Racal RA-117 Radio Receiver

1. Contents

1. Contents	2
2. List of Illustrations	3
3. Technical Specification	4
4. Introduction	7
5. Installation	8
6. Operation	10
7. Brief Technical Description	14
8. Detailed Circuit Description	16
9. Maintenance	25
10. Spurious Responses	26
11. Fault Diagnosis	28
12. Representative Test Data	30
13. General Servicing and Aligment Procedures	32
13.1. General Servicing \ldots	33
13.2. Receiver Tests	33
14. Alignment Procedures	37
14.1. Introduction \ldots	37
14.2. 100 kc/s I.F. Amplifier	37
$14.2 100 l_{-2} / (I C) E(l_{-2})$	37
14.3. 100 KC/S (L-C) Filter \ldots \ldots \ldots \ldots \ldots \ldots \ldots	
14.3. 100 kc/s (L-C) Filter	39
14.3. 100 kc/s (L-C) Filter 14.4. Second V.F.O. 14.4. Second V.F.O. 14.4. Second V.F.O. 15. Dismantling 14.4. Second V.F.O.	39 44
14.3. 100 kc/s (L-C) Filter 1	39 44 49
14.3. 100 kC/s (L-C) Filter 14.4. Second V.F.O. 14.4. Second V.F.O. 16. Component List 1. 17. Component List 2. 16. Component List 2.	39 44 49 53
14.3. 100 kc/s (L-C) Filter 1	39 44 49 63 57

[2]

2. List of Illustrations

	Fig.
Rear View of Receiver Chassis	1
Front Panel, RA.117	2
RA.117 Block Diagram	3
Simplified Balancing Circuit	4
Noise Limiter Circuit	5
Typical Selectivity Curves	6
Terminal Tag Strip	7
Top View of Receiver	8
First V.F.O top view	9
First V.F.O underside	10
Second V.F.O.	11
1.7 Mc/s Oscillator/Amplifier and Mixer Unit	12
B.F.O. Unit	13
Crystal Calibrator Unit	14
Key to Under-chassis Layout	15
R.F. Attenuator	16
Supply Filters	17
Crystal Oscillator/Amplifier and Harmonic Filter System	18
Second Mixer	19
Band-Pass Filter	20
100 Kc/s I.F. amplifier - right side	21
100 Kc/s I.F. amplifier - left side	22
Power Supply and Audio Stages	23

[3]

3. Technical Specification

Frequency range:	$1-30~{ m Mc/s}$						
Stability:	Afterwarm-up, overall drift is less than 50 c/s per hou						
·	under conditions of	constant supply voltage and ambient					
	temperature.						
Input impedance:	(1) Wideband 2000)-ohms approx.					
1 1	(2) Wideband 75 o	hms.					
	(3) 5 double-tuned	circuits, 75 ohms.					
	(a) $1 - 2 \text{ Mc/s}$	3					
	(b) $2 - 4 \text{ Mc/s}$	5					
	(c) $4 - 8 \text{ Mc/s}$	5					
	(d) $8 - 16 \text{ Mc}$	/s					
	(e) $16 - 30$ Me	c/s					
Tuning:	Effective scale leng	ht of approximately 145 feet, i.e. 6					
	inches of scale length	nt corresponds to 100 kc/s Frequency					
	increments remain o	constant over the entire range.					
Calibration:	A 100 kc/s signal de	rived from a 1 Mc/s crystal oscillator					
	having an accuracy	of 5 parts in 10^6 provides check points					
	at 100 kc/s interval	S.					
Sensitivity:	A1 reception, bandw	width 3 Kc/s; 1μ V for 18dB signal-to-					
	noise ratio. A2 rece	ption, 30% modulated, bandwidth 3					
	$Kc/s; 3\mu V$ for $18dB$	signal-to-noise ratio.					
Intermodulation:	More than $100 dB$	down for interfering signals at least					
	10% removed from	the wanted signal.					
Cross modulation:	For wanted signal levels between $3\mu V$ and $1mV$, an inter-						
	fering signal 10 Kc/	's removed and modulated 30% must					
	have a level greater	than 50dB above that of the wanted					
	signal to produce a	a cross modulation of 3%. The ratio					
	of wanted to unwan	ited signal is improved up to 10% off					
	tune, at the rate of	3dB per cent.					
Blocking:	With similar condit	ions to those for cross modulation an					
	unwanted signal f_2 i	nust be 60dB greater before the audio					
	output of the wante	ed signal f_1 is reduced by 3dB due to					
Q 1	blocking.						
Selectivity:	Six alternative I.F.	bandwitchs are obtained by means of					
	a selector switch. F	liter details are:					
	-6dB	-66 dB					
	(1) 13 kc/s	35 kc/s					
	(2) 6.5 kc/s	$22 ext{ kc/s}$					
	(3) 3.0 kc/s	15 kc/s					
	(4) 1.2 kc/s	8 kc/s					
	(5) 0.3 kc/s	Less than 2 kc/s					
	(6) 0.1 kc/s	Less than 1.5 kc/s					

[4]

	Bandwidths 5 and 6 are obtained with crystal-lattice ters; differences in centre frequencies of these bandwite settings do not exceed 50c/s.						
I.F. Output:	100 kc/s at 75-ohms impedance. Level 0.2 V approx, with A.V.C. in operation. Two outlets in parallel are provided.						
Image and Spurious Responses:	: With wideband or tuned input, external image signals are at least 60dB down. Internally generated spurious re sponses are less than 2dB above noise level in all cases.						
Noise Factor:	Better than 7dB throughout entire range.						
B.F.O. Range:	$\pm 8 \text{ kc/s}$						
B.F.O. Stability:	With constant ambient temperature and supply voltage, drift after warm-up does not exceed 50 c/s. For input level variations from 10μ V to 1mV, B.F.O. drift is negligible.						
Automatic Volume Control:	An increase in signal level of 20dB above $1\mu V$ improves the signal-to-noise ratio by 18dB. An increase in signal level of 100dB above $1\mu V$ increases the A.F. output by less than 7dB.						
A.V.C. Time Constants:	Short: Charge 25 milliseconds						
	Discharge 200 milliseconds						
	Long: Charge 200 milliseconds						
A.E. Despense	W th 12 kg/g bandwidth regrange remains within $\pm 4d\mathbf{P}$						
A.r. Response.	from 250 c/s to 600 c/s						
A.F. Output:	 2.5-in. loudspeaker on front panel (switched). Two headphone sockets in parallel on front panel. (see Note) Three independent outputs of 3mW at 600-ohms at rear of chassis. 						
	 One output of 10mW at 600-ohms. Preset level is independent of A.F.GAIN control setting. One output of 1W at 3-ohms. Note: The two headphone sockets are connected across one of the 600-ohms. 3mW outlets. 						
Distortion:	Not greater than 5% at 1W output.						
Hum Level:	With A.F.GAIN control at maximum, the hum level is never worse than 40dB below rated output (1W)						
Noise Limiter:	A series noise limiter circuit van be switched into oper- ation to provide limiting at modulation levels exceeding 30%.						
Meter Indication:	Alternative switching for indication of signal carrier level, A.F. output level or "S" meter indication.						
Power Supply:	100-125V and $200-250V$, $45-65$ c/s. Power consumption 100W approx.						

Technical Specification

Dimensions:

For rack mounting10.5in19in(fitted dust cover)26.7cm48.25cm	20.125in
	51cm.
Fitted cabinet $12in$ $20.5in$ 30.5 cm $52cm$	21.875in 55.6cm

Weight:

4. Introduction

General Description

- 1. The Communications Receiver Type RA.117 has been designed for use as a general purpose receiver which will provide a high order of selectivity and stability. The receiver covers a frequency range from 1.0 to 30.0 Mc/s.
- 2. A built-in crystal-controlled calibrator provides reference signals at each 100 kc/s division to permit exact alignment of the scale pointer. Two independent I.F. outputs, in parallel, at 100 kc/s are provided for external use if required. A number of audio outputs are available providing flexibility during operation; a small loudspeaker is fitted for monitoring purposes.
- 3. The receiver is designed to operate from 100-125 volts and 200-250 volts, 45-65 c/s main supply. The power consumtion is approximately 100 watts.

Constructional Details

- 4. The receiver is designed for both bench (table) and rack mounting. The front panel is painted Light Battleship Grey (British Standard Specification 381C, colour 697) and has been carefully designed to minimize operator fatigue.
- 5. The dimensions of the 1/8 in. thick front panel conform with the requirements for mounting in a standard 19 in. rack.
- 6. For bench mounting, the receiver is fitted in a robust steel cabinet which has a rear opening to enable the operator to gain easy access to the fuses and the termination strips.
- 7. A dust cover is provided with both models. This may be removed from cabinetmounted receivers in conditions of high ambient temperature.
- 8. The chassis and major modules are of cast construction thus ensuring maximum rigidity and effective electrical screening. Each receiver is supplied with three keys to facilitate removal of the control knobs, insulated trimming tool and coaxial terminations for aerial and I.F. connections. Extra sleeves can be provided with the terminations for alternative coaxial cable sizes.

[7]

5. Installation

1. After carefully unpacking the receiver, remove the dust cover and make sure that all valves and screening cans are firmly in place and that no packing material remains within the tuning mechanism.

POWER SUPPLY.

2. Ascertain that the mains transformator is set to the appropriate voltage tapping. This is carried out by means of soldered connections to the transformer. A power lead is permanently fitted to the receiver which can be connected directly to the power supply. Check that the terminals HT1 and HT2 situated on the main chassis are linked (unless the L.F. Converter is in use).

FUSES.

3. Ensure that the rating of the supply fuse and the H.T. fuse correct wiz:

Supply fuse 2A H.T. fuse 350mA, anti surge.

AERIAL.

4. The impedance at the aerial (antenna) input plug is designed to match into a 75-ohms unbalanced transmission line. The cable termination supplied with the receiver can bee provided with alternative sleeves to enable it to be used with a type UR.18 or UR.70 cable or similar cables of nominal diameter 1/2-in or 1/4-in. respectively.

AUDIO OUTPUTS.

- 5. A number of audio outputs are available to give the following facilities.
 - (1) The two telephone jack sockets situated on the front panel are connected across one of the 600 Ohms, 3mW outlets.
 - (2) The following outputs are connected to the terminal strip at the rear of the receiver:-
 - (a) Three 600-ohms outlets at 3mW.
 - (b) One 3-ohm outlet at 1W.
 - (c) One 600-ohms outlet at 10mW. This output is controlled by a preset A.F. LEVEL control on the front panel and is independent of the outputs previously described.

100 kc/s I.F. OUTPUT.

6. The connection consists of two coaxial plugs connected in parallel to the 100 kc/s output. The total load should not be less than 75-ohms (e.g. with outlet loaded by 75-ohms, the other can be can used as a high impedance source).

EXTERNAL INPUT/OUTPUT CONNECTIONS.

7. The following input and output connections are available on a panel at the rear of the receiver (fig.1):-

1 Mc/s input/output:	May be used diversity operation.
2nd V. F. O. $output/input(3.6 - 4.6 Mc/s)$	For diversity operation and external chan- nelizer crystal oscillator output.
$1.7 { m Mc/s input/output}$	For diversity operation and fine tuning unit input.
R.F. $(2 - 3 \text{ Mc/s})$ input:	Input from an L.F. converter.

The above input/output connections are selected by internal linkage, the connections should be made as follows:-

$1 { m Mc/s input}$	Remove "T" adaptor and place in clip pro-
	vided on side of gusset plate. Connect the
	free plugs PL12 to SKT3 and connect the
	free plug PL2 to SKT2.
$1 { m Mc/s}$ output	Disconnect plugs PL12 and PL2 and con-
	nect "T" adaptor to socket SKT2. Connect
	plugs PL12 and PL2 to the "T" adaptor.
2nd V.F.O. input	Connect the free plug PL302 to SKT302.
2nd V.F.O. output	Connect the free plug PL303A to SKT304.
$1.7 \mathrm{Mc/s \ input}$	Connect the free plug PL303A to SKT303.
$1.7 \mathrm{Mc/s} \mathrm{output}$	Connect the free plug PL303A to SKT306.
	(blue)

- **Note 1** When using the internal oscillators with crystals, the connections should be made for outputs since the cable capacity will pull the internal crystal off frequency.
- Note 2 The 1 Mc/s and 1.7 Mc/s crystal must be removed if an external source is applied to the input socket. Stowage space is provided on the chassis for the crystals when they are not in use.

AUTOMATIC VOLUME CONTROL.

8. The A.V.C. line is brought out to the terminal strip at the rear of the chassis for such applications as diversity reception.

6. Operation

- 1. References to the controls are in capitals and are in accordance with the panel titles adjacent to them (fig.2).
- 2. It should be noted that the method of operation of the receiver extremely simple, dependent and a structure of the purpose for which the receiver is being embloyed.

FUNCTION OF CONTROLS.

3.	The front	panel	$\operatorname{controls}$	are	described	in	the	order	in	which	they	could	\mathbf{be}	used	for
	setting-up	prior	to use.												

POWER	Makes and breaks the power supply to the mains transformer.
R.F. RANGE MC/S	This control enables the selection of one any of five antenna ranges plus two WIDEBAND positions, one of 75-ohms input impedance
	and other a high impedance input of 2000-ohms.
R.F. ATTENUATOR	This control enables the operator to reduce the level of all incoming
	signals when strong unwanted signals are present which cannot be rejected sufficiently by tuning the antenna.
MEGACYCLES	This control selects the desired Mc/s frequency. The dial should be
	checked periodically to ensure that its setting is reasonably central with respect to the band in use. This is indicated by a reduction
	of signal or noise on either side of the correct setting.
SYSTEM	This switch provides facilities for STANDBY, MANUAL, A.V.C., CALIERATION and CHECK REO
	The two enveted filters determining the hand width are adjusted
DANDWIDIN	to ensure that their centre frequencies are all within 50 c/s thus
	to ensure that then centre nequencies are an within 50 c/s, thus
	any bandwidth can be selected without returning the receiver. Six
	12 kg/g 6.5 kg/g 2 kg/g and 1.2 kg/g (I C) 200 g/g and 100 g/g
	(crystal)
A.F. GAIN	The A.F. GAIN control adjusts the audio output.
KILOCYCLES	This control selects the desired kc/s frequency. The calibration of
	this scale may be checked at 100 kc/s intervals by setting the system switch to the CAL position and V E O switch set to INT
BEO	The $B = O O N / O F F$ switch makes or breaks $H T$ to the best
D.F.O.	frequency oscillator.
B.F.O. NOTE KC/S	The B.F.O. is exatly tuned to a central point on the I.F. ampli-
,	fier response when B.F.O. NOTE KC/S control is st to zero-beat
	with the calibrator. Having standardized the B.F.O. frequency, the
	frequency of an incoming signal may be accurately measured by set-
	ting the KILOCYCLES control to a zero-beat position; the B.F.O.
	should de detuned in order to produce an acceptaple note for c.w. reception
	reception.

[10]

R.F. TUNE	If maximum sensitivity is not required, the antenna need not be tuned unless strong unwanted signals are present. It should be noted that the presence of very strong singnals anywhere within the spectrum may cause crossmodulation unless the aerial is tuned. Under these conditions, CARE MUST BE TAKEN TO AVOID TUNING THE INPUT TO THE INTERFERING SIGNALS in- stead of the signal required. Familiarity with the tuning controls will facilitate this
R.F./I.F. GAIN	The R.F./I.F. GAIN control is operative both in the MAN. and the A.V.C. position of the SYSTEM switch. In the MAN.position of the SYSTEM switch the setting of the control should be always at a minimum consistent with satisfactory A.F. level. The following should be noted when the SYSTEM switch is in the A.V.C. posi- tion. Reducing the I.F. gain results in a reduction of a A.V.C. loop gain together with the a degraded A.V.C. characteristic. There- fore when in the A.V.C. position, it is desirable that the R.F./I.F. GAIN control be set to maximum. A possible exception of this oc- curs when receiving interrupted signals in which the carrier is peri- odically switched off; in this case , receiver noise could be trouble-
A.V.C.	some during the quiet intervals. The choice of time-constant depends upon conditions. The LONG time-constant (1 second) should be employed with the choice sig- nals, the SHORT time-constant may be used with high speed teleg- raphy or voice. For hand (low) speed telegraphy, the MAN. position of the SYSTEM switch should be used (refer to B E // E_ GAIN)
A.F. LEVEL	The preset control sets the A.F. level in a separate A.F. stage for feeding a 600-ohms, 10mW line. It is unaffected by the position of the main A.F. GAIN control. IT IS MOST IMPORTANT that the

A.F. LEVEL is not turned towards its maximum position unless the 10mW 600-ohms winding is suitable terminated. LIMITER When swithced into use, the LIMITER reduces the effects of noise peaks exceeding the level of a 30% modulated signal. It does not introduce noticeable distortion below a 30% modulation level.

- "S" METER With the METER switch in the R.F. LEVEL position the meter indicates the signal diode current. In the A.F. LEVEL position, the 10mW, 600-ohms output only is monitored. A calibration mark is provided at 10mW.
- SPEAKER The loudspeaker may be switched ON or OFF as required. The two telephone jack sockets remain in circuit in either position of the SPEAKER switch. The insertion of a telephone jack disconnects the loudspeaker.
- V.F.O. This switch should be set to the EXT. position when a external 3.6 -4.6 Mc/s source is applied.

Operation

PRELIMINARY SETTING-UP.

- 4. The instructions given below are concerned with tuning the receiver to a signal of known frequency. These instructions (1) to (8) apply with the V.F.O. switch in either position.
 - (1) Set the power switch to ON. Allow a few minutes for the receiver to warm-up.
 - (2) Set the R.F. RANGE MC/S switch to WIDEBAND.
 - (3) Set R.F. ATTENUATOR to MIN.
 - (4) Set A.F. GAIN control to its mid-position.
 - (5) Set SYSTEM switch to MAN.
 - (6) Set LIMITER and B.F.O. switch to OFF.
 - (7) Select bandwidth of 3 or 6.5 kc/s.
 - (8) Rotate the R.F./I.F. GAIN control to three-quarters of fully clockwise.

FILM SCALE CALIBRATION

- 5.
- (1) Set the SYSTEM switch to CAL.
- (2) Select BANDWIDTH of 3 kc/s.
- (3) Set the KILOCYCLES scale to that of the 100 kc/s point which is nearest to the frequency required and adjust the control accurately until a zero-beat note is obtained. Move the milled cursor slide on the dial escutheon so that the pointer coincides exactly with the selected 100 kc/s division.
- (4) Restore all other controls to the preliminary setting shown in para.4. above.

B.F.O. CALIBRATION

- 6.
- (1) Set the B.F.O. to on.
- (2) Set the SYSTEM switch to CHECK B.F.O.
- (3) Adjust the B.F.O. NOTE KC/S control to zero-beat.
- (4) Restore all other controls to the preliminary setting shown in para.4. above.

TUNING

7.

- (1) Set R.F. RANGE MC/S to the desired frequency band.
- (2) Set R.F. ATTENUATOR to MIN.
- (3) Set MEGACYCLES dial to the required integer (1 to 29). The position of maximum receiver noise will indicate the correct setting.
- (4) Set SYSTEM switch to CAL.
- (5) Set Bandwidth to 3 kc/s.
- (6) Set A.F. GAIN to mid-position.
- (7) Adjust KILOCYCLES scale to zero beat at the 100 kc/s point nearest to the desired frequency.
- (8) Adjust the milled cursor slide to coincide with this point.
- (9) Switch B.F.O. on.
- (10) Set SYSTEM switch to CHECK B.F.O.
- (11) Adjust B.F.O. NOTE KC/S control to zero beat.

Operation

- (13) Set KILOCYCLES scale to the required frequency and critically tune for zero beat in order to centralize the signal within the I.F. pass-band.
- (14) Adjust R.F. TUNE for maximum signal (or noise). For optimum c.w. reception, "off-tune" the B.F.O. to produce an acceptaple beat note.
- (15) Set the A.F. GAIN to its maximum clockwise position and adjust the output level with the R.F./I.F. GAIN control.
- (16) For m.c.w. or voice reception, switch B.F.O. off.
- (17) Set the SYSTEM switch to A.V.C. if required.
- (18) Set BANDWIDTH for optimum reception.

"S" METER

- 8. The "S" meter should be correctly set to zero.
- 9. With no antenna connected, set the R.F. ATTENUATOR to MAX. Set the SYSTEM switch to A.V.C. Turn the R.F./I.F. GAIN control to the maximum clockwise position.
- **NOTE:** Unless the R.F./I.F. GAIN control is in the maximum position, the "S" meter calibration is upset.
- 10. Remove the plated cap below the meter. Adjust the setting of the balance control (accessible through the hole in the panel) by means of a screwdriwer until the meter reads zero.

7. Brief Technical Description

1. This section describes briefly, with the aid of the block diagram fig. 3, the basic theory of operation. For a more detailed explanation of the receiver, DETAILED CIRCUIT DESCRIPTION, should be consulted.

SIGNAL INPUT

2. The receiver is designed for an input impedance of 75-ohms for all positions of the R.F. RANGE switch except WIDEBAND; in the WIDEBAND position the input impedance is 2000-ohms.

FIRST MIXER

- 3. Input signals between 0.98 and 30 Mc/s are via an R.F. amplifier and a 30 Mc/s low-pass filter to the first mixer (M1) where they are mixed with the output from a variable frequency oscillator VFO-1 (MEGACYCLES tuning). This oscillator has a frequency range of 41.5 to 69.5 Mc/s. The first I.F. stage is in effect a band-pass filter tuned to 40 Mc/s ± 650 kc/s. Thus, according to the setting of VFO-1, any spectrum of signals 1 Mc/s wide and existing in the range 0.98 to 30 Mc/s can be mixed in M1 to produce an output acceptable to the first I.F. band-pass filter.
- 4. It should be noted at this stage that the exact setting of VFO-1 is determined by conditions in the second mixer and harmonic mixer circuit ; These restrict the possible settings to position 1 Mc/s apart (e.g. 41.5, 42.5, 43.5 Mc/s, etc.).

HARMONIC GENERATOR AND MIXER

- 5. The output from a 1 Mc/s crystal oscillator is connected to a harmonic generator. The harmonics derived from this stage are passed through a 32 Mc/s low-pass filter and mixed with the output from VFO-1 in the harmonic mixer. This mixer provides an output at 37.5 Mc/s which is amplified before passing through a band-pass filter tuned to 37.5 Mc/s with a bandwidth of ± 150 kc/s.
- 6. The presence of this filter restricts the setting of VFO-1 to an exact number of Mc/s plus 37.5 Mc/s in order to give an output acceptaple to the filter and amplifier. As a result, the first V.F.O. must be tuned in 1 Mc/s steps.

SECOND MIXER

- 7. The 40 Mc/s first I.F. signal is mixed in the second mixer (M2) with the 37.5 Mc/s output from the harmonic mixer in order to produce an output consisting of a 1 Mc/s spectrum in the frequency range 2 3 Mc/s (second I.F.).
- 8. To clarity this method of operation, some examples of dial settings and intermediate frequencies corresponding to various incoming signals are tabulated below:

Dial	Settings	Signal Freq.	VFO-1	Xtal harmonic	1st I.F.	2nd I.F.
Mc/s	m kc/s	$(f_s) \mathrm{Mc/s}$	$(f_o) \mathrm{Mc/s}$	$(nf_c){ m Mc/s}$	Mc/s	Mc/s
4	1.000	5.0	44.5	$7\mathrm{th}$	39.5	2.0
5	0	5.0	45.5	$8 \mathrm{th}$	40.5	3.0
18	600	18.6	58.5	21 st	39.9	2.4

[14]

9. Frequency drift of VFO-1 within the limits of the 37.5 Mc/s filter bandwidth, does not affect the frequency stability of the receiver. A change in this oscillator frequency will alter the first I.F. to the same extent and in the same sense as the nominal 37.5 Mc/s signal from the harmonic mixer. Therefore the difference frequency from M2 will remain constant.

THIRD MIXER

10. The 2-3 Mc/s receiver, which follows M2, is preceded by a pre-tuned bandpass filter. The 2-3 Mc/s output from the filter is mixed in the third mixer with either the output from the second variable frequency oscillator VFO-2 or an external signal within the frequency range of 3.6 to 4.6 Mc/s to provide the third intermediate frequency of 1.6 Mc/s.

FOURTH MIXER

11. The 1.6 Mc/s intermediate frequency is mixed in the fourth mixer (M4) with the 1.7 Mc/s output from the 1.7 Mc/s oscillator/amplifier to provide the fourth and final intermediate frequency of 100 kc/s.

FOURTH I.F. STAGE

12. The final I.F. stages are preceded by crystal lattice and L-C filters which provide six alternative bandwidths. Separate signal and A.V.C. diodes are employed and alternative switched time-constants give the optimum conditions for telegraphy and telephony reception. An additional I.F. amplifier is incorporated to give an independent output at 100 kc/s.

A.F. STAGES

13. Two independent audio frequency stages are incorporated for either line output or headphone sockets and internal loudspeaker; each stage is provided with a level control (see TECHNICAL SPECIFICATION).

CRYSTAL CALIBRATOR

14. A crystal calibrator unit is incorporated to enable the scale of VFO-2 to be checked at 100 kc/s intervals when the V.F.O. switch is set to INT. position. These check points are obtained from a regenerative divider controlled by the 1 Mc/s crystal oscillator.

8. Detailed Circuit Description

1. Reference should be made to the circuit diagram at the end of this handbook.

AERIAL CIRCUIT

2. A 75-ohms unbalanced aerial source is connected to the tuned R.F. amplifier through a three-section 30 Mc/s low-pass filter and a five- position attenuator covering a range of 0 to 40 dB. Switch S2 selects wide- band 75-ohms or wideband (high impedance) or any one the five double-tuned aerial coils L4-L8 for tuned operation. These aerial coils are aligned by means of dust iron cores. The aerial is tuned by a capacitor C18A/B which is switched out of circuit in both wideband positions.

R.F. AMPLIFIER

3. The incoming signal is fed via C28 and grid stopper R25 to the grid of V3B; the R.F. stage (V3) employs a variable-mu, low-noise double- triode; the two halves of the valve are connected in cascode so as to utilize the low-noise high-gain properties of the valve. A delayed A.V.C. voltage, derived from a shunt diode network, is applied to the grid of V3B when the signal level is approximately 10μ V. The capacitors C40 and C41 ensure that the cathode is adequately decoupled over the wide frequency range. Ferrite beads have been fitted to the heater lead, connected to pin 4, the anode of V3A and the cathode of V3B adjacent to C41, to prevent parasitic oscillations occurring.

30 MC/S LOW-PASS FILTER

- 4. The amplified signal is passed to a 30 Mc/s low-pass filter which has a substantially flat responseover the frequency range. L27, C47 and R28 constitute the first 'L half Section' of the filter. The signal is then fed at low impedance (680-ohms) through the coupling capacitor C74 and the grid stopper R45 to the control grid of V7, the first mixer stage. The input capacitance of V7 forms the capacitance to chassis betweeenL15 and L17 required to the filter network.
- **NOTE:**This capacitance is not critical, therefore no adjustment will be necessary should V7 be changed.

FIRST VARIABLE FREQUENCY OSCILLATOR (VFO-1)

- 5. This circuit comprises a cathode-coupled Hartley oscillator stage (V5) which may be continously tuned over the frequency range of 40.5 to 69.5 Mc/s. The frequency determining components are an inductance L36 and a variable capacitance C76. Alignment is accomplished by adjusting aluminium core of L36 and the trimming capacitor C77. The variable capacitor C76 is coupled to the Mc/s dial which is calibrated from 0 to 29 Mc/s. The anode load consists of L20, a compensating inductance which is wound on a 470-ohm resistor R18. The oscillator is coupled via C85 to the signal grid of the first mixer stage V7 and also via C42 to the control grid of the harmonic mixer V4.
- **NOTE:** The Mc/s dial calibration may be affected if V5 if changed. The necessary correction may be made by adjusting C77 with the Mc/s dial set to 29 Mc/s.

[16]

FIRST MIXER (M1)

6. The outputs from the 30 Mc/s low-pass filter and the variable frequency oscillator VFO-1 are fed to the signal grid of the mixer stage (V7) which produces a signal at 40 Mc/s. The signal is then passed to a 40 Mc/s band-pass filter which forms the anode load of this stage.

40 MC/S BAND-PASS FILTER

7. The 40 Mc/s band-pass filter consists of eight over-coupled tuned circuits connected in cascade and is tuned by the trimming capacitors C21, C33, C43, C53, C61, C70, C79 and C88. This filter, which has a passband of 40 Mc/s ± 650 kc/s, ensures that only the required 1 Mc/s spectrum of signals is passed to the second stage. This filter is deliberately set to a slightly wider passband than is theoretically required, to allow for possible drift in VFO-1.

1 MC/S CRYSTAL OSCILLATOR/AMPLIFIER

- 8. The frequency of the crystal oscillator V1 may be set precisely to 1 Mc/s by adjusting the trimming capacitor C2A. The crystal XL1 which is connected between the control grid and the screen grid is electron coupled to the anode. The anode coil L2 is adjusted to resonate at 1 Mc/s by means of a dust iron core. The fixed capacitors C9, C10 and C11 complete the tuned circuit. When an external signal is applied to socket SK3, the valve operates as an amplifier.
- 9. The output from V1 is capacitance-coupled to the harmonic generator V2 and via SK2 to a "T" adptor for feeding a 1 Mc/s input into the L.F. converter and also the control grid of the mixer valve V13.

HARMONIC GENERATOR

10. The 1 Mc/s signal is fed via coupling capacitor C8 to the control grid of the harmonic generator V2. The H.T. is fed to the screen grid via R12 and is decoupled by C8A. Harmonics produced at this stage are passed to a 32 Mc/s low-pass filter.

32 MC/S LOW-PASS FILTER

11. The megacycle harmonics are fed through a 32 Mc/s low-pass filter circuit to prevent harmonics other than those required from passing to the harmonic mixer (V4). Limited control over the cut-off frequency is provided by C7 which is adjusted to equalize the output from yhe filter at the frequencies corresponding to 28 and 29 Mc/s on the MEGACYCLE dial.

HARMONIC MIXER

12. The outputs from the 32 Mc/s low-pass filter and VFO-1 are mixed in the harmonic mixer by applying the filtered megacycle harmonics to the suppressor grid and the output from the VFO-1 to the control grid. The 37.5 Mc/s output is selected by the tuned anode load, consisting of a fixed capacitor C50 and an inductance L28 which may be adjusted by means of a dust iron core, and coupled by C51 to V6. R36 is grid stopper.

2-STAGE 37.5 MC/S AMPLIFIER (1)

13. The anode load of V6 is a tuned circuit consisting of a fixed capacitor C67 and an inductor L33 Which is tuned to 37.5 Mc/s. Frequency adjustment is by the dust iron

core L33. This stage feeds the amplified signal via C68 to the following stage V8. The 37.5 Mc/s signal is then passed to the 37.5 Mc/s band-pass filter. The anode load of this stage is provided by this filter.

37.5 MC/S BAND-PASS FILTER

14. The 37.5 Mc/s band-pass filter consists of eight under-coupled tuned circuits arranged in cascade. These filter sections may be tuned by C24, C35, C45, C55, C63, C72, C81 and C91 respectively. This filter, which has a passband of 300 kc/s, allows for possible drift in VFO-1. The narrow passband and high rejection to frequencies outside the passband prevent spurious signals from reaching the second mixer stage (V9).

37.5 MC/S AMPLIFIER (2)

- 15. The filtered 37.5 Mc/s signal is further amplified by V10 before being passed to the second mixer stage (V9). To prevent interaction between the 40 Mc/s band-pass filter and the 37.5 Mc/s tuned circuit (L50 and C113) and to enable either circuit to be adjusted without affecting the other, a balancing circuit is included which is shown in simplified form in fig. 4. The 40 Mc/s signal is introduced into the 37.5 Mc/s tuned circuit at a point of zero R.F. potential since L50 is centre tapped and C108 is adjusted to be equal to the total of the capacitance of V10 anode to chassis. C107 and the input capacitor of V9.
- **NOTE:**The anode load of V10 is adjusted to 37.5 Mc/s by adjusting the dust iron core in L50. The balancing circuit will be affected if V9 or V10 is changed.

SECOND MIXER (M2)

16. This mixer (V9) produces the second intermediate frequency of 2 – 3 Mc/s by mixing the 40 Mc/s I.F. and the 37.5 Mc/s signal. The tuned circuit formed by L300, C300 remove the 37.5 Mc/s frequency whilst the other tuned circuit formed by L301, C301 remove the 6 Mc/s frequency so that only the second I.F. is passed to the 2 – 3 Mc/s band-pass filter preceding the third mixer.

2 – 3 MC/S PRE-TUNED BAND-PASS FILTER

17. This filter consists of two pre-tuned band pass filter sections. The characteristic impedance of the filter is 1000 ohms.

THIRD MIXER

- 18. The output from the 2 3 Mc/s band-pass filter is resistance-capacitance coupled to the signal grid of V25 together with the output (3.6 4.6 Mc/s) from the second V.F.O. amplifier V11 when the V.F.O. switch (S300) is set to the INT. position. With the V.F.O. switch set to the EXT. position, V11 operates as a buffer amplifier. This mixer (V25) produces the third intermediate frequency of 1.6 Mc/s. The signal is then fed to a 1.6 Mc/s band-pass filter which forms the anode load of this stage.
- 19. The 1.6 Mc/s band-pass filter consists of two double-tuned I.F. trans- formers, the first section of the filter is formed by C320, L306, L309 and C325 and the second section by C332, L313, L314, C334. This filter has a bandwidth of 13 kc/s.

SECOND VARIABLE FREQUENCY OSCILLATOR (VFO-2)

- 20. The second variable frequency oscillator, covering a frequency range 3.6 to 4.6 Mc/s, is an electron coupled Hartley circuit embloying one half of double-triode V12. The oscillator frequency is determined by an inductance L55, two fixed capacitors C303, C305, a trimming capacitor C306 and a variable capcitor C301. The KILOCYCLES scale which is calibrated between 0 and 1000 kc/s is coupled to this variable capacitor.
- 21. The output from VFO-2 is resistance-capacitance coupled to the grid of V12A, a cathode-follower stage. With the V.F.O. switch set to the INT. position the output from V12A is fed via PL305 and PL300A to the control grid of the second v.f.o. amplifier V11. In the EXT. position the external 3.6 to 4.6 Mc/s signal is fed to V11.

FOURTH MIXER

22. The output from the 1.6 Mc/s band-pass filter is directly coupled to the signal grid of a pentagrid valve V26; it is mixed with a 1.7 Mc/s signal from V27 fed via the coupling capacitor C339 to the oscillator grid of V26. The resistor R68 completes the d.c. path from this grid to earth. The 100 kc/s output from this mixer stage is then fed via SK6, PL6 to the crystal filter unit.

1.7 MC/S CRYSTAL OSCILLATOR/AMPLIFIER

23. The frequency from the crystal oscillator C27 may be set precisely to 1.7 Mc/s by adjusting the trimming capacitor C337. The crystal XL300 which is connected between the control grid and the screen grid is electron coupled to the anode. When an external signal is applied to socket SK303A the valve operates as an amplifier. The output from this circuit is fed via C339 to the oscillator grid of the fourth mixer V26.

CRYSTAL FILTER

24. Six alternative switched I.F. bandwidths are available as follows:-

$$\begin{array}{c} 100 \text{ c/s} \\ 300 \text{ c/s} \end{array} \right\} \text{ Crystal} \\ \begin{array}{c} 1.2 \text{ kc/s} \\ 3.0 \text{ kc/s} \\ 6.5 \text{ kc/s} \\ 13.0 \text{ kc/s} \end{array} \right\} \text{L} - \text{C}$$

25. In the crystal positions the fourth mixer anode is connected to L48 in the crystal filter. L47 and L49 provide a balanced output which is tuned by capacitors C109 and C110. In the 100 c/s position, the balanced output is connected via crystals XL2 and XL5 to the first tuned section of the 100 c/s L-C filter. The differential trimmer C118 is the phasing control for this bandwidth. XL3, XL6 the capacitor C119 form a similar circuit for the 300 c/s position. Damping resistors R64 and R65 are connected across the tuned circuits to obtain the required bandwidth.

100 KC/S L-C FILTER

26. This filter consists of four tuned circuits arranged in cascade. In the L-C bandwidth positions, the signal is fed to the tuned circuit formed by L61 and the combination of the capacitors C145, C146, C146A and C147. The second section consists of L62

and L63 in series with C152, C152A and C153. The final section consisting of L68 and L71 in series with C161 and C162, is damped by the series resistors R86, R87A and R88 according to the bandwidth. In the L-C positions the output is taken from a capacitive divider formed by C161 and C161A with C170, to equalize the gains in the L-C and crystal bandwidth positions.

- 27. The L-C banwidths are obtained by varying the degree of coupling between each section of the filter in addition to the damping resistors in the final stage. The capacitor C175 is included to compensate for the effective reduction of the input capacitance of V14, appearing across the tuned circuit, when switching from crystal to L-C positions.
- 28. To maintain the input capacitance of the L-C filter, in the crystal positions, a trimming capacitor C148 is switched into circuits. This trimmer is adjusted to be equal to the output capacitance of V26 and the screened cable. In the crystal bandwidth positions, the L-C filter is operating in its narrow bandwidth positions, i.e. 1.2 kc/s.
- **NOTE:**The 470-kilohm damping resistors R77 and R80 are disconnected except during filter alignment.

FIRST 100 KC/S I.F. AMPLIFIER

29. The output from the L-C filter is passed through a coupling capacitor C164 to the control grid of the pentode amplifier valve V14. This grid is returned via R96 to the A.V.C. line which is filtered at this point by R102 and C173. The screen potential is derived from a potential divider formed by R93, R97 and RV4. This stage is coupled to the second I.F. amplifier and the I.F. output stage by a double tuned transformer having an over-coupled characteristic.

SECOND 100 KC/S I.F. AMPLIFIER

30. The signal from the first I.F. transformer is fed through the grid stopper R114 to the control grid of the second I.F. amplifier. H.T. is supplied to the screen via the dropping resistor R113 and is decoupled by C181. The anode load is tuned circuit consisting of L77, C192 and C191. This circuit is heavily damped by R112. The secondary winding L78 and L79 is tuned by C195 and C195B with R120A as a damping resistor. The output is fed to the diode detector anode.

DIODE DETECTOR

31. The low potential end of L79 is connected through the R.F. filter (C209, R128, C210, C219 and C211) to the diode load R130. With the meter switched to R.F. LEVEL, the meter indicates the detector diode current. The resistor R131 is included to complete the diode detector circuit when the meter is switched out of circuit.

NOISE LIMITER

- 32. The noise limiter diode (pins 2 and 5 of V21) is connected in a series circuit to operate at approximately 30% modulation. its operation is explained with reference to fig.5.
- 33. The d.c. path from point A is through R134, R135, the diode and R137. The A.F. signal path from detector diode load is through C216, the diode and C218 when S8 is open. In the presence of a signal, a negative potential varying with the depth of modulation, will be developed at point A thus causing the diode to conduct. The negative potential

at B, will be lower than at A and will be maintained at a constant level due to the long time constant of R134 and C217. R135 allows the cathode potential to vary in sympathy with the modulation provided the modulation depth does not exceed 30%. The potential appearing at the cathode of the noise limiter diode therefore consists of a steady negative potential with the modulation superimposed. When noise impulses corresponding to high modulation peaks appear at point A and via C216 at point C, the voltage across the diode changes sign thereby causing the diode to stop conducting and open-circuit the A.F. signal path. With S8 in the OFF position the limiter is inoperative.

A.V.C. AND T.C. DIODE

34. The signal appearing at the anode of V16 is passed through the capacitor C139 to the anode of the A.V.C. diode. The diode load is formed by R116. A positive potential derived from R120, R121 and R122, supplies the required A.V.C. delay voltage to the cathode of this diode. When A.V.C. switch is in the SHORT position and the SYSTEM switch set to a position in which the A.V.C. is operative, i.e. A.V.C., CAL. or CHECK B.F.O., the anode of the A.V.C. diode is connected to the A.V.C. line via L81 and R127. The choke L81 is tuned by C203 to a frequency slightly below 100 kc/s so that is presents a small capacitance at 100 kc/s, thus R127 is prevented from shunting the diode load. When the signal level falls, the capacitors C182 and C173 discharge through R118, R127 and L81 into the diode load resistor R116. The A.V.C. potential is brought out via R123 to the tag strip at the rear of the receiver for external use if required. With the SYSTEM switch set to the MANUAL position, the A.V.C. line is connected to the R.F./I.F. GAIN control RV1, thus the gain of the 100 kc/s amplifiers may be varied by adjusting the negative potential applied to the A.V.C. line.

AUDIO OUTPUT

- 35. Audio frequencies are applied to the control grid of V23B via RV2 the A.F. GAIN control. The output transformer (T2) provides four separate outputs as follows: 1W into 3-ohms, and three windings supplying 3mW into 600- ohms.
- 36. The internal loudspeaker (which may be switched out of circuit by operating S11) is connected across the 3-ohm winding. The headphone jacks JK1 and JK2 are connected across one of the 600-ohms windings.

A.F. LINE OUTPUT

37. The audio frequencies are also applied to the grid of V23A via RV3, the A.F. GAIN LEVEL control; this control presets the level from output transformer T3. The transformer provides a 10mW output at 600-ohms which is suitable for direct connection to landlines. A bridge rectifier MR1 is connected across the output via R142 and R143. Th meter may be switched across the rectifier circuit so that the operator can monitor the A.F. output.

BEAT FREQUENCY OSCILLATOR

38. The beat frequency oscillator (V19) employs an electron-coupled Harley circuit. The oscillation frequency is determined by a fixed inductor L82 and a variable capacitor C200 in parallel with C202 and C201. the trimming capacitor C201 is adjusted to

produce an output frequency of preisely 100 kc/s when the beat frequency oscillator frequency control is set to zero. Bias is applied to this valve by C199 and R125.

39. The B.F.O. output is coupled to the diode detector anode via C215. The B.F.O. is supplied with H.T. via S7 except when SYSTEM switch is in the CAL. or STANDBY positions.

100 KC/S I.F. OUTPUT

- 40. The control grid of V17 is connected to the secondary of the first 100 kc/s I.F. transformer which feeds the stage with the 100 kc/s signal. The screen resistor R108 and the cathode bias resistor R115 are of the same values as used in the scond 100 kc/s I.F. amplifier, hence the A.V.C. characteristic of this stage is identical to that of the main receiver. The anode load resistor R109 feeds the auto transformer L76 via blocking capacitor C189. This transformer provides a 70-ohms output at PL8 and PL9 for external applications.
- **NOTE:**PL8 and PL9 are connected in parallel, therefore only one 100 kc/s output is available at 75-ohms, and to avoid a mismatch the other connection should be made at high impedance.

CRYSTAL CALIBRATION

- 41. The crystal calibrator, controlled by the 1 Mc/s crystal or by the 1 Mc/s standard input to V1, feeds signals at 100 kc/s intervals to the signal grid of the third mixer stage to provide calibration check points. The calibration can only be carried out when the V.F.O. switch S300 is set to the INT. position.
- 42. The 1 Mc/s signal, fed through SK2, is connected through PL2 and the grid stopper R83 to the first grid of the mixer valve V13. The anode load consists of a 100 kc/s tuned circuit (L70, C167) and is coupled to the control grid of V15 through the capacitor C168. The anode load of V15 (L75, C117) is tuned to 900 kc/s and is coupledvia C178 to the third grid of V13. V15 is heavily biased so that it functions as a frequency multiplier.
- 43. An output of 900 kc/s, appearing across the tuned circuit (L75, C177) is coupled to grid 3 of V13 thereby producing a difference frequency of 100 kc/s relative to the 1 Mc/s input. The 100 kc/s output appears across the anode tuned circuit (L70, C167) and is fed to the control grid of V15. The ninth harmonic is selected in turn by the anode tuned circuit (L75, C177) of V15 and fed back to the third grid of V13 to provide the beat frequency of 100 kc/s with the 1 Mc/s input. This crystal controlled regenerative circuit is thus self-maintaining. The 100 kc/s output is obtained from the coil L69 which is mutually coupled to L70 and fed via the octal plug (PL7) to the cathode-follower V12A.

POWER SUPPLIES

44. The primary of the mains transformer is tapped to provide for inputs of 100 – 125 and 200 – 250V. To remove mains-borne interference the capacitors C224 and C225 are incluced. The secondary winding of T1 feeds a bridge-connected full-wave rectifier MR4, MR5, MR6 and MR7 whose output is filtered by C206, L80 and C198 and fed via the receiver muting relay RL1/1 to the SYSTEM switch S5. A 120-ohm resistor R124 is connected between the negative line and earths thus providing a negative 25V d.c. supply for gain control purposes.

SYSTEM SWITCH

MANUAL

(2)

- 45. The following conditions exist for each setting of the SYSTEM switch. The link on H.T. adaptor terminal is assumed to be in position.
- (1) STANDBY S5A disconnects the H.T. from all stages and connects R119A across the H.T. as a compensating load.
 - (a) The H.T. passes through S5A, S5B and S5C to all stages except the calibration unit.
 - (b) S5F connects H.T. to the B.F.O. when S7 is switched on.
 - (c) The A.V.C. line is disconnected from the A.V.C. diode by S5D and connected to the R.F./I.F. GAIN control (RV1) by S5E.
- (a) (2)(a) and (2)(b) are applicable.
 (b) S5D connects the A.V.C. line to the A.V.C. diode.
- (4)
 (a) H.T. is applied via S5A, S5B and S5F to all stages except:-The R.F. amplifier (V3) The first V.F.O. (V5)
 - The first mixer (V7)
 - The second mixer (V9) The final 37.5 Mc/s amplifier (V10) The B.F.O.

(5) CHECK B.F.O.

- (a) (4)(a) applicable except that H.T. is also applied to the B.F.O. via S7.
- (b) (3)(b) applicable.

"S" METER

46. The "S" meter is connected between the cathode of V14 and a point of preset (RV4) positive potential. It is calibrated to provide an indication of signal strengh; a 1μ V signal provides a typical reading of between "S1" and "S3" and ascending "S" points in approximately 4 dB steps. The variation in treshold is dependentupon the gain of the R.F. stages. It should be remembered that only with the R.F./I.F. GAIN control

at maximum is the correct calibration maintained.

9. Maintenance

WARNING! The receiver will, under normal conditions, remain in alignment over an extremely long period time, consequently ALL POSSIBIL-ITY OF OTHER CAUSES OF LOW SENSITIVITY SHOULD BE ELIM-INATED BEFORE RE-ALIGNMENT IS CONSIRED, and should then only be undertaken by order of the Engineer responsible for the maintenance of the equipment.

Should it become necessary to re-align any part of the receiver only a very small angular adjustment of the trimmers should be necessary unless units have been changed.

TEST EQUIPMENT REQUIRED FOR MAINTENANCE

- 1. The following items of test gear are required to carry out the maintenance described in this section of the manual:-
 - (1) Valve voltmeter reading up to 10V at frequecies up to 70 Mc/s.
 - (2) Signal generator capable of operating on fundamental frequencies up to 40 Mc/s.
 - (3) Digital frequency meter measuring frequencies at least up to 2 Mc/s.
 - (4) Multimeter measuring A.C. and D.C. quantities up to 500V with recistance of 20,000 ohms per volt.
 - (5) Heterodyne wavemeter measuring 40 70 Mc/s.
 - (6) Telephone headset (low impedance).
 - (7) Output power meter.
 - (8) Noise generator TF1106 Marconi. (or similar)
 - (9) Miscellaneous: viz. 0.1μ F capacitor, 4.7 kilohms resistor and 12pF trimmer capacitor.
- **NOTE:** Major uses of the RA.117 receiver are advised to obtain factory type test jigs for alignment of the various units. details of these jigs and specially designed test gear will be supplied on request. A supplement to "ALIGNMENT PROCEDURES" describing the employment of this gear can be made available to such users./par

[25]

10. Spurious Responses

ORIGINS OF SPURIOUS RESPONSES

- 1. In a high sensitive receiver, precautions against internally generated spurious responses are essential. To this end, various sections of the receiver have been carefully screened and the power supplies filtered.
- 2. Any reduction in the screening efficiency or the failure of any filtering component may results in spurious signals being generated. It is therefore essential to ensure that the bonding surfaces are clean and that all securing screws are tight. Spurious responses in the receiver may occur from the following main causes:-
 - (1) 37.5 Mc/s break-through from the second mixer V9 to the third mixer V25.
 - (2) Break-through of 1 Mc/s harmonics.
 - (3) Break-through of B.F.O. harmonics.
 - (4) Responses at 3.800 and 4.000 Mc/s due to second v.f.o. break- through.
 - (5) Responses of 1.7 and 3.4 Mc/s due to 1.7 crystal oscillator break-through.
 - (6) Response of 3.2 Mc/s due to 6 Mc/s break-through.

CHECKS FOR SPURIOUS RESPONSES

3. Spurious responses are measured relative to receiver noise in the following manner:-When response is located, the receiver is de-tuned from it just sufficiently to render the beat inaudible. The A.F. gain is then adjusted to provide a convenient noise reference output (1mW) and the receiver retuned to the spurious signal for maximum output. The dB rise in audio output is a measure of the spurious signal level relative to receiver noise.

Standard conditions of test:

No connection to aerial socket System switch to MAN. R.F./I.F. Gain at MAX. B.F.O. on 3 kc/s bandwidth R.F. ATTENUATOR at MIN. Set V.F.O. switch to INT.

37.5 MC/S BREAK-THROUGH TO THIRD MIXER

4. Switch R.F. RANGE Mc/s to WIDEBAND 75-ohms. This response will be indicated as a beat note which varies rapidly in frequency with respect to the KILOCYCLES scale, i.e. a change of 1 kc/s on the scale results in a much larger change in the note. It will also move along the KILOCYCLES scale if the MEGACYCLES dial is adjusted slightly. This response may be eliminated by adjusting the 37.5 Mc/s strap (L300 at second mixer anode).

[26]

6 MC/S BREAK-THROUGH

5. When the receiver is tuned to 3.2 Mc/s the first v.f.o. frequency is 43.5 Mc/s. This reaches the second mixer and combines with 37.5 Mc/s giving a stable 6 Mc/s which may pass through the 2.3 Mc/s BPF where it combines with the second v.f.o. running at 4.4 Mc/s giving 1.6 Mc/s which then follows normal paths. This can be tuned out by L301.

1 MC/S HARMONIC BREAK-THROUGH

6. Switch R.F.RANGE Mc/s to WWIDEBAND 75-ohms. 1 Mc/s break-through responses appear at 0 and 1,000 on the KILOCYCLES scale at each setting of the MEGACYCLES dial and are generally more prominent with wideband input. If the response is dependent upon the setting of the MEGACYCLES dial, the 1 Mc/s spectrum is probably breaking through to the first mixer stage. If the response is independent of the MEGACYCLES dial setting, it is due either to break-through of the second and/or third harmonic to the second or third mixer stage. Remove second mixer valve to eliminate this stage and so determine in which stage the break-through occurs.

FIRST V.F.O. HARMONICS

7. Spurious responses may occur at 4.5, 5.5 and/or 17.5 Mc/s, if C42A and/or C194A are open circuit. These responses are caused by the harmonics of the first v.f.o. breaking through to the second mixer stage and beating with the harmonics of the 37.5 Mc/s heterodyne voltage.

B.F.O. HARMONICS

8. These responses may be detected at 100 kc/s intervals between 1 and 1.5 Mc/s when the B.F.O. frequency is 100 kc/s and the receiver aerial input is tuned.

SECOND V.F.O. BREAK-THROUGH

- 9. Responses may occur at 3.8 and 4.3 Mc/s with tuned aerial input. Ascertain that the first and second v.f.o. are not in contact, that the v.f.o. chassis is well bonded to the main chassis and the fixing screw are tight.
- NOTES: A failure in any one of the following capacitors C66, C92, C96, C97, C98, C103 or C104 may result in increased 'end of band' responses. These responses will disappear when the MEGACYCLE dial is detuned. The failure of C117, C327, C207, C208 or C214 can result in 'end of band' responses, or B.F.O. harmonic break-through. Detuning the MEGA- CYCLES dial will have no effect.

1.7 MC/S BREAK-THROUGH

10. Responses may occur at 1.7 and 3.4 Mc/s with tuned aerial input due to radiation from the 1.7 Mc/s crystal oscillator. Ascertain that bonding is effective between the 1.7 Mc/s oscillator/mixer chassis and the first V.F.O. chassis.

11. Fault Diagnosis

INTRODUCTION

- 1. The following notes and test procedures enable the faulty section of the receiver to be determined with the minimum of delay. Unless other- wise stated the meter on the front panel is used for measuring purposes. This is set to R.F. LEVEL and the reference figure is 100μ A for all sensitivity tests.
- 2. Since the audio stages of the receiver are conventional and accessible, normal practice will serve to trace any fault which may occur in this section.

TEST EQUIPMENT REQUIREMENTS

- 3. The following test equipment will be required:
 - (1) Valve Voltmeter.
 - (2) 12pF trimmer capacitor.
 - (3) Signal generator.
- **NOTE:**The input capacitance of the valve voltmeter must be padded to 12pF by the trimmer or alternatively by a fixed capacitor. Before the value or the trimmer or the fixed capacitor can be selected, the input capacitance of the valve voltmeter must be know. If the trimmer is used this should be connected across a capacitance bridge and set to the required value.

FAULT DIAGNOSIS

4. Set the controls on the front panel as follows:-

A.F. GAIN set to max. R.F./I.F. GAIN set to max. B.F.O. switch to off. LIMITER switch to OFF. SYSTEM switch to MAN.

- 5. Remove the valve V12 and crystals XL1 and XL300, and connect the output of the signal generator to socket SKT303.
- 6. Set the BANDWIDTH control to 100 c/s and tune the signal generator for maximum indication on the meter at 100 kc/s. Switch through the bandwidth positions. The sensitivity should be approximately as follows:-

 $\begin{array}{l} 3 \ \mathrm{kc/s} & \mathrm{less \ than \ 800 \mu V} \ \mathrm{for \ a \ deflection \ of \ 100 \mu A} \\ 100 \ \mathrm{c/s} & \\ 300 \ \mathrm{c/s} & \\ 1.2 \ \mathrm{kc/s} & \\ 6.5 \ \mathrm{kc/s} & \\ 13.0 \ \mathrm{kc/s} \end{array} \right\} \ \mathrm{To \ be \ within \ 10dB \ of \ sensitivity \ measured \ on \ 3\mathrm{kc/s \ position}} \\ \end{array}$

7. In the event of the figure above not being realized, the renewal of one or more of the following valves will probably effect an improvement.

[28]

- V26 Fourth mixer
- V14 First I.F. amplifier
- V16 Second I.F. amplifier
- V27 1.7 Mc/s oscillator/amplifier
- 8. Set BANDWIDTH control to 3 kc/s. Refit the 1.7 Mc/s crystal XL300. Connect the output of the signal generator to socket SKT301 (pink) and tune the generator to a frequency of 1.6 Mc/s. The sensitivity should be better than 75μ V for 100μ A.
- 9. In the event of the figure above not being realized the renewal of V25 will probably effect on improvement.
- 10. Refit the valve V12 and set the KC/S scale to 500. Connect the output of the generator socket SKT11 and set generator to a frequency of 2.5 Mc/s approximately and tune for maximum deflection on the meter. The sensitivity should be better than 250μ V for 100μ A.
- 11. Set the kc/s scale to 0 kc/s and 1000 kc/s and the signal generator to 3 and 2 Mc/s respectively. The sensitivity should not vary from 250μ V by more than 3dB.
- 12. The maximum difference between check point should not exceed 3dB. The renewal of V11, or V9 will probably effect an improvement if this figure is not met, providing that the conditions outlined in previous paragraphs have been achieved.
- 13. Refit the crystal XL1 and check the 1 Mc/s output (SKT2 on top of the main chassis) with the valve voltmeter to ensure that there is at least 2V output.

(a)	Signal Input to: Junction of	Frequency 1,000 c/s	Input 0.8V	Output 50mW in 3 ohms	Remarks AUDIO GAIN MAX.
	C218 and C221B	1,000 c/s	1.0V	10 mW in $600 ohms$	A.F. LEVEL MAX. R.F. & I.F. GAIN
		, ,		(output to line)	MIN. B.F.O. off. LIMITER off.
(b)	Grid V16	100 kc/s c.w	360mV level	$100\mu A$ R.F.	B.F.O. off
	Grid V14	100 kc/s c.w	$850\mu V$ level	$100\mu A$ R.F.	SYSTEM switch MAN. R.F./I.F.
				GAIN MAX.	
	Socket SKT303	100 kc/s c.w	$800\mu V$ level	$100\mu A$ R.F.	1Mc/sand1.7Mc/scrystalsremoved.V.F.O.switchsettoEXT.
					Mc/s scale set to 20.
$\langle \rangle$	C : 1 C	22M /			BANDWIDTH 3kc/s.
(c)	Grid of	2.2 Mc/s c.w	25μ V	$100\mu A$ R.F.	1 Mc/s and 1.7Mc/s
	(TD2)	25 Ma/a a W	25.0V		crystals re-inserted
	(113)	2.5 MC/S C.W	25μ V	$100\mu A$ n.f.	$V = \Omega$ switch sot
		2 9 Mc/s c w	$25\mu V$	$100\mu A B F$	to INT Image response
		2.0 110/5 0.1	level	100µ11101	(i.e. receiver frequency
			10101		plus 200 kc/s should be
					at least 60db down.
(d)	Aerial input	3.5 Mc/s c.w	$250 \mathrm{mV}$	0.5 at TP2	WIDEBAND 75-ohms
()	(WIDEBAND				INPUT R.F.
	75-ohms)				ATTENUATOR MIN. V5
					and V7 removed. Valve
					voltmeter input shunted to
					12pF.
(e)	Aerial input	3.5 Mc/s c.w	$250 \mathrm{mV}$	0.5 at TP3	WIDEBAND INPUT
. ,	(WIDEBAND	,			R.F. ATTENUATOR
	75-ohms)				MIN. V5 and V7 refitted.
	,				V9 and 1 Mc/s crystal
					removed. Valve voltmeter
					input shunted to $12 pF$.
					MEGACYCLES scale 3.
(f)	Grid V10	$37.5 \mathrm{Mc/s} \mathrm{c.w}$	$100 \mu V$	1V at TP3	V9 and V5 and $1Mc/s$
	Grid V8			$70 \mu V$	crystal removed
	TP1			$8 \mathrm{mV}$	Valve volt- meter input shunted to 12pF.

12. Representative Test Data

(g) With the 1 Mc/s crystal in place, the output at socket SKT2 should be approximately

[30]

2 volts.

(h) The level of the 37.5 Mc/s drive at TP3 should be between 2 and 10 volts at any MEGACYCLES setting.

[32]

13. General Servicing and Aligment Procedures

13.1. General Servicing

INTRODUCTION

- 1. The following tests will assist in checking the performance of the receiver.
- 2. Component layout illustrations, fig.8 to fig.23 inclusive, give an overall picture of the receiver sub-assemblies and chassis underside.
- 3. Removal of the main base cover will, without removal of further covers, reveal the power and audio stages, and the 100 kc/s I.F. amplifier chassis.
- 4. To gain acces to other stages, further covers must be removed, they are the second mixer (compartment 7) and the crystal oscillator/amplifier and harmonic generator stages (compartments 4, 5 and 6) fig. 15.

TEST EQUIPMENT REQUIREMENTS

- 5. The following test equipment will be required to carry out tests on the receiver:-
 - (1) Telephone headset
 - (2) Output power meter
 - (3) Signal generator
 - (4) Multimeter

13.2. Receiver Tests

RECEIVER OVERALL GAIN TESTS (C.W.)

- 6. Perform a sensitivity test as follows:-
 - (1) Set the controls on the receiver as follows:-

R.F.RANGE	$2-4~{ m Mc/s}$
MEGACYCLES	3
KILOCYCLES	500
R.F ATTENUATOR	MIN.
SYSTEM switch	MAN.
BANDWIDTH	3 kc/s
B.F.O. switch	ON
B.F.O. NOTE	1 kc/s
R.F./I.F. GAIN	fully-clockwise
R.F./I.F. GAIN	fully-clockwise

- (2) Set the controls of the output meter for 600 ohms impedance and a range of 6mW. Connect the output meter across one of the 600 ohm 3mW windings and terminate the other windings with resistor to match their marked impedance.
- (3) Set the controls of the signal generators for a c.w output of $1\mu V$ at 3.5 Mc/s and an impedance of 75 ohms. Connect the output of the signal generator to the antenna input of the receiver.
- (4) Tune the receiver to the output frequency of the signal generator and check that a reading of 3mW can be obtained within the range of the A.F. GAIN control.
- (5) Repeat the test with the B.F.O. switched off and a 30% modulated signal at level of 3.5μ V from the signal generator.

SIGNAL-TO-NOISE TEST

- 7. Perform a signal-to-noise test as follows:-
 - (1) Set the receiver controls as follows:-

R.F. RANGE	$1-2~{ m Mc/s}$
MEGACYCLES	1
KILOCYCLES	500
R.F. ATTENUATOR	MIN.
SYSTEM switch	MAN.
BANDWIDTH	3 kc/s
B.F.O. switch	ON
B.F.O. NOTE	1 kc/s
A.F. GAIN	fully-clockwise
SPEAKER	OFF

- (2) Set the controls of the output meter for an impedance on 3 ohms and a power range of 60mW and connection it to the 1W 3 ohm output terminals of the receiver.
- (3) Set the controls of the signal generator for a c.w output of $1\mu V$ at 1.5 Mc/s and an impedance of 75 ohms. Connect the output of the signal generator to the receiver antenna input socket.
- (4) Tune the receiver to the output frequency of the signal generator and adjust the R.F./I.F. GAIN control a reading of 50mW on the output meter.
- (5) Switch off the input signal and check that the output meter does not reade more than 0.82mW.
- (6) Repeat the test with a 30% modulated signal at a level of 3.5μ V and the receiver B.F.O. switched off.
- (7) Perform signal-to-noise ratio tests at 3.5, 6.5, 12.5 and 24.5 Mc/s.

A.V.C. TEST

- 8. Perform a test of the A.V.C. circuits as follows:-
 - (1) Set the controls of the receiver as follows:-

R.F. RANGE	$2-4 \mathrm{Mc/s}$
MEGACYCLES	3
KILOCYCLES	500
R.F./I.F. GAIN	fully-clockwise
R.F. ATTENUATOR	MIN.
SYSTEM switch	A.V.C.
A.V.C. switch	SHORT
BANDWIDTH	3 kc/s
B.F.O. switch	OFF

(2) Set the controls of the output meter for an impedance of 3 ohms and power range of 200mW. Connect the meter to the 1W 3-ohm terminals of the receiver.

- (3) Set the controls of the signal generator for a 30% modulated signal of $1\mu V$ at 3.5 Mc/s and an impedance of 75 ohms. Connect the signal generator output to the receiver antenna input socket.
- (4) Tune the receiver to the output frequency of the signal generator and adjust A.F. GAIN control until the output indicates 10mW.
- (5) Increase the output of the signal generator to 100 mV (+100dB) and check that the reading on the output meter does not exceed 50mW (+7dB on 10mW).

A.F. LEVEL METER TEST

9. Perform a test of the A.F. LEVEL meter calibration as follows:-

- (1) Set the controls of the output meter for an impedance of 600 ohms and a power range of 120mW. Connect the meter across the 600-ohm 10mW output terminals.
- (2) Set the controls of the signal generator for a 30% modulated output of 3.5 Mc/s at an impedance of 75 ohms and a level of 5μ V. Connect the signal generator to the antenna input socket of the receiver.
- (3) Tune the receiver to the output frequency of the signal generator and adjust the A.F. LEVEL control until the meter reads exactly 10mW. Check that the external output meter reads within 1dB of 10mW.
- **NOTE:** It is important that the A.F. LEVEL control is not turned towards its maximum position unless the 10mW 600-ohm winding is suitably terminated with a load.

NOISE FACTOR TEST

10. Perform a noise factor tests as follows:-

(1) Set the receiver controls as detailed below:-

R.F. RANGE	$16-30~{ m Mc/s}$
MEGACYCLES	29
KILOCYCLES	0
SYSTEM switch	MAN.
R.F. ATTENUATOR	MIN.
BANDWIDTH	3 m kc/s
B.F.O. switch	ON
LIMITER	OFF
R.F./I.F. GAIN	maximum gain position
B.F.O. NOTE	$\pm 1 \text{ kc/s}$
SPEAKER	ON

- (2) Set the noise generator RANGE switch to OFF.
- (3) Connect the noise generator output to the receiver antenna input socket.
- (4) Set the controls of the output meter for an impedance of 3 ohms and a power range of 60mW and connect it to the 1W 3-ohm output terminals of the receiver.
- (5) Set the A.F. GAIN control for a convenient level and adjust the MEGACYCLES tuning and R.F. TUNE controls for maximum noise in the loudspeaker.
- (6) Adjust the A.F. GAIN control to obtain a reading of approximately 10mW on the output meter. Check that the MEGACYCLES and R.F. TUNE controls are set for maximum output and then reset the A.F. GAIN control for exactly 10mW.

- (7) Set the noise generator RANGE switch to 0 10.
- (8) Adjust the noise generator output level control until a reading of 20mW is obtained on the output meter.
- (9) The noise factor of the receiver is given by the noise generator meter reading for the range in use.
- (10) Perform noise factor tests at 1.5, 3, 6, 12 and 24 Mc/s, the noise level should not exceed 7dB throughout the entire frequency range.
14.1. Introduction

- 11. The receiver will, under normal conditions, maintain the factory alignment over an extremely long period of time. Consequently ALL POSSIBILITY OF OTHER CAUSES OF TROUBLE SHOULD BE ELIMINATED BEFORE RE-ALIGNMENT IS CON-SIDERED.
- 12. If it becomes necessary to re-align any part of the receiver, only a very small angular adjustment of any trimmer should be necessary. The signal generator must have a high degree of frequency resetting accuracy and be very stable.
- 13. Unless otherwise stated, the front panel mounted meter is used as the output indicator.

14.2. 100 kc/s I.F. Amplifier

FIRST AND SECOND I.F. AMPLIFIER

- 14. Remove the second v.f.o. valve V12. Set the SYSTEM switch to MAN, the R.F./I.F. GAIN to MAX and the meter switch to R.F. LEVEL. Connect the signal generator (100 kc/s c.w) via a 0.1μ F capacitor to the grid of V16 (pin 1) Adjust C191 to obtain maximum indication on the meter. The output from the generator required to produce 100μ A deflection on the meter should be approximately 320mV. Connect the signal generator via a 0.1μ F capacitor to the grid of V14 (pin 1) and connect a 4.7-kilohms damping resistor across L72. Adjust C179 and C195B to give maximum indication.
- 15. Remove the 4.7-kilohms resistor from L72 and connect it across L73. Adjust C171 for maximum indication. Remove the 4.7 kilohms resistor. The signal generator output required to produce a 100μ A deflection should be approximately 800μ V. Tune the signal generator through the passband and note the 'double peak' response. The peak separation should be approximately 9 kc/s and be symmetrical about 100 kc/s. If the peak amplitudes differ, slight re-adjustment of C195B will compensate for this. The 6dB bandwidth should be approximately 14 kc/s.

14.3. 100 kc/s (L-C) Filter

- 16. Remove the left hand gusset plate. Remove the 1.7 Mc/s crystal XL300 and set the controls as in 14 above. Connect the output signal generator (100 kc/s) to socket SKT303. Remove the L-C filter can. Locatethe two red free-ended leads connected at one end of the trimming capacitors C153 and C158 in the second and third sections of the filter and connect the free ends to their respective 470k damping resistor R77 and R80 at the terminal post ends. Replace the filter can. Set the bandwidth to 100 kc/s. Tune the signal generator to give maximum indication on the front panel meter then switch to 1.2 kc/s. The frequency of this setting should be within ± 100 c/s of 100 kc/s. Adjust the trimming capacitors C162, C158, C153 and C147 in this order several times until maximum output is obtained.
- 17. Remove the L-C filter can and disconnect the red leads from the terminal post ends of the 470-kilohms resistors. Replace the filter can. Set the controls of the signal generator

-6dB	-66dB	Sensitivity for $100\mu A$
$3.0 \ \mathrm{kc/s}$	15 kc/s	Less than $200\mu V$ (Measured in-
		put becomes reference level)
$100 \mathrm{~c/s}$	Less than 1.5 kc/s)
300 c/s	Less than 2.0 kc/s) To be within 10dB of
$1.0 \ \rm kc/s$	8 kc/s) reference level
7.0 kc/s	22 kc/s) measured on 3
13.0 kc/s	35 kc/s) position

for an output of 200μ V approximately for 100μ A on front panel meter. Check that the bandwidths agree (approximately) with the following figures:-

Crystal Filter

- 18. Remove the 1.7 Mc/s crystal XL300 and set the controls as in 14. above. Set the BANDWIDTH switch to 300 c/s. Connect the signal generator to socket SKT303. Tune the signal generator slowly through the passband and observe the crystal responses $(f_1 \text{ and } f_2)$. Care must be taken as the tuning of these is very sharp. Retune the signal generator to the mean of f_1 and f_2 and adjust C110 and C148 for maximum output. Reset the signal generator frequency to 100 kc/s and adjust the output to produce a reading of 100μ A. Set the generator frequency to 101,025 c/s, increase the output by 66dB and adjust the phasing control C199 to obtain minimum output (i.e. the point of recection occurs). Increase the generator frequency slowly and ascertain that the meter reading does not exceed 100μ A. Slowly decrease the signal frequency until 100μ A reading is obtained and check that the frequency is not greater than 100,900 c/s. Tune through the passband, adjusting the signal generator output as necessary to avoid meter damage. Note the highest frequency at which a signal generator output equal to that used at 101,025 c/s gives an output an output of a 100μ A. This frequency should not be less than 99,100 c/s.
- 19. Slowly decrease the signal frequency and ensure that the output does not rise above 100μ A. Decrease the generator output by 66dB and re- check the frequency response within the passband, re-adjusting C110 and C148 if necessary. Set the signal generator frequency to 100 kc/s and adjust the output for 100μ A level. Increase the signal generator output by 6dB and check the bandwidth for 100μ A output. The bandwidth should be between 270 and 330 c/s and the mid-position should not deviate from 100 kc/s by more than 25 c/s. The sensitivity should be approximately 200μ V for 100μ A deflection.
- 20. Switch the BANDWIDTH control to 100 c/s. Repeat the procedure with signal generator frequency settings of 100,925 c/s, 100,800 c/s and 99,200 c/s. Adjust the phasing capacitor C118 only. The 6dB bandwidth should be between 80 and 120 c/s and the deviation from the mean less than 25 c/s. For 100μ A output, the input should be approximately 150μ A.
- 21. Disconnect the signal generator and refit the 1.7 Mc/s crystal.

Use of Digital Frequency Meter

22. The alignment of the I.F. amplifier and in particular the crystal filter involves the measurement of frequencies to far greater accuracies than those normally obtainable

Alignment Procedures

from signal generators. A digital frequency meter should therefore be employed. The equipment should be connected to SK8 or SK9. The exact frequency passing through the circuit will be displayed on the indicator panel. Should the level of output at any time during the alignment procedure be insufficient to drive the frequency meter, the signal generator output can be increased to obtain the frequency check but must be restored to the lower value for level measurements. When such increases are made, the meter on the receiver panel should be switched to A.F. LEVEL to avoid damage.

14.4. Second V.F.O.

Minor Corrections

- 23. The variable capacitor has been carefully adjusted and should not be re-adjusted unless absolutely necessary. Minor corrections can be made as follows:-
 - (1) Set the SYSTEM switch to CAL.
 - (2) Set the KILOCYCLES cursor in line with the MEGACYCLES cursor (i.e. central)
 - (3) Ensure that the B.F.O. switch is OFF.
 - (4) Rotate the R.F./I.F. GAIN to MAX.
 - (5) Set the BANDWIDTH switch to 3 kc/s.
 - (6) Set the KILOCYCLES scale to zero (0 kc/s) and adjust the capacitor C306 to give zero beat note in the loudspeaker.
 - (7) Set the KILOCYCLES scale to that zero beat point which is nearest to the 1000 kc/s position.
 - (8) Lock the drive sprocket.
 - (9) Adjust the position of the film scale to produce a correct calibration.
- **NOTE:** When moving film scale relative to the sprockets, grip both sides of the film scale in order to create a loop which will allow the film to slide round the drive sprocket; the drive sprocket is on the left when facing the receiver and hence movement of the film scale will have to be to the left.
 - (10) Repeat (6) to (9) until an adequate degree of accuracy is obtained.

IMPORTANT NOTE: The tuning slug of L55 has been sealed by the manufacturer and must not be touched under any circumstances.

Replacement of Variable Capacitor

- 24. The procedure described below should not normally be carried out unless the variable capacitor C310 is being replaced. Before electrical adjustment, the following mechanical points should be verified:-
 - (1) Check that the fixed and movable vanes of C310 are fully meshed.
 - (2) Check that the distance from the cursor to the extreme end of the scale adjacent to the 1000 kc/s point, is approximately 71/2-in. Should this distance vary appreciably from 71/2-in. Carefully lift the scale from the drive and move the scale round the required position.
 - (3) Whenever the scale is replaced, endeavour to re-align by adjusting the film to the correct position before trimming.
- 25. The procedure for electrical adjustment is carried out as follows:-
 - (1) Proceed as in 24. (1) above.

(2) Check the calibration of the v.f.o. at 100 kc/s intervals; if the error exceeds 1 kc/s, adjust carefully the plates of the rotor of the variable capacitor in order to correct the calibration.

1.6 Mc/s Rejection Filter

26. Disconnect lead to SK300A and apply 1.6 Mc/s signal generator output to SKT300A. Set METER switch to S-METER and adjust core of L302 for minimum meter deflection.

B.F.O.

- 27. Set the SYSTEM switch to the CHECK B.F.O. position. Switch the meter switch to R.F. LEVEL. Switch the B.F.O. on and set the B.F.O. frequency control knib to zero. Adjust C199 as necessary to obtain zero-beat. Observe that the meter reads at least 100μ A.
- 28. If the B.F.O. frequency control knob has been removed, adjust the frequency capacitor for zero-beat with the identification mark on the shaft uppermost. Replace the knob so that the pointer indicates zero.

37.5 Mc/s Filter and Amplifier

- 29. Remove the 1 Mc/s crystal, second mixer valve V9 and first v.f.o. valve V5. Check that all the screening covers are in place. Connect a suitable valve voltmeter, shunted 12pF, to TP3. Inject an accurate 37.5 Mc/s signal at TP1. Ensure that the valve voltmeter and signal generator leads are short to avoid regeneration. Adjust L50, C90, C81, C72, C63, C55, C45, C35, C24, L28 and L33 in that order, several times, to obtain maximum output. The input required to produce 1V should be approximately 2.5mV. The 6dB bandwidth of the 37.5 Mc/s chain should lie between 229-300 kc/s. The bandwidth at 40dB should not exceed 750 kc/s. The mean of the frequencies corresponding to the 6dB points should not deviate from 37.5 Mc/s by more than 20 kc/s and more than 25 kc/s at 40dB banwidth.
- 30. C108 is adjusted to avoid interaction between the 37.5 and 40 Mc/s filters and should not normally require further adjustment. Fit the 1 Mc/s crystal, the second mixer and the the first v.f.o. valve.

1 Mc/s Oscillator

31. Connect the valve voltmeter to the 1 Mc/s output plug PL2 and adjust L2 for maximum output (2 - 3 volts). C2A may be adjusted to "pull" the crystal to the correct frequency; however, adjustment of crystal frequency should not be attempted unless a standard is available having an accuracy of better than one part in 10^7 .

Second Mixer Drive Level

32. Remove the second mixer valve V9. Connect the valve voltmeter, shunted to 12pF, to TP3. Tune through each megacycle calibration point and check that the level output lies between 2 and 10V. To equalize the drive at 28 and 29 Mc/s carefully adjust C7.

First V.F.O. Calibration

33. Slacken off the mechanical end-stop until it is inoperative. Set C76 to maximum capacity and ensure that the calibration mark at the zero end of the MEGACYCLES dial coincides with the cursor. Tighten end-stop after moving the scale free from the stop. Check that the mechanical stops operate before the capacitor end-stops become effective at both ends of the band.

- 34. To re-adjust the first v.f.o. calibration, a heterodyne wavemeter should be employed. This is Coupled very loosely to V7 by placing its input lead in the vicinity of the valve base. The 1 Mc/s crystal, V12 and V27 should be removed.
- 35. Set the wavemeter to 40.5 Mc/s and the MEGACYCLES dial to zero. Adjust L36 for zero-beat. Change the wavemeter setting to 69.5 Mc/s and the MEGACYCLES dial to 29. Adjust C77 for zero-beat. Repeat adjustment as necessary. Check the frequency calibration at 1 Mc/s intervals and ensure that the megacycle positions are reasonably central on the scale markings. Remove the first mixer valve V7 and connect the valve voltmeter, shunted 12pF, between TP2 and the chassis. Check that the valve voltmeter indicates at least 1.5V over the range. Refit the 1 Mc/s crystal, V12 and V27.

Antenna Circuit

36. Remove the first V.F.O. valve V5 and the first mixer valve V7 and set the receiver controls as follows:-

R.F. ATTENUATOR	MIN.
R.F. RANGE MC/S	$1-2~{ m Mc/s}$
SYSTEM switch	MAN.
R.F./I.F. GAIN	MAX.

- 37. Remove the screening cover from around C18A/B and connect a 1 kilohm resistor across the secondary section (C18B rear section). Set the R.F. TUNE control approximately 7/8ths of its travel in a clockwise direction.
- 38. Connect the valve voltmeter, shunted to 12pF, between TP2 and chassis. Connect the output of the signal generator to the aerial input socket. Set the generator for a frequency of 1 Mc/s.
- 39. Remove the top core From the transformer L8 and adjust the primary core for a maximum deflection on the valve voltmeter. (The position of this core should be such that it tunes at a point nearest the bottom of the transformer).
- 40. Remove the 1 kilohm resistor from the secondary section and connect it across the primary section of C18.
- 41. Refit top core (secondary) and adjust it for a maximum deflection on the valve voltmeter.
- 42. Remove the 1 kilohm resistor from the primary of C18.
- 43. Reset the signal generator frequency to 2 Mc/s and adjust the R.F. TUNE control (C18) for maximum output on the valve voltmeter then adjust the trimmer capacitor C233 for a maximum deflection on the valve voltmeter also check for symmetrical response.
- 44. Repeat the above procedure for the R.F. RANGE switch settings and frequencies listed in Table 1 below. Check that the maximum voltage input to give 0.5 volts output is as shown in Table 2 below.

Table 1					
R.F. RANGE	INDUCTOR	ALIGNMENT	TRIMMER	ALIGNMENT	
		FREQUENCY		FREQUENCY	
2 - 4	L7	2 Mc/s	C234	4 Mc/s	
4 - 8	L6	4 Mc/s	C235	8 Mc/s	
8 - 16	L5	8 Mc/s	C236	$16 \mathrm{Mc/s}$	
16 - 30	L4	$13 { m Mc/s}$	(C18 at C237 max.)	$30 { m Mc/s}$	

	Table 2	
R.F RANGE	L.F.	H.F.
1 - 2 Mc/s	$7 \mathrm{mV}$	$7 \mathrm{mV}$
2 - 4 Mc/s	$10 \mathrm{mV}$	$10 \mathrm{mV}$
4 - 8 Mc/s	$12 \mathrm{mV}$	$16 \mathrm{mV}$
8 - 16 Mc/s	$22 \mathrm{mV}$	$26 \mathrm{mV}$
16 - 30 Mc/s	$22 \mathrm{mV}$	$30 \mathrm{mV}$

Crystal Calibrator

- 46. Should no output be obtained from this unit when the SYSTEM switch is in the CAL position and the KILOCYCLES scale set at a 100 kc/s check point, or if spurious responses are obtained over the kilocycles range, proceed as follows:-
 - Set the KILOCYCLES scale to a 100 kc/s point and check the tuning of L70 by carefully rotating the core a half-turn either side of the setting. If the signal does not appear, restore the core to its original setting and repeat the check with L75. If the signal is heard, the cores of L70 and L75 should be set to centre of the range of adjustment over which a clean signal is produced.
- 47. Should a major fault be suspected, or if L70 or L75 have been inad- vertently misaligned, it will be necessary to remove the unit and make up an extension cable so that the unit may be operated outside the receiver. The crystal calibrator may be aligned as follows:-

Remove V13 and connect the valve voltmeter probe to grid 3 (pin 7). Inject a 900 kc/s c.w. signal, from the signal generator, at the grid of V15 (pin 1) and adjust L75 for maximum output. Disconnect the valve voltmeter and the signal generator, replace V13 and remove V15. Connect the signal generator to grid 1 (pin 1) of V13 and the valve voltmeter to the grid 1 connection (pin 1) of V15. Set the signal generator to 100 kc/s c.w. and adjust L70 for maximum indication on the valve voltmeter. Disconnect the valve voltmeter and the generator. Fit V15. Connect the coaxial connector to PL2 on the receiver.

48. The output should be approximately 0.2V measured between pin 6 of the octal plug and earth.

40 Mc/s Filter

49. This filter is over-coupled and cannot be readily aligned without a 40 Mc/s sweep oscillator. Re-adjustment therefore should not be attempted unless the specially designed test equipment and factory-type alignment jigs are available.

1.6 Mc/s Band-pass Filter

- 50. To carry out alignment of this filter, the mixer chassis must first be removed. After the removal of the chassis, turn the receiver on to its side and reconnect, from the underside, the two leads (6.3V and 200V H.T.) to their respective pins.
- 51. Remove all the values on the chassis except the third mixer V25. Connect a suitable value voltmeter, shunted to 7pF, to pin 7 of V26. Inject an accurate 1.6 Mc/s signal at socket SKT301 (pink). A large input from the generator should be used initially and reduced as necessary throughout the alignment. Adjust cores L306 and L309 in the first I.F. transformer and cores L313, L314 in the second I.F. transformer for a maximum reading on the value voltmeter.
- 52. Check the gain of the I.F. amplifier as follows:-
 - (1) Connect the signal generator to SKT301 of V25. For an input of 125mV, an output of not less than 500mV should appear at pin 7 of V26.
 - (2) Check that the 13 kc/s bandwidth is obtained with not more than 2dB fall in output and that the response curve is reasonably symmetrical.
 - (3) Refit values and mixer chassis.

2-3 Mc/s Band-pass Filter

53. This filter is pre-aligned and should not require further adjustment. If the performance of the receiver has deteriorated and the filter is suspected, it should be returned to the factory to re-adjustment.

1.7 MC/S OSCILLATOR/AMPLIFIER

54. With a valve voltmeter connected to SKT306, adjust the core of L330 for maximum meter indication.

15. Dismantling

Unit Breakdown

- 1. The receiver may be rapidly dismantled to eight sub-units as follows:-
 - (1) Front Panel
 - (a) Tuning escutcheon.
 - (b) Loudspeaker and escutcheon.
 - (c) Output level meter.
 - (2) Second Variable Frequency Oscillator(a) Second v.f.o. (V12).
 - (3) First Variable Frequency Oscillator
 - (a) R.F. Amplifier (V3).
 - (b) First v.f.o. (V5).
 - (c) First Mixer (V7).
 - (4) 100 kc/s I.F. Amplifier
 - (a) Beat frequency oscillator (V19).
 - (b) Crystal Filter.
 - (c) L-C filter.
 - (d) First and second I.F. amplifiers (V14 and V16)
 - (e) A.V.C. and T.C. stages (V18)
 - (f) Detector and noise limiter (V21)
 - (g) 100 kc/s output (V17)
 - (5) Crystal Calibrator (V13 and V15)
 - (6) Main Chassis
 - (a) Aerial (antenna) attenuator.
 - (b) Crystal oscillator amplifier (V1).
 - (c) Harmonic generator (V2).
 - (d) 30 and 32 Mc/s low-pass filters.
 - (e) 37.5 and 40 Mc/s band-pass filters.
 - (f) Harmonic mixer (V4).
 - (g) The 37.5 Mc/s amplifiers (V6), (V8) and (V10).
 - (h) Second mixer (V9).
 - (i) A.F. output stages (V22) and (V23).
 - (7) 1.7 Mc/s oscillator/amplifier and mixer unit
 - (a) Second v.f.o. amplifier (V11).
 - (b) Third mixer (V25).
 - (c) Fourth mixer (V26).
 - (d) 1.7 Mc/s oscillator/amplifier (V27)
 - (8) 2-3 Mc/s Band-pass Filter

Dismantling and Re-Assembly Instructions

- 2. Front Panel
 - (1) Remove all control knobs.
 - (2) Unscrew the eight instrument head panel fixing screws.

[44]

- **NOTE:** The two screws at the bottom of the front panel, adjacent to the jack sockets, are secured to the main chassis with nuts.
 - (3) Carefully withdraw the front panel and unsolder the connections to the meter and speaker switches; alternatively, the number of wires to be unsoldered can be minimized (loudspeaker only) by removing the seciring nuts on the SPEAKER and METER switches. The panel may now be completely removed.
- **NOTE:** When replacing the B.F.O. NOTE control knob, ensure that the identification mark on the saft is uppermost and that the pointer indicates zero when zero-beat is obtained.
 - (4) Re-assemble in the reverse order.
- **NOTE:** When removing the control knobs secured by a hexagon collet insert the collet must be shot loose from the spindle by a slight knock on the chromed centre of the control knob.

Second Variable Frequency Oscillator

- 3.
- (1) Remove the bottom cover.
- (2) Unsolder the three connections on the 4-way tag strip, adjacent to the terminal strip, situated in compartment 11 (see fig. 15: Key to Under-chassis Layout).
- (3) Remove the front panel: see para.2. above.
- (4) Withdraw the Crystal Calibrator Unit by slackening the two knurled nuts, disconnecting the coaxial cable and unplugging the unit.
- (5) Unbolt the cable cleat securing the dial light cable.
- (6) Unclip the lampholder.
- (7) Disconnect the coaxial cables.
- (8) Remove the screws securing the Megacycles dial to the boss and withdraw the dial.
- **NOTE:** Do not unscrew the boss from the shaft. Unscrew the two unit retaining screws on the top of the chassis and one retaining screw from the underside of the main chassis in compartment 11.
 - (9) The v.f.o. may now be withdraw vertically. When servicing this assembly, clean the wormwheel and the split gear on the ganged capacitor shaft with carbon-tetrachloride, then apply with a brush, to the wormwheel only (Fig.11), a thin coating of Molybdenum Disulphine grease (Rocol "Molypad").
 - (10) Re-assemble in the reverse order.

Renewal of Film Tuning Scale

NOTE: Great care must be taken when feeding a new film into position to avoid twisting or buckling.

Removal

- 4.
- (1) Rotate the KILOCYCLES scale to the limit of its travel at the 1000 kc/s end of the scale. Apply the scale lock.
- (2) Remove the dial illuminating lamp and its holder.

Dismantling

- (3) Hold the two gear wheels at the top of the right-hand film bobbin against the spring tension and remove the two screws securing the idler gear mounting assembly.
- (4) Ease the idler gear clear of the film bobbin gear wheels and carefully ease the spring tension from them. The film bobbins are then free to revolve independently.
- (5) Carefully lift the film clear of the tuning drive sprocket and withdraw the film via the back of the loudspeaker.

Fitting a New Film Scale

5.

- (1) Carefully feed the low frequency end of the film scale via the rear of the loudspeaker, the front of the tuning drive sprocket and the front of the guide roller mounted between the two right-hand film bobbins. Engage the prepared end of the film in the right-hand bobbin. Slowly wind the film, under very light tension, onto the bobbin until the STOP marking is approximately in the centre of the escutcheon window.
- (2) Carefully feed the free end of the film via the rear of the loudspeaker and the rear of the tuning drive sprocket. Engage the prepared ond of the film in the left-hand film bobbin. Slowly wind the film, under very light tension, onto the bobbin until the sprocket holders in the film engage with the tuning drive sprocket.
- (3) Maintain the STOP marking approximately in the centre of the escutcheon window and take up any slack in the film by rotating the bobbins in opposite directions. When all the slack has been taken up, rotate the gear wheels on top of the bobbins a further 1/2 to 3/4 turn against the spring tension and hold them in position. Refit the idler gear wheel and mounting plate. Secure the mounting plate screws and release the gear wheels.
- (4) Check that the STOP marking is still approximately in the centre of the escutcheon window.

Second V.F.O. Variable Capacitor

NOTE: Refer to the v.f.o. alignment procedure in para. 24. before attempting to refit the variable capacitor.

6.

- (1) Remove the second v.f.o. from the receiver in accordance with the instructions in para.3. above.
- (2) Unscrew the remaining cover plate.
- (3) Unsolder the capacitor connections.
- (4) Remove the drive gear and collet.
- (5) Unscrew the four fixing screws holding the capacitor to the bracket.
- (6) Re-assemble in the receiver order, ensuring that the anti- backlash gears are loaded.

First Variable Frequency Oscillator

7.

(1) Remove the front panel, the bottom cover and the screens from compartments 1, 6 and 8. (See Fig.15: Key to Under- chassis Layout).

Dismantling

- (2) Unsolder the connecting wires from the two turret lugs situated in compartment 8, the leads to the turret lug in compartement 6, the pin connections compartment 2 and the screened cable compartment 1.
- (3) Unscrew the three fixing screws on the top of the unit.
- 8.
 - (1) Fitting a new chain:-
 - (a) Take a 63-link lenght of chain.
 - (b) Hold chain tension sprocket down towards the chassis, and fit new chain round the two chain wheels.
 - (c) Release the tension sprocket that ensuring that it holds the chain under tension. See Front Panel instructions refitting of B.F.O. control knob; para.2. above.

100 kc/s I.F. Amplifier

9.

- (1) Remove the left-hand gusset plate adjacent to the unit.
- (2) Unsolder the leads to the 4 and 12-way tag strips (fig.7) and the 100 KC/S OUTPUT plugs.
- (3) Disconnect the coaxial lead to the 1.7 Mc/s oscillator/ amplifier and mixer unit.
- (4) Remove the six screws securing this unit to the main chassis.
- **NOTE:** Removal of the R.F./I.F. GAIN control on the B.F.O. assembly is necessary in order to obtain acces to one of the six securing screws.
 - (5) Re-assemble in the reverse order.

Beat Frequency Oscillator

10.

- (1) Remove Front Panel.
- (2) Remove bottom cover.
- (3) Disconnect leads from R.F./I.F. GAIN potentiometer.
- (4) Remove side plates adjacent to I.F. amplifier.
- (5) Remove screw securing cable cleat situated adjacent to 150mH choke assembly on underside of I.F. amplifier.
- (6) Disconnect red-white lead of B.F.O. cableform from terminal on adjacent 12-way tag strip.
- (7) Withdraw red-white lead from cableform.
- (8) Disconnect brown leads from pin 4 of V18 socket.
- (9) Disconnect blue leads from pin 7 of V21 socket.
- (10) Remove remaining three screws and crinckle washers to release B.F.O. assembly from I.F. amplifier chassis.
- (11) Re-assemble in the reverse order.

1.7 Mc/s Oscillator/Amplifier and Mixer Unit

11.

- (1) Remove the bottom cover and the screen from compartment 7.
- (2) Unsolder the two pin connections.

Dismantling

- (3) Disconnect the coaxial cables.
- (4) Remove the three screws securing this unit to the main chassis.
- (5) Re-assemble in the reverse order.

Valve Replacement

12. With the exception of V5, replacement of valves will not affect receiver alignment. When V5 is replaced refer to GENERAL SERVICING AND ALIGNMENT PROCE-DURES.

16. Component List 1.

Resistors

Cct	Value	Description	Rat.	Tol
Ref.	, and a	Description	10000	%
R1	10k	carbon	1/4W	10
R2	100ohm	carbon	1/4W	10
R3	150ohm	carbon	1/4W	10
R4	100ohm	carbon	1/4W	10
R5	150ohm	carbon	1/4W	10
R6	4.7Kohm	carbon	1'/2W	10
R7	$150 \mathrm{ohm}$	carbon	1'/4W	10
R8	$150 \mathrm{ohm}$	carbon	1/4W	10
R8A	47Kohm	carbon	1/4W	10
R8B	680ohm	carbon	1/4W	10
$\mathbf{R9}$	220ohm	carbon	1/2W	10
R10	$150 \mathrm{ohm}$	carbon	1/4W	10
R11	$150 \mathrm{ohm}$	carbon	1/4W	10
R12	33Kohm	carbon	1/2W	10
R13	33Kohm	carbon	1/4W	10
R14	$150 \mathrm{ohm}$	carbon	1/4W	10
R15	100ohm	carbon	1/4W	10
R15A	$750\mathrm{hm}$	carbon	1/4W	10
R15B	2.2 Kohm	carbon	1/4W	10
R16	$680 \mathrm{ohm}$	carbon	1/4W	10
R17	1Kohm	carbon	1/2W	10
R18	470ohm	carbon	1/2W	10
	(Assy. with			
	L20)			
R19	270 Kohm	carbon	1/4W	10
R19A	$100 \mathrm{Kohm}$	carbon	1/4W	10
R20	$1 \mathrm{Kohm}$	carbon	1/4W	10
R21	$330 \mathrm{ohm}$	carbon	1/4w	10
R22	470ohm	carbon	1/4W	10
R23	820hm	carbon	1/4W	10
R24	$10 \mathrm{Kohm}$	carbon	1/4W	10
R25	$10 \mathrm{ohm}$	carbon	1/4W	10
R26	$10 \mathrm{ohm}$	carbon	1/4W	10
R27	$10 \mathrm{ohm}$	carbon	1/4W	10
R28	$680 \mathrm{ohm}$	carbon	1/4W	10
R29	1Kohm	carbon	1/4W	10
R30	220ohm	carbon	1/4W	10
R31	470ohm	carbon	1/4W	10
R32	$100 \mathrm{Kohm}$	carbon	1/4W	10

[49]

R32A	$100 \mathrm{Kohm}$	carbon	1/4W	10
R32B	10 Kohm	carbon	1/4W	10
R33	10 Kohm	carbon	1/4W	10
R34	470Kohm	carbon	1/4W	10
R35	DELETED			
R36	$10 \mathrm{ohm}$	carbon	1/4W	10
R37	1Kohm	carbon	1/4W	10
R38	$68 \mathrm{ohm}$	carbon	1/4W	10
R39	22Kohm	carbon	1/4W	10
R40	$10 \mathrm{ohm}$	carbon	1/4W	10
R41	10 Kohm	carbon	1/4W	10
R42	27 Kohm	carbon	1/2W	10
R43	$6.8 \mathrm{Kohm}$	carbon	1/4W	10
$\mathbf{R44}$	27 Kohm	carbon	1/4W	10
R45	$10 \mathrm{ohm}$	carbon	1/4W	10
R46	100 Kohm	carbon	1/4W	10
R47	560hm	carbon	1/4W	10
R48	$10 \mathrm{ohm}$	carbon	1/4W	10
R49	680hm	carbon	1/4W	10
R50	2.2 Kohm	carbon	1/4W	10
R51	$1 \mathrm{Kohm}$	carbon	1/4W	10
R52	15 Kohm	carbon	1/4W	10
R53	470ohm	carbon	1/4W	10
R54	$100 \mathrm{ohm}$	carbon	1/2W	10
R55	$1 \mathrm{Kohm}$	carbon	1/2W	10
R55A	$1 \mathrm{Kohm}$	carbon	1/2W	10
R56	15 Kohm	carbon	1/4W	10
R57	$10 \mathrm{ohm}$	carbon	1/4W	10
R58	470 Kohm	carbon	1/4W	10
R59	560hm	carbon	1/4W	10
R60	$150 \mathrm{ohm}$	carbon	1/4W	10
R61	DELETED			
R62	27 Kohm	carbon	1/2W	10
R63	DELETED			
R64	$330 \mathrm{Kohm}$	carbon	1/4W	10
R65	$100 \mathrm{Kohm}$	carbon	1/4W	10
R66	$1 \mathrm{Kohm}$	carbon	1/2W	10
R67	DELETED			
R68	22Kohm	carbon	1/4W	10
R68A	470ohm	carbon	1/4W	10
R69	27 Kohm	carbon	1/2W	10
$\mathbf{R70}$	DELETED			
$\mathbf{R71}$	10 Kohm	wirewound	3W	5
R71A	$470 \mathrm{ohm}$	carbon	1/4W	10

R72	DELETED			
R73	DELETED			
R74	$150 \mathrm{ohm}$	carbon	1/4W	10
R75	DELETED		1	
R76	DELETED			
R77	470Kohm	carbon	1/4W	10
R78	DELETED		1	
R79	2.2Kohm	carbon	1/4W	10
R80	470Kohm	carbon	1/4W	10
R81	2.2 Kohm	carbon	1/2W	10
R81A	1.5 Kohm	carbon	1/4W	10
R81B	10Mohm	carbon	1/4W	10
R81C	10 Mohm	carbon	1/4W	10
R82	DELETED		1	
R83	4.7Kohm	carbon	1/4W	10
R84	1Mohm	carbon	1/4W	10
R85	220ohm	carbon	1'/4W	10
R86	22ohm	carbon	1/4W	10
R87	120ohm	carbon	1/4W	10
R87A	680hm	carbon	1/4W	10
R88	$330 \mathrm{ohm}$	carbon	1/4W	10
R89	2.2 Kohm	carbon	1/2W	10
R90	4.7Kohm	carbon	1/2W	10
R91	4.7Kohm	carbon	1/2W	10
R91A	470 Kohm	carbon	1/4W	10
R92	270 Kohm	carbon	1/4W	10
R93	33 Kohm	carbon	1/2W	10
R94	27 Kohm	carbon	1/2W	10
R95	100ohm	carbon	1/4W	10
R96	470 Kohm	carbon	1/4W	10
R97	15 Kohm	carbon	1/2W	10
R97A	39 Kohm	carbon	1/4W	10
R98	2.2 Kohm	carbon	1/4W	10
R99	22Kohm	carbon	1/4W	10
R100	22Kohm	carbon	1/4W	10
R101	120ohm	carbon	1/4W	10
R102	82Kohm	carbon	1/4W	10
R103	2.2 Kohm	carbon	1/4W	10
R104	1 Mohm	carbon	1/4W	10
R105	$1 \mathrm{Kohm}$	carbon	1/4W	10
R106	68 Kohm	carbon	1/2W	10
R107	2.2 Kohm	carbon	1/2W	10
R108	33Kohm	carbon	1'/2W	10
R109	4.7Kohm	carbon	1/2W	10

R110	100ohm	carbon	1/4W	10
R111	2.2Kohm	carbon	1/2W	10
R112	47Kohm	carbon	1/4W	10
R113	33Kohm	carbon	1/2W	10
R114	100ohm	carbon	1/4W	10
R115	$150 \mathrm{ohm}$	carbon	1/4W	10
R116	470 Kohm	carbon	1/4W	10
R116A	$6.8 \mathrm{Kohm}$	carbon	1/4W	10
R117	$150 \mathrm{ohm}$	carbon	1/4W	10
R118	2.2 Mohm	carbon	1/4W	10
R119	DELETED			
R119A	$10 \mathrm{Kohm}$	wirewound	10W	5
R120	$100 \mathrm{Kohm}$	carbon	1/2W	10
R120A	27 Kohm	carbon	1/4W	10
R121	$100 \mathrm{Kohm}$	carbon	1/2W	10
R122	$6.8 \mathrm{Kohm}$	carbon	1/4W	10
R123	82Kohm	carbon	1/2W	10
R124	$120 \mathrm{ohm}$	wirewound	6W	5
R125	47 Kohm	carbon	1/4W	10
R126	$100 \mathrm{ohm}$	carbon	1/4W	10
R127	82Kohm	carbon	1/4W	10
R128	18 Kohm	carbon	1/4W	10
R129	18 Kohm	carbon	1/4W	10
R130	82Kohm	carbon	1/4W	10
R131	$4.7 \mathrm{Kohm}$	carbon	1/4W	10
R132	$1 \mathrm{Kohm}$	carbon	1/4W	10
R133	4.7 Kohm	carbon	1/4W	10
R133A	27 Kohm	carbon	1/4W	10
R134	1 Mohm	carbon	1/4W	10
R135	1.2 Mohm	carbon	1/4W	10
R135A	$100 \mathrm{Kohm}$	carbon	1/4W	10
R136	$47 \mathrm{ohm}$	wirewound	3W	5
R137	1.5 Mohm	carbon	1/4W	10
R138	$120 \mathrm{ohm}$	carbon	1/4W	10
R138A	$100 \mathrm{Kohm}$	carbon	1/2W	10
R139	$120 \mathrm{ohm}$	carbon	1/4W	10
R139A	470 Kohm	carbon	$1/4\mathrm{W}$	10
R140	$270 \mathrm{ohm}$	carbon	1/2W	10
R140A	4.7 Kohm	carbon	$1/4\mathrm{W}$	10
R140B	2.2 Kohm	carbon	$1/4\mathrm{W}$	10
R141	$680 \mathrm{ohm}$	carbon	1/4W	10
R142	1.2 Kohm	carbon	1/4W	10
R143	1.2 Kohm	carbon	1/4W	10
R144	DELETED			

R144A	$10 \mathrm{ohm}$	carbon	1/4W	10
R300	820ohm	carbon	1/2W	10
R300A	220ohm	carbon	1/4W	10
R301	100 Kohm	carbon	1/4W	10
R302	470hm	carbon	1/4W	10
R303	33Kohm	carbon	1/4W	10
R304	$220 \mathrm{ohm}$	carbon	1/4W	10
R305	1.5 Kohm	carbon	1/4W	10
R306	4.7Kohm	carbon	1/4W	10
R307	470 Kohm	carbon	1/4W	10
R308	$100 \mathrm{ohm}$	carbon	1/4W	10
R309	$100 \mathrm{Kohm}$	carbon	1/4W	10
R310	47 Kohm	carbon	$1/4\mathrm{W}$	10
R311	$1 \mathrm{Kohm}$	carbon	$1/4\mathrm{W}$	10
R312	15 Kohm	carbon	$1/4\mathrm{W}$	10
R313	$100 \mathrm{ohm}$	carbon	$1/4\mathrm{W}$	10
R314	560hm	carbon	$1/4\mathrm{W}$	10
R315	470 Kohm	carbon	$1/4\mathrm{W}$	10
R316	$100 \mathrm{ohm}$	carbon	$1/4\mathrm{W}$	10
R317	2.2 Kohm	carbon	$1/4\mathrm{W}$	10
R318	$220 \mathrm{ohm}$	carbon	$1/4\mathrm{W}$	10
R319	$10 \mathrm{Kohm}$	carbon	$1/4\mathrm{W}$	10
R320	470ohm	carbon	$1/4\mathrm{W}$	10
R320A	$1 \mathrm{Kohm}$	carbon	$1/4\mathrm{W}$	10
R321	DELETED			
R322	1.5 Kohm	carbon	$1/4\mathrm{W}$	10
R323	$100 \mathrm{Kohm}$	carbon	$1/4\mathrm{W}$	10
R324	47 Kohm	carbon	$1/4\mathrm{W}$	10
R325	$100 \mathrm{ohm}$	carbon	$1/4\mathrm{W}$	10
R326	$220 \mathrm{ohm}$	carbon	$1/4\mathrm{W}$	10
R327	$8.2 \mathrm{Kohm}$	carbon	$1/4\mathrm{W}$	10
R328	$470 \mathrm{ohm}$	carbon	$1/4\mathrm{W}$	10

POTENTIOMETERS

$\operatorname{Cct.}$	Value	Type
Ref,		
RV1	1Kohm	Wirewound
RV2	2Mohm	Composition
		$\log/\text{law 1" spindle}$
RV3	2Mohm	Composition
		$\log/\text{law 5/8" spindle}$
RV4	$1 \mathrm{Kohm}$	Wirewound

Capacit	ors			
Cct.	Value	Description	Rat.	Tol.
Ref.		1		%
C_1	$2.7\mathrm{pF}$	Coramia	750W	10
C_2	2.7pr DELETED	Ceramic	1001	10
C2A	33nF	Trimmer		
C2R	10pF	Silver/Mica	350V	1nF
C2C	$0.01 \mu F$	Paper	500V	$\frac{1}{20}$
C3A	$0.01 \mu F$	Paper	400V	20
C4	14.7 pF	Ceramic	750V	10
C5	14.7pF	Ceramic	750V	10
C6	14.7pF	Ceramic	750V	10
C7	$10\mathrm{pF}$	Trimmer	1001	10
C8	$10 \mathrm{pF}$	Ceramic	750V	5
C8A	$0.001 \mu F$	Ceramic	350V	20
C9	$100 \mathrm{pF}$	Silver/Mica	350V	10
C10	$0.01 \mu F$	Paper	500V	20
C10A	$100 \mathrm{pF}$	Silver/Mica	350V	10
C11	$0.005\mu F$	Paper	400V	20
C11A	$47 \mathrm{pF}$	Silver/Mica	350V	5
C12	14 7nF	Ceramic	750V	10
C12	14.7pF	Ceramic	750V	10
C14	$0.01 \mu F$	Paper	500V	$\frac{10}{20}$
C15	$10 \mathrm{pF}$	Ceramic	750V	5
C16	$0.01 \mu F$	Paper	500V	20
C17	$0.001 \mu F$	Ceramic	350V	$\frac{1}{20}$
C18	DELETED	e or anne	0001	-0
C18A	212pF	Variable (2 gang)		
C18B	$212 \mathrm{pF}$	Variable (2 gang)		
C18C	6.8pF	Ceramic	750V	5
C19	$10 \mathrm{pF}$	Ceramic	750V	5
C20	$10 \mathrm{pF}$	Ceramic	750V	5
C21	$16 \mathrm{pF}$	Trimmer.	1000V	-
		with acetate		
		case		
C22	$33 \mathrm{pF}$	Silver/Mica	350V	5
C23	$0.001 \mu F$	Ceramic	350V	-
C24	$16\mathrm{pF}$	Trimmer.	1000V	
	T	with acetate	•	
		case		
C25	$15 \mathrm{pF}$	Silver/Mica	350V	5
C26	$0.05 \mu F$	Paper	350V	25
C27	$0.001 \mu F$	Ceramic	350V	20
C28	$220 \mathrm{pF}$	Silver/Mica	$350\mathrm{V}$	5

C29	$0.001 \mu F$	Ceramic	350V	
C30	$0.001 \mu F$	Ceramic	$350\mathrm{V}$	
C31	$10 \mathrm{pF}$	Ceramic	750V	5
C32	$10 \mathrm{pF}$	Ceramic	750V	5
C33	$16 \mathrm{pF}$	Trimmer,	1000V	
		with acetate		
		case		
C34	$39 \mathrm{pF}$	Silver/Mica	$350\mathrm{V}$	5
C35	$16 \mathrm{pF}$	$\operatorname{Trimmer},$	1000V	
		with acetate		
		case		
C36	$33 \mathrm{pF}$	Silver/Mica	$350\mathrm{V}$	5
C37	$0.001 \mu \mathrm{F}$	Ceramic	$350\mathrm{V}$	20
C38	$0.001 \mu \mathrm{F}$	Ceramic	$350\mathrm{V}$	20
C39	$0.1 \mu { m F}$	Paper	150V	25
C40	$0.001 \mu \mathrm{F}$	Ceramic	$350\mathrm{V}$	
C41	$0.1 \mu { m F}$	Paper	150V	25
C42	$220 \mathrm{pF}$	Silver/Mica	$350\mathrm{V}$	5
C42A	$0.001 \mu { m F}$	Ceramic	$350\mathrm{V}$	
C43	$16 \mathrm{pF}$	$\operatorname{Trimmer},$	1000V	
		with acetate		
		case		
C44	$39 \mathrm{pF}$	Silver/Mica	$350\mathrm{V}$	5
C45	$16 \mathrm{pF}$	Trimmer,	1000V	
		with acetate		
C L C		case		_
C46	33pF	Silver/Mica	350V	5
C47	8.2pF	Ceramic	750V	10
C48	$0.001 \mu F$	Ceramic	350V	20
C49	$0.01 \mu F$	Paper	500V	20
C49A	$0.05 \mu F$	Paper	350V	$\frac{25}{2}$
C50	$100 \mathrm{pF}$	Silver/Mica	350V	5
C51	220pF	Silver/Mica	350V	2
C52	$0.001 \mu F$	Ceramic	350V	
C53	TopF	Trimmer,	1000V	
		with acetate		
	20 F	case	25017	۲
C54	39pF	Silver/Mica	350V	\mathbf{O}
C55	TODE	Trimmer,	1000 V	
		with acetate		
CEC	22- F	case	25017	F
C50	ээрг 0 001 от	Suver/Mica	39UV 250V	Э
C57	$0.001 \mu F$	Ceramic	950V 950V	
000	$0.001 \mu r$	Ceramic	390 V	

C59	$0.001 \mu F$	Ceramic	$350\mathrm{V}$	
C60	$0.001 \mu F$	Ceramic	$350\mathrm{V}$	
C61	$16 \mathrm{pF}$	Trimmer,	1000V	
		with acetate		
		case		
C62	$39 \mathrm{pF}$	Silver/Mica	$350\mathrm{V}$	5
C63	$16 \mathrm{pF}$	Trimmer,	1000V	
		with acetate		
		case		
C64	$33 \mathrm{pF}$	Silver/Mica	$350\mathrm{V}$	5
C65	$0.001 \mu F$	Ceramic	$350\mathrm{V}$	
C66	$0.001 \mu F$	Ceramic	$350\mathrm{V}$	
C67	$100 \mathrm{pF}$	Silver/Mica	$350\mathrm{V}$	5
C68	$220 \mathrm{pF}$	Silver/Mica	$350\mathrm{V}$	2
C69	$0.001 \mu \mathrm{F}$	Ceramic	$350\mathrm{V}$	
C70	$26 \mathrm{pF}$	$\operatorname{Trimmer},$	1000V	
		with acetate		
		case		
C71	$39 \mathrm{pF}$	Silver/Mica	$350\mathrm{V}$	5
C72	$16 \mathrm{pF}$	Trimmer,		
		with acetate		
		case		_
C73	$33 \mathrm{pF}$	Silver/Mica	350V	5
C74	$220 \mathrm{pF}$	Silver/Mica	350V	5
C75	$220 \mathrm{pF}$	Silver/Mica	$350\mathrm{V}$	10
C76	$100 \mathrm{pF}$	Variable		
C77	33pF	Trimmer		
C78	$0.001 \mu F$	Ceramic	350V	
C79	TobL	Trimmer,	1000V	
		with acetate		
Coo	20 F	case	25017	-
C80	39pF	Silver/Mica	350V	Э
C81	TODE	Trimmer,	1000V	
		with acetate		
Con	22- F	case	25017	F
C82	33pF 0.001F	Silver/Mica	350V 250V	Э
C83	$0.001 \mu F$	Ceramic	350V 250V	
C04	$0.001 \mu r$	Ceramic	350V	10
C86	э.эрг 0.001 <i>и</i> Г	Ceramic	750V 250V	10
C80	$0.001 \mu F$	Ceramic	350V	
C88	$16 \mathrm{nF}$	Trimmor	330 V 1000V	
000	TOLL	with acotato	1000 V	
		Case		

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5
acetate case C91 15pF Silver/Mica 350V C92 0.001 μ F Ceramic 350V C93 0.001 μ F Ceramic 350V C94 0.001 μ F Ceramic 350V C95 0.01 μ F Paper 500V C95 0.001 μ F Ceramic 350V C96 0.001 μ F Ceramic 350V C97 0.25 μ F Paper 500V C98 0.01 μ F Ceramic 350V C99 0.001 μ F Ceramic 350V C98 0.001 μ F Ceramic 350V C100 0.001 μ F Ceramic 350V C101 0.5 μ F Paper 350V C102 0.001 μ F Ceramic 350V C103 1 μ F Paper 150V C104 0.001 μ F Ceramic 350V C105 0.01 μ F Paper 500V C1	
case C91 15pF Silver/Mica 350V C92 0.001μ F Ceramic 350V C93 0.001μ F Ceramic 350V C94 0.001μ F Ceramic 350V C95 0.01μ F Paper 500V C95 0.01μ F Ceramic 350V C95 0.001μ F Ceramic 350V C96 0.001μ F Ceramic 350V C97 0.25μ F Paper 500V C98 0.01μ F Ceramic 350V C99 0.001μ F Ceramic 350V C100 0.001μ F Ceramic 350V C101 0.5μ F Paper 350V C102 0.001μ F Ceramic 350V C103 1μ F Paper 150V C104 0.001μ F Ceramic 350V C105 0.01μ F Paper 500V C106 0.001μ F Ceramic <td></td>	
C91 15pF Silver/Mica 350V C92 0.001μ F Ceramic 350V C93 0.001μ F Ceramic 350V C94 0.001μ F Ceramic 350V C95 0.01μ F Paper 500V C95 0.001μ F Ceramic 350V C95 0.001μ F Ceramic 350V C96 0.001μ F Ceramic 350V C97 0.25μ F Paper 150V C98 0.01μ F Ceramic 350V C98 0.001μ F Ceramic 350V C99 0.001μ F Ceramic 350V C100 0.001μ F Ceramic 350V C101 0.05μ F Paper 350V C102 0.001μ F Ceramic 350V C103 0.1μ F Paper 150V C104 0.001μ F Ceramic 350V C105 0.01μ F Paper 500V C106 0.001μ F Ceramic 350V C107	
C92 0.001μ F Ceramic $350V$ C93 0.001μ F Ceramic $350V$ C94 0.001μ F Ceramic $350V$ C95 0.01μ F Paper $500V$ C95 0.001μ F Ceramic $350V$ C95 0.001μ F Ceramic $350V$ C96 0.001μ F Ceramic $350V$ C97 0.25μ F Paper $500V$ C98 0.01μ F Paper $500V$ C98 0.001μ F Ceramic $350V$ C99 0.001μ F Ceramic $350V$ C100 0.001μ F Ceramic $350V$ C101 0.05μ F Paper $350V$ C102 0.001μ F Ceramic $350V$ C103 0.1μ F Paper $150V$ C104 0.001μ F Ceramic $350V$ C105 0.01μ F Paper $500V$ C106 0.001μ F Ceramic $350V$ C107 $220p$ F Silver/Mica $350V$	$1 \mathrm{pF}$
C93 0.001μ F Ceramic $350V$ C94 0.001μ F Ceramic $350V$ C95 0.01μ F Paper $500V$ C95 0.001μ F Ceramic $350V$ C96 0.001μ F Ceramic $350V$ C97 0.25μ F Paper $150V$ C98 0.01μ F Paper $500V$ C98 0.01μ F Ceramic $350V$ C98 0.001μ F Ceramic $350V$ C99 0.001μ F Ceramic $350V$ C100 0.001μ F Ceramic $350V$ C101 0.5μ F Paper $350V$ C102 0.001μ F Ceramic $350V$ C103 0.1μ F Paper $150V$ C104 0.001μ F Ceramic $350V$ C105 0.01μ F Paper $500V$ C106 0.001μ F Ceramic $350V$ C107 $220p$ F Silver/Mica $350V$ C110 $33p$ F Trimmer C110 </td <td></td>	
C94 0.001μ F Paper $500V$ C95 0.01μ F Ceramic $350V$ C95A 0.001μ F Ceramic $350V$ C96 0.001μ F Ceramic $350V$ C97 0.25μ F Paper $150V$ C98 0.01μ F Paper $500V$ C98 0.01μ F Ceramic $350V$ C99 0.001μ F Ceramic $350V$ C100 0.001μ F Ceramic $350V$ C100 0.001μ F Ceramic $350V$ C101 0.5μ F Paper $350V$ C102 0.001μ F Ceramic $350V$ C103 0.1μ F Paper $150V$ C104 0.001μ F Ceramic $350V$ C105 0.01μ F Paper $500V$ C106 0.001μ F Ceramic $350V$ C107 $220p$ F Silver/Mica $350V$ C108 $33p$ F Trimmer C C110 $33p$ F Trimmer $500V$	
C95 0.01μ F Paper $500V$ C95A 0.001μ F Ceramic $350V$ C96 0.001μ F Paper $150V$ C97 0.25μ F Paper $150V$ C98 0.01μ F Paper $500V$ C98 0.01μ F Ceramic $350V$ C98 0.001μ F Ceramic $350V$ C99 0.001μ F Ceramic $350V$ C100 0.001μ F Ceramic $350V$ C101 0.5μ F Paper $350V$ C102 0.001μ F Ceramic $350V$ C103 0.1μ F Paper $150V$ C104 0.001μ F Ceramic $350V$ C105 0.01μ F Paper $500V$ C106 0.001μ F Ceramic $350V$ C107 $220p$ F Silver/Mica $350V$ C108 $33p$ F Trimmer $C110$ C110 $33p$ F Trimmer $C111$ C111 0.001μ F Ceramic $350V$ </td <td></td>	
C95A 0.001μ F Ceramic 350 V C96 0.001μ F Ceramic 350 V C97 0.25μ F Paper 150 V C98 0.01μ F Paper 500 V C98 0.001μ F Ceramic 350 V C99 0.001μ F Ceramic 350 V C100 0.001μ F Ceramic 350 V C100 0.001μ F Ceramic 350 V C101 0.05μ F Paper 350 V C102 0.001μ F Ceramic 350 V C103 0.1μ F Paper 150 V C104 0.001μ F Ceramic 350 V C104 0.001μ F Paper 500 V C105 0.01μ F Paper 500 V C106 0.001μ F Ceramic 350 V C107 $220p$ F Silver/Mica 350 V C108 $33p$ F Trimmer C C110 $33p$ F Trimmer C C111 0.001μ F Ceramic 350 V	20
C96 0.001μ F Ceramic $350V$ C97 0.25μ F Paper $150V$ C98 0.01μ F Paper $500V$ C98 0.001μ F Ceramic $350V$ C99 0.001μ F Ceramic $350V$ C100 0.001μ F Ceramic $350V$ C100 0.001μ F Ceramic $350V$ C101 0.05μ F Paper $350V$ C102 0.001μ F Ceramic $350V$ C103 0.1μ F Paper $150V$ C104 0.001μ F Ceramic $350V$ C104 0.001μ F Paper $500V$ C105 0.01μ F Paper $500V$ C106 0.001μ F Ceramic $350V$ C107 $220p$ F Silver/Mica $350V$ C108 $33p$ F Trimmer $C110$ $33p$ F C110 $33p$ F Trimmer $C111$ 0.001μ F Ceramic $350V$ C113 $27p$ F Ceramic $350V$ $C113$ <td></td>	
C97 0.25μ F Paper 150V C98 0.01μ F Paper 500V C98A 0.001μ F Ceramic 350V C99 0.001μ F Ceramic 350V C100 0.001μ F Ceramic 350V C101 0.05μ F Paper 350V C102 0.001μ F Ceramic 350V C103 0.1μ F Paper 150V C104 0.001μ F Ceramic 350V C104 0.001μ F Ceramic 350V C104 0.25μ F Paper 150V C104 0.25μ F Paper 500V C105 0.01μ F Paper 500V C106 0.001μ F Ceramic 350V C107 220pF Silver/Mica 350V C108 33pF Trimmer 70V C110 33pF Trimmer 70V C111 0.001μ F Ceramic 350V C112 0.01μ F Ceramic 350V C113 <td< td=""><td></td></td<>	
C98 0.01μ F Paper 500 V C98A 0.001μ F Ceramic 350 V C99 0.001μ F Ceramic 350 V C100 0.001μ F Ceramic 350 V C101 0.05μ F Paper 350 V C102 0.001μ F Ceramic 350 V C102 0.001μ F Ceramic 350 V C103 0.1μ F Paper 150 V C104 0.001μ F Ceramic 350 V C104 0.001μ F Paper 150 V C104 0.001μ F Paper 150 V C105 0.01μ F Paper 500 V C106 0.001μ F Ceramic 350 V C107 220 pF Silver/Mica 350 V C108 33 pF Trimmer $C109$ C109 220 pF Silver/Mica 350 V C110 33 pF Trimmer $C111$ C111 0.001μ F Ceramic 350 V C112 0.01μ F Ceramic 350 V	25
C98A 0.001μ F Ceramic $350V$ C99 0.001μ F Ceramic $350V$ C100 0.001μ F Ceramic $350V$ C101 0.05μ F Paper $350V$ C102 0.001μ F Ceramic $350V$ C102 0.001μ F Ceramic $350V$ C103 0.1μ F Paper $150V$ C104 0.001μ F Ceramic $350V$ C104 0.001μ F Ceramic $350V$ C104 0.25μ F Paper $150V$ C105 0.01μ F Paper $500V$ C105 0.01μ F Paper $500V$ C106 0.001μ F Ceramic $350V$ C107 220 pF Silver/Mica $350V$ C108 33 pF Trimmer $C110$ C110 33 pF Trimmer $C111$ C110 33 pF Ceramic $350V$ C112 0.01μ F Ceramic $350V$ C113 27 pF Ceramic $350V$	20
C99 0.001μ F Ceramic $350V$ C100 0.001μ F Ceramic $350V$ C101 0.05μ F Paper $350V$ C102 0.001μ F Ceramic $350V$ C103 0.1μ F Paper $150V$ C104 0.001μ F Ceramic $350V$ C104 0.001μ F Ceramic $350V$ C104 0.001μ F Ceramic $350V$ C104 0.25μ F Paper $150V$ C105 0.01μ F Paper $500V$ C106 0.001μ F Ceramic $350V$ C107 $220p$ F Silver/Mica $350V$ C108 $33p$ F Trimmer $C109$ C109 $220p$ F Silver/Mica $350V$ C110 $33p$ F Trimmer $C111$ $C101\mu$ F Paper $500V$ $C112$ $C112$ 0.01μ F Ceramic $350V$ C113 $27p$ F Ceramic $350V$ C114 0.001μ F Ceramic 35	
C100 0.001μ F Ceramic $350V$ C101 0.05μ F Paper $350V$ C102 0.001μ F Ceramic $350V$ C103 0.1μ F Paper $150V$ C104 0.001μ F Ceramic $350V$ C104 0.001μ F Ceramic $350V$ C104 0.25μ F Paper $150V$ C105 0.01μ F Paper $500V$ C106 0.001μ F Ceramic $350V$ C107 $220p$ F Silver/Mica $350V$ C108 $33p$ F Trimmer $C109$ C109 $220p$ F Silver/Mica $350V$ C110 $33p$ F Trimmer $C111$ $C110$ $33p$ F Trimmer $C111$ $C111$ 0.001μ F Ceramic $350V$ C112 0.01μ F Paper $500V$ C113 $27p$ F Ceramic $350V$ C114 0.001μ F Ceramic $350V$ C115 0.001μ F Ceramic 350	
C101 0.05μ F Paper 350 V C102 0.001μ F Ceramic 350 V C103 0.1μ F Paper 150 V C104 0.001μ F Ceramic 350 V C104 0.001μ F Ceramic 350 V C104 0.25μ F Paper 150 V C105 0.01μ F Paper 500 V C106 0.001μ F Ceramic 350 V C107 220 pF Silver/Mica 350 V C108 33 pF Trimmer $C109$ C109 220 pF Silver/Mica 350 V C110 33 pF Trimmer $C111$ C110 33 pF Trimmer $C111$ C111 0.001μ F Ceramic 350 V C112 0.01μ F Paper 500 V C113 27 pF Ceramic 350 V C114 0.001μ F Ceramic 350 V C115 0.001μ F Ceramic 350 V C116 DELETED $C118$ 9.3 pF <td></td>	
C102 0.001μ F Ceramic 350 V C103 0.1μ F Paper 150 V C104 0.001μ F Ceramic 350 V C104 0.25μ F Paper 150 V C105 0.01μ F Paper 500 V C106 0.001μ F Ceramic 350 V C106 0.001μ F Ceramic 350 V C107 $220p$ F Silver/Mica 350 V C108 $33p$ F Trimmer $C109$ $220p$ F Silver/Mica 350 V C110 $33p$ F Trimmer $C111$ 0.001μ F Ceramic 350 V C111 0.001μ F Ceramic 350 V $C112$ 0.01μ F Paper 500 V C112 0.01μ F Paper 500 V $C114$ 0.001μ F Ceramic 350 V C114 0.001μ F Ceramic 350 V $C116$ $DELETED$ $C117$ 0.01μ F Paper 500 V C116 $DELETED$ $C118$ $9.3p$ F $Diff.trimmer$ $C120$ $DELETED$ <td>25</td>	25
C103 0.1μ F Paper 150V C104 0.001μ F Ceramic 350V C104A 0.25μ F Paper 150V C105 0.01μ F Paper 500V C106 0.001μ F Paper 500V C106 0.001μ F Ceramic 350V C107 220pF Silver/Mica 350V C108 33pF Trimmer 7000 C109 220pF Silver/Mica 350V C110 33pF Trimmer 7000 C111 0.001μ F Ceramic 350V C112 0.01μ F Paper 500V C113 27pF Ceramic 350V C114 0.001μ F Paper 500V C115 0.001μ F Ceramic 350V C116 DELETED 700 700 C117 0.01μ F Paper 500V C118 $9.3p$ F Diff.trimmer 700 C120 DELETED 700 700 C121 DELETED	
C104 0.001μ F Ceramic $350V$ C104A 0.25μ F Paper $150V$ C105 0.01μ F Paper $500V$ C106 0.001μ F Ceramic $350V$ C107 $220p$ F Silver/Mica $350V$ C108 $33p$ F Trimmer (109) C109 $220p$ F Silver/Mica $350V$ C110 $33p$ F Trimmer (111) C111 0.001μ F Ceramic $350V$ C112 0.01μ F Paper $500V$ C113 $27p$ F Ceramic $350V$ C114 0.001μ F Ceramic $350V$ C115 0.001μ F Ceramic $350V$ C114 0.001μ F Ceramic $350V$ C115 0.001μ F Ceramic $350V$ C116 DELETED U U C117 0.01μ F Paper $500V$ C118 $9.3p$ F Diff.trimmer U C120 DELETED U U	25
C104A 0.25μ F Paper 150V C105 0.01μ F Paper 500V C106 0.001μ F Ceramic 350V C107 220pF Silver/Mica 350V C108 33pF Trimmer 7 C109 220pF Silver/Mica 350V C101 33pF Trimmer 7 C110 33pF Trimmer 7 C111 0.001μ F Ceramic 350V C112 0.01μ F Paper 500V C113 27pF Ceramic 350V C114 0.001μ F Ceramic 350V C115 0.001μ F Ceramic 350V C116 DELETED 7 7 C117 0.01μ F Paper 500V C118 $9.3p$ F Diff.trimmer 7 C120 DELETED 7 7 C121 DELETED 7 7 C122 DELETED 7 7	
C105 0.01μ F Paper $500V$ C106 0.001μ F Ceramic $350V$ C107 220 pF Silver/Mica $350V$ C108 33 pF Trimmer (109) C109 220 pF Silver/Mica $350V$ C109 220 pF Silver/Mica $350V$ C110 33 pF Trimmer (110) C110 33 pF Trimmer (20) C111 0.001μ F Ceramic $350V$ C112 0.01μ F Paper $500V$ C113 27 pF Ceramic $350V$ C114 0.001μ F Ceramic $350V$ C115 0.001μ F Ceramic $350V$ C116 DELETED (2117) 0.01μ F Paper $500V$ C118 9.3 pF Diff.trimmer (212) (212) (212) (212) (212) (212) (212) (212) (212) (212) (212) (212) (212) (212) (212) (212) (212)	25
C106 0.001μ F Ceramic $350V$ C107 220pF Silver/Mica $350V$ C108 $33pF$ Trimmer C109 220pF Silver/Mica $350V$ C109 220pF Silver/Mica $350V$ C110 $33pF$ Trimmer (110) C110 $33pF$ Trimmer (211) C111 0.001μ F Ceramic $350V$ C112 0.01μ F Paper $500V$ C113 $27pF$ Ceramic $350V$ C114 0.001μ F Ceramic $350V$ C115 0.001μ F Ceramic $350V$ C115 0.001μ F Ceramic $350V$ C116 DELETED U U C117 0.01μ F Paper $500V$ C118 $9.3pF$ Diff.trimmer U C120 DELETED U U U C121 DELETED U U U	20
C107 220pF Silver/Mica $350V$ C108 $33pF$ Trimmer (109) $220pF$ Silver/Mica $350V$ C109 $220pF$ Silver/Mica $350V$ (110) $33pF$ (110) $33pF$ (110) C110 $33pF$ Trimmer (2111) (100) (111) <td></td>	
C108 $33pF$ Trimmer C109 $220pF$ Silver/Mica $350V$ C110 $33pF$ Trimmer C111 0.001μ F Ceramic $350V$ C112 0.01μ F Paper $500V$ C113 $27pF$ Ceramic $350V$ C114 0.001μ F Ceramic $350V$ C115 0.001μ F Ceramic $350V$ C116 DELETED $Ceramic$ $350V$ C117 0.01μ F Paper $500V$ C118 $9.3pF$ Diff.trimmer $C120$ C120 DELETED $C121$ DELETED C121 DELETED $C122$ DELETED	10
C109 220pF Silver/Mica 350V C110 33pF Trimmer (111) $(11$	
C110 $33 pF$ Trimmer C111 $0.001 \mu F$ Ceramic $350V$ C112 $0.01 \mu F$ Paper $500V$ C113 $27 pF$ Ceramic $350V$ C114 $0.001 \mu F$ Ceramic $350V$ C114 $0.001 \mu F$ Ceramic $350V$ C115 $0.001 \mu F$ Ceramic $350V$ C116 DELETED $0.01 \mu F$ Paper $500V$ C116 DELETED $0.01 \mu F$ Paper $500V$ C117 $0.01 \mu F$ Paper $500V$ C118 $9.3 pF$ Diff.trimmer $C120$ C120 DELETED U U C121 DELETED U U C122 DELETED U U	2
C111 0.001μ F Ceramic $350V$ C112 0.01μ F Paper $500V$ C113 $27pF$ Ceramic $350V$ C114 0.001μ F Ceramic $350V$ C115 0.001μ F Ceramic $350V$ C115 0.001μ F Ceramic $350V$ C116 DELETED 0.01μ F Paper $500V$ C116 DELETED 0.01μ F Paper $500V$ C117 0.01μ F Paper $500V$ C118 $9.3p$ F Diff.trimmer $C120$ DELETED C120 DELETED V V V C121 DELETED V V V C122 DELETED V V	
C112 0.01μ F Paper $500V$ C113 $27pF$ Ceramic $350V$ C114 0.001μ F Ceramic $350V$ C115 0.001μ F Ceramic $350V$ C116 DELETED $500V$ C116 C117 0.01μ F Paper $500V$ C118 $9.3pF$ Diff.trimmer C119 C119 $9.3pF$ Diff.trimmer C120 C121 DELETED V V	
C113 $27 pF$ Ceramic $350V$ C114 $0.001 \mu F$ Ceramic $350V$ C115 $0.001 \mu F$ Ceramic $350V$ C116 DELETED $350V$ C117 $0.01 \mu F$ Paper $500V$ C118 $9.3 pF$ Diff.trimmer $100V$ C119 $9.3 pF$ Diff.trimmer $100V$ C120 DELETED $100V$ $100V$ C121 DELETED $100V$ $100V$ C122 DELETED $100V$ $100V$	20
C114 0.001μ F Ceramic $350V$ C115 0.001μ F Ceramic $350V$ C116 DELETED 350V C117 0.01μ F Paper $500V$ C118 9.3 pF Diff.trimmer 1000000000000000000000000000000000000	5
$\begin{array}{ccccc} {\rm C115} & 0.001 \mu {\rm F} & {\rm Ceramic} & 350 {\rm V} \\ {\rm C116} & {\rm DELETED} & & & \\ {\rm C117} & 0.01 \mu {\rm F} & {\rm Paper} & 500 {\rm V} \\ {\rm C118} & 9.3 {\rm pF} & {\rm Diff.trimmer} \\ {\rm C119} & 9.3 {\rm pF} & {\rm Diff.trimmer} \\ {\rm C120} & {\rm DELETED} \\ {\rm C121} & {\rm DELETED} \\ {\rm C122} & {\rm DELETED} \\ {\rm C122} & {\rm DELETED} \end{array}$	
C116DELETEDC117 0.01μ FPaper500VC118 9.3 pFDiff.trimmerC119 9.3 pFDiff.trimmerC120DELETEDC121DELETEDC122DELETED	
$\begin{array}{ccccc} {\rm C117} & 0.01 \mu {\rm F} & {\rm Paper} & 500 {\rm V} \\ {\rm C118} & 9.3 {\rm pF} & {\rm Diff.trimmer} \\ {\rm C119} & 9.3 {\rm pF} & {\rm Diff.trimmer} \\ {\rm C120} & {\rm DELETED} \\ {\rm C121} & {\rm DELETED} \\ {\rm C122} & {\rm DELETED} \\ \end{array}$	
C1189.3pFDiff.trimmerC1199.3pFDiff.trimmerC120DELETEDC121DELETEDC122DELETED	20
C1199.3pFDiff.trimmerC120DELETEDC121DELETEDC122DELETED	
C120 DELETED C121 DELETED C122 DELETED	
C121 DELETED C122 DELETED	
C122 DELETED	
C123 DELETED	
C124 DELETED	
C125 DELETED	
C126 DELETED	
C127 DELETED	

C128	DELETED			
C129	DELETED			
C130	$0.001 \mu F$	Ceramic	350V	
C130A	$0.01 \mu F$	Paper	500V	20
C131	$0.001 \mu F$	Ceramic	350V	
C132	$0.001 \mu F$	Ceramic	350V	
C133	$0.001 \mu F$	Ceramic	350V	
C134	DELETED			
C135	DELETED			
C136	DELETED			
C137	DELETED			
C138	DELETED			
C139	DELETED			
C140	$0.001 \mu \mathrm{F}$	Ceramic	350V	20
C140A	$0.001 \mu \mathrm{F}$	Ceramic	350V	20
C141	$0.05 \mu { m F}$	Paper	350V	25
C142	DELETED			
C143	DELETED			
C144	DELETED			
C145	$6800 \mathrm{pF}$	Silver/Mica	350V	5
C146	$270 \mathrm{pF}$	Silver/Mica	$350\mathrm{V}$	2
C146A	$100 \mathrm{pF}$	Ceramic	350V	2
C147	$70 \mathrm{pF}$	Trimmer, 12 vane		
		with acetate		
		case		
C148	$70 \mathrm{pF}$	Trimmer, 12 vane		
		with acetate		
		case		
C149	DELETED			
C150	$0.1 \mu { m F}$	Paper	150V	20
C151	DELETED			
C152	$290 \mathrm{pF}$	Silver/Mica	$350\mathrm{V}$	2
C152A	$100 \mathrm{pF}$	Ceramic	750V	2
C153	$70 \mathrm{pF}$	Trimmer, 12 vane		
		with acetate		
		case		
C154	DELETED			
C155	DELETED			
C156	$0.01 \mu { m F}$	Paper	500V	20
C157	$290 \mathrm{pF}$	Silver/Mica	$350\mathrm{V}$	2
C157A	$100 \mathrm{pF}$	Ceramic	750V	5
C158	$70 \mathrm{pF}$	Trimmer, 12 vane		
		with acetate		
		case		

C159	$0.05 \mu F$	Paper	350V	20
C159A	$0.1 \mu F$	Paper 150V		20
C159B	$0.001 \mu \mathrm{F}$	Ceramic	350V	
C160	$0.05 \mu \mathrm{F}$	Paper	$350\mathrm{V}$	20
C161	$290 \mathrm{pF}$	Silver/Mica	$350\mathrm{V}$	2
C161A	$100 \mathrm{pF}$	Ceramic	750V	5
C162	$70 \mathrm{pF}$	Trimmer, 12 vane		
		with acetate		
		case		
C163	$0.05 \mu { m F}$	Paper	$350\mathrm{V}$	25
C164	$330 \mathrm{pF}$	Silver/Mica	$350\mathrm{V}$	10
C165	$0.05 \mu { m F}$	Paper	$350\mathrm{V}$	25
C166	$0.05 \mu { m F}$	Paper	$350\mathrm{V}$	25
C167	$470 \mathrm{pF}$	Silver/Mica	$350\mathrm{V}$	5
C168	$10 \mathrm{pF}$	Ceramic	750V	5
C169	$0.1 \mu { m F}$	Paper	150V	20
C170	$2700 \mathrm{pF}$	Silver/Mica	$350\mathrm{V}$	5
C170A	$33 \mathrm{pF}$	Silver/Mica	$350\mathrm{V}$	5
C171	$70 \mathrm{pF}$	Trimmer, 12 vane		
		with acetate		
		case		
C172	$120 \mathrm{pF}$	Silver/Mica	$350\mathrm{V}$	5
C173	$0.1 \mu \mathrm{F}$	Paper	150V	25
C174	$0.05 \mu { m F}$	Paper	$350\mathrm{V}$	20
C175	$33 \mathrm{pF}$	Ceramic	750V	5
C176	$0.1 \mu F$	Paper	150V	20
C177	$100 \mathrm{pF}$	Silver/Mica	350V	10
C178	$10 \mathrm{pF}$	Ceramic	350V	5
C179	$70 \mathrm{pF}$	Trimmer, 12 vane		
		with acetate		
Class	100 5	case	a Molt I	_
C180	100pF	Silver/Mica	350V	5
C181	$0.05\mu F$	Paper	350V	25
C182	$0.1 \mu F$	Paper	150V	25
C183	$0.05 \mu F$	Paper	350V	20
C184	$0.05\mu F$	Paper	350V	20
C185	$0.1\mu\mathrm{F}$	Paper	150V	20
C186	$0.05 \mu F$	Paper	350V	25
C187	$0.05 \mu F$	Paper	350V	25
C188	$0.05 \mu F$	Paper	350V	25
C188A	$1\mu F$	150V	20	
C189	$0.01 \mu F$	Paper	500V	20
C190	$0.1\mu F$	Paper	150V	25
C191	70pF	Trimmer, 12 vane		

		with acetate		
		case		
C192	390pF	Silver/Mica	350V	5
C193	$100 \mathrm{pF}$	Ceramic	750V	10
C193A	$0.001 \mu F$	Ceramic	350V	
C194	$0.1 \mu F$	Paper	150V	20
C194A	$0.001 \mu F$	Ceramic	350V	
C195	$0.1 \mu F$	Paper	350V	20
C195A	390pF	Silver/Mica	350V	5
C195B	70pF	Trimmer, 12 vane		
		with acetate		
		case		
C196	$0.5 \mu F$	Paper	150V	20
C197	$100 \mu F$	Electrolytic	50V	
C198	$32 + 32 \mu F$	Electrolytic	350V	
C199	70pF	Trimmer. 12 vane		
		with acetate		
		case		
C200	$50 \mathrm{pF}$	Variable		
C201	$220 \mathrm{pF}$	Silver/Mica	350V	5
C202	$39 \mathrm{pF}$	Silver/Mica	350V	2pF
C203	$22 \mathrm{pF}$	Ceramic	750V	5
C204	$0.1 \mu F$	Paper	150V	20
C205	$0.001 \mu F$	Ceramic	350V	
C206	$32+32\mu\mathrm{F}$	Electrolytic	350V	
C207	$0.05 \mu F$	Paper	350V	20
C208	$0.05 \mu F$	Paper	350V	20
C208A	$0.01 \mu F$	Paper	500V	20
C209	$330 \mathrm{pF}$	Silver/Mica	$350\mathrm{V}$	10
C210	$330\mathrm{pF}$	Silver/Mica	$350\mathrm{V}$	10
C211	$330 \mathrm{pF}$	Silver/Mica	$350\mathrm{V}$	10
C212	$0.1 \mu F$	Paper	150V	20
C213	$0.1 \mu F$	Paper	150V	20
C214	$0.1 \mu F$	Paper	150V	20
C215	$47 \mathrm{pF}$	Ceramic	750V	5
C216	$0.01 \mu F$	Paper	500V	20
C217	$0.1 \mu F$	Paper	150V	20
C217A	$0.01 \mu \mathrm{F}$	Silver/Ceramic	750V	20
C218	$0,\!01\mu\mathrm{F}$	Paper	500V	20
C218A	$33 \mathrm{pF}$	Silver/Mica	$350\mathrm{V}$	10
C219	$0.001 \mu \mathrm{F}$	Ceramic	350V	
C220	$560 \mathrm{pF}$	Ceramic	500V	20
C220A	$0.1 \mu \mathrm{F}$	Paper	150V	20
C221	$0.01 \mu \mathrm{F}$	Paper	500V	20

C221A	$8\mu F$	Electrolytic	350V	85C
C221B	68pF	58pF Silver/Mica		10
C222	$50\mu F$	Electrolytic	12V	
C222A	$0.001 \mu F$	Ceramic	350V	
C222B	$0.05 \mu F$	Paper	350V	20
C223	DELETED			
C224	$0.01 \mu \mathrm{F}$	Silver/Ceramic	750V	20
C225	$0.01 \mu \mathrm{F}$	Silver/Ceramic	750V	20
C226	$82 \mathrm{pF}$	Silver/Ceramic	750V	5
C227	$82 \mathrm{pF}$	Silver/Ceramic	750V	5
C228	$82 \mathrm{pF}$	Silver/Ceramic	750V	5
C229	$82 \mathrm{pF}$	Silver/Ceramic	750V	5
C230	$82 \mathrm{pF}$	Silver/Ceramic	750V	5
C231	$82 \mathrm{pF}$	Silver/Ceramic	750V	5
C232	DELETED			
C233	$22 \mathrm{pF}$	Trimmer		
C234	$22 \mathrm{pF}$	Trimmer		
C235	$22 \mathrm{pF}$	Trimmer		
C236	$22 \mathrm{pF}$	Trimmer		
C237	$22 \mathrm{pF}$	Trimmer		
C300	$4.7 \mathrm{pF}$	Ceramic	750V	1/2
C301	$220 \mathrm{pF}$	Silver/Mica	350V	5
C302	$0.01 \mu \mathrm{F}$	Paper	500V	20
C302A	$0.01 \mu \mathrm{F}$	Paper	500V	20
C303	$15 \mathrm{pF}$	Ceramic	750V	5
C304	$0.01 \mu \mathrm{F}$	Paper	500V	20
C305	$33 \mathrm{pF}$	Ceramic	750V	2
C306	$16 \mathrm{pF}$	Trimmer	1000V	
C307	$0.01 \mu \mathrm{F}$	Paper	250V	20
C308	$47 \mathrm{pF}$	Silver/Mica	$350\mathrm{V}$	5
C308A	$120 \mathrm{pF}$	Silver/Mica	$350\mathrm{V}$	5
C309	$0.01 \mu F$	Paper	500V	20
C310	$100 \mathrm{pF}$	Variable		
C311	$100 \mathrm{pF}$	Silver/Mica	$350\mathrm{V}$	5
C312	$10 \mathrm{pF}$	Silver/Mica	$350\mathrm{V}$	5
C313	$0.01 \mu F$	Paper	500V	20
C314	$150 \mathrm{pF}$	Silver/Mica	$350\mathrm{V}$	2
C315	$0.01 \mu \mathrm{F}$	Paper	500V	20
C315A	$0.01 \mu F$	Paper	500V	20
C316	$47 \mathrm{pF}$	Silver/Mica	$350\mathrm{V}$	2
C317	$220 \mathrm{pF}$	Silver/Mica	$350\mathrm{V}$	5
C318	$12 \mathrm{pF}$	Silver/Mica	350V	5
C319	$100 \mathrm{pF}$	Silver/Mica	$350\mathrm{V}$	2
C320	$100 \mathrm{pF}$	Silver/Mica	350V	5

C321	$0.01 \mu \mathrm{F}$	Paper	500V	20
C321A	$0.001 \mu F$	Silver/Mica	$350\mathrm{V}$	5
C322	$300 \mathrm{pF}$	Silver/Mica	$350\mathrm{V}$	2
C323	$0.01 \mu \mathrm{F}$	Paper	250V	20
C234	$15 \mathrm{pF}$	Silver/Mica	$350\mathrm{V}$	2
C235	$100 \mathrm{pF}$	Silver/Mica	$350\mathrm{V}$	5
C326	$0.001 \mu \mathrm{F}$	Silver/Mica	$350\mathrm{V}$	5
C327	$0.001 \mu \mathrm{F}$	Silver/Mica	$350\mathrm{V}$	5
C328	$53 \mathrm{pF}$	Silver/Mica	$350\mathrm{V}$	2
C329	$0.005 \mu \mathrm{F}$	Paper	$250\mathrm{V}$	20
C330	$0.001 \mu F$	Silver/Mica	$350\mathrm{V}$	5
C331	$155 \mathrm{pF}$	Silver/Mica	$350\mathrm{V}$	2
C332	$100 \mathrm{pF}$	Silver/Mica	$350\mathrm{V}$	5
C333	DELETED			
C334	$100 \mathrm{pF}$	Silver/Mica	$350\mathrm{V}$	5
C335	DELETED			
C336	$0.01 \mu { m F}$	Paper	500V	20
C337	$33 \mathrm{pF}$	Trimmer		
C338	$470 \mathrm{pF}$	Silver/Mica	$350\mathrm{V}$	5
C339	$220 \mathrm{pF}$	Silver/Mica	$350\mathrm{V}$	5
C340	$0.01 \mu { m F}$	Paper	500V	20
C341	$0.01 \mu { m F}$	Paper	$250\mathrm{V}$	20
C342	$0.02 \mu { m F}$	Paper	$250\mathrm{V}$	20
C343	$820 \mathrm{pF}$	Silver/Mica	$350\mathrm{V}$	5
C344	$6800 \mathrm{pF}$	Silver/Mica	$350\mathrm{V}$	20

17. Component List 2

Valves

V1	Pentode	$\mathrm{CV4010}$	$6 \mathrm{AK5W}$
V2	Pentode	CV4010	$6 \mathrm{AK5W}$
V3	Double-Triode	$\rm CV5331$	6ES8/ECC189
V4	Pentode	CV4011	6AS6
V5	Pentode	CV4009	6BA6
V6	Pentode	CV4009	6BA6
V7	Pentode	CV3998	$6688/\mathrm{E}180\mathrm{F}$
V8	Pentode	CV4009	6BA6
V9	Pentode	CV3998	$6688/\mathrm{E}180\mathrm{F}$
V10	Pentode	CV4009	6BA6
V11	Pentode	CV4010	$6 \mathrm{AK5W}$
V12	Double-Triode	CV4024	12AT7
V13	Heptode	CV4012	6BE6W
V14	Pentode	CV4009	6BA6
V15	Pentode	CV4009	6BA6
V16	Pentode	CV4009	6BA6
V17	Pentode	CV4009	6BA6
V18	Double-Diode	CV4007	6AL5
V19	Pentode	CV4010	$6 \mathrm{AK5W}$
V20	DELETED		
V21	Double-Diode	CV4007	6AL5
V22	Output-Tetrode	CV4019	6AQ5
V23	Double-Triode	CV4024	12AT7
V24	Diode	CV469	$5704/\mathrm{EA76}$
V25	Pentode	CV3998	$6688/\mathrm{E}180\mathrm{F}$
V26	Heptode	CV4012	6BE6W
V27	Pentode	CV4010	$6 \mathrm{AK5W}$

Inductances

- L1 0-30 Mc/s filter
- L2 Crystal anode coil
- L3 Common assembly with L1
- L4 Coil Assembly 16-30 Mc/s
- L5 Coil Assembly 8-16 Mc/s
- L6 Coil Assembly 4-8 Mc/s
- L7 Coil Assembly 2-4 Mc/s
- L8 Coil Assembly 1-2 Mc/s
- L9 DELETED
- L10 Common assembly with L1
- L11 Common assembly with L1
- L12 Common assembly with L1

[63]

L13	Filter detail assembly
L14	Common assembly wth L13
L15	Common assembly with L1
L16	Common assembly with L13
L17	Common assembly with L1
L18	Common assembly with L13
L19	Common assembly with L13
L20	First V.F.O. anode coil (assy with R18)
L21	Common assembly with L13
L22	Common assembly with L13
L23	40 Mc/s filter
L24	37.5 Mc/s filter
L25	40 Mc/s filter
L26	37.5 Mc/s filter
L27	Coil assembly R.F. Amp. anode
L28	Coil assembly 37 Mc/s mixer anode
L29	40 Mc/s filter
L30	37.5 Mc/s filter
L31	40 Mc/s filter
L32	37.5 Mc/s filter
L33	Coil Assy. 37 Mc/s Amp. Anode
L34	40 Mc/s filter
L35	37.5 Mc/s filter
L36	Coil Assy. First V.F.O.
L37	40 Mc/s filter
L38	37.5 Mc/s filter
L39	40 Mc/s filter
L40	37.5 Mc/s filter
L41	40 Mc/s filter
L42	37.5 Mc/s filter
L43	Choke
L44	Filter coil
L45	Choke
L46	Filter coil
L47	Crystal input transformer
L48	Crystal input transformer
L49	Crystal input transformer
L50	37.5 Mc/s tapped anode coil
L51	DELETED
L52	DELETED
L53	Filter coil assembly
L54	Filter coil assembly
L55	Coil assembly
L56	DELETED

L57	DELETED
L58	DELETED
L59	DELETED
L60	DELETED
L61	First L-C filter stage
L62	Common assembly with L61
L63	Second L-C filter stage
L64	Common assembly with L63
L65	Choke
L66	DELETED
L67	Third L-C filter stage
L68	Common assembly with L67
L69	0.1 Mc/s coupling coil
L70	Common assembly with L69
L71	Final L-C filter stage
L72)
L73) 100 kc/s I.F. first stage $$
L74)
L75	$0.9 \mathrm{Mc/s}$ anode coil
L76	I.F. output Transformer assy.
L77)
L78) 100 kc/s final stage $$
L79)
L80	Smoothing choke
L81	$150 \mathrm{mH}$ choke
L82	B.F.O. coil
L83	Filter coil (Antenna)
L84	Filter coil (Antenna)
L85	Filter coil (Antenna)
L300	Coil Assembly
L301	Coil Assembly
L302	Coil Assembly
L303	Coil Assembly
L304	Coil Assembly
L305	Coil Assembly
L306	Coil Assembly
L307	Coil Assembly
L308	Coil Assembly
L309	Coil Assembly
L310	Coil Assembly
L311	Coil Assembly
L312	Coil Assembly
L313	Coil Assembly
L314	Coil Assembly

L330 Coil Assembly

Transformers

- T1 Mains
- T2 Audio Output

T3 A.F. Line Output

Rectifiers

- MR1 Meter Rectifier, 1mAMR4 RectifierMR5 Rectifier
- MR6 Rectifier
- MR7 Rectifier

Loudspeakers

LS 2 1/4 inch square 3 ohm

Meter

M1 200 micro-amp.

Crystals

XL1	$1~\mathrm{Mc/s}~\pm0.005\%$
XL2	99,964 c/s $\pm 0.005\%$
XL3	99,890 c/s $\pm 0.005\%$
XL4	DELETED
XL5	100,036 c/s $\pm 0.005\%$
XL6	100,110 c/s $\pm 0.005\%$
XL300	$1.7 \mathrm{Mc/s}$

Fuses

F1 Mains Fuse, 2A F2 Fuse anti-surge, 350mA

Lamp

ILP1 Mains indicating, 8V, 1.6 W

18. Valve Data

INTRODUCTION

- 1. Details of valves used in the receiver are given in Tables 1 and 2 overleaf. The location of valves is shown in fig. 8 and valve base connections are given in the circuit diagram. Voltages were obtained from a B9A or B7G stand-off valve base using a 20,000 ohms/volt meter on the optimum range in each case. Valve pin numbers are indicated in brackets in Table 2.
- 2. The receiver was set as follows:-
 - (1) SYSTEM switch to MAN.
 - (2) R.F./I.F. GAIN to MAX.
 - (3) No signal i.e. first and second v.f.o. off tune.
 - (4) B.F.O. off except for checking V19.
 - (5) SYSTEM switch to CAL in order to check V13 and V15 only.

	TABLE 1.								
Pin	6AK5W	6ES8	6AS6	6BA6	6688	12AT7	6BE6W	6AL5	6AQ5
No.	M8100	ECC189		EF93	E180F	ECC81		EB91	
1	Grid1	Anode2	Grid1	$\operatorname{Grid} 1$	Cathode	Anode2	$\operatorname{Grid} 1$	Cathode1	$\operatorname{Grid} 1$
2	Cathode	$\operatorname{Grid}2$	Cathode	Grid3	$\operatorname{Grid} 1$	$\operatorname{Grid}2$	Cathode	Anode2	Cathode
	& Grid3					& Grid5		& Grid3	
3	Heater	Cathode2	Heater	Heater	Cathode	Cathode2	Heater	Heater	Heater
4	Heater	Heater	Heater	Heater	Heater	Heater	Heater	Heater	Heater
5	Anode	Heater	Anode	Anode	Heater	Heater	Anode	Cathode2	Anode
6	$\operatorname{Grid}2$	Anode1	$\operatorname{Grid}2$	$\operatorname{Grid}2$	I.C.	Anode1	$\operatorname{Grid}2$	Screen	$\operatorname{Grid}2$
							& Grid 4		
7	Cathode	Grid1	Grid3	Cathode	Anode	$\operatorname{Grid} 1$	Grid3	Anode1	$\operatorname{Grid} 1$
8		Cathode1			Grid 3	Cathode1			
					& Screen				
9		Screen			Grid2	Heater C.T.			
Base	B7G	B9A	B7G	B7G	B9A	B9A	B7G	B7G	B7G

TABLE 2	TA	BL	Ε	2
---------	----	---------------------	---	----------

Cct.	Type				_	
Ref.	Anode	Screen	Cathode	American	Equivalent	Function
V1	140(5)	75(6)	1.16(2)	6AK5W	M8100	Crystal osc./ amplifier
V2	165(5)	120(6)	3.0(2)	6AK5W	M8100	Harmonic generator
V3	$172(1) \\ 90(6)$	-	1.1(8)	6 ES8	ECC189	R.F.amplifier
V4	175(5)	120(6)	2.0(2)	6AS6		Harmonic mixer
V5	175(5)	95(6)	-	6BA6	EF93	First v.f.o.
V6	196(5)	85(6)	0.95(2)	6BA6	EF93	37.5 Mc/s amplifier
V7	173(7)	120(9)	0.85(1)	6688	E180F	First mixer

[67]

Valve Data

V8	195(5)	85(6)	0.95(2)	6BA6	EF93	37.5 Mc/s amplifier
V9	168(7)	135(9)	0.86(1)	6688	E180F	Second mixer
V10	205(5)	108(6)	2.06(2)	6BA6	EF93	37.5 Mc/s amplifier
V11	155(5)	110(6)	1.95(2)	6AK5W	M8100	Second v.f.o. amplifier
V12	100(6)	-	-	12AT7	ECC81	Second v.f.o.
	195(1)	-	44(3)			
V13	225(5)	90(6)	2.0(2)	6BE6W		Calibrator
V14	175(5)	70(6)	0.92(7)	6BA6	EF93	First I.F. amplifier
V15	220(5)	110(6)	6.5(7)	6BA6	EF93	Calibrator
V16	180(5)	88(6)	1.46(7)	6BA6	EF93	Second I.F. amplifier
V17	150(5)	92(6)	1.36(7)	6BA6	EF93	I.F. output
V18	-	-	27.0(1)	6AL5	EB91	A.V.C. and T.C.
V19	155(5)	110(6)	-	6AK5W	M8100	B.F.O.
V20						
V21	-	-	-	6AL5	EB91	Detector and noise limiter
V22	200(5)	198(6)	8.5(2)	6AQ5		Audio output
V23	205(1)	-	2.2(3)	12AT7	ECC81	Audio amplifier
	104(6)	-	1.5(8)			and A.F. output
V24	-	-	-		EA76	
V25	165(7)	135(9)	0.72(1)	6688	E180F	Third mixer
V26	185(5)	135(6)	0.72(2)	6BE6W		Fourth mixer
V27	140(5)	80(6)	1.45(2)	6AK5W	M8100	1.7 Mc/s crystal oscillator/ amplifier

19. Illustrations

	Fig.
Top View of Receiver	8
First V.F.O top view	9
First V.F.O underside	10
Second V.F.O.	11
1.7 Mc/s Oscillator/Amplifier and Mixer Unit	12
B.F.O. Unit	13
Crystal Calibrator Unit	14
Key to Under-chassis Layout	15
R.F. Attenuator	16
Supply Filters	17
Crystal Oscillator/Amplifier and Harmonic Filter System	18
Second Mixer	19
Band-Pass Filter	20
100 Kc/s I.F. amplifier - right side	21
100 Kc/s I.F. amplifier - left side	22
Power Supply and Audio Stages	23

[69]

Illustrations

Illustrations

Illustrations
