

Scripting in Axis Network Cameras
and Video Servers

Table of Contents

1 INTRODUCTION ...5

2 EMBEDDED SCRIPTS ..6

2.1 PHP ...6
2.2 SHELL ..7

3 USING SCRIPTS IN AXIS CAMERA/VIDEO PRODUCTS8

3.1 UPLOADING SCRIPTS TO THE CAMERA/VIDEO SERVER: ...8
3.2 RUNNING SCRIPTS WITH THE TASK SCHEDULER...8
3.2.1 Syntax for /etc/task.list...9
3.3 RUNNING SCRIPTS VIA A WEB SERVER..11
3.3.1 To enable Telnet support ...12
3.4 INCLUDED HELPER APPLICATIONS ..13
3.4.1 The image buffer - bufferd..13
3.4.2 sftpclient...16
3.4.3 smtpclient...17
3.4.4 shttpclient...18
3.4.5 statusled ...19

4 AN INTRODUCTION TO PHP3...20

4.1 THE PHP-LIBS...20
4.1.1 alert.lib ..21
4.1.2 ftp.lib..21
4.1.3 log.lib...22
4.1.4 mail.lib...22
4.1.5 ppp.lib ..23
4.1.6 Examples..24
4.2 PHP3 SCRIPT EXAMPLES ..26
4.2.1 Example 1 – PTZ Control..26
4.2.2 Example 2 – FTP Upload of Images ...29
4.2.3 Example 3 – FTP and E-mail on Event ...32
4.2.4 Example 4 – Sequential FTP Upload ..33
4.2.5 Example 5 – Send Images via E-mail ..38

5 AN INTRODUCTION TO SHELLS IN GENERAL...40

5.1 THE MISH SHELL ...40
5.2 SHELL COMMANDS ..40
5.3 ADDITIONAL COMMANDS AVAILABLE WITH BUSYBOX...43
5.3.1 basename ...44
5.3.2 cat ..44
5.3.3 chroot...44
5.3.4 cp ...44
5.3.5 cut ..45
5.3.6 date ..45
5.3.7 dd ...45
5.3.8 df ..46
5.3.9 dirname..46
5.3.10 du ...46

5.3.11 echo..47
5.3.12 env..47
5.3.13 expr ..47
5.3.14 false..48
5.3.15 fbset..48
5.3.16 find ...48
5.3.17 grep..49
5.3.18 halt ...49
5.3.19 head ...49
5.3.20 hostname..50
5.3.21 id ..50
5.3.22 init..50
5.3.23 ln ..52
5.3.24 logger...53
5.3.25 logname ...53
5.3.26 logread...53
5.3.27 ls...53
5.3.28 mkdir..54
5.3.29 mkfifo ...54
5.3.30 mknod...54
5.3.31 mount ...55
5.3.32 mv...55
5.3.33 poweroff ...55
5.3.34 printf ..56
5.3.35 pwd...56
5.3.36 rdate...56
5.3.37 reboot...56
5.3.38 rm...56
5.3.39 rmdir ..57
5.3.40 sed..57
5.3.41 sleep ...57
5.3.42 sort ...57
5.3.43 stty..58
5.3.44 sync ..58
5.3.45 tail..58
5.3.46 tee...58
5.3.47 test..59
5.3.48 touch ..59
5.3.49 tr...59
5.3.50 true...60
5.3.51 tty ...60
5.3.52 umount ...60
5.3.53 uname...60
5.3.54 uniq ..61
5.3.55 usleep ...61
5.3.56 wc...61
5.3.57 whoami...62
5.3.58 xargs ..62
5.3.59 yes ..62
5.4 LIBC NSS ...62
5.4.1 Authors...62

5.5 USING VARIABLES...64
5.6 BUILT-IN SHELL VARIABLES ..64
5.7 THE IMPORTANCE OF QUOTATION MARKS ...65
5.8 THE TEST COMMAND ..66
5.8.1 Integer operators ...66
5.8.2 String operators...66
5.8.3 File operators ..67
5.8.4 Logical operators ..67
5.8.5 Conditional statements ..67

6 SHELL SCRIPT EXAMPLES...70

6.1 THE CONFIGURATION FILE ...70
6.2 SCRIPT EXAMPLES...72
6.2.1 Example 1 – Upload via FTP ..72
6.2.2 Example 2 – Upload via FTP and E-mail ...74
6.2.3 Example 3 – Sequential Upload via FTP ..76
6.2.4 Example 4 – Upload Images via E-mail ..79
6.2.5 Example 5 – Sequential Upload with Notification via E-mail.......................................81

7 TROUBLESHOOTING..85

7.1 SCRIPT RELATED PROBLEMS ..85
7.2 PRODUCT RELATED PROBLEMS ..85

Introduction

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 5

1 Introduction
This document is intended as a guide for application developers and describes how to use
scripting in Axis Network Cameras and Video Servers. The reader is presumed to have prior
knowledge of shell scripting, and also of Linux/Linux systems in general.

The document provides numerous examples of ready-made scripts that were written for the most
common applications. These scripts can be used for your own purposes, after making the
changes required by your particular application.

IMPORTANT NOTICES!

Axis Communications AB provides no guarantee that any of the examples shown in
this document will work for any particular application.

Axis Communications AB cannot and will not be held liable for any damage
inflicted to any device as a result of the examples or instructions mentioned in this
document.

Axis Communications AB reserves the right to make changes to this document
without prior notice.

Please bear in mind that the flash chip manufacturer estimates the number of writes
to the flash chips to about 100,000. Writing a lot of temporary files to the flash
memory should thus be avoided. Use the ram disk mounted on /tmp instead.

Embedded Scripts

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 6

2 Embedded Scripts
The embedded scripts that can be used in Axis camera and video server products can be of 2
different types: shell scripts or PHP3 scripts. These scripts can be used for many different
purposes and can, for example, start the buffering of images or the uploading of files via FTP or
SMTP.

Scripts can be run in several different ways. One example is when the built-in Task Scheduler in
the Axis products is used to start programs or scripts when certain events occur. Another
example is when a script is run via a web page, for e.g. controlling a pan-tilt unit.

The Axis products that currently support the use of these scripts are as follows:

Product Firmware Version Shell Support PHP3 Support
AXIS 2100 2.30 or higher Yes No
AXIS 2120 2.30 or higher Yes No
AXIS 2420 2.12 Yes (from 2.20) Yes
AXIS 2400 2.20 Yes Yes
AXIS 2401 2.20 Yes Yes

2.1 PHP
PHP (Hypertext Preprocessor) was chosen as one of the scripting languages to use in Axis
camera/video products for the following reasons:

� PHP is a well known and widely used scripting language. In February 2001, an estimated

23% of all Internet web servers were using PHP. (The closest "competing" script language
was Perl, which was used on about 7% of the servers).

� The language syntax closely resembles Java, Perl and C, making it easy to learn for anyone
with basic programming skills.

� Version 3, PHP3, can easily be scaled down to the smaller footprint required for embedded
devices.

� PHP allows the rapid creation of dynamic web pages; the PHP code is simply embedded
into the HTML code. At the most basic level, PHP can do anything that any other scripting
language or CGI program can do, such as collect HTML form data and generate dynamic
page content.

� PHP is a complete scripting language, with functionality such as file operations, network
sockets, an e-mail client (SMTP) and an FTP client, all of which are very useful in network
camera/video server applications.

The combination of integrated event handling in Axis Video products and a powerful scripting
language such as PHP, provides skilled developers with endless opportunities to tailor the
functionality of Axis camera/video products to fit their specific needs.

Axis has removed some of the functions from the standard PHP3, and also created some
additional functions to suit our products. The Axis modified version of PHP3 is called
PHP3-Lite. Among the functions removed are those that handle:

� Database functions

Embedded Scripts

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 7

� PDF functions
� Math functions

Axis recommends checking that PHP3-Lite supports the functions required before creating
custom scripts. Consult the PHP3-Lite manual on our Web site at: www.axis.com

2.2 Shell
A shell is a command processor or interpreter that reads and executes the commands entered by
the user. A shell is also a programming language in which programs can be written for the shell
to interpret. These programs are therefore known as shell scripts. Shell scripts allow users to
customize their environments by adding their own commands. When a user logs in, a default
shell will be called up. This default shell is the login shell.

Given the combination of flexibility and relatively small memory requirements, shell scripts are
very well suited to performing less complex tasks in embedded devices such as the Axis
camera/video products.

In the latest release, Axis products use a modified Linux operating system called ELinux, which
opens up more possibilities for the server. This is why the shell mish (the minix shell, with most
of the features of the Bourne shell) was chosen as the script interpreter for Axis products.

Using scripts in Axis Camera/Video products

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 8

3 Using scripts in Axis Camera/Video products

This document contain examples of complete scripts that can be used as they are, or after being
modified to suit your own purposes. The scripts have been written for the most common
applications. Some of these scripts require a task.list file, and these are also provided.

Scripts can be activated in several different ways:

• by the Task Scheduler, which handles input from alarms and motion detection events
• via Telnet
• via the web server

These different methods are all described in the sections that follow.

3.1 Uploading scripts to the Camera/Video Server:
A new script or a script created by the wizard and subsequently modified must first be uploaded
to the camera/video server before it can be used. To do this, follow the instructions below:

1. Open a DOS session and open an FTP session from the path where the script file resides,

e.g.: c:\axis\scripts.
2. Open an FTP session to the camera/video server: E.g.: ftp <Server ip-address>.
3. Then type the user name: e.g. root.
4. Then type the password: e.g. pass.
5. Change to the directory where you want to store the script: e.g. cd etc/scripts.
6. Set the transfer mode to text: type ASCII.
7. Then upload the file to the server with the command: put <filename>.
8. To make a shell script file executable: type chmod 755 <filename>. If that doesn’t work,

type instead site chmod 755.

Tip: A very useful program for fetching or uploading scripts to the product is Ultra Edit. This

can be downloaded from http://www.ultraedit.com/

3.2 Running Scripts with the Task Scheduler
The Task Scheduler (i.e. utask) is used to start programs or scripts when events occur. The
scripts can be shell-scripts or PHP3-scripts, and can start the buffering of images or the
uploading of files via FTP or SMTP.

The Task Scheduler handles event detection based on date and time, alarm inputs, motion
detection, can start any task and also handles process management.

At start-up, utask (the Task Scheduler) reads the configuration file /etc/task.list and
parses it for event entries. If the file does not exist when utask is started, then utask goes into
standby mode. When /etc/task.list has been created, or modified, a SIGUSR1 needs to be
sent to utask in order for it to re-read /etc/task.list. This can be done by issuing the
command kill -10 <utask-pid>. (The same effect is also achieved by simply restarting the
Axis Server).

http://www.ultraedit.com/

Using scripts in Axis Camera/Video products

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 9

3.2.1 Syntax for /etc/task.list
An entry in /etc/task.list has the following syntax:

<event>%<program>:<args>;

<event> = is the event description

<program> = is the program to start

<args> = are the arguments to be passed to <program>.

<event>

The maximum number of events is 64. An event description should contain one or more of the
following definitions.

Definition Description
[hh:mm-hh:mm] Time period.
time(h(...)
m(...) s(...)) Time(hours, minutes, seconds).
[dd/mm-dd/mm] Date period.
date(w(...)
m(...) d(...)) Date(day, month, date).
pattern((...)
(...) ...) External events (e.g. alarms, motion detection).
Once Start only once.
immune Never interrupted.

Time and Date values are given as a list of values (separated by commas) and/or intervals
(separated by minus signs):

Hour = 0-23
Minute = 0-59
Seconds = 0-59
Day of the week = 0-6 (0 = Sunday)
Month = 1-12
Date = 1-31.

Patterns are defined as strings and follow the specific format <Client>:<Data>;

<Client>
If the client application sends <Data> to utask, the Data must be atomic, i.e. if the client wants
to notify two events at the same time, it must write:
<Client>:<Data1>;<Client>:<Data2>;.

Patterns are read by utask from /tmp/utasksocket. Utask can start a maximum of five (5)
child processes. When the maximum number of child processes has been exceeded, utask must
decide how to proceed. The process with the lowest priority (if the pending task has a higher
priority than this process) will then be killed. The entries in the configuration file (task.list)
are ordered by ascending priority, i.e. later entries precede earlier entries.

Using scripts in Axis Camera/Video products

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 10

IMPORTANT!
The default behavior when an event is triggered is that the program runs, exits and starts again,
for as long as the triggering event is valid.

once
Specifying once tells utask to skip starting the program as long as the event has not been
invalidated. Utask checks for events ten times a second (if not in standby mode). Thus, if an
event is specified to run at a certain point in time, e.g. time(h(0) m(0) s(0)), then, in
theory, this would run the program up to ten times, since the event is active for a whole second.

immune
Child processes can be protected against premature killing by using the immune tag in the script
entry. An immune script will always run until it terminates.

3.2.1.1 Trigger Patterns for /etc/task.list

Trigger Patterns for alarm input connectors:

IO<n>:/ (Rising edge)
IO<n>:H (Input is high)
IO<n>:\ (Falling edge)
IO<n>:L (Input is low)

Where n is the number of the alarm input used, depending on the product, <n>={0,1,...,3}

Trigger Patterns for boot
boot is defined by an “always true” event that is started once:

once % program : params ;

This will start the program only at startup or if utask is terminated and
restarted.

Trigger Patterns for Motion Detection (2120/2420)

M<n>:/ (Motion starts)
M<n>:H (Motion is detected)
M<n>:\ (Motion stops)
M<n>:L (No motion)

with <n>={0,1,2} for the window identifier.

Trigger Patterns for Video Loss (2400/2401)

V<n>:\ (Video lost)
V<n>:/ (Video back)

with, depending on product, <n>={0,1,...,3}

Using scripts in Axis Camera/Video products

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 11

3.2.1.2 Example of a task.list

Execute the alarm_ftp_net script if a positive transition is
detected on the Input
Output 0 every day of the week
date(w(0,1,2,3,4,5,6)) pattern ((IO0:/)) immune once %
/etc/alarm_ftp_net : CAM1 IO0;

FTP transfer once every 15 minutes, uninterrupted using
alarm_ftp_net script.
time(m(0,15,30,45)) immune once % /etc/alarm_ftp_net : CAM1 IO0;

Sends an alert message every time I1 and I2 are high at the same
time...
pattern((IO1:H)(IO2:H)) once % alert : "Input 1 and 2 detected";

3.3 Running scripts via a web server
Running a script via a web server means that web pages containing dynamic content can be
created. This is also a very useful way of debugging scripts that will later be triggered from the
Task Scheduler.

Upload your PHP3 script to the server via ftp to the /etc/httpd/html/ directory. This
directory is reached via /local from the web server.
To run a script via the web server, follow the instructions below:

1. Open your browser.
2. Type the IP-address for the camera/video server in the URL: e.g.:

http://10.13.9.75/local
3. If the file doesn’t appear, click the browser’s Refresh button. Click on the script to run it.

Using scripts in Axis Camera/Video products

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 12

Running Scripts via Telnet
For development purposes, it may be convenient to connect to the camera/video Server via
Telnet. Depending on which product is used, this is either enabled by default and uses
authentication, or it can be enabled by editing the /etc/inittab. If the product requires
editing of the /etc/inittab there will be no authentication for the Telnet connection and no
password will be required for access.

IMPORTANT!
This option should only be enabled for experimental use. Never leave Telnet access enabled
when using the camera/video server on a public site.

3.3.1 To enable Telnet support
Open an FTP session to the camera/video server and type the commands shown in bold below:

C:\Axis >ftp <ip address of video Server>
Connected to <ip address of video server>
220 Axis 2400 Video Server 2.20 Jul 27 2001 ready.
User (<ip address of Video Server>:(none)): root
331 User name okay, need password.
Password: pass (if not changed from default)
230 User logged in, proceed.
ftp> ascii
ftp> cd etc
ftp> get inittab
200 Command okay.
150 Opening data connection.
226 Transfer complete.
ftp: 1380 bytes received in 0,01Seconds 138,00Kbytes/sec.

Now open the downloaded inittab file in an editor and find the following line:

#telnetd:3:respawn:/bin/telnetd

Remove the preceding #:

telnetd:3:respawn:/bin/telnetd

Save the file.

Go back to the ftp session and continue:

ftp> put inittab
200 Command okay.
150 Opening data connection.
226 Transfer complete.
ftp: 1414 bytes sent in 0,00Seconds 1414000,00Kbytes/sec.
250 Command successful.
ftp> bye
221 Goodbye.

Using scripts in Axis Camera/Video products

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 13

Restart the video server and it will now be accessible via Telnet. To activate the script via Telnet,
follow the instructions below.

For a shell script: activate the script by typing e.g. ./<filename>

For a PHP3 script: type e.g. php <filename>

An example of a Telnet Session

3.4 Included Helper Applications
This section explains some of the applications shipped with the Axis camera/video servers.

Note: A good general rule is NOT to use a function if it is not fully understood!

3.4.1 The image buffer - bufferd
The application bufferd captures images and stores them on the ram-disk in a FIFO-order, i.e.
the latest image overwrites the oldest.
By default, initd starts a bufferd as a daemon. This daemon is listening for messages on the
socket /tmp/bufferdsocket. Consequently, starting several daemons is not recommended, as
this would result in one daemon overwriting what the others write.

The preferred way of using bufferd is depicted in the example below.
When a call to bufferd is made, the started process writes messages to the socket
/tmp/bufferdsocket and then dies.

Depending on which options are used when starting a buffer, bufferd starts one or two
processes for handling image capturing. These processes capture a number of images according
to the argument given.

Using scripts in Axis Camera/Video products

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 14

3.4.1.1 Options
The valid parameters for bufferd are:

Option Description
-start Start a buffer.
-reset Remove a buffer.
-stop Stop a buffer.

-d
Start as a daemon. This option should only be used when starting up from
initd, or when the first instance is to be started.

-buffername
<buffername>

The name of the buffer on which the options -start, -stop and -
reset should act. bufferd will create a directory in /tmp named
<buffername>, in which the images will be stored.

-uri
<request-
string>

The request-uri. Specification of the image-format as described in the
HTTP-API specification (pdf-document). The protocol should be FTP
instead of HTTP. This document can be found on www.axis.com, on the
Camera & Video developer pages.

-postdelay
<delay> Delay between images in milliseconds.
-predelay
<delay> Same as –postdelay, but sets an additional variable.

-pre <number>
Number of pre-alarm images, i.e. number of images to save before
stopping the buffer.

-post
<number>

Number of post-alarm images, i.e. the number of images to save after
stopping the buffer.

-format
<format-
string>

Naming convention for the files.

-snapshot Take one picture.

-immediate
Stops the buffer without waiting for it to complete. Only used in
conjunction with –stop.

3.4.1.2 Default Values & Settings
If the option -buffername is omitted, the buffer used defaults to buffer (/tmp/buffer).

The protocol specification in the request-uri should be ftp, and not http, as this does not
generate http-specific headers.

The default delays (postdelay and predelay) are one(1) second (1000 milliseconds).

The default number of images before and after an alarm (pre and post) is 10.

The format-option specifies how the files are named.

Character expansion is supported with:

• %y (year)
• %m (month)
• %d (date)
• %H (hour)

http://www.axis.com/documentation/misc/camera/http_api.pdf

Using scripts in Axis Camera/Video products

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 15

• %M (minute)
• %S (second).

These correspond to the date and time the file was created.

Also supported is %i, which specifies the file number, and which also can be followed by a
number specifying how many digits are allowed.
The default format is snapshot_%y%m%d_%H%M%S_%i4.

3.4.1.3 Examples
The first example shows how to take one (1) image with camera one (1). The resulting image
will be of the size 352x288 (the resolution and other attributes depend on the product). The
image will be stored in /tmp/SNAP/ and named snapshot.

bufferd -start -buffername SNAP -snapshot -pre 1 -format snapshot
-uri ftp://axis-cgi/jpg/1/352x288.jpg

The next example can be used in a PHP3-script, and is equivalent to the example above.

function shoot() {
$command = "bufferd -start -buffername SNAP";
$command .= " -snapshot -pre 1";
$command .= " -format snapshot";
$command .= " -uri ftp://axis-cgi/jpg/1/352x288.jpg ";
system($command);
}

The following example creates a buffer that saves its images to the directory /tmp/ALARM/,
where the files are named according to the creation time. The captured images in this case will
be 176x144 and are captured every two (2) seconds by the first camera. Five (5) images before
and two (2) images after the buffer is stopped are saved.

bufferd -start -buffername ALARM -uri ftp://axis-cgi/jpg/1/176x144.jpg
 -pre 5 -post 2 -postdelay 2000

This example shows how to stop the buffer started above.

bufferd -stop ALARM

This example resets (i.e. stops buffering and clears the directory) the buffer specified in the last
example.

bufferd -reset ALARM

Let's say a method of buffering images is required, and when an arbitrary event occurs, an alarm
is read. The images taken will be handled and the buffering should then continue. The following
example illustrates the steps to take (using the examples above):

bufferd -start -buffername ALARM -uri ftp://axis-cgi/jpg/1/176x144.jpg
 -pre 5 -post 2 -postdelay 2000

Using scripts in Axis Camera/Video products

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 16

(This starts the buffer and can be specified in a start-up script or as an event or utask)
When an event occurs, as specified for utask (see below) the following command
sequence is used to handle the buffer:

3.4.2 sftpclient
This client is used for FTP connections. If you have an FTP server, you can use this client to
send/receive files to/from a specified server. A passive mode is also available for the client. A
typical example is to upload snapshots to a specified FTP server when an event is detected.

Usage: sftpclient [options]

Option Description
-p <host> Put local file to host remote dir [remote file].
-i <host> Interactive to/from host [remote dir].
-m <host> Put all files in local dir to host remote dir.
-n <port nbr> Specify remote port number, default is 21.
-t <file> Use temporary file name during upload.
-c <remote
dir> Remote directory to start in.
-d <remote
file> File to get/put.
-k <local
dir> Local directory to start in.
-l <local
file> File to get/put.
-u username The user to login as.
-w password The password to use for the user.
-L Log errors to syslog facility instead of stderr.
-s Use passive mode ftp.

Example

Upload all the files in /tmp to the directory /upload on the FTP Server 10.13.9.40 using the
port 21, with the username user and the password pass. Errors will be logged to syslog.

bufferd -stop ALARM
{ handle images}
bufferd -reset ALARM
bufferd -start -buffername ALARM -uri ftp://axis-cgi/jpg/1/176x144.jpg
 -pre 5 -post 2 -postdelay 2000

The handling of the images can, for example, be done with the PHP3-function ftp(), shown
below (see also /usr/php/template_upload_cont.php3 on the device).

sftpclient -L -m 10.13.9.40 -n 21 -c /upload -k /tmp -u user -w pass

Using scripts in Axis Camera/Video products

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 17

3.4.3 smtpclient
This client is used for SMTP connections. You can send e-mail with attached files and specify a
range of common parameters, i.e.; subject, address of the sender for the replies, address to send
copy to , etc. A typical example is to send an e-mail with snapshots when an alert is detected.

Usage: smtpclient [options] recipients...

Option Description
-s <string> * Subject line of message.
-f <addr> * Address of the sender.
-r <addr> Address of the sender for replies.
-e <addr> Address to send delivery errors to.
-c <addr> Address to send copy of message to.

-a <file>
The file to attach. Binary MIME attachment, if no mime encode is set,
MIME-style is set to 1 = application/octet.

-d
<directory>

Binary MIME directory attachment, if no mime encode is set, MIME-
style is set to 1 = application/octet. The entire contents of the
directory are uploaded.

-b <file> * Read mail body from file. (CRLF must be used as the line feed).
-S <host> Host where MTA can be contacted via SMTP.
-P <num> Port where MTA can be contacted via SMTP.
-M Use MIME-style translation to quoted-printable

1=application/octet, 2=image/jpeg.
-L Log errors to syslog facility instead of stderr.

* = Required

Example

Send an e-mail entitled Alert from someone@somewhere.com via the SMTP server
mail.somewhere.com to the recipient somebody1@somewhere.com. Also send a copy to
somebody2@somewhere.com. The body will be read from the file /tmp/body and the files
included in the directory /tmp/SNAP1 will be attached to the mail.

smtpclient -s Alert -S $mail.somewhere.com -f someone@somewhere.com -c
somebody2@somewhere.com -b /tmp/body -M 2 -d /tmp/SNAP1
somebody1@somewhere.com

Using scripts in Axis Camera/Video products

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 18

3.4.4 shttpclient
This client is used for HTTP connections. Its main uses are;

• for sending alarm notifications to a remote web server by simply accessing a URL with a
CGI-script

• for uploading images/files via HTTP
• for sending dynamic information such as when a IP-number is received via DHCP

The shttpclient supports basic authentication for web servers and proxy servers.

Usage: shttpclient [options] url

Option Description
-i Input_file
-o Output_file.
-u The user
-w The user’s password.
-x The address of the proxy server
-n The port to use on the proxy server.
-a The user name to use for the proxy server.
-b The password the user must supply to use the proxy server.

Examples
Fetch a single live image from the camera webserver and store it on the same camera as
/tmp/snap.jpg

:
• Use the local host http://127.0.0.1 as a simple method of fetching single live images

from the camera for temporary storage on /tmp/, prior to SMTP or FTP transfer.
• shttpclient can trigger any of the functions in the HTTP-API for Axis cameras/video

servers.

shttpclient -o /tmp/snap.jpg http://127.0.0.1/axis-cgi/jpg/image.cgi

Upload the file /tmp/snap.jpg to a remote web server. (The script upload.cgi must be able
to receive the incomming file). Log on as user username with password mypass.

shttpclient -i /tmp/snap.jpg -u username -w mypass
http://www.somewhere.com/cgi-bin/upload.cgi

Send an alarm with CGI information (alarm=dooralarm) in the URL.

shttpclient -u username -w mypass
'http://www.somewhere.com/cgi-bin/trigger.cgi?alarm=dooralarm'

shttpclient Tips

http://127.0.0.1/

Using scripts in Axis Camera/Video products

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 19

3.4.5 statusled

Usage: statusled <color>

Set the status-led color, where <color> is one of the following:
• 'off'
• 'green'
• 'yellow'
• 'red'

The indicator flashes briefly and briefly displays orange during the start-up and self-test routines.
The indicator then displays green to indicate a healthy unit status.
Red will be displayed only if a problem has occurred.

An Introduction to PHP3

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 20

4 An Introduction to PHP3
PHP3 is a server-side HTML-embedded scripting language. A simple answer, but what does this
mean?

An example:

4.1 The PHP-libs

Included in the distributed firmware are a few PHP3-scripts that define functions intended to
help developers make the most of the camera/server's functionality. These scripts are located in
the directory /usr/php. The files currently included are:

/usr/php/alert.lib
/usr/php/ftp.lib
/usr/php/log.lib
/usr/php/mail.lib
/usr/php/ppp.lib

In order to use these functions the files need to be included in the script using them. The
arguments used in the function calls also need to be defined/declared in the calling script.

Notice how this is different from a CGI script written in other languages such as Perl or C.
Instead of writing a program with lots of commands to output HTML, you write an HTML script
with some embedded code to do something (in this case, output some text). The PHP code is
enclosed in special start and end tags that allow you to jump into and out of PHP mode.

What distinguishes PHP from e.g. client-side JavaScript is that the code is executed on the
server. If you were to have a script similar to the one above on your server, the client would
receive the results of running that script, with no way of determining what the underlying code
looks like.

A lot of information about PHP is available on the Internet, for example, at http://www.php.net.

1
2 <html>
3 <head>
4 <title>Example</title>
5 </head>
6 <body>
7 <?PHP echo "Hi, I'm a PHP script!"; ?>
8 </body>
9 </html>
10

http://www.php.net/

An Introduction to PHP3

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 21

4.1.1 alert.lib

This script implements a function that connects to a host and leaves a message. This function
requires an application that can handle the alert to be running on the contacted host.

function alert($host,$protocol,$port,$message)
{
...
}

Parameter Description
$host (not null) The host-name or address to send the alert to.
$protocol Specify the protocol (0 = TCP, 1 = UDP). Default is 0.
$port The port to connect to. Default is 15.
$message the message to be sent (ASCII).

The timeout for a connection-attempt is 60 seconds. On error, the function returns 1 (connection
failed), 2 (a parameter was missing) or $SOCK_CONNECT_FAILED. If the connection fails, this is
logged in the syslog.

4.1.2 ftp.lib

This function has encapsulated the built-in PHP3-functions for FTP.

function
ftp($host,$user,$pass,$time,$delay,$source,$destination,$suffix,$count
ermax,$startcount,$port,$passive_mode)
{
...
}

Parameter Description
$host (not null) FTP Host name.
$user (not null) User name.
$password (not null) Password.

$time
Transfer period in seconds (time < 0 is infinite (i.e. never leave this
function), time >= 0 is once).

$delay Delay between transfers in milliseconds.

$source
(not null) Source specification. If the source file is a directory, the
command will try to transfer each file in this directory. When transferring
a whole directory, time and delay are ignored.

$destination (not null) Destination specification.

$suffix
Defines the type of stamp to be added to the filename.
Valid options are: default, date, sequence and sequence_max.

$countermax
Defines the suffix maximum index.
Only applies when $suffix = "sequence".

$startcount
Defines start value for the suffix index.
Only applies when $suffix = ("sequence"|"sequence_max").

$port Port on the FTP-server to connect to.

An Introduction to PHP3

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 22

Parameter Description

$passive_mode
Choose passive mode. on or off.
In passive mode, data connections are initiated by the client, rather than
by the server.

On errors, the function returns one of the following:
• 1 (connection failed)
• 2 (login failed)
• 3 (upload failed)
• 4 (parameter error)
• 5 (could not set passive mode)

Parameter errors occurs when any of $host, $user, $pass, $source or $destination
is unspecified, or when the parameter $suffix has an invalid value.

4.1.3 log.lib

This function allows a PHP3-script to append an entry to the system log.

function log($message)
{
...
}

Parameter Description
$message Message to be appended to the system log.

The function makes a call to the PHP3-function error_log($message,0).

4.1.4 mail.lib

This function issues a system call to smtpclient.

function mail($subject,$from,$reply,$to,$copy,$file,$attach)
{
...
}

Parameter Description
$subject Message subject (default is no subject).
$from (not null) Message author.
$reply Reply should be sent to this user (default is $from).
$to (not null) Recipients.
$copy Copy the message to other recipients.
$file Message read from file.
$attach File to attach.

The script requires a valid mail-server to be entered in the camera/video server settings.

An Introduction to PHP3

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 23

Although the argument $file can be left unspecified, this is NOT recommended, as this sets
smtpclient to interactive mode and thus locks the execution of PHP.

On error, the function returns 1 (no sender specified) or 2 (no recipient specified) Otherwise the
function returns 0.

4.1.5 ppp.lib

These functions allow a PHP3-script to control the use of ppp connections through the ppp-
wrapper.

function ppp_getpid()
{
...
}

Called from ppp_start() and ppp_stop(). Returns current pppwrapper.pid as
reported by the file /var/log/pppwrapper.pid.

function ppp_getstat($num_of_checks)
{
...
}

Called from ppp_online(). Returns current ppp status by reading the pppstat.log.
Returns 1 if it reads ON, otherwise returns 0.
$num_of_checks is the number of attempts to read the file /tmp/pppstat.log.

function ppp_start()
{
...
}

Called from ppp_online().
Sends SIGUSR1 (10) to the currently running ppp-wrapper.
If the wrapper is not running, the function returns -1 and an error is logged in the
syslog.

function ppp_stop()
{
...
}

An Introduction to PHP3

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 24

Called from ppp_offline(). Sends SIGUSR2 (12) to the currently running ppp-
wrapper.
If the wrapper isn't running, the function returns –1 and an error is logged in the syslog.

function ppp_online($behavior, $max_attempt, $ppp_interval)
{
...
}

Initializes the ppp connection.
Returns 1 if the connection is established, -1 for errors and logs the error in the syslog.
$behavior describes the ppp connection’s behavior when closing the connection, and
can be either CloseAfter or Optimized.
$max_attempt is the number of attempts to connect before failing.
$ppp_interval is the delay in seconds between connection attempts.

function ppp_offline($behavior, $sec)
{
...
}

Closes the ppp connection
$behavior describes the ppp connection’s behavior and can be either CloseAfter or
Optimized.
$sec is the time in seconds to wait before calling ppp_stop() if
$behaviour="CloseAfter”. If $behaviour="Optimized" there will be no wait,
ppp_stop is called immediately.

4.1.6 Examples

The first example shows how to use the FTP-function together with the bufferd example:

<?php

include "/usr/php/ftp.lib";
include "/usr/php/log.lib";
$host="host.domain";
$user="user";
$pass="password";
$time="0";
$delay="0";
$source="/tmp/SNAP/snapshot.jpg";
$destination="snapshot.jpg";
$suffix="date";
$countermax="";
$startcount="";
$port="21";

An Introduction to PHP3

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 25

$passive_mode="on";
shoot();

$res = ftp($host, $user, $pass, $time, $delay, $source, $destination,
$suffix, $countermax, $startcount, $port, $passive_mode);

if($res == 1)
{
log("upload script - Could not connect to host");

}
else if($res == 2)
{
log("upload script - Could not log on to host");

}
else if($res == 3)
{
log("upload script - Could not put the file");

}
else if($res == 4)
{
log("upload script - something wrong with parameters");

}
else if($res == 5)
{
log("upload script - could not turn passive mode on/off");

}
?>

The second example depicts how to use the mail function, and is the script mentioned as
mail_syslog.php in the utask example:

<?php

include "/usr/php/mail.lib";
include "/usr/php/log.lib";

$subject="Todays messages";
$from="root@camera.domain";
$reply="";
$to="cam-admin@host.domain";
$copy="";
$body="/var/log/messages";
$attach="";
$res = mail($subject, $from, $reply, $to, $copy, $body, $attach);
if($res == 1)
{
log("mail script - Could not send mail:no sender\n");

}
else if($res == 2)
{
log("mail script - Could not send mail:no recipient\n");

}
?>

An Introduction to PHP3

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 26

4.2 PHP3 script examples
The complete PHP3 scripts shown here can be used for the most common applications. The
scripts can also be downloaded from the Axis web site at www.axis.com.

PHP Scripting Tips

• To use a browser for debugging your scripts, write the log messages as html.

• To log a message to syslog (enabled by default), include in the script:
log_error(mymessage,0);

• To disable logging, include the row: error_reporting (E,0);
• To enable it again, include: error_reporting (E,ALL);

4.2.1 Example 1 – PTZ Control
The purpose of this example is to make a PHP3 driver for a pan-tilt unit. An html interface is
used to control the camera. The example is written for the Axis 2400/2401Video Server and a
Pelco pan-tilt unit, and will, with minor changes, work on most pan-tilt units.

All the files in this example are available on the Axis website. We will only show the script parts
that are important to understanding the example.

http://www.axis.com/

An Introduction to PHP3

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 27

4.2.1.1 Driver.php3
The script moves the camera according to the button pressed by the user. The HTML interface
sends a single parameter to the script: the number of the button pressed. The appropriate data is
sent to the serial port, according to the number/button pressed.

The script uses the HTTP-API (available on www.axis.com) to write data to the serial port.

<?
switch($param) // Move the camera according to the button pressed
{

case 1: // Up Left
fopen("http://127.0.0.1/axis-
cgi/com/serial.cgi?port=1\&write=FF020008003F49","w");
fopen("http://127.0.0.1/axis-
cgi/com/serial.cgi?port=1\&write=FF0200043F0045","w");
usleep(100000); // Wait 0.1 seconds
fopen("http://127.0.0.1/axis-
cgi/com/serial.cgi?port=1\&write=FF020000000002","w");
break;

case 2: // Up
fopen("http://127.0.0.1/axis-
cgi/com/serial.cgi?port=1\&write=FF020008003F49","w");
usleep(100000); // Wait 0.1 seconds
fopen("http://127.0.0.1/axis-
cgi/com/serial.cgi?port=1\&write=FF020000000002","w");
break;

case 3: // Up Right
fopen("http://127.0.0.1/axis-
cgi/com/serial.cgi?port=1\&write=FF020008003F49","w");
fopen("http://127.0.0.1/axis-
cgi/com/serial.cgi?port=1\&write=FF0200023F0043","w");
usleep(100000); // Wait 0.1 seconds
fopen("http://127.0.0.1/axis-
cgi/com/serial.cgi?port=1\&write=FF020000000002","w");
break;

case 4: // Right
fopen("http://127.0.0.1/axis-
cgi/com/serial.cgi?port=1\&write=FF0200023F0043","w");
usleep(100000); // Wait 0.1 seconds
fopen("http://127.0.0.1/axis-
cgi/com/serial.cgi?port=1\&write=FF020000000002","w");
break;

case 5: // Down Right
fopen("http://127.0.0.1/axis-
cgi/com/serial.cgi?port=1\&write=FF020010003F51","w");
fopen("http://127.0.0.1/axis-
cgi/com/serial.cgi?port=1\&write=FF0200023F0043","w");
usleep(100000); // Wait 0.1 seconds
fopen("http://127.0.0.1/axis-
cgi/com/serial.cgi?port=1\&write=FF020000000002","w");

http://www.axis.com/

An Introduction to PHP3

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 28

break;

case 6: // Down
fopen("http://127.0.0.1/axis-
cgi/com/serial.cgi?port=1\&write=FF020010003F51","w");
usleep(100000); // Wait 0.1 seconds
fopen("http://127.0.0.1/axis-
cgi/com/serial.cgi?port=1\&write=FF020000000002","w");
break;

case 7: // Down Left
fopen("http://127.0.0.1/axis-
cgi/com/serial.cgi?port=1\&write=FF020010003F51","w");
fopen("http://127.0.0.1/axis-
cgi/com/serial.cgi?port=1\&write=FF0200043F0045","w");
usleep(100000); // Wait 0.1 seconds
fopen("http://127.0.0.1/axis-
cgi/com/serial.cgi?port=1\&write=FF020000000002","w");
break;

case 8: // Left
fopen("http://127.0.0.1/axis-
cgi/com/serial.cgi?port=1\&write=FF0200043F0045","w");
usleep(100000); // Wait 0.1 seconds
fopen("http://127.0.0.1/axis-
cgi/com/serial.cgi?port=1\&write=FF020000000002","w");
break;

case 9: // Zoom Out
fopen("http://127.0.0.1/axis-
cgi/com/serial.cgi?port=1\&write=FF020040000042","w");
usleep(1000000); // Wait 0.1 seconds
fopen("http://127.0.0.1/axis-
cgi/com/serial.cgi?port=1\&write=FF020000000002","w");
break;

case 10: // Zoom In
fopen("http://127.0.0.1/axis-
cgi/com/serial.cgi?port=1\&write=FF020020000022","w");
usleep(1000000); // Wait 0.1 seconds
fopen("http://127.0.0.1/axis-
cgi/com/serial.cgi?port=1\&write=FF020000000002","w");
break;

}
printf(" "); //Return data to avoid the popup windows saying
"Document contains no data"
?>

An Introduction to PHP3

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 29

4.2.2 Example 2 – FTP Upload of Images
This script will upload 2 pre-alarm and 2 post-alarm images via FTP. It is fairly general and may
be used in many different configurations.

4.2.2.1 The task.list

once immune % /bin/bufferd : -start -buffername CAM1 -pre 2 -post 2 -predelay
1000 -postdelay 1000 -uri ftp://jpg/1/352x288.jpg;

date(w(0,1,2,3,4,5,6)) pattern((IO0:/)) immune once % /bin/sh : -c php
/etc/httpd/html/alarm_ftp_net.php3;

The first entry in the task.list will start a buffer (CAM1) that continuously fetches 2 pre-alarm
images from camera 1 and is prepared to fetch 2 post-alarm images. The images are fetched at
rate of 1 frame per second (1000ms).

The second entry specifies that when input one goes high (rising flank), then the script
alarm_ftp_net.php3 will be executed.

4.2.2.2 The Script
The first section of the script contains the available parameters, which may be changed according
to requirements.

< ?

$buffer_prefix = "CAM"; // The prefix of the name
//of the buffer(s) started

$sources = "1"; // The index of the name(s)
//of the buffer(s) started

$image_format = "fullsize"; // The format of the images
//specified to be taken
//according to the HTTP-API

$pre = 2; // Number of pre alarm
//images to be taken

$post = 2; // Number of post alarm
//images to be taken

$predelay = 1000; // Delay between pre images
//in milliseconds

$postdelay = 1000; // Delay between post
//images in milliseconds

$ftp_server = "10.13.9.130"; // The server to upload to
$port = "21"; // The port to connect to
$user = "user"; // The user to login as
$pass = "pass"; // The pass to use for the

//user
$passive_mode = "no"; // Choose passive mode on

//("yes") or off ("no").
//(See documentation on FTP
//protocol)

$destination = "upload/2400test"; // The path to append to
//all uploads. This path
//must exist on the
//server prior to upload.

An Introduction to PHP3

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 30

The second part of the script is where it all happens:

1 All pre/post alarm buffers previously started by utask are stopped.
2 Waits until all post-alarm images are stored.
3 FTP transfer of all images.
4 Restart of pre/post alarm buffers.
5 Exit.

for($c=0;$c<(strlen($sources));$c++)
{ // Stop the, by utask,

//started buffers
$command="bufferd -stop -buffername
".$buffer_prefix.substr($sources,$c,1);
system($command);

}

error_reporting(0);

for($c=0;$c<(strlen($sources));$c++)
{ // For each buffer specified

$status_file =
"/tmp/".$buffer_prefix.substr($sources,$c,1)."/status";

while(!is_file($status_file))
{ // Wait until bufferd is

//ready with the images, i.e.
//the status file is present

sleep(($predelay+$postdelay)/1000);
}
unlink($status_file);

}
error_reporting(E_ALL);
$session = ftp_connect($ftp_server, $port);

if($session)
{ // Connection successfully

//established

if(ftp_login($session, $user, $pass))
{ // Successful login attempt

if (!ftp_pasv($session, $passive_mode == "yes"))
{

error_log("Could not set passive mode",0);
}
else

{ // Passive mode successfully
//set

for($i=0;$i < (strlen($sources));$i++)
{ // For each buffer specified

$directory="/tmp/".$buffer_prefix.substr($sources
,$i,1);
$buffer_handle = opendir($directory);

While($file_name = readdir($buffer_handle))
{ // And for each file in the

//corresponding buffer

An Introduction to PHP3

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 31

//directory

if(($file_name != ".") &&($file_name != ".."))

//src, append to dst
if(!ftp_put($session, $destination_name,
$file, FTP_BINARY))
{ // Upload that file to the

//FTP server
error_log("Could not upload file
".$file." as
".$destination_name."\n",0);

}
unlink($file);

}
}
closedir($buffer_handle);

}

}
ftp_quit($session);

}
else
{

error_log("Could not connect to ".$ftp_server,0);
}

error_log("Restarting buffer(s)",0);

for($c=0;$c<(strlen($sources));$c++)
{ // Reset and restart buffers

$command="bufferd -reset -buffername
".$buffer_prefix.substr($sources,$c,1);
system($command);
$command="bufferd -start -buffername
".$buffer_prefix.substr($sources,$c,1)." -pre ".strval($pre)." -
post ".strval($post)." -predelay ".strval($predelay)." -postdelay
".strval($postdelay)." -uri
ftp://jpg/".substr($sources,$c,1)."/".$image_format.".jpg";
system($command);

}
?>

$file =
"/tmp/".$buffer_prefix.substr($sources,$i
,1)."/".$file_name;
$destination_name = $destination .
$buffer_prefix.substr($sources,$i,1);
$destination_name .=
strchr($file_name,"_");

else
{

}

error_log("Could not login as ".$user." on ".$ftp_server,0);

{ // That is a regular file

//extract timestamp from

}

An Introduction to PHP3

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 32

4.2.3 Example 3 – FTP and E-mail on Event
This script will upload 2 pre-alarm and 2 post-alarm images via FTP and also send an e-mail as
notification of the event. In addition to the parameters in example 1, the following parameters are
added:

<?
$smtp_server = "mail.somewhere.com";// The server to use as mail server
$subject = "'Alarm trigged'"; // The subject to use in the mail
$from = "someone@somewhere.com"; // The specified sender
$reply = " someone1@somewhere.com ";// The specified recipient
$cc = " someone2@somewhere.com "; // The specified recipient of a

//copy of this mail
$body = "/tmp/var/log/messages"; // The body to insert into the

// mail. Note that this must be
//specified and point to a valid
//file

$to = " someone@somewhere.com "; // The specified recipient

The script itself is identical to example 1, except for the extra lines shown below.

for($c=0;$c<(strlen($sources));$c++)
{

$command="bufferd -stop -buffername
".$buffer_prefix.substr($sources,$c,1);
system($command);

}
//This is where the code specific to Example 2 starts.

$command = "smtpclient";
$command .=" -L -S ".$smtp_server;
$command .=" -s ".$subject;
$command .=" -f ".$from;
$command .=" -r ".$reply;
$command .=" -c ".$cc;
$command .=" -b ".$body;
$command .=" ".$to;
exec($command);

//This is where the code specific to Example 2 ends.

error_reporting(0);

………………the rest of the script as for example 1.

An Introduction to PHP3

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 33

4.2.4 Example 4 – Sequential FTP Upload
When input 0 goes high, this script will, for 10 seconds, upload images via FTP, at 2 second
intervals. The uploaded images can be named by specifying a suffix. These can be date,
incremental sequence number or limited sequence (overwrites files when maximum is reached).

The parameters come first:

<?

$buffer_prefix = "SNAP"; // The prefix of the name
//of the buffer(s) started

$sources = "1"; // The index of the name(s) of the
// buffer(s) started

$image_format = "fullsize"; // The format of the images
//specified to be taken
//according to the HTTP-API

$delay = 2000; // Delay between images //taken
$file_format = "snapshot"; // The name to be given to

//the local file, excluding
//the extension

$ftp_server = "10.13.9.130"; // The server to upload to
$port = "21"; // The port to connect to
$user = "user"; // The user to login as
$pass = "pass"; // The pass to use for the

//user
$passive_mode = "no"; // Choose passive mode on

//("yes") or off ("no").
//(See documentation on FTP
//protocol)

$destination = "upload/2400"; // The path to append to all
//uploads. This path must exist on
// the server prior to upload.

$time = 10; // The time, in seconds, to stay
// in this script. A value of -1
// means indefinitely.

$suffix= "date"; // The type of suffix to use on
//the uploaded files. Use "date"
//for the date,
//$suffix = "sequence"; or
//"sequence" for an index
//$counter_max = 10; Limited by an
//integer. $suffix =
//"sequence_max"; Or
//"sequence_max" for an index up
//to the internal maximum integer.

An Introduction to PHP3

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 34

The script itself follows:

error_reporting(E_ALL);
function conv($value)
{ // A function for converting

//single digit integers into
//two digit integers

if($value < 10) {
$value = "0$value";

}
return strval($value);

}

for($c=0;$c<(strlen($sources));$c++)
{ // Start the buffers as

//specified by the parameters
//above

//$command="bufferd -reset -buffername
//".$buffer_prefix.substr($sources,$c,1);
//system($command);
$command="bufferd -start -buffername ";
$command.=$buffer_prefix.substr($sources,$c,1);
$command.=" -snapshot -pre 1 -predelay ";
$command.=strval($delay);
$command.=" -uri ftp://jpg/";
$command.=substr($sources,$c,1);
$command.="/";
$command.=$image_format;
$command.=".jpg -format ";
$command.=$file_format;
system($command);

}

error_reporting(0);
$current_counter = 1;
if($fd = fopen("/tmp/counter","r"))
{ // If the file looked for

//exists, retrieve the index to
//start at

while($buf = fread($fd,8))
{

$current_counter .= $buf;
}
$current_counter = intval($current_counter);
fclose($fd);

}

//the specified maximum, reset
//index

$current_counter = 1;
if($fd = fopen("/tmp/counter","w"))
{

$buf = fwrite($fd,strval($current_counter));
fclose($fd);

}
}
error_reporting(E_ALL);

if(($suffix=="sequence") && $current_counter > $counter_max)
{ // If the loaded index exceeds

An Introduction to PHP3

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 35

$session = ftp_connect($ftp_server, $port);
if($session)
{ // Connection successfully

//established
if(ftp_login($session, $user, $pass))
{ // Successful login attempt

if (!ftp_pasv($session, $passive_mode == "yes"))
{

ftp_quit($session);
error_log("Could not set passive mode",0);

}
else
{ // Passive mode successfully

//set
$start_time = gettimeofday();
$current_time = $start_time;
$session_time = 0;
$inc = 0;
$active_buffer = -1;
$failures=0;
while(($failures<(strlen($sources)*2)) && (
($session_time<$time)||($time==-1)))
{ //Upload images as long as

//not too many errors have
//occurred and session time
//has not been exceeded

$loop_start = gettimeofday();
$active_buffer++;
if($active_buffer==strlen($sources))
{ // Loop through the indexes

//specified as sources
$active_buffer=0;

}
$source_file="/tmp/".$buffer_prefix.substr
($sources,$active_buffer,1)."/".$file_format.".jpg";

//Build the destination name
//according to the suffix
//specified

$dest=$destination.$buffer_prefix.substr
($sources,$active_buffer,1);

if($suffix == "date")
{

$tinfo = getdate(time());
$dest .= "_" . conv($tinfo["year"]);
$dest .= "-" . conv($tinfo["mon"]);
$dest .= "-" . conv($tinfo["mday"]);
$dest .= "_";
$dest .= conv($tinfo["hours"]);
$dest .= conv($tinfo["minutes"]);
$dest .= conv($tinfo["seconds"]);

}
else if($suffix == "sequence_max")
{

$dest .= "_" . strval($current_counter);
$inc++;
if($inc >= strlen($sources))
{

$current_counter++;

An Introduction to PHP3

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 36

error_reporting(0);
if($fd = fopen("/tmp/counter","w"))
{

$buf =
fwrite($fd,strval($current_counter
));
fclose($fd);

}
error_reporting(E_ALL);
$inc = 0;

}
}
else if($suffix == "sequence")
{

if($current_counter > $counter_max)
{

$counter = 1;
}
$dest .= "_" . strval($current_counter);
$inc++;
if($inc >= $buffer_count)
{

$current_counter++;
error_reporting(0);
if($fd = fopen("/tmp/counter","w"))
{

$buf =
fwrite($fd,strval($current_counter
));
fclose($fd);

}
error_reporting(E_ALL);
$inc = 0;

}
}

$dest .= ".jpg";
error_reporting(0);
if(is_file($source_file))
{ //If the source file is present

if(!ftp_put($session, $dest, $source_file,
FTP_BINARY))
{ //Upload the source file

$failures++;
error_log("Could not upload file
".$source_file." as ".$dest." on
".$ftp_server,0);

}
else
{ //If successful upload, remove the

//uploaded file indicating capture
//of a new image

$failures=0;
unlink($source_file);

}
}
else
{

error_reporting(E_ALL);
$failures++;

An Introduction to PHP3

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 37

error_log("No such file: ".$source_file,0);
}
$current_time = gettimeofday();
$ellapsed = ($current_time["sec"] -
$loop_start["sec"]) * 1000000;

if($current_time["usec"] > $loop_start["usec"])
$ellapsed += $current_time["usec"] -
$loop_start["usec"];

else
$ellapsed -= $current_time["usec"] -

$loop_start["usec"];
$wait = ($delay * 1000) / strlen($sources);

if($ellapsed < $wait)
{ // Wait if needed (in order to

//follow the delay specified
//and spread the traffic)

usleep($wait - $ellapsed);
}

//Calculate session time
$session_time = ($current_time["sec"] -
$start_time["sec"]);

if($current_time["usec"] > $start_time["usec"])
$session_time += ($current_time["usec"] -

$start_time["usec"])/1000000;

else

$session_time -= ($current_time["usec"] -
$start_time["usec"])/1000000;

}
if($session_time>=$time) error_log("Timed upload
complete",0);
if($failures>=(strlen($sources)*2)) error_log("Too many
consecutive failures",0);

}
}
else
{

ftp_quit($session);
error_log("Could not log in as ".$user." on ".$ftp_server,0);

}
ftp_quit($session);

}
else
{

error_log("Could not connect to ".$ftp_server.":".$port,0);
}

for($c=0;$c<(strlen($sources));$c++)
{ //Reset buffers

//$command="bufferd -stop -buffername
//".$buffer_prefix.substr($sources,$c,1);
//system($command);
$command="bufferd -reset -buffername
".$buffer_prefix.substr($sources,$c,1);

An Introduction to PHP3

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 38

system($command);
}

?>

4.2.5 Example 5 – Send Images via E-mail
This script will send 4 (2 pre-alarm and 2 post-alarm) images as attachments in an e-mail.

The parameters available are:
<?

$buffer_prefix = "CAM"; // The prefix of the name of the
//buffer(s) started

$sources = "1"; // The index of the name(s) of the
//buffer(s) started

$image_format = "fullsize"; // The format of the images
//specified to be taken
//according to the HTTP-API

$pre = 2; // Number of pre alarm images
//to be taken

$post = 2; // Number of post alarm
//images to be taken

$predelay = 1000; // Delay between pre images
//in milliseconds

$postdelay = 1000; // Delay between post
//images in milliseconds

$smtp_server = "mail.somewhere.com"; // The server to use as
//mail server

$subject = "test"; // The subject to use in
//the mail

$from = " someone@somewhere.com"; // The specified sender
$reply = " someone@somewhere.com "; // The specified recipient

//for replies
$cc = " someone@somewhere.com "; // The specified recipient for a

//copy of this mail
$body = "/tmp/var/log/messages"; // The body to insert into the

//mail. Note that this must be
//specified and point to a valid
//file

$to = " someone@somewhere.com "; // The specified recipient

An Introduction to PHP3

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 39

The script itself:

error_reporting(E_ALL);
error_log("Stopping buffer(s)",0);

for($c=0;$c<(strlen($sources));$c++)
{ // Stop the, by utask,

//started buffers
$command="bufferd -stop -buffername
".$buffer_prefix.substr($sources,$c,1);
system($command);

}

for($c=0;$c<(strlen($sources));$c++)
{ // For each buffer specified

$status_file = "/tmp/".$buffer_prefix.substr($sources,$c,1)."/status";
error_reporting(0);

while(!is_file($status_file))
{ // Wait until bufferd is ready

//with the images, i.e. the status
//file is present

sleep(($predelay+$postdelay)/1000);
}
unlink($status_file);

}
error_reporting(E_ALL);

for($c=0;$c<(strlen($sources));$c++)
{ // For each buffer, mail the

//directory containing the images
//taken

$command = "smtpclient";
$command .=" -S ".$smtp_server;
$command .=" -b ".$body;
$command .=" -M 2 -d /tmp/".$buffer_prefix.substr($sources,$c,1);
$command .=" -s ".$subject;
$command .=" -f ".$from;
$command .=" -r ".$reply;
$command .=" -c ".$cc;
$command .=" ".$to;
system($command);

}

error_log("Restarting buffer(s)",0);

for($c=0;$c<(strlen($sources));$c++)
{ //Reset and restart buffers

$command="bufferd -reset -buffername
".$buffer_prefix.substr($sources,$c,1);
system($command);
$command="bufferd -start -buffername
".$buffer_prefix.substr($sources,$c,1)." -pre ".strval($pre)." -post
".strval($post)." -predelay ".strval($predelay)." -postdelay
".strval($postdelay)." -uri
ftp://jpg/".substr($sources,$c,1)."/".$image_format.".jpg";
system($command);

}

?>

An Introduction to Shells in General

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 40

5 An Introduction to Shells in General

A shell is a programming language that is fully equipped with:

• variables

• conditional and iterative constructs

5.1 The mish shell
The commands available in mish are essentially the same as the ones commonly used in other
shells on any Linux/Unix system, so the manual pages can often be useful. The difference is that
the commands in mish have been simplified, i.e. options have been removed. Besides these
modifications, some extra commands have been added. These are not documented as a manual
page.

The shell includes a help command, which lists the functions available in the shell.

When programming shell scripts, you must begin with the sequence #!/bin/mish, before
starting on your code. The statement after #! states the name of the program used to interpret the
code in your script.

Another good practice when programming is to add comments to your code. All comments are
preceded with the hash (#) sign.

When a shell script is created, the file will not be executable. By default, the file will be a
read/write file, and the user will not be able to run or execute it. To make a file executable, the
file permission must be changed. Use the command chmod to make a shell file executable.

5.2 Shell commands

Name

sh, ., break, case, cd, continue, eval, exec, exit, export, for,if, read, readonly,set, shift,
trap, umask, wait, while – shell

Synopsis
sh [-eiknqstvxu][-c str] [file]

Options
• -c Execute the commands in str
• -e Quit on error
• -i Interactive mode; ignore QUIT,TERMINATE, INTERRUPT
• -k Look for name=value everywhere on command line
• -n Do not execute commands
• -q Change qflag from sig_ign to sig_del
• -s Read commands from standard input
• -t Exit after reading and executing one command

An Introduction to Shells in General

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 41

• -v Echo input lines as they are read
• -x Trace
• -u Unset variables

Example

sh script #Run a shell script

Description
Sh is the shell, which forms the user’s main interface with the system. On startup, the shell reads
/etc/pro-file and $HOME/.profile, if they exist, and executes any commands they
contain. The Minix shell has most of the features of the V7 (Bourne) shell, including redirection
of input and output, pipes, magic characters, background processes, and shell scripts. A brief
summary follows, but whole books have been written on shell programming alone.

Some of the more common notations are:

date # Regular command
sort <file # Redirect stdin (standard input)
sort <file1 >file2 # Redirect stdin and stdout
cc file.c 2>error # Redirect stderr
a.out >f 2>&1 # Combine standard output and standard error
sort <file1 >>file2 # Append output to file2
sort <file1 >file2 & # Background job
(ls -l; a.out) & # Run two background commands sequentially
sort <file | wc # Two-process pipeline
sort <f | uniq | wc # Three-process pipeline
ls -l *.c # List all files ending in .c
ls -l [a-c]* # List all files beginning with a, b,or c
ls -l ? # List all one-character file names
ls \? # List the file whose name is question mark
ls ’???’ # List the file whose name is three question marks
v=/usr/ast # Set shell variable v
ls -l $v # Use shell variable v
PS1=’Hi! ’ # Change the primary prompt to Hi!
PS2=’More: ’ # Change the secondary prompt to More:
ls -l $HOME # List the home directory
echo $PATH # Echo the search path
echo $? # Echo exit status of previous command in decimal
echo $$ # Echo shell’s pid in decimal
echo $! # Echo PID of last background process
echo $# # Echo number of parameters (shell script)
echo $2 # Echo second parameter (shell script)
echo "$2" # Echo second parameter without expanding spaces
echo $* # Echo all parameters (shell script)
echo $@ # Echo all parameters (shell script)
echo "$@" # Echo all parameters without expanding spaces

An Introduction to Shells in General

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 42

The shell uses the following variables for specific purposes:

SHELL the path of the current shell
HOME the default value for the cd(1) command
PATH the directories to be searched to find commands
IFS the internal field separators for command strings
PS1 the primary shell prompt
PS2 the secondary shell prompt

There are various forms of substitution on the shell command line:

‘...‘ Command string between back-quotes is replaced by its
output

"..." Permits variable substitution between quotes
’...’ Inhibits variable substitution between quotes
$VAR Replaced by contents of variable VAR
${VAR} Delimits variable VAR from any following string

The expressions below depend on whether or not VAR has ever been set. If VAR has been set, they
give:

${VAR-str} Replace expression by VAR, else by str
${VAR=str} Replace expression by VAR, else by str and set VAR to str
${VAR?str} Replace expression by VAR, else print str and exit shell
${VAR+str} Replace expression by str, else by null string

If a colon is placed after VAR, the expressions depend on whether or not VAR is currently set and
non-null.

The shell has a number of built-in commands:

: return true status
.fn execute shell script fn on current path
break [n] break from a for,until or while loop; exit n levels
continue [n] continue a for,until or while loop; resume n:th loop
cd [dir] change current working directory; move to $HOME
eval cmd rescan cmd, performing substitutions
eval rescan the current command line
exec cmd execute cmd without creating a new process
exec <|> with no command name, modify shell I/O
exit [n] exit a shell program, with exit value n
export [var] export var to shell’s children; list exported variables
pwd print the name of the current working directory
read var read a line from stdin and assign to var
readonly [var] make var read-only; list read-only variables
set -f set shell flag (+f unsets flag)
set str set positional parameter to str
set show the current shell variables
shift reassign positional parameters (except ${0}) one left
times print accumulated user and system times for processes

An Introduction to Shells in General

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 43

trap arg sigs trap signals sigs and run arg on receipt
trap list trapped signals
umask [n] set the user file creation mask; show the current umask
wait [n] wait for process pid n; wait for all processes

The shell also contains a programming language, which has the following operators and flow
control statements:

Comment. The rest of the line is ignored.
= Assignment. Set a shell variable.
&& Logical AND. Execute second command only if first succeeds.
|| Logical OR. Execute second command only if first fails.
(...) Group. Execute enclosed commands before continuing.
for For loop (for ... in ... do ... done)
case Case statement ((case ...) ... ;; ... esac)
esac Case statement end
while While loop (while ... do ... done)
do Do/For/While loop start (do ... until ...)
done For/While loop end
if Conditional statement (if ... else ... elif ... fi)
in For loop selection
then Conditional statement start
else Conditional statement alternative
elif Conditional statement end
until Do loop end
fi Conditional statement end

See also:

echo(1), expr(1), pwd(1), true(1).

5.3 Additional Commands Available with Busybox
BusyBox combines tiny versions of many common UNIX utilities into a single small executable.
It provides minimalist replacements for most of the utilities you usually find in fileutils,
shellutils, findutils, textutils, grep, etc. BusyBox provides a fairly complete POSIX environment
for any small or embedded system. The utilities in BusyBox generally have fewer options than
their full-featured GNU cousins; however, the options that are included provide the expected
functionality and behave very much like their GNU counterparts.

An Introduction to Shells in General

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 44

5.3.1 basename
Syntax: basename FILE [SUFFIX]

 Strips directory path and suffixes from FILE. If specified, also removes any trailing SUFFIX.

Example:
$ basename /usr/local/bin/foo
foo
$ basename /usr/local/bin/
bin
$ basename /foo/bar.txt .txt
bar

5.3.2 cat
Syntax: cat [FILE]...

Concatenates FILE(s) and prints them to stdout.

Example:
$ cat /proc/uptime
110716.72 17.67

5.3.3 chroot
Syntax: chroot NEWROOT [COMMAND...]

Run COMMAND with root directory set to NEWROOT.

Example:
$ ls -l /bin/ls
lrwxrwxrwx 1 root root 12 Apr 13 00:46
/bin/ls -> /BusyBox
$ mount /dev/hdc1 /mnt -t minix
$ chroot /mnt
$ ls -l /bin/ls
-rwxr-xr-x 1 root root 40816 Feb 5 07:45
/bin/ls*

5.3.4 cp
Syntax: cp [OPTION]... SOURCE DEST

Copies SOURCE to DEST, or multiple SOURCE(s) to DIRECTORY.

-a Same as -dpR
-d Preserves links
-p Preserves file attributes if possible
-f force (implied; ignored) - always set
-R Copies directories recursively

An Introduction to Shells in General

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 45

5.3.5 cut
Syntax: cut [OPTION]... [FILE]...

Prints selected fields from each input FILE to standard output.

Options:
-b LIST Output only bytes from LIST
-c LIST Output only characters from LIST
-d CHAR Use CHAR instead of tab as the field delimiter
-s Output only the lines containing delimiter
-f N Print only these fields
-n Ignored

Example:
$ echo "Hello world" | cut -f 1 -d ' '
Hello
$ echo "Hello world" | cut -f 2 -d ' '
world

5.3.6 date
Syntax: date [OPTION]... [+FORMAT]

Displays the current time in the given FORMAT, or sets the system date.

Options:
-R Outputs RFC-822 compliant date string
-d STRING display time described by STRING, not `now'
-s Sets time described by STRING
-u Prints or sets Coordinated Universal Time

Example:
$ date
Wed Apr 12 18:52:41 MDT 2000

5.3.7 dd
Syntax: dd [if=FILE] [of=FILE] [bs=N] [count=N]
[skip=N][seek=N][conv=notrunc|sync]

Copy a file, converting and formatting according to options

if=FILE read from FILE instead of stdin
of=FILE write to FILE instead of stdout
bs=N read and write N bytes at a time
count=N copy only N input blocks
skip=N skip N input blocks
seek=N skip N output blocks
conv=notrunc don't truncate output file
conv=sync pad blocks with zeros

Numbers may be suffixed by c (x1), w (x2), b (x512), kD (x1000), k (x1024),
MD (x1000000), M (x1048576), GD (x1000000000) or G (x1073741824).

Example:
$ dd if=/dev/zero of=/dev/ram1 bs=1M count=4
4+0 records in

An Introduction to Shells in General

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 46

4+0 records out

5.3.8 df
Syntax: df [-hmk] [filesystem ...]

Print the filesystem space used and space available.

Options:

-h print sizes in human readable format (e.g., 1K 243M 2G)
-m print sizes in megabytes
-k print sizes in kilobytes(default)

Example:
$ df
Filesystem 1k-blocks Used Available Use% Mounted on
/dev/sda3 8690864 8553540 137324 98% /
/dev/sda1 64216 36364 27852 57% /boot
$ df /dev/sda3
Filesystem 1k-blocks Used Available Use% Mounted on
/dev/sda3 8690864 8553540 137324 98% /

5.3.9 dirname
Syntax: dirname [FILENAME ...]

Strips non-directory suffix from FILENAME

Example:
$ dirname /tmp/foo
/tmp
$ dirname /tmp/foo/
/tmp

5.3.10 du
Syntax: du [-lshmk] [FILE]...

Summarizes disk space used for each FILE and/or directory. Disk space is printed in units of
1024 bytes.

Options:
-l count sizes many times if hard linked
-s display only a total for each argument
-h print sizes in human readable format (e.g., 1K 243M 2G)
-m print sizes in megabytes
-k print sizes in kilobytes(default)

Example:
$ du
16 ./CVS
12 ./kernel-patches/CVS
80 ./kernel-patches
12 ./tests/CVS
36 ./tests
12 ./scripts/CVS

An Introduction to Shells in General

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 47

16 ./scripts
12 ./docs/CVS
104 ./docs
2417 .

5.3.11 echo
Syntax: echo [-neE] [ARG ...]

Prints the specified ARGs to stdout

Options:
-n suppress trailing newline
-e interpret backslash-escaped characters (i.e. \t=tab etc)
-E disable interpretation of backslash-escaped characters

Example:
$ echo "Erik is cool"
Erik is cool
$ echo -e "Erik
is
cool"
Erik
is
cool
$ echo "Erik
is
cool"
Erik
is
cool

5.3.12 env
Syntax: env [-] [-iu] [name=value ...] [command]

Prints the current environment or runs a program after setting up the specified environment.

Options:
-, -i start with an empty environment
-u remove variable from the environment

5.3.13 expr
Syntax: expr EXPRESSION

Prints the value of EXPRESSION to standard output.

EXPRESSION may be:

ARG1 | ARG2 ARG1 if it is neither null nor 0, otherwise ARG2
ARG1 & ARG2 ARG1 if neither argument is null or 0, otherwise 0
ARG1 < ARG2 ARG1 is less than ARG2
ARG1 <= ARG2 ARG1 is less than or equal to ARG2
ARG1 = ARG2 ARG1 is equal to ARG2
ARG1 != ARG2 ARG1 is unequal to ARG2
ARG1 >= ARG2 ARG1 is greater than or equal to ARG2
ARG1 > ARG2 ARG1 is greater than ARG2

An Introduction to Shells in General

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 48

ARG1 + ARG2 arithmetic sum of ARG1 and ARG2
ARG1 - ARG2 arithmetic difference of ARG1 and ARG2
ARG1 * ARG2 arithmetic product of ARG1 and ARG2
ARG1 / ARG2 arithmetic quotient of ARG1 divided by ARG2
ARG1 % ARG2 arithmetic remainder of ARG1 divided by ARG2
STRING : REGEXP anchored pattern match of REGEXP in STRING
match STRING REGEXP same as STRING : REGEXP
substr STRING POS LENGTH substring of STRING, POS counted from 1
index STRING CHARS index in STRING where any CHARS is found,

or 0
length STRING length of STRING
quote TOKEN interpret TOKEN as a string, even if

it is a keyword like `match' or an
operator like `/'

(EXPRESSION) value of EXPRESSION

Beware that many operators need to be escaped or quoted for shells. Comparisons are arithmetic
if both ARGs are numbers, else lexicographical. Pattern matches return the string matched
between \(and \) or null; if \(and \) are not used, they return the number of characters matched
or 0.

5.3.14 false
Syntax: false

Return an exit code of FALSE (1).

Example:
$ false
$ echo $?
1

5.3.15 fbset
Syntax: fbset [options] [mode]

Show and modify frame buffer settings.

Example:
$ fbset
mode "1024x768-76"
D: 78.653 MHz, H: 59.949 kHz, V: 75.694 Hz
geometry 1024 768 1024 768 16
timings 12714 128 32 16 4 128 4
accel false
rgba 5/11,6/5,5/0,0/0
endmode

5.3.16 find
Syntax: find [PATH...] [EXPRESSION]

Search for files in a directory hierarchy. The default PATH is the current directory; default
EXPRESSION is '-print'

EXPRESSION may consist of:

An Introduction to Shells in General

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 49

-follow Dereference symbolic links.
-name PATTERN File name (leading directories removed) matches PATTERN.
-print Print (default and assumed).
-type X Filetype matches X (where X is one of: f,d,l,b,c,...)
-perm PERMS Permissions match any of (+NNN); all of (-NNN);

or exactly (NNN)
-mtime TIME Modified time is greater than (+N); less than (-N);

or exactly (N) days

Example:
$ find / -name /etc/passwd
/etc/passwd

5.3.17 grep
Syntax: grep [-ihHnqvs] pattern [files...]

Search for PATTERN in each FILE or standard input.

Options:

-H prefix output lines with filename where match was found
-h suppress the prefixing filename on output
-i ignore case distinctions
-l list names of files that match
-n print line number with output lines
-q be quiet. Returns 0 if result was found, 1 otherwise
-v select non-matching lines
-s suppress file open/read error messages

Example:
$ grep root /etc/passwd
root:x:0:0:root:/root:/bin/bash
$ grep ^[rR]oo. /etc/passwd
root:x:0:0:root:/root:/bin/bash

5.3.18 halt
Syntax: halt

Halt the system.

5.3.19 head
Syntax: head [OPTION] [FILE]...

Print first 10 lines of each FILE to standard output. With more than one FILE, precede each with
a header giving the file name. With no FILE, or when FILE is -, read standard input.

Options:

-n NUM Print first NUM lines instead of first 10

Example:
$ head -n 2 /etc/passwd
root:x:0:0:root:/root:/bin/bash

An Introduction to Shells in General

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 50

daemon:x:1:1:daemon:/usr/sbin:/bin/sh

5.3.20 hostname
Syntax: hostname [OPTION] {hostname | -F file}

Get or set the hostname or DNS domain name. If a hostname is given (or a file with the -F
parameter), the host name will be set.

Options:
-s Short
-i Addresses for the hostname
-d DNS domain name
-F, --file FILE Use the contents of FILE to specify the hostname

Example:
$ hostname
slag

5.3.21 id
Syntax: id [OPTIONS]... [USERNAME]

Print information for USERNAME or the current user

Options:
-g prints only the group ID
-u prints only the user ID
-n print a name instead of a number (with for -ug)
-r prints the real user ID instead of the effective ID (with -ug)

Example:
$ id
uid=1000(andersen) gid=1000(andersen)

5.3.22 init
Syntax: init

init is the parent of all processes. This version of init is designed to be run only by the
kernel.

BusyBox init doesn't support multiple runlevels. The runlevels field of the /etc/inittab
file is completely ignored by BusyBox init. If you want runlevels, use sysvinit.

BusyBox init works just fine without an inittab. If no inittab is found, it has the following default
behavior:

::sysinit:/etc/init.d/rcS
::askfirst:/bin/sh
::ctrlaltdel:/sbin/reboot
::shutdown:/sbin/swapoff -a
::shutdown:/bin/umount -a -r

If it detects that /dev/console is _not_ a serial console, it will also run:

An Introduction to Shells in General

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 51

tty2::askfirst:/bin/sh
tty3::askfirst:/bin/sh
tty4::askfirst:/bin/sh

If you choose to use an /etc/inittab file, the inittab entry format is as follows:
<id>:<runlevels>:<action>:<process>
<id>:

WARNING!
This field has a non-traditional meaning for BusyBox init! The id field is used by BusyBox init
to specify the controlling tty for the specified process to run on. The contents of this field are
appended to "/dev/" and used as-is. There is no need for this field to be unique, although if it
isn't you may have strange results. If this field is left blank, the controlling tty is set to the
console. Also note that if BusyBox detects that a serial console is in use, then only entries whose
controlling tty is either the serial console or /dev/null will be run. BusyBox init does
nothing with utmp. We don't need a utmp.

<runlevels>:

The runlevels field is completely ignored.

<action>:

Valid actions include: sysinit, respawn, askfirst, wait, once,
ctrlaltdel, and shutdown.

The available actions can be classified into two groups: actions that are run only once,
and actions that are re-run when the specified process exits.

Run only-once actions:

sysinit is the first item run on boot. init waits until all sysinit actions are
completed before continuing. Following the completion of all sysinit actions, all wait
actions are run.

'wait' actions, such as sysinit actions, cause init to wait until the specified task
completes. 'once' actions are asyncronous, therefore, init does not wait for them to
complete. 'ctrlaltdel' actions are run when the system detects that someone on the
system console has pressed the CTRL-ALT-DEL key combination. Typically one wants
to run 'reboot' at this point to cause the system to reboot. Finally the 'shutdown'
action specifies the actions to be taken when init is told to reboot. Unmounting
filesystems and disabling swap is a very good here.

Run repeatedly actions:

'respawn' actions are run after the 'once' actions. When a process started with a
'respawn' action exits, init automatically restarts it. Unlike sysvinit, BusyBox
init does not stop processes from respawning out of control. The 'askfirst' actions
act just like respawn, except that before running the specified process it displays the line
"Please press Enter to activate this console" and then waits for the user
to press enter before starting the specified process.

An Introduction to Shells in General

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 52

Unrecognized actions (like initdefault) will cause init to emit an error message, and then
go along with its business. All actions are run in the reverse order from how they appear in
/etc/inittab.

<process>:

Specifies the process to be executed and it's command line.

Example /etc/inittab file:

This is run first except when booting in single-user mode.
#
::sysinit:/etc/init.d/rcS

/bin/sh invocations on selected ttys
#
Start an "askfirst" shell on the console (whatever that may be)
::askfirst:-/bin/sh
Start an "askfirst" shell on /dev/tty2-4
tty2::askfirst:-/bin/sh
tty3::askfirst:-/bin/sh
tty4::askfirst:-/bin/sh

/sbin/getty invocations for selected ttys
#
tty4::respawn:/sbin/getty 38400 tty5
tty5::respawn:/sbin/getty 38400 tty6

Example of how to put a getty on a serial line (for a terminal)
#
#::respawn:/sbin/getty -L ttyS0 9600 vt100
#::respawn:/sbin/getty -L ttyS1 9600 vt100
#
Example how to put a getty on a modem line.
#::respawn:/sbin/getty 57600 ttyS2

Stuff to do before rebooting
::ctrlaltdel:/sbin/reboot
::shutdown:/bin/umount -a -r
::shutdown:/sbin/swapoff -a

5.3.23 ln
Syntax: ln [OPTION] TARGET... LINK_NAME|DIRECTORY

Create a link named LINK_NAME or DIRECTORY to the specified TARGET

You may use '--' to indicate that all following arguments are non-options.

Options:
-s make symbolic links instead of hard links
-f remove existing destination files
-n no dereference symlinks - treat like normal file

Example:
$ ln -s BusyBox /tmp/ls
$ ls -l /tmp/ls
lrwxrwxrwx 1 root root 7 Apr 12 18:39 ls -> BusyBox*

An Introduction to Shells in General

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 53

5.3.24 logger
Syntax: logger [OPTION]... [MESSAGE]

Write MESSAGE to the system log. If MESSAGE is omitted, log stdin.

Options:
-s Log to stderr as well as the system log.
-t Log using the specified tag (defaults to user name).
-p Enter the message with the specified priority.

This may be numerical or a ``facility.level'' pair.

Example:
$ logger "hello"

5.3.25 logname
Syntax: logname

Print the name of the current user.

Example:
$ logname
root

5.3.26 logread
Syntax: logread

Shows the messages from syslogd (using circular buffer).

5.3.27 ls
Syntax: ls [-1AacCdeFilnpLRrSsTtuvwxXhk] [filenames...]

List directory contents.

Options:
-1 list files in a single column
-A do not list implied . and ..
-a do not hide entries starting with .
-C list entries by columns
-c with -l: show ctime
-d list directory entries instead of contents
-e list both full date and full time
-F append indicator (one of */=@|) to entries
-i list the i-node for each file
-l use a long listing format
-n list numeric UIDs and GIDs instead of names
-p append indicator (one of /=@|) to entries
-L list entries pointed to by symbolic links
-R list subdirectories recursively
-r sort the listing in reverse order
-S sort the listing by file size
-s list the size of each file, in blocks
-T NUM assume Tabstop every NUM columns
-t with -l: show modification time

An Introduction to Shells in General

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 54

-u with -l: show access time
-v sort the listing by version
-w NUM assume the terminal is NUM columns wide
-x list entries by lines instead of by columns
-X sort the listing by extension
-h print sizes in human readable format (e.g., 1K 243M 2G)
-k print sizes in kilobytes(default)

5.3.28 mkdir
Syntax: mkdir [OPTION] DIRECTORY...

Create the DIRECTORY(ies), if they do not already exist.

Options:
-m set permission mode (as in chmod), not rwxrwxrwx - umask
-p no error if existing, make parent directories as needed

Example:
$ mkdir /tmp/foo
$ mkdir /tmp/foo
/tmp/foo: File exists
$ mkdir /tmp/foo/bar/baz
/tmp/foo/bar/baz: No such file or directory
$ mkdir -p /tmp/foo/bar/baz

5.3.29 mkfifo
Syntax: mkfifo [OPTIONS] name

Creates a named pipe (identical to 'mknod name p')

Options:
-m create the pipe using the specified mode (default a=rw)

5.3.30 mknod
Syntax: mknod [OPTIONS] NAME TYPE MAJOR MINOR

Create a special file (block, character, or pipe).

Options:

-m create the special file using the specified mode (default a=rw)

TYPEs include:

b: Make a block (buffered) device.
c or u: Make a character (un-buffered) device.
p: Make a named pipe. MAJOR and MINOR are ignored for named pipes.

Example:
$ mknod /dev/fd0 b 2 0
$ mknod -m 644 /tmp/pipe p

An Introduction to Shells in General

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 55

5.3.31 mount
Syntax: mount [flags] device directory [-o options,more-options]

Mount a filesystem.

Flags:
-a: Mount all filesystems in fstab.
-f: "Fake" Add entry to mount table but don't mount it.
-n: Don't write a mount table entry.
-o option: One of many filesystem options, listed below.
-r: Mount the filesystem read-only.
-t fs-type: Specify the filesystem type.
-w: Mount for reading and writing (default).

Options for use with the "-o" flag:
async/sync: Writes are asynchronous / synchronous.
atime/noatime: Enable / disable updates to inode access times.
dev/nodev: Allow use of special device files / disallow them.
exec/noexec: Allow use of executable files / disallow them.
loop: Mounts a file via loop device.
suid/nosuid: Allow set-user-id-root programs / disallow them.
remount: Re-mount a mounted filesystem, changing its flags.
ro/rw: Mount for read-only / read-write.

There are EVEN MORE flags that are specific to each filesystem. see the
written documentation for those.

Example:
$ mount
/dev/hda3 on / type minix (rw)
proc on /proc type proc (rw)
devpts on /dev/pts type devpts (rw)
$ mount /dev/fd0 /mnt -t msdos -o ro
$ mount /tmp/diskimage /opt -t ext2 -o loop

5.3.32 mv
Syntax: mv SOURCE DEST or: mv SOURCE... DIRECTORY

Rename SOURCE to DEST, or move SOURCE(s) to DIRECTORY.

Example:
$ mv /tmp/foo /bin/bar

5.3.33 poweroff
Syntax: poweroff

Halt the system and request that the kernel shut off the power.

An Introduction to Shells in General

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 56

5.3.34 printf
Syntax: printf FORMAT [ARGUMENT...]

Formats and prints ARGUMENT(s) according to FORMAT, where FORMAT controls the output exactly
as in C printf.

Example:
$ printf "Val=%d
" 5
Val=5

5.3.35 pwd
Syntax: pwd

Print the full filename of the current working directory.

Example:
$ pwd
/root

5.3.36 rdate
Syntax: rdate [OPTION] HOST

Get and possibly set the system date and time from a remote HOST.

Options:
-s Set the system date and time (default).
-p Print the date and time.

5.3.37 reboot
Syntax: reboot

Reboot the system.

5.3.38 rm
Syntax: rm [OPTION]... FILE...

Remove (unlink) the FILE(s). You may use '--' to indicate that all following arguments are
non-options.

Options:

-I always prompt before removing each destinations
-f remove existing destinations, never prompt
-r or –R remove the contents of directories recursively

Example:
$ rm -rf /tmp/foo

An Introduction to Shells in General

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 57

5.3.39 rmdir
Syntax: rmdir [OPTION]... DIRECTORY...

Remove the DIRECTORY(ies), if they are empty.

Example:
rmdir /tmp/foo

5.3.40 sed
Syntax: sed [-Vhnef] pattern [files...]

Options:
-n suppress automatic printing of pattern space
-e script add the script to the commands to be executed
-f scriptfile add the contents of script-file to the commands to be

executed
-h display this help message

If no -e or -f is given, the first non-option argument is taken as the sed script to interpret. All
remaining arguments are names of input files; if no input files are specified, then the standard
input is read.

Example:
$ echo "foo" | sed -e 's/f[a-zA-Z]o/bar/g'
bar

5.3.41 sleep
Syntax: sleep N

Pause for N seconds.

Example:
$ sleep 2
[2 second delay results]

5.3.42 sort
Syntax: sort [-n] [-r] [FILE]...

Sorts lines of text in the specified files.

Example:
$ echo -e "e
f
b
d
c
a" | sort
a
b
c
d
e
f

An Introduction to Shells in General

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 58

5.3.43 stty
Syntax: stty [-a|g] [-F device] [SETTING]...

Without arguments, prints baud rate, line discipline, and deviations from stty sane.

Options:
-F device open device instead of stdin
-a print all current settings in human-readable form
-g print in stty-readable form
[SETTING] see documentation

5.3.44 sync
Syntax: sync

Write all buffered filesystem blocks to disk.

5.3.45 tail
Syntax: Tail [OPTION]... [FILE]...

Print last 10 lines of each FILE to standard output. With more than one FILE, precede each with
a header giving the file name. With no FILE, or when FILE is -, read standard input.

Options:
-c N[kbm] output the last N bytes
-n N[kbm] print last N lines instead of last 10
-f output data as the file grows
-q never output headers giving file names
-s SEC wait SEC seconds between reads with -f
-v always output headers giving file names

If the first character of N (bytes or lines) is a '+', output begins with the Nth item from the start of
each file, otherwise, print the last N items in the file. N bytes may be suffixed by k (x1024), b
(x512), or m (1024^2).

Example:
$ tail -n 1 /etc/resolv.conf
nameserver 10.0.0.1

5.3.46 tee
Syntax: tee [OPTION]... [FILE]...

Copy standard input to each FILE, and also to standard output.

Options:
-a append to the given FILEs, do not overwrite

Example:
$ echo "Hello" | tee /tmp/foo
$ cat /tmp/foo
Hello

An Introduction to Shells in General

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 59

5.3.47 test
Syntax: test EXPRESSION or [EXPRESSION]

Checks file types and compares values returning an exit code determined by the value of
EXPRESSION.

Example:
$ test 1 -eq 2
$ echo $?
1
$ test 1 -eq 1
$ echo $?
0
$ [-d /etc]
$ echo $?
0
$ [-d /junk]
$ echo $?
1

5.3.48 touch
Syntax: touch [-c] file [file ...]

Update the last-modified date on the given file[s].

Options:
-c Do not create any files

Example:
$ ls -l /tmp/foo
/bin/ls: /tmp/foo: No such file or directory
$ touch /tmp/foo
$ ls -l /tmp/foo
-rw-rw-r-- 1 andersen andersen 0 Apr 15 01:11 /tmp/foo

5.3.49 tr
Syntax: tr [-cds] STRING1 [STRING2]

Translate, squeeze, and/or delete characters from standard input, writing to standard output.

Options:
-c take complement of STRING1
-d delete input characters coded STRING1
-s squeeze multiple output characters of STRING2 into one character

Example:
$ echo "gdkkn vnqkc" | tr [a-y] [b-z]
hello world

An Introduction to Shells in General

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 60

5.3.50 true
Syntax: true

Return an exit code of TRUE (0).

Example:
$ true
$ echo $?
0

5.3.51 tty
Syntax: tty

Print the file name of the terminal connected to standard input.

Options:
-s print nothing, only return an exit status

Example:
$ tty
/dev/tty2

5.3.52 umount
Syntax: umount [flags] filesystem|directory

Unmount file systems.

Flags:
-a: Unmount all file systems in /etc/mtab
-n: Don't erase /etc/mtab entries
-r: Try to remount devices as read-only if mount is busy
-f: Force filesystem umount (i.e. unreachable NFS server)
-l: Do not free loop device (if a loop device has been used)

Example:
$ umount /dev/hdc1

5.3.53 uname
Syntax: uname [OPTION]...

Print certain system information. With no OPTION, same as -s.

Options:
-a print all information
-m the machine (hardware) type
-n print the machine's network node hostname
-r print the operating system release
-s print the operating system name
-p print the host processor type
-v print the operating system version

Example:
$ uname -a

An Introduction to Shells in General

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 61

Linux debian 2.2.15pre13 #5 Tue Mar 14 16:03:50 MST 2000
i686 unknown

5.3.54 uniq
Syntax: uniq [OPTION]... [INPUT [OUTPUT]]

Discard all but one of successive identical lines from INPUT (or standard input), writing to
OUTPUT (or standard output).

Options:
-c prefix lines by the number of occurrences
-d only print duplicate lines
-u only print unique lines

Example:
$ echo -e "a
a
b
c
c
a" | sort | uniq
a
b
c

5.3.55 usleep
Syntax: usleep N

Pause for N microseconds.

Example:
$ usleep 1000000
[pauses for 1 second]

5.3.56 wc
Syntax: wc [OPTION]... [FILE]...

Print line, word, and byte counts for each FILE, and a total line if more than one FILE is
specified. With no FILE, read standard input.

Options:
-c print the byte counts
-l print the newline counts
-L print the length of the longest line
-w print the word counts

Example:
$ wc /etc/passwd
31 46 1365 /etc/passwd

An Introduction to Shells in General

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 62

5.3.57 whoami
Syntax: whoami

Prints the user name associated with the current effective user id.

5.3.58 xargs
Syntax: xargs [COMMAND] [ARGS...]

Executes COMMAND on every item given by standard input.

Example:
$ ls | xargs gzip
$ find . -name '*.c' -print | xargs rm

5.3.59 yes
Syntax: yes [OPTION]... [STRING]...

Repeatedly outputs a line with all specified STRING(s), or 'y'.

5.4 LIBC NSS
GNU Libc uses the Name Service Switch (NSS) to configure the behavior of the C library for the
local environment, and to configure how it reads system data, such as passwords and group
information. BusyBox has made it Policy that it will never use NSS, and will never use and libc
calls that make use of NSS. This allows you to run an embedded system without the need for
installing an /etc/nsswitch.conf file and without and /lib/libnss_* libraries installed.

If you are using a system that is using a remote LDAP server for authentication via GNU libc
NSS, and you want to use BusyBox, then you will need to adjust the BusyBox source. Chances
are though, that if you have enough space to install of that stuff on your system, then you
probably want the full GNU utilities.

See also: textutils(1), shellutils(1), etc...

MAINTAINER
Erik Andersen <andersee@debian.org> <andersen@lineo.com>

5.4.1 Authors
The following people have contributed code to BusyBox, whether they know it or not.

Erik Andersen <andersen@lineo.com>, <andersee@debian.org>

Tons of new stuff, major rewrite of most of the core apps, tons of new apps as noted in header
files.

Edward Betts <edward@debian.org>

expr, hostid, logname, tty, wc, whoami, yes

John Beppu <beppu@lineo.com>

du, head, nslookup, sort, tee, uniq

An Introduction to Shells in General

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 63

Brian Candler <B.Candler@pobox.com>

tiny-ls(ls)

Randolph Chung <tausq@debian.org>

fbset, ping, hostname, and mkfifo

Dave Cinege <dcinege@psychosis.com>

more(v2), makedevs, dutmp, modularization, auto links file, various fixes, Linux Router Project
maintenance

Karl M. Hegbloom <karlheg@debian.org>

cp_mv.c, the test suite, various fixes to utility.c, &c.

Daniel Jacobowitz <dan@debian.org>

mktemp.c

Matt Kraai <kraai@alumni.carnegiemellon.edu>

documentation, bugfixes

John Lombardo <john@deltanet.com>

dirname, tr

Glenn McGrath <bug1@netconnect.com.au>

ar.c

Vladimir Oleynik <dzo@simtreas.ru>

cmdedit, stty-port, locale, various fixes and irreconcilable critic of everything not perfect.

Bruce Perens <bruce@pixar.com>

Original author of BusyBox. His code is still in many apps.

Chip Rosenthal <chip@unicom.com>, <crosenth@covad.com>

wget - Contributed by permission of Covad Communications

Pavel Roskin <proski@gnu.org>

Lots of bugs fixes and patches.
Gyepi Sam <gyepi@praxis-sw.com>

Remote logging feature for syslogd

Linus Torvalds <torvalds@transmeta.com>

mkswap, fsck.minix, mkfs.minix

Mark Whitley <markw@lineo.com>

sed remix, bug fixes, style-guide, etc.

Charles P. Wright <cpwright@villagenet.com>

gzip, mini-netcat(nc)

Enrique Zanardi <ezanardi@ull.es>

tarcat (since removed), loadkmap, various fixes, Debian maintenance.

An Introduction to Shells in General

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 64

5.5 Using Variables

As is the case with almost any language, the use of variables is very important in shell programs.
You can assign a value to a variable simply by typing the variable name followed by the equal
sign (=) and the value you want to assign to the variable. For example, if you wanted to assign a
value of 5 to the variable count, you would enter:

5.6 Built-in Shell Variables

The shell is aware of special kinds of variable called positional parameters. Positional
parameters are used to refer to the parameters that were passed to the shell program on the
command line or a shell function by the shell script that invoked the function.

When you run a shell program that requires or supports a number of command line options, each
of these options is stored in a positional parameter. The first parameter is stored in a variable
named 1; the second parameter is stored in a variable named 2, and so on. The shell reserves
these variable names so that you can’t use them as variables you define. To access the values
stored in these variables, you must precede the variable name with a dollar sign ($), just as you
do with variables you define.

Variable Symbol Description
$? Contains the exit value returned by the last executed command
$$ Contains the process ID number of the shell

$!
The process number of the most recent asynchronously executed
command.

$-
Contains the flags that were passed to the shell when it was invoked or
flags that were set using the set command.

$# Contains the number of arguments to the shell.

$*
Contains the current argument list. By itself $* is equivalent to $1, $2
and so on, up to the number of arguments. The construct "$*" is
equivalent to "$1, $2"

count=5

Note that you do not have to declare the variable as you would if you were programming in C or
Pascal. This is because the shell language is a non-typed interpretive language. This means that
you can use the same variable to store character strings that you use to store integers.

Once you have stored a value in a variable, how do you get the value back out? You do this in
the shell by preceding the variable name with a dollar sign ($). If you wanted to print the value
stored in the count variable to the screen, you would enter the following command:

echo $count

If you omitted the $ from the preceding command, the echo command would simply display the
word count.

An Introduction to Shells in General

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 65

Variable Symbol Description

$@

Contains the argument list. By itself, $@ is equivalent to $1, $2 and so
on up to the number of arguments. The construct "$@" is equivalent to
"$1", "$2", which preserves the argument list. Without quotes, $@
divides arguments containing spaces into separate arguments.

5.7 The importance of Quotation Marks
The use of the different types of quotation marks is very important in shell programming. To
perform different functions, the shell uses both kinds of quotation marks and the backslash
character. The double quotation marks (""), the single quotation marks (''), and the backslash (\)
are all used to hide special characters from the shell. Each of these methods hides varying
degrees of special characters from the shell.

Double quotation marks are the least powerful of the three methods. When you surround
characters with double quotes, all the white space characters are hidden from the shell, but all
other special characters are still interpreted. This type of quoting is most useful when you are
assigning strings that contain more than one word to a variable. For example, if you wanted to
assign the string hello world to the variable hello, you would type the following command:

hello="hello world"

This command would store the string hello world into the variable hello as one word.

Single quotes are the most powerful form of quoting. They hide all special characters from the
shell. This is useful if the command you enter is intended for a program other than the shell.

greeting="hello there $LOGNAME"

This would store the value hello there root into the variable greeting if you were logged
in as root. If you tried to write this command using single quotes it wouldn't work, because the
single quotes would hide the dollar sign from the shell and the shell wouldn't know that it was
supposed to perform a variable substitution. The variable greeting would be assigned the
value hello there $LOGNAME if you wrote the command using single quotes.

Backslash quoting is used most often when you want to hide only a single character from the
shell. This is usually done when you want to include a special character in a string. For example,
if you wanted to store the price of a box of computer disks into a variable named disk_price,
you would use the following command:

disk_price=\$5.00

The backslash in this example would hide the dollar sign from the shell. If the backslash were
not there, the shell would try to find a variable named 5 and perform a variable substitution on
that variable. Assuming that no variable named 5 were defined, the shell would assign a value of
.00 to the disk_price variable. This is because the shell would substitute a value of null for
the $5 variable.

An Introduction to Shells in General

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 66

The back quote marks (") perform a different function. They are used when you want to use the
results of a command in another command. For example, if you wanted to set the value of the
variable contents equal to the list of files in the current directory, you would type the following
command:

5.8 The test Command

A command called test is used to evaluate conditional expressions. You would typically use
the test command to evaluate a condition that is used in a conditional statement, or to evaluate
the entry or exit criteria for an iteration statement. The test command has the following syntax:

5.8.1 Integer operators

Variable Symbol Description
int1 -eq int2 Returns True if int1 is equal to int2.
int1 -ge int2 Returns True if int1 is greater than or equal to int2.
int1 -gt int2 Returns True if int1 is greater than int2.
int1 -le int2 Returns True if int1 is less than or equal to int2.
int1 -lt int2 Returns True if int1 is less than int2.

5.8.2 String operators

Variable Symbol Description
str1 = str2 Returns True if str1 is identical to str2.
str1 != str2 Returns True if str1 is not identical to str2.
str Returns True if str1 is not null.
-n str Returns True if the length of str is greater than zero.
-z str Returns True if the length of str is equal to zero.

contents='ls'

´

test expression

or

[expression]

Several built-in operators can be used with the test command. These operators can be classified
in four groups: integer operators, string operators, file operators, and logical operators.

An Introduction to Shells in General

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 67

5.8.3 File operators

Variable Symbol Description
-d filename Returns True if filename is a directory.
-f filename Returns True if filename is an ordinary file.
-r filename Returns True if the process can read filename.
-s filename Returns True if filename has a non-zero length.
-z filename Returns True if the process can write filename.
-x filename Returns True if filename is executable.
-e filename Returns True if filename exists.

5.8.4 Logical operators

Variable Symbol Description
! expr Returns True if expr is not true.
expr1 –a
expr2
expr1 &&
expr2

Returns True if expr1 and expr2 are true.

expr1 –o
expr2
expr1 ||
expr2

Returns True if expr1 or expr2 is true.

5.8.5 Conditional statements

The if statement

The syntax of the if statement is:

if [expression];
then
commands
elif [expression2];
then
commands
else
commands
fi

The elif and else clauses are both optional parts of the if statement. The elif statement is
an abbreviation of else if. This statement is executed only if none of the expressions
associated with the if statement or any elif statements before it were true. The commands
associated with the else statement are executed only if none of the expressions associated with
the if statement or any of the elif statements were true.

An Introduction to Shells in General

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 68

The case statement

The case statement enables you to compare a pattern with several other patterns and execute a
block of code if a match is found. The syntax of the case statement is:

case string in
str1)
commands;;
str2)
commands;;
*)
commands;;
esac

string is compared to str1 and str2. If one of these strings matches string1, the
commands up until the double semicolon (;;) are executed. If neither str1 nor str2 matches
string, the commands associated with the asterisk are executed. This is the default case
condition because the asterisk matches all strings.

The for statement

The for statement executes the commands that are contained within it a specified number of
times. The syntax of the for statement is:

for var1 in list
do
commands
done

In this form, the for statement executes once for each item in the list. This list can be a variable
that contains several words separated by spaces, or it can be a list of values that is typed directly
into the statement. Each time through the loop, the variable var1 is assigned the current item in
the list, until the last one is reached.

The second form of for statement has the following syntax:

for var1
do
statements
done

In this form, the for statement executes once for each item in the variable var1. When this
syntax of the for statement is used, the shell program assumes that the var1 variable contains
all the positional parameters that were passed in to the shell program on the command line.

The while statement

Another iteration statement offered by the shell programming language is the while statement.
This statement causes a block of code to be executed while a provided conditional expression is
true. The syntax for the while statement is the following:

An Introduction to Shells in General

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 69

while [expression];
do
statements
done

The until statement

The until statement is very similar in syntax and function to the while statement. The only
real difference between the two is that the until statement executes its code block while its
conditional expression is false, and the while statement executes its code block while its
conditional expression is true. The syntax for the until statement is:

until [expression]
do
commands
done

In practice the until statement is not very useful, because any until statement you write can
also be written as a while statement.

The shift command

The shift command moves the current values stored in the positional parameters to the left one
position. For example, if the values of the current positional parameters are

$1 = -r $2 = file1 $3 = file2

and you executed the shift command

shift

the resulting positional parameters would be:

$1 = file1 $2 = file2

You can also move the positional parameters over more than 1 place, by specifying a number
with the shift command. The following would shift the positional parameters two places:

shift 2

This is a very useful command when you have a shell program that needs to parse command line
options. This is true because options are typically preceded by a hyphen and a letter that
indicates what the option is to be used for. Because options are usually processed in a loop of
some kind, you often want to skip to the next positional parameter once you have
identifiedwhich option should be coming next.

Shell Script Examples

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 70

6 Shell Script Examples

The following pages contain complete shell scripts, which are customized for the most common
applications.

Shell Scripting Tips

• Include #!/bin/mish –x to debug your scripts. Run via Telnet.

• A very useful program for fetching or uploading scripts to the product, Ultra Edit, can be
downloaded from http://www.ultraedit.com/

6.1 The configuration file
The configuration file is located in the /etc/applications directory. At the beginning of
each script, a configuration file is sourced, to identify the variables inside.

This file allows you to use the same scripts, but with different parameters for each of them. A
typical example is to upload files to a particular ftp-server for each camera. You would then
create different config files and call the script with the correct parameters.

Read the config file
. /etc/applications/config_$1

Read the optional config file
if [-e /etc/applications/pre_config_$1]; then
. /etc/applications/pre_config_$1
fi

--- General camera parameters ---
The index of the name(s) of the buffer(s) started
sources="1"
The format of the images specified to be taken according to HTTP-API
image_format="fullsize"
The name to be given to the local file, excluding the extension
file_format="snapshot"
Number of pre alarm images to be taken
pre=2
Number of post alarm images to be taken
post=2
Delay between pre-images in milliseconds
predelay=1000
Delay between post-images in milliseconds
postdelay=1000
Delay between image taken
delay=2000
The time in seconds to stay in the script. A value of -1 means
indefinitely
time=10
The index of the name(s) of the buffer(s) started for sequential
images

Edit your own parameters below:

http://www.ultraedit.com/

Shell Script Examples

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 71

seq_sources="1"
The format of the images specified to be taken according to the HTTP-
API for the sequential images
seq_image_format="fullsize"

The type of the suffix to use on the uploaded files. Either "date"
for the date, or "sequence" for an index limited by $countermax or
"sequenced_max" for an index up to the internal maximum integer
suffix="sequenced_max"
Define the maximum value of the counter
counter_max=200

--- FTP parameters ---
The server to upload to
ftp_server="10.13.9.210"
The port to connect to
port=21
The user to login as
user=user
The pass to use for the user
pass=pass
Choose passive mode on ("yes") or off ("no") (See documentation on
FTP protocol)
passive_mode="no"
The path to append to all uploads. This path must exist on the
server prior to upload
destination="upload/2400test"
The path to append to sequential uploads. This path must exist on
the server prior to upload
seq_destination="upload/sequential"

--- SMTP parameters ---
The server to use as mail server
smtp_server="mail.somewhere.com"
The subject to use in the mail
subject="'Alarm'"
The specified sender
from="someone@somewhere.com"
The specified receiver of reply
reply="someone@somewhere.com"
The specified receiver of a copy of this mail
cc="someone@somewhere.com "
The body to insert into the mail. Note that this must be specified
and point to a valid file
body="/tmp/var/log/messages"
The specified recipient
to="someone@somewhere.com"

Shell Script Examples

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 72

6.2 Script examples
The script examples that follow are located in the ROM file system of the Axis camera/video
server. The scripts are, in their default implementations, “configured” by the Application
Wizard, which is available from the product’s configuration pages. The scripts are shown here as
they actually are, and the configuration options described won’t actually change the scripts
themselves.

It is, of course, also possible to write your own custom scripts from scratch, or to modify the
existing ones as required. The new or modified script must then be placed in the read/write area
of the flash memory: e.g. /etc/script.

6.2.1 Example 1 – Upload via FTP
This script will upload 2 pre-alarm and 2 post-alarm images via FTP. It is fairly general and may
be used in many different configurations.

The following variables defined in the camera/video server’s config file are used in this script:

--- General camera parameters ---
The index of the name(s) of the buffer(s) started
sources="1"
The format of the images specified to be taken according to HTTP-API
image_format="fullsize"
Number of pre alarm images to be taken
pre=2
Number of post alarm images to be taken
post=2
Delay between pre-images in milliseconds
predelay=1000
Delay between post-images in milliseconds
postdelay=1000

--- FTP parameters ---
The server to upload to
ftp_server="10.13.9.210"
The port to connect to
port=21
The user to login as
user=user
The password to use for the user
pass=pass
Choose passive mode on ("yes") or off ("no") (See documentation on
FTP protocol)
passive_mode="no"
The path to append to all uploads. This path must exist on the
server prior to upload
destination="upload/2400test"

Shell Script Examples

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 73

The script itself continues:

#!/bin/mish
PATH=/bin:/sbin:/usr/bin:/usr/sbin

Read the config file
. /etc/applications/config_$1

Read the optional config file
if [-e /etc/applications/pre_config_$1]; then
. /etc/applications/pre_config_$1
fi

Stop the, by utask, started buffers
bufferd -stop -buffername $2

Path of the status file
status_file="/tmp/$2/status"

Wait until bufferd is ready with the images, i.e. the status file is
present and delete it after
expr $predelay + $postdelay > /tmp/A
tmp=`cat /tmp/A`; expr $tmp / 1000 > /tmp/A
tmp=`cat /tmp/A`; rm /tmp/A
while [! -f $status_file]; do
sleep $tmp
done
rm $status_file

FTP connection
if [x$passive_mode = xyes]; then
sftpclient -L -s -m $ftp_server –n $port -c $destination -k /tmp/$2 -u $user
-w $pass
else
sftpclient -L -m $ftp_server –n $port -c $destination -k /tmp/$2 -u $user -w
$pass
fi

Reset and restart buffers
bufferd -reset -buffername $2
bufferd -start -buffername $2 -pre "$pre" -post "$post" -predelay
"$predelay" -postdelay "$postdelay" -uri
ftp://jpg/$sources/$image_format".jpg"

6.2.1.1 Task.list
The first entry in the task.list will start a buffer (CAM1) that continuously fetches 2 pre-alarm
images from camera 1 and is prepared to fetch 2 post-alarm images. The images are fetched at a
rate of 1 frame per second (1000ms).

When the server is running, start capturing images in a buffer named
IO0 with 2 pre and post-alarm pictures, 1000 ms of delay between pre
and post images with the specified URI.
once immune % /bin/bufferd : -start -buffername IO0 -pre 2 -post 2 -predelay
1000 -postdelay 1000 -uri ftp://jpg/1/352x288.jpg;

If a positive transition is detected on the IO port 0, execute the
script for the first camera and the buffer named IO0 (the same as the

Shell Script Examples

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 74

previous started one)
date(w(01,2,3,4,5,6)) pattern ((IO0:/)) immune once %
/etc/scripts/alarm_ftp_net : CAM1 IO0;

6.2.2 Example 2 – Upload via FTP and E-mail
This script will upload 2 pre-alarm and 2 post-alarm images via FTP and also send an e-mail as
notification of the event.

The following variables defined in the config file of the camera are used in this script:

--- General camera parameters ---
The index of the name(s) of the buffer(s) started
sources="1"
The format of the images specified to be taken according to HTTP-API
image_format="fullsize"
Number of pre alarm images to be taken
pre=2
Number of post alarm images to be taken
post=2
Delay between pre-images in milliseconds
predelay=1000
Delay between post-images in milliseconds
postdelay=1000

--- FTP parameters ---
The server to upload to
ftp_server="10.13.9.210"
The port to connect to
port=21
The user to login as
user=user
The pass to use for the user
pass=pass
Choose passive mode on ("yes") or off ("no") (See documentation on
FTP protocol)
passive_mode="no"
The path to append to all uploads. This path must exist on the
server prior to upload
destination="upload/2400test"

--- SMTP parameters ---
The server to use as mail server
smtp_server="mail.somewhere.com"
The subject to use in the mail
subject="'Alarm'"
The specified sender
from="someone@somewhere.com"
The specified receiver of reply
reply="someone@somewhere.com"

The specified recipient of a copy of this mail
cc="someone@somewhere.com "
The body to insert into the mail. Note that this must be specified and
point to a valid file
body="/tmp/var/log/messages"
The specified recipient
to="someone@somewhere.com"

Shell Script Examples

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 75

#!/bin/mish
PATH=/bin:/sbin:/usr/bin:/usr/sbin

Read the config file
. /etc/applications/config_$1

Read the optional config file
if [-e /etc/applications/pre_config_$1]; then

. /etc/applications/pre_config_$1
fi

Stop the, by utask, started buffers
bufferd -stop -buffername $2

Test if cc is present, if yes add -c $cc to the command, otherwise
leave blank
if [x$cc != "x"]; then

copy="-c $cc"
fi
Send the mail
smtpclient -s $subject -S $smtp_server -f $from -r $reply $copy -b $body $to
if [$? -eq 1]; then

logger -t $0[$$] SMTP failed!
fi

Path of the status file
status_file="/tmp/$2/status"

Wait until bufferd is ready with the images, i.e. the status file is
present and delete it after
expr $predelay + $postdelay > /tmp/B
tmp=`cat /tmp/B`; expr $tmp / 1000 > /tmp/B
tmp=`cat /tmp/B`; rm /tmp/B
while [! -f $status_file]; do

sleep $tmp
done
rm $status_file

FTP connection
if [x$passive_mode = xyes]; then

sftpclient -L -s -m $ftp_server –n $port -c $destination -k
/tmp/$2 –u $user -w $pass

else
sftpclient -L -m $ftp_server –n $port -c $destination -k /tmp/$2 -u
$user -w $pass

fi

Reset and restart buffers
bufferd -reset -buffername $2
bufferd -start -buffername $2 -pre "$pre" -post "$post" -predelay
"$predelay" -postdelay "$postdelay" -uri
ftp://jpg/$sources/$image_format".jpg"

Shell Script Examples

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 76

6.2.3 Example 3 – Sequential Upload via FTP
When input 0 goes high, this script will, for 10 seconds, upload images via FTP, at 2 second
intervals. The uploaded images can be named by specifying a suffix. These can be date,
incremental sequence number or limited sequence (overwrites files when maximum is reached).

The following variables defined in the config file of the camera are used in this script:

--- General camera parameters ---
The index of the name(s) of the buffer(s) started
sources="1"
The format of the images specified to be taken according to HTTP-API
image_format="fullsize"
The name to be given to the local file, excluding the extension
file_format="snapshot"
Delay between image taken
delay=2000
The time in seconds to stay in the script. A value of -1 means
indefinitely
time=10
The type of the suffix to use on the uploaded files. Either "date" for
datum or "sequence" for an index limited by $countermax or
sequenced_max" for an index up to the internal maximum integer
suffix="sequenced_max"
Define the maximum value of the counter
counter_max=200

--- FTP parameters ---
The server to upload to
ftp_server="10.13.9.210"
The port to connect to
port=21
The user to login as
user=user
The pass to use for the user
pass=pass
Choose passive mode on ("yes") or off ("no") (See documentation on
FTP protocol)
passive_mode="no"
The path to append to all uploads. This path must exist on the
server prior to upload
destination="upload/2400test"

#!/bin/mish

PATH=/bin:/sbin:/usr/bin:/usr/sbin

Read the config file
. /etc/applications/config_$1

Read the optional config file
if [-e /etc/applications/pre_config_$1]; then
. /etc/applications/pre_config_$1
fi

The script itself:

Shell Script Examples

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 77

Start the buffers as specified by the parameters
bufferd -start -buffername $2 -snapshot -pre 1 -predelay "$delay" -uri
ftp://jpg/"$sources"/"$image_format".jpg -format snapshot_%y%m%d_%H%M%S.jpg

Set the counter variable according to the file /tmp/counter
if [-e /tmp/counter]; then

current_counter=`cat /tmp/counter`
else

current_counter=001
fi

session_time=0 # Time during this session
expr $time * 1000 > /tmp/C
time=`cat /tmp/C`; rm /tmp/C # Convert the time in milliseconds
source_file="/tmp/$2" # Path of the directory of the image
while [! -d $source_file]; do # Wait the creation of the directory
done
cd $source_file # Change to the directory specified above
exit=0
while [$exit = 0]; do # While no errors appeared

If the time to stay in the script has been reach
if [$session_time -ge $time]; then

if [$time -ne -1000]; then # If not infinite
exit=1 # Exit the script

fi
Calculate the session time
else

expr $session_time + $delay > /tmp/C
session_time=`cat /tmp/C`; rm /tmp/C

fi

if [$exit -ne 1]; then
Path of the directory of the image
source_file="/tmp/$2"
OK=0 # Image not found
While the image has not been found
while [$OK = 0]; do

tmp=`ls` # List the file on the directory
If there is a file inside
if [! -z $tmp]; then

Do not take an incomplete image
if [$tmp != tmpimage]; then

OK=1 # The image has been found
Path of the image
source_file=$source_file"/"$tmp

fi
fi

done

If the uploaded file must be sequenced for an index
if [$suffix = sequenced_max]; then

Modify the path of the new file
source_file="/tmp/$2"/"snapshot_$current_counter".jpg
Rename the file
cp $tmp $source_file; rm $tmp
Increment the current counter
expr $current_counter + 1 > /tmp/counter
current_counter=`cat /tmp/counter`
Change this current counter on 3 digit if necessary
if [$current_counter -lt 10]; then

Shell Script Examples

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 78

current_counter="00$current_counter"
echo $current_counter > /tmp/counter

else
if [$current_counter -lt 100]; then

current_counter="0$current_counter"
echo $current_counter > /tmp/counter

fi
fi

fi

If the uploaded file must be sequenced for an index
limited by the value of the variable $counter_max
if [$suffix = sequenced]; then

If the limit is reached restart current counter at 1
if [$current_counter -gt $counter_max]; then

current_counter=001
fi
Modify the path of the new file
source_file="/tmp/$2"/"snapshot_$current_counter".jpg
Rename the file
cp $tmp $source_file; rm $tmp
Increment the current counter
expr $current_counter + 1 > /tmp/counter
current_counter=`cat /tmp/counter`
Change this current counter on a 3 digit if
necessary
if [$current_counter -lt 10]; then

current_counter="00$current_counter"
echo $current_counter > /tmp/counter

else
if [$current_counter -lt 100]; then

current_counter="0$current_counter"
echo $current_counter > /tmp/counter

fi
fi

fi
FTP connection

if [x$passive_mode = xyes]; then # Passive mode
sftpclient -L -s -m $ftp_server -n $port -c
$destination -k /tmp/$2 -u $user -w $pass

else # Non passive mode
sftpclient -L -m $ftp_server -n $port -c $destination
-k /tmp/$2 -u $user -w $pass

fi
if [$? -eq 1]; then # If an error appeared

logger -t $0[$$] FTP failed! # Log this error
exit=1 # Exit the script

else
rm $source_file # Delete the files which has been uploaded
fi

fi
done

Reset buffers
bufferd -reset -buffername $2

Shell Script Examples

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 79

6.2.3.1 Task.list
This is the task.list. used to run the script above.

If a positive transition is detected on the IO port 0, execute the
script for the first camera and the buffer named SNAP1
date(w(0,1,2,3,4,5,6)) pattern ((IO0:/)) immune once %
/etc/scripts/seq_ftp_net : CAM1 SNAP1;

6.2.4 Example 4 – Upload Images via E-mail
This script will send 4 (2 pre-alarm and 2 post-alarm) images as attachments in an e-mail.

The following variables defined in the config file of the camera are used:

--- General camera parameters ---
The index of the name(s) of the buffer(s) started
sources="1"
The format of the images specified to be taken according to HTTP-API
image_format="fullsize"
Number of pre alarm images to be taken
pre=2
Number of post alarm images to be taken
post=2
Delay between pre images in milliseconds
predelay=1000
Delay between post-images in milliseconds
postdelay=1000

--- SMTP parameters ---
The server to use as mail server
smtp_server="mail.somewhere.com"
The subject to use in the mail
subject="'Alarm'"
The specified sender
from="someone@somewhere.com"
The specified receiver of reply
reply="someone@somewhere.com"
The specified receiver of a copy of this mail
cc="someone@somewhere.com "
The body to insert into the mail. Note that this must be specified and
point to a valid file
body="/tmp/var/log/messages"
The specified recipient
to="someone@somewhere.com"

Shell Script Examples

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 80

The script itself:

#!/bin/mish

PATH=/bin:/sbin:/usr/bin:/usr/sbin

Read the config file
. /etc/applications/config_$1

Read the optional config file
if [-e /etc/applications/pre_config_$1]; then

. /etc/applications/pre_config_$1
fi

Stop the, by utask, started buffers
bufferd -stop -buffername $2

Path of the status file
status_file="/tmp/$2/status"

Wait until bufferd is ready with the images, i.e. the status file is
present and delete it after
expr $predelay + $postdelay > /tmp/E
tmp=`cat /tmp/E`; expr $tmp / 1000 > /tmp/E
tmp=`cat /tmp/E`; rm /tmp/E
while [! -f $status_file]; do

sleep $tmp
done
rm $status_file

Test if cc is present, if yes add -c $cc to the command, otherwise
leave blank
if [x$cc != "x"]; then

copy="-c $cc"
fi
Send the mail
smtpclient -s $subject -S $smtp_server -f $from -r $reply $copy -b $body -M
2 -d /tmp/$2 $to
if [$? -eq 1]; then

logger -t $0[$$] SMTP failed!
Fi

Reset and restart buffers
bufferd -reset -buffername $2
bufferd -start -buffername $2 -pre "$pre" -post "$post" -predelay
"$predelay" -postdelay "$postdelay" -uri
ftp://jpg/$sources/$image_format".jpg"

6.2.4.1 Task.list
This task.list can be used to run the script above.

When the server is running, start capturing images in a buffer named
IO0 with 2 pre and post-alarm pictures, 1000 ms of delay between pre
and post images with the specified URI.
once immune % /bin/bufferd : -start -buffername IO0 -pre 2 -post 2 -predelay

Shell Script Examples

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 81

1000 -postdelay 1000 -uri ftp://jpg/1/352x288.jpg;

If a positive transition is detected on the IO port 0, execute the
script for the first camera and the buffer named IO0 (the same as the
previous started one)
date(w(0,1,2,3,4,5,6)) pattern ((IO0:/)) immune once %
/etc/scripts/alarm_smtp_net : CAM1 IO0;

6.2.5 Example 5 – Sequential Upload with Notification via E-mail
This script will upload sequential images specified via FTP. The uploaded images will be
ordered in a structure defined by their date. Images from the alarm buffers will be uploaded and
an e-mail will be sent, as specified by the appropriate parameters.

The following variables defined in the config file of the camera are used in this script:

--- General camera parameters ---
The index of the name(s) of the buffer(s) started
sources="1"
The format of the images specified to be taken according to HTTP-API
image_format="fullsize"
The name to be given to the local file, excluding the extension
file_format="snapshot"
Number of pre alarm images to be taken
pre=2
Number of post alarm images to be taken
post=2
Delay between pre-images in milliseconds
predelay=1000
Delay between post-images in milliseconds
postdelay=1000
Delay between image taken
delay=2000
The time in seconds to stay in the script. A value of -1 means
indefinitely
time=10
The index of the name(s) of the buffer(s) started for sequential
images
seq_sources="1"
The format of the images specified to be taken according to the HTTP-
API for the sequential images
seq_image_format="fullsize"

--- FTP parameters ---
The server to upload to
ftp_server="10.13.9.210"
The port to connect to
port=21
The user to login as
user=user
The pass to use for the user
pass=pass
Choose passive mode on ("yes") or off ("no") (See documentation on
FTP protocol)
passive_mode="no"
The path to append to all uploads. This path must exist on the
server prior to upload
destination="upload/2400test"

Shell Script Examples

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 82

The path to append to sequential uploads. This path must exist on the
server prior to upload
seq_destination="upload/sequential"

--- SMTP parameters ---
The server to use as mail server
smtp_server="mail.somewhere.com"
The subject to use in the mail
subject="'Alarm'"
The specified sender
from="someone@somewhere.com"
The specified receiver of reply
reply="someone@somewhere.com"
The specified receiver of a copy of this mail
cc="someone@somewhere.com "
The body to insert into the mail. Note that this must be specified and
point to a valid file
body="/tmp/var/log/messages"
The specified recipient
to="someone@somewhere.com"

#!/bin/mish

PATH=/bin:/sbin:/usr/bin:/usr/sbin

Read the config file
. /etc/applications/config_$1

Read the optional config file
if [-e /etc/applications/pre_config_$1]; then

. /etc/applications/pre_config_$1
fi

Stop the alarm buffers
bufferd -stop -buffername $2

Test if cc is present, if yes add -c $cc to the command, otherwise
leave blank
if [x$cc != "x"]; then

copy="-c $cc"
fi
Send the mail
smtpclient -s $subject -S $smtp_server -f $from -r $reply $copy -b $body $to
if [$? -eq 1]; then

logger -t $0[$$] SMTP failed!
fi

Path of the status file
status_file="/tmp/$2/status"

Wait until bufferd is ready with the images, i.e. the status file is
present and delete it after
expr $predelay + $postdelay > /tmp/F
tmp=`cat /tmp/F`; expr $tmp / 1000 > /tmp/F
tmp=`cat /tmp/F`; rm /tmp/F

The script itself:

Shell Script Examples

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 83

while [! -f $status_file]; do
sleep $tmp

done
rm $status_file

FTP connection
if [x$passive_mode = xyes]; then

sftpclient -L -s -m $ftp_server -n $port -c $destination -k
/tmp/$2 -u $user -w $pass

else
sftpclient -L -m $ftp_server -n $port -c $destination -k /tmp/$2 –
u $user -w $pass

fi
if [$? -eq 1]; then

logger -t $0[$$] FTP failed!
fi

Reset and restart buffer for alarm images
bufferd -reset -buffername $2

bufferd -start -buffername $2 -pre "$pre" -post "$post" -predelay
"$predelay" -postdelay "$postdelay" -uri
ftp://jpg/$sources/$image_format".jpg"

Start buffer for sequential images
bufferd -start -buffername $3 -snapshot -pre 1 -predelay "$delay" -uri
ftp://jpg/"$seq_sources"/"$seq_image_format".jpg

session_time=0 # Time during this session
expr $time * 1000 > /tmp/F
time=`cat /tmp/F`; rm /tmp/F # Convert the time in milliseconds
Path of the directory of the sequential image
source_file="/tmp/$3"
while [! -d $source_file]; do # Wait the creation of the directory
done
cd $source_file # Change to the directory specified above
exit=0
while [$exit = 0]; do # While no errors appeared

If the time to stay in the script has been reach
if [$session_time -ge $time]; then

if [$time -ne -1000]; then # If not infinite
exit=1 # Exit the script

fi
Calculate the session time
else

expr $session_time + $delay > /tmp/F
session_time=`cat /tmp/F`; rm /tmp/F

fi

if [$exit -ne 1]; then
Path of the directory of the image
source_file="/tmp/$3"
OK=0 # Image not found
While the image has not been found
while [$OK = 0]; do

tmp=`ls` # List the file on the directory
If there is a file inside
if [! -z $tmp]; then

Do not take an incomplete image
if [$tmp != tmpimage]; then

Shell Script Examples

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 84

OK=1 # The image has been found
Path of the image
source_file=$source_file"/"$tmp

fi
fi

done

FTP connection
if [x$passive_mode = xyes]; then # Passive mode

sftpclient -L -s -m $ftp_server -n $port -c
$seq_destination -k /tmp/$3 -u $user -w $pass

else # Non passive mode
sftpclient -L -m $ftp_server -n $port -c
$seq_destination -k /tmp/$3 -u $user -w $pass

fi
if [$? -eq 1]; then # If an error appeared

logger -t $0[$$] FTP failed! # Log this error
exit=1 # Exit the script

else
rm $source_file # Delete the files uploaded

fi
fi

done

Reset buffers
bufferd -reset -buffername $3

6.2.5.1 TASK.LIST
This task.list can be used to run the script above.

When the server is running, start capturing images in a buffer named
IO0 with 2 pre and post-alarm pictures, 1000 ms of delay between pre
and post images with the specified URI.
once immune % /bin/bufferd : -start -buffername IO0 -pre 2 -post 2 -predelay
1000 -postdelay 1000 -uri ftp://jpg/1/352x288.jpg;

If a positive transition is detected on the IO port 0, execute the
script for the first camera and the buffer named IO0 (the same as the
previous started one) and take snapshot in a buffer named SNAP3
date(w(0,1,2,3,4,5,6)) pattern ((IO0:/)) immune once %
/etc/scripts/alarm_ftp_alarm_ftp_note_smtp_net : CAM1 IO0 SNAP3;

Troubleshooting

Axis Communications AB provides NO support for application development of any kind. The information
here is provided "as is", and there is no guarantee that any of the examples shown will work in your
particular application.

Revision 1.02 October 2002 85

7 Troubleshooting

7.1 Script related problems
Axis Communications AB does not provide support for application development of any kind.
The information here is provided "as is", and there is no guarantee that any of the examples
shown will work in your particular application.

7.2 Product related problems
If you run into problems, please try these steps first, before contacting your local supplier:

1. Consult the Troubleshooting section of the product’s Users Guide.
2. Visit the Axis product Support Web, available at www.axis.com and verify that the

product contains the latest available software version. Updated trouble shooting
information and the latest software for the unit can also be found here.

3. Consult the FAQ and technical notes on the Axis product support page for additional
help.

4. Contact the local supplier where the product was purchased, for assistance.

The Log file can prove a useful diagnostic tool when attempting to resolve any problems that
might occur. From the Support menu, click Log File to display the latest records, events, and
commands executed by the product since the last Restart of the system. Always attach the log file
and parameter list when contacting Axis support.

http://www.axis.com/

	axis.com
	Scripting in Axis Network Cameras and Video Servers
	Introduction
	Embedded Scripts
	PHP
	Shell

	Using scripts in Axis Camera/Video products
	Uploading scripts to the Camera/Video Server:
	Running Scripts with the Task Scheduler
	Syntax for /etc/task.list

	Running scripts via a web server
	To enable Telnet support

	Included Helper Applications
	The image buffer - bufferd
	sftpclient
	smtpclient
	shttpclient
	statusled

	An Introduction to PHP3
	The PHP-libs
	alert.lib
	ftp.lib
	log.lib
	mail.lib
	ppp.lib
	Examples

	PHP3 script examples
	Example 1 – PTZ Control
	Example 2 – FTP Upload of Images
	Example 3 – FTP and E-mail on Event
	Example 4 – Sequential FTP Upload
	Example 5 – Send Images via E-mail

	An Introduction to Shells in General
	The mish shell
	Shell commands
	Additional Commands Available with Busybox
	basename
	cat
	chroot
	cp
	cut
	date
	dd
	df
	dirname
	du
	echo
	env
	expr
	false
	fbset
	find
	grep
	halt
	head
	hostname
	id
	init
	ln
	logger
	logname
	logread
	ls
	mkdir
	mkfifo
	mknod
	mount
	mv
	poweroff
	printf
	pwd
	rdate
	reboot
	rm
	rmdir
	sed
	sleep
	sort
	stty
	sync
	tail
	tee
	test
	touch
	tr
	true
	tty
	umount
	uname
	uniq
	usleep
	wc
	whoami
	xargs
	yes

	LIBC NSS
	Authors

	Using Variables
	Built-in Shell Variables
	The importance of Quotation Marks
	The test Command
	Integer operators
	String operators
	File operators
	Logical operators
	Conditional statements

	Shell Script Examples
	The configuration file
	Script examples
	Example 1 – Upload via FTP
	Example 2 – Upload via FTP and E-mail
	Example 3 – Sequential Upload via FTP
	Example 4 – Upload Images via E-mail
	Example 5 – Sequential Upload with Notification via E-mail

	Troubleshooting
	Script related problems
	Product related problems

