

Measurements of Sap Flow

by the Heat-Pulse Method.

An Instruction Manual for the HPV system

August, 1998

Steve Green

HortResearch Institute

Private Bag 11-030

Palmerston North

New Zealand

 2

Summary

Heat-pulse techniques can be used to measure sap flow in plant stems with minimal

disruption to the sap stream (Swanson and Whitfield, 1981; Cohen et al., 1981; Green and

Clothier, 1988). The measurements are reliable, use inexpensive technology, provide a

good time resolution of sap flow, and they are well-suited to automatic data collection

and storage. Sequential or simultaneous measurements on numerous trees are possible,

permitting the estimation of transpiration from whole stands of trees.

The HPV system described here is based on the ‘compensation’ Heat-Pulse method

(Swanson and Whitfield, 1981) and comprises a set of probes and associated electronics

connected to a data logger (model CR10, Campbell Scientific Inc., Utah, USA). Included

with the system is a set of computer programs to CAPTURE and ANALYZE the heat-

pulse measurements, which are recorded automatically by the data logger. The purpose of

this document is to describe how to successfully install and operate the HPV system.

 3

Contents

Summary 2

1. Background and Theory 5

 1.1 The origin of heat-pulse 5

 1.2 Idealized heat-pulse theory 5

 1.3 Wound corrections to the heat-pulse theory 6

 1.4 Converting heat-pulse velocity to sap flow 10

 1.5 Measuring the volume fractions, FM and FL 10

 1.6 Estimating volumetric sapflow 11

2. Instrumentation 12

3. Connecting up the logger and getting it going 13

 3.1 Assembling the necessary hardware 13

 3.2 Connecting the HPV unit to the datalogger 13

4. Installing the heat-pulse probes 14

 4.1 Checking if the probes are OK 14

 4.2 Procedure for installing probes 15

 4.3 Testing if everything is working 16

5. Installing the datalogger software 16

 5.1 Files in A:\LOGGER 16

 5.2 Files in A:\CAMP 17

 5.3 Downloading programs to the logger 17

 5.4 Review of logger modes 18

 5.5 Retrieving data from logger 18

 5.6 Operation of the logger program - C10-HP3.DLD 18

 5.7 Listing of the logger program - C10-HP3.CSI 20

 4

 5.8 Operation of the logger program - C21-HP4.DLD 24

 5.9 Listing of the logger program - C10-HP4.CSI 25

6. Running the analysis software 28

 6.1 Files in A:\FORT 28

 6.2 Setting up the input file 28

 6.3 Examining the output file 30

 6.4 Listing of the ANALYSIS program 31

7. References 44

Appendix A: Use of an AM25T multiplexer 45

Appendix B: Use of the simple heat-pulse controller 50

 5

1. Background and Theory

1.1 The Origin of Heat-pulse

Heat-pulse methods date back some 60 years to the work of Huber (1932) who first

conceived the idea of using heat as a tracer of sap flow. In his early experiments on

tropical liana, Huber found such high rates of sap flow that when heat was applied for one

to two seconds it was still recognizable as a pulse at the junctions of a thermocouple

sensor some 30 cm downstream from the heater. The time for the first appearance of heat

at the sensor was assumed to be the same as the time taken for the sap to move this

distance. However in later work, at slower sap speeds, Huber recognized the importance

of distinguishing between the effect of convection by the moving sap and the transport of

heat by thermal conduction. To separate these two effects, Huber and Schmidt (1937)

developed an early version of the ‘compensation’ heat-pulse method in which one sensor

was downstream and the other sensor was upstream of the heater. The time of peak

warming of the upstream sensor compared to the downstream one, was used to

‘compensate’ for the effects of thermal conduction. In both cases the sensor and the heater

were external to or just under the bark on the surface of the sapwood and it was assumed

that the speed of the sap was identical with that of the heat pulse.

1.2 Idealized Heat-pulse Theory

Later work by Marshall (1958) developed a theoretical foundation for the heat-pulse

technique and showed that Huber’s assumptions were not well founded. From a

theoretical viewpoint, Marshall showed that the speed of sap is not the same as that of the

heat pulse. Rather, the heat pulse velocity is equal to the weighted average of the velocity

of the moving sap and the stationary woody matrix, the weighting factor being determined

largely by the physical properties of the woody matrix. Marshall (1958) also proposed a

new probe arrangement. He advocated the use of a line heater and temperature probe to

 6

be inserted radially into the plant stem, with the temperature being measured at a point far

enough below the surface of the stem to avoid the unknown losses of heat which had

previously reduced the usefulness of Huber’s method. Marshall’s (1958) work was based

on an analytical solution to the idealized heat flow equation. He used this theory to

calculate the temperature rise at any point in the sapwood following the application of an

instantaneous line source of heat. Thus, Marshall’s contribution was an important first

step in establishing a sound theoretical basis for the heat-pulse method.

Swanson (1962) was one of the first to utilize Marshall’s analytical solutions, by applying

them to the analysis of the ‘compensation’ heat pulse method in which two temperature

sensors are placed asymmetrically either side of a line heater source (Fig. 1). Swanson

showed that if the temperature rise following the release of a pulse of heat is measured at

distances Xu [m] upstream and Xd [m] downstream from the heater, then the heat-pulse

velocity can be calculated from

V
X X

t
 = d u

z

+







2
 (1)

where tz [s] is the time delay for the temperatures at points Xd and Xu to become equal. In

effect, Eq. (1) implies that following the application of an instantaneous heat-pulse, the

centre of the heat-pulse is convected downstream, from the heater, to reach the point mid-

way between the two temperature sensor after a tz. Equation (1) is particularly well suited

to data logging since it only requires electronics to detect a null temperature difference

and an accurate timer to measure tz. The tz’s are the only data that need to be recorded,

since the distances Xu and Xd remain constant. We refer to this estimate of V [m s-1] as the

‘raw’ heat -pulse velocity.

1.3 Wound Corrections to the Heat-Pulse Velocity

The calculation of V from Eq (1) is based on Marshall’s (1958) idealize d theory and

assumes the heat-pulse probes have no effect on the measured heat flow. In reality,

convection of the heat pulse is perturbed by the presence of the heater and temperature

 7

Figure 1. Arrangement of sensors within a plant stem for the compensation heat-

pulse method.

 8

probes, and by the disruption of xylem tissue associated with their placement. These

perturbations produce a systematic underestimation in the measured heat-pulse velocity

(Cohen et al., 1981; Green and Clothier, 1988). Consequently, the heat-pulse velocity

must be corrected for the probe-induced effects of wounding. This correction can be done

empirically (e.g. Cohen et al., 1981), or it can be based on sound physical principals,

using an equation of the form:

V a bV cVc = + + 2 (2)

where Vc [m s-1] is the corrected heat-pulse velocity and V is the raw heat-pulse velocity

given by Eq. (1). The correction coefficients a, b, and c have been derived by Swanson

and Whitfield (1981) from numerical solutions of Marshall’s (1958) equations, for

various wound sizes. The full range of correction factors are listed in Table 1. These

correction factors can also be seen in the ANALYSIS program, HPV-2000.FOR, which is

described later. The use of Eq. (2) puts the heat-pulse method on a sound theoretical

basis, and uses physical principals rather than an empirical calibration to obtain the best

estimate of the heat-pulse velocity.

Wound

width (mm)

a b c

0.0 0.000 1.000 0.000

1.6 0.393 1.356 0.036

2.0 0.807 1.203 0.058

2.4 1.184 1.072 0.087

2.8 1.524 0.964 0.124

3.2 1.826 0.879 0.169

3.6 2.090 0.818 0.221

Table 1. Wound corrections for Eq. (2)(From Swanson and Whitfield, 1981)

 9

At this point, we note that a priori the wound size is not known, although we might

expect it to be a little larger than the size of the drill hole. This is because of additional

damage which results from mechanical disruption of vessels at the edges of the drill hole.

Anatomical investigations by Barrett et al. (1995) indicated the total wound width is

likely to extend about 0.3 mm either side of the drill hole. Thus, a wound correction of

(1.8 + 2× 0.3) mm seems appropriate for a drill hole of 1.8 mm (as used here). We have

used this wound width to successfully validate the heat-pulse method in apple, but found

a larger wound correction of some 3.2 mm was required for kiwifruit vines to bring the

heat-pulse measurement into line with actual flow rates (Green and Clothier, 1988).

Kiwifruit have very large xylem vessels and a substantial interstitial area of woody matrix

which affects the thermal homogeneity of the sapwood and, therefore, affects the

transmission and measurement of heat-pulse in kiwifruit. Our results (Green and Clothier,

1988) and the results of Barrett et al. (1995) show the importance of validating the heat-

pulse method in order to determine the appropriate wound factor. Such a validation is

useful, and sometimes necessary, in order to reach a good level of competence and

confidence in using the heat-pulse method.

We also issue a practical warning: if due care is not taken to align the centers of the drill

holes with the longitudinal direction of the sap flow, then the actual wound width could

well be higher than expected. In practice, we believe the 2.4 mm wound correction to be

the lower limit appropriate for probes of 1.8 mm diameter. We also stress the importance

of being careful when placing sensors in the tree stem since the calculations of total sap

flow are very sensitive to the wound factor.

A final point on the wound corrections: if the probes are left in place for an extended

period, e.g. many months, then the initial wounding may be expected to increase. This is

because of increased blockage due to tylose formation in the vessels close to the probes,

which may occur as the tree reacts to further isolate the ‘wound’. An increased wound

reaction could reduce the sensitivity of the sap flow measurements. However, we have

never experienced a significant decrease in the heat-pulse sensitivity over time, in either

 10

apple or kiwifruit, and so we have been able to use the same set of probes for periods of

up to 3 months. In other species this may not be the case and then some reasoned

assessment, or independent measure of transpiration, should be made to determine just

how long the probes remain useful.

1.4 Converting Heat-Pulse Velocity to Sapflow

Once the corrected heat-pulse velocity, Vc, has been determined, the next step is to relate

it to the actual sap flow. Marshall’s (1958) analysis showed that if the sap and woody

matrix are considered to form a homogeneous medium, then the sap flux density, J [m s-

1], can be calculated from

J P M Vc= +(.)0 33 (3)

where P [kg m-3] is the wood density (oven dry weight of wood/green volume) and M is

the moisture content ((wet weight - oven dry weight)/oven dry weight) of sapwood. The

density and moisture content of the sapwood are both physical properties of the woody

matrix, and they can be determined easily from trunk cores. The factor 0.33 in Eq (3) is

the specific heat of dry wood, which is assumed to be constant. In our analysis, we use an

alternative expression for J, which was developed by Edwards and Warrick (1984) by

considering the sapwood to comprise 3 phases of gas, solid and liquid with appropriate

physical and thermal properties. The working equation is given by

 J F F VM L c= +(.)0 505 (4)

where FM and FL are the volume fractions of wood and water, respectively. The factor

0.505 is related to the thermal properties of the woody matrix, and is assumed to be

constant within and between species.

1.5. Measuring the Volume fractions, FM and FL

Volume fractions FM and FL implicit in Eq. (4) are determined from the Archimede’s

principle, in the following manner. Firstly, a core sample is taken and its fresh weight, MF

[kg], is determined. This weight is equal to the mass of water and the mass of dry wood,

 11

since the mass of air is negligible. The core sample is then immediately submerged in a

beaker of water which has been placed on an accurate mass balance. The balance reading

will indicate an immediate increase in mass, which equals the displacement of water, DT

[kg]. The total volume, VT [m3], of the sample is then equal to ρL times DT, where the

density of water, ρL, is assumed to be 1000 kg m3. The core sample is then oven-dried to

determine the mass of dry wood, MD [kg]. The difference between the fresh weight and

the dry weight, (MF-MD) is equal to the mass of water, ML [kg], contained in the fresh core

sample. Thus, the volume fraction of water is FL = ML/(ρLVT). Similarly, the volume

fraction of wood FM = MD/(ρMVT) where the density of dry wood, ρM equals 1530 kg m3.

1.6. Estimating Volumetric Sapflow

Equation (4) provides an estimate of the values of J at any point in the conducting

sapwood. It is widely recognized that sap flux density is not uniform throughout the

sapwood, but rather peaks at a depth of 10 - 20 mm in from the cambium. Consequently,

sampling at several depths in the sapwood is necessary to characterize the sapflow

velocity profile (Cohen et al., 1981; Edwards and Warrick, 1984; Green and Clothier,

1988). A volumetric measure of total sap flux can be obtained by the integration of these

point estimates over the sapwood conducting area. The most common approach is to fit a

least-squares polynomial to the depthwise estimates of sap flux density, and then to

integrate the fitted function over the sapwood cross section. This is the approach that we

favour. An alternative, simpler integration method, as presented by Hatton et al. (1990), is

based on a weighted average approach. According to Hatton et al. this simpler approach is

a more robust estimator of the volume flux when the velocity profiles exhibit large

curvature.

In the ANALYSIS program described later we use the most common approach to

calculate volume sap flow. Since our probes measure J at four radial depths, we fit a

second-order regression of the form

()J r r r= + +α β γ2 (5)

 12

in order to get the expression for the velocity profile as a function of stem radius, r [m].

This curve is then integrated over the sapwood cross-section to calculate the volume sap

flux, Q, as

Q r J r dr
H

R

= ∫ 2π () (6)

for a stem of cambium radius R [m] and heartwood radius H [m].The stem parameter H

needs to be determined from an analysis of trunk cores taken at the end of the experiment

while R can be derived from the stem circumference and an allowance for the depth of the

bark.

2. Instrumentation

The HPV system described here is based on the ‘compensation’ Heat -Pulse method

(Marshall, 1958; Swanson and Whitfield, 1981) and comprises a set of probes and

associated electronics connected to a data logger (model CR10, CR21X or CR23X,

Campbell Scientific Inc., Utah, USA). Each set of probes comprises a linear heater and

two temperature sensors which are installed radially into the tree stem, as shown in Fig. 1.

The heater probe is made from a length of 19 swg stainless steel tube, containing a central

nichrome resistance wire (5 Ω m-1) which is insulated inside a fine Teflon tube. The

temperature sensors each comprise four copper-constantan thermo-couple junctions (42

swg) and are made from a length of Teflon tubing (18 swg) which is filled with epoxy

resin. The electronics consists of a heater controller and a set of linear instrumentation

amplifiers which have a gain of about 5000. The simple heat-pulse controllers do not

have any amplifiers.

A data logger (Campbell Scientific Inc., Logan, Utah) is used to activate the heater, for

0.5 to 1 s, in order to introduce a heat-pulse tracer into the moving sap stream. A pair of

temperature sensors are used to monitor subsequent changes in stem temperature which

occur as the heat-pulse is propagated through the sapwood, both by conduction through

the wood and sap matrix and by convection with the moving sap streams. Typically,

 13

output signals from the HPV unit should lie between ± 40 mV for the 1oC difference in

temperature difference between the two sensors. The data logger is programmed to

interpret the temperature signals and to record the subsequent ‘cross-over’ times which

are used in Eq. (1) to calculate the raw heat-pulse velocity at a single point (depth) in the

conducting sapwood. A laptop PC is later used to retrieve the tz data from the logger and

to calculate total sap flow in the tree stem, as described by Eqs. (4) - (6).

3. Connecting up the logger
and getting it going.

This section refers to installation and operation of the the HPV units. The wiring and

operation of the simple heat-pulse controller (no amplifiers) is described in Appendix B.

3.1 Assembling the necessary hardware.

The following is a list of hardware needed to run the HPV unit.

3.1.1. You will need 2 sets of:

 .. heat pulse probes (white ones with grey connectors)
 .. heat pulse cables (white ones with silver connectors)
 and 1 set of:
 .. heat pulse unit with power lead
 .. suite of heat pulse programs to capture and analyze the heat-pulse data

The above items are supplied with your installation.

3.1.2. You will also need:

 .. Campbell Datalogger (CR10X, CR21X or CR23X)
 .. external 12V (>70 AHr) battery
 .. Laptop with SC32 interface and Campbell Software (PC208W)

These items are not supplied with your installation.

 14

3.2. Connecting the HPV unit to the data logger:

There are two leads which must to be connected to the HPV unit - a signal lead and a
power lead. The pin-out of these leads is listed below.

 Signal lead: This lead has 7 coloured wires which must be connected as follows:

 orange = 1H or 3H or 5H (analog input)
 orange/white = 1L or 3L or 5L “
 blue = 2H or 4H or 6H “
 blue/white = 2L or 4L or 6L “
 green = AG (analog ground)
 green/white = C1 or C2 or C3 (control line)
 white = AG or GND (cable shield)

 Power lead: This lead has 2 coloured wires which must be connected as follows:

 black = GRND
 red = +12V

IMPORTANT: The black and red wires go to the POWER on the heat-pulse unit. A

separate battery should be used for the logger. ALWAYS connect the red wire first, to

avoid shorting out the logger. Also, be careful that you don’t plug the wrong cable into

the heat-pulse unit, since this may short-out the HPV unit or the logger (It hasn’t

happened yet, but that’s little consol ation for when it does!!!). As a precaution, there is a

diode inside the heat-pulse unit to protect it against reverse-polarity.

VERY IMPORTANT: If the same battery powers the logger and the heat-pulse unit then

do not connect the green wire of the signal lead to AG. This would cause a ground loop

and might affect the results...

 15

4. Installing the heat-pulse probes.

This section gives advice on how to install the heat-pulse probes into a plant stem. Note:

It is good practice to test the operation of the logger and the probes, and to test all the

wiring connections before inserting the probes into the plant stem. Although the HPV unit

is designed to be operated automatically, the software does allow for a manual test of the

system, as described later in the next section.

4.1. Checking if probes are OK

The pin-out for the connector on the temperature probes (the 9-pin D-plug) is:

 1&6 = channel 1 (outer-most sensor, closest to the cambium)
 2&7 = channel 2
 3&8 = channel 3
 4&9 = channel 4 (inner-most sensor, closest to the stem centre)

Each temperature sensors should be electrically isolated. A quick ‘beep-test’ of the

temperature sensors using a multi-meter should confirm each thermocouple is connected,

and isolated from the others. The temperature probes should have a resistance of about 19

ohms. The heater probe normally has a resistance of about 0.4-0.6 ohms. If the heater is

faulty then this resistance will exceed this value.

4.2. Procedure for installing probes.

4.2.1. Locate a fairly straight piece of stem, fairly free of bumps

and knots. Measure the stem circumference, C, to the nearest

mm.

4.2.2. Attach the drilling jig as shown below. Use thick sticky-

tape for the stem, or use a special jig for roots and small

branches.

 16

 this is the downstream probe (unmarked)
 e.g. the highest probe in the stem or
the root probe nearest to the stem

 this is the heater probe

 this is the upstream probe (marked with a dot)

Sap flow

4.2.3. Carefully drill the holes using a high-speed, electric drill.

• Don’t drill too far at once (say more than 20mm) because this can
'over-bore' the hole. Make sure the hole is about 20 mm deeper than
the longest probe.

• Remove the jig and 'plug’ the holes with Vaseline.
• Take a 'cork bore' around the two outer holes so you can measure

the bark depth, D (mm), e.g. with a set of calipers.

insert:
• Dip each probe in Vaseline, and then insert it CAREFULLY into

the appropriate hole. The probe marked with the red dot goes
closest to the heater. Insert the heater last.

• Tape the probes CAREFULLY to the tree stem, but don’t bend
them to far!!

• Check each probe to make sure its OK (see 4.1)

 IF its OK THEN

• connect it to the logger.
 ELSE

• get some new probes
• goto insert

 ENDIF

4.3. Testing if everything is working.

 Make sure the HPV system is properly connected (see 3.2 above)
 Make sure the logger is properly programmed (see 5 below)
 Fire a test pulse (see 5 below)

 IF it seems to be OK THEN
 go for a beer

 17

 ELSE
 swear a lot
 blame someone else (but not me)
 goto deep_shit
 ENDIF

Note1: if you cant find deep_shit, then your not in it.
Note2: There is no deep_shit. I expect that every thing will work
Note3: Murphy’s Law suggests there will be some other problem to find.

5. Installing the data-logger software

The following program is to be run on a Campbell data logger. The logger software is
located in one of the three sub-directories on the disk provided with the installation.

5.1. Files in A:\LOGGER

 C10-HP*.STN C21-HP*.STN
 C10-HP*.DLD C21-HP*.DLD
 C10-HP*.CSI C21-HP*.CSI

This sub-directory contains the above CAPTURE programs designed to measure the
outputs generated by the HPV unit, and to calculate and store the tZ values associated with
each set of the probes. The program is rather basic (in keeping with our philosophy). It is
intended to be run on a Campbell logger (CR10, CR21X or CR23X). A CR10 will
measure up to three sets of probes and a CR21X will measure up to four sets of probes, a
CR23X will measure up to 6 sets of probes. The whild-card ‘*’ in the file name implies
the number of probes that will be measured.

Note: A single logger can up to 6 sets of probes. It is a simple matter to extend the total
number of probes by using a Campbell AM25T solid state multiplexer, to switch the
output from many more probes. This requires a slightly modified version of the
CAPTURE program to include use of the multiplexer and to allocate the extra channels
on the logger. If the USER wishes to consider either of these modifications then examples
of the necessary programs can be supplied, via email, at a later date. Details are in
Appendix A.

In what follows, we assume the USER is familiar with the various functions of the CR10
data logger, and the Campbell programs included with the PC208 software (GraphTerm
and EDLOG).

 18

The following files have been supplied in the sub-directory A:\LOGGER of the
installation disk:

CR10-HP3.STN is the Station file required to communicate with the logger.
CR10-HP3.DLD is a file to be 'downloaded’ to the logger, via the GT program.
CR10-HP3.CSI is a file created by the program editor, EDLOG.

The program CR10-HP3.DLD should be downloaded to the logger using the GT program
(see Campbell PC208 manual for instructions on how to do this).

5.3. Down-loading programs to the logger

There are two ways to enter the CAPTURE program into the data logger - via the key pad
or by using the PC208 software as supplied by Campbell Sci. The latter is the preferred
option since GT can also be used to download program, and retrieve data, in the usual
manner.

NOTE. to get the logger-prompt '>' via GT, enter 2718H at the '*' prompt. You can now
talk to the logger via the PC, or exit GT and talk to the logger via the keypad. Special
'modes' for the logger are *1, *5, *6, and *7, as explained below. Remember, CTRL_ gets
you back to the options menu. !!!!!

5.4. Review of the logger modes

For a full description of the logger modes, the USER should consult a Campbell data-
logger manual. The following is some basic information that may help you to interpret the
logger functions.

*1 mode is used to enter and/or alter a program (Table-1) that resides in the memory of
the logger. Enter '*1 X A' to view instruction no. x in Table 1.

*5 mode is used to set the clock. !!! Most important to do this before the heat-pulse
program is run. Expect the following responses:

 Enter '*5 A YY A DOY A HRMIN A' to set the year, day-of-year and current time
in hours and minutes.

Note: PC208 can also be used to download the PC time to the logger (the preferred
option).

*6 mode is used to view and set the 'flags’ as well as the input value

*7 mode is used to examine output memory. Enter *7 to see memory pointer to the next
location in output memory (say 740). Enter *7 X to see data stored at location X (say
740).

 19

5.5. Retrieving data from the logger

Use the program PC208 to retrieve all the ‘uncollected’ data from the data logger.

5.6. Operation of the logger program - C10-HP3.DLD

Here we describe a number of program changes and system tests that you may want to do.
We also describe some 'normal' program behaviour that may be expected during the
course of a measurement period. Note: After you have finished playing with the logger,
ALWAYS press *0 to recompile any changes, or to continue by leaving the logger in the
'LOG1' mode.

5.6.1. To change the interval between heat pulses (alter Inst-1)

 enter *1 1 A A A x A *0 where x = interval in minutes
 The default time is 30 minutes

5.6.2. To fire a test heat-pulse

 enter *6 A D 1 (the lights should go on, and the program will run)
 enter *6 A D 6 for an early exit of program
 enter *0 to continue

5.6.3. To check if the system is working properly (generally a good idea!)

 fire a test heat pulse (see 5.6.2)
 check the initial voltages (+/- 20 mV is OK, -9999 is stuffed)
 i.e. enter *6 x A where x = 41..56
 check the present voltages (+/- 100 mV is OK, -9999 is stuffed)
 i.e. enter *6 x A where x = 21..36
 enter *0 to continue

Note. Readings are in mV so anything in the range +/- 200 is OK.

5.6.4. To examine tz data (stored in locations 1..16)

 enter *6 x A where x is the location.
 loc. 1 = tz1-1 (outer) loc. 4 = tz1-4 (inner)
 loc. 5 = tz2-1 (outer) loc. 8 = tz2-4 (inner)
 loc. 9 = tz3-1 (outer) loc.12 = tz3-4 (inner)
 loc. 13 = tz4-1 (outer) loc.16 = tz4-4 (inner)
 enter *0 to continue

 20

5.6.5. To find out the total running-time since the heat-pulse was fired (loc. 99)

 enter *6 99 A
 enter *0 to continue

5.6.6. To change the duration of the heat pulse (alter Inst-44)

 enter *1 44 A A A x A *0 where x is duration in s
 default value is 2.0 s (this is also the maximum time)

5.6.7. To change the delay between firing a heat pulse and testing for a 'cross-over'. This

may be necessary for really fast flows (alter Inst-49)

 enter *1 49 A A A x A *0 where x is delay in multiples of 0.1s
 default value is 15 s, i.e. x=150

5.6.8. To change the maximum time for a tz calculation (alter Inst-14)
 enter *1 14 A A A x A where x is max time in multiples of 0.1s
 default value if 500 s, i.e. x=500, but 300s might be OK

5.7. Listing of the logger program - C10-HP3.CSI

This section gives a listing of the CAPTURE program designed to measure the outputs
generated by the HPV unit, and to calculate and store the tz’s associated with each set of
the probes. The program is rather basic (in keeping with our philosophy). It is located in
the subdirectory A:\LOGGER on the installation disk provided. This programme was
compiled using the latest version of EDLOG. As a result, the program may not install and
run properly if the old version of EDLOG and GT is used. However, if any problems do
occur then it is a simple matter to enter the following program by hand, via the keypad,
and subsequently retrieve it back using the GT (or TERM) program.

Note: For the program to run, the USER needs to enter the *A mode and reset the
number of final output locations to 100.

;{CR10}
*Table 1 Program
 01: 0.2500 Execution Interval (seconds)

1: If time is (P92) Flag 1 is used to activate automatic sampling
 1: 0 Minutes (Seconds --) into a once every 30 mins.
 2: 30 Interval (same units as above) Change as required
 3: 11 Set Flag 1 High

2: If Flag/Port (P91) Flag 5 is set when tz is calculated
 1: 15 Do if Flag 5 is High
 2: 30 Then Do

3: Timer (P26) store current time in loc (99)

 21

 1: 99 Loc [_________]

4: Volts (SE) (P1) Measure current temp. signal and store in loc (21..32)
 1: 12 Reps Change as required
 2: 14 ñ 250 mV Fast Range
 3: 1 SE Channel
 4: 21 Loc [_________] Monitor loc (21..32) to observe temperature trace
 5: 1 Mult
 6: 0 Offset

5: Beginning of Loop (P87) Check for cross-over times
 1: 0 Delay
 2: 12 Loop Count Change as required

6: IF (X<=>F) (P89)
 1: 1 -- X Loc [_________] tz’s are stored in loc (1..12)
 2: 1 =
 3: 0 F
 4: 30 Then Do

7: IF (X<=>Y) (P88) test for a temperature ‘cross over’
 1: 41 -- X Loc [_________] initial temperature signal in loc (41..52)
 2: 3 >=
 3: 21 -- Y Loc [_________] current temperature signal in loc (21..32)
 4: 30 Then Do

8: Z=X (P31) If crossed over then
 1: 99 X Loc [_________] store tz in loc (1..12)
 2: 1 -- Z Loc [_________]

9: Z=Z+1 (P32) inc a ‘tz’ counter
 1: 90 Z Loc [_________]

10: End (P95)

11: End (P95)

12: End (P95)

13: IF (X<=>F) (P89) If all 12 channels have crossed over then
 1: 90 X Loc [_________] set Flag 6
 2: 3 >=
 3: 12 F Change as required
 4: 16 Set Flag 6 High

14: IF (X<=>F) (P89) If more than 500 s have elapsed then
 1: 99 X Loc [_________] set flag 6
 2: 3 >=
 3: 500 F Change as required
 4: 16 Set Flag 6 High

15: End (P95)

16: If Flag/Port (P91) If Flag 6 is set then
 1: 16 Do if Flag 6 is High output all the data

 22

 2: 30 Then Do

17: Do (P86)
 1: 10 Set Output Flag High

18: Sample (P70) Ouput the date and time
 1: 2 Reps
 2: 91 Loc [_________]

19: Sample (P70) Output the 12 tz values
 1: 12 Reps Change as required
 2: 1 Loc [_________]

20: Do (P86)
 1: 26 Set Flag 6 Low

21: Do (P86)
 1: 25 Set Flag 5 Low

22: End (P95)

23: If Flag/Port (P91) If Flag 1 is set then
 1: 11 Do if Flag 1 is High Initialise and reset arrays
 2: 30 Then Do

24: Time (P18) Store Day of Year in loc (91)
 1: 2 Hours into current year (maximum 8748)
 2: 8784 Mod/By
 3: 91 Loc [_________]

25: Z=X*F (P37)
 1: 91 X Loc [_________]
 2: .04167 F
 3: 91 Z Loc [_________]

26: Z=INT(X) (P45)
 1: 91 X Loc [_________]
 2: 91 Z Loc [_________]

27: Z=Z+1 (P32)
 1: 91 Z Loc [_________]

28: Time (P18) Store time (hrmin) in loc (92)
 1: 2 Hours into current year (maximum 8748)
 2: 24 Mod/By
 3: 92 Loc [_________]

29: Z=X*F (P37)
 1: 92 X Loc [_________]
 2: 100 F
 3: 92 Z Loc [_________]

30: Time (P18)
 1: 1 Minutes into current day (maximum 1440)

 23

 2: 60 Mod/By
 3: 93 Loc [_________]

31: Z=X+Y (P33)
 1: 92 X Loc [_________]
 2: 93 Y Loc [_________]
 3: 92 Z Loc [_________]

32: Beginning of Loop (P87) Reset all storage arrays
 1: 0 Delay
 2: 90 Loop Count

33: Z=F (P30)
 1: 0 F
 2: 0 Exponent of 10
 3: 1 -- Z Loc [_________]

34: End (P95)

35: Volts (SE) (P1) Measure initial temp signal and store in loc (41..52)
 1: 12 Reps Change as required
 2: 4 ñ 250 mV Slow Range
 3: 1 SE Channel
 4: 41 Loc [_________] Monitor loc (41..52) to observe initial temp signal
 5: 1 Mult
 6: 0 Offset

36: Timer (P26) Reset timer
 1: 0 Loc [_________]

37: Do (P86)
 1: 21 Set Flag 1 Low

38: Do (P86)
 1: 12 Set Flag 2 High

39: End (P95)

40: If Flag/Port (P91) Flag 2 is used to initiate the heat-pulse
 1: 12 Do if Flag 2 is High
 2: 30 Then Do

41: Set Port(s) (P20)
 1: 0 C8..C5 = 0/0/0/0
 2: 111 C4..C1 = 0/high/high/high

42: Beginning of Loop (P87)
 1: 1 Delay
 2: 0 Loop Count

43: Timer (P26)
 1: 99 Loc [_________]

44: IF (X<=>F) (P89) Fire a 2 s heat pulse
 1: 99 X Loc [_________]

 24

 2: 3 >=
 3: 2 F Change as required
 4: 31 Exit Loop if True

45: End (P95)

46: Set Port(s) (P20)
 1: 0 C8..C5 = 0/0/0/0
 2: 0 C4..C1 = 0/0/0/0

47: Beginning of Loop (P87)
 1: 1 Delay
 2: 0 Loop Count

48: Timer (P26)
 1: 99 Loc [_________]

49: IF (X<=>F) (P89) Wait 15 s before sampling for cross overs
 1: 99 X Loc [_________]
 2: 3 >=
 3: 15 F Change as required
 4: 15 Set Flag 5 High

50: If Flag/Port (P91)
 1: 15 Do if Flag 5 is High
 2: 31 Exit Loop if True

51: End (P95)

52: Do (P86)
 1: 22 Set Flag 2 Low

53: End (P95)

54: Batt Voltage (P10) Store battery voltage in loc (98)
 1: 98 Loc [_________]

End Program

5.8. Operation of the logger program - C21-HP4.DLD

Here we describe the HPV program for a CR21X logger and the normal tests that you
may want to do. We also describe some 'normal' program behaviour that may be expected
during the course of a measurement period. Note: After you have finished playing with
the logger, ALWAYS press *0 to recompile any changes, or to continue by leaving the
logger in the 'LOG1' mode.

5.8.1. To change the interval between heat pulses (alter Inst-1)

 enter *1 1 A A A x A *0 where x = interval in minutes

 25

 The default time is 30 minutes

5.8.2. To fire a test heat-pulse

 enter *6 A D 1 (the lights should go on, and the program will run)
 enter *6 A D 6 for an early exit of program
 enter *0 to continue

5.8.3. To check if the system is working properly (generally a good idea!)

 fire a test heat pulse (see 5.8.2)
 check the initial voltages (+/- 20 mV is OK, -9999 is stuffed)
 i.e. enter *6 x A where x = 41..56
 check the present voltages (+/- 100 mV is OK, -9999 is stuffed)
 i.e. enter *6 x A where x = 21..36
 enter *0 to continue

Note. Readings are in mV so anything in the range +/- 200 is OK.

5.8.4. To examine tz data (stored in locations 1..16)

 enter *6 x A where x is the location.
 loc. 1 = tz1-1 (outer) loc. 4 = tz1-4 (inner)
 loc. 5 = tz2-1 (outer) loc. 8 = tz2-4 (inner)
 loc. 9 = tz3-1 (outer) loc.12 = tz3-4 (inner)
 loc. 13 = tz4-1 (outer) loc.16 = tz4-4 (inner)
 enter *0 to continue

5.8.5. To find out the total running-time since the heat-pulse was fired (loc. 99)

 enter *6 99 A
 enter *0 to continue

5.8.6. To change the duration of the heat pulse (alter Inst-48)

 enter *1 48 A A A x A *0 where x is duration in s
 default value is 2.0 s (this is also the maximum time)

5.8.7. To change the delay between firing a heat pulse and testing for a 'cross-over'. This

may be necessary for really fast flows (alter Inst-56)

 enter *1 56 A A A x A *0 where x is delay in multiples of 0.1s
 default value is 15 s, i.e. x=150

5.8.8. To change the maximum time for a tz calculation (alter Inst-15)

 26

 enter *1 15 A A A x A where x is max time in multiples of 0.1s
 default value if 500 s, i.e. x=500, but 300s might be OK

5.9. Listing of the logger program - C21-HP4.CSI

This section gives a listing of the CAPTURE program designed to measure the outputs
generated by the HPV unit, and to calculate and store the tz’s associated with ea ch set of
the probes. Note: For the program to run on a CR21X, the USER needs to enter the *A
mode and reset the number of final output locations to 100. The programme is similar to
C10-HP3.CSI, except for minor changes caused by instructions P20 and P30 which are
described in the Campbell data logger manual. Locations where the USER can make
changes are written in bold type.

;{21X}
*Table 1 Program
 01: 0.2000 Execution Interval (seconds)

1: If time is (P92)
 1: 0 Minutes into a
 2: 30 Minute Interval
 3: 11 Set Flag 1 High

2: If Flag/Port (P91)
 1: 15 Do if Flag 5 is High
 2: 30 Then Do

3: Timer (P26)
 1: 99 Loc [_________]

4: Volts (SE) (P1)
 1: 16 Reps
 2: 4 ñ 500 mV Slow Range
 3: 1 SE Channel
 4: 21 Loc [_________]
 5: 1 Mult
 6: 0 Offset

5: Beginning of Loop (P87)
 1: 0 Delay
 2: 16 Loop Count

6: IF (X<=>F) (P89)
 1: 1 -- X Loc [_________]
 2: 1 =
 3: 0 F
 4: 30 Then Do

7: IF (X<=>Y) (P88)

 1: 41 -- X Loc [_________]
 2: 3 >=
 3: 21 -- Y Loc [_________]
 4: 30 Then Do

8: Z=X (P31)
 1: 99 X Loc [_________]
 2: 1 -- Z Loc [_________]

9: Z=X*F (P37)
 1: 1 -- X Loc [_________]
 2: 0.1 F
 3: 1 -- Z Loc [_________]

10: Z=Z+1 (P32)
 1: 90 Z Loc [_________]

11: End (P95)

12: End (P95)

13: End (P95)

14: IF (X<=>F) (P89)
 1: 90 X Loc [_________]
 2: 3 >=
 3: 16 F
 4: 16 Set Flag 6 High

15: IF (X<=>F) (P89)
 1: 99 X Loc [_________]
 2: 3 >=
 3: 5000 F
 4: 16 Set Flag 6 High

 27

16: End (P95)

17: If Flag/Port (P91)
 1: 16 Do if Flag 6 is High
 2: 30 Then Do

18: Do (P86)
 1: 10 Set Output Flag High

19: Sample (P70)
 1: 2 Reps
 2: 91 Loc [_________]

20: Sample (P70)
 1: 16 Reps
 2: 1 Loc [_________]

21: Do (P86)
 1: 26 Set Flag 6 Low

22: Do (P86)
 1: 25 Set Flag 5 Low

23: End (P95)

24: If Flag/Port (P91)
 1: 11 Do if Flag 1 is High
 2: 30 Then Do

25: Time (P18)
 1: 2 Hours into current year (max 8748)
 2: 8784 Mod/By
 3: 91 Loc [_________]

26: Z=X*F (P37)
 1: 91 X Loc [_________]
 2: .04167 F
 3: 91 Z Loc [_________]

27: Z=INT(X) (P45)
 1: 91 X Loc [_________]
 2: 91 Z Loc [_________]

28: Z=Z+1 (P32)
 1: 91 Z Loc [_________]

29: Time (P18)
 1: 2 Hours into current year (maximum
8748)
 2: 24 Mod/By
 3: 92 Loc [_________]

30: Z=X*F (P37)
 1: 92 X Loc [_________]
 2: 100 F

 3: 92 Z Loc [_________]

31: Time (P18)
 1: 1 Minutes into current day (max 1440)
 2: 60 Mod/By
 3: 93 Loc [_________]

32: Z=X+Y (P33)
 1: 92 X Loc [_________]
 2: 93 Y Loc [_________]
 3: 92 Z Loc [_________]

33: Beginning of Loop (P87)
 1: 0 Delay
 2: 90 Loop Count

34: Z=F (P30)
 1: 0 F
 2: 1 -- Z Loc [_________]

35: End (P95)

36: Volts (SE) (P1)
 1: 16 Reps
 2: 4 ñ 500 mV Slow Range
 3: 1 SE Channel
 4: 41 Loc [_________]
 5: 1 Mult
 6: 0 Offset

37: Timer (P26)
 1: 0 Loc [_________]

38: Do (P86)
 1: 21 Set Flag 1 Low

39: Do (P86)
 1: 12 Set Flag 2 High

40: End (P95)

41: If Flag/Port (P91)
 1: 12 Do if Flag 2 is High
 2: 30 Then Do

42: Set Port (P20)
 1: 1 Set High
 2: 1 Port Number

43: Set Port (P20)
 1: 1 Set High
 2: 2 Port Number

44: Set Port (P20)
 1: 1 Set High

 28

 2: 3 Port Number

45: Set Port (P20)
 1: 1 Set High
 2: 4 Port Number

46: Beginning of Loop (P87)
 1: 1 Delay
 2: 0 Loop Count

47: Timer (P26)
 1: 99 Loc [_________]

48: IF (X<=>F) (P89)
 1: 99 X Loc [_________]
 2: 3 >=
 3: 20 F
 4: 31 Exit Loop if True

49: End (P95)

50: Set Port (P20)
 1: 0 Set Low
 2: 1 Port Number

51: Set Port (P20)
 1: 0 Set Low
 2: 2 Port Number

52: Set Port (P20)
 1: 0 Set Low
 2: 3 Port Number

53: Set Port (P20)
 1: 0 Set Low
 2: 4 Port Number

54: Beginning of Loop (P87)
 1: 1 Delay
 2: 0 Loop Count

55: Timer (P26)
 1: 99 Loc [_________]

56: IF (X<=>F) (P89)
 1: 99 X Loc [_________]
 2: 3 >=
 3: 150 F
 4: 15 Set Flag 5 High

57: If Flag/Port (P91)
 1: 15 Do if Flag 5 is High
 2: 31 Exit Loop if True

58: End (P95)

59: Do (P86)
 1: 22 Set Flag 2 Low

60: End (P95)

61: Batt Voltage (P10)
 1: 98 Loc [_________]

*Table 2 Program
 01: 0.0000 Execution Interval (seconds)

*Table 3 Subroutines

End Program

 29

6. Running the ANALYSIS software ... (still under review)

This section describes the software used to analyze the tz data collected by the data
loggers. The analysis software is located in one of the four sub-directories on the disk
provided with the installation.

6.1. Files in A:\FORT

 HPV-2000.FOR
 HPV-2000.EXE
 HPSAMPLE.DAT
 HPHEADER.DAT

This subdirectory contains the FORTRAN programs required to analyze the heat-pulse
data (HPV-2000.FOR and HPV-2000). This program has been compiled using Digital-
Visual FORTRAN Version 5.1, and should run on any PC under Windows 3.1 or higher.
The program HPV-2000.EXE can be copied to any sub-directory on a laptop or a PC. But
in order to run HPV-2000, the program and the data (e.g. hpsample.dat) should reside in
the same directory.

6.2. Setting up the input file

The file HPHEADER.DAT is an example of the first few lines which must be at the top
of each data file. Because HPV-2000 uses a FORMATTED-read of the input data, it is
important to include a header-file at the top of the tz data, in exactly the same format as
shown below. The header-file sets up the independent parameters involved in the sapflow
calculations, e.g. sapwood radius, heartwood radius, the volume fractions of wood and
water, etc. If you are familiar with FORTRAN then you can examine the source code
(HPV-2000.FOR) to find the formatted read statement.

The process to set up the input data is as follows:
Step - 1.
Each data file should have the following 10+2n lines at the top of the data files (see e.g.
HPHEADER.DAT as supplied on disk), where n is the number of probes being read. The
example below is for n=3 sets of probes and nsensors=4 is the no. of sensors in each
probe.

 nprobes: 3
 nsensors: 4 4 4
 wound_width: 2.40 2.40 2.40
 Swanson fac: 1
 v-frac wood: 0.36
 v-frac wat : 0.54
 sapwood_rad: 6.21 6.00 6.00
 hrtwood_rad: 0.00 0.00

 30

 prob_depth1: 0.50 1.20 2.20 3.50
 prob_space1: 1.00 1.00 1.00 1.00
 prob_depth2: 0.50 1.20 2.20 3.50
 prob_space2: 1.00 1.00 1.00 1.00
 prob_depth3: 0.50 1.20 2.20 3.50
 prob_space3: 1.00 1.00 1.00 1.00
 Tmin,Tmax : 185. 192.
 Emax values: 5.00 5.00 5.00

The next example is the header-file required to analyze n=2 sets of probes:

 nprobes: 2
 nsensors: 4 4
 wound_width: 2.40 2.40
 Swanson fac: 1
 v-frac wood: 0.36
 v-frac wat : 0.54
 sapwood_rad: 6.21 6.00
 hrtwood_rad: 0.00 0.00
 prob_depth1: 0.50 1.20 2.20 3.50
 prob_space1: 1.00 1.00 1.00 1.00
 prob_depth2: 0.50 1.20 2.20 3.50
 prob_space2: 1.00 1.00 1.00 1.00
 Tmin,Tmax : 185. 192.
 Emax values: 5.00 5.00

In the two examples given above, the program is expecting to analyze data beginning on
day of year 185 (Tmin) through until day of year 192 (Tmax). The program will also plot
the volume flow rates for each set of probes, assuming the maximum flow, Emax, equals
5.0 L h-1. Swanson’s correction factors (Table 1) are used if the parameter equals 1 (an
integer). Otherwise, inputting a zero-value means the correction factors of Green and
Clothier (1988) will be used. For wide probe spacings we recommend the Green and
Clothier factors be used. Otherwise Swanson’s factors are used for narrow spacings.

The USER can modify the input data (e.g. to change probe spacings, probe depths,
sapwood radii, etc). But, be careful to keep them in the same 'format(a16,4f8.2)',
otherwise the program will probably generate an error.

Step - 2.
Next, add the tz data collected from the logger. This data should look something like:

103,100,1200,120.5,135.6,180.2,268.2,195.6,140.2,78.2,30.4
103,100,1215,120.5,135.6,180.2,268.2,195.6,140.2,78.2,30.4
103,100,1230,120.5,135.6,180.2,268.2,195.6,140.2,78.2,30.4
103,100,1245,120.5,135.6,180.2,268.2,195.6,140.2,78.2,30.4

Note. The output from the logger is in the following format:

opid,day,hrmin,tz1_1,tz1_2,tz1_3,tz1_4,tz2_1,tz2_2,tz2_3,tz2_4

 31

where
 opid = output identifier (103 ⇒ output from table 1, line 3)
 day = current day of year
 hrmin = time when heat-pulse was fired
 tz1_* = tz times for probe 1 (*=1 is the outside depth)
 tz2_* = tz times for probe 2 (*=1 is the outside depth)

Step - 3

Just keep appending new data to the bottom of the old input file

6.3. Examining the output file

The analysis programme outputs three calculations of total sap flow, depending on how

the volume sap flux, Q, is determined. In theory, this is given by the integral

Q r J r dr
H

R

= ∫ 2π () (7)

for a stem of cambium radius R [m] and heartwood radius H [m]. In practice, this integral

can be obtained by three different ways, where the operator <> will be used to represent

the least-squares fit to the profile data.

Method 1: Fit the velocity profile and store the data in FILENAME.VEL.

Q r J r dr
H

R

= ∫2π () (7a)

Method 2: Fit the flux profile and store the data in FILENAME.FLX.

Q r J r dr
H

R

= ∫2π () (7b)

Method 3: Calculate a weighted sum of velocity, Vi, times an associated sapwood area, Ai

and store the data in FILENAME.SUM (see Hatton, 1990 and analysis programme for

details of Ai’s).

Q A Vi
i

i= ∑ (7c)

 32

For well-behaved velocity profiles (i.e. small curvature at large radii) all three methods

yield similar results, but for profiles where the curvature near the cambium method 3 is

recommended (Hatton et al, 1990).

6.4. Listing of the ANALYSIS program

The following is a listing of the FORTRAN program HPV-2000.FOR used to analyze the
tz-data collected by the HPV data logger. The analysis procedure follows that outlined in
the Background Section of this document. This is a fairly big program – only because it
includes routines for graphical output to the screen.

c==
c ... Program HPV2000.FOR to convert tz data to correct sap
c ... velocities using numerical simulation results for a
c ... given wound width and probe spacings of (-0.5,0,1.0)
C ...
C
C ... ------ LAST modified AUG, 2000, S.R. Green ------
C
c==
 USE DFLIB
 IMPLICIT NONE
c include files for MS Fortran graphics
 CHARACTER*50 CTITLE, ans
 REAL*8 NXPIX, NYPIX
 REAL*8 X1(101), Y1(101), X2(101), Y2(101)
 REAL*8 X1MIN, X1MAX, Y1MIN, Y1MAX
 INTEGER IX4, IY4, CWIN/0/
 LOGICAL STATUS, END_CALC
 TYPE (RCCOORD) CURPOS
 TYPE (WINDOWCONFIG) WINC
 TYPE (QWINFO) QWIN

 REAL TZ(4,4), HPV(4), PD(4,4), PS(4,4)
 REAL TMIN, TMAX, EMIN, F0, F1, F2, BEGYR
 REAL R1P, R1M, R2M, R3M, R4M, A3, A4
 INTEGER IDAY, ITOD, IJ
 REAL WC1(5,7), WC2(5,7)
 REAL R(4), SV(4), SF(4)
 REAL SVIJ(16),T(100), Y(100)
 REAL SAPFLOWV(4,100), SAPFLOWF(4,100), SAPFLOWS(4,100)
 REAL SWR(4), HWR(4), WW(4), EMAX(4)
 REAL VFWOOD, VFWAT, TOD
 REAL A0, A1, A2, FLUXVEL, FLUXFLX, FLUXV(4), FLUXF(4)
 REAL ID, MI, PI, TWOPI
 REAL CHANID,DAY,HRMIN, HR, MIN
 INTEGER NHPV, N, I, ICORR, IW(4), J, NCOL(4), NTC(4), NC
 CHARACTER*40 FILNAM
 CHARACTER*4 STR
 LOGICAL SWANCOR
 INTEGER*2 DUMMY2, FGD
 INTEGER*4 DUMMY4, BGD

 COMMON WINC
 COMMON QWIN

C---
c ... Set the wound corrections of Swanson and Whitfield (1983)
C---
 DATA WC1/ 0, 0, 1, 0, 0.0,
 * 16, 0.393, 1.356, 0.036, 0.0,
 * 20, 0.807, 1.203, 0.058, 0.0,
 * 24, 1.184, 1.072, 0.087, 0.0,
 * 28, 1.524, 0.964, 0.124, 0.0,

 33

 * 32, 1.826, 0.879, 0.169, 0.0,
 * 36, 2.090, 0.818, 0.221, 0.0 /

C---
c ... Set the wound corrections of Green and Clothier (1988)
C---
 DATA WC2/ 0, 0, 1, 0, 0.0,
 * 16, -0.171, 1.299, 0.0194, -0.000093,
 * 20, -0.159, 1.318, 0.0270, -0.000140,
 * 24, -0.135, 1.326, 0.0367, -0.000194,
 * 28, -0.143, 1.306, 0.0488, -0.000267,
 * 32, -0.067, 1.355, 0.0571, -0.000203,
 * 36, -0.013, 1.379, 0.0670, -0.000105/
 PI=3.14159
 TWOPI=2.*PI

C--
c ... Set the graphics mode
C--
 CTITLE(1:40) = ' HEAT-PULSE analysis program '
 CALL GRAPHICSMODE(CTITLE)
1 CALL CLEARSCREEN($GCLEARSCREEN)
 CALL SETTEXTPOSITION(5,1,CURPOS)
 NXPIX = WINC.NUMXPIXELS !-20
 NYPIX = WINC.NUMYPIXELS !- 100

 NCOL(1)=4
 NCOL(2)=10
 NCOL(3)=1
 NCOL(4)=15
 BEGYR = -9999

C--
C ... Open input/output files
C--
 WRITE(*,'(a\)') 'Enter the Input filename (.dat): '
 READ(*,'(A)') FILNAM
 CALL NCSTRING(FILNAM,NC)
 OPEN(UNIT=30, FILE=FILNAM(1:NC)//'.DAT', STATUS='UNKNOWN')
 OPEN(UNIT=31, FILE=FILNAM(1:NC)//'.VEL', STATUS='UNKNOWN')
 OPEN(UNIT=32, FILE=FILNAM(1:NC)//'.FLX', STATUS='UNKNOWN')
 OPEN(UNIT=33, FILE=FILNAM(1:NC)//'.SUM', STATUS='UNKNOWN')

C--
c ... Read input data
C--
 WRITE(*,*)
 WRITE(*,*) 'Enter the number of heat pulse probes (1..4)'
 READ(30,1099) ANS, NHPV
1099 FORMAT(A16,4I8)
 WRITE(*,1099) ANS, NHPV
 WRITE(*,*)
 WRITE(*,*) 'Enter the number of sensors in each probe'
 READ(30,1099) ANS, (NTC(J), J=1,NHPV)
 WRITE(*,*) 'Enter the wound width from 1.6 to 3.6 (mm)'
 READ(30,1098) ANS, (WW(I), I=1,NHPV)
1098 FORMAT(A16,4F8.2)
 WRITE(*,1098) ANS, (WW(I), I=1,NHPV)
 SWANCOR = .FALSE.
 READ(30,1099) ANS, ICORR
 IF(ICORR.GT.(0.0)) THEN
 WRITE(*,*) 'Use Swansons corrections: YES'
 SWANCOR=.TRUE.
 ELSE
 WRITE(*,*) 'Use Swansons corrections: NO'
 SWANCOR=.FALSE.
 ENDIF
 WRITE(*,*)

 DO 12 J=1,NHPV
 IF(WW(J).EQ.(0.0)) IW(J) = 1
 IF(WW(J).GE.(1.6)) IW(J) = INT((WW(J)-1.6)/0.4+2.5)
 IF(IW(J).GT.7) IW(J) = 7
12 CONTINUE

C--

 34

c ... vfwood = volume fraction of wood = 0.34
c ... vfwat = volume fraction of water = 0.56
C--
 WRITE(*,*) 'Enter the volume fraction of wood '
 READ(30,1098) ANS,VFWOOD
 WRITE(*,*) 'Enter the volume fraction of water '
 READ(30,1098) ANS,VFWAT

C--
c ... mean sap wood radius in cm
C--
 WRITE(*,*) 'Enter the sap-wood radius of each stem/root [cm] '
 READ(30,1098) ANS, (SWR(J), J=1,NHPV)
 WRITE(*,1098) ANS, (SWR(J), J=1,NHPV)
 WRITE(*,*) 'Enter the heartwood radius of each stem/root [cm] '
 READ(30,1098) ANS, (HWR(J), J=1,NHPV)
 WRITE(*,1098) ANS, (HWR(J), J=1,NHPV)
 WRITE(*,*)

C--
c ... read in the probe depths
C--
 WRITE(*,*) 'Enter the thermistor depths of each probe [cm] '
 DO 30 J=1,NHPV
 READ(30,1098) ANS, (PD(I,J),I=1,NTC(J))
 WRITE(*,1098) ANS, (PD(I,J),I=1,NTC(J))
 READ(30,1098) ANS, (PS(I,J),I=1,NTC(J))
 WRITE(*,1098) ANS, (PS(I,J),I=1,NTC(J))
 DO 30 I=1,NTC(J)
30 PD(I,J) = ABS(SWR(J)-PD(I,J))
 WRITE(*,*)

C---
c ... read plot range
C---
 WRITE(*,*) 'Enter DOY range: Tmin, Tmax'
 READ(30,1098) ANS, TMIN,TMAX
 WRITE(*,1098) ANS, TMIN,TMAX
 WRITE(*,*) 'Enter SAPFLOW range: Emin, Emax'
 READ(30,1098) ANS, (EMAX(I), I=1,NHPV)
 WRITE(*,1098) ANS, (EMAX(I), I=1,NHPV)
 EMIN = 0.0

 CALL SETTEXTPOSITION(33 ,35,CURPOS)
 WRITE(*,*) '***** Click <MOUSE> to END *****'
 CALL MOUSECLICK(IX4,IY4)
 CALL CLEARSCREEN($GCLEARSCREEN)

 STATUS = SETCOLOR(8)
 STATUS = RECTANGLE($GFILLINTERIOR,0,0,NXPIX,NYPIX)
 STATUS = SETCOLOR(2)

c--
c ... main Loop
c--
 IDAY=0
100 READ(30,*,END=1000) CHANID,DAY,HRMIN,
 * ((TZ(I,J),I=1,NTC(J)),J=1,NHPV)
 IF(BEGYR.LT.0) THEN
 TMIN = DAY
 BEGYR = 9999
 ENDIF
 IF(HRMIN.LT.5) THEN
 IDAY=IDAY+1
 DO 120 J=1, NHPV
 DO 110 I=1,ITOD
 X1(I) = T(I)
 Y1(I) = SAPFLOWV(J,I)
110 CONTINUE
 X1MIN = TMIN !T(1)
 X1MAX = TMIN+5. !T(ITOD)
 Y1MIN = EMIN
 Y1MAX = EMAX(1)
 CALL NEWONEPLOT(X1,Y1,ITOD,'Day of Year', ''
 &,'Water_Use_[L/h]','', X1MIN,X1MAX,Y1MIN,Y1MAX,.TRUE.,.FALSE.,8+J)
120 CONTINUE

 35

 ITOD = 1
 IF(IDAY.GT.5) THEN
 IDAY = 1
 TMIN = TMIN+5
 TMAX = TMAX+5
 CALL SETTEXTPOSITION(33 ,35,CURPOS)
 WRITE(*,*) '***** Click <MOUSE> to CONTINUE *****'
 CALL MOUSECLICK(IX4,IY4)
 CALL CLEARSCREEN($GCLEARSCREEN)
 STATUS = SETCOLOR(8)
 STATUS = RECTANGLE($GFILLINTERIOR,0,0,NXPIX,NYPIX)
 STATUS = SETCOLOR(2)
 ENDIF
 ELSE
 ITOD = ITOD+1
 ENDIF

C--
c ... convert hrmin to time of day
C--
 HR = INT(HRMIN/100)
 MIN = HRMIN - 100*HR
 TOD = DAY + (HR+MIN/60)/24
 T(ITOD) = TOD

C--
c ... For each set of probes find the corrected SV profile,
C ... then compute flux using three different methods
C--
 DO 300 J=1,NHPV
 DO 200 I=1,NTC(J)
 IF(TZ(I,J).gt.(0.0)) THEN
 HPV(I) = PS(I,J)/(2.*TZ(I,J))*3600.
 ELSE
 HPV(I) = 0.0
 ENDIF

C--
c ... compute the corrected SV
C--
 IJ=(J-1)*NTC(J)+I
 IF(SWANCOR) THEN
 SV(I) =(WC1(5,IW(j))*HPV(I)*HPV(I)*HPV(I)
 * + WC1(4,IW(j))*HPV(I)*HPV(I)
 * + WC1(3,IW(j))*HPV(I)
 * + WC1(2,IW(j)))*(0.505*VFWOOD + VFWAT)
 ELSE
 SV(I) =(WC2(5,IW(j))*HPV(I)*HPV(I)*HPV(I)
 * + WC2(4,IW(j))*HPV(I)*HPV(I)
 * + WC2(3,IW(j))*HPV(I)
 * + WC2(2,IW(j)))*(0.505*VFWOOD + VFWAT)
 ENDIF
 R(I) = PD(I,J)
 SVIJ(IJ) = SV(I)
 SF(I) = SV(I)*R(I)
200 CONTINUE
 N = NTC(J)
 CALL REGRESS(N, R, SV, A0, A1, A2)
 CALL REGRESS(N, R, SF, F0, F1, F2)

C--
c ... compute total flow, making sure that it remains positive !!!
C--
 FLUXV(J) = 0.0
 FLUXF(J) = 0.0
 ID = HWR(J)-0.01
 DO WHILE(ID.LT.SWR(J))
 ID = ID + 0.01
 MI = ID + 0.005
 FLUXVEL = TWOPI*MI*(A0 + A1*MI + A2*MI*MI)*0.01
 IF(FLUXVEL.GT.(0.0)) FLUXV(J) = FLUXV(J) + FLUXVEL
 FLUXFLX = TWOPI*(F0 + F1*MI + F2*MI*MI)*0.01
 IF(FLUXFLX.GT.(0.0)) FLUXF(J) = FLUXF(J) + FLUXFLX
 END DO
 FLUXV(J) = FLUXV(J)/1000
 FLUXF(J) = FLUXF(J)/1000

 36

 SAPFLOWV(J,ITOD) = FLUXV(J)
 SAPFLOWF(J,ITOD) = FLUXF(J)
c GOTO 299
C--
C ... compute sum of sap velocity times relative sapwood area
C--
 R1P = SWR(J)
 R1M = (R(1)+R(2))/2.
 R2M = (R(2)+R(3))/2.
 R3M = (R(3)+R(4))/2.
 R4M = HWR(J)
 A1=(R1P*R1P-R1M*R1M)*PI
 A2=(R1M*R1M-R2M*R2M)*PI
 A3=(R2M*R2M-R3M*R3M)*PI
 A4=(R3M*R3M-R4M*R4M)*PI
 SAPFLOWS(J,ITOD) = A1*SV(1)+A2*SV(2)+A3*SV(3)
 SAPFLOWS(J,ITOD) = (SAPFLOWS(J,ITOD)+A4*SV(4))/1000.
299 CONTINUE

C--
c ... print out the results
C--
300 CONTINUE
301 CONTINUE

WRITE(31,995) T(ITOD), (SAPFLOWV(J,ITOD) , J=1,NHPV)
C * ,(SAPFLOWV(1,ITOD)+SAPFLOWV(2,ITOD))/2.
 WRITE(32,995) T(ITOD), (SAPFLOWF(J,ITOD) , J=1,NHPV)
C * ,(SAPFLOWF(1,ITOD)+SAPFLOWF(2,ITOD))/2.
 WRITE(33,995) T(ITOD), (SAPFLOWS(J,ITOD) , J=1,NHPV)
C * ,(SAPFLOWS(1,ITOD)+SAPFLOWS(2,ITOD))/2.
 GOTO 100
1000 CONTINUE
999 FORMAT(2A40)
996 FORMAT(5x,'Time [d] = ',F8.3,' Sap flow [L/h] = ',8F8.3
 * ,6X,1H.)
995 FORMAT(1X,F8.3,8F8.3)

C--
 CALL SETTEXTPOSITION(33 ,35,CURPOS)
 WRITE(*,*) '***** Click <MOUSE> to END *****'
 CALL MOUSECLICK(IX4,IY4)
 CALL CLEARSCREEN($GCLEARSCREEN)
C--
 STOP
 END

c==
 SUBROUTINE REGRESS(N, X, Y, A0, A1, A2)
C ... fit a parabola through the SFD data using N data points
C of the form ... y = A0 + A1.x + A2.x^2
c==
 IMPLICIT NONE
 REAL X(4), Y(4), A0, A1, A2
 REAL SX, SY, SX2, SXY, SX2Y, SX3, SX4
 REAL SSX2, D
 INTEGER N, I

 IF(N.GT.2) THEN
 SX = 0
 SY = 0
 SX2 = 0
 SXY = 0
 SX3 = 0
 SX2Y = 0
 SX4 = 0
 DO 100 I=1,N
 SX = SX + X(I)
 SY = SY + Y(I)
 SXY = SXY + X(I)*Y(I)
 SX2 = SX2 + X(I)*X(I)
 SX2Y= SX2Y+ X(I)*X(I)*Y(I)
 SX3 = SX3 + X(I)**3
 SX4 = SX4 + X(I)**4
100 CONTINUE
 SSX2= SX2
 SX4 = SX4 - SX2*SX2/N

 37

 SX3 = SX3 - SX*SX2/N
 SXY = SXY - SX*SY/N
 SX2Y= SX2Y- SX2*SY/N
 SX2 = SX2 - SX*SX/N
 D = SX2*SX4 - SX3**2
 A1 = (SX4*SXY - SX3*SX2Y)/D
 A2 = (SX2*SX2Y - SX3*SXY)/D
 A0 = SY/N - A1*SX/N - A2*SSX2/N

 ELSE
 A0 = (Y(1)+Y(2))/2.
 A1=0.0
 A2=0.0
 ENDIF

 RETURN
 END

!==
 SUBROUTINE GRAPHICSMODE(CTITLE)
!==
 USE DFLIB
 IMPLICIT NONE
 TYPE (WINDOWCONFIG) WINC
 TYPE (QWINFO) QW

 INTEGER RETI2, CWIN/0/
 LOGICAL STATUS, RESULT
 CHARACTER*50 CTITLE
 COMMON WINC
 COMMON QW

!--
! ... set up the size of the frame window
!--
 WINC.NUMXPIXELS = -1
 WINC.NUMYPIXELS = -1
 WINC.NUMTEXTCOLS = -1
 WINC.NUMTEXTROWS = -1
 WINC.NUMCOLORS = -1
 WINC.TITLE = CTITLE
 STATUS = SETWINDOWCONFIG(WINC)
 IF(.NOT.STATUS) STATUS = SETWINDOWCONFIG(WINC)
 STATUS = FOCUSQQ(CWIN)

!--
! ... set the frame window to maximum
!--
 QW.TYPE = QWIN$MAX
 RETI2 = SETWSIZEQQ(QWIN$FRAMEWINDOW, QW)
 RETI2 = SETWSIZEQQ(CWIN, QW)

 RETURN
 END SUBROUTINE GRAPHICSMODE

!===
 SUBROUTINE NCSTRING(STRING, NCHAR)
!===
 CHARACTER*40 STRING
 INTEGER NCHAR, I
 I = 2
 DO WHILE(STRING(I:I).NE.'')
 I=I+1
 END DO
 NCHAR = I-1
 END

!==
 SUBROUTINE INLINE(NUNIT, NLINE, OP)
c ... read nlines from file nunit write to screen in OP is true
!==
 IMPLICIT NONE
 INTEGER I,NLINE,NUNIT
 CHARACTER*80 LINE
 LOGICAL OP

 38

 DO 10 I=1,NLINE
 READ(NUNIT,99) LINE
 IF(OP) WRITE(*,99) LINE
10 CONTINUE
99 FORMAT(A75)
 RETURN
 END SUBROUTINE INLINE

!==
 SUBROUTINE NEWONEPLOT(X1,Y1,NUM1,XTITLE, XUNIT, YTITLE, YUNIT
 & ,GX1MIN, GX1MAX, GY1MIN, GY1MAX, Y1LABEL, Y2LABEL ,LCOL)
!==
 USE DFLIB
 IMPLICIT NONE
 TYPE (WINDOWCONFIG) WINC
 TYPE (QWINFO) QW
 INTEGER NUM1, NTICKX1, NTICKY1
 INTEGER I, J,NXPIX, NYPIX, NC1, NC2
 INTEGER IX,IY, ix4,iy4, LCOL
 INTEGER STATUS
 REAL*8 X1(NUM1), Y1(NUM1)
 REAL*8 XX(NUM1), YY(NUM1)
 REAL*8 X1MIN, X1MAX, X1RANGE, Y1MIN, Y1MAX, Y1RANGE
 REAL*8 GX1MIN, GX1MAX, GY1MIN, GY1MAX
 REAL*8 X1SCALE, DTICKX1, DUMMYSCALE
 REAL*8 Y1SCALE, DTICKY1
 REAL*8 XP,YP, NEWX1MAX
 CHARACTER*40 XTITLE, XUNIT, NEWXUNIT, XTITLEUNIT
 CHARACTER*40 YTITLE, YUNIT, NEWYUNIT, YTITLEUNIT, GTITLE
 LOGICAL INVERT, LOGPLOT, SCALE, TALL, Y1LABEL, Y2LABEL

 COMMON WINC
 COMMON QW

 NXPIX = WINC.NUMXPIXELS !-20
 NYPIX = WINC.NUMYPIXELS !-100
 X1MIN = GX1MIN
 X1MAX = GX1MAX
 Y1MIN = GY1MIN
 Y1MAX = GY1MAX
 DO 10 I=1,NUM1
 XX(I) = (X1(I)-X1MIN)/(X1MAX-X1MIN)
 YY(I) = (Y1(I)-Y1MIN)/(Y1MAX-Y1MIN)
10 CONTINUE

 CALL AXISSET(X1MIN, X1MAX, X1SCALE, NTICKX1, DTICKX1) ! SOMETHING WRONG HERE
??
 CALL AXISSET(Y1MIN, Y1MAX, Y1SCALE, NTICKY1, DTICKY1)

! X1RANGE = (X1MAX-X1MIN)*X1SCALE
! Y1RANGE = (Y1MAX-Y1MIN)*Y1SCALE

 CALL NCSTRING(XTITLE,NC1)
 CALL NCSTRING(XUNIT,NC2)
 XTITLEUNIT = XTITLE(1:NC1)//XUNIT(1:NC2)
 if(x1scale.gt.1.0) xtitleunit = xtitle(1:11)//']'
 CALL NCSTRING(YTITLE,NC1)
 CALL NCSTRING(YUNIT,NC2)
 YTITLEUNIT = YTITLE(1:NC1)//YUNIT(1:NC2)

 CALL SETVIEWPORT(0,0,NXPIX/1.0, NYPIX)
 ! FOR GRAPH1
 STATUS = SETWINDOW(.TRUE.,-0.25D0,-0.50D0,1.25D0,1.15D0)

 CALL TITLEAXIS(0.5D0,-0.15D0,XTITLEUNIT,1.4D0,1.4D0,NXPIX/1
 & ,NYPIX,TALL,1)
 ! XAXIS TITLE
 CALL PLOTXTICK(X1MIN, X1MAX, X1SCALE, NTICKX1,15, TALL
 & ,1.4D0,1.4D0,NXPIX/1, NYPIX,.FALSE.)

 IF(Y1LABEL) THEN
 CALL TITLEAXIS(-0.20D0,0.5D0,YTITLEUNIT,1.4D0,1.4D0,NXPIX/1
 & ,NYPIX,TALL,2)
 ! YAXIS TITLE
 CALL PLOTYTICK(0.0D0,Y1MIN, Y1MAX, Y1SCALE, NTICKY1,15, TALL
 & ,1.4D0,1.4D0,NXPIX/1, NYPIX)

 39

 ENDIF

 IF(Y2LABEL) THEN
 CALL TITLEAXIS(1.15D0,0.5D0,YTITLEUNIT,1.4D0,1.4D0,NXPIX/1
 & ,NYPIX,TALL,2)
 ! YAXIS TITLE
 CALL PLOTYTICK(1.0D0,Y1MIN, Y1MAX, Y1SCALE, NTICKY1,15, TALL
 & ,1.4D0,1.4D0,NXPIX/1, NYPIX)
 ENDIF

 STATUS = SETCOLOR(7)
 STATUS = RECTANGLE_W($GBORDER, 0.0D0,0.0D0,1.0D0,1.0D0)

 CALL PLOTLINE(XX,YY,NUM1,LCOL)

 RETURN
 END SUBROUTINE NEWONEPLOT

!===
 SUBROUTINE TITLEAXIS(WXP, WYP, AXTITLE, XW,YH
 & ,NXPIX, NYPIX,TALL ,NAXIS)
!===
 USE DFLIB
 IMPLICIT NONE
 REAL*8 WXP, WYP, DWXP, DWYP, XW, YH
 CHARACTER*30 AXTITLE
 INTEGER I, CHEI, CWID, NCBEG, NCEND, TLEN, NAXIS
 INTEGER STATUS, NXPIX, NYPIX
 LOGICAL TALL
 TYPE (WXYCOORD) WXY
 TYPE (FONTINFO) FONT

! ... set the font
 STATUS = INITIALIZEFONTS()
 I = SETFONT("T'COURIER NEW'H30W15")
 CWID = FONT.PIXWIDTH
 CHEI = FONT.PIXHEIGHT
 STATUS = SETCOLOR(INT2(0))

! ... trim the string for leading blanks
 NCBEG = 1
 DO WHILE(AXTITLE(NCBEG:NCBEG) .EQ.'')
 NCBEG = NCBEG+1
 END DO
 NCEND = NCBEG + LEN_TRIM(AXTITLE(NCBEG:))-1
 TLEN = GETGTEXTEXTENT(AXTITLE(NCBEG:NCEND))

! ... add an offset for the text
 IF(NAXIS.EQ.1) THEN
 DWYP = 0.0
 DWXP = -((REAL(TLEN)/2.)/REAL(NXPIX)*XW)
 ELSE IF(NAXIS.EQ.2) THEN
 DWYP = -((REAL(TLEN)/2.)/REAL(NYPIX)*YH)
 DWXP = 0.0
 ELSE
 DWYP = 0.0
 DWXP = -(REAL(TLEN/2.)/REAL(NXPIX)*XW)
 ENDIF

 CALL MOVETO_W(WXP+DWXP,WYP+DWYP,WXY)
 IF(NAXIS.EQ.2) THEN
 CALL SETGTEXTROTATION(900)
 ELSE
 CALL SETGTEXTROTATION(0)
 ENDIF
 CALL OUTGTEXT(AXTITLE(NCBEG:NCEND))

 RETURN
 END SUBROUTINE TITLEAXIS

C==
 SUBROUTINE PLOTLINE(XX,YY,NUM,LCOL)
C==
 USE DFLIB
 IMPLICIT NONE
 INTEGER I, NUM, LCOL, BGCOL

 40

 REAL*8 XX(NUM), YY(NUM)
 LOGICAL STATUS
 TYPE (WXYCOORD) WXY

 STATUS = SETCOLOR(LCOL)
 CALL MOVETO_W(XX(1), YY(1), WXY)
 DO 10 I=2,NUM
 STATUS = LINETO_W(XX(I), YY(I))
10 CONTINUE

 RETURN
 END SUBROUTINE PLOTLINE

C==
 SUBROUTINE PLOTXTICK(LOWX, HIGHX, XSCALE, NTICK, NCOL,
 & TALL, XW,YH, NXPIX,NYPIX, LOGPLOT)
C==
 USE DFLIB
 IMPLICIT NONE
 TYPE (WXYCOORD) WXY
 REAL*8 LOWX, HIGHX, XSCALE, XRANGE, XTICK, DXTICK
 REAL*8 LOWY, HIGHY, YSCALE, YRANGE, YTICK, DYTICK
 REAL*8 XW,YH, XLABEL
 REAL*8 TICKLEN /0.025/
 INTEGER I, NTICK, NCOL, NXPIX, NYPIX
 LOGICAL RESULT, STATUS, TALL, LOGPLOT

! plot the xticks
 STATUS = SETCOLOR(NCOL)
 IF(TALL) TICKLEN = 0.015
 DXTICK = 1.0D0/REAL(NTICK)
 DO 10 I=0,NTICK
 XTICK = REAL(I)*DXTICK
 YTICK = 0.0D0
 XLABEL = LOWX + XTICK*(HIGHX-LOWX)
 CALL MOVETO_W(XTICK, YTICK, WXY)
 RESULT = LINETO_W(XTICK, YTICK - TICKLEN)
 CALL NUMAXIS(XTICK,YTICK-2.0*TICKLEN,XLABEL, XW,YH,NXPIX, NYPIX
 & ,1, LOGPLOT)
 !!!!! LOG PLOT ON XAXIS
 XTICK = REAL(I)*DXTICK
 YTICK = 1.0D0
 CALL MOVETO_W(XTICK, YTICK, WXY)
 RESULT = LINETO_W(XTICK, YTICK + TICKLEN)
10 CONTINUE

 RETURN
 END SUBROUTINE PLOTXTICK

C==
 SUBROUTINE PLOTYTICK(XLOC,LOWY, HIGHY, YSCALE, NTICK, NCOL,
 & TALL, XW,YH,NXPIX, NYPIX)!,Y1TICK,Y2TICK)
C==
 USE DFLIB
 IMPLICIT NONE
 TYPE (WXYCOORD) WXY
 REAL*8 LOWX, HIGHX, XSCALE, XRANGE, XTICK, DXTICK
 REAL*8 LOWY, HIGHY, YSCALE, YRANGE, YTICK, DYTICK
 REAL*8 TICKLEN /0.01/
 REAL*8 XW,YH, YLABEL, XLOC
 INTEGER I, NTICK, NCOL,NXPIX, NYPIX
 LOGICAL RESULT, STATUS, TALL !, Y1TICK, Y2TICK

! plot the xticks
 STATUS = SETCOLOR(NCOL)
 IF(TALL) TICKLEN = 0.020
 DYTICK = 1.0D0/REAL(NTICK)
 DO 10 I=0,NTICK
 YTICK = REAL(I)*DYTICK
 XTICK = XLOC
 YLABEL = LOWY + YTICK*(HIGHY-LOWY)
 CALL MOVETO_W(XTICK, YTICK, WXY)
 RESULT = LINETO_W(XTICK-TICKLEN, YTICK)
 IF(XLOC.LT.0.5D0) THEN
 CALL NUMAXIS(XTICK-0.05,YTICK,YLABEL, XW,YH,NXPIX
 & , NYPIX,2, .FALSE.) !!!! NO LOG PLOT ON YAXIS

 41

 ELSE
 CALL NUMAXIS(XTICK+0.1,YTICK,YLABEL, XW,YH,NXPIX
 & , NYPIX,2, .FALSE.) !!!! NO LOG PLOT ON YAXIS
 ENDIF
10 CONTINUE

 RETURN
 END SUBROUTINE PLOTYTICK

!===
 SUBROUTINE NUMAXIS(WXP,WYP,VALUE,XW,YH,NXPIX,NYPIX,NAXIS, LOGPLOT)
! THE MAJOR TICKS
!===
 USE DFLIB
 IMPLICIT NONE

 REAL*8 WXP, DWXP, WYP, DWYP, VALUE, XW,YH
 INTEGER NXPIX, NYPIX, CHEI, CWID
 INTEGER I, STATUS, NPOINTS/1/, NAXIS, TLEN
 INTEGER NCBEG, NCEND, NC1,NC2,NC3
 CHARACTER*16 TEMPSTR, FMS, LOGSTR
 LOGICAL LOGPLOT

 TYPE (XYCOORD) XY
 TYPE (WXYCOORD) WXY
 TYPE (WINDOWCONFIG) WINC
 TYPE (FONTINFO) FONT

 COMMON WINC

! ... get the font information
 STATUS = INITIALIZEFONTS()
 I = SETFONT("T'COURIER NEW'H20W10")
 I = GETFONTINFO(FONT)
 CWID = FONT.PIXWIDTH
 CHEI = FONT.PIXHEIGHT

! ... get the tick value
 WRITE(FMS,'(A5,I2,A1)') '(F10.',NPOINTS,')'
 WRITE(TEMPSTR,FMS) VALUE

! ... trim the string for leading blanks
 NCBEG = 1
 DO WHILE(TEMPSTR(NCBEG:NCBEG) .EQ.'')
 NCBEG = NCBEG+1
 END DO
 NCEND = NCBEG + LEN_TRIM(TEMPSTR(NCBEG:))-1

! ... add in the exponent for a log scale
 IF(LOGPLOT) THEN
 LOGSTR = '1E'//TEMPSTR(NCBEG:NCEND)
 CALL NCSTRING(LOGSTR,NC1)
 TEMPSTR(1:NC1) = LOGSTR(1:NC1)
 NCBEG = 1
 NCEND = NC1
 ENDIF

 TLEN = GETGTEXTEXTENT(TEMPSTR(NCBEG:NCEND))
! ... add an offset for the text (to centre it on the ticks)
 IF(NAXIS.EQ.1) THEN
 DWYP = 0.0
 DWXP = -((REAL(TLEN)/2.)/REAL(NXPIX)*XW)
 ELSE
 DWYP = ((REAL(CHEI)/2.)/REAL(NYPIX)*YH)
 DWXP = -((REAL(TLEN))/REAL(NXPIX)*XW)
 ENDIF

 CALL MOVETO_W(WXP+DWXP,WYP+DWYP,WXY)
 CALL SETGTEXTROTATION(0)
 CALL OUTGTEXT(TEMPSTR(NCBEG:NCEND))

 RETURN
 END SUBROUTINE NUMAXIS

C==
 SUBROUTINE AXISSET(LOW, HIGH, RSCALE, NTICKS, DTICKS)

 42

C==
 IMPLICIT NONE
 REAL*8 HIGH, LOW, RANGE, DLHI, DLLO, DTICKS
 REAL*8 RPOW, RSCALE, RMAG, TEMP, TINY/1E-20/
 INTEGER NTICKS, HELPSCALE

! ... find the range and magnitude and rescale if necessary
 RPOW = 0.0D0
 RANGE = HIGH - LOW
 IF(LOW .EQ.0.0D0) LOW = TINY
 IF(HIGH.EQ.0.0D0) HIGH = 2.0d0*LOW
 IF(RANGE.EQ. 0.0D0) THEN ! THE LINE IS VERTICAL
 HIGH = HIGH + 0.5
 LOW = LOW - 0.5
 ENDIF
 DLHI = DLOG10(ABS(HIGH))
 DLLO = DLOG10(ABS(LOW))
 DO WHILE(DLHI.LT.0.0D0 .AND. DLLO.LT.0.0D0)
 DLHI = DLHI + 3.0D0
 DLLO = DLLO + 3.0D0
 RPOW = RPOW + 3.0D0
 END DO
 HIGH = HIGH*10**RPOW
 LOW = LOW*10**RPOW
 RSCALE = 10**-RPOW
 RANGE = HIGH-LOW
 RMAG = 10**INT(DLOG10(RANGE)) ! 10S, 100S, 1000S FOR EG.

! ... determine the lhs axis value
 TEMP = LOW/RMAG ! CALCULATE LOW (FOR AXIS)
 LOW = INT(TEMP)
 IF(ABS(TEMP-LOW).GE.1.0E-12 .AND. TEMP.LT.0) THEN
 LOW = LOW - 1
 ENDIF
 LOW = LOW*RMAG

! ... determine the rhs axis value
 TEMP = HIGH/RMAG ! CALCULATE HIGH (FOR AXIS)
 HIGH = INT(TEMP)
 IF(ABS(TEMP-HIGH).GE.1E-12 .AND. TEMP.GT.0) THEN
 HIGH = HIGH + 1
 ENDIF
 HIGH = HIGH*RMAG

! ... determine the number of axis ticks
 HELPSCALE = (HIGH-LOW)/RMAG
 IF(HELPSCALE.GT.5) THEN
 NTICKS = 5 !HELPSCALE
 ELSE
 SELECT CASE (HELPSCALE)
 CASE(5)
 NTICKS = 5
 CASE(4)
 NTICKS = 4
 CASE(3)
 NTICKS = 3
 CASE(2)
 NTICKS = 4
 CASE(1)
 NTICKS = 5
 END SELECT
 ENDIF
 DTICKS = (HIGH-LOW)/NTICKS
 RANGE = HIGH-LOW
 IF(RANGE.GE.1000) THEN
 HIGH = HIGH*1.0D-3
 LOW = LOW*1.0D-3
 RSCALE = RSCALE*1.0D3
 ENDIF

 END SUBROUTINE AXISSET

!==
 SUBROUTINE RANGESET(X, NX, XMIN, XMAX)
!==
 IMPLICIT NONE

 43

 INTEGER I, NX
 REAL*8 X(NX), XMIN, XMAX
 XMIN = 1.0D10
 XMAX = -1.0D10
 DO 10 I=1,NX
 IF(X(I).LE.XMIN) XMIN = X(I)
 IF(X(I).GE.XMAX) XMAX = X(I)
10 CONTINUE

 RETURN
 END SUBROUTINE RANGESET

!==
 SUBROUTINE MOUSECLICK(X,Y)
!==
 USE DFLIB
 IMPLICIT NONE
 INTEGER*4 MOUSEEVENT, KEYSTATE, X, Y, RESULT
 MOUSEEVENT = MOUSE$RBUTTONDOWN .OR. MOUSE$LBUTTONDOWN
 RESULT = WAITONMOUSEEVENT(MOUSEEVENT, KEYSTATE, X, Y)
! WRITE(5,*) 'MOUSE AT ', X, Y
 RETURN
 END SUBROUTINE MOUSECLICK

!==
 SUBROUTINE MOUSETOEXIT(UNIT,MOUSEEVENT,KEYSTATE
 & ,MOUSEXPOS,MOUSEYPOS)
!==
 USE DFLIB
 INTEGER UNIT,MOUSEEVENT, KEYSTATE,MOUSEXPOS, MOUSEYPOS
 LOGICAL MOUSEEXIT
 COMMON /MOUSE/ MOUSEEXIT
 MOUSEEXIT = .TRUE. ! ONLY EXECUTED IF MOUSE LBUTTON IS PRESSED
 RETURN
 END SUBROUTINE MOUSETOEXIT

 44

7. References

Barrett, D.J., Hatton, T.J., Ash, J.E., and Ball, M.C., 1995. Evaluation of the heat-pulse

velocity technique for measurement of sap flow in rainforest and eucalypt forest

species of south-eastern Australia. Plant Cell Environ., 18, 463-469.

Cohen, Y., Fuchs, M., and Green, G.C., 1981. Inprovement of the heat-pulse method for

determining sap flow in trees. Plant Cell Environ, 4, 391-397.

Dye, P.J., Olbrich, B.W., and Poulter, A.G., 1991. The influence of growth rings in Pinus

patula on heat-pulse velocity and sap flow measurement. J. Exp. Bot., 42, 867-
870.

Edwards, W.R.N., and Warrick, N.W.M., 1984. Transpiration from a kiwifruit vine as

estimated by the heat-pulse technique and the Penman-Monteith equation. N. Z. J.
Agric. Res., 27, 537-543.

Green, S.R., and Clothier, B.E., 1988. Water use of kiwifruit vines and apple trees by the

heat-pulse technique. J. Exp. Bot., 39, 115-123.

Hatton, T.J., Catchpole, E.A., and Vertessy, R.A., 1990. Integration of sapflow velocity to
estimate plant water use. Tree Physiol., 6, 201-209.

Huber, B., 1932. Beobachtung und Messung pflanzicher Saftstrome. Ber. deutsch. Bot.

Ges., 50, 89-109.

Huber, B., and Schmidt, E., 1937. Eine Kompensationsmethode zur thermoelektrischen

Messung langsamer Saftstrome. Ber. deutch. Bot. Ges, 55, 514-529.

Marshall, D.C., 1958. Measurement of sap flow in conifers by heat transport. Plant

Physiol., 33, 385-396.

Swanson, R.H., and Whitfield, D.W.A., 1981. A numerical analysis of heat-pulse velocity

theory and practice. J. Exp. Bot., 32, 221-239.

 45

Appendix A – use of an AM25T multiplexer:

Listing of logger programme to connect 3 heat-pulse units to a single CR10 data logger.
Note: One AM25T could be used to measure up to 6 heat-pulse units, but this requires a
small modification to the programme described below. Please email the author for details.

 CR10: AM25T

 +12 +12
 G G
 C3 CLK
 C2 RES
 no connection EX
 AG AG
 1H HI
 1L LO
 (1H, 1L, 2H, 2L) Output from box-1, probe 1
 (3H, 3L, 4H, 4L) Output from box-1, probe 2
 (5H, 5L, 6H, 6L) Output from box-2, probe 1
 (7H, 7L, 8H, 8L) Output from box-2, probe 2
 and so on ...

*Table 1 Program
 01: 0.25 Execution Interval (seconds)

1: If time is (P92) ; Flag 1 is automatic sampling
 1: 0000 Minutes (Seconds --) into a ; once every 30 minutes
 2: 30 Interval (same units as above) ;Change as required
 3: 11 Set Flag 1 High

2: If Flag/Port (P91) ; Flag 5 is set when tz is calculated
 1: 15 Do if Flag 5 is High
 2: 30 Then Do

3: Timer (P26)
 1: 99 Loc [_________]

4: Do (P86) ; Activate AM25T
 1: 42 Set Port 2 High ; Connect Port 2 (C2) to Reset on AM25T

5: Beginning of Loop (P87) ; Measure inputs on 2*N boxes
 1: 0000 Delay
 2: 12 Loop Count ; (2* N boxes) Change as required

6: Step Loop Index (P90)
 1: 2 Step

7: Do (P86) ; Connect Port 3 (C3) to Clock on AM25T
 1: 43 Set Port 3 High

8: Do (P86)
 1: 53 Set Port 3 Low

9: Do (P86)
 1: 43 Set Port 3 High

10: Do (P86)

 46

 1: 53 Set Port 3 Low

11: Volt (SE) (P1)
 1: 2 Reps
 2: 15 2500 mV Fast Range
 3: 1 SE Channel
 4: 31 -- Loc [_________]
 5: 1.0 Mult
 6: 0.0 Offset

12: Z=X-Y (P35) Calculate temperature difference
 1: 31 -- X Loc [_________]
 2: 61 -- Y Loc [_________]
 3: 31 -- Z Loc [_________] and store in loc (31..54)

13: End (P95)

14: Do (P86) De-activate AM25T
 1: 52 Set Port 2 Low

15: Beginning of Loop (P87) ; Check each input for a cross-over
 1: 0 Delay
 2: 24 Loop Count 8*N boxes

16: If (X<=>F) (P89)
 1: 1 -- X Loc [_________]
 2: 1 =
 3: 0.0 F
 4: 30 Then Do

17: If (X<=>F) (P89) If a cross-over has occurred
 1: 31 -- X Loc [_________]
 2: 4 <
 3: 0.0 F
 4: 30 Then Do

18: Z=X (P31) Store tz in loc (1..24)
 1: 99 X Loc [_________]
 2: 1 -- Z Loc [_________]

19: Z=Z+1 (P32) Increment the ‘tz’ counter
 1: 90 Z Loc [_________]

20: End (P95)

21: End (P95)

22: End (P95)

23: If (X<=>F) (P89) ; If all 24 channels have crossed over
 1: 90 X Loc [_________] ; then set flag 6 (to exit loop)
 2: 3 >=
 3: 24 F
 4: 16 Set Flag 6 High

24: If (X<=>F) (P89) ; if time > 300 s
 1: 99 X Loc [_________] ; then set flag 6 (to exit loop)
 2: 3 >=
 3: 300 F
 4: 16 Set Flag 6 High

 47

25: End (P95)

26: If Flag/Port (P91) ; Flag 6 is used to generate output
 1: 16 Do if Flag 6 is High
 2: 30 Then Do

27: Do (P86)
 1: 10 Set Output Flag High

28: Sample (P70) Output the date and time
 1: 2 Reps
 2: 91 Loc [_________]

29: Sample (P70) Output the 24 tz values
 1: 24 Reps change as required
 2: 1 Loc [_________]

30: Do (P86)
 1: 26 Set Flag 6 Low

31: Do (P86)
 1: 25 Set Flag 5 Low

32: End (P95)

33: If Flag/Port (P91) ; Flag 1 begins the heat-pulse routine
 1: 11 Do if Flag 1 is High
 2: 30 Then Do

34: Time (P18)
 1: 2 Hours into current year (maximum 8784)
 2: 8784 Mod/By
 3: 91 Loc [_________]

35: Z=X*F (P37)
 1: 91 X Loc [_________]
 2: .04167 F
 3: 91 Z Loc [_________]

36: Z=INT(X) (P45)
 1: 91 X Loc [_________]
 2: 91 Z Loc [_________]

37: Z=Z+1 (P32) ; Store the current day number (loc 91)
 1: 91 Z Loc [_________]

38: Time (P18)
 1: 2 Hours into current year (maximum 8784)
 2: 24 Mod/By
 3: 92 Loc [_________]

39: Z=X*F (P37)
 1: 92 X Loc [_________]
 2: 100 F
 3: 92 Z Loc [_________]

40: Time (P18)
 1: 1 Minutes into current day (maximum 1440)
 2: 60 Mod/By
 3: 93 Loc [_________]

 48

41: Z=X+Y (P33) ; Store the time (hrmin) (loc 92)
 1: 92 X Loc [_________]
 2: 93 Y Loc [_________]
 3: 92 Z Loc [_________]

42: Beginning of Loop (P87)
 1: 0 Delay
 2: 90 Loop Count

43: Z=F (P30) ; Reset all storage arrays
 1: 0 F
 2: 0 Exponent of 10
 3: 1 -- Z Loc [_________]

44: End (P95)

45: Do (P86) ; measure initial voltage using AM25T
 1: 42 Set Port 2 High ; Port 2 is connected reset of AM25T

46: Beginning of Loop (P87)
 1: 0 Delay
 2: 12 Loop Count ; for 4* N boxes

47: Step Loop Index (P90)
 1: 2 Step

48: Do (P86) ; Port 3 (C3) connects to clock of AM25T
 1: 43 Set Port 3 High

49: Do (P86)
 1: 53 Set Port 3 Low

50: Do (P86)
 1: 43 Set Port 3 High

51: Do (P86)
 1: 53 Set Port 3 Low

52: Volt (SE) (P1) ; Store initial voltage in Loc (61..84)
 1: 2 Reps
 2: 15 2500 mV Fast Range
 3: 1 SE Channel
 4: 61 -- Loc [_________]
 5: 1.0 Mult
 6: 0.0 Offset

53: End (P95)

54: Do (P86)
 1: 52 Set Port 2 Low

55: Timer (P26)
 1: 0 Reset Timer

56: Do (P86)
 1: 21 Set Flag 1 Low

57: Do (P86)
 1: 12 Set Flag 2 High

58: End (P95)

 49

59: If Flag/Port (P91)
 1: 12 Do if Flag 2 is High
 2: 30 Then Do

60: Set Port(s) (P20) ; Port 1 (C1) is the heater control line
 1: 0 C8..C5 = low/low/low/low
 2: 1 C4..C1 = low/low/low/high

61: Beginning of Loop (P87)
 1: 1 Delay
 2: 0 Loop Count

62: Timer (P26)
 1: 99 Loc [_________]

63: If (X<=>F) (P89) ; Fire the heater for 1 s
 1: 99 X Loc [_________]
 2: 3 >=
 3: 1 F Change as required
 4: 31 Exit Loop if True

64: End (P95)

65: Set Port(s) (P20)
 1: 0 C8..C5 = low/low/low/low
 2: 0 C4..C1 = low/low/low/low

66: Beginning of Loop (P87)
 1: 1 Delay
 2: 0 Loop Count

67: Timer (P26)
 1: 99 Loc [_________]

68: If (X<=>F) (P89) ; Wait 15 s for heat-pulse to arrive
 1: 99 X Loc [_________]
 2: 3 >=
 3: 15 F ; Change as required
 4: 15 Set Flag 5 High

69: If Flag/Port (P91)
 1: 15 Do if Flag 5 is High
 2: 31 Exit Loop if True

70: End (P95)

71: Do (P86)
 1: 22 Set Flag 2 Low

72: End (P95)

73: Batt Voltage (P10) ; Store battery voltage in Loc 98
 1: 98 Loc [_________]

 50

Appendix B – use of simple heat-pulse controller (no amplifiers)

The heat-pulse controller and probes can be operated with most Campbell

data loggers. The wiring is to be connected as described below:

CR10/21X/23 Controller

 +12 Grey (external 12V battery)
 G Grey/Black
 C1 Blue of controller #1
 AG Blue/white “
 C2 Blue of controller #2
 AG Blue/white “

 Probe 1
 (1H, 1L) Orange, Orange/white

(2H, 2L) Blue, Blue/white
AG Green1

 AG Shield

 Probe 2
 (3H, 3L) Orange, Orange/white

(4H, 4L) Blue, Blue/white
AG Green1

 AG Shield

1 VERY IMPORTANT: If the same battery powers the logger and the heat-pulse unit
then do not connect the green wire of the signal lead to AG. This would cause a ground
loop and might affect the results...

Listing of a CR10 logger programme to connect

;{CR10}
*Table 1 Program
 01: 0.2500 Execution Interval (seconds)

1: If time is (P92) ! set for 15 min intervals
 1: 0 Minutes (Seconds --) into a
 2: 15 Interval (same units as above) ! change as required
 3: 11 Set Flag 1 High

2: If Flag/Port (P91)
 1: 15 Do if Flag 5 is High
 2: 30 Then Do

3: Timer (P26) ! stores the time since heat-pulse
 1: 99 Loc [_________]

4: Thermocouple Temp (SE) (P13) ! loc 21..28 = temperature signals
 1: 8 Reps
 2: 1 2.5 mV Slow Range
 3: 1 SE Channel

 51

 4: 1 Type T (Copper-Constantan)
 5: 100 Ref Temp (Deg. C) Loc [_________]
 6: 21 Loc [_________]
 7: 1 Mult
 8: 0 Offset

5: Beginning of Loop (P87)
 1: 0 Delay
 2: 8 Loop Count

6: If (X<=>F) (P89) ! loc 1..8 = Tz cross-over times
 1: 1 -- X Loc [_________]
 2: 1 =
 3: 0 F
 4: 30 Then Do

7: If (X<=>Y) (P88)
 1: 41 -- X Loc [_________] ! loc 41..48 = original temperature
 2: 3 >=
 3: 21 -- Y Loc [_________] ! loc 21..28 = temperatures now
 4: 30 Then Do

8: Z=X (P31)
 1: 99 X Loc [_________]
 2: 1 -- Z Loc [_________] ! loc 1..8 = final Tz time

9: Z=Z+1 (P32)
 1: 90 Z Loc [_________]

10: End (P95)

11: End (P95)

12: End (P95)

13: If (X<=>F) (P89)
 1: 90 X Loc [_________] ! loc 90 = number of Tz recorded
 2: 3 >=
 3: 8 F
 4: 16 Set Flag 6 High

14: If (X<=>F) (P89)
 1: 99 X Loc [_________]
 2: 3 >=
 3: 500 F ! time (s) for last measurement
 4: 16 Set Flag 6 High

15: End (P95)

16: If Flag/Port (P91)
 1: 16 Do if Flag 6 is High
 2: 30 Then Do

17: Do (P86)
 1: 10 Set Output Flag High

18: Sample (P70) ! output the day and decimal hour
 1: 2 Reps
 2: 91 Loc [_________]

 52

19: Sample (P70) ! output the cross-over times
 1: 8 Reps
 2: 1 Loc [_________]

20: Do (P86)
 1: 26 Set Flag 6 Low

21: Do (P86)
 1: 25 Set Flag 5 Low

22: End (P95)

23: If Flag/Port (P91)
 1: 11 Do if Flag 1 is High
 2: 30 Then Do

24: Time (P18)
 1: 2 Hours into current year (maximum 8784)
 2: 8784 Mod/By
 3: 91 Loc [_________] ! store day of year

25: Z=X*F (P37)
 1: 91 X Loc [_________]
 2: .04167 F
 3: 91 Z Loc [_________]

26: Z=INT(X) (P45)
 1: 91 X Loc [_________]
 2: 91 Z Loc [_________]

27: Z=Z+1 (P32)
 1: 91 Z Loc [_________]

28: Time (P18)
 1: 2 Hours into current year (maximum 8784)
 2: 24 Mod/By
 3: 92 Loc [_________]

29: Z=X*F (P37) ! store the hour
 1: 92 X Loc [_________]
 2: 100 F
 3: 92 Z Loc [_________]

30: Time (P18)
 1: 1 Minutes into current day (maximum 1440)
 2: 60 Mod/By
 3: 93 Loc [_________]

31: Z=X+Y (P33) ! store the decimal hour
 1: 92 X Loc [_________]
 2: 93 Y Loc [_________]
 3: 92 Z Loc [_________]

32: Beginning of Loop (P87)
 1: 0 Delay
 2: 90 Loop Count

33: Z=F (P30) ! reset all storage
 1: 0 F
 2: 0 Exponent of 10
 3: 1 -- Z Loc [_________]

 53

34: End (P95)

35: Thermocouple Temp (SE) (P13) ! measure initial temp difference
 1: 8 Reps
 2: 1 2.5 mV Slow Range
 3: 1 SE Channel
 4: 1 Type T (Copper-Constantan)
 5: 100 Ref Temp (Deg. C) Loc [_________]
 6: 41 Loc [_________] ! loc 41..48 = initial temp difference
 7: 1 Mult
 8: 0 Offset

36: Timer (P26)
 1: 0 Reset Timer

37: Do (P86)
 1: 21 Set Flag 1 Low

38: Do (P86)
 1: 12 Set Flag 2 High

39: End (P95)

40: If Flag/Port (P91) ! fire the heat pulse
 1: 12 Do if Flag 2 is High
 2: 30 Then Do

41: Set Port(s) (P20)
 1: 0 C8..C5 = low/low/low/low
 2: 11 C4..C1 = low/low/high/high

42: Beginning of Loop (P87)
 1: 1 Delay
 2: 0 Loop Count

43: Timer (P26)
 1: 99 Loc [_________]

44: If (X<=>F) (P89) ! fire heater for just 0.75 s
 1: 99 X Loc [_________]
 2: 3 >=
 3: .75 F ! change as required
 4: 31 Exit Loop if True

45: End (P95)

46: Set Port(s) (P20)
 1: 0 C8..C5 = low/low/low/low
 2: 0 C4..C1 = low/low/low/low

47: Beginning of Loop (P87)
 1: 1 Delay
 2: 0 Loop Count

48: Timer (P26)
 1: 99 Loc [_________]

 54

49: If (X<=>F) (P89) ! wait 10 s before making a Tz measure
 1: 99 X Loc [_________]
 2: 3 >=
 3: 10 F ! change as required
 4: 15 Set Flag 5 High

50: If Flag/Port (P91)
 1: 15 Do if Flag 5 is High
 2: 31 Exit Loop if True

51: End (P95)

52: Do (P86)
 1: 22 Set Flag 2 Low

53: End (P95)

54: Batt Voltage (P10) ! store battery voltage in loc 98
 1: 98 Loc [_________]

*Table 2 Program
 01: 0.0000 Execution Interval (seconds)

*Table 3 Subroutines

End Program

*Table 2 Program
 02: 0.0000 Execution Interval (seconds)

*Table 3 Subroutines

End Program

