + bitCount(x >> 1)
6 }

bitCount:
pushl %ebp # save %ebp (non-volatile)
movl %esp, %ebp # new %ebp
pushl %ebx # save b (non-volatile)
subl $4, %esp # room for p1
movl 8(%ebp), %ebx # b = x
movl $0, %eax # a = 0
testl %ebx, %ebx # x ==? 0
je .L3 # if (x==0) jump
movl %ebx, %eax # a = x
shrl %eax # a = x >> 1
movl %eax, (%esp) # p1 = x >> 1
call bitCount # a = bitCount(p1)
movl %ebx, %edx # d = x
andl $1, %edx # d = x & 1
leal (%edx,%eax), %eax # a = (x&1) + bitCount(p1)
.L3:
addl $4, %esp # remove p1
popl %ebx # restore b
popl %ebp # restore ebp
ret # return

24 Code for local variables, pointers

1. Lecture 14, 2/18/2015

CS485G Spring 2015 25

2. Example

1 int add3(int x) {
2 int localx = x;
3 incrk(&localx, 3);
4 return localx;
5 }
6 void incrk(int *ip, int k) {
7 *ip += k;
8 }

add3:
pushl %ebp # save old ebp
movl %esp, %ebp # new ebp
subl $24, %esp # allocate 24 bytes (6 "chunks")
movl 8(%ebp), %eax # a = x
movl %eax, -4(%ebp) # localx = x
movl $3, 4(%esp) # actual2 = 3
leal -4(%ebp), %eax # a = &localx
movl %eax, (%esp) # actual1 = &localx
call incrk # a = incrk(actual1, actual2)
movl -4(%ebp), %eax # a = localx
addl $24, %esp # deallocate 24 bytes
popl %ebp # restore ebp
ret # return

3. right before the call to incrk(), the stack has these “chunks”:

x at 8(%ebp)
return address to add3’s caller
old ebp at (%ebp)
localx at -4(%ebp)
unused
unused
unused
actual 2 at 4(esp)
actual 1 at (esp)

CS485G Spring 2015 26

25 x86 64 registers

1. Eight upgraded 64-bit registers, now with names starting with r in-
stead of e, such as %rax.

2. Eight new 64-bit registers, called %r8 . . . %r15.

3. To use only the lower bits of a register, append a suffix to the register
name.
suffix bits
b 8
w 16
d 32

4. Conventions

(a) The first 6 parameters are passed, in reverse order, in %rdi,
%rsi, %rdx, %rcx, %r8, and %r9.

(b) The remaining parameters are pushed on the stack in call order.
(c) non-volatile (callee-save) registers: %rbp, %rbx, %r12, %r13,

%r14, and %r15.
(d) Other registers are volatile (caller-save).

26 Data types

1. Integer

(a) Can be stored in general registers or in memory.
(b) Signed and unsigned work the same except for shift operations.
(c) Suffix on instructions indicates how many bits are affected

Intel C assembler bytes
byte char b 1
word short w 2
double word int l 4
quad word long int q 8 (x86 64)

2. Floating point

(a) Can be stored in floating-point registers or in memory.
Intel C assembler bytes
single float s 4
double double l 8 (x86 64)
extended long double t 10/12/16 (x86 64)

CS485G Spring 2015 27

27 Arrays

1. Lecture 15, 2/23/2015

2. C declaration: T myArray[L], where T is some type and L is the
number of elements (the first is number 0).

3. Contiguously allocated region of L× sizeof(T) bytes.

4. Examples
declaration length
char string[12] 12
int val[5] 20
double a[3] 24
char *p[3] 12 (on x86)
char *p[3] 24 (on x86 64)

5. C syntax, given int val[5]; stored starting at location x, contain-
ing 1, 2, 3, 4, 5.
expression type value
val[4] int 3
val int * x
val+1 int * x+4
&val[2] int * x+8
val[4] int 5
val[5] int garbage
*(val+1) int 2
val + i int * x+4i

6. Using the same type for several arrays

1 #define ZLEN 5
2 typedef int myArrayType[ZLEN];
3 myArrayType cmu = { 1, 5, 2, 1, 3 };
4 myArrayType mit = { 0, 2, 1, 3, 9 };
5 myArrayType uky = { 9, 4, 7, 2, 0 };

It’s possible, but not guaranteed, that the three arrays are consecutive
in memory.

7. Simple example: return uky[dig];

assume d = uky
assume a = dig
movl (%edx,%eax,4),%eax # a = uky[dig]

CS485G Spring 2015 28

8. Loop example

1 void zincr(myArrayType z) {
2 int i;
3 for (i = 0; i < ZLEN; i+=1)
4 z[i] += 1;
5 }

assume d = z
movl $0, %eax # a = 0

.L4: # loop:
addl $1, (%edx,%eax,4) # z[i] += 1
addl $1, %eax # i+=1
cmpl $5, %eax # i:5
jl .L4 # if < goto loop

28 Nested arrays

1.

1 #define PCOUNT 4
2 myArrayType pgh[PCOUNT] =
3 {{1, 5, 2, 0, 6 },
4 {1, 5, 2, 1, 3 },
5 {1, 5, 2, 1, 7 },
6 {1, 5, 2, 2, 1 }};

2. The values are placed contiguously from some location x to x +
4*PCOUNT*ZLEN - 1 = x + 79. This ordering is guaranteed.

3. pgh is an array of 4 elements.

4. Each of those elements is an array of 5 sub-elements.

5. Each of those sub-elements is an integer occupying 4 bytes.

6. Equivalent declaration: int pgh[PCOUNT][ZLEN];

7. C code: return pgh[index] (the return type is int *)

assume a = index
leal (%eax,%eax,4),%eax # a = 5 * index
leal pgh(,%eax,4),%eax # a = pgh + (20 * index)

CS485G Spring 2015 29

8. Lecture 16, 2/25/2015

9. General addressing case: T A[R][C]; defines a two-dimensional
array of type T with R rows and C columns. Say type T requires k
bytes. Then the location of A[i][j] is A+ kiR+ kj = A+ k(iR+ j).

10. Example:

1 int getElement(int n, int x[n][n], int i, int j) {
2 return a[i][j];
3 }

movl 8(%ebp), %eax # n (param 1)
sall $2, %eax # a = 4n
movl %eax, %edx # d = 4n
imull 16(%ebp), %edx # d = 4 n * i
movl 20(%ebp), %eax # a = j (param 4)
sall $2, %eax # a = 4j
addl 12(%ebp), %eax # a = x + 4j
movl (%eax,%edx), %eax # a = *(x + 4j + 4n*i)

11. Walking down a column can be optimized by computing the address
of the first element in the column, then repeatedly adding the stride
(the number of bytes per row).

29 Structures

1. A struct is a contiguously allocated region of memory with named
fields. Each field has its own type.

2. Example:

1 struct rec {
2 int y[3];
3 int i;
4 struct rec *n;
5 };

Memory layout of rec, starting at address x, is based on offsets:

y x
i x+12
n x+16
end x+20

CS485G Spring 2015 30

3. The compiler knows all the offsets.

30 Linked lists

1. Example:

1 void set_val(struct rec *r, int val) {
2 while (r) {
3 int i = r->i;
4 r->y[i] = val;
5 r = r->n;
6 }
7 }

assume d = r
assume c = val

.L17: # loop:
movl 12(%edx), %eax # a = r->i
movl %ecx, (%edx,%eax,4) # r->y[r->i] = val
movl 16(%edx), %edx # r = r->n
testl %edx, %edx # Test r
jne .L17 # If != 0 goto loop

31 Alignment

1. Example:

1 struct S1 {
2 char c;
3 int y[2];
4 double v; // uses 8 bytes
5 } *p;

2. The character c uses only 1 byte, so the array y starts at offset 1, and
v at offset 9.

3. But the x86 advises that n-byte primitive data should start at an ad-
dress divisible by n, that is, it should be aligned to such an address.

(a) 1 byte (char): any address

CS485G Spring 2015 31

(b) 2 bytes (short): address ends with 02
(c) 4 bytes (int, void *): address ends with 002
(d) 8 bytes (double): address ends with 0002 (Linux/x86 compilers

choose 002).
(e) 12 bytes (long double): Linux/x86 chooses 002.

4. The x86 64 is stricter

(a) 8 bytes (double, void *): address ends with 0002
(b) 16 bytes (long double): Linux/x86 chooses 0002.

5. On some machines alignment is mandatory.

6. Motivation

(a) The CPU accesses memory in chunks of 4 or 8 bytes (architecture-
dependent).

(b) It is inefficient to access a datum that crosses chunk boundaries.
(c) It is tricky to access a datum that crosses page boundaries (typ-

ically every 4KB).

7. The compiler can add padding to accomplish this requirement:

c x
pad x+1 (pad of 3 bytes)
y x+4
pad x+12 (pad of 4 bytes)
v x+16
end x+24

8. The compiler can also re-order the fields (biggest first, for instance)
to reduce the amount of padding.

9. The entire struct needs to be padded to a multiple of the largest
primitive data within the struct, so that arrays of such structs
work.

32 Midterm test 3/2/2015

33 Discussion of midterm test

1. Lecture 17, 3/4/2015

CS485G Spring 2015 32

34 Unions

1. Snow day: 3/6/2015

2. Lecture 18, 3/9/2015

3. A union type is like a struct, but the fields all start at offset 0, so
they overlap.

4. This method allows us to view the same data as different types.

5. It also lets us look at individual bytes of numeric types to see the
byte ordering.

6. Example:

1 union {
2 char c[8]; // 8*1 = 8 bytes
3 short s[4]; // 4*2 = 8 bytes
4 int i[2]; // 2*4 = 8 bytes
5 long l[1]; // 1*8 = 8 bytes (on i86_64)
6 float f[2]; // 2*4 = 8 bytes
7 } dw;
8 dw.f[0] = 3.1415;
9 printf("as float: %f; as integer: %d;\n"

10 "as two shorts: %d, %d\n",
11 dw.f[0], dw.i[0], dw.s[0], dw.s[1]);

Result:

as float: 3.141500; as integer: 1078529622;
as two shorts: 3670, 16457

35 Linux x86 memory layout

1. Simplified version of allocation of 4GB virtual space
start name purpose properties
0 unused prevent errors no access
0x08000000 text program read-only

data initialized data read, write; static size
bss uninitialized data read, write; static size
heap allocatable data read, write; grows up
stack activation records read, write; grows down

0xC0000000 kernel kernel code, shared no access

CS485G Spring 2015 33

2. The limit program shows per-process limitations; by default, for in-
stance, the stack is limited to 8MB.

36 Buffer overflow

1. Underlying problem: library functions do not check sizes of param-
eters, because C array types don’t specify length.

2. Lecture 19, 3/11/2015

3. Which functions: gets(), strcpy(), strcat(), scanf(), fscanf(),
sscanf().

4. Effect of overflowing a local array (on the stack): overwriting return
address.

(a) If the return is to an address not in text or stack space, causes a
segmentation fault.

(b) The return address can be to code on the stack that is part of the
overflowing buffer, leading to execution of arbitrary code.

5. Internet worm (November 1988): the fingerd program used gets()
to read a command-line parameter; by exploiting a buffer overflow,
the worm got fingerd to run a root shell with a TCP connection to the
attacker.

6. There are hundreds of other examples.

7. Avoiding vulnerability

(a) Use library routines that limit lengths: fgets(), strncpy(),
scanf(...%ns...).

(b) Randomized stack offsets: allocate a random amount of stack
space as the program starts. Then the attacker cannot guess the
start of the buffer, so it is harder to fake the return address to
jump into the buffer.

(c) Nonexecutable segments: On the x86, anything readable is ex-
ecutable, including the stack. On the x86 64, there is separate
executable permission.

(d) Stack canaries: put a canary value on stack just beyond each
buffer; check for corruption as part of linkage during return. In

CS485G Spring 2015 34

gcc, use -fstack-protector (adds code to evidently suspi-
cious routines) or -fstack-protector-all (adds code to all
routines)

8048654: 65 a1 14 00 00 00 mov %gs:0x14,%eax
804865a: 89 45 f8 mov %eax,0xfffffff8(%ebp)
804865d: 31 c0 xor %eax,%eax
...
8048672: 8b 45 f8 mov 0xfffffff8(%ebp),%eax
8048675: 65 33 05 14 00 00 00 xor %gs:0x14,%eax
804867c: 74 05 je 8048683 <echo+0x36>
804867e: e8 a9 fd ff ff call 804842c <FAIL>

8. Malware

(a) Worm: a program that can run by itself, propagates a fully work-
ing version to other computers.

(b) Virus: code that adds itself to other programs, but cannot run
independently.

37 Linking

1. Lecture 20, 3/13/2015

2. Basic idea: combine results of one or more independent compilations
with libraries.

3. The individual compiled results are called relocatable object files;
the Unix convention is that their names end “.o”.

4. Benefits

(a) The programmer can decompose work into small files, promot-
ing modularity.

(b) Experts (hah!) can program commonly used functions and place
them in libraries (C library, math library, ...).

(c) Changes to one file do not require recompiling the entire suite
of files.

(d) The linker can pick up only those functions that are used from
a library, so the entire library need not be part of the executable.

5. Symbol resolution

CS485G Spring 2015 35

(a) Programs define symbols and reference them:

1 void swap() {...} // exported global identifier
2 extern int myGlobal; // imported global identifier
3 int myGlobal; // also local, so exported, too
4 swap(&myGlobal, &myLocal); // reference identifiers

(b) The compiler uses an internal data structure called the symbol
table to keep track of all identifiers.

(c) The symbol table, indexed by the identifier, includes informa-
tion such as type, location, and global/local flag.

(d) The compiler includes the global symbols as part of the object
file it outputs.

(e) The object file marks any reference to an imported global as
“dangling”.

(f) The linker resolves dangling references by connecting them to
the proper identifier in another object file.

(g) The compiler has already resolved references to local symbols.
(h) It’s a link-time error if the linker discovers multiple possible res-

olutions.
(i) If desired, the linker then consults libraries to resolve any still-

dangling references by adding more object files.
(j) If the linker can resolve all dangling references, the result is an

executable file that the operating system can load and run.
(k) Otherwise, the result is an object file that can be used for further

linking steps.
(l) The early Unix convention was to call the executable file “a.out”;

now it usually has a name without an extension.

6. Shared object files

(a) If desired, the linker can store its result as a shared object file
(conventional extension “.so”), which the program can load
into memory dynamically (typically when the program starts)
in such a way that it is shared among all processes that need it.

(b) Libraries are usually shared object files.
(c) When the linker resolves a identifier by referring to a shared

object file, it leaves it dangling (but resolved); full resolution
happens when the shared object file is loaded into memory.

CS485G Spring 2015 36

(d) Windows calls shared object files Dynamic Link Libraries (DLLs).

7. Lecture 21, 3/23/2015

8. Relocation

(a) The linker combines the object files into a single file.
(b) All text segments are placed together; similarly for other seg-

ment types.
(c) The linker relocates global identifiers exported from each ob-

ject file to account for the space occupied by the identifiers in
previous object files in its list.

(d) The linker updates all references to relocated global identifiers.

38 Format for object files

1. Since about 1990, Unix variants have standardized to a single format
for object files: Executable and Linkable Format (ELF).

2. ELF format applies to relocatable object files, executable object files,
and shared object files; together, we call them ELF binaries.

3. Sections of an ELF file.

(a) header: word size, byte ordering, object-file type, architecture
(b) segment header table page size, segment sizes.
(c) code (.text section)
(d) read-only data, such as jump tables (.rodata section)
(e) initialized global variables (.data section)
(f) uninitialized global variables (.bss section): only length, no

content. “bss” stands for “block started by symbol”.
(g) symbol table (.symtab section), including procedures and static

variables, section names, each with location.
(h) text relocation table (.rel.text section): addresses in .text

that need to be modified for relocation and how to relocate them.
(i) data relocation table (.rel.data section): addresses in .data

that need to be modified for relocation and how to relocate them.
(j) debugging information (.debug section), produced, for instance,

with gcc -g.
(k) section header table: offsets and sizes of each section

CS485G Spring 2015 37

4. Global symbols: defined in this module, may be referenced by other
modules. In C: functions (except static) and file-global variables
(except static).

5. External symbols: global symbols referenced by this module but de-
fined in another module.

6. Local symbols: symbols defined and referenced only within this
module. In C: functions and file-global variables defined static.
The object file does not even name variables declared within func-
tions. extern.

39 Unix tools for object files

1. ar: creates static libraries

2. strings: lists printable strings in any file

3. strip: deletes symbol-table information from an object file, so it is
no longer linkable.

4. nm: list the symbol table of an object file

5. size: show the names and sizes of the sections of an object file

6. readelf: display the content of an object file

7. objdump: show the names and sizes of the sections of an object file

8. ldd: show the dynamically-linked libraries this object file needs

40 Resolving multiple definitions of the same sym-
bol

1. Strong symbols are procedures and initialized global variables.

2. Weak symbols are uninitialized global variables.

3. Multiple strong symbols are an error.

4. A single strong symbol is equated to all weak occurrences. This
choice can lead to errors if the variable is declared of different types
in different compilation units.

5. Multiple weak symbols are allowed; one is chosen. This choice is
also error-prone.

CS485G Spring 2015 38

6. Advice:

(a) Multiple compilation units should share global declarations via
a .h file.

(b) Use static if possible to prevent conflicts.
(c) Initialize global variables (to make them strong).
(d) Declare shared global variables extern.

41 Libraries

1. Lecture 22, 3/25/2015

2. C library (libc): about 4MB (static), 2MB (dynamic); about 1600
symbols; routines for I/O, memory allocation, signals, strings, ran-
dom numbers, integer mathematics.

3. Math library (libm): about 1MB; about 400 symbols; floating-point
math.

4. The linker only uses the symbols from the library that are unresolved
when it gets to that library in the command-line order, so libraries
should be listed at the end of the command line, and special libraries
(like libm) before general ones (like libc).

5. Shared libraries that are dynamically loaded reduce duplication in
executable object files and allow for quick incorporation of bug fixes.

6. Shared libraries are usually loaded into memory when a program
starts, but it is possible to load them later.

1 #include <dlfcn.h>
2 void *handle;
3 void (*addvec)(int *, int *, int *, int);
4 char *error;
5 handle = dlopen("./libvector.so", RTLD_LAZY);
6 // should verify handle != NULL
7 addvec = dlsym(handle, "addvec");
8 // should verify addvec != NULL
9 // may now invoke addvec()

10 dlclose(handle);; // should verify return value >= 0

CS485G Spring 2015 39

42 Interpositioning

1. Replace standard routine with a special one in order to monitor (for
example, to find memory leaks), profile (for improving efficiency),
add facility (like encryption), reduce facility (sandboxing).

2. At compile time: Build replacement, and use #define to force calls
to go to the replacement.

3. At link time: build replacement version wrap foo() that calls
real foo() when it needs it. Call the linker with --wrap,foo.

Gcc can pass this flag to the linker: -Wl,--wrap,foo. Then the
linker resolves calls to foo() as wrap foo() and calls to real foo()
as foo().

4. At load time: tell dynamic linker to resolve symbols by going first to
a special library. The dynamic linker uses the LD PRELOAD environ-
ment variable:

LD_PRELOAD="/usr/lib64/libdl.so ./mymalloc.so"
./myProg

43 Operating systems — Introduction

1. Lecture 23, 3/27/2015 Lab 5

2. Lecture 24, 3/30/2015

3. Goals

(a) abstract the hardware, hiding some features and providing new
ones.

(b) share resources among processes.

4. Layers

(a) Hardware, including instruction set, registers, memory, and de-
vices.

(b) OS kernel
(c) Applications (processes)

5. Kernel design alternatives

CS485G Spring 2015 40

(a) Monolithic: many functions, all linked together.
(b) Other: object-oriented, layered, dynamically loaded modules
(c) Linux: Mostly monolithic, written in C (and some assembler),

but with some object-based data structures, layers for utilities
such as memory management, and dynamically loaded mod-
ules, mostly for device control.

6. The kernel code runs only when

(a) A process requests assistance via a system call.
(b) A process executes an invalid instruction.
(c) A device generates an interrupt indicating it needs service.

7. The kernel executes in a privileged mode that lets it execute any
instruction, access any memory location, access any device.

8. Processes execute in user mode, which limits the instructions, mem-
ory access, and device access.

44 Exception handling

1. Hardware exceptions are of two types:

(a) interrupts are caused asynchronously by devices; examples are
clock interrupts and device-completion interrupts. Some are
unrecoverable, such as power fail.

(b) traps are caused by faults during executing an instruction, such
as division by zero or attempt to access memory in an invalid
way. They are also intentionally caused by processes in order to
invoke a system call.

2. When an exception occurs:

(a) The CPU saves the current state (at least the PC, usually other
information as well such as the current processor state) in a
standard place (often on the stack).

(b) The CPU changes to privileged mode.
(c) The CPU jumps to a standard location (based on the particular

exception, typically through a jump table called an interrupt
vector). That location is in the kernel.

CS485G Spring 2015 41

(d) When the kernel is ready to return from the exception:

i. The CPU changes to its previous mode (typically user mode)
and its previous location.

ii. The saved information is popped from the stack.

45 Example: opening a file in Linux x86

1. Lecture 25, 4/1/2015

2. In C, a program invokes open(filename, options).

3. The C library handles this function by executing an interrupt instruc-
tion: int $0x80.

4. The Linux kernel runs a procedure called sys open(). Any error it
encounters causes it to return a specific negative number indicating
the error, such as EFAULT.

(a) verify that the filename is in a valid location in memory.
(b) verify that the file exists.
(c) verify that the file permissions allow this process to open it in

th manner specified by the options.
(d) build a kernel data structure files struct.
(e) return the index of that structure within the kernel’s per-process

fd array.

5. The C library sees if the return value R is negative. If so, it stores R
in the global variable errno and returns –1. Otherwise, it returns R.

46 Example: Page fault

1. A program tries to access a memory address that is in its virtual
space but which is not currently available.

2. The MMU (memory management unit) notices the problem and gen-
erates a page fault.

3. The Linux kernel executes a procedure called fault(). It takes pos-
sibly complex action to make sure the memory address is available.

4. The kernel then returns to the same instruction that caused the fault.

CS485G Spring 2015 42

47 System calls invoked by C library routines

1. Many C library routines include system calls.

(a) printf() calls write() which executes a system call.
(b) malloc()might call sbrk() to increase the space for the heap.

48 Processes

1. A process is an instance of a running program.

2. Each process has its own virtual memory, which it can treat as its
own private domain.

3. Each process may treat the CPU as its own as well.

4. The kernel hides that fact that the processes are sharing both memory
and the CPU.

5. The kernel schedules the processes so that they each get a “fair”
share of the CPU.

(a) Each process can pretend that it has the full use of the CPU: disk
and I/O operations seem immediate, and other processes don’t
interfere.

(b) In fact, the kernel often stops running process A and starts run-
ning process B. This process switch involves a context switch
from A to the kernel, a scheduling decision, and then a context
switch from the kernel to B.

6. Lecture 26, 4/3/2015

7. The kernel arranges memory maps so that the MMU hardware can
redirect all memory accesses that each process makes.

8. The fork() system call asks the kernel to create a new process.

(a) Lab 4 showed this material.
(b) Say A submits the call.
(c) The kernel builds a new process B.
(d) B shares all of A’s code and has a new copy of all of A’s data and

stack. B’s program counter (PC) is identical to A’s.
(e) Therefore both A and B see a return from fork().

CS485G Spring 2015 43

(f) The only difference is the return value. For A, it is B’s process
identifier (PID). For B, it is 0.

9. The exit() system call terminates the calling process.

(a) The return value is the status. By convention, 0 means success,
and any other value is a failure code.

(b) The program can register a cleanup function to call at exit by
using atexit(); one may register many such functions.

10. The wait() system call reaps the terminated child, collecting its ter-
mination status and freeing its space in kernel data structures.

(a) Until the parent calls wait(), the child is a zombie.
(b) If the parent terminates before reaping its children, the init

process reaps them.
(c) Ordinary wait() blocks the parent until some child terminates;

waitpid() waits for a specific PID.
(d) wait() returns an integer that can be queried by WIFEXITED

and WEXITSTATUS, among other macros.

11. A process can completely reload itself to run a different program by
using one of the exec() family of calls, such as execl().

(a) The parameters to execXX() include a string indicating the file
holding the executable object file, a list of 0 or more parameters
to that program, and, optionally, an array of pointers to strings
indicating environment values of the form var=value.

(b) The initial stack, when main() is called, contains the (1) envi-
ronment strings, (2) the command-line parameters, (3) pointers
to 1, (4) pointers to 2, (5) a pointer to 3, (6) a pointer to 4, a count
of parameters.

49 Processes in Unix

1. Process 1 is always init.

(a) Starts login on each terminal.
(b) Starts daemons to do background work.
(c) Reaps all orphaned children when they exit.

CS485G Spring 2015 44

2. Lecture 27, 4/6/2015

3. login starts a shell for each logged-in user.

(a) sh: original shell, Stephen Bourne, 1977
(b) csh: BSD Unix C shell. tcsh: enhanced at CMU.
(c) bash: Bourne-again shell.
(d) ash: Almquist shell, 1997 dash: POSIX standard.

4. The shell runs a read-eval loop.

(a) Primarily it runs commands as processes (using fork() and
exec().

(b) It waits for commands to finish (using wait()), or not, if they
have been started in the background.

(c) A user has a limited number of processes (built-in limit com-
mand)

50 Signals

1. When a process terminates, the kernel sends its parent a software
interrupt.

2. Software interrupts are called signals.

3. There are about 30 possible signals, each with a different purpose.
see signal(7).

4. Each signal has its default action. For instance, SIGSEGV terminates
with a dump file; SIGCHLD (a child has stopped or terminated) is
ignored.

5. A process may explicitly send a signal to another process by the
kill(2) system call. The sending and target processes must be
owned by the same user, or the sending process must be owned by
root.

6. The /bin/kill command sends a given signal to a given target process
(or process group).

7. The user can send signals to processes by some keyboard methods:
ctrl-c sends SIGINT; ctrl-z sends SIGSTOP.

8. For most signals, a process can choose in advance what action to take
when receiving them, but using signal(2).

CS485G Spring 2015 45

(a) Terminate
(b) Ignore
(c) Terminate and create a dump file (called core).
(d) Temporarily stop the process.
(e) Continue the process from a temporary stop.
(f) Catch the signal by installing a procedure in the process called

a signal handler.
(g) Temporarily block the signal (the signal becomes pending; fur-

ther identical signals are ignored while it is pending).
(h) Unblock a pending signal

9. When a signal handler runs, the process is temporarily interrupted;
it resumes when the signal handler finishes.

1 #include <stdlib.h>
2 #include <stdio.h>
3 #include <signal.h>
4 void handler(int sig) {
5 safe_printf("You hit ctrl-c\n");
6 sleep(2);
7 safe_printf("Well...");
8 sleep(1);
9 printf("OK\n");

10 exit(0);
11 }
12 main() {
13 signal(SIGINT, handler); /* install handler */
14 while(1) { // busy loop
15 }
16 }

10. If an arriving signal interrupts a long system call (such as read()),
different versions of Unix have different behaviors when the signal
handler finishes: Continue the long system call (Linux), abort the
long system call with an EINTER error.

11. A function is async-signal-safe if all its variables are local (so it is
reentrant) or non-interruptible.

(a) Such functions may be called even from inside a handler.

CS485G Spring 2015 46

(b) The POSIX standard requires 117 functions, such as write(),
to be safe. But printf() is not safe.

51 Nonlocal jumps

1. Nonlocal jumps provide a powerful but dangerous method to trans-
fer control to an arbitrary location.

2. int setjmp(jmp buf jb): saves a “snapshot” in jmp buf. It
may return multiple times; the first time it returns 0.

3. The snapshot contains register information, including pc and sp.

4. void longjmp(jmp buf jb, int val): causes a return from
the associated setjmp, with val as the return value.

52 Files

1. Unix files are sequences of bytes. The kernel does not distinguish
files built for various purposes (text, data, object) when a process
reads or write them, no matter what the file name might be.

2. Even non-file abstractions are made to look like files to allow pro-
cesses to treat them in a consistent way.

(a) Even devices look like files. They have names like /dev/tty1
and /dev/sda2. Some are character special, like terminals.
Others are block special, like disks.

(b) The kernel memory can be seen as a file: /dev/kmem.
(c) Information about processes look like files: /proc/
(d) Directories are special, in that they are not read/written us-

ing read() and write(). Directories contain names of files,
building a hierarchical file arrangement.

(e) Pipes, used for inter-process communication, also look like files.
(f) A FIFO is like a pipe, but it has a name in the file system.
(g) A socket is used for cross-machine inter-process communica-

tion. Processes usually use recv() and send(), not read()
and write().

3. Basic I/O system calls. Always check the return value!

CS485G Spring 2015 47

(a) open() and close(): open() returns a file descriptor; the
kernel allocates and initializes a data structure. close() lets
the kernel deallocate the structure.

(b) read() and write()

1 #include <unistd.h> // defines ssize_t: signed integer
2 char buf[512];
3 int fd1, fd2;
4 ssize_t nbytes;
5 if ((fd1 = open("/etc/hosts", O_RDONLY) < 0)) {
6 perror("/etc/hosts");
7 exit(1);
8 }
9 if ((nbytes = read(fd1, buf, sizeof(buf))) < 0) {

10 perror("read");
11 exit(1);
12 }
13 if ((fd2 = creat("/tmp/hosts", 0664)) < 0)) {
14 perror("/tmp/hosts");
15 exit(1);
16 }
17 if ((nbytes = write(fd2, buf, nbytes) != nbytes) {
18 perror("write");
19 exit(1);
20 }

A value of nbytes less than sizeof(buf) is valid.
(c) lseek()

53 Sockets

1. Lecture 28, 4/8/2015

2. A socket is an abstraction that lets two processes communicate, even
if they are on different machines.

3. Setting up a socket is asymmetric; the client and the server do dif-
ferent things, after which both can read() and write().

4. Client

(a) socket() to create a local file descriptor (like “buy a phone”)

CS485G Spring 2015 48

(b) connect() to attach the socket to the server (like “call a num-
ber”).

5. Server

(a) socket() to create a local file descriptor (“buy a phone”).
(b) bind() to bind a name to the socket (“get a phone number”).
(c) listen() to wait for a client to connect (“plug in the phone”)
(d) accept() to create a file descriptor for this connection (“an-

swer the phone”)

6. The book provides some nicer routines that handle errors and com-
bine operations.

(a) Client: open clientfd() (combines socket() and connect())
(b) Server: open listenfd() (combines socket(), bind(), and

listen()), then accept()

7. Generic socket address structure (used for connect(), bind(), and
accept()

1 struct sockaddr {
2 unsigned short sa_family; /* protocol */
3 char sa_data[14]; /* address data */
4 };

8. Specific socket address structure for the internet

1 struct sockaddr_in {
2 unsigned short sin_family; /* AF_INET */
3 unsigned short sin_port; /* net order */
4 struct in_addr sin_addr; /* net order */
5 unsigned char sin_zero[8]; /* pad */
6 };

CS485G Spring 2015 49

9. Sample client for ”echo”

1 int client(int argc, char **argv) {
2 int toserverfd, port;
3 char *host, buf[MAXLINE];
4 rio_t rio;
5 if (argc != 3) {
6 fprintf(stderr, "Usage: %s host port\n", argv[0]);
7 exit(1);
8 }
9 host = argv[1]; port = atoi(argv[2]);

10 toserverfd = open_clientfd(host, port);
11 Rio_readinitb(&rio, toserverfd);
12 printf("type: "); fflush(stdout);
13 while (Fgets(buf, MAXLINE, stdin) != NULL) {
14 Rio_writen(toserverfd, buf, strlen(buf));
15 Rio_readlineb(&rio, buf, MAXLINE);
16 printf("echo: ");
17 Fputs(buf, stdout);
18 printf("type: "); fflush(stdout);
19 }
20 Close(toserverfd);
21 exit(0);
22 } // client

CS485G Spring 2015 50

10. Implementation of open clientfd

1 int open_clientfd(char *hostname, int port) {
2 int toserverfd;
3 struct hostent *serverHostEntry;
4 struct sockaddr_in serveraddr;
5 if ((toserverfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
6 return -1; /* check errno */
7 // AF_INET: internet; SOCK_STREAM: reliable; 0: normal
8 /* Fill in the server’s IP address and port */
9 if ((serverHostEntry = gethostbyname(hostname)) == NULL)

10 return -2; /* check h_errno for cause of error */
11 bzero((char *) &serveraddr, sizeof(serveraddr));
12 serveraddr.sin_family = AF_INET;
13 bcopy((char *)serverHostEntry->h_addr_list[0],
14 (char *)&serveraddr.sin_addr.s_addr, serverHostEntry->h_length);
15 serveraddr.sin_port = htons(port);
16
17 /* Establish a connection with the server */
18 if (connect(toserverfd, (SA *) &serveraddr, sizeof(serveraddr)) < 0)
19 return -1;
20 return toserverfd;
21 } // open_clientfd

CS485G Spring 2015 51

11. Sample server for ”echo”

1 int server(int argc, char **argv) {
2 int listenfd, connfd, listenPort;
3 struct sockaddr_in clientAddr;
4 struct hostent *clientHostEntry;
5 char *clientIP;
6 unsigned short clientPort;
7 listenPort = atoi(argv[1]);
8 listenfd = open_listenfd(listenPort);
9 while (1) {

10 socklen_t addrLength = sizeof(clientAddr);
11 connfd = Accept(listenfd, (SA *)&clientAddr, &addrLength);
12 if (connfd < 1) perror("accept error");
13 // the following is optional to get info on the client
14 clientHostEntry = Gethostbyaddr(
15 (const char *)&clientAddr.sin_addr.s_addr,
16 sizeof(clientAddr.sin_addr.s_addr),
17 AF_INET);
18 clientIP = inet_ntoa(clientAddr.sin_addr);
19 // net-to-ASCII string in dotted notation
20 clientPort = ntohs(clientAddr.sin_port);
21 printf("server connected to %s (%s) on my new clientPort %u\n",
22 clientHostEntry->h_name, clientIP, clientPort);
23 // end of optional part
24 echo(connfd);
25 Close(connfd);
26 } // while(1)
27 } // server

CS485G Spring 2015 52

12. Implementation of open listenfd

1 int open_listenfd(int port) {
2 int listenfd, optval=1;
3 struct sockaddr_in serveraddr;
4
5 /* Create a socket descriptor */
6 if ((listenfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
7 return -1;
8 // AF_INET: internet; SOCK_STREAM: reliable; 0: normal
9

10 /* Allow reuse of address */
11 if (setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR,
12 (const void *)&optval , sizeof(int)) < 0)
13 return -1;
14
15 /* let listenfd be an endpoint for all requests
16 to port on any IP address for this host */
17 bzero((char *) &serveraddr, sizeof(serveraddr));
18 serveraddr.sin_family = AF_INET;
19 serveraddr.sin_addr.s_addr = htonl(INADDR_ANY);
20 serveraddr.sin_port = htons((unsigned short)port);
21 if (bind(
22 listenfd,
23 (SA *)&serveraddr,
24 sizeof(serveraddr)) < 0)
25 return -1;
26
27 /* Ready listenfd to accept connection requests */
28 if (listen(listenfd, LISTENQ) < 0)
29 return -1;
30 return listenfd;
31 } // open_listenfd

54 More about files

1. Lecture 29, 4/13/2015

2. Short counts: when the amount of data read/written is not the size
of the buffer.

CS485G Spring 2015 53

(a) Read: reached the end of file, or the end of a line with fgets().
(b) Network sockets or pipes: read or write can give a short count.
(c) Never from writing files.
(d) The Rio (robust I/O) package from csapp.c handles short counts

and retries.

3. File metadata: data about the file, but not the contents.

(a) Maintained by the kernel in its data structures.
(b) A program can get some of it with stat() or fstat():

1 struct stat {
2 dev_t st_dev;

/* ID of device containing file */
3 ino_t st_ino;

/* inode number */
4 mode_t st_mode;

/* protection and file type */
5 nlink_t st_nlink;

/* number of hard links */
6 uid_t st_uid;

/* user ID of owner */
7 gid_t st_gid;

/* group ID of owner */
8 dev_t st_rdev;

/* device ID (if special file) */
9 off_t st_size;

/* total size, in bytes */
10 blksize_t st_blksize; /* blocksize for filesystem I/O */
11 blkcnt_t st_blocks;

/* number of 512B blocks allocated */
12 time_t st_atime;

/* time of last access */
13 time_t st_mtime;

/* time of last modification */
14 time_t st_ctime;

/* time of last status change */
15 };

4. Directories used to be just files with a special format, but now one
reads them with different system calls: opendir(), readdir(),

CS485G Spring 2015 54

closedir(). readdir() returns a struct dirent pointer, which
includes the name of the file.

5. Directories associate file names with inode numbers, which uniquely
index the on-disk metadata for each file.

(a) Multiple directories can point to the same inode, in which case
a single file might have multiple path names.

(b) The on-disk inode includes a count of how many directories
point to it.

(c) The ln command introduces such a link between two files.
(d) To remove a name from a directory, use the unlink() system

call.
(e) When the last reference to a file is removed, the kernel can re-

claim the file’s allocated space on the disk.

6. Each open file includes a file position indicator for each open file; it
is advanced by read() and write() and a program can modify it
with lseek().

7. Lecture 30, 4/15/2015

8. Multiple processes may have the same file open.

(a) If they opened the file independently, each has its own file po-
sition.

(b) If they received the file descriptor by inheritance, they share the
file position.

9. The standard I/O library (#include <stdio.h>) provides buffered
versions of input and output.

(a) Instead of file descriptors (small integers), it uses pointers to a
FILE structure.

(b) It predefines stdin, stdout, stderr.
(c) It only submits a system call when a buffer is full (output) or

empty (input) or if there is an explicit request to fflush().

10. Choosing which calls to use in the program (low-level, stdio, or Rio):

(a) low-level: most general, lowest overhead per call, can access
file metadata, async-signal-safe (so they can be used in signal
handlers). But dealing with short counts is tricky, and I/O is
unbuffered, leading to multiple system calls.

CS485G Spring 2015 55

(b) stdio: buffering increases efficiency, and short counts are han-
dled automatically. But no way to read metadata, not async-
signal-safe, not a good idea to use on sockets (there are some
poorly documented restrictions).

(c) Rio: intended for use on sockets.

11. Dealing with binary files (like images and object files)

(a) Don’t use line-oriented functions like fgets(), scanf(), printf(),
rio readlineb().

(b) Don’t use string-oriented functions like strlen(); data files
may contain null bytes.

55 Virtual memory

1. All memory reads and writes are implemented on two data linking
the CPU and memory.

(a) The data path is bidirectional, leading from the CPU through a
bus to the memory.

(b) The address path is unidirectional. It goes from the CPU through
a memory-management unit (MMU), which modifies the ad-
dress, then to the bus to the memory.

(c) The MMU uses tables to modify incoming (virtual) addresses to
outgoing (physical) addresses.

(d) The MMU generates a trap if the tables indicate the virtual ad-
dress is not mapped or the map does not give permission to
read/write/execute.

(e) The kernel sets up those tables, typically one for privileged mode
and one for unprivileged mode.

(f) Lecture 31, 4/17/2015
(g) Context switches don’t require reloading the tables.
(h) Process switches do require reloading the unprivileged-mode

table.
(i) The tables themselves are typically in memory, but the MMU

keeps a cache of recently-used entries; this cache is called a
translation look-aside buffer (TLB).

2. Advantages of virtual memory

CS485G Spring 2015 56

(a) Each process gets a uniform linear address space that does not
contain any addresses belonging to any other process or to the
kernel.

(b) The kernel can limit access to parts of that linear address space,
making some execute/read-only (the text), other parts modi-
fiable (data, stack), other parts inaccessible (gap between data
and stack).

(c) The kernel can let processes share read-only parts of their ad-
dress space to save space and loading time.

(d) It is not necessary for all the virtual memory of a process to be
in physical memory for it to run.

3. Cache view of memory

(a) The entire virtual address space of a process is on disk.
(b) The currently active part of the virtual address space is cached

in physical memory.
(c) The currently active part of physical memory is cached in L3,

L2, or L1 caches (closer to the CPU).
(d) The compiler attempts to keep the most heavily used informa-

tion in registers, which are in the CPU itself.

4. MMU tables

(a) Typically the table is a page table.
(b) Virtual memory is chunked into pages, typically 4KB long.
(c) Each page has an entry in the page table. If addresses are 32

bits long, and a page is 4KB (12 bits) wide, a page table has 220

entries. Each entry contains (x86):

i. Present/missing (1 bit)
ii. Page frame (20 bits, gives page frame number)

iii. Whether the page has been recently accessed (1 bit)
iv. Whether the page has been written and is dirty (1 bit)
v. Does the process have write permission to the page (1 bit)

vi. Does the CPU have access permission in non-privileged mode
(1 bit)

vii. Caching strategy (2 bits)
viii. Normal page size (4KB) or extended (4MB) (1 bit)

ix. TLB caching advice (1 bit)

CS485G Spring 2015 57

(d) Actually, instead of 220 entries, the table is in two layers, but we
ignore that detail for simplicity.

(e) Adjacent addresses within a virtual page all map to the same
page frame in physical memory.

5. MMU algorithm

(a) Separate the virtual address into higher 20 bits (page number)
and lower 12 bits (offset).

(b) Use the page number as an index into the page table.
(c) If the page is missing, generate a page fault trap.
(d) If the CPU has no access permission to the page or the CPU

wants to write and the page is read/execute only, generate an
invalid access fault.

(e) Build a physical address from the page frame (left-shifted 12)
plus the offset.

(f) Success is called a page hit.

6. Lecture 32, 4/20/2015

7. The kernel must deal with page faults.

(a) Some are program errors: attempt to access unallocated mem-
ory. The kernel sends the process a SIGSEGV signal, which typ-
ically terminates the process.

(b) Some are attempts to grow the stack. The kernel allocates more
stack and re-runs the failed instruction.

(c) Some are valid accesses, but the needed virtual page is not in
memory. The kernel allocates a free page frame, brings the vir-
tual page into memory (from backing store, typically disk), then
re-runs the failed instruction.

8. In order to make room for incoming pages, the kernel swaps out
currently unused pages.

(a) There are various algorithms for deciding which page to swap
out. Let’s call it the victim page.

(b) The hope is that the victim is a page that will not be needed
soon.

CS485G Spring 2015 58

(c) The general idea is to employ the ”recently accessed” bit in the
page table to find a victim that has not been recently accessed,
hoping that it won’t be accessed soon.

(d) If the victim is dirty, it must be written to disk. If it is clean,
there is already a good copy on disk.

9. Programs exhibit locality of reference, which is why swapping in a
page works for a long time, and why processes tend not to need all
their virtual pages in memory most of the time. The kernel tries to
make sure that at least the working set of virtual pages are kept in
physical memory.

10. Multi-level page tables

(a) A table of length 220 is unwieldy. The situation is even worse on
an x86 64.

(b) Therefore, the table is built in multiple levels: 2 levels on the
x86, 3 levels on the x86 64.

(c) The virtual address is composed of three pieces: 10 bits (top
level), 10 bits (second level), 12 bits (offset). The top-level bits
index an entry in a top-level table of length 210 = 1024 entries,
which is in a single physical page pointed to by a hardware reg-
ister.

(d) The top-level entry addresses the second-level page table, also
of length 210 = 1024 entries, fitting in a single page.

(e) There can be a page fault to access that second-level page table.

56 Free-space allocation

1. malloc() and friends maintain data structures that implement the
heap.

2. When they run out of memory, they can use the sbrk() system call
to request more data space.

3. Allocation is usually aligned to 8-byte boundaries.

4. There are several data structures that malloc() could use.

(a) Boundary tag method

i. Every allocated region has a few bytes before and after, called
tags, that indicate the length of the region.

CS485G Spring 2015 59

ii. Every free region has tags and also is linked into a list of
free regions (the link is in the region itself).

iii. To allocate, traverse the free list until a good region is found.
Split it into an allocated region and a free region, adjusting
pointers and tags.

iv. To deallocate, coalesce the region into the ones before and
after if they are free; otherwise, place the region on the free
list.

(b) Slab allocator

i. For every size of allocation, maintain a slab, which is a large
region that can be subdivided into units of the given size.

ii. Each slab also has a header indicating the size and which
units are currently allocated.

iii. To allocate, find the right slab and allocate one of its units.
If the slab is fully allocated or does not exist, start a new
slab.

iv. To deallocate, mark the unit free. If all units are free in a
slab, the entire slab may be deallocated.

(c) Lecture 33, 4/22/2015
(d) Buddy system

57 Garbage collection

1. Explicit free() calls are fragile.

(a) One might forget to free space, leading to a memory leak.
(b) One might free space and keep using it, perhaps through an

alias, leading to memory corruption.
(c) Assuming that newly allocated space is initialized to 0. (If you

need that assumption, use calloc().
(d) Returning a pointer to a local variable.
(e) Freeing a block more than once.

2. Standard alternative: automatic garbage collection.

(a) Part of the run-time library of many languages, like Java, Perl,
Macsyma.

(b) Let allocation continue until there is insufficient free space.

CS485G Spring 2015 60

(c) Then mark all allocated regions that are still in use.
(d) Then reclaim all allocated regions that are not marked.

3. How to know what is in use: Mark phase

(a) All global variables that point to data structures, and the struc-
tures they point to, recursively.

(b) All local variables, both for the current procedure and all its
callers, that point to data structures, recursively.

(c) Recursion may stop when it encounters an allocated region that
is already marked.

(d) Marking requires that the memory manager always know what
fields are pointers, and that fields are always initialized (to NULL
if necessary).

4. Variants on the basic algorithm

(a) Generational collection: most regions have a very short life; re-
gions that last after a few collections are placed in a less-frequently
collected region.

(b) Parallelized collection: Collect at the same time the program is
running, to prevent sudden stoppage.

5. Debugging memory bugs

(a) Wrapper around malloc()

(b) glibc malloc() uses the environment variable MALLOC CHECK.
(c) run program under the control of a binary translator: valgrind,

purify (people seem to prefer valgrind). Very good at catching
memory bugs, but the program runs 30 times slower.

58 Networks

1. Lecture 34, 4/24/2015

2. A network is a collection of boxes (nodes) and wires (links).

(a) System-area network (SAN): a single room.
(b) Local-area network (LAN): a building or campus.
(c) Wide-area network (WAN): country or world

CS485G Spring 2015 61

3. An internetwork is an interconnected set of networks; the Internet is
the best example.

4. Lowest level: ethernet segment

(a) Hosts (computers) are connected via wires (CAT-5 twisted pairs,
for instance) to a hub.

(b) Each host has a network interface card (NIC) that connects to
the bus on one side and the wire on the other side.

(c) The NIC is rated at some bandwidth, typically 10Mbps or 100Mbps.
(d) Each NIC has a unique 48-bit media access control address (MAC

address), represented in a fashion like 00:16:ea:e3:54:e6.
(e) Hosts send information on the lines in chunks called frames.
(f) The hub copies frames from every port to every other port (broad-

casting).
(g) A frame includes a destination NIC (by including its MAC ad-

dress); only the host to which the frame is addressed takes it.
(h) Hubs have mostly been supplanted with switches and routers,

which do not broadcast.

5. A bridge connects internet segments, spanning a building or a cam-
pus.

(a) A bridge is typically a switch.
(b) Switches learn which MAC addresses are reachable on each phys-

ical port and then selectively copy frames only to the correct
port.

6. A router connects multiple LANs together into an internet.

(a) The different LANs might run different protocols, such as Eth-
ernet and Wifi.

(b) The router bases its port decision on a higher-level address field,
such as in internet protocol (IP) address and tables.

7. Lecture 35, 4/27/2015

8. Ad-hoc internets have no particular topology, and the routers and
links might have a variety of capacities.

(a) The routers bridge the network, but they may send similar pack-
ets along different routes.

CS485G Spring 2015 62

(b) Software on hosts and routers agree on a common internet pro-
tocol independent of the capacities of routers and links.

9. IPv4 is a widely used internet protocol.

(a) Uniform format for addresses: 32 bits, typically expressed as 4
octets: 128.163.146.21

(b) Each host and router has at least one IP address; these addresses
are unique across the Internet (exceptions discussed later).

(c) Uniform data-transfer unit: packet, consisting of a header and
a payload.

(d) The header has fields such as packet size (between 20 and 65,535
bytes), source address, destination address.

(e) The payload is composed of arbitrary data.
(f) Packets are embedded in frames for transit across individual

links.

10. Complexities covered in a course in computer networking

(a) Different networks may have different maximum frame sizes,
leading to packets becoming fragmented, so the protocol must
include an ability to put the fragments back together.

(b) Packets may arrive out of order at the destination, so the proto-
col must include an ability to put them back in order.

(c) Packets may be corrupted in transit or otherwise lost, so the
protocol must be able to discover the problem (typically by lis-
tening for acknowledgements) and retransmit packets.

(d) Routers need to know how to forward packets, and they need
to keep up to date with network-topology changes.

(e) The transmission protocol needs to deal with congestion by re-
ducing bandwidth use.

11. TCP/IP protocol family

(a) IP (internet protocol): addressing scheme, host-to-host unreli-
able, unordered delivery.

(b) UDP (unreliable datagram protocol): uses IP for process-to-process
unreliable, unordered delivery.

(c) TCP (transmission control protocol): uses IP for reliable, in-
order process-to-process communication over established con-
nections.

CS485G Spring 2015 63

(d) Unix sockets can be established for either UDP or TCP.

12. Internet components

(a) Backbone: collection of routers connected to each other by high-
capacity point-to-point networks. The US has about 50 commer-
cial backbones.

(b) Network Access Point (NAP): Router connecting multiple peer
backbones. The US has about 12 NAPs connecting commercial
backbones.

(c) Regional network: small backbone covering a city or a state.
(d) Point of presence (POP): machine connected to the Internet.

(e) Lecture 36, 4/29/2015
(f) Internet service provider (ISP): provides access to POPs, by dial-

up, DSL, cable, T1 line, or some other technology.

13. Shortcomings of IPv4

(a) Messages are insecure: they are visible to routers (no read pro-
tection), the source address can be forged (no authentication),
and they can be modified in transit (no write protection).

(b) There aren’t enough IP addresses.

14. Techniques to deal with insufficient addresses

(a) Dynamic (and temporary) allocation of addresses to POPs by
ISPs using the dynamic host configuration protocol (DHCP).
The ISP only needs enough addresses to handle currently con-
nected POPs.

(b) Network-address translation (NAT): router assigns private ad-
dresses (such as 192.168.3.3) to POPs within its domain, and
it modifies the headers of packets in both directions.

(c) NAT typically refuses incoming packets that are not part of an
existing conversation.

15. IPv4 address space is divided into classes of regions

(a) Class A: first octet in range 0-127. 224 addresses in region.
(b) Class B: first octet in range 128-191; second octet 0-255. 216 ad-

dresses in region.

CS485G Spring 2015 64

(c) Class C: first octet 192-224; second and third octet 0-255. 28 ad-
dresses in region.

(d) Special purpose addresses: first octet 225-255.
(e) This division into classes is no longer followed.
(f) A network ID is written in the form w.x.y.z/n, where n is the

number of bits in a host address. For instance, CS uses the class
C region 128.163.146/8.

(g) Some regions are pre-allocated as private, unrouted addresses:
10.0.0.0/8, 172.16.0.0/12, and 192.168.0.0/16.

16. Human-readable host names

(a) The Domain Name Service (DNS) maps IP addresses into a hi-
erarchy of names.

(b) First-level domain names: .net, .edu, .gov, .com
(c) Second level domain names: uky, mit, amazon
(d) Third level: cs, www.
(e) No limit on levels, and no particular conventions.
(f) The mapping is maintained in a huge distributed database, which

can be understood as a collection of host-entry structures.

1 struct hostent {
2 char *h_name;

/* official domain name of host */
3 char **h_aliases;

/* null-terminated array of domain names */
4 int h_addrtype;

/* host address type (AF_INET) */
5 int h_length;

/* length of an address, in bytes */
6 char **h_addr_list; /* null-terminated array of in_addr structs */
7 }

(g) The gethostbyname() library call queries the DNS database.
(h) Queries in Unix are first checked in /etc/hosts. If that fails,

they are sent to a name server, as listed in /etc/resolv.conf.
(i) Command-line programs: nslookup, dig (Domain Informa-

tion Groper)

CS485G Spring 2015 65

59 Client-server

1. Clients

(a) Examples: ftp, telnet, ssh, browsers like Firefox.

(b) Lecture 37, 5/1/2015
(c) To find a server: use the DNS service to convert a DNS name to

an IP address.
(d) To find the right port: look int /etc/services to find the stan-

dard port for various services, such as 25 (smtp), 80 (http).

2. Servers

(a) Typically long-running, started when the operating system boots.
(b) Can be stopped/started, by distribution-dependent methods (such

as service apache2 stop.
(c) Listens for requests on the well-known port and communicates

with a standard protocol (typically on top of TCP).
(d) Standard services. Each uses a

i. Web (80/HTTP): provides files, can perform server-side com-
putation (SHTML, CGI, PHP, JSP, ...).

ii. FTP (20, 21/FTP): stores and retrieves files.
iii. Telnet (23/Telnet): interactive login. Deprecated, because

unencrypted.
iv. SSH (22/SSH): interactive login; encrypted.
v. Mail (25/SMTP): accepts incoming mail.

3. Web services

(a) The WWW mostly started around 1993, with the Mosaic browser;
there were about 200 WWW servers worldwide.

(b) Web servers return content to clients, which is a sequence of
bytes tagged with a MIME (Multipurpose Internet Mail Exten-
sion) type, such as text/html, application/pdf, image/png.

(c) Content can be static (contents of a file) or dynamic (computed
on demand).

(d) Each content item is associated with a URL (Universal Resource
Locator), of a general form service://host:port/file/
path, specifically http://www.cs.uky.edu/˜raphael/courses/
CS485/index.html

CS485G Spring 2015 66

(e) The client uses the host:port part to determine the address
and of the server and the port to connect to. It uses the service
part to determine what protocol to use.

(f) The server uses the file/path part to determine what file to
send, or what program to start. It sends the output of the pro-
gram to the client.

(g) One can use telnet to manually engage in a protocol, if it is con-
ducted in ASCII (most are).
unix> telnet www.cs.uky.edu 80
Trying 128.163.146.21...
Connected to bud.cs.uky.edu.
Escape character is ’ˆ]’.
GET / raphael/ HTTP/1.1
GET / raphael/finkel2.1.jpg host: www.cs.edu

HTTP/1.1 200 OK
Date: Fri, 01 May 2015 01:55:58 GMT
Server: Apache/2.2.22 (Ubuntu)
...
<html>
...
Connection closed by foreign host.

(h) Various methods to get content (incomplete list)

i. GET: the parameters for dynamic content are part of the
URL.

ii. POST: The parameters for dynamic content are in the re-
quest body.

iii. OPTIONS: Get server of file attributes

(i) The text describes the code for a tiny web server, which only
uses 226 lines of C code.

(j) A proxy is an intermediary process between a client and server,
acting to each as a partner. The proxy can do caching, logging,
anonymization, filtering.

4. SMTP protocol is also ASCII, used for sending mail.

CS485G Spring 2015 67

unix> telnet mail.cs.uky.edu 25
Trying 128.163.146.23...
Connected to satchmo.cs.uky.edu.
Escape character is ’ˆ]’.
220 satchmo.cs.uky.edu ESMTP Postfix (Computer Science)
HELO satchmo.cs.uky.edu
250 satchmo.cs.uky.edu
MAIL FROM:<raphael@cs.uky.edu>
250 2.1.0 Ok
RCPT TO:<raphael@cs.uky.edu>
250 2.1.5 Ok
DATA
354 End data with <CR><LF>.<CR><LF>
From: "Foo bar" <foo@bar.org>
to: "Raphael Finkel" <raphael@cs.uky.edu>
Date: now
Subject: test message

Howdy doody!
.
250 2.0.0 Ok: queued as 62EFA280846
QUIT
221 2.0.0 Bye
Connection closed by foreign host.

