
Installation manual

Simrad MS70 Scientific multibeam sonar

Simrad MS70

Installation manual

This manual provides you with the basic information required to install the Simrad MS70. For more detailed information about the practical use of the product, refer to the *Simrad MS70 Operator manual*.

This manual has been prepared for Generic delivery.

System configuration

This manual is configured for the following hardware items:

- System: Simrad MS70 Scientific multibeam sonar
- Ethernet switch: HP Procurve 2910
- Number of Ethernet switches: 1
- TRC Beamforming computers: Dell PowerEdge R610
 - The TRC0 computer is fitted with an Intel PRO1000PT
 4-port Ethernet adapter.
- Transceiver Unit: Single cabinet
- OS Computer: Simrad APC12
- Power supplies: External Power Supply Units

Revision status

Simrad d	Simrad doc.no.: 331549 / Vessel: Generic / Current revision: B.		
Rev.A	04.03.2011	First version	
Rev.B	24.03.2011	Two chapters added. For details, see the record of changes in <i>About this manual</i> on page 9.	

Copyright

©2011 Kongsberg Maritime AS

The information contained in this document remains the sole property of Kongsberg Maritime AS. No part of this document may be copied or reproduced in any form or by any means, and the information contained within it is not to be communicated to a third party, without the prior written consent of Kongsberg Maritime AS. The document, or any part of it, may not be translated to any other language without the written approval from Kongsberg Maritime AS.

Disclaimer

Kongsberg Maritime AS endeavours to ensure that all information in this document is correct and fairly stated, but does not accept liability for any errors or omissions.

Warning

The equipment to which this manual applies must only be used for the purpose for which it was designed. Improper use or maintenance may cause damage to the equipment and/or injury to personnel. The user must be familiar with the contents of the appropriate manuals before attempting to install, operate or work on the equipment.

Kongsberg Maritime AS disclaims any responsibility for damage or injury caused by improper installation, use or maintenance of the equipment.

Support information

If you require maintenance or repair, contact your local dealer. You can also contact us using the following address: <u>simrad.support@simrad.com</u>. If you need information about our other products, visit <u>http://www.simrad.com</u>. On this website you will also find a list of our dealers and distributors.

Table of contents

ABOUT THIS MANUAL	9
SIMRAD MS70	11
Functional description	11
System description	
System diagram	13
System units	14
Multibeam Operator Station	14
Transceiver Unit	14
Power Supply Unit	
Transducer	
Uninterrupted Power Supply (UPS)	
General safety rules	16
General supply conditions	17
General installation requirements	18
Approval by classification society	
Supply power	
Compass deviation	
Noise sources	
Dry docking	
Wiring	
Support information	19
INSTALLATION PLANNING	21
About installation drawings	21
Where to mount the transducer	22
Mount the transducer deep	22
Mount the transducer midway	22
Avoid protruding objects	
Avoid the boundary water layer	
Avoid all propellers	
Avoid all bow thrusters	
Summary and general recommendations	
Sonar room requirements	
Cabling requirements	
TRANSDUCER INSTALLATION	28
Transducer description	29
Transducer unpacking	29
Handling rules	30
How to lift the transducer out of its transport crate	30

Transducer installation procedure	31
Installation principles	31
Preparations	
Mounting the array	33
Cables	
Transducer cables and conduit	
Transducer alignment	36
Measurements	
Vessel coordinate system	
Sensor locations	
Measurement accuracy	
Transducer orientation.	
Heading sensor calibration	
Alignment summary	
Transducer handling and maintenance	
Rules for transducer handling	
Rules for transducer maintenance.	
Approved anti-fouling paints for transducers	
TRANSCEIVER UNIT INSTALLATION	
About the Transceiver Unit	
Transceiver Unit preparations	
Transceiver Unit installation procedure	50
Transceiver Unit parts identification	50
Forward view	
Rear view	52
POWER SUPPLY UNIT INSTALLATION	53
About the Power Supply Unit	54
Power Supply Unit preparations	54
Steel conduits for power cables	56
Power Supply Unit installation procedure	57
Power Supply Unit population	
MULTIBEAM OPERATOR STATION INSTALLATION	
About the Multibeam Operator Station	
Operator station installation requirements	
Operator station computer installation	
Preparations	
Installation procedure	
Operator station display monitor installation	
UPS INSTALLATION	
TRANSCEIVER UNIT ASSEMBLY	64

About the Transceiver Unit	65
Transceiver Unit purpose	65
Transceiver Unit parts identification	65
Mounting the TRXU racks	68
Mounting the Ethernet switch	73
Mounting the TRC Beamforming computers	74
Connecting the power cables from the Power Supply Units	
Connecting the transducer cables	
CABLE LAYOUT AND INTERCONNECTIONS	
Read this first!	
Cable plans	
Ethernet switch connectors	
System interconnection cables	
Ethernet cables; TRC computers	
Ethernet cables; TRXU transceiver racks	
Ethernet cables; Operator Station and Power Supply Units	
Power cables; Transceiver Unit	
Power cables; Power Supply Units	
Transducer cables	
Interface cables; TRXU synchronization	
Interface cables; Motion Reference Unit	
Interface cables; GPS, sound velocity and gyro	93
Interface cables; external trigger	94
Multibeam Operator Station cables	95
Detailed list of cables	96
[A] Ethernet cables to Power Supply Units	97
[B] Ethernet cables to TRC Beamforming computers	98
[C] Ethernet cables to TRXU transceiver racks	100
[D] Ethernet cables to external cabinets	101
[F] Internal TRXU synchronisation	102
[G] Motion Reference Unit interface	103
[H] GPS, Sound Velocity and Gyro interface	104
[K] External trigger	105
[P] Power cables to TRC Beamforming computers	106
[Q] Power cables to TRXU transceiver racks	
[R] Power cables to ship's 230 Vac mains supply	
[S] Power cables from the four circuit breakers	
[T] AC mains supply to Power Supply Units	
[U] Power cables from Power Supply Units to Transceiver	
[W] Operator Station cables	
Transducer cables overview	
Transducer cables	115

Transducer cable pairs	115
Element organisation.	
Channel and element identification tables	117
Moxa CP134U-I Serial adapter setup	125
Serial line support	125
Jumper and DIP switch settings	126
Adapter cable	127
Cable specifications	129
Generic RS-232 Serial line	130
RS-232 as external trigger	
RS-232 cable applied as external trigger (1:1)	
Coax to RS-232 cable and adapter	
Generic RS-422 Serial line	
Moxa CP134U-I Serial line adapter	
Power Supply Unit wiring	
Transceiver Unit wiring	
AC mains (IEC 60320)	
Circuit breaker	
RJ45 Ethernet, straight	
RJ45 Ethernet, crossover	
VGA/SVGA Display	
Keyboard cable	
Mouse cable	
DVI–I Display	
Serial line adapter	
Serial line to USB adapter	
Transducer cables	156
SETTING TO WORK	161
Initial power-on	161
Performance testing	161
TECHNICAL SPECIFICATIONS	162
System components	163
Operation and performance	164
Configuration settings	
Operational performance	
Performance, Multibeam Operator Station	168
Performance, Transceiver Unit	168
Performance, Power Supply Unit	168
Performance, Transducer array	168
Interface specifications	169
Weights and outline dimensions	
Power requirements	

	Environmental requirements	174
	DRAWING FILE	175
	Multibeam Operator Station (341305)	176
	Transceiver Unit outline (281020)	177
	Power Supply Unit outline (311237)	
	Power Supply Unit mounting frame (308337)	
	Transducer Array outline (208463)	
	Clamping ring (208465)	
	Mounting ring (208461)	
Α	EQUIPMENT HANDLING	
	Transportation	
	Lifting	191
	Storage prior to installation or use	
	Inspection	
	Unpacking	
	General unpacking procedure	
	Unpacking electronic and electromechanical units	193
	Unpacking mechanical units	194
	Unpacking transducers	194
	Storage after unpacking	194
	Storage after use	195
	Cleaning cabinets	195
	Mechanical units	195
	Cables	
	Internal batteries	
	Dehumidifier	
	Coatings	
	Re-packaging	
	Temperature protection	
	Circuit board handling and packaging	
	Electro-Static Discharge (ESD)	
	Disposal	199
В	BASIC CABLE REQUIREMENTS	
	Cable trays	200
	Radio Frequency interference	201
	Physical protection	201
	Grounding	202
	Cable connections	202
	Cable terminations	202
	Cable identification.	203

About this manual

Purpose

The purpose of this manual is to provide the information and basic drawings required for installation of the Simrad MS70.

For more detailed information about the practical use of the product, refer to the *Simrad MS70 Operator manual*.

About the technical descriptions and the target audience

This manual describes the installation of the Simrad MS70.

The manual is intended for technical personnel; qualified maintenance engineers and technicians. It is assumed that the personnel is conversant with the general principles of maritime electronic equipment, in particular sonar, echo sounder and catch monitoring systems. The personnel must also be familiar with computer hardware, signal processing, interface technology and traditional troubleshooting on electronic and mechanical products.

The instructions must be followed carefully to ensure optimal performance. As a guide, installation procedures are presented in the order they are to be performed. Successful completion of each procedure is to be confirmed by checking off the corresponding box. Note

The installation instructions given in this document must be adhered to. Failure to do so may render the guarantee void.

Kongsberg Maritime AS will accept no responsibility for any damage or injury to the system, vessel or personnel caused by equipment that has been incorrectly installed or maintained, or by drawings, instructions or procedures that have not been prepared by us.

The equipment described in this manual includes the complete system with associated cabinets, but not system units provided locally by the customer, installation shipyard or local dealer. The manual also defines the equipment responsibility, and provides instructions for unpacking and storage.

After installation, this document must be stored on board the vessel for later reference when updating or servicing the equipment.

Installation drawings

Detailed vessel specific mechanical drawings for the installation must be provided by the customer, or any shipyard contracted to perform the installation.

Kongsberg Maritime AS may, on special order, provide assistance to these drawings. Drawings must be approved by the appropriate vessel certification authority prior to installation of the system.

Applicable outline dimension and productions drawings are provided in the *Drawing file* chapter. Drawings may also be downloaded in PDF and/or DWG formats from http://www.simrad.com.

System configuration

This manual is configured for the following hardware items:

- System: Simrad MS70 Scientific multibeam sonar
- Ethernet switch: HP Procurve 2910
- Number of Ethernet switches: 1
- TRC Beamforming computers: Dell PowerEdge R610
 - The TRC0 computer is fitted with an Intel PRO1000PT 4-port Ethernet adapter.
- Transceiver Unit: Single cabinet
- OS Computer: Simrad APC12
- Power supplies: External Power Supply Units

Record of changes

- **A 04.03.2011**: First release
- B 24.03.2011
 - a TRC Beamforming computers changed from Dell 1950 to Dell R610.
 - **b** Added two new chapters:
 - → Transceiver Unit assembly on page 64
 - → Setting to work on page 161

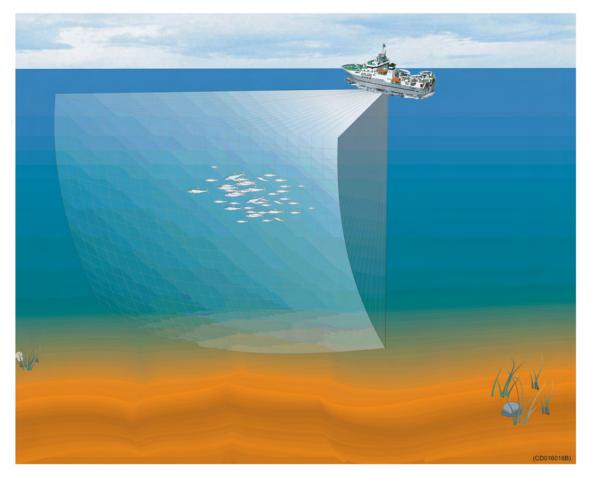
Simrad MS70

Study this chapter to familiarize yourself with the Simrad MS70.

Topics

- Functional description on page 11
- System description on page 13
- System diagram on page 13
- System units on page 14
- General safety rules on page 16
- General supply conditions on page 17
- General installation requirements on page 18
- Support information on page 19

Related topics


- Equipment handling on page 190
- Basic cable requirements on page 200

Functional description

The Simrad MS70 is a Scientific multibeam sonar system. It is designed for fishery research applications, and incorporates the following primary features:

- Transceiver operation control
- Sensor input control
- Information display
- Data output and record control
- · Replay of previously recorded data
- Remote control and data subscription
- Calibration utility

The Simrad MS70 Scientific multibeam sonar transducer is designed to be mounted on a drop keel. From this position, it will look horizontally athwartship, and provide a matrix of beams. This configuration allows for characterization and volume estimation of a school of fish using a single transmission. Schools of fish can be tracked, followed and studied using multiple transmissions. The MS70 also enables detection and characterization of schools close to surface.

The MS70 provides an acoustic matrix of 500 beams (25 horizontal and 20 vertical). This enables the MS70 to provide instantaneous 3D volume data. Where other systems need multiple pings to provide 3D volume data, the MS70 can provide this using a single ping. This allows the MS70 to provide more accurate data. For example, a school of fish can change its structure several times during the time other systems need to cover the school. Multiple consecutive pings enable the MS70 to provide true 4D data, where time is the fourth dimension. This allows for improved characterization of school structures that are changing over time.

System description

The Simrad MS70 is the world's first quantitative multibeam sonar for fishery research applications. The MS70 transducer array provides a matrix of acoustic beams. The array is normally mounted on a drop keel, which allows it to look horizontally. The MS70 allows you to perform characterization and volume estimation of a school of fish using a single transmission. Schools of fish can be tracked, followed and studied during multiple transmissions. The system also enables detection and characterization of schools close to surface.

Figure 2 Simplified system diagram

The Simrad MS70 comprises the following units:

- Colour display
- Multibeam Operator Station
- Transceiver Unit
- Power Supply Units (3 ea)
- Transducer

System diagram

A basic MS70 system diagram is provided.

Hardware items

- A Multibeam Operator Station
- **B** Transceiver Unit
 - TRXU = three transceiver racks
 - **ES** = Ethernet switch
 - TRC = six beamforming computers
- C Power Supply Units
- **D** Transducer Array

TRXU1 PSU1 C TRXU2 PSU2 ES TRC0 TRC1 TRC2 TRC3 TRC4 TRC5 TRC4 TRC5

Interfaces

- 1 Ethernet cable between the transceiver and the operator station
- 2 Ethernet cable between the operator station and ship's local area network
- 3 Ethernet cable to external data logger (optional)
- 4 Serial line communication with a motion reference sensor
- 5 Serial line communication with external sensors (Global positioning system, Course gyro and Sound velocity sensor)

The 25 cables from the transducer (D) are connected to the three transceiver shelves (TRXU) in the transceiver (B). An Ethernet switch controlling two local area networks within the transceiver distribute the processing tasks between the six beamforming computers (TRC). The operator station is connected to these networks by means of an Ethernet cable (1).

System units

The Simrad MS70 comprises the following units:

- Colour display
- Multibeam Operator Station
- Transceiver Unit
- Power Supply Units (3 ea)
- Transducer

Multibeam Operator Station

The MS70 Multibeam Operator Station is a high performance computer.

The computer software is based on the commercial Microsoft® Windows® XP® operating system.

The Multibeam Operator Station communicates with the Ethernet switch in the Transceiver Unit by means of an Ethernet cable.

The software on the operator station provides you with the following main functionality:

- Operational control of the Simrad MS70
- Communication with peripheral sensors and optional post-processing system(s)
- Sonar presentation
- Menu system
- Context sensitive on-line help

Transceiver Unit

The transceiver performs the signal processing and digital beamforming of the transmitter and receiver channels.

The MS70 Transceiver Unit is housed in a 19" instrument rack.

In order to reduce the loss in the transducer cables, the transceiver is physically located as close as possible to the transducer array.

The main components in the transceiver are:

- 3 ea TRXU Transceiver subracks
- 6 ea TRC Beamforming computers
- 1 ea Ethernet switch
- · Cabinet fan unit

Power Supply Unit

The Simrad MS70 comprises three Power Supply Units. Each unit provides AC and DC power to one of the three transceiver racks in the transceiver. External analogue power supplies have been chosen to ensure minimum electric noise.

In order to reduce the voltage drop in the power cables between each Power Supply Unit and the Transceiver Unit, these cables must be kept as short as possible. The cables must also be run in steel conduits to minimize electric noise.

The main active components in each Power Supply Unit are:

- One Internet Power Switch
- One power supply, 6 Vdc
- One power supply, 12 Vdc
- One power supply, 75 Vdc

Transducer

The MS70 Transducer is plane, and consists of a ceramic-polymer composite matrix.

The matching transformer for each transducer element is located in the transducer, this allows a low impedance connection to the Transceiver Unit. The array is connected to the rear side of the three TRXU Transceiver subracks using 25 cables.

Uninterrupted Power Supply (UPS)

In order to ensure continuous operation of the Simrad MS70 independent of varying quality of the vessel's mains supply, the use of uninterrupted power supplies (UPS) is important.

Figure 3 The Simrad MS70 transducer

A UPS system must be fitted to supply to the TRC computers in the Transceiver Unit.

A UPS system is <u>strongly recommended</u> to power the Multibeam Operator Station and the Power Supply Units.

Normally, two UPS units are used:

• One is used to power the Multibeam Operator Station and other relevant units.

• One is used to power the Power Supply Units, and thus the Transceiver Unit.

Uninterrupted power supply (UPS) units are not included in the standard MS70 delivery.

Several commercial types are available. To choose the best UPS for the MS70 installation, consider environmental conditions, space available, the availability and duration of the batteries, and the power requirements of the MS70 units.

The minimum specifications for the Uninterrupted Power Supply (UPS) are:

• Input voltage: Must fit vessel supply voltage

• Output voltage: 230 Vac, 50 Hz

Output power:

The output power must correspond the power requirements of the MS70. If you wish to connect other computers and/or systems to the UPS, adjust the power rating accordingly.

• Output requirement: The AC output voltage must be a sine wave

Related topics

• *Power requirements* on page 173

General safety rules

<i>WARNING</i>	ì
----------------	---

The Simrad MS70 operates on 230 Vac 50/60 Hz. This voltage is lethal!

The following safety precautions must be followed at all times during installation and maintenance work

- Always switch off all power before installation or maintenance.
 - Use the main circuit breaker, and label the breaker with a warning sign that informs others that maintenance or installation work is being carried out on the system.
- Do not open the rack or cabinet doors while in rough seas. It may swing open suddenly and cause damage or injury.
- For safety reasons during troubleshooting on the equipment with power ON, two persons must always be present.
- Read and understand the applicable first aid instructions for electric shock.
- Whenever maintenance is carried out, it is essential that a first aid kit is available, and that the maintenance personnel are familiar with the first aid instructions for electrical shock.
- The various parts of the system may be heavy. Make sure that the appropriate tools and certified lifting equipment are available, and that the personnel are trained in installation and maintenance work.

General supply conditions

The following supply conditions are applicable to this Simrad MS70 delivery.

Equipment responsibility

The shipyard performing the installation and/or equipment dealer becomes fully responsible for the equipment upon receipt unless otherwise stated in the contract.

The duration of responsibility includes:

- The period of time the equipment is stored locally before installation.
- During the entire installation process.
- While commissioning the equipment.
- The period of time between commissioning and the final acceptance of the equipment by the end user (normally the owner of the vessel which the equipment has been installed).

Unless other arrangements have been made in the contract, the Simrad MS70 guarantee period (as specified in the contract) begins when the acceptance documents have been signed

Receipt, unpacking and storage

Upon accepting shipment of the equipment, the shippard and/or the dealer should ensure that the delivery is complete and inspect each shipping container for evidence of physical damage. If this inspection reveals any indication of crushing, dropping, immersion in water or any other form of damage, the recipient should request that a representative from the company used to transport the equipment be present during unpacking.

All equipment should be inspected for physical damage, i.e. broken controls and indicators, dents, scratches etc. during unpacking. If any damage to the equipment is discovered, the recipient should notify both the transportation company and Kongsberg Maritime so that Kongsberg Maritime can arrange for replacement or repair of the damaged equipment.

Once unpacked, the equipment must be stored in a controlled environment with an atmosphere free of corrosive agents, excessive humidity or temperature extremes. The equipment must be covered to protect it from dust and other forms of contamination when stored.

For more information, see the appendix related to equipment handling.

→ Equipment handling on page 190

General installation requirements

The following installation requirements are applicable to this Kongsberg Maritime delivery.

Approval by classification society

The Simrad MS70 transducer installation must be approved by Det Norske Veritas (DNV) or another classification society.

The shipowner and shipyard performing the installation are responsible for obtaining the installation approval.

Supply power

The supply voltage to the equipment is to be kept within $\pm 10\%$ of the installation's nominal voltage. Maximum transient voltage variations on the main switchboard's bus-bars are not to exceed -15% to +20% of the nominal voltage (except under fault conditions).

Kongsberg Maritime recommends that the Simrad MS70 is powered using an Uninterrupted Power Supply (UPS) with sine wave output.

The UPS must have the capacity to independently maintain power to the system for a minimum of 10 minutes. This ensures that the system can be switched off in a controlled manner in the event of a power failure.

Compass deviation

Once the installation is complete, the vessel must be swung with the system in both the operative and inoperative modes. The shipowner and captain are responsible for updating the deviation table accordingly with regard to the vessel's national registry and corresponding maritime authority.

Noise sources

The vessel's hull, rudder(s) and propeller(s) should be thoroughly inspected in dry dock prior to installation.

Roughness below the water-line deformities in the shell plating and protruding obstacles can create underwater noise. These sources of turbulence must be smoothed or removed as best as possible. It is especially important that the propeller(s) is not pitted or damaged.

Dry docking

Make sure that ample clearance under the transducer and/or protection blister is provided when dry docking the vessel.

Avoid locating supporting blocks or structures in the vicinity of this equipment.

N	ote.
ıν	o

The location of the transducer and/or protection blister must be noted on the vessel's docking plan for future reference.

Prior to dry docking, power down all hydroacoustic systems, and label each system accordingly to prevent accidental power on.

Remove circuit breakers if necessary.

Wiring

All cables running between system cabinets located in different rooms and/or on different decks must be supported and protected along their entire lengths using conduits and/or cable trays. Note that the cables must not be installed in the vicinity of high-power supplies and cables, antenna cables or other possible sources of interference.

For more detailed information about cables and wiring, refer to the basic cable requirements.

→ Basic cable requirements on page 200

Support information

If you need additional technical support for your Simrad MS70 you must contact your local dealer, or one of our support departments. A list of all our dealers is provided on http://www.simrad.com.

Norway (Main office)

• Address: Strandpromenaden 50, 3190 Horten, Norway

• **Telephone**: +47 33 03 40 00

• Telefax: +47 33 04 29 87

• E-mail address: simrad.support@simrad.com

• Website: http://www.simrad.no

Spain

Address: Poligono Partida Torres 38, 03570 Villajoyosa, Spain

Telephone: +34 966 810 149
Telefax: +34 966 852 304

• E-mail address: simrad.spain@simrad.com

• Website: http://www.simrad.es

USA

• Address: 19210 33rd Ave W, Lynnwood, WA 98036, USA

Telephone: +1 425 712 1136
Telefax: +1 425 712 1193

• E-mail address: simrad.usa@simrad.com

• Website: http://www.simrad.com

Installation planning

This chapter provides the marine engineers responsible for the installation the information necessary to plan the installation the Simrad MS70 according to Kongsberg Maritime's requirements.

Correct installation of the MS70 transducer is vital to the system's performance.

Several variables must be taken into consideration, the most important of which is the vessel's construction. This guide can be used to select the best location for the transducer, and includes a brief description of areas to be avoided.

Topics

- About installation drawings on page 21
- Where to mount the transducer on page 22
- Sonar room requirements on page 25
- Cabling requirements on page 26

About installation drawings

All installation drawings must be supplied by the shipyard performing the installation.

Note			

The installation must be approved by the vessel's national registry and corresponding maritime authority and/or classification society. The shipowner and shipyard performing the installation are responsible for obtaining and paying for installation approval.

Kongsberg Maritime offers free advice for installation planning. Proposed arrangements may be sent for commentary or suggestions supplied by Kongsberg Maritime. The following drawings should be submitted should assistance be requested:

- General arrangement
- Body plan and drawings of relevant bottom tanks and cofferdams
- Lines plan

Where to mount the transducer

A single answer to the question where to locate the transducer cannot be given. It depends very much on the vessel's construction, how the hull is shaped and how the water runs along the hull. There are however a number of important guide lines, and some of these are even conflicting.

Mount the transducer deep

Mount the transducer at a deep position on the hull. Consider the situations when the vessel is unloaded, and when it is pitching in heavy seas.

There are several reasons for this.

- 1 The upper water layers of the sea contain a myriad of small air bubbles created by the breaking waves. In heavy seas the upper 5 to 10 metres may be filled with air, and the highest concentrations will be near the surface. Air bubbles absorb and reflect the sound energy, and they may in worst cases block the sound transmission altogether.
- Another reason to go deep is the cavitation in front of high power transducers. Cavitation is the formation of small bubbles in the water due to the resulting local pressure becoming negative during parts of the acoustic pressure cycles. The cavitation threshold increases with the hydrostatic pressure.
- 3 The transducer must never be lifted free of the water surface. Transmitting into open air may damage the transducer beyond repair. Mounting the transducer at a deep position on the hull prevents this.
- 4 If the transducer is lifted up from the water during heavy seas, it may be damaged when the hull strikes back at the sea surface. This is especially important for low frequency transducers with large faces.

Mount the transducer midway

Mount the transducer midway between the bow and the stern to avoid heave effects

Heave is the vertical movement of the vessel. It disturbs the echo traces in the echogram, making a flat bottom appear as a wave. A transducer location in the middle of the vessel minimises the influence of the vessel's roll and pitch.

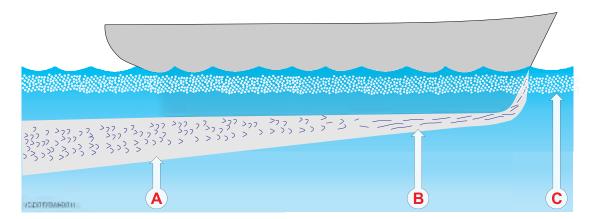
Avoid protruding objects

Mount the transducer well away from protruding objects on the hull.

Objects protruding from the hull, such as zinc anodes, sonar transducers or even the vessel's keel, generate turbulence and flow noise. Holes and pipe outlets are also important noise sources. They may act as resonant cavities amplifying the flow noise at certain frequencies.

Do not place an echo sounder transducer in the vicinity of such objects, and especially not close behind them.

For the same reason, it is very important that the hull area around the transducer face is as smooth and level as possible. Even traces of sealing compound, sharp edges, protruding bolts or bolt holes without filling compound will create noise.


Avoid the boundary water layer

Mount the transducer at the forward part of the hull to minimise the effects from the boundary water layer.

When the vessel forces its way through the sea, the friction between the hull and the water creates a boundary layer. The thickness of the boundary layer depends upon vessel speed and the roughness of the hull. Objects protruding from the hull, and dents in the hull, disturb the flow and increase the thickness of the boundary layer.

The flow in this boundary layer may be laminar or turbulent. A laminar flow is a nicely ordered, parallel movement of the water. A turbulent flow has a disorderly pattern, full of eddies. The boundary layer increases in thickness when the flow goes from laminar to turbulent. The figure below illustrates the boundary layer of a vessel moving through the water.

Figure 4 Boundary water layer

- **A** Turbulent flow
- **B** Laminar flow
- C Air bubbles in the water

Furthermore, air bubbles in the sea water are pressed down below the hull and mixed into the boundary layer. The boundary layer is thin underneath the forward part of the vessel, and increases in thickness as it moves towards aft. If the sides of the hull are steep, some of the air bubbles in the boundary layer may escape to the sea surface along the vessel sides. It is our experience that a wide and flat bottom, with a rising angle less than around 13 degrees, is prone to giving air problems for the transducer. In any case a transducer location in the forward part of the hull is preferred in order to minimise the influence of the boundary layer.

Avoid all propellers

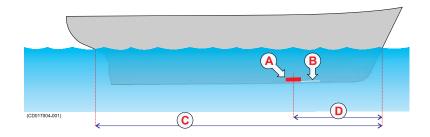
Mount the transducer far away from the propellers.

The propulsion propeller is the dominant noise source on most fishing vessels, research vessels, merchant vessels and pleasure crafts. The noise is transmitted through the sea water. For this reason, the transducer should be placed far away from the propeller, which means on the fore part of the hull. Positions outside the direct line of sight from the propeller are favourable.

On small vessels with short distances it is advised to mount the transducer on that side of the keel where the propeller blades move upwards, because the propeller cavitation is strongest on the other side. The cavitation starts most easily when the water flows in the same direction as the propeller blade, and that is to some degree the case at that side of the keel where the propeller blades move downwards.

Avoid all bow thrusters

Mount the transducer far away from the bow thrusters.

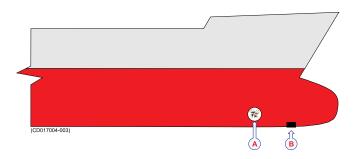

Bow thruster propellers are extremely noisy. When in operation, the noise and cavitation bubbles created by the thruster make the echo sounder useless, almost no matter where the transducer is installed. And when not in operation, the tunnel creates turbulence, and if the vessel is pitching, the tunnel may be filled with air or aerated water in the upper position and release this in the lower position.

In general, all transducers must be therefore placed well away from the bow thruster. However, this is not an invariable rule. Certain thruster designs combined with its physical location on the hull may still offer suitable transducer locations near the thruster. If you are in doubt, consult a naval architect.

Summary and general recommendations

Some of the above guide lines are conflicting, and each case has to be treated individually in order to find the best compromise. Generally the propeller noise is the dominant factor, and a recommended transducer location is in the fore part of the hull, with maximum distance from the bow equal to one third of the total length of the hull at the water line.

Figure 5 General recommendation for transducer location



- A Transducer
- **B** *Inclination angle*
- C Hull length at water line
- D Maximum 1/3 of the hull length at water line (C)

If the vessel hull has a bulbous bow, this may well be a good transducer location, but also here must be taken into consideration the flow pattern of the aerated water. Often the foremost part of the bulb is preferable.

Figure 6 Recommended location of the transducer on a bulbous hull

- **A** Thruster
- **B** Transducer location

Sonar room requirements

The "sonar room" is the compartment in which the Transceiver Unit and the Power Supply Units are installed.

Observe these minimum requirements to obtain suitable working conditions for MS70 installation, use and maintenance.

Size and access

A well designed sonar room reduces the risk of corrosion and simplifies maintenance increasing system reliability.

- The sonar room must be dimensioned to house all the relevant cabinets that comprise the Simrad MS70.
- The physical distance between the transmitters and the transducer is limited due to the length of the transducer cables.
- The sonar room must not be unnecessarily obstructed by girders, pipes etc. which might cause installation problems or impede maintenance.
- The sonar room must be accessible under all conditions at sea or at a berth.
- All doors or hatches must be designed so that the equipment can be removed without being disassembled.

Heating

The sonar room must be equipped with heater, dimensioned to maintain the equipment within its environmental tolerances (at least 1000 W), installed close to the deck. Heating is also an effective method for reducing humidity.

Insulation

Bulkheads must be insulated and provided with an interior wall to the deck. The insulation should be the minimum equivalent of 50 mm of rock-wool. In addition, piping passing through the space prone to condensation must be insulated.

Ventilation

The sonar room must be connected to the vessel's ventilation system. If this is not possible, two 3" vents must be provided from the sonar room to the main deck. In the room, the air inlet must whenever possible be located close to the deck and the outlet as high as possible. A funnel shaped drip-collector must be mounted below the vent pipes to divert moisture to the bilge. On the main deck, the best ventilation is provided when the outlet pipe is at least four meters higher than the inlet pipe. To keep out sea water, rain and spray, the ventilation pipes should be fitted with goosenecks or the equivalent. If the vessel is likely to operate in tropical conditions, a suitable air conditioning system must be installed. This system must be able to provide an ambient temperature not exceeding the maximum operating temperatures for the cabinets installed in the room.

Cable protection

If the cables between the sonar room equipment and other system units located in different compartments on the vessel pass through hatches or areas where they may be damaged, they must be run through conduits (minimum 2" conduit is recommended).

Electrical installations and lights

The sonar room must be equipped with suitable lighting to simplify the installation and to aid future maintenance. A minimum number of electrical outlets must be provided for the system units and other equipment.

Bilge pump and decking

If the sonar room is located below the water line, it must be connected to the vessel's bilge pump system. If this is not possible, a separate bilge pump for the sonar room must be installed. Once the installation has been completed, the sonar room must be suitably decked without restricting access to the equipment and the cables.

Cabling requirements

A detailed cable plan is provided for the installation of the Simrad MS70.

 \rightarrow Cable plans on page 82

The cables fall into the following categories:

- Internal cables within the Transceiver Unit rack
- Ethernet cables between the Transceiver Unit rack and the Operator Station, and between the MS70 system and external network(s).
- Interface cables to external sensors

Transducer cables

The power cables from the three Power Supply Unit cabinets must be run in steel conduits.

→ Steel conduits for power cables on page 56

The majority of the cables are provided by Kongsberg Maritime, but certain cables (in particular the cables to the external sensors) must be provided by the installation shipyard.

	- 1	
IΝI	\sim	ᄗ
ıv	.,	

All electronic installations and corresponding wiring must be in accordance with the vessel's national registry and corresponding maritime authority and/or classification society. If no such guidelines exist, we recommend that Det Norske Veritas (DNV) Report No. 80-P008 «Guidelines for Installation and Proposal for Test of Equipment» is used as a guide. Observe Basic cable requirements on page 200.

For more information about the cabling, see the *Cable layout* chapter and the basic cable requirements.

- → Cable layout and interconnections on page 80
- → Basic cable requirements on page 200

Transducer installation

The purpose of this chapter is to provide generic descriptions and illustrations allowing the reader to understand the basic principles for echo sounder transducer installation.

This information must be regarded as general guidelines and recommendations only. The installation shipyard must design and manufacture installation hardware to fit each individual transducer and vessel. Whenever required, the installation shipyard must also have the installation approved by the applicable maritime authorities.

Topics

- Transducer description on page 29
- Transducer unpacking on page 29
- Transducer installation procedure on page 31
- Transducer cables and conduit on page 35
- Transducer alignment on page 36
- Transducer handling and maintenance on page 44

Related topics

- Performance, Transducer array on page 168
- Transducer Array outline (208463) on page 184

Note
Do not expose the transducer to direct sunlight!
Do not expose the transducer to excessive heat!
Do not use high pressure water, sand blasting or metal tools to clean the transducer face
Do not use strong solvents to clean the transducer face!

Transducer description

The Simrad MS70 transducer is a short cylindrical container with the transducer array located at the bottom. The transducer cables penetrate the top of the cylinder.

The transducer is mounted with twelve -12- bolts with M12 thread.

A mounting ring must be welded to the blister plate. A clamping ring is then inserted sideways towards the mounting ring.

The twelve screws penetrate the clamping ring, and are fastened in the mounting ring. Both rings are supplied by Simrad.

Figure 7 The Simrad MS70 transducer

The transducer must be mounted so that it has a clear view within its coverage sector. It is also important that the transducer is mounted so that the water around it is not aerated.

Note

An accurate measurement of the final position and angular orientation of the transducer is always required after installation.

The risk of galvanic corrosion must be taken into account in the design of the mounting structure. Periodic inspection of the mounting screws and use of sacrificial anodes is required.

The transducer is provided with three sacrificial zinc anodes mounted to its top surface (lid). These anodes must be replaced when 1/3 of their bodies have been spent. If it is difficult to access the zinc anodes after the transducer has been installed, additional anodes must be mounted inside the blister. These additional anodes must be in electrical contact with the transducer, but <u>not</u> with the blister and/or hull.

Note

The transducer - with the cables - is a delicate item. Great care must be shown during all handling.

Even minor damages to the transducer cable may cause water to penetrate both the cable and the transducer body. Further, a blow to the transducer face may easily damage one or more elements.

Transducer unpacking

The Simrad MS70 transducer is large and heavy. It is also a delicate precision instrument, and it must be handled with care during unpacking and installation. The following basic rules for transducer handling MUST be followed.

Handling rules

Note _

Do not expose the transducer to direct sunlight!

Do not expose the transducer to excessive heat!

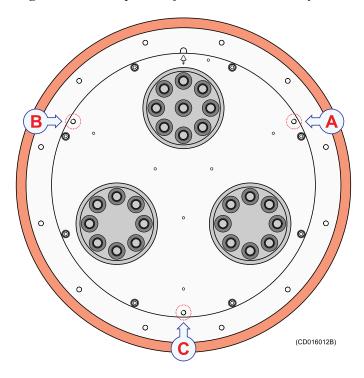
Do not use high pressure water, sand blasting or metal tools to clean the transducer face!

Do not use strong solvents to clean the transducer face!

Related topics

• Rules for transducer handling on page 44

How to lift the transducer out of its transport crate


The Simrad MS70 transducer is shipped in a large wooden crate. The crate has two "rooms", one to house the transducer, and one to house the cables. The transducer is placed with its "face" downwards. It rests on a protective cushion shaped to fit the transducer. Across the top of the transducer body, a wooden beam secures that it stays in place during transportation.

A The three M10 lifting eye bolts are inserted into these threaded holes.

Preparations

In order to lift the transducer out from its transportation crate, you will need a suitable crane. The crane must be able to carry the total weight of the transducer array and the cables. You will also need the necessary ropes and tackles, as well as three M10 lifting eye bolts. In order to protect the transducer face while handling the array, you will also need a circular wooden plate with diameter 522 mm. The weight of the transducer array is provided in the Technical specifications chapter.

Figure 8 The top side of the transducer array

Procedure

Open the crate. <u>Do not</u> use heavy tools, and make sure that you do not damage the transducer or any of the cables inside the crate.

- 2 Remove the transport beam across the top of the transducer body.
- 3 Mount the three 10 mm lifting eye bolts.
- 4 Lift the transducer straight up and out of the crate. Support the cables during the lift to keep the transducer body from tilting sideways.
- 5 Place the protective wooden plate under the transducer body to protect its face.

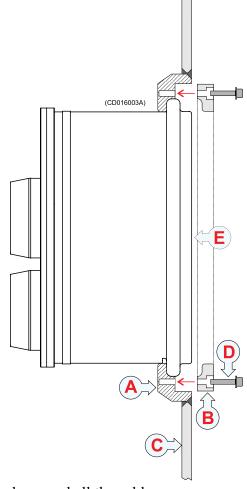
Transducer installation procedure

Observe the following procedures to install the Simrad MS70 transducer array.

Installation principles

The Simrad MS70 transducer array is installed vertically in a retractable keel lowered below the vessel's hull. A mounting ring (B) is welded to the side wall of the retractable keel (C). The transducer is pushed in sideways, and fits into the mounting ring with the transducer face (E) facing towards port. A clamping ring (B) is mounted sideways, and holds the transducer in place by means of 12 bolts (D).

The lifting eyes on the transducer must be removed prior to final installation.


Figure 9 Transducer installation principle

- **A** Mounting ring (welded to the retractable keel's side wall)
- **B** Clamping ring
- C Side wall of retractable keel
- **D** *Bolts (12 x 12M)*
- E Transducer face

The transducer is provided with three sacrificial zinc anodes mounted to its top surface (lid). These anodes must be replaced when 1/3 of their bodies have been spent. If it is difficult to access the zinc anodes after the transducer has been installed, additional anodes must be mounted inside the blister. These additional anodes must be in electrical contact with the transducer, but not with the blister and/or hull.

Preparations

- 1 Using available literature, experience and the ship drawings, decide the physical location of the transducer.
- 2 Prepare the retractable keel to accept the transducer array.
 - A suitable hole for the array must be provided, and you must ensure that enough space is available to accept the transducer and all the cables.
 - Also, suitable cable ducts must be prepared.
 - Refer to the mounting and clamping ring drawings.

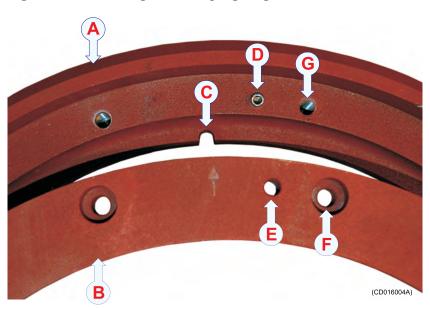


Figure 10 Mounting and clamping rings

- **A** *Mounting ring (to be welded to the retractable keel)*
- **B** Clamping ring
- C Guidance notch in the mounting ring. This notch must be pointing UP!
- **D** *M6 guidance bolt on the mounting ring.*
- E M6 guidance hole on the clamping ring, will ensure that the clamping ring fits correctly on the mounting ring.
- **F** Hole for one of the 12 mounting bolts.
- **G** Self-locking thread to accept the mounting bolt.

Mounting the array

- 1 Weld the mounting ring to the retractable keel. Ensure that the notch on the mounting ring points UP.
 - Special care must be taken to ensure that the mounting ring is welded correctly in place.
 - Check and verify that the mounting ring is vertical.
 - Check and verify that the ring is not twisted out of shape as a result of the welding.
- 2 Lift the transducer, and place it into the mounting ring. Ensure that the arrow on the transducer rim points UP.
- 3 Fit the clamping ring, and mount the 12 bolts.
 - Bolt type: M12 x 55 Stainless steel A4 Class 80
 - Washer: Flat, Stainless steel A4 Class 80
 - Torque: 76 Nm
 - Apply Locktite 243

Cables

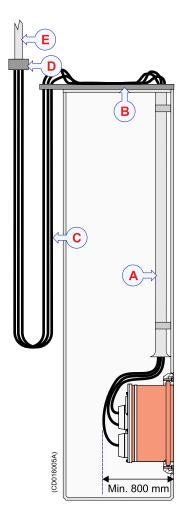
- 1 Place the cables in the cable ducts, and pull them through the applicable seals to the sonar room.
- 2 Check and verify that cables are installed in such a way that they are protected from sharp edges, shock and vibration, as well as occasional work on the vessel.
- → Transducer cables and conduit on page 35

Transducer cables and conduit

25 cables arranged in three groups are used to connect the MS70 transducer array to the 19" rack with the transceiver circuitry.

- A Steel conduit
- **B** Watertight seal
- C Allow the transducer cables to move freely up and down
- **D** Secure the cables here
- E Steel conduit

By default, each cable is 25 meters long. The cables are cut to fit each individual installation.


The cable must be properly supported both inside and outside the retractable keel.

On the inside, design a steel cable duct from the top of the keel to just above the transducer (A). On the top of the ducts, place a watertight seal (B) which also supports the total weight of the cables, both inside and outside the keel.

Outside the retractable keel, allow the cable to run smoothly up and down (C) when the keel is lowered and hoisted. The top of the external cable run must be properly and permanently secured (D), and the seal must be able to take the entire weight of the cables. It is also important to ensure that the cable run can move undisturbed up and down outside the keel. There must be no obstructions to prevent the cables from moving freely!

A second steel conduit (E) is used between the external cable support and the electronic equipment in the sonar room.

Figure 11 Designing the cable conduit

Design of cable conduit

The cable conduit must be designed to fit each individual ship and retractable keel. The quality of the materials used, as well as the quality of the workmanship must be defined by the vessel owner and the installation shipyard.

If a watertight sealing is used, the design and quality of this sealing must be approved by the vessel's classification society.

Transducer alignment

The Simrad MS70 is a precision instrument for scientific use. In order to produce data that are both detailed and correct, it is necessary to calibrate the survey vessel more accurately than what may have been a standard practice earlier. The results, with all measurements taken in a common vessel coordinate system must be entered as MS70 operational parameters.

The calibration tasks include:

- measurement of where sensors are located
- measurement of how sensors are oriented
- measurement of the water line vertical location
- alignment of angular measurement sensors
- · determination of any offsets in sensor data
- · determination of any time delays in sensor data

Topics

- *Measurements* on page 36
- Vessel coordinate system on page 37
- Sensor locations on page 38
- Measurement accuracy on page 39
- Transducer orientation on page 41
- *Heading sensor calibration* on page 43
- Alignment summary on page 43

Note

Calibration must be taken seriously. It is recommended that this task and the continued control of the soundings' consistency is assigned to one motivated and qualified person in the organization. To achieve the best results, the calibration must be planned carefully, and monitored throughout the installation and the first sea trials. It is also recommended to repeat the calibration procedures with regular checks throughout the operation of the vessel.

Measurements

Observe this general introduction to the alignment task.

Objectives

The following measurements must be made after installation:

- the horizontal and vertical positions of the transducer array.
- the angular orientation of the transducer array
- the horizontal and vertical positions of the motion sensor
- the horizontal and vertical positions of the positioning system (radio or GPS antenna)

It is easiest to perform these measurements with the vessel in dry dock, the others may be done with the vessel berthed. It is however recommended to perform these when in dry dock

During the sea trials (SAT), calibration surveys are required as described in the *MS70 Reference Manual*. Based on the calibration parameters determined from these surveys, proper values are entered into the MS70 as operational parameters.

In order to check and verify the performance of the MS70 system, we strongly recommend that calibration surveys are performed at regular intervals, or prior to any large survey. If existing sensors have been replaced, or new sensors have been installed, a new calibration is always required.

Alignment of motion and heading sensors

The alignment of the motion sensor and the heading sensor must be adjusted so that they provide zero values for pitch, roll and heading with the vessel lying still with normal trim and a true North heading. It is recommended that this takes place in the dry dock. Alternatively, the offsets from zero must be determined. This is easiest to do with the vessel berthed. Follow the procedures in the applicable sensor manuals.

Time delays

Any time delays of the motion sensor and positioning data from their time of validity to the time when they are available at the interface ports of the MS70 must be determined. The information may be available from the sensor manufacturer.

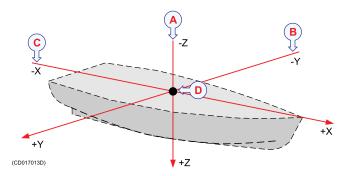
Water line

Finally, the vertical position of the water line must be measured with the vessel in normal trim. This should preferably be done at normal survey speed, and must of course be repeated as the loading and hence the draft of the vessel changes.

Vessel coordinate system

A Cartesian coordinate system must be defined for the vessel. The following definition must be adhered to:

- $\mathbf{X} =$ forwards
- Y = to starboard
- **Z** = pointing downwards


There are no restrictions to where the coordinate system's origo is located in the X and Y directions. In the Z direction however, the origo must be located on the water line.

Note		

The sea surface with the vessel in normal trim defines the horizontal (X-Y) plane. The water line must therefore be marked on the hull with the vessel in normal trim before any dry docking.

Figure 12 Vessel coordinate system with the reference point on the water line

- **A** *Downward (Z-axis)*
- **B** Starboard (Y-azis)
- **C** Forward (X-axis)
- **D** Reference point (origo)

Reference points must be established on the vessel at selected positions. These are needed during measurements of the sensor positions. Visual markings at these positions should be prepared and noted on the vessel drawings with **X**, **Y** and **Z** coordinates in the vessel coordinate system.

Sensor locations

The MS70 transducer array must be located according to the guidelines given elsewhere in this manual. With regard to the location of other sensors the following guidelines should be followed, but otherwise should be chosen according to the manufacturer's documentation.

Motion sensor

The system motion sensor should normally be mounted on the centre line of the vessel, either close to the MS70 transducer array, or close to the vessel's centre of gravity.

The latter point is recommended if the sensor is used for other purposes than just with the MS70, or if its accuracy is sensitive to horizontal accelerations.

If there is any point in the fore-aft direction which does not change height with respect to the water line with changes in vessel speed, then this is the ideal location for the motion sensor. This will eliminate any errors from squat induced height changes which is not measured by current motion sensors.

Note

If the fore-and-aft distance between the transducer array and the motion sensor is larger than 20 m, the system accuracy may be degraded.

The motion sensor must be aligned with the vessel centre line.

Heading sensor

The alignment of the motion sensor and the heading sensor must be adjusted so that they provide zero values for pitch, roll and heading with the vessel lying still with normal trim and a true North heading. It is recommended that this takes place in the dry dock. Alternatively, the offsets from zero must be determined. This is easiest to do with the vessel berthed. Follow the procedures in the applicable sensor manuals.

Note	
The heading sensor must be aligned with the vessel centre line.	

Measurement accuracy

The required measurement accuracies given below have been determined from considerations on how they contribute to total system accuracy. Any errors in these measurements shall not significantly contribute to depth or position errors in the soundings.

The motion sensor must be aligned (set up). The indicated roll and pitch angles from the sensor when the vessel has a normal trim (i.e. the coordinate system's horizontal plane is horizontal) must be less than $\pm 0.055^{\circ}$ for both roll and pitch.

horizontal) must be less than $\pm 0.055^{\circ}$ for both roll and pitch.
Note
The given accuracies are maximum values, and if easily achievable, better accuracies should be obtained.

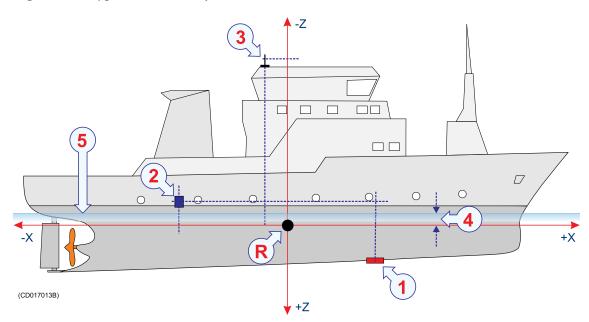


Figure 13 Typical location of sensors

- 1 Location of the transducer array
- 2 Motion sensor
- 3 GPS Antenna
- 4 Draft
- 5 Water line

R is the reference point (origo)

Transducer array

- 1 Measure the vertical location of the transducer array with an accuracy of ± 2 cm.
- 2 Measure the horizontal location of the transducer array with an accuracy of ± 5 cm.
- 3 Measure the heading of the transducer to an accuracy of $\pm 0.1^{\circ}$.
- 4 Measure the roll (with respect to the horizontal plane) to an accuracy of $\pm 0.025^{\circ}$.
- 5 Measure the pitch (with respect to the vertical plane) to an accuracy of $\pm 0.1^{\circ}$.

Motion sensor

If the alongship distance between the transducer array and the Motion Sensor exceeds 5 m, its indicated pitch angle for vessel in normal trim must be less than 0.25°. If the distance is 20 m, the indicated pitch should be less than 0.05°. A linear interpolation for the other distance alternatives is recommended.

- Measure the vertical location of the motion sensor to an accuracy of ± 10 cm.
- 2 Measure the horizontal location of the motion sensor to an accuracy of ± 5 cm.

If the Motion Sensor performs lever arm correction to give heave data valid for another location than where it is actually mounted, it is this location which must be measured.

- Set up the forward axis on the motion sensor with the X-axis of the vessel's coordinate system to an accuracy of $\pm 0.1^{\circ}$.
- 4 Set up the motion sensor such that the indicated roll and pitch angles from the sensor when the vessel has a normal trim (the coordinate system's horizontal plane is horizontal) are less than $\pm 0.05^{\circ}$ for both roll and pitch.

Heading sensor

The heading sensor must be aligned with the X-axis of the vessel's coordinate system to an accuracy of +0.255. If this is not possible, the resulting offset must be known to the same accuracy.

Positioning system

- Measure the vertical location of the positioning system antenna with an accuracy of ± 2 cm.
 - This is only required if the positioning system measures position in the vertical axis. This will be usually only be the case for real-time kinematic GPS systems and some optical positioning systems.
- Measure the horizontal location of the positioning system antenna's with an accuracy of ± 5 cm or 20% of the positioning system's accuracy.

Water line

Note		

With the vessel in normal trim, that is with an indicated pitch angle of zero from the motion sensor, the distance to the water line may be measured anywhere on the vessel, but otherwise it must be measured at the alongship physical location of the motion sensor. The measurement should be taken on both sides of the vessel and averaged to remove any roll effects. Simultaneous measurements are required if the vessel is moving.

1 Measure the vertical distance to the water line with an accuracy of ± 2 cm.

Transducer orientation

The MS70 transducer array is equipped with index marks to be used for measuring its orientation. A ruler oriented with the face index marks can be used to give the heading and pitch of the array. By making the ruler as a right-angle cross the roll may be measured.

Coordinate systems

The heading of the transducer array is measured as the heading of the projection of a line through the face index marks into the horizontal plane of the vessel coordinate system. If the array is mounted in such a way that the X-axis is vertical, the heading angle must be measured as the heading of the Y-axis with 90° subtracted. See the definition below.

The measurement of roll and pitch is done in a coordinate system which is the vessel coordinate system rotated about the Z-axis so that its X-axis is pointing in the transducer's heading direction.

- The pitch of the transducer array is measured as the angle in the vertical plane between the horizontal plane and the line through the index mark.
 - The pitch installation angle is measured between the X axis and the horizontal plane. The angle is positive if the axis points upwards, and negative if it points down. The range is between -90° and $+90^{\circ}$.
- The roll of the transducer array is measured as the angle in the vertical plane between the horizontal plane and a line on the face at right angle to the line through the index mark.

The roll installation angle is measured between the Y axis and the horizontal plane. The angle is positive if the axis points downwards, and negative if it points up. The range is between -180° and $+180^{\circ}$.

To determine if the roll installation angle is larger than +90° or smaller than -90°, consider how much roll was required to bring the transducer array into its final position. Use the standard definition for roll direction

The MS70 software converts the measured roll angle to a rotation angle. This is made with an arc sine calculation, and erroneous measurements or data entry may make this impossible. However, if the measurements are done accurately, this will never be a problem.

Making the measurements

The actual measurement of the installation angles may be done by two different methods:

- 1 The most accurate method is to use land surveying techniques, establish a horizontal plane, and do distance measurements to and in this plane.
- The second method is to use an inclinometer to measure roll and pitch angles combined with distance measurements in the horizontal plane for heading. This method is easier, but it requires a sufficiently accurate inclinometer.

Which method is to be used must be determined by the facilities available. The use of land surveying techniques is the recommended method, and is especially appropriate on a new vessel where all sensor locations must be measured. The two other methods may be appropriate when installing an MS70 on a survey vessel where other sensor positions and orientations are already established. A prerequisite for using an inclinometer is of course that it is accurate enough.

Heading sensor calibration

It may not be possible to calibrate the heading sensor accurately enough through sea trials, so the calibration is normally done with the vessel berthed.

On the quay the geographical coordinates of two points must be known or measured so that the heading of a line on the quay can be established to an accuracy of better than $\pm 0.1^{\circ}$. The distance from two points on the centre line of the vessel (fore and aft) are then measured so that the vessel's heading can be calculated. The heading sensor is then aligned to this heading or its measured offset determined.

The vessel must be turned 180° as many times as necessary with the alignment or offset checked until the **mean error** is within the specifications of the heading sensor.

Alignment summary

The table below give a summary of the requirements to the accuracy of the measurements.

Table 1 Alignment summary

Sensor	Measurement	Accuracy
Transducer array	Position (x,y) [m]	±0.05
Transducer array	Position (z) [m]	±0.02
Transducer array	Pitch [deg]	±0.10
Transducer array	Roll [deg]	±0.025
Transducer array	Heading [deg]	±0.50
Motion sensor	Position (x,y) [m]	±0.05
Motion sensor	Position (z) [m]	±0.10
Motion sensor	Pitch [deg]	±0.05
Motion sensor	Roll [deg]	±0.05
Motion sensor	Heading [deg]	±0.10
Heading sensor	Heading [deg]	±0.10
Positioning system (antenna)	Position (x,y) [m]	±0.05
Positioning system (antenna)	Position (z) [m]	±0.02
Water line	Position (z) [m]	±0.02

Transducer handling and maintenance

You MUST observe the following rules for handling, cleaning, maintenance and painting.

Topics

- Rules for transducer handling on page 44
- Rules for transducer maintenance on page 45
- Approved anti-fouling paints for transducers on page 45

Rules for transducer handling

Do not expose the transducer to direct sunlight!

Do not expose the transducer to excessive heat!

Do not use high pressure water, sand blasting or metal tools to clean the transducer face!

Do not use strong solvents to clean the transducer face!

Transport protection

Some transducers are delivered with a cover plate on the face for protection during transport. Let this plate stay on as long as possible, but do not forget to remove it before the vessel goes into the sea.

Painting the transducer face

An anti-fouling paint may be applied to the transducer face. Because some paint types may be aggressive to the polyurethane in the transducer face, consult Simrad's list of approved paints.

→ Approved anti-fouling paints for transducers on page 45

Cleaning the transducer face

Whenever opportunity arise, for example when the vessel is dry docked, the transducer face may be cleaned for shells and other marine fouling.

Be careful not to make cuts in the transducer face.

Use a piece of soft wood or a very fine grade emery paper.

Do not use high pressure water or sand blasting.

Special rules for acoustic windows

Arctic tanks have acoustic windows made of polycarbonate.

These must neither be painted nor cleaned with chemicals.

Acoustic windows must not be exposed to direct sunlight.

Rules for transducer maintenance

Once installed, the transducer is maintenance free. However, when the vessel is docked, it is highly recommended to clean the transducer face to remove marine growth.

- 1 Perform a thorough visual check of the transducer.
- 2 If necessary, clean the transducer
 - To clean the transducer, use normal synthetic soap and water.
 - To remove marine growth, use fine-grade sandpaper or emery paper.

Note			

Do not expose the transducer to direct sunlight!

Do not expose the transducer to excessive heat!

Do not use high pressure water, sand blasting or metal tools to clean the transducer face!

Do not use strong solvents to clean the transducer face!

3 If necessary, apply a new layer of anti-fouling paint to the transducer face.

Because some paint types may be aggressive to the polyurethane in the transducer face, please consult Simrad's list of approved paints.

→ Approved anti-fouling paints for transducers on page 45

Approved anti-fouling paints for transducers

This is Simrad's list of approved antifouling paints on polyurethane transducer housing.

Please note that the products offered from these manufacturers are changed. Old products are removed, and new are offered. Consult the manufacturer's websites for up-to-date information. In case of doubt, contact Simrad for advice.

Refer to the manufacturer's documentation and data sheets for a complete product information and applicable procedures.

Jotun

Head office address: P.O.Box 2021, N-3248 Sandefjord, Norway

Website: www.jotun.com.

- 1 Racing
- 2 Non-stop
- 3 Safeguard Universal primer (125 micron) with Antifouling SeaQuantum Ultra (125 micron)
- 4 Antifouling Seaguardian

International Marine Coatings

Address: World-wide offices

Website: www.international-marine.com.

- 1 Intersleek tie coat + 425 FCS
 - BXA386/BXA390/BXA391 Grey
 - HKA563/HKA570/HKA571 Yellow
 - Mix BXA386, BXA390 and BXA391 first, then apply. When dry, mix HKA563, HKA570 and HKA571, apply.
- 2 Intersmooth 360 Ecoloflex SPC
- 3 Micron Extra

Hempel IFA Coatings

Head office address: Hempel A/S, Lundtoftevej 150, Kgs. Lyngby, DK-2800

Copenhagen, Denmark

Website: www.hempel.com.

1 Hempel A/F Classic 76550

Transceiver Unit installation

This chapter explains how to install the Simrad MS70 Transceiver Unit.

The Transceiver is normally positioned in a dedicated room in the vicinity of the transducer. The physical length of the cables limit the physical distance between the transducer and the transceiver.

Topics

- About the Transceiver Unit on page 47
- Transceiver Unit preparations on page 49
- Transceiver Unit installation procedure on page 50
- Transceiver Unit parts identification on page 65

Related topics

- Sonar room requirements on page 25
- Performance, Transceiver Unit on page 168
- Power requirements on page 173
- Environmental requirements on page 174
- Transceiver Unit outline (281020) on page 177

About the Transceiver Unit

The transceiver performs the signal processing and digital beamforming of the transmitter and receiver channels.

The MS70 Transceiver Unit is housed in a 19" instrument rack.

In order to reduce the loss in the transducer cables, the transceiver is physically located as close as possible to the transducer array.

The main components in the transceiver are:

- 3 ea TRXU Transceiver subracks
- 6 ea TRC Beamforming computers
- 1 ea Ethernet switch
- · Cabinet fan unit

Note		

The Transceiver Unit is shipped as a "wired rack".

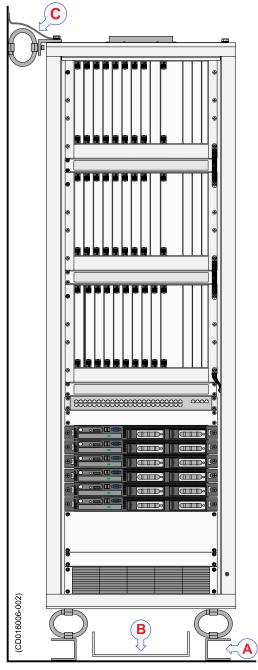
This means that the 19" instrument rack is empty.

The TRXU subracks, Ethernet switch and TRC computers are <u>not</u> mounted. However, all internal mounting material and wiring have been prepared to accept these units.

The physical installation of the electronic units, the internal wiring and the setting-to-work procedures are done by personnel from Kongsberg Maritime AS.

Transceiver Unit preparations

The instrument rack housing the Transceiver Unit is equipped with shock absorbers at the bottom of the cabinet and at the left hand side. This means that the cabinet is designed to be installed alongside a bulkhead.


- **A** U-shaped steel profiles, must provide minimum 10 cm height
- **B** Cable tray
- C Grounding

This procedure outlines the necessary tasks to prepare the transceiver for installation.

- 1 Use U-shaped steel profiles (A) to add extra height for the cabinet. This allows room below the cabinet for transducer and interconnection cables.
- 2 Use the space below the cabinet to install a cable tray (**B**) for the transducer cables.
 - All cables enter the cabinet through an opening in the bottom frame.
- 3 Ensure that the Transceiver Unit can be properly grounded (C).
- 4 Observe the outline dimensions drawing and the details regarding the cabinet's footprint.
 - → Transceiver Unit outline (281020) on page 177
- 5 Check and ensure that ample space is provided around the cabinet to allow for cables, maintenance and replacement of modules.
 - Minimum space requirement, front: 100 cm
 - Minimum space requirement, rear: 60 cm

and grounding

Figure 14 Transceiver Unit positioning

- Minimum space requirement, below: Minimum 10 cm below the shock absorbers
- 6 Check that the environmental requirements (temperature and humidity) for the sonar are met.
 - → Environmental requirements on page 174

- 7 Check that the sonar room requirements are met.
 - → Sonar room requirements on page 25

Transceiver Unit installation procedure

This procedure explains how to install the Transceiver Unit.

The Transceiver Unit is housed in a 19 inch commercial instrument rack.

The chosen method for mounting the cabinet must be determined by the installation shipyard and the customer. The cabinet may be welded to the deck and bulkhead brackets, or mounted using suitable bolts.

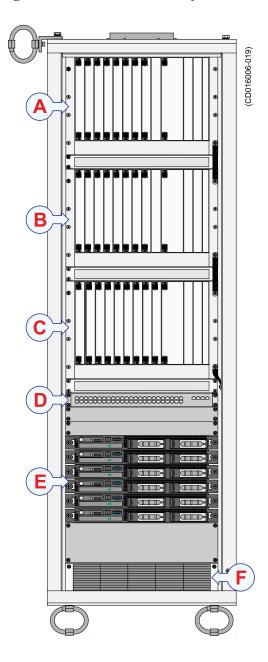
- 1 Position the U-shaped profiles below the Transceiver Unit to provide the recommended height.
- Arrange the necessary brackets on the bulkhead to fit the shock absorbers.

 Note that the outline dimension drawing shows the initial size of the shock absorbers. When the cabinet is complete with all electronics, the weight will compress the bottom shock absorbers slightly. You must take this into consideration when you arrange the mounting of the absorbers at the top of the cabinet.
- 3 Mount the bulkhead brackets for the shock absorbers.
- 4 Place the cabinet in its correct position, and mount it properly.

Transceiver Unit parts identification

This section provides a generic overview of the Transceiver Unit.

Easy access to the front and rear part of the Transceiver Unit is essential, as this allows for easy replacement of parts.

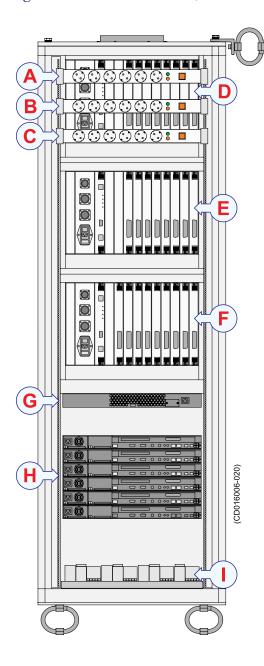

Line replaceable units

The following units have been defined as line replaceable units in the Transceiver Unit.

- TRX32 Receiver boards
- SMS Driver boards
- · TRX RIO boards
- Capacitor module
- Ethernet switch
- TRC Beamforming computer
- · Cabinet fan unit

Forward view

Figure 15 Transceiver Unit, front view



- **A** Transceiver rack TRXU0 Eight TRX32 boards are used.
- **B** Transceiver rack TRXU1 Eight TRX32 boards are used.
- C Transceiver rack TRXU2

 Nine TRX32 boards are used.
- **D** Ethernet switch
- E TRC0–5 Beamforming computers TRC0 (top) is the master.
- F Fan unit

Rear view

Figure 16 Transceiver Unit, rear view

- **A** Power distributor PD2
- **B** Power distributor PD1
- **C** Power distributor PD1
- **D** Rear side of Transceiver rack TRXU0
- **E** Rear side of Transceiver rack TRXU1
- F Rear side of Transceiver rack TRXU2
- **G** Rear side of Ethernet switch
- H Rear side of TRC Beamforming computers
- I Circuit breakers (from left) CB0, CB1, CB2, CB3

Power Supply Unit installation

This chapter explains how to do the physical installation of the Power Supply Units.

The three units are installed in the sonar room within reasonable distance from the Transceiver Unit. The physical length of the power cables limit the physical distance between each Power Supply Unit and the Transceiver Unit.

Topics

- About the Power Supply Unit on page 54
- Power Supply Unit preparations on page 54
- Steel conduits for power cables on page 56
- Power Supply Unit installation procedure on page 57
- Power Supply Unit population on page 57

Related topics

- Sonar room requirements on page 25
- Performance, Power Supply Unit on page 168
- Power requirements on page 173
- Environmental requirements on page 174
- Power Supply Unit outline (311237) on page 181
- Power Supply Unit mounting frame (308337) on page 183

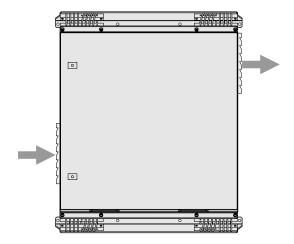
About the Power Supply Unit

The Simrad MS70 comprises three Power Supply Units. Each unit provides AC and DC power to one of the three transceiver racks in the transceiver. External analogue power supplies have been chosen to ensure minimum electric noise.

In order to reduce the voltage drop in the power cables between each Power Supply Unit and the Transceiver Unit, these cables must be kept as short as possible. The cables must also be run in steel conduits to minimize electric noise.

The main active components in each Power Supply Unit are:

- One Internet Power Switch
- One power supply, 6 Vdc
- One power supply, 12 Vdc
- One power supply, 75 Vdc


Power Supply Unit preparations

Before the Power Supply Units are mounted, observe the following procedure.

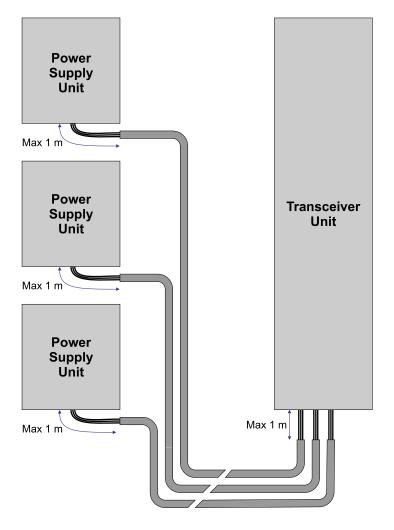
Installation methods

- Each cabinet can be installed "stand-alone", side by side or on top of each other. Make sure that enough space is provided between the cabinets to allow for ventilation, maintenance and parts replacements.
- The three cabinets can be installed together on a dedicated frame. This is an option, and the frame must be ordered separately. The frame is mounted vertically on the bulkhead by means of shock absorbers.

Figure 17 Power supply Unit ventilation; air flow

Procedure

- Observe the outline dimensions drawing and the details regarding the Power Supply Unit's footprint.
 - → Power Supply Unit outline (311237) on page 181
 - → Power Supply Unit mounting frame (308337) on page 183
- 2 Decide which of the two installation methods that will be used.


- 3 Provide ample space around the cabinet to allow for ventilation, inspection, maintenance and parts replacement. Make sure that the cabinet door can be fully dismounted for unobstructed access to its internal parts.
 - Minimum space requirement, front: 80 cm
 - Minimum space requirement, rear: 0 cm
 - Minimum space requirement, below: 0 cm (provided that the four feet are mounted)
- 4 Check that the environmental requirements (temperature and humidity) for the sonar are met.
 - → Environmental requirements on page 174
- 5 Check that the sonar room requirements are met.
 - → Sonar room requirements on page 25

Steel conduits for power cables

Note _

Due to the voltages and currents provided by the power supplies, steel conduits are imperative.

Figure 18 Steel conduits principle

The power cables from the three Power Supply Unit cabinets to the Transceiver Unit must be run in steel conduits. These conduits serve the following purposes:

- Noise and interference protection
- Physical protection

The minimum internal diameter of the steel conduits is 5 cm.

The maximum length of unprotected cable is 1 meter in each end of the conduit. For this reason, separate conduits for each Power Supply Unit is required.

If it is necessary to bend the steel conduits, make sure that the bending radius do not prevent the cable from being pulled through the conduit.

Power Supply Unit installation procedure

Depending on the installation method provided, two procedures are provided.

Cabinets mounted side by side, or above each other

- 1 Observe the eight 8.5 mm mounting holes through the rear side of the two shock absorbers.
- 2 Arrange the necessary brackets on the bulkhead to fit the cabinets.
- 3 Prepare the brackets to accept the eight bolts.
- 4 If necessary, mount a temporary shelf under the cabinet to support its weight.
- Place the cabinet in its correct position (on the support shelf), and mount it properly using eight suitable bolts.

Cabinets installed on the mounting frame

- 1 Observe the mounting holes on the mounting frame.
- 2 Arrange the necessary brackets on the bulkhead to fit shock absorbers.
- 3 Mount the bulkhead brackets for the shock absorbers.
- 4 Place the frame in its correct position, and mount it properly.
- 5 For each cabinet, place it on the support shelf on the frame, and mount it properly to the frame using four suitable bolts.

Power Supply Unit population

WARN.	ING
-------	-----

This cabinet contains high voltages. You must disconnect the AC power connections before opening the cabinet.

The following items are installed in the Power Supply Unit.

- Mounted on shelves on the back wall:
 - +75 Vdc power supply
 - +12 Vdc power supply
 - +6 Vdc power supply
 - Fuse bracket
- An Internet power switch is mounted at the bottom of the cabinet.
- A terminal block and a fan are mounted on the left side wall.

All cables in and out of the cabinet are fed through holes in the bottom.

Figure 19 Power Supply Unit overview

- **A** Power supply +6 Vdc
- **B** Power supply +12 Vdc
- C Power supply +75 Vdc
- **D** Internet Power Switch
- E Fuse panel
- F Fan
- **G** Terminal board for all interface and power cables

Multibeam Operator Station installation

This chapter describes the installation of the Simrad MS70 Multibeam Operator Station.

Topics

- Operator station installation requirements on page 60
- Operator station computer installation on page 60
- Operator station display monitor installation on page 62

Related topics

- Performance, Multibeam Operator Station on page 168
- Power requirements on page 173
- Environmental requirements on page 174
- Multibeam Operator Station (341305) on page 176

About the Multibeam Operator Station

The MS70 Multibeam Operator Station comprises a **Simrad APC12** Processor Unit manufactured by Kongsberg Maritime AS.

The necessary information required to install this computer is provided in this chapter.

Operator station installation requirements

Installation of the MS70 Multibeam Operator Station units must be performed by qualified and trained personnel. Observe the following general guidelines for installation.

- The safe navigation of the vessel.
- The "Compass safe distance" for each individual unit.
- Ergonomically correct operating and viewing heights.
- Maximum allowable cable distances between the various units.
- The installation areas are dry, well ventilated and free of excessive dust and vibration.
- Easy access to the cable connections on the back of the equipment is provided.
- Enough extra cable is allowed to facilitate maintenance and service by not having to disconnect the cables.

This section describes the installation of the MS70 Multibeam Operator Station computer.

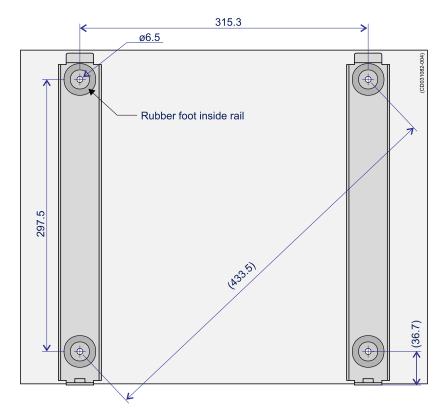
Preparations

Provide ample space around the computer. This is necessary to reach and use the front and rear mounted USB connectors, and the CD/DVD player. It is also important to allow for easy access to all the cables, and to provide for inspection, maintenance and parts replacement.

Make sure that the computer can be fully opened for unobstructed access to its internal parts.

- The computer can be installed inside a console, in a cabinet or 19" rack, or on a desk.
- Make sure that adequate ventilation is available to avoid overheating.
- The compass safe distance must be allowed for when planning the location of the unit.
- Ensure that the installation allows for the physical movements and forces normally experienced on a vessel.
- Ensure that enough space is provided for maintenance work.

Figure 20 Multibeam Operator Station


Installation procedure

- 1 Prepare the mounting location.
 - → Multibeam Operator Station (341305) on page 176
- 2 Disassemble the base rails from the Processor Unit by removing the two front base rail screws.
- 3 Attach the base rails as shown in the figure.

Note _

Note that the four rubber bushings must be mounted on top of the base rails. These are required to provide vibration and shock absorption between the base rails, and the rails mounted on the Processor Unit.

Figure 21 Installation of the Processor Unit

- 4 Mount the Processor Unit onto the base rails.
 - a Hook the unit onto the rails at the rear end.
 - **b** Press it down.
 - c Secure the Processor Unit with the two front base rail screws

Operator station display monitor installation

This section describes the installation of the MS70 Operator Station display. The make and model of the this display is determined by the customer. For this reason, the information provided here is only for guidance. For a detailed specific installation procedure, refer to the applicable documentation provided with the display.

- The display must be located so that it is best protected from glare which reduces readability.
- The display may be mounted in a panel, on the desktop or bulkhead, or overhead.
- Make sure that adequate ventilation is available to avoid overheating.
- The compass safe distance must be allowed for when planning the unit's location.
- Make sure that the installation allows for the physical movements and forces normally experienced on a vessel.
- Make sure that enough space is provided for maintenance work.

UPS installation

In order to ensure continuous operation of the Simrad MS70 independent of varying quality of the vessel's mains supply, the use of uninterrupted power supplies (UPS) is important.

A UPS system must be fitted to supply to the TRC computers in the Transceiver Unit.

A UPS system is <u>strongly recommended</u> to power the Multibeam Operator Station and the Power Supply Units.

Normally, two UPS units are used:

- One is used to power the Multibeam Operator Station and other relevant units.
- One is used to power the Power Supply Units, and thus the Transceiver Unit.

Uninterrupted power supply (UPS) units are not included in the standard MS70 delivery.

The installation of these units must be performed as described in the applicable documentation provided by the manufacturer. Ensure that you install the UPS unit in such a way that maintenance is easily carried out.

The minimum performance specifications for the UPS units are listed in chapter *Simrad MS70*.

Related topics

• Uninterrupted Power Supply (UPS) on page 15

Transceiver Unit assembly

When delivered, the MS70 Transceiver Unit is provided as a wired cabinet. This means that the cabinet is empty. None of the main modules are mounted. These are packed separately, and must thus be installed before the system can be set to work.

This chapter provides the necessary procedures to install the transceiver modules and cables.

Important _

<u>Do not</u> connect any AC or DC power to the MS70 Transceiver or Power Supply Units until explicitly instructed to do so in the relevant procedure.

Topics

- About the Transceiver Unit on page 65
- Mounting the TRXU racks on page 68
- Mounting the Ethernet switch on page 73
- Mounting the TRC Beamforming computers on page 74
- Connecting the power cables from the Power Supply Units on page 76
- Connecting the transducer cables on page 78

About the Transceiver Unit

This section provides a general description of the Transceiver Unit.

Topics

- Transceiver Unit purpose on page 65
- Transceiver Unit parts identification on page 65

Transceiver Unit purpose

The transceiver performs the signal processing and digital beamforming of the transmitter and receiver channels.

The MS70 Transceiver Unit is housed in a 19" instrument rack.

In order to reduce the loss in the transducer cables, the transceiver is physically located as close as possible to the transducer array.

The main components in the transceiver are:

- 3 ea TRXU Transceiver subracks
- 6 ea TRC Beamforming computers
- 1 ea Ethernet switch
- Cabinet fan unit

The purpose of the Simrad MS70 Transceiver Unit is to:

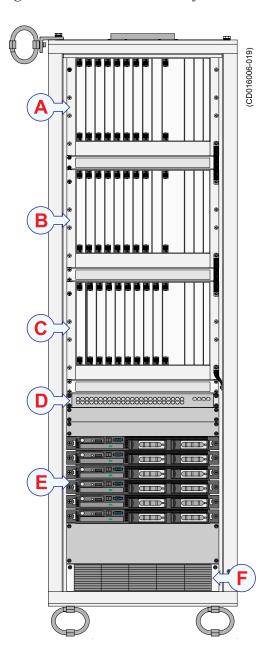
- Transmission parameter distribution
- Transmission triggering
- Audio transmission
- Audio reception
- Analogue to digital conversion
- Beamforming
- Transmission and reception stabilizing

Transceiver Unit parts identification

This section provides a generic overview of the Transceiver Unit.

Easy access to the front and rear part of the Transceiver Unit is essential, as this allows for easy replacement of parts.

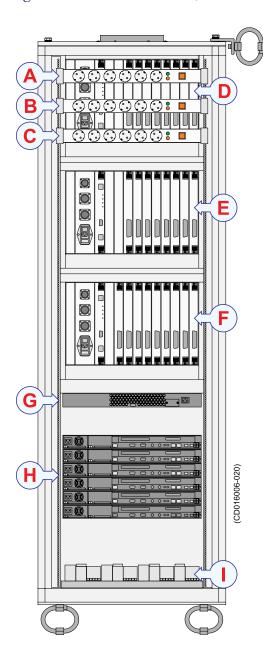
Line replaceable units


The following units have been defined as line replaceable units in the Transceiver Unit.

- TRX32 Receiver boards
- SMS Driver boards
- TRX RIO boards
- Capacitor module
- Ethernet switch

- TRC Beamforming computer
- Cabinet fan unit

Forward view


Figure 22 Transceiver Unit, front view

- **A** Transceiver rack TRXU0 Eight TRX32 boards are used.
- **B** Transceiver rack TRXU1 Eight TRX32 boards are used.
- C Transceiver rack TRXU2 Nine TRX32 boards are used.
- **D** Ethernet switch
- E TRC0–5 Beamforming computers TRC0 (top) is the master.
- F Fan unit

Rear view

Figure 23 Transceiver Unit, rear view

- **A** Power distributor PD2
- **B** Power distributor PD1
- **C** Power distributor PD1
- **D** Rear side of Transceiver rack TRXU0
- **E** Rear side of Transceiver rack TRXU1
- **F** Rear side of Transceiver rack TRXU2
- **G** Rear side of Ethernet switch
- H Rear side of TRC Beamforming computers
- I Circuit breakers (from left) CB0, CB1, CB2, CB3

Mounting the TRXU racks

This procedure explains how to install the three TRXU racks into the empty wired frame of the transceiver cabinet.

Note	
Due to the physical weight of the racks, minimum two persons must be allocated to do this task.	
Standard workshop tools are required, as well as a torque wrench for Allen bolts.	
Important	_

Each of the three TRXU racks are provided complete with all circuit boards and modules readily mounted. They are positioned at the top of the transceiver rack, one above each of the three air ducts.

The racks must be installed in the following order:

- 1 TRXU No.0 must be installed in the top position. There are eight TRX32 circuit boards in this rack, and they are identified with numbers 24 to 17.
- 2 TRXU No.1 must be installed in the middle position. There are eight TRX32 circuit boards in this rack, and they are identified with numbers 16 to 9.
- 3 TRXU No.2 must be installed in the bottom position. There are nine TRX32 circuit boards in this rack, and they are identified with numbers 8 to 0.

Each rack is mounted on a dedicated set of rails, and then secured with four front mounted racks bolts on each side of each TRXU rack.

The rails are already installed in the wired transceiver rack, and the bolts to be used are already placed in their holes. Each rail consists of two parts; one is mounted to the rack framework, and one is mounted to the side of the TRXU rack. During shipping, these side rails are however mounted inside the framework rails.

The bottom bolt on the right side of TRXU No.0 secures an earth strap to the top bolt on the right hand side of TRXU No.1. Similar, the bottom bolt on the right side of TRXU No.1 secures an earth strap to the top bolt on the right hand side of TRXU No.2. The bottom earth strap on TRXU No.2 is connected to the frame of the transceiver cabinet. These earth straps are all mounted on the empty transceiver cabinet frame during shipping.

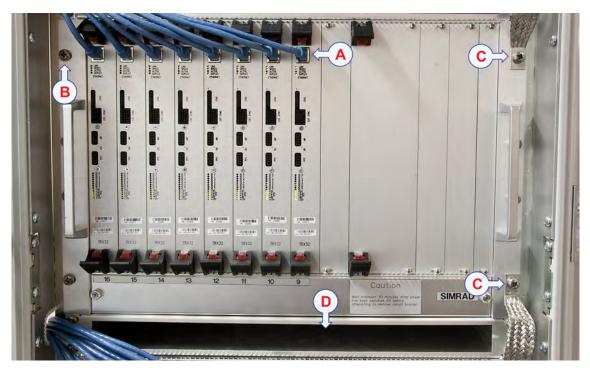


Figure 24 TRXU rack, front view

Note that the physical appearance of the TRX32 circuit boards and the various labels on the rack may differ from this photo.

- **A** Ethernet cable, one is connected to each TRX32 circuit after the rack has been secured.
- **B** *Eight bolts are used to secure the rack. Two of these bolts also holds the earth straps.*
- **C** Earth straps
- **D** *Air duct. This air duct is mounted in the empty transceiver cabinet during shipping.*

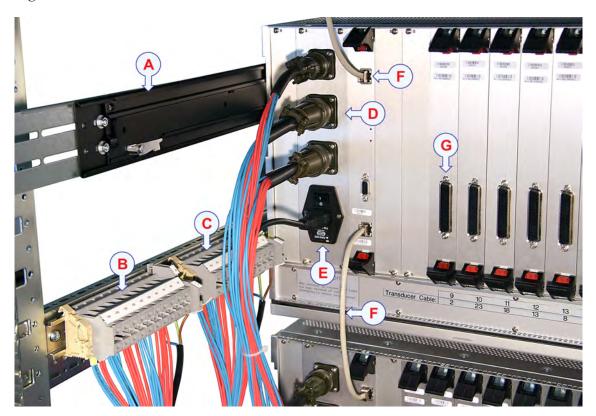
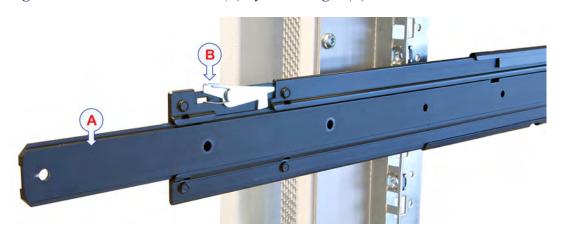


Figure 25 TRXU racks 1 and 2, rear view with cables


Note that the physical appearance of the various labels on the rack may differ from this photo.

- A Mounting rail for TRSU rack
- **B** *Terminal board for power to TRXU No.1.*
- C Terminal board for power to TRXU No.2.
- **D** Three Amphenol plugs connect the DC power cables to the rear side of the TRXU rack.
- E AC input
- **F** Synchronisation cables between the TRXU racks
- **G** One of the sockets for the transducer cables.

Procedure

- 1 Remove the two earth straps on the right hand side of the transceiver cabinet.
- 2 Remove all the remaining 20 bolts that are temporarily mounted into their front holes.
- 3 On each of the six rails (three on each side), dismount the side rail that shall be mounted onto the TRXU racks.

Figure 26 Remove the side rail (A) by unlocking it (B)

- 4 Remove the rail bolts from the two side panels on each TRXU rack.
- 5 Use the same bolts to mount the two side rails.

Note ______ Figure 27 Mo

Figure 27 Mount each side rails with three bolts (A)

Do not use excessive force when you tighten the bolts for the side rails.

Maximum torque is 130

Ncm. These bolts are inserted into nuts on the inside of the subracks, and if you tighten too hard, you may damage the threads.

Push the rails mounted on the side of each rack into the rails on the cabinet, and push the rack <u>carefully</u> in. You may find it useful to loosen the bolts on the fan drawers over and/or under the TRXU rack.

Note

Make sure that you do not damage any of the Ethernet cables!

- 7 Secure the subrack with the front bolts, four on each side.
- **8** Mount the two earth straps.

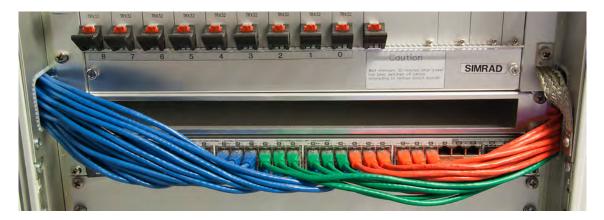
Note that the bolts used to mount the earths traps are slightly longer than the others.

- 9 Connect the Ethernet cables to the corresponding sockets at the top of each TRX32 transceiver board.
 - The Ethernet cables are pre-installed, and the length of each cable is adjusted to reach the individual TRX32 transceiver boards.
- 10 On the rear side of each TRXU rack, connect the four power plugs.
 - → Power Supply Units DC output wiring on page 138
 - → TRXU racks DC input wiring on page 139
 - → Power Connector Panel on page 140
 - \rightarrow +6 and +12 Vdc to the TRXU backplane on page 141
 - → +75 Vdc to the TRXU backplane on page 142
- 11 On the rear side of the TRXU racks, connect the two synchronisation Ethernet cables.
 - → Transceiver Unit TRXU synchronization cable on page 144

Mounting the Ethernet switch

This procedure explains how to install the Ethernet switch into the empty wired frame of the transceiver cabinet.

Only standard workshop tools are required.


The Ethernet switch rests on a set of angular shelves on each side of the rack. It is secured in position using four bolts.

- 1 Push the Ethernet switch in place on the shelves provided.
- 2 Secure the switch in position using the four bolts, two on each side.
- **3** Connect the front mounted Ethernet cables.

Observe the colour codes used on the cables.

- → Ethernet cables; TRC computers on page 85
- → Ethernet cables; TRXU transceiver racks on page 86

Figure 28 Ethernet switch with all cables connected

Note that the Ethernet cables to the Power Supply Units and Multibeam Operator Station are not connected on this picture.

Note that the physical appearance of the various labels on the rack may differ from this photo.

4	Connect the AC power cables to the rear side of the switch.

Note			
Do not apply power	•!		

Mounting the TRC Beamforming computers

This procedure explains how to install the six TRC Beamforming computers into the empty wired frame of the transceiver cabinet.

Note
Due to the physical weight and the size of the computers, minimum two persons must be allocated to do this task.
No tools are required.
Important
Each of the giv TDC Deemforming computers are provided complete with all additional

Each of the six TRC Beamforming computers are provided complete with all additional circuit boards and modules readily mounted. The software has been installed on all the computers. They are positioned at the bottom of the transceiver rack.

The TRC0 Beamforming computer must be mounted at the top. This computer is recognized by label, and the additional Ethernet interface boards that are mounted.

The order of the computers are:

- 1 TRC0 (on top)
- **2** TRC1
- 3 TRC2
- 4 TRC3
- 5 TRC4
- **6** TRC5 (at the bottom)

Each computer is identified with a name label.

Each computer is mounted on a dedicated set of rails. The rails are already installed in the wired transceiver rack.

Figure 29 TRC Beamformer computer installation

- A The two bolts on each side of the computer cabinet fit into these slots in the rail
- **B** *Press here (on each side) to push the computer into the rack.*
- C Locking device to release the computer from the rails

Procedure

- 1 Pull out the rails.
- 2 Lift the computer carefully, align the two bolts on each side so that they will fall into the corresponding slots on the rails.
- When the computer is properly aligned to the slots, release it.
- 4 Push the computer into the transceiver rack.
 - It will lock in the withdrawn position.
- 5 Connect the Ethernet cables to the rear side of the computer.
 - → Ethernet cables; TRC computers on page 85
 - → [B] Ethernet cables to TRC Beamforming computers on page 98
 - → RJ45 Ethernet, straight on page 147
- 6 Connect the AC power cables to the rear side of the computers.

Note	
Do not apply power!	

- 7 Connect the interface cable to the rear side of the TRC0 Beamforming computer.
 - → Interface cables; Motion Reference Unit on page 92
 - → [G] Motion Reference Unit interface on page 103
 - → Generic RS-232 Serial line on page 130

Connecting the power cables from the Power Supply Units

This procedure explains how to connect the power cables from the three Power Supply Units.

The following cables must be connected:

- a 230 Vac to TRXU fans
- **b** +6 Vdc (one red and one blue cable)
- **c** +6 Vdc (one red and one blue cable)
- **d** +12 Vdc (one red and one blue cable)
- e +75 Vdc (one red and one blue cable)

Important

<u>Do not</u> connect any AC or DC power to the MS70 Transceiver or Power Supply Units until explicitly instructed to do so in the relevant procedure.

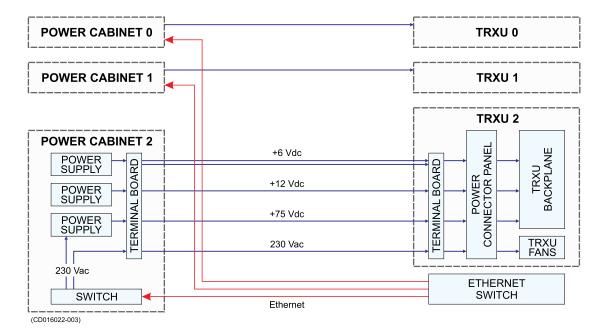
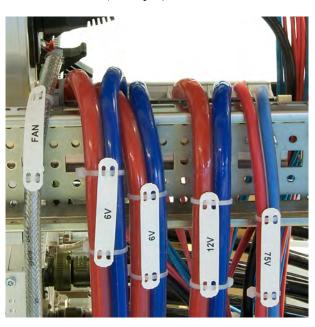



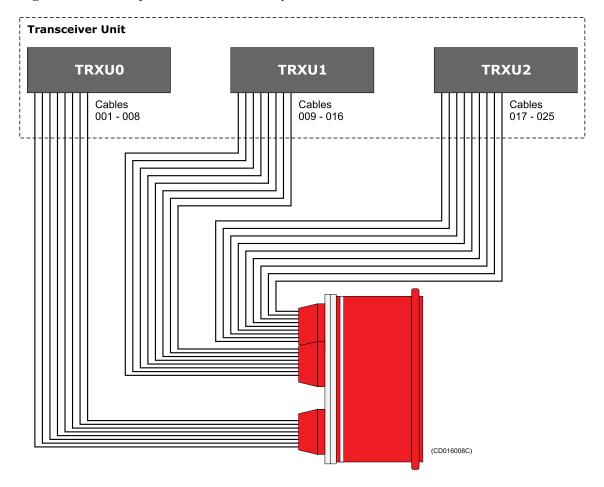
Figure 30 Block diagram, AC and DC distribution from Power Supply Units

76

- 1 Connect each of the power cables to the three terminal boards in the Transceiver Unit.
 - The top terminal board is used to accept the power cables from Power Supply Unit no.0. The power is then connected to TRXU no.0.
 - The bottom rear terminal board is used to accept the power cables from Power Supply Unit no.1. The power is then connected to TRXU no.1.
 - The bottom forward terminal board is used to accept the power cables from Power Supply Unit no.2. The power is then connected to TRXU no.2.
 - → Power Supply Units DC output wiring on page 138

Figure 31 Power cables connected to the terminal board (example)

These cables are connected for test purposes when the side wall of the transceiver cabinet has been removed.


2 Secure the cables to the frame in the cabinet using wire wraps.

Connecting the transducer cables

This procedure explains how to connect the transducer cables to the rear side of the TRXU racks.

There are 25 transducer cables, and these are numbered 001 to 025.

Figure 32 Cable plan, Transducer array

- 1 For each transducer cable, locate the identification number.
- 2 Connect the plug to the correct socket on the correct TRXU, and tighten the bolts.
 - Observe the connection drawings provided.
 - → *Transducer cables* on page 156
- 3 Collect the transducer cables in bundles, and secure these to the wired frame in the transceiver cabinet with wire wraps.

Figure 33 Transducer cables connected to the rear side of the TRXU rack

Cable layout and interconnections

This chapter provides the cable plan and cable installation requirements for the Simrad MS70.

Topics

- Read this first! on page 81
- Cable plans on page 82
- Detailed list of cables on page 96
- Transducer cables on page 115
- Moxa CP134U-I Serial adapter setup on page 125
- Cable specifications on page 129

Read this first!

Detailed information about cable specifications, termination and connectors are provided. All cables are provided by Simrad unless otherwise specified. In order to provide for maintenance and to allow for vibration, make sure that some slack is provided for all cables.

A detailed drawing for each cable is provided. Each drawing provides additional specifications, and may, when applicable, include:

- Required minimum specifications
- Connections at each end (including reference to the corresponding: system unit, terminal board identification and plug/socket to be used)
- Corresponding terminations
- Number of cores

Cables fall into two categories.

- System cables: These cables are supplied by Kongsberg Maritime.
- **Shipyard cables**: These cables must be provided by the shipyard performing the installation, or the shipowner. It is very important that the cables used meet the minimum specifications provided in this manual.

Kongsberg Maritime accepts no responsibility for damage to the system or reduced operational performance caused by improper wiring.

For more information, see the generic cable requirements.

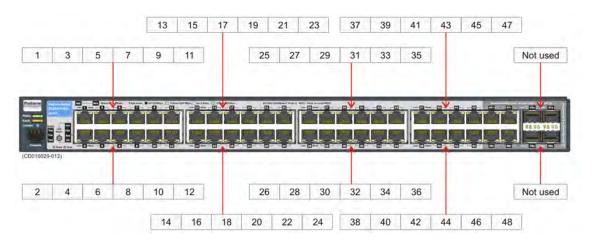
Note	\rightarrow	Basic cable requirements on page 200
system is switched off.	Note	e
Note		
11000	Note	e

All electronic installations and corresponding wiring must be in accordance with the vessel's national registry and corresponding maritime authority and/or classification society. If no such guidelines exist, we recommend that Det Norske Veritas (DNV) Report No. 80-P008 «Guidelines for Installation and Proposal for Test of Equipment» is used as a guide. Observe Basic cable requirements on page 200.

Cable plans

A detailed cable plan is provided. Due to the large number of cables, they are organized in groups, each with different leading characters. The cable plan is organized with the following cable groups (indicated by [N]) and drawings:

- 1 *Interconnection cables*: Overview of those cables that are used between the physical system units
- 2 Ethernet cables: Cables [A], [B], [C] and [D]
- 3 Power cables: Cables [B], [Q] and [R]
- 4 Power Supply Unit cables: Cables [A] and [Q]
- 5 Transducer cables: Cables 001 through 025
- 6 Interface cables: Cables [F]
- 7 Multibeam Operator Station cables: Cables [W]


Topics

- Ethernet switch connectors on page 83
- System interconnection cables on page 84
- Ethernet cables; TRC computers on page 85
- Ethernet cables; TRXU transceiver racks on page 86
- Ethernet cables; Operator Station and Power Supply Units on page 87
- Power cables; Transceiver Unit on page 88
- Power cables; Power Supply Units on page 89
- Transducer cables on page 90
- Interface cables; TRXU synchronization on page 91
- Interface cables; Motion Reference Unit on page 92
- Interface cables; GPS, sound velocity and gyro on page 93
- Interface cables; external trigger on page 94
- Multibeam Operator Station cables on page 95

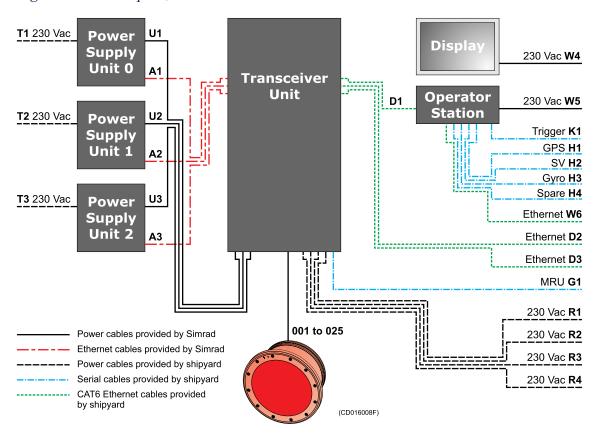
Ethernet switch connectors

The **HP ProCurve 2910** Ethernet switch holds 48 front mounted connectors. The connectors are numbered 1 to 48 as shown in the illustration.

Figure 34 HP ProCurve 2910 Ethernet switch connectors

Note _

Although the Ethernet connectors on the switch appear identical, they are organized in two different logical groups. The Ethernet switch thus operates as a "dual" unit providing two separate networks. For this reason, the connections between the switch and the peripheral devices are <u>not</u> random. Observe the ports that are identified on the cable plan, and <u>use these</u>.


The two logical groups comprise the following ports:

• TRU LAN: Ports 1 through 32

• OS LAN: Ports 33 through 48

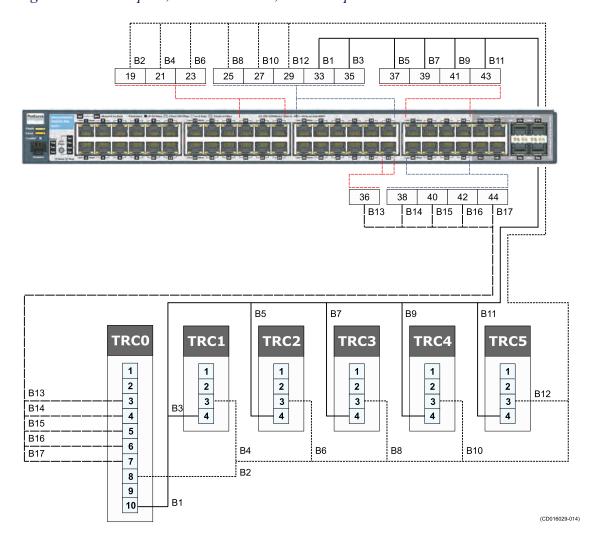
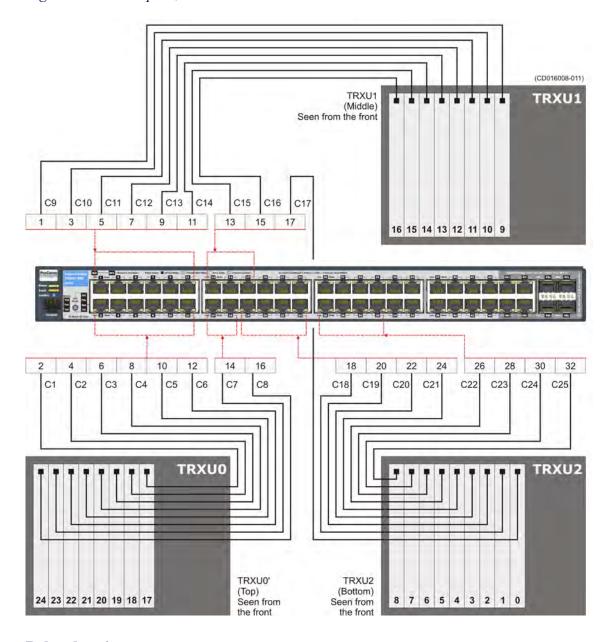

System interconnection cables

Figure 35 Cable plan, interconnection cables

Ethernet cables; TRC computers

Figure 36 Cable plan, Ethernet cables; TRC computers

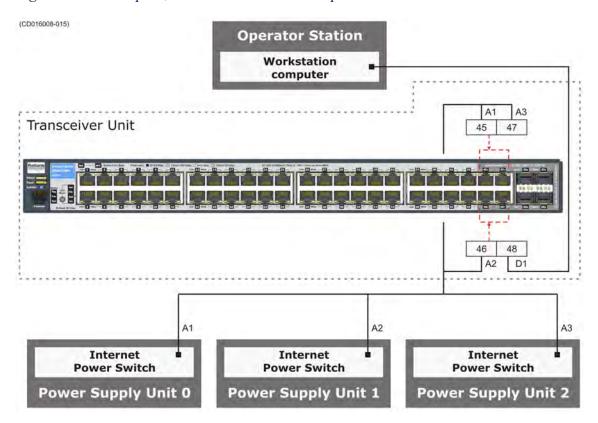


Related topics

- [B] Ethernet cables to TRC Beamforming computers on page 98
- RJ45 Ethernet, straight on page 147

Ethernet cables; TRXU transceiver racks

Figure 37 Cable plan, TRXU Ethernet

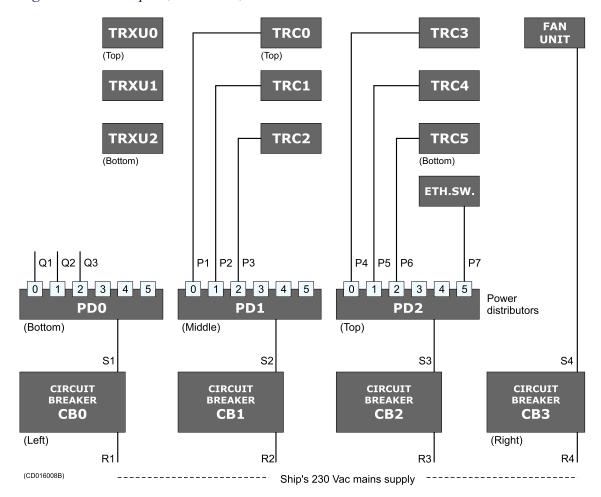


Related topics

- [C] Ethernet cables to TRXU transceiver racks on page 100
- RJ45 Ethernet, straight on page 147

Ethernet cables; Operator Station and Power Supply Units

Figure 38 Cable plan, Power and Multibeam Operator Station Ethernet

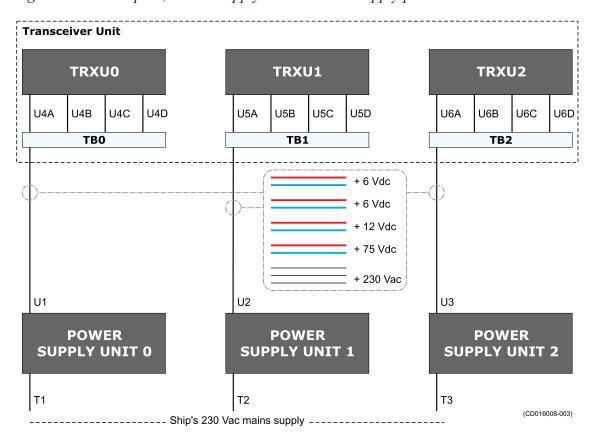


Related topics

- [A] Ethernet cables to Power Supply Units on page 97
- [D] Ethernet cables to external cabinets on page 101
- RJ45 Ethernet, straight on page 147

Power cables; Transceiver Unit

Figure 39 Cable plan, AC mains, Transceiver Unit

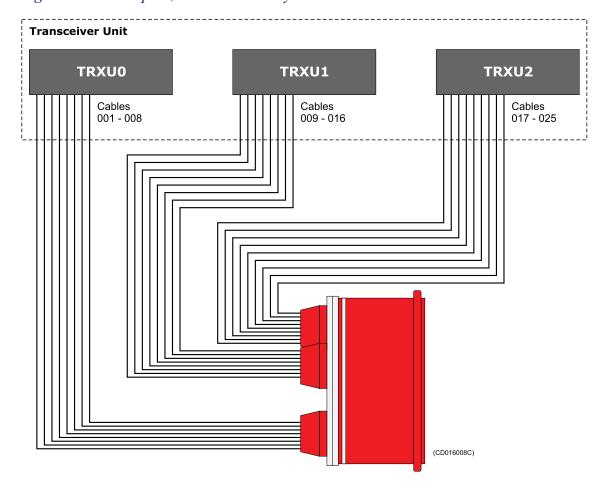


Related topics

- [P] Power cables to TRC Beamforming computers on page 106
- [Q] Power cables to TRXU transceiver racks on page 107
- [R] Power cables to ship's 230 Vac mains supply on page 108
- [S] Power cables from the four circuit breakers on page 109
- AC mains (IEC 60320) on page 145
- Circuit breaker on page 146
- Transceiver Unit Fan module wiring on page 143

Power cables; Power Supply Units

Figure 40 Cable plan, Power Supply Units and DC supply power

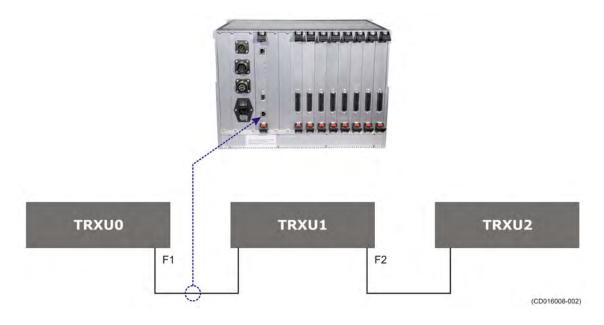


Related topics

- [T] AC mains supply to Power Supply Units on page 110
- [U] Power cables from Power Supply Units to Transceiver Unit on page 111
- Power Supply Units AC mains wiring on page 137
- Power Supply Units DC output wiring on page 138
- TRXU racks DC input wiring on page 139

Transducer cables

Figure 41 Cable plan, Transducer array

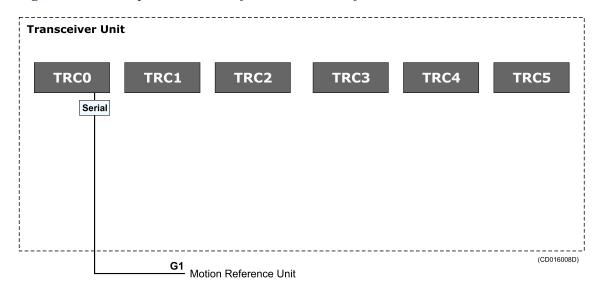


Related topics

- Transducer cables overview on page 115
- Transducer cables on page 156
- Terminations to TRXU0 (Top subrack) on page 158
- Terminations to TRXU1 (Middle subrack) on page 159
- Terminations to TRXU2 (Bottom subrack) on page 160
- Transducer cables on page 115

Interface cables; TRXU synchronization

Figure 42 Cable plan, TRXU synchronization

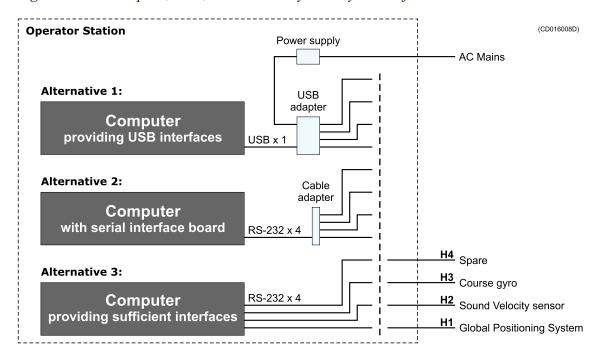


Related topics

- [F] Internal TRXU synchronisation on page 102
- Transceiver Unit TRXU synchronization cable on page 144

Interface cables; Motion Reference Unit

Figure 43 Cable plan, Motion Reference Unit interface

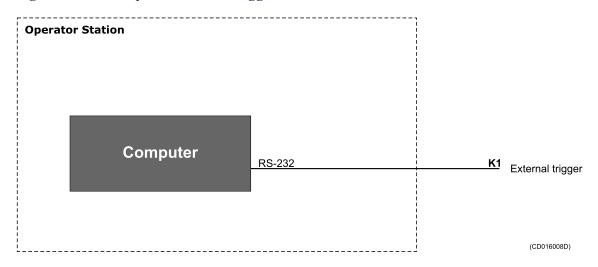

Related topics

- [G] Motion Reference Unit interface on page 103
- Generic RS-232 Serial line on page 130

92

Interface cables; GPS, sound velocity and gyro

Figure 44 Cable plan, GPS, Sound velocity and Gyro interfaces

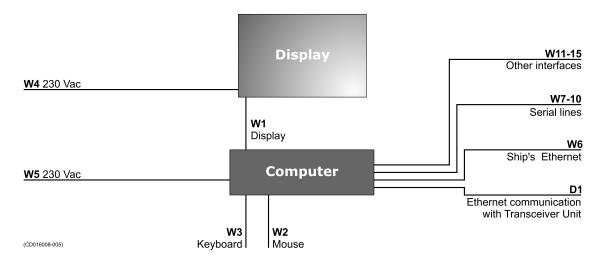


Related topics

- [H] GPS, Sound Velocity and Gyro interface on page 104
- Generic RS-232 Serial line on page 130

Interface cables; external trigger

Figure 45 Cable plan, External trigger



Related topics

- [K] External trigger on page 105
- RS-232 cable applied as external trigger (1:1) on page 132

Multibeam Operator Station cables

Figure 46 Cable plan, Multibeam Operator Station

Related topics

- [D] Ethernet cables to external cabinets on page 101
- [W] Operator Station cables on page 113
- Generic RS-232 Serial line on page 130
- Generic RS-422 Serial line on page 134
- VGA/SVGA Display on page 150
- Mouse cable on page 152
- Keyboard cable on page 151
- AC mains (IEC 60320) on page 145
- RJ45 Ethernet, straight on page 147

Detailed list of cables

The list below specifies each cable used by the Simrad MS70. References are made to the detailed cable drawings with applicable specifications.

Topics

- [A] Ethernet cables to Power Supply Units on page 97
- [B] Ethernet cables to TRC Beamforming computers on page 98
- [C] Ethernet cables to TRXU transceiver racks on page 100
- [D] Ethernet cables to external cabinets on page 101
- [F] Internal TRXU synchronisation on page 102
- [G] Motion Reference Unit interface on page 103
- [H] GPS, Sound Velocity and Gyro interface on page 104
- [K] External trigger on page 105
- [P] Power cables to TRC Beamforming computers on page 106
- [Q] Power cables to TRXU transceiver racks on page 107
- [R] Power cables to ship's 230 Vac mains supply on page 108
- [S] Power cables from the four circuit breakers on page 109
- [T] AC mains supply to Power Supply Units on page 110
- [U] Power cables from Power Supply Units to Transceiver Unit on page 111
- [W] Operator Station cables on page 113
- Transducer cables overview on page 115

[A] Ethernet cables to Power Supply Units

Cat.5 Ethernet cables are used, the default colour is grey. All are wired "straight" (no crossovers).

The length of the cables are defined by the physical distance between the Transceiver Unit and the Power Supply Units. All cables are provided by Kongsberg Maritime.

Table 2 Ethernet to Power Supply Units

Cable	From	То
A1	Power Supply Unit 0	Ethernet Switch [45]
A2	Power Supply Unit 1	Ethernet Switch [46]
A3	Power Supply Unit 2	Ethernet Switch [47]

Related topics

- Ethernet cables; Operator Station and Power Supply Units on page 87
- RJ45 Ethernet, straight on page 147

[B] Ethernet cables to TRC Beamforming computers

Cat.6 Ethernet cables are used. Neither of the Ethernet cables are screened, and all are wired "straight" (no crossovers). Even numbered cables are normally green, and connect to port "1" on all the TRC Beamforming computers. Odd numbered cables are normally red, and connect to port "2" on the TRC Beamforming computers. Additional Ethernet cables are connected to the TRC0 Beamforming computer. All cables are 2 meters long.

Figure 47 Ethernet connectors on the rear side of the TRC0 Beamforming computer

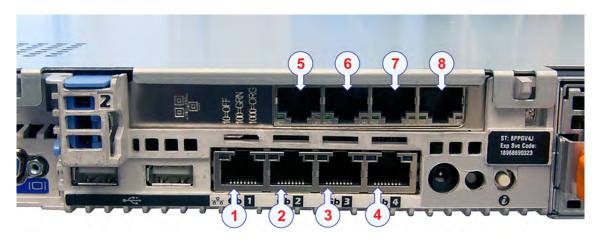


Figure 48 Ethernet connectors on the rear side of the TRC1–5 computers

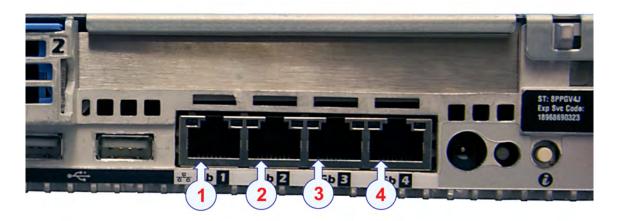


Table 3 Ethernet TRC Beamforming computers

Cable	From	То
B1	TRC0 port 1	Ethernet Switch (OS LAN)
B2	TRC0 port 2	Ethernet Switch (TRU LAN)
В3	TRC1 port 1	Ethernet Switch (OS LAN)
B4	TRC1 port 2	Ethernet Switch (TRU LAN)
B5	TRC2 port 1	Ethernet Switch (OS LAN)

Table 3 Ethernet TRC Beamforming computers (cont'd.)

Cable	From	То
В6	TRC2 port 2	Ethernet Switch (TRU LAN)
В7	TRC3 port 1	Ethernet Switch (OS LAN)
В8	TRC3 port 2	Ethernet Switch (TRU LAN)
В9	TRC4 port 1	Ethernet Switch (OS LAN)
B10	TRC4 port 2	Ethernet Switch (TRU LAN)
B11	TRC5 port 1	Ethernet Switch (OS LAN)
B12	TRC5 port 2	Ethernet Switch (TRU LAN)
B13-17	TRC0 ports 4 to 8	Ethernet Switch (OS LAN)

All cables are provided by Kongsberg Maritime.

Related topics

- Ethernet cables; TRC computers on page 85
- RJ45 Ethernet, straight on page 147

[C] Ethernet cables to TRXU transceiver racks

Cat.6 Ethernet cables are used. Neither of the Ethernet cables are screened, and all are wired "straight" (no crossovers). By default, all cables are blue. Those connected to TRXU0 are 2 meters long, the others are 1.5 meters long. All cables are provided by Kongsberg Maritime.

Table 4 Ethernet to TRXU subracks

Cable	From	То
C1-8	TRXU0	Ethernet Switch (TRU)
C9-16	TRXU1	Ethernet Switch (TRU)
C17–25	TRXU2	Ethernet Switch (TRU)

Related topics

- Ethernet cables; TRXU transceiver racks on page 86
- RJ45 Ethernet, straight on page 147

100

[D] Ethernet cables to external cabinets

D1 is a standard **Cat 6** Ethernet cable used to connect the Ethernet Switch in the Transceiver Unit to the Multibeam Operator Station. The cable colour is grey. The cable is wired "straight" (no crossovers). The length of the cable is defined by the physical distance between the Transceiver Unit and the Multibeam Operator Station. The cable must be provided by the installation shipyard. In order to handle the bandwidth of the Ethernet communication, a **Cat 6** Ethernet cable must be used.

Optional cables **D2** and **D3** may be used for external work stations (data loggers, post-processing stations etc.). If these cables are required, they must be provided by the installation shipyard. If an optional workstation is used for specific requirements, this is also connected to the Ethernet Switch in the Transceiver Unit. In order to handle the bandwidth of the Ethernet communication, **Cat 6** Ethernet cables must be used.

Table 5 Ethernet cables for Multibeam Operator Station

Cable	From	То
D1	Multibeam Operator Station	Ethernet Switch (OS)
D2	Not used	
D3	Not used	

Related topics

- Ethernet cables; Operator Station and Power Supply Units on page 87
- Multibeam Operator Station cables on page 95
- RJ45 Ethernet, straight on page 147

[F] Internal TRXU synchronisation

Two special cables are used to synchronise the transmission in the Transceiver Unit. The two cables are connected from the TRXU2 rack (bottom) to TRXU1, and from TRXU1 to TRXU2 (top).

Both cables are provided by Kongsberg Maritime.

Related topics

• Interface cables; TRXU synchronization on page 91

102

[G] Motion Reference Unit interface

A single serial line cable is connected to the RS-232 port on the rear side of the TRC0 Beamforming computer.

Figure 49 RS-232 connector on the rear side of the TRC0 Beamforming computer

The cable must be provided by the installation shipyard.

Related topics

- Interface cables; Motion Reference Unit on page 92
- Generic RS-232 Serial line on page 130

[H] GPS, Sound Velocity and Gyro interface

Commercial RS-232 serial line cables are used to connect these inputs to the Multibeam Operator Station computer.

Several computers may not offer the required amount of serial lines. In order to provide the necessary serial interfaces, additional serial line adapters may be added to the computer. As an alternative, RS-232 to USB adapters can be used. In order to ensure that the necessary power is available, such adapters must - whenever possible - be used with dedicated external power supplies.

The Multibeam Operator Station computer must also facilitate interface for external trigger. Since the trigger only uses the CTS and DTS signals on a serial line (pins 5, 7 an8), it can be connected to a serial port otherwise used with an other peripheral device. See [K] External trigger on page 105.

These cables must be provided by the installation shipyard.

Related topics

- Interface cables; GPS, sound velocity and gyro on page 93
- [K] External trigger on page 105
- Generic RS-232 Serial line on page 130
- Serial line to USB adapter on page 155

[K] External trigger

Various trigger signals are required for the MS70. Some of these trigger signals are connected to or from external devices, while others are connected internally.

The following trigger signals are in use:

• External trigger: In order to allow for external triggering to or from other acoustic systems on the ship, a serial line on the Multibeam Operator Station computer is used. Whenever possible, a standard serial line interface should be used. If an RS-232 to USB adapter is used on the computer to facilitate the serial lines, one of these can also be used, provided that the CTS and RTS signals are available. This trigger cable must be provided by the installation shipyard.

Related topics

- [W] Operator Station cables on page 113
- Interface cables; external trigger on page 94
- RS-232 as external trigger on page 131

[P] Power cables to TRC Beamforming computers

Standard commercial 230 Vac power cables are used on all TRC Beamforming computers. The AC power distribution inside the rack is provided by four circuit breakers at the bottom of the cabinet, and three distribution rails at the top.

Figure 50 AC distribution rail

The units are powered from the three distribution rails as specified in the table.

Table 6 Power cables to TRC Beamforming computers

Cable	From	То
P1	Power Distribution 1	TRC Beamforming computer 0
P2	Power Distribution 1	TRC Beamforming computer 1
Р3	Power Distribution 1	TRC Beamforming computer 2
P4	Power Distribution 2	TRC Beamforming computer 3
P5	Power Distribution 2	TRC Beamforming computer 4
P6	Power Distribution 2	TRC Beamforming computer 5

Table 7 Power cable to Ethernet switch

Cable	From	То
P7	Power Distribution 2	Ethernet Switch 2

All cables are provided by Kongsberg Maritime.

Related topics

- Power cables; Transceiver Unit on page 88
- AC mains (IEC 60320) on page 145

[Q] Power cables to TRXU transceiver racks

When the Power Supply Units are used, all DC and AC voltages required by the TRXU racks are provided by these external supplies. **Distributor 0** and **Circuit Breaker 0** are then not in use. These devices are however installed for test purposes, and to provide power for potential future power modifications.

[R] Power cables to ship's 230 Vac mains supply

The power cables provided to supply the Transceiver Unit with 230 Vac mains are connected to the four circuit breakers in the bottom of the rack.

Circuit breakers

- Circuit Breaker 0 (left): Feeds Distributor 0 (bottom), for future expansions
- Circuit Breaker 1: Feeds Distributor 1 (middle), powers TRC beamforming computers 0, 1 and 2
- Circuit Breaker 2: Feeds Distributor 2 (top), powers TRC beamforming computers 3, 4 and 5 and the Ethernet Switch
- Circuit Breaker 3 (right): Feeds the main fan unit at the bottom of the rack

The other end of the mains cables are fitted with a standard mains plug.

Table 8 Power cables to ship's mains

Cable	From	То
R1	Ship's mains supply	Circuit breaker 0
R2	Ship's mains supply	Circuit breaker 1
R3	Ship's mains supply	Circuit breaker 2
R4	Ship's mains supply	Circuit breaker 3

All cables are provided by Kongsberg Maritime.

Related topics

- Power cables; Transceiver Unit on page 88
- Circuit breaker on page 146

108 331549/B

[S] Power cables from the four circuit breakers

Circuit breakers 0, 1 and 2 feed the three power distributors at the top of the rack, and cables **S1**, **S2** and **S3** are fitted to these distributor devices.

Cable S4 powers the main fan at the bottom of the rack.

Table 9 Power cables to ship's mains

Cable	From	То
S1	Circuit breaker 0	Power Distribution 0
S2	Circuit breaker 1	Power Distribution 1
S3	Circuit breaker 2	Power Distribution 2
S4	Circuit breaker 3	Fan unit

All cables are provided by Kongsberg Maritime.

Related topics

- Power cables; Transceiver Unit on page 88
- AC mains (IEC 60320) on page 145
- Transceiver Unit Fan module wiring on page 143

[T] AC mains supply to Power Supply Units

The three external Power Supply Units are powered by from a 230 Vac 16A mains outlet. The DC output is fed to the three TRXU transceiver subracks by means of three cable bundles.

Table 10 AC mains to Power Supply Units

Cable	From	То
T1	Ship's mains supply	Power Supply Unit 0
T2	Ship's mains supply	Power Supply Unit 1
Т3	Ship's mains supply	Power Supply Unit 2

All cables are provided by Kongsberg Maritime.

Supply requirements

Each of the two AC outlets for the instrument rack must provide minimum 10A. The AC outlet for the external power supply must provide 16A.

Related topics

- Power cables; Power Supply Units on page 89
- AC mains (IEC 60320) on page 145
- Power Supply Units AC mains wiring on page 137

SWITCH

[U] Power cables from Power Supply Units to Transceiver Unit

The DC power from the three Power Supply Units are connected to the Transceiver Unit using bundled cables. Each bundle holds the following cables:

- a 230 Vac to TRXU fans
- **b** +6 Vdc (one red and one blue cable)
- c +6 Vdc (one red and one blue cable)
- **d** +12 Vdc (one red and one blue cable)
- e +75 Vdc (one red and one blue cable)

Observe the block diagram.

In addition to the three DC voltages, the bundled cables also provide 230 Vac power to the fan drawers in the TRXU racks.

Note

The power cables must be installed in steel conduits to reduce noise.

POWER CABINET 0 TRXU 0 **POWER CABINET 1** TRXU 1 TRXU 2 **POWER CABINET 2** PANEL TRXU BACKPLANE +6 Vdc POWER SUPPLY BOARD BOARD POWER CONNECTOR F +12 Vdc POWER SUPPLY TERMINAL +75 Vdc POWER SUPPLY 230 Vac 230 Vac **ETHERNET**

Figure 51 Block diagram, AC and DC distribution from Power Supply Units

Table 11 AC mains to Power Supply Units

SWITCH

(CD016022-003)

Cable	From	То
U1	Power Supply Unit 0	TB0 on rear side of TRXU0
U2	Power Supply Unit 1	TB1 on rear side of TRXU1
U3	Power Supply Unit 2	TB2 on rear side of TRXU2

Ethernet

All cables are provided by Kongsberg Maritime.

Related topics

- Power cables; Power Supply Units on page 89
- Power Supply Units DC output wiring on page 138
- TRXU racks DC input wiring on page 139
- Power Connector Panel on page 140
- +6 and +12 Vdc to the TRXU backplane on page 141
- +75 Vdc to the TRXU backplane on page 142

[W] Operator Station cables

These cables are used on the Operator Station.

- W1 / Display: This is a commercial display cable. It provides the connection between the computer and the colour monitor. The type of cable used will depend on the video format required by the display (VGA/SVGA/DVI).
- W2 / Mouse: This is a commercial cable, and in most cases, it is fixed to the mouse. Ensure that the plug on the mouse cable is compatible with the computer (USB/PS2).
- W3 / Keyboard: This is a commercial cable, and in most cases, it is fixed to the keyboard. Ensure that the plug on the keyboard cable is compatible with the computer (USB/PS2).
- W4 / AC mains to display: This is a commercial power cable, and in most cases, it is provided with the display.
- W5 / AC mains to computer: This is a commercial power cable, and in most cases, it is provided with the computer.
- W6 / Ship's ethernet: A standard Ethernet cable with RJ45 connectors is used to connect the Operator Station to the ship's network. This cable must be provided by the installation shipyard. In order to handle the bandwidth of the Ethernet communication, we strongly recommend that a Cat 6 Ethernet cable is used. This cable must be provided by the customer or the installation shipyard.
- W7–10 / Serial line interfaces: Standard serial line interfaces (RS232/RS422) may be used as required. One may be used as K1 External trigger
- W11-15 / Serial line interfaces: Other interfaces (USB, Firewire etc) may be used as required.

Note			
Additional Dx Ethernet	cable(s) are used to	connect the Multibeam	Operator Station

to the Transceiver Unit. For these specifications. see [D] Ethernet cables to external cabinets on page 101.

The Operator Station is equipped with a serial port adapter to provide multiple interfaces.

- → Moxa CP134U-I Serial adapter setup on page 125
- → Moxa CP134U-I Serial line adapter on page 135

Table 12 Multibeam Operator Station

Cable	From	То
W1	Operator Station computer	Colour display
W2	Operator Station computer	Mouse
W3	Operator Station computer	Keyboard
W4	Display	Ship's mains supply
W5	Operator Station computer	Ship's mains supply
W6	Operator Station computer	Ship's local area network

Table 12 Multibeam Operator Station (cont'd.)

Cable	From	То		
W7-10	Operator Station computer	External equipment and/or peripherals (sensors)		
W11-15	Operator Station computer	External equipment		

Related topics

- [D] Ethernet cables to external cabinets on page 101
- [K] External trigger on page 105
- Multibeam Operator Station cables on page 95
- Moxa CP134U-I Serial line adapter on page 135
- VGA/SVGA Display on page 150
- Mouse cable on page 152
- Keyboard cable on page 151
- AC mains (IEC 60320) on page 145
- AC mains (IEC 60320) on page 145
- *RJ45 Ethernet, straight* on page 147

114 331549/B

Transducer cables overview

A total of 25 transducer cables are brought up from the transducer array. Each cable is terminated in a large connector, and each connector plugs into its dedicated socket on the rear side of the TRXU transceiver subracks. The transducer cables are identified with numbers **001** through **025**

All transducer cables are provided by Kongsberg Maritime.

Related topics

- *Transducer cables* on page 156
- Terminations to TRXU0 (Top subrack) on page 158
- Terminations to TRXU1 (Middle subrack) on page 159
- Terminations to TRXU2 (Bottom subrack) on page 160
- Transducer cables on page 115

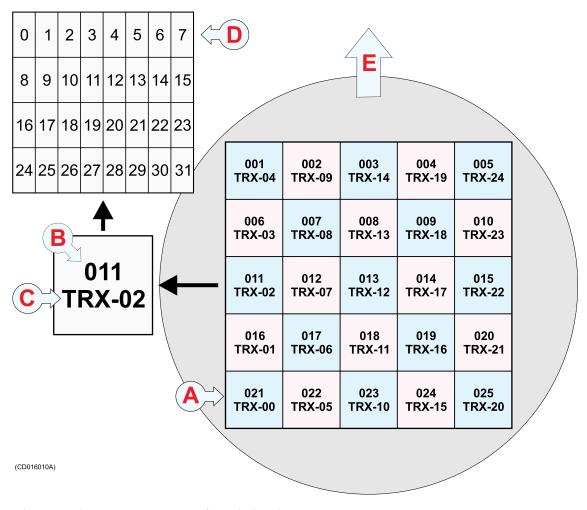
Transducer cables

The MS70 transducer array is organised as follows:

- The array contains 25 quadrants
- Each quadrant contains 32 individual elements
- Each quadrant is connected by means of a separate cable to a dedicated **TRX32** circuit board handling the 32 channels

Transducer cable pairs

There are 36 cable pairs in each transducer cable.


32 of these cable pairs are used for the elements in the module.

Cable pair 33 connects to a thermistor on the transformer circuit board in the transducer.

The last two cables pairs are not used, and these are cut.

Element organisation

Figure 52 Transducer element organisation

The transducer array is seen from behind.

- **A** The transducer array contains 25 quadrants.
- **B** Each quadrant is identified with the number of the transducer cable used for that specific quadrant.
- C Each quadrant is identified with the TRX32 circuit board used for that specific quadrant.
- **D** Each quadrant contains 32 elements, four rows with eight elements in each row. The number provided for each element specifies which **TRX32** channel on the specific circuit board that is used for the specific element.
- **E** The arrow indicates direction UP.

Channel and element identification tables

The tables below defines the relationship between the elements and the individual channels. They also define which cable that is used, and to which TRX32 circuit board the element is physically connected.

779 799 19 39 20 40 740 760 780

Figure 53 Transducer channel organisation

The transducer array is seen from behind. It contains a total of 800 channels organized as shown.

Table 13 Quadrant 001 element identification

Cha	Elmnt	Cha	Elmnt	Cha	Elmnt	Cha	Elmnt
0	19	8	18	16	17	24	16
1	39	9	38	17	37	25	36
2	59	10	58	18	57	26	56
3	79	11	78	19	77	27	76
4	99	12	98	20	97	28	96
5	119	13	118	21	117	29	116
6	139	14	138	22	137	30	136

Table 13 Quadrant 001 element identification (cont'd.)

Cha	Elmnt	Cha	Elmnt	Cha	Elmnt	Cha	Elmnt
7	159	15	158	23	157	31	156
Cable: 001			TRX32 circuit board: 4				

Table 14 Quadrant 002 element identification

Cha	Elmnt	Cha	Elmnt	Cha	Elmnt	Cha	Elmnt
0	179	8	178	16	177	24	176
1	199	9	198	17	197	25	196
2	219	10	218	18	217	26	216
3	239	11	238	19	237	27	236
4	259	12	258	20	257	28	256
5	279	13	278	21	277	29	276
6	299	14	298	22	297	30	296
7	319	15	318	23	317	31	316
Cable: 002	Cable: 002			TRX32 circu	uit board: 9	•	-

Table 15 Quadrant 003 element identification

Cha	Elmnt	Cha	Elmnt	Cha	Elmnt	Cha	Elmnt
0	339	8	338	16	337	24	336
1	359	9	358	17	357	25	356
2	379	10	378	18	377	26	376
3	399	11	398	19	397	27	396
4	419	12	418	20	417	28	416
5	439	13	438	21	437	29	436
6	459	14	458	22	457	30	456
7	479	15	478	23	477	31	476
Cable: 0	Cable: 003				TRX32 circuit board: 14		

Table 16 Quadrant 004 element identification

Cha	Elmnt	Cha	Elmnt	Cha	Elmnt	Cha	Elmnt
0	499	8	498	16	497	24	496
1	519	9	518	17	517	25	516
2	539	10	538	18	537	26	536
3	559	11	558	19	557	27	556
4	579	12	578	20	577	28	576
5	599	13	598	21	597	29	596
6	619	14	618	22	617	30	616
7	639	15	638	23	637	31	636
Cable: 0	Cable: 004			TRX32 d	TRX32 circuit board: 19		

118 331549/B

Table 17 Quadrant 005 element identification

Cha	Elmnt	Cha	Elmnt	Cha	Elmnt	Cha	Elmnt	
0	659	8	658	16	657	24	656	
1	679	9	678	17	677	25	676	
2	699	10	698	18	697	26	696	
3	719	11	718	19	717	27	716	
4	739	12	738	20	737	28	736	
5	759	13	758	21	757	29	756	
6	779	14	778	22	777	30	776	
7	799	15	798	23	797	31	796	
Cable: 00	5	-	-	TRX32	TRX32 circuit board: 24			

Table 18 Quadrant 006 element identification

Cha	Elmnt	Cha	Elmnt	Cha	Elmnt	Cha	Elmnt
0	15	8	14	16	13	24	12
1	35	9	34	17	33	25	32
2	55	10	54	18	53	26	52
3	75	11	74	19	73	27	72
4	95	12	94	20	93	28	92
5	115	13	114	21	113	29	112
6	135	14	134	22	133	30	132
7	155	15	154	23	153	31	152
Cable: 006				TRX32 circuit board: 3			

Table 19 Quadrant 007 element identification

Cha	Elmnt	Cha	Elmnt	Cha	Elmnt	Cha	Elmnt
0	175	8	174	16	173	24	172
1	195	9	194	17	193	25	192
2	215	10	214	18	213	26	212
3	235	11	234	19	233	27	232
4	255	12	254	20	253	28	252
5	275	13	274	21	273	29	272
6	295	14	294	22	293	30	292
7	315	15	314	23	313	31	312
Cable: 007				TRX32 circuit board: 8			

Table 20 Quadrant 008 element identification

Cha	Elmnt	Cha	Elmnt	Cha	Elmnt	Cha	Elmnt
0	335	8	334	16	333	24	332
1	355	9	354	17	353	25	352

Table 20 Quadrant 008 element identification (cont'd.)

Cha	Elmnt	Cha	Elmnt	Cha	Elmnt	Cha	Elmnt	
2	375	10	374	18	373	26	372	
3	395	11	394	19	393	27	392	
4	415	12	414	20	413	28	412	
5	435	13	434	21	433	29	432	
6	455	14	454	22	453	30	452	
7	475	15	474	23	473	31	472	
Cable: 008	Cable: 008				TRX32 circuit board: 13			

Table 21 Quadrant 009 element identification

Cha	Elmnt	Cha	Elmnt	Cha	Elmnt	Cha	Elmnt	
0	495	8	494	16	493	24	492	
1	515	9	514	17	513	25	512	
2	535	10	534	18	533	26	532	
3	555	11	554	19	553	27	552	
4	575	12	574	20	573	28	572	
5	595	13	594	21	593	29	592	
6	615	14	614	22	613	30	612	
7	635	15	634	23	633	31	632	
Cable: 0	09			TRX32 (TRX32 circuit board: 18			

Table 22 Quadrant 010 element identification

Cha	Elmnt	Cha	Elmnt	Cha	Elmnt	Cha	Elmnt	
0	655	8	654	16	653	24	652	
1	675	9	674	17	673	25	672	
2	695	10	694	18	693	26	692	
3	715	11	714	19	713	27	712	
4	735	12	734	20	733	28	732	
5	755	13	754	21	753	29	752	
6	775	14	774	22	773	30	772	
7	795	15	794	23	793	31	792	
Cable: 0	10	•		TRX32	TRX32 circuit board: 23			

Table 23 Quadrant 011 element identification

Cha	Elmnt	Cha	Elmnt	Cha	Elmnt	Cha	Elmnt
0	11	8	10	16	9	24	8
1	31	9	30	17	29	25	28
2	51	10	50	18	49	26	48
3	71	11	70	19	69	27	68

Table 23 Quadrant 011 element identification (cont'd.)

Cha	Elmnt	Cha	Elmnt	Cha	Elmnt	Cha	Elmnt	
4	91	12	90	20	89	28	88	
5	111	13	110	21	109	29	108	
6	131	14	130	22	129	30	128	
7	151	15	150	23	149	31	148	
Cable: 011	Cable: 011				TRX32 circuit board: 2			

Table 24 Quadrant 012 element identification

Cha	Elmnt	Cha	Elmnt	Cha	Elmnt	Cha	Elmnt
0	171	8	170	16	169	24	168
1	191	9	190	17	189	25	188
2	211	10	210	18	209	26	208
3	231	11	230	19	229	27	228
4	251	12	250	20	249	28	248
5	271	13	270	21	269	29	268
6	291	14	290	22	289	30	288
7	311	15	310	23	309	31	308
Cable: 012				TRX32 circuit board: 7			

Table 25 Quadrant 013 element identification

Cha	Elmnt	Cha	Elmnt	Cha	Elmnt	Cha	Elmnt	
0	331	8	330	16	329	24	328	
1	351	9	350	17	349	25	348	
2	371	10	370	18	369	26	368	
3	391	11	390	19	389	27	388	
4	411	12	410	20	409	28	408	
5	431	13	430	21	429	29	428	
6	451	14	450	22	449	30	448	
7	471	15	470	23	469	31	468	
Cable: 0	Cable: 013				TRX32 circuit board: 12			

Table 26 Quadrant 014 element identification

Cha	Elmnt	Cha	Elmnt	Cha	Elmnt	Cha	Elmnt
0	491	8	490	16	489	24	488
1	511	9	510	17	509	25	508
2	531	10	530	18	529	26	528
3	551	11	550	19	549	27	548
4	571	12	570	20	569	28	568
5	591	13	590	21	589	29	588

Table 26 Quadrant 014 element identification (cont'd.)

Cha	Elmnt	Cha	Elmnt	Cha	Elmnt	Cha	Elmnt
6	611	14	610	22	609	30	608
7	631	15	630	23	629	31	628
Cable: 014				TRX32 circu	it board: 17		

Table 27 Quadrant 015 element identification

Cha	Elmnt	Cha	Elmnt	Cha	Elmnt	Cha	Elmnt
0	651	8	650	16	649	24	648
1	671	9	670	17	669	25	668
2	691	10	690	18	689	26	688
3	711	11	710	19	709	27	708
4	731	12	730	20	729	28	828
5	751	13	750	21	749	29	748
6	771	14	770	22	769	30	768
7	791	15	790	23	789	31	788
Cable: 015	•		•	TRX32 circuit board: 22			

Table 28 Quadrant 016 element identification

Cha	Elmnt	Cha	Elmnt	Cha	Elmnt	Cha	Elmnt	
0	7	8	6	16	5	24	4	
1	27	9	26	17	25	25	24	
2	47	10	46	18	45	26	44	
3	67	11	66	19	65	27	64	
4	87	12	86	20	85	28	84	
5	107	13	106	21	105	29	104	
6	127	14	126	22	125	30	124	
7	147	15	146	23	145	31	144	
Cable: 0	16			TRX32	TRX32 circuit board: 1			

Table 29 Quadrant 017 element identification

Cha	Elmnt	Cha	Elmnt	Cha	Elmnt	Cha	Elmnt
0	167	8	166	16	165	24	164
1	187	9	186	17	185	25	184
2	207	10	206	18	205	26	204
3	227	11	226	19	225	27	224
4	247	12	246	20	245	28	244
5	267	13	266	21	265	29	264
6	287	14	286	22	285	30	284

Table 29 Quadrant 017 element identification (cont'd.)

Cha	Elmnt	Cha	Elmnt	Cha	Elmnt	Cha	Elmnt		
7	307	15	306	23	305	31	304		
Cable: 017	able: 017				TRX32 circuit board: 6				

Table 30 Quadrant 018 element identification

Cha	Elmnt	Cha	Elmnt	Cha	Elmnt	Cha	Elmnt	
0	327	8	326	16	325	24	324	
1	347	9	346	17	345	25	344	
2	367	10	366	18	365	26	364	
3	387	11	386	19	385	27	384	
4	407	12	406	20	405	28	404	
5	427	13	426	21	425	29	424	
6	447	14	446	22	445	30	444	
7	467	15	466	23	465	31	464	
Cable: 0	18	_		TRX32	TRX32 circuit board: 11			

Table 31 Quadrant 019 element identification

Cha	Elmnt	Cha	Elmnt	Cha	Elmnt	Cha	Elmnt	
0	487	8	486	16	485	24	484	
1	507	9	506	17	505	25	504	
2	527	10	526	18	525	26	524	
3	547	11	546	19	545	27	544	
4	567	12	566	20	565	28	564	
5	587	13	586	21	585	29	584	
6	607	14	606	22	605	30	604	
7	627	15	626	23	625	31	624	
Cable: 0	19			TRX32 d	TRX32 circuit board: 16			

Table 32 Quadrant 020 element identification

Cha	Elmnt	Cha	Elmnt	Cha	Elmnt	Cha	Elmnt	
0	647	8	646	16	645	24	644	
1	667	9	666	17	665	25	664	
2	687	10	686	18	685	26	684	
3	707	11	706	19	705	27	704	
4	727	12	726	20	725	28	724	
5	747	13	746	21	745	29	744	
6	767	14	766	22	765	30	764	
7	787	15	786	23	785	31	784	
Cable: 0	20	<u> </u>	<u> </u>	TRX32	TRX32 circuit board: 21			

Table 33 Quadrant 021 element identification

Cha	Elmnt	Cha	Elmnt	Cha	Elmnt	Cha	Elmnt
0	3	8	2	16	1	24	0
1	23	9	22	17	21	25	20
2	43	10	42	18	41	26	40
3	63	11	62	19	61	27	60
4	83	12	82	20	81	28	80
5	103	13	102	21	101	29	100
6	123	14	122	22	121	30	120
7	143	15	142	23	141	31	140
Cable: 021	-	•		TRX32 circuit board: 0			

Table 34 Quadrant 022 element identification

Cha	Elmnt	Cha	Elmnt	Cha	Elmnt	Cha	Elmnt	
0	163	8	162	16	161	24	160	
1	183	9	182	17	181	25	180	
2	203	10	202	18	201	26	200	
3	223	11	222	19	221	27	220	
4	243	12	242	20	241	28	240	
5	263	13	262	21	261	29	260	
6	283	14	282	22	281	30	280	
7	303	15	302	23	301	31	300	
Cable: 022	Cable: 022				TRX32 circuit board: 5			

Table 35 Quadrant 023 element identification

Cha	Elmnt	Cha	Elmnt	Cha	Elmnt	Cha	Elmnt	
0	323	8	322	16	321	24	320	
1	343	9	342	17	341	25	340	
2	363	10	362	18	361	26	360	
3	383	11	382	19	381	27	380	
4	403	12	402	20	401	28	400	
5	423	13	422	21	421	29	420	
6	443	14	442	22	441	30	440	
7	463	15	462	23	461	31	460	
Cable: 0	23			TRX32 c	TRX32 circuit board: 10			

Table 36 Quadrant 024 element identification

Cha	Elmnt	Cha	Elmnt	Cha	Elmnt	Cha	Elmnt
0	483	8	482	16	481	24	480
1	503	9	502	17	501	25	500

124 331549/B

Table 36 Quadrant 024 element identification (cont'd.)

Cha	Elmnt	Cha	Elmnt	Cha	Elmnt	Cha	Elmnt
2	523	10	522	18	521	26	520
3	543	11	542	19	541	27	540
4	563	12	562	20	561	28	560
5	583	13	582	21	581	29	580
6	603	14	602	22	601	30	600
7	623	15	622	23	621	31	620
Cable: 024	Cable: 024			TRX32	TRX32 circuit board: 15		

Table 37 Quadrant 025 element identification

Cha	Elmnt	Cha	Elmnt	Cha	Elmnt	Cha	Elmnt
0	643	8	642	16	641	24	640
1	663	9	662	17	661	25	660
2	683	10	682	18	681	26	680
3	703	11	702	19	701	27	700
4	723	12	722	20	721	28	720
5	743	13	742	21	741	29	740
6	763	14	762	22	761	30	760
7	783	15	782	23	781	31	780
Cable: 025	Cable: 025			TRX32 circuit board: 20			

Moxa CP134U-I Serial adapter setup

This section describes the Moxa CP134U-I 4-port optical isolated serial interface board.

This board is used on the Multibeam Operator Station to provide multiple serial line connections.

Serial line support

The 4-port serial board supports the following serial line interface formats:

• Port 1: RS-232/422/485

• Port 2: RS-232/422/485

• Port 3: RS-422/485

• Port 4: RS-422/485

By manufacturer default, all these serial connections are set to **RS-422** format. In order to change this to RS-232 or RS-485 format, dedicated jumpers or DIP switches must be changed.

NI - I -		
Note		

Note that only ports 1 and 2 support RS-232 format.

Jumper and DIP switch settings

Use the 10-pin jumper arrays and the two DIP switches to set ports 1 and 2 to RS-232, RS-422, or RS-485. Use the two DIP switches to set ports 3 and 4 to RS-422 or RS-485.

- RS-232: In order to use Port 1 (COM2) or Port 2 (COM3) as RS-232 interfaces, the relevant jumper arrays for Port 1 or Port 2 must be moved. Note that ports 3 and 4 do not support RS-232 format.
- RS-422: All four ports can be set to RS-422 using the two jumpers and the right-hand DIP switch S2.
- RS-485: All four ports can be set to RS-485 using the two jumpers and the right-hand DIP switch S2. Additionally, each port can be selected for a 2-wire or 4-wire connection type using the left-hand DIP switch S1.

Figure 54 Location of the jumpers and DIP switches

- **A** Jumper for Port 1 interface setup
- **B** Jumper for Port 2 interface setup
- C DIP-switch S1 for 2-wire or 4-wire setup (all ports)
- **D** DIP-switch S2 for RS-422 or RS-485 selection (all ports)

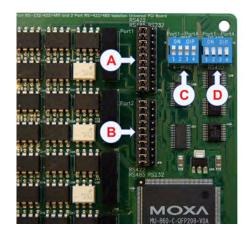


Table 38 Serial lines jumper and DIP switch settings

Port	Interface	Jumper	S1	S2
Port 1	RS-232	Port 1 to right		
	RS-422	Port 1 to left		1 to OFF
	2-wire RS-485	Port 1 to left	1 to ON	1 to ON
	4-wire RS-485	Port 1 to left	1 to OFF	1 to ON
Port 2	RS-232	Port 2 to right		
	RS-422	Port 2 to left		2 to OFF
	2-wire RS-485	Port 2 to left	2 to ON	2 to ON
	4–wire RS-485	Port 2 to left	2 to OFF	2 to ON

126 331549/B

Table 38 Serial lines jumper and DIP switch settings (cont'd.)

Port	Interface	Jumper	S1	S2	
Port 3	RS-422			3 to OFF	
	2-wire RS-485		3 to ON	3 to ON	
	4–wire RS-485		3 to OFF	3 to ON	
Port 4	RS-422			4 to OFF	
	2-wire RS-485		4 to ON	4 to ON	
	4–wire RS-485		4 to OFF	4 to ON	
Note: [Blank] = Not active or not used. Ports 3 and 4 do not support RS-232.					

Table 39 Serial lines DIP switch settings, examples

DIP switch	Setting
2-WIRE RS485 S1 ON DIP ON DIP S2	Port 1 set for RS-422 transmission.
4-WIRE RS422	
2-WIRE RS485 S1 ON DIP 1 2 3 4 4-WIRE RS422	Port 1 set for 2-wire RS-485 transmission.
2-WIRE RS485 S1 ON DIP 1 2 3 4 4-WIRE RS422	Port 1 set for 4-wire RS-485 transmission.

Adapter cable

An adapter cable is included in the delivery. This allows for connection of four individual 9-pin D-sub connectors to the serial interface board.

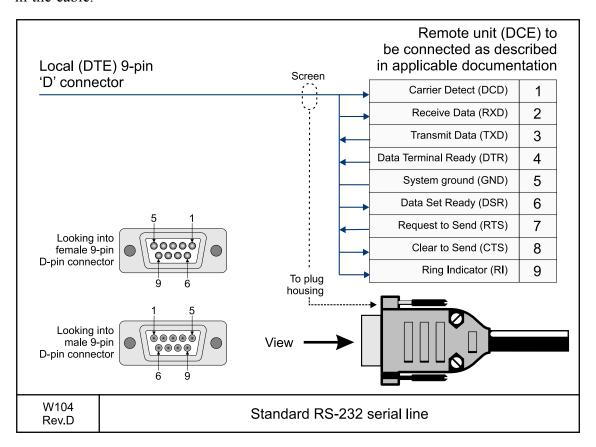
Table 40 Moxa CP134U-I 9-pin D-connector converter

Pin	RS-232	RS-422	RS485 (4-wire)	RS485 (2-wire)
1	DCD	TXD-(A)	TXD-(A)	_
2	RxD	TXD+(B)	TXD+(B)	_
3	TxD	RXD+(B)	RXD+(B)	Data-(B)
4	DTR	RXD-(A)	RXD-(A)	Data-(A)
5	GND	GND	GND	GND
6	DSR			_
7	RTS			_
8	CTS	_	_	_
9	_	_	_	_

128 331549/B

Cable specifications

The drawings provided in this section specify in detail each cable used by the MS70 Scientific multibeam sonar.


Topics

- Generic RS-232 Serial line on page 130
- RS-232 as external trigger on page 131
- RS-232 cable applied as external trigger (1:1) on page 132
- Coax to RS-232 cable and adapter on page 133
- Generic RS-422 Serial line on page 134
- Moxa CP134U-I Serial line adapter on page 135
- Power Supply Units AC mains wiring on page 137
- Power Supply Units DC output wiring on page 138
- TRXU racks DC input wiring on page 139
- Power Connector Panel on page 140
- +6 and +12 Vdc to the TRXU backplane on page 141
- +75 Vdc to the TRXU backplane on page 142
- Transceiver Unit Fan module wiring on page 143
- Transceiver Unit TRXU synchronization cable on page 144
- AC mains (IEC 60320) on page 145
- Circuit breaker on page 146
- RJ45 Ethernet, straight on page 147
- RJ45 Ethernet, crossover on page 149
- VGA/SVGA Display on page 150
- Keyboard cable on page 151
- Mouse cable on page 152
- Serial line adapter on page 154
- Serial line to USB adapter on page 155
- Transducer cables on page 156
- Terminations to TRXU0 (Top subrack) on page 158
- Terminations to TRXU1 (Middle subrack) on page 159
- Terminations to TRXU2 (Bottom subrack) on page 160

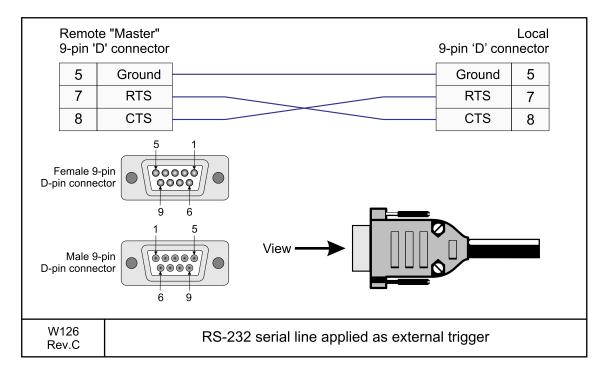
Generic RS-232 Serial line

This cable comprises a multi purpose serial line. It provides interface with any peripheral unit. One end of the cable connects to the local unit (**DTE**) with a 9-pin D-connector, while the other connects to the peripheral (**DCE**) as described in the peripheral unit's documentation.

In many cases, only the **RxD**, **TxT** and **GND** pins are used. Twisted pairs are sufficient in the cable.

Cable specifications

Conductors: 5 x 2 x 0.5 mm²


Screen: Screened twisted pairs and overall braided

Voltage: 60 V

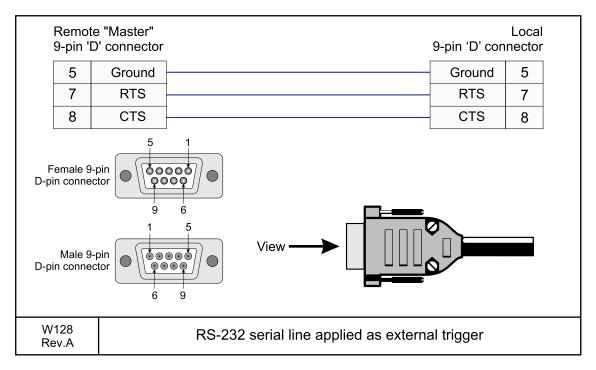
• Maximum diameter: Limited by the plugs

RS-232 as external trigger

This cable comprises an RS-232 serial line applied as an external trigger. It provides interface with any peripheral unit that requires transmit/receive synchronization. One end of the cable connects to the local unit with a 9-pin D-connector, while the other connects to the peripheral system as described in the peripheral unit documentation.

Cable specifications

• Conductors: 9 x 2 x 0.5 mm²


Screen: Screened twisted pairs and overall braided

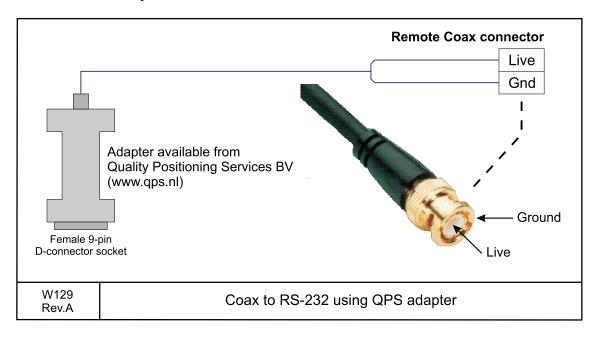
Voltage: 60 V

Maximum diameter: Limited by the plugs

RS-232 cable applied as external trigger (1:1)

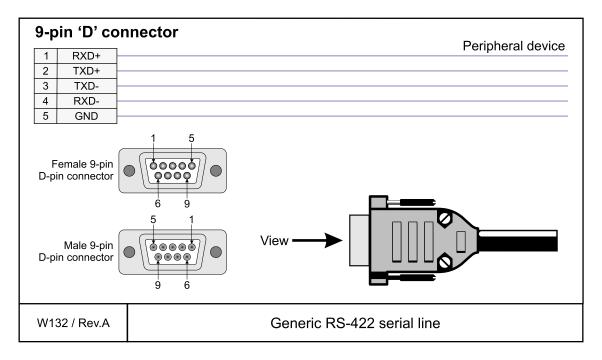
This cable comprises an RS-232 serial line applied as an external trigger. It provides interface with any peripheral unit that requires transmit/receive synchronization. One end of the cable connects to the local unit with a 9-pin D-sub connector, while the other connects to the peripheral system as described in the peripheral unit documentation.

• Conductors: 9 x 2 x 0.5 mm²


• Screen: Screened twisted pairs and overall braided

Voltage: 60 V

• Maximum diameter: Limited by the plugs


Coax to RS-232 cable and adapter

This cable with adapter is used to connect a coax connector to an RS-232 serial line.

Generic RS-422 Serial line

This cable holds a multi purpose RS-422 balanced serial line. It provides interface with any peripheral unit. One end of the cable connects to the local unit (DTE) with a 9-pin D-connector, while the other connects to the peripheral (DCE) as described in the peripheral unit's documentation.

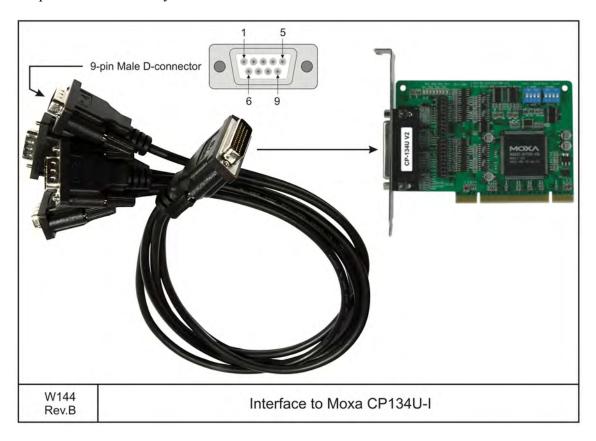
More information

• http://en.wikipedia.org/wiki/Rs422

Cable specifications

• Conductors: 5 x 2 x 0.5 mm²

Screen: Screened twisted pairs and overall braided


• Voltage: 60 V

Maximum diameter: Limited by the plugs

Moxa CP134U-I Serial line adapter

The Multibeam Operator Station is equipped with a Moxa CP-134U-I serial interface board.

By default, each board provides four RS-422 serial lines. The connections to the board are made using four 9–pin D-connectors, and short converter cables with terminal boards are provided with the system.

Cable specifications

• Conductors: 5 x 2 x 0.5 mm²

Screen: Screened twisted pairs and overall braided

Voltage: 60 V

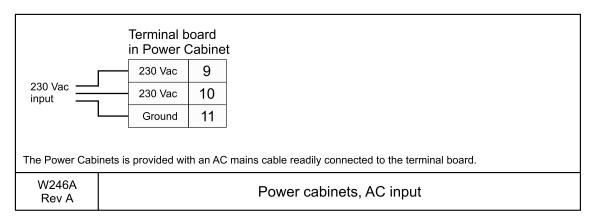
• Maximum diameter: Limited by the plugs

Pin assignments

This board supports RS-422 and RS-485 (both 2 and 4-wire). Ports 1 and 2 also support RS-232. The board is provided with a four way connector cable to offer four 9-pin male D-connectors.

Table 41 Moxa CP134U-I 9-pin D-connector converter

Pin	RS-232	RS-422	RS485 (4-wire)	RS485 (2-wire)
1	DCD	TXD-(A)	TXD-(A)	_
2	RxD	TXD+(B)	TXD+(B)	_
3	TxD	RXD+(B)	RXD+(B)	Data-(B)
4	DTR	RXD-(A)	RXD-(A)	Data-(A)
5	GND	GND	GND	GND
6	DSR	_	_	_
7	RTS	_	_	_
8	CTS	_	_	_
9	_	_	_	_


Power Supply Unit wiring

Three Power Supply Units are used, one for each TRXU transceiver rack. The cables are terminated at terminal blocks; one inside each Power Supply Unit, and one of the rear side of each TRXU rack. From the terminal block on the rear side of each TRXU, three DC cable bundles are fed up to the rear side of the rack and terminated with plugs on the **Power Connector Panel**. The AC power provided by the Power Supply Units is also terminated on the **Power Connector Panel**, and it is only used to power the TRXU fans.

All power cables (AC and DC) are provided with the Power Supply Units. Maximum cable length between each Power Supply Unit and the Transceiver Unit is 10 meters.

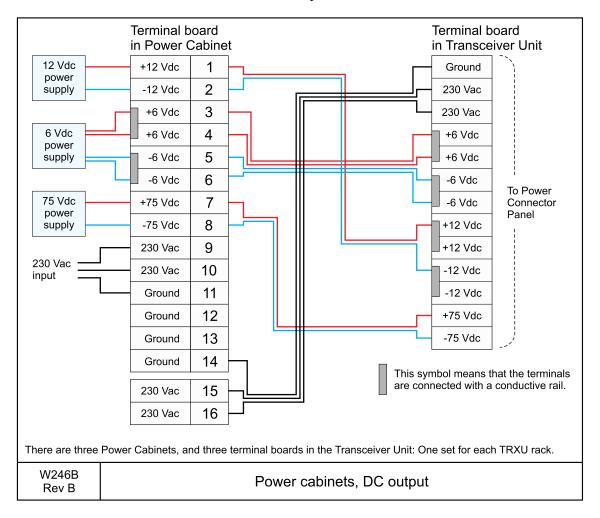
Power Supply Units AC mains wiring

The AC mains cables for the three Power Supply Units are connected to Terminal Board 1 inside each cabinet.

Cable specifications

• Conductors: 2.5 mm²

• Screen: Separate conductor


Voltage: 600 V

• Maximum diameter: Limited by the grommets on the cabinet

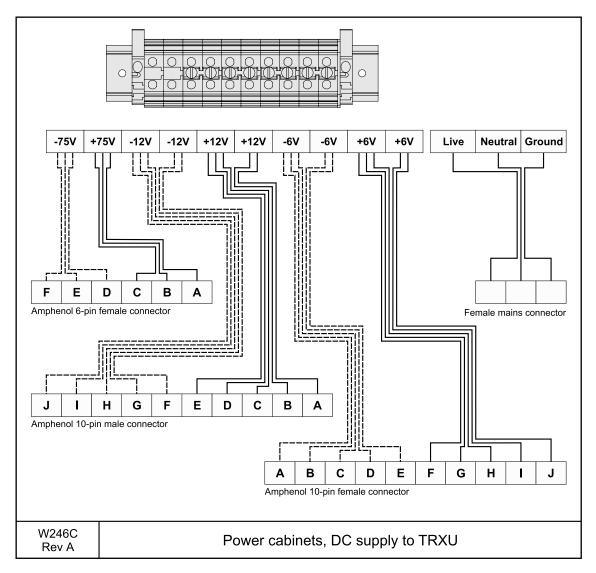
Power Supply Units DC output wiring

The DC cables from the three Power Supply Units to the Transceiver Unit are all separate conductors.

Note that 230 Vac is also included in order to power the fans in each TRXU rack.

Cable specifications

• Conductors: 16 mm²


Screen: Separate conductor

• Voltage: 600 V

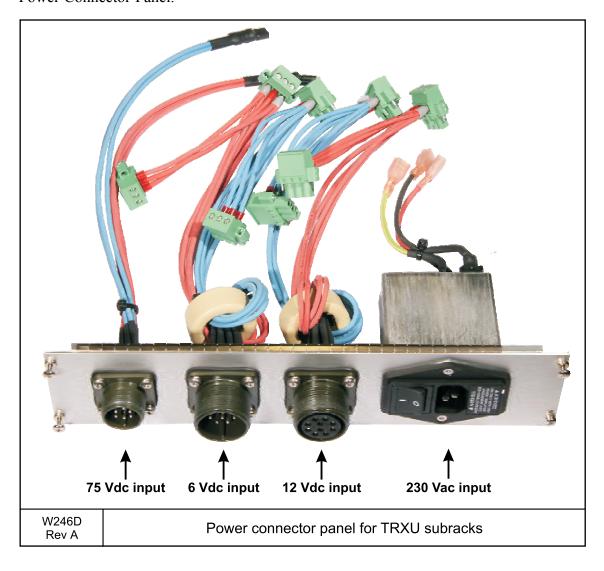
• Maximum diameter: Limited by the grommets on the cabinet

TRXU racks DC input wiring

These are the DC cables from the DC terminal boards at the rear of the three TRXU racks. Three Amphenol plugs connect these cables to the Power Connector Panel at rear side of the rack.

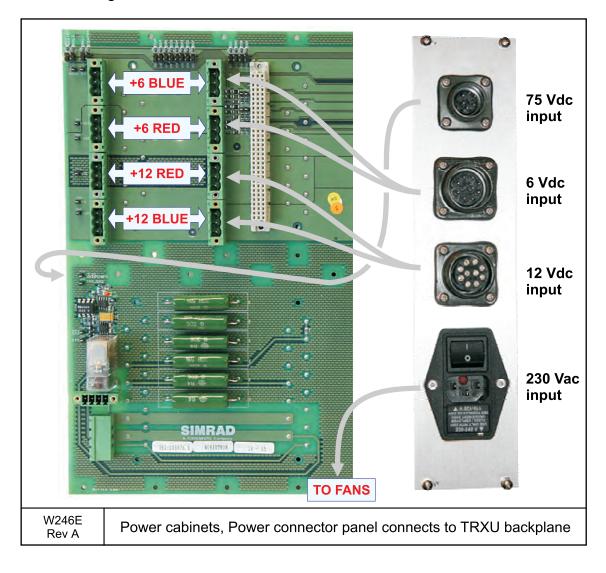
Cable specifications

• Conductors: 1.5 mm²

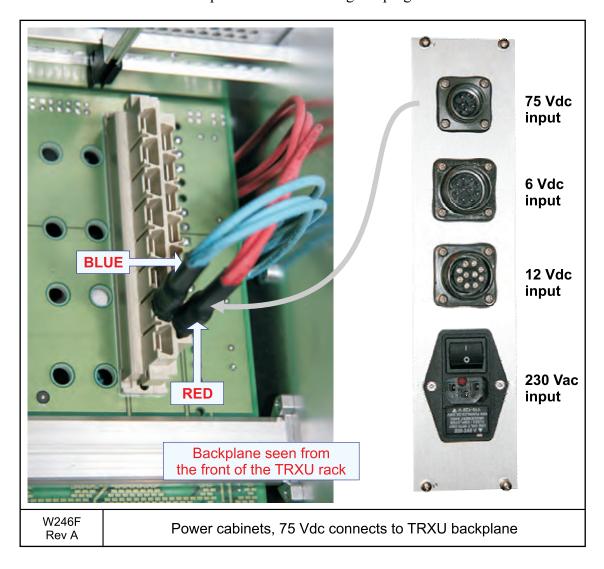

• Screen: Separate conductor

Voltage: 600 V

• Maximum diameter: Limited by the mounting pins on the Amphenol connectors.


Power Connector Panel

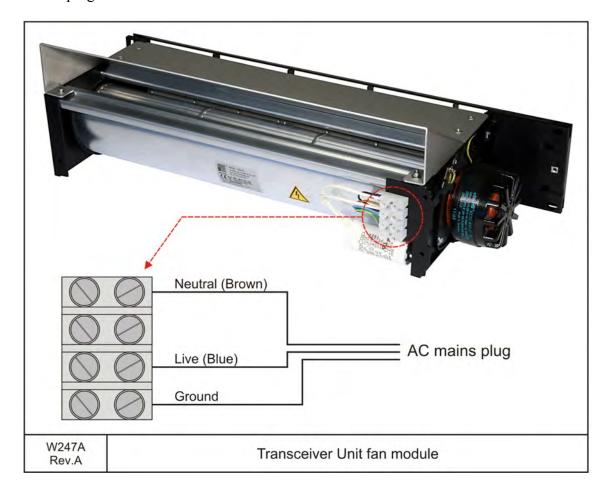
The DC and AC voltages are connected to the TRXU backplane and the fans through the Power Connector Panel.


+6 and +12 Vdc to the TRXU backplane

The +6 Vdc and the +12 Vdc voltages are connected to the TRXU backplane as shown below. The +75 Vdc cables are brought out to the front side of the backplane, while the 230 Vac voltage is connected to the fans at the bottom of the TRXU rack.

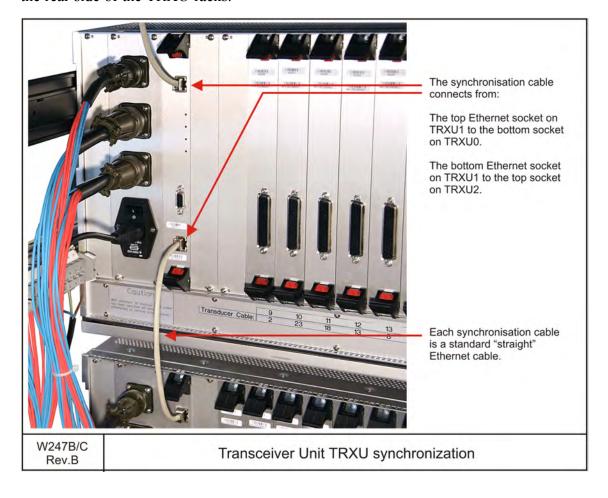
+75 Vdc to the TRXU backplane

The +75 Vdc cables are brought out to the front side of the backplane, and connects as shown below. Use a cable strip to secure the rectangular plug into the socket.

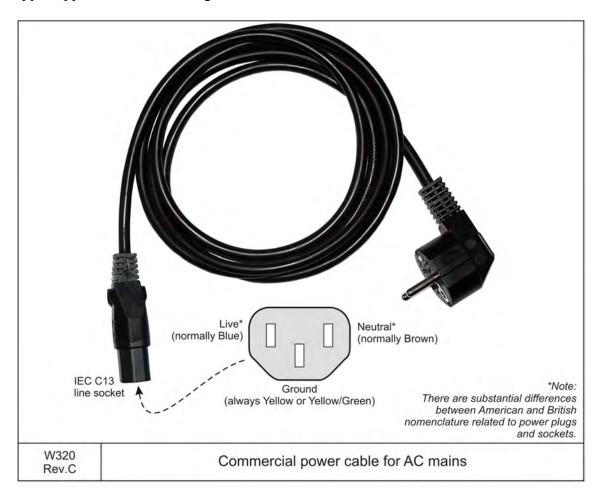

142 331549/B

Transceiver Unit wiring

Transceiver Unit Fan module wiring


The Transceiver Unit fan module is located at the bottom of the Transceiver Unit rack. Its mains cable is connected to Circuit Breaker 3.

A standard AC mains cable is used. One end is open, the other is fitted with a standard mains plug.


Transceiver Unit TRXU synchronization cable

Two special cables are used to provide TRXU synchronization. These are connected to the rear side of the TRXU racks.

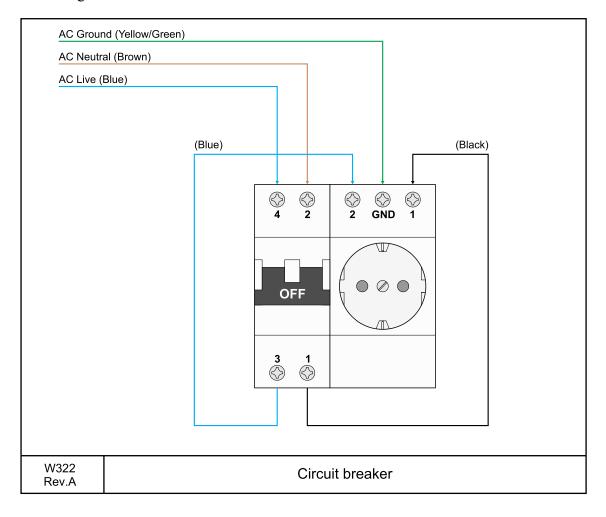
AC mains (IEC 60320)

This is a commercial 230 Vac power cable for mains power. One end is fitted with an IEC plug, the other with a standard European mains plug. This is a standard cable type supplied in different lengths.

Cable specifications

• Conductors: 2 x 1.5 mm² + GND

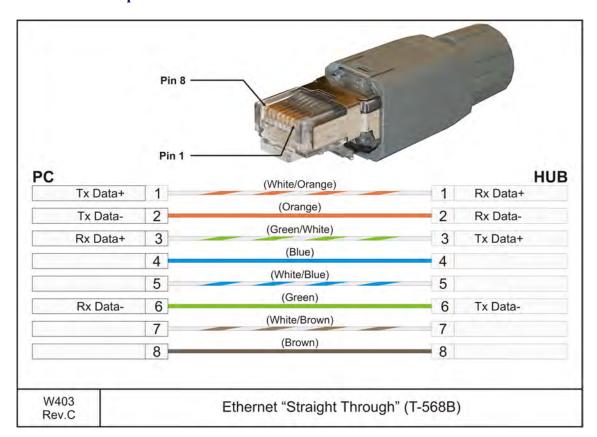
Screen: NoneVoltage: 750 V


Maximum diameter: Set by the plugs

More information

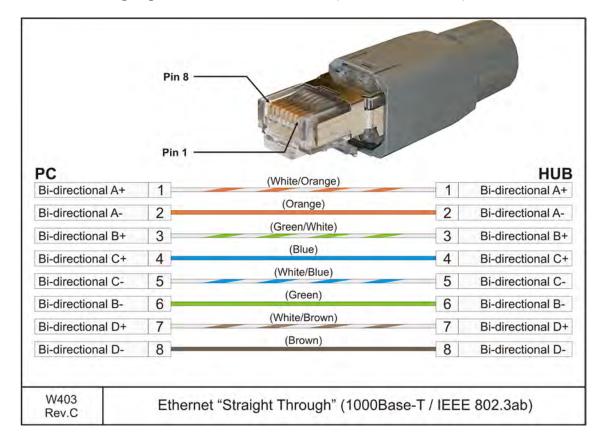
• http://en.wikipedia.org/wiki/IEC 320

Circuit breaker


This is a commercial circuit breaker providing overload protection. All cables used for the wiring are minimum 1.5 mm2.

RJ45 Ethernet, straight

This cable is used to provide standard Ethernet connections. Note that various categories exists. Normally, **CAT-5E** and **CAT-6** cables are used in local area networks with bandwidth exceeding 100 Mbit. Ethernet cables are available commercially in different lengths, colours and categories.


On the MS70, most of the local area networks cabling is for 1 Gbit bandwidth. We strongly recommend that **CAT-6** or **CAT-7** Ethernet cables are used.

10Base-T Low-speed Ethernet connections

Cable specifications

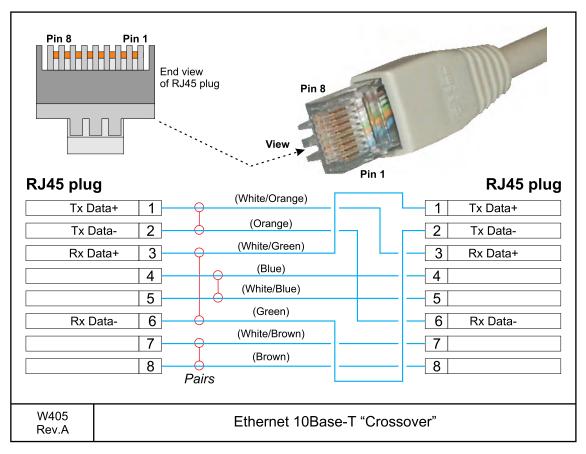
• Not applicable. This is a commercial cable.

1000Base-T High-speed Ethernet connections (CAT5E and faster)

Cable specifications

• Not applicable. This is a commercial cable.

More information


- http://en.wikipedia.org/wiki/TIA/EIA-568-B
- http://en.wikipedia.org/wiki/Category_5_cable

RJ45 Ethernet, crossover

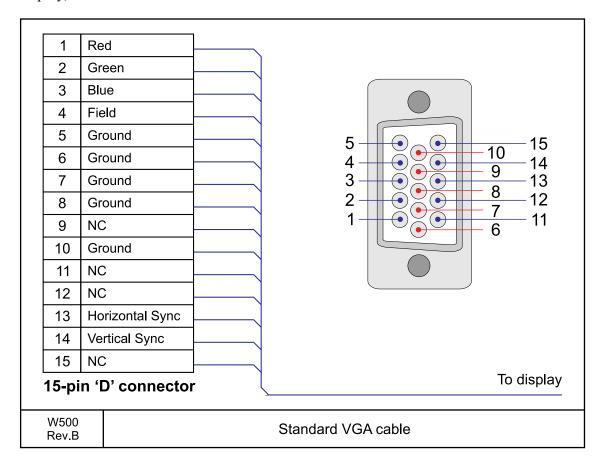
This cable is used to provide standard ethernet connections. Note that various categories exists. Normally, **Cat.5** and **Cat.6** cables are used in local area networks with bandwidth exceeding 100 Mbit

On the MS70 Scientific multibeam sonar however, most of the local area networks cabling is for 1 Gbit bandwidth, and we strongly recommend use of **Cat.6** or **Cat.7** cables.

Ethernet cables are available commercially in different lengths, colours and categories.

In order to prevent noise and crosstalk, you are strongly advised to use the cable pairs indicated in the drawing.

Cable specifications

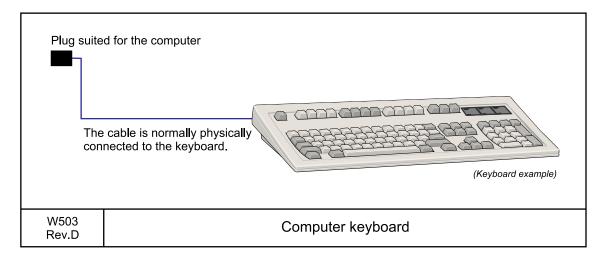

• Not applicable. This is a commercial cable.

More information

• http://en.wikipedia.org

VGA/SVGA Display

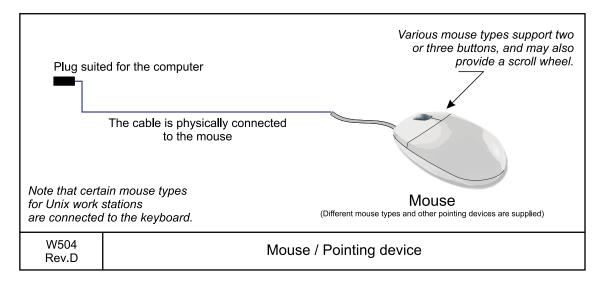
This is a standard VGA and SVGA video cable. One end is normally connected to the display, while the other end is terminated in a standard D-connector.


Cable specifications

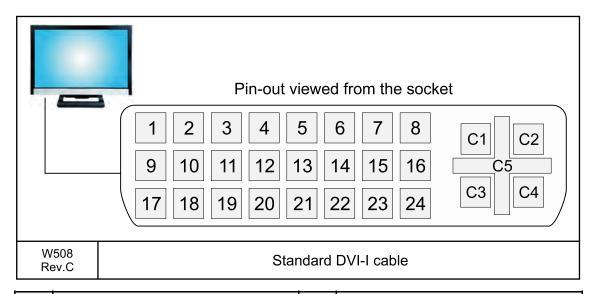
• Not applicable. This is a commercial cable.

Keyboard cable

This is a standard keyboard cable. In most cases, the cable is physically connected to the keyboard. It is terminated in a plug suited to fit the computer.

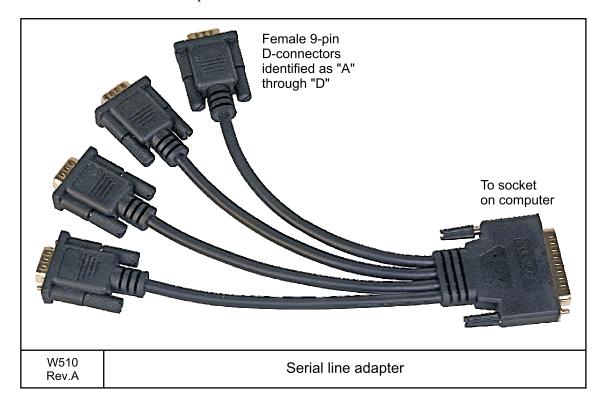

Several keyboard types are available for different languages and hardware platforms. Both the keyboard and the attached cable are commercial items.

Mouse cable


This is a standard mouse (or other pointing device) cable. It is physically connected to the mouse, and terminated in a plug suited to fit the computer. Several mouse and pointing device types are available with two or three buttons, and with or without a scroll wheel. Both the mouse and the attached cable are commercial items.

On Unix work stations, the mouse is normally connected to the keyboard.

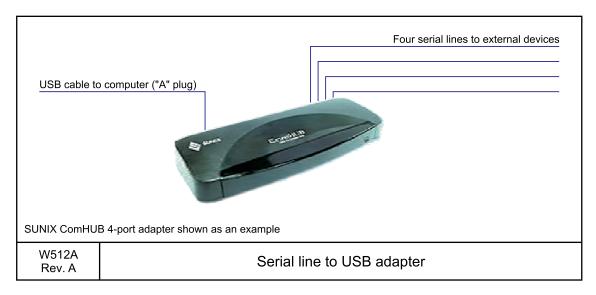
DVI-I Display


This cable is a standard DVI-I cable. It is normally provided with the colour display. For more information about the DVI signals, see http://en.wikipedia.org.

Pin	Signal	Pin	Signal
1	TMDS Data 2- (Digital red - (Link 1))	15	Ground (Return for pin 14 and analog sync)
2	TMDS Data 2+ (Digital red + (Link 1))	16	Hot plug detect
3	TMDS Data 2/4 shield	17	TMDS data 0- (Digital blue - (Link 1) and digital sync)
4	TMDS Data 4- (Digital green - (Link 2))	18	TMDS data 0+ (Digital blue + (Link 1) and digital sync)
5	TMDS Data 4+ (Digital green + (Link 2))	19	TMDS data 0/5 shield
6	DDC clock	20	TMDS data 5- (Digital red - (Link 2))
7	DDC data	21	TMDS data 5+ (Digital red + (Link 2))
8	Analog vertical sync	22	TMDS clock shield
9	TMDS Data 1- (Digital green - (Link 1))	23	TMDS clock+ (Digital clock + (Links 1 & 2))
10	TMDS Data 1+ (Digital green + (Link 1))	24	TMDS clock- (Digital clock - (Links 1 & 2))
11	TMDS Data 1/3 shield	C1	Analog red
12	TMDS Data 3- (Digital blue - (Link 2))	C2	Analog green
13	TMDS Data 3+ (Digital blue + (Link 2))	C3	Analog blue
14	+5 Vdc (Power for monitor when in standby)	C4	Analog horizontal sync
TMDS = Transition Minimized Differential Signaling		C5	Analog ground (Return for R, G and B signals)

Serial line adapter

This is a commercial adapter. It allows you to connect four RS-232 serial lines to a common socket on the computer.

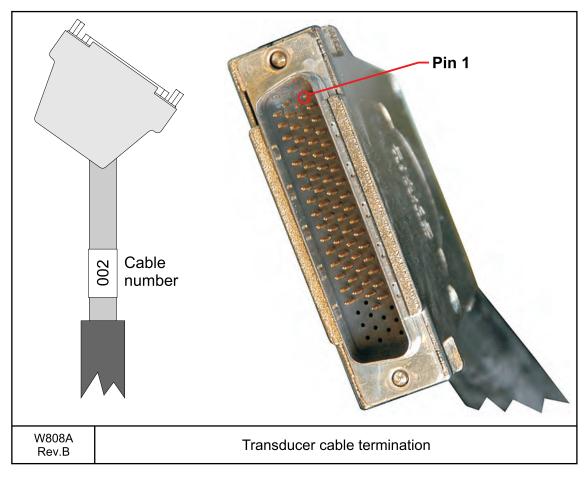


Cable specifications

• Not applicable

Serial line to USB adapter

Commercial adapters providing conversion from RS-232 serial line to USB are available.


For information about cables and connections, observe the documentation provided with the adapter.

Transducer cables

This is the termination of the transducer cable from the MS70 transducer array to the sockets on the rear side of the transceiver shelves. The other end of each cable is permanently fixed to the transducer array.

Transducer connector

The drawing and table below show how the each transducer connector is wired.

• Minimum bending radius during installation: 95 mm

Minimum bending radius, dynamic: 243 mm

Tensile strength: 3000 N

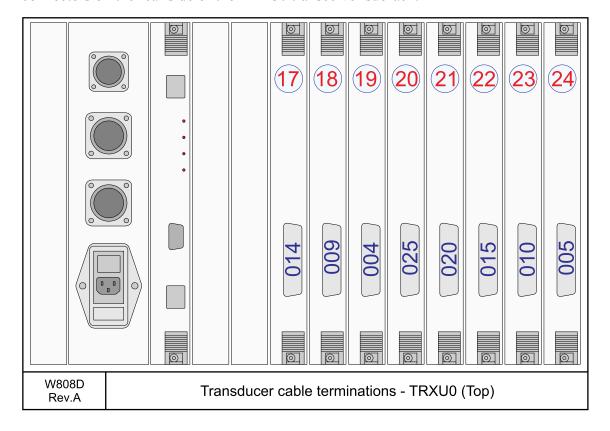
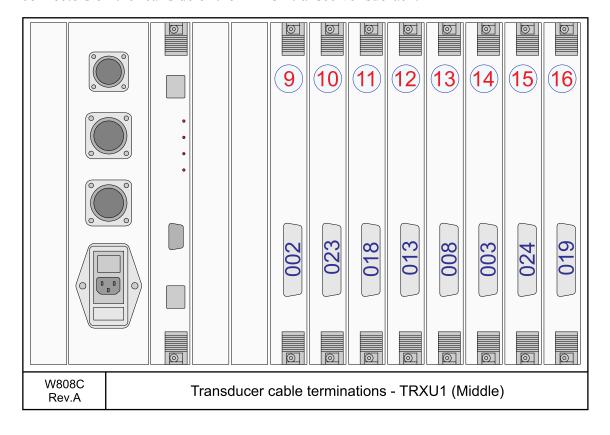
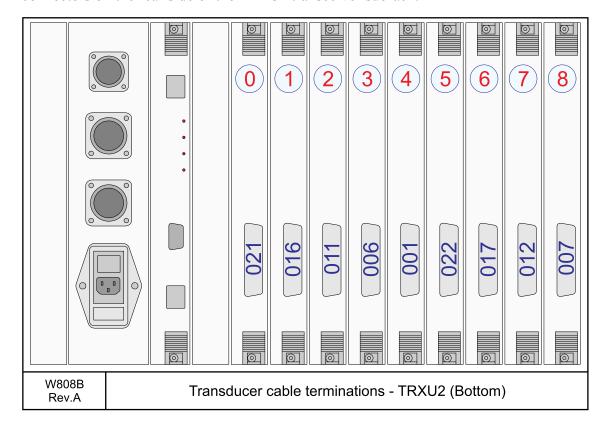

The connections made inside the D-connector are specified in the table below. Each pair in the cable contains the signal for the corresponding channel with the offset of 1 (pair 1 for channel 0 etc). Pair 33 is for the built-in thermistor. The cable contains three additional pairs, but these are cut.

Table 42 Connections made inside the D-connector

Pair	Pin numbers		Cable colour cod	Cable colour code	
1	1	21	White	Brown	
2	40	60	Green	Yellow	
3	2	22	Grey	Pink	
4	41	61	Blue	Red	
5	3	23	Black	Violet	
6	42	62	Grey/Pink	Red/Blue	
7	4	24	White/Green	Brown/Green	
8	43	63	White/Yellow	Yellow/Brown	
9	5	25	White/Grey	Grey/Brown	
10	44	64	White/Pink	Pink/Brown	
11	6	26	White/Blue	Brown/Blue	
12	45	65	White/Red	Brown/Red	
13	7	27	White/Black	Brown/Black	
14	46	66	Grey/Green	Yellow/Green	
15	8	28	Pink/Green	Yellow/Pink	
16	47	67	Green/Blue	Yellow/Blue	
17	9	29	Green/Red	Yellow/Red	
18	48	68	Green/Black	Yellow/Black	
19	10	30	Grey/Blue	Pink/Blue	
20	49	69	Grey/Red	Pink/Red	
21	11	31	Grey/Black	Pink/Black	
22	50	70	Blue/Black	Red/Black	
23	12	32	White	Brown	
24	51	71	Green	Yellow	
25	13	33	Grey	Pink	
26	52	72	Blue	Red	
27	14	34	Black	Violet	
28	53	73	Grey/Pink	Red/Blue	
29	15	35	White/Green	Brown/Green	
30	54	74	White/Yellow	Yellow/Brown	
31	16	36	White/Grey	Grey/Brown	
32	55	75	White/Pink	Pink/Brown	
33	17	37	White/Blue	Brown/Blue	


Terminations to TRXU0 (Top subrack)

The drawing below shows which transducer cables that are connected to the eight connectors on the rear side of the TRXU0 transceiver subrack.


Terminations to TRXU1 (Middle subrack)

The drawing below shows which transducer cables that are connected to the eight connectors on the rear side of the TRXU1 transceiver subrack.

Terminations to TRXU2 (Bottom subrack)

The drawing below shows which transducer cables that are connected to the nine connectors on the rear side of the TRXU2 transceiver subrack.

Setting to work

The procedures in this chapter shall be carried out once all the MS70 hardware units have been installed, and the cabling is finished.

When you carry out these procedures, make sure that you only perform those tasks described, and in the given order.

Topics

- *Initial power-on* on page 161
- *Performance testing* on page 161

Initial power-on

The initial power-on procedure is done by personnel from Kongsberg Maritime AS.

Performance testing

The performance tests are described in the *Harbour Acceptance Test* and *Sea Acceptance Test* procedures.

Technical specifications

This chapter provides the technical specifications and requirements related to the Simrad MS70.

In Kongsberg Maritime, we are continuously working to improve the quality and performance of our products. Technical specifications may therefore be changed without prior notice.

Topics

- System components on page 163
- Operation and performance on page 164
- Interface specifications on page 169
- Weights and outline dimensions on page 171
- Power requirements on page 173
- Environmental requirements on page 174

System components

The Simrad MS70 comprises the following units.

Basic system

- One Multibeam Operator Station
- One Transceiver Unit, including
 - Six beamforming computers
 - Three customised transceiver racks
 - One Ethernet switch
- Three Power Supply Units
- One Transducer Array

Optional systems

- Element Data Logger
 - Element Data Logger Operator Station
 - One Ethernet switch (if required)

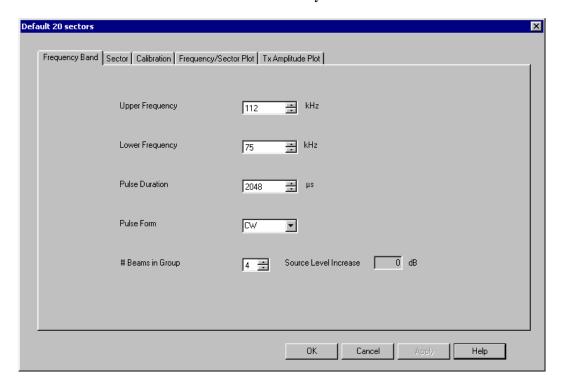
Operation and performance

This section provides the performance specifications for the Simrad MS70.

The Simrad MS70 is a flexible instrument allowing for a variety of different configurations optimized for different survey objectives. As many of the system parameters are mutually dependent the performance specification numbers will depend on the specific operation configuration. Please note that it will not be possible to obtain the limits for all performance parameters simultaneously as they are mutually dependent.

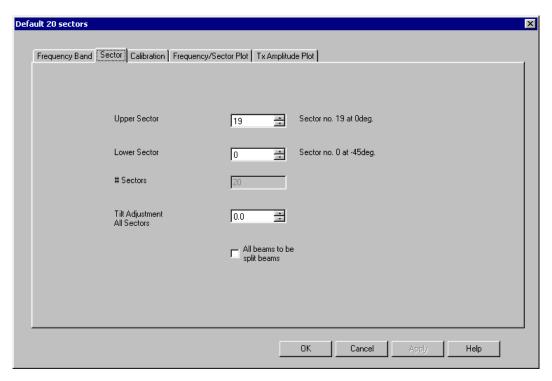
Topics

- Configuration settings on page 165
- Operational performance on page 167
- Performance, Multibeam Operator Station on page 168
- Performance, Transceiver Unit on page 168
- Performance, Power Supply Unit on page 168
- Performance, Transducer array on page 168


Configuration settings

Frequency band

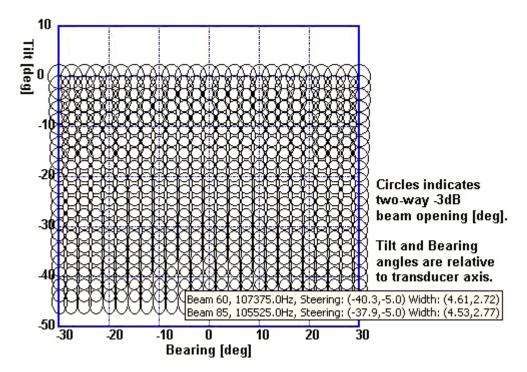
Upper frequency: 75 to 112 kHz
Lower frequency: 75 to 112 kHz
Pulse duration: 1024 to 10240 µsec


• Pulse forms: CW and LFM (Linear FM)

• Number of sectors transmitted simultaneously: 1 to 4

Sectors

• Number of sectors: 1 to 20



Operational performance

Coverage

Horizontal plane: ±30 degrees
Vertical plane: 0 to 45 degrees

Figure 55 Frequency/Sector plot

Motion compensation

• Roll compensation: $\leq \pm 10^{\circ}$

Sidelobe level

• -35 dB horizontal (alongship)

• -25 dB vertical

Transmit and receive

• Source level: $\leq 225 \text{ dB}$

• Receiver dynamic range: 150 dB (instantaneous)

• Individual transmitter channels: 800

• Individual receiver channels: 800

• Ping rate: $\leq 2 \text{ Hz}$

Sample rates

• Output sample rate: 62,5 kHz complex sampling (before decimation)

• Output sample length: Minimum 1,2 cm

Performance, Multibeam Operator Station

Hardware

Processor: Pentium IV or later

• Processor speed: Minimum 3 GHz

• Memory capacity: Minimum 2 Gb

• Hard-disk capacity: Minimum 20 Gb

• Type: Simrad APC12 Processor Unit

Software

- Operating system: Microsoft® Windows XP®
- Scientific multibeam sonar application: Custom Simrad software

Performance, Transceiver Unit

- TRC Beamforming computers: Dell PowerEdge R610
- TRXU Transceivers: Custom MS70
- Ethernet switch: HP Procurve 2910

Performance, Power Supply Unit

- Output voltages:
 - +6 Vdc, 20 A
 - +12 Vdc, 10 A
 - +75 Vdc, 4 A
- Nominal power delivered to TRXU load: 270 W
- Ethernet cable:

- Length: 10 m

- Type: CAT 5

• DC voltage cables:

- Maximum length: 10 m

- Total weight, all power cables: 14 kg

Performance, Transducer array

• Technology: Ceramic polymer composite

• Number of individual elements: 800

• Frequency range: 70 to 120 kHz

• Maximum transducer depth: 15 m

Interface specifications

This section provides the interface specifications for the Simrad MS70.

All serial lines are provided with adjustable baud rate, data bits, parity, and talker ID.

All Ethernet interfaces are provided with adjustable IP address and port number. The Ethernet interface may also be used to connect to the ship network to access file data.

Serial lines

- Inputs:
 - Position: NMEA 0183 (GGA, GLL, or RMC)
 - Speed: NMEA 0183 (VBW, VTG, or RMC)
 - Heading: NMEA 0183 (HDM, HDT, HDG, or VHW)
 - Distance: NMEA 0183 (VLW) or 1/200 nmi contact pulses
 - Sound speed at transducer face: AML Smart Sensor Format
 - Trawl: Simrad ITI, Simrad PI, or Ifremer (Pacha and Scanmar)
 - Motion: Kongsberg EM Attitude
 - Synchronization (Slave): CTS and RTS
- Outputs:
 - Depth: NMEA 0183 (DBS, DBT, DPT, Simrad, and Atlas)
 - Synchronization (Master): CTS and RTS

Ethernet

- Inputs:
 - Position: NMEA 0183 (GGA, GLL, or RMC)
 - Speed: NMEA 0183 (VBW, VTG, or RMC)
 - Heading: NMEA 0183 (HDM, HDT, HDG, or VHW)
 - Distance: NMEA 0183 (VLW)
 - Trawl: Simrad ITI, Simrad PI, or Ifremer (Pacha and Scanmar)
 - Remote control: MS70 Remote control commands (proprietary)
 - Data subscription: MS70 Data subscription commands (proprietary)
- Outputs:
 - Depth: NMEA 0183 (DBS, DBT, DPT, Simrad, and Atlas)
 - Remote control: MS70 Remote control responds (proprietary)
 - Data subscription: A wide variety of MS70 output data

File

• Inputs:

- Beam mode configuration parameters
- Calibration data
- User settings
- Sound speed profile for the water column
- Previously recorded data for replay

• Outputs:

- Beam mode configuration parameters
- Calibration data
- User settings
- Raw data for replay

Other interfaces

Depending on the choice of Multibeam Operator Station model various interfaces are available such as Firewire, USB 2.0, and CD/DVD recorder.

Weights and outline dimensions

This section provides the technical specifications and requirements related to weight and outline dimensions. For more detailed information about the dimensions, refer to *Drawing file* on page 175.

Note _____

All weights are approximate.

Display Unit

• Not applicable. Refer to the documentation provided by the manufacturer.

Multibeam Operator Station

Weight: 20 kgWidth: 445 mmHeight: 185 mmDepth: 365 mm

• Outline dimensions:

- Multibeam Operator Station (341305) on page 176

Transceiver Unit

Weight: 380 kgWidth: 600 mmDepth: 900 mm

• **Height:** 1921 mm (excluding air outlet)

• Outline dimensions:

- Transceiver Unit outline (281020) on page 177

Power Supply Unit

Weight: 82 kg
 Width: 600 mm
 Depth: 418 mm
 Height: 812 mm

Outline dimensions:

- Power Supply Unit outline (311237) on page 181

Transducer array

Overall diameter: 677 mmHeight, main body: 313 mm

• Maximum length of transducer cables: 30 m

• Weights:

- Weight without cables: 250 kg

- Weight of transducer cables: 8,75 kg per meter

- Weight of transducer cables with protective hose: 12,5 kg per meter

- Weight of transducer array with 15 m cables: 382 kg

• Minimum space required behind transducer: 500 mm

Outline dimensions:

- Transducer Array outline (208463) on page 184

- Clamping ring (208465) on page 186

- *Mounting ring (208461)* on page 188

Transducer cable

• Minimum bending radius, static: 95 mm

• Minimum bending radius, dynamic: 243 mm

• Tensile strength: 3000 N

Outer sheet: Polyurethane

Power requirements

This section provides the technical specifications and requirements related to the AC mains supply.

Display Unit

• Not applicable. Refer to the documentation provided by the manufacturer.

APC12 Processor Unit

- Voltage requirement: 115/230 Vac / 47–63 Hz / single phase, selectable (nominal)
- Deviation: 15%
- Transient: 20% of nominal voltage, recovery time 3 s
- Power consumption: Approximately 150 VA
- Recommended circuit breaker: 10 A, slow

Transceiver Unit

- Voltage requirement: 230 Vac / 50–60 Hz / single phase (nominal)
- Deviation: 15%
- Transient: 20% of nominal voltage, recovery time 3 s
- Power consumption:
 - TRC Computers: $6 \times 400 \text{ W} = 2.400 \text{ W}$
 - Ethernet switch: 100 W
 - Fan unit: 100 W
- Recommended circuit breaker: 2 x 10 A, slow

Power Supply Unit

- Voltage requirement: 230 Vac / 50–60 Hz / single phase (nominal)
- Deviation: 15%
- Transient: 20% of nominal voltage, recovery time 3 s
- Power consumption: Approximately 800 W (each cabinet)
- Recommended circuit breaker: 10 A, slow (each cabinet)

Environmental requirements

This section provides the technical specifications and requirements related to the environmental conditions.

Display Unit

• Not applicable. Refer to the documentation provided by the manufacturer.

Multibeam Operator Station

- Operational temperature: $0 \rightarrow +50^{\circ}\text{C}$
- Storage temperature: $-40 \rightarrow +70^{\circ}$ C
- Maximum ambient relative humidity, no condensation, operation: $8 \rightarrow 85\%$
- Maximum ambient relative humidity, no condensation, storage: $8 \rightarrow 95\%$

Transceiver Unit

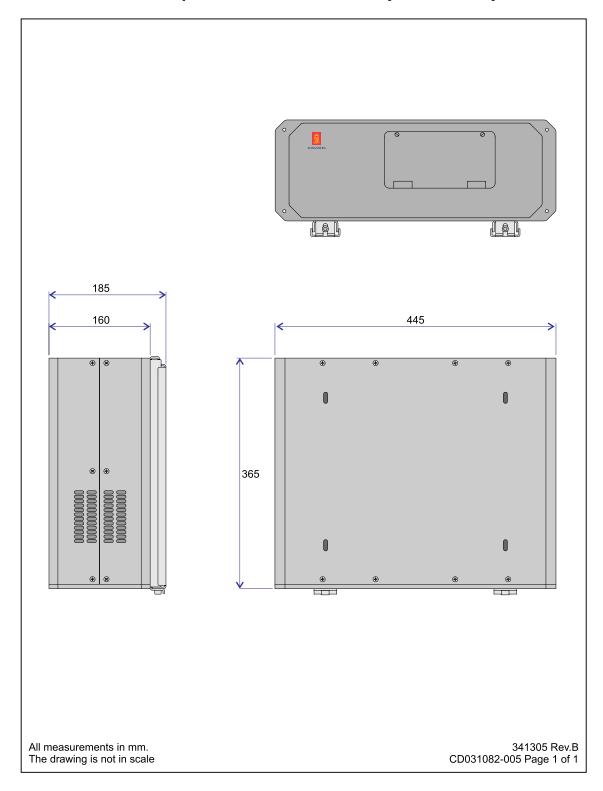
- Operational temperature: $10 \rightarrow +30^{\circ}\text{C}$ with a maximum temperature gradation of 10°C per hour
- Storage temperature: $-40 \rightarrow +65^{\circ}\text{C}$
- Maximum ambient relative humidity, no condensation, operation: $20 \rightarrow 80\%$ with maximum humidity gradation of 10% per hour
- Maximum ambient relative humidity, no condensation, storage: $8 \rightarrow 95\%$

Power Supply Unit

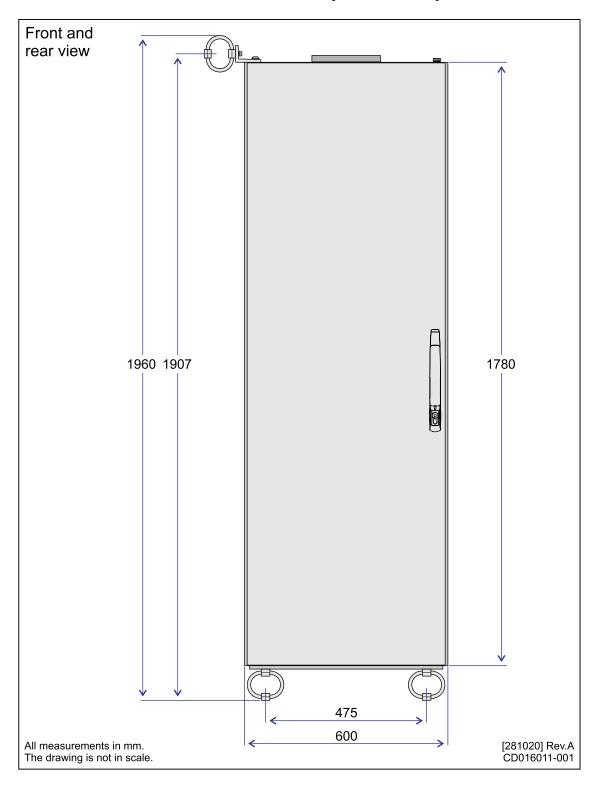
- Operational temperature: $0 \rightarrow +30^{\circ}\text{C}$
- Storage temperature: $-40 \rightarrow +65^{\circ}\text{C}$
- Maximum ambient relative humidity, no condensation, operation: $8 \rightarrow 85\%$
- Maximum ambient relative humidity, no condensation, storage: $8 \rightarrow 95\%$

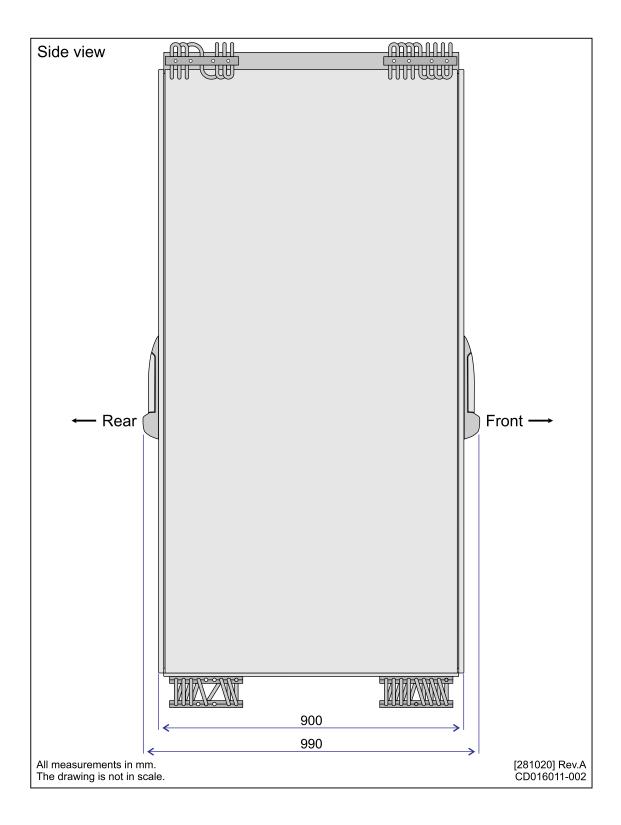
Drawing file

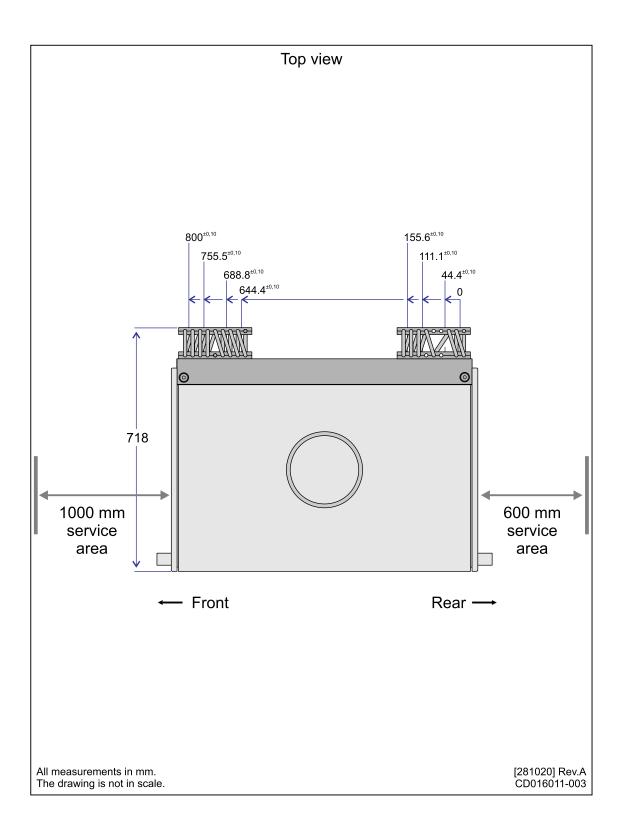
This chapter contains relevant drawings related to the installation and maintenance of the Simrad MS70.

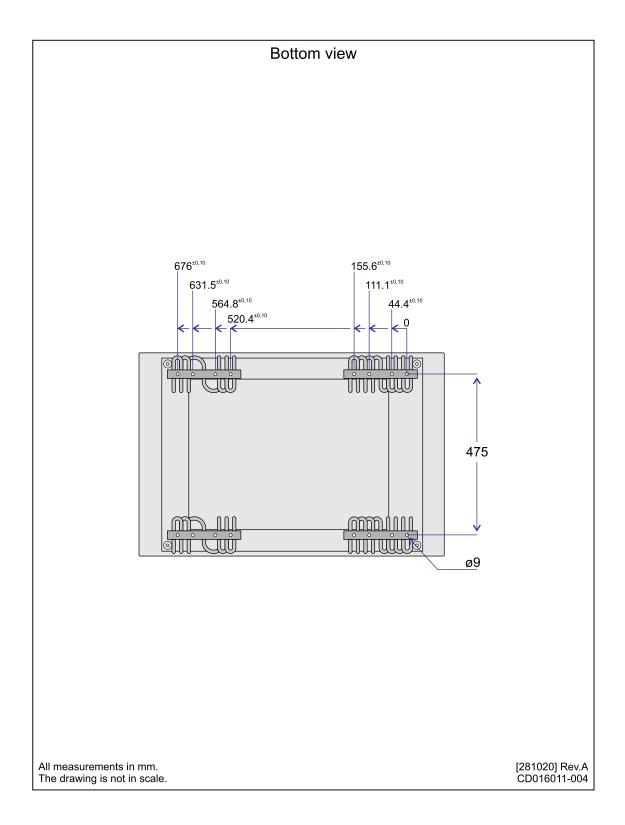

N	lot	-6

The mechanical drawings are for information and guidance only. They are not in scale. All dimensions are in mm unless otherwise is noted. The original installation drawings are available on PDF and/or AutoCad's DWG format.

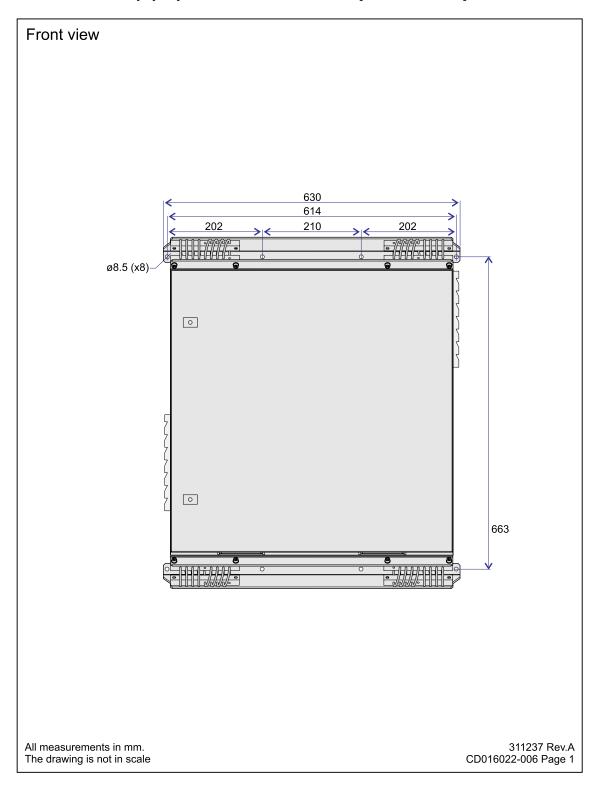

Topics

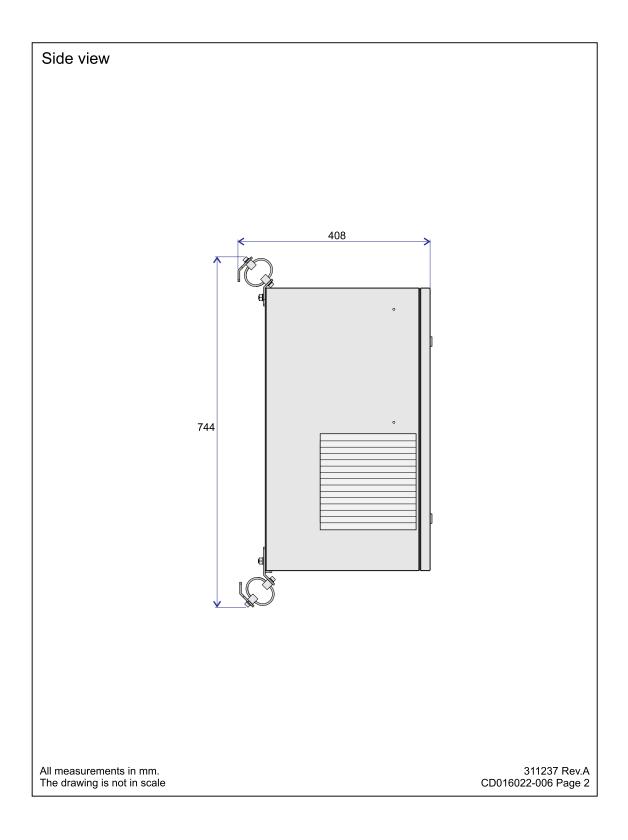

- Multibeam Operator Station (341305) on page 176
- Transceiver Unit outline (281020) on page 177
- Power Supply Unit outline (311237) on page 181
- Power Supply Unit mounting frame (308337) on page 183
- Transducer Array outline (208463) on page 184
- Clamping ring (208465) on page 186
- *Mounting ring (208461)* on page 188

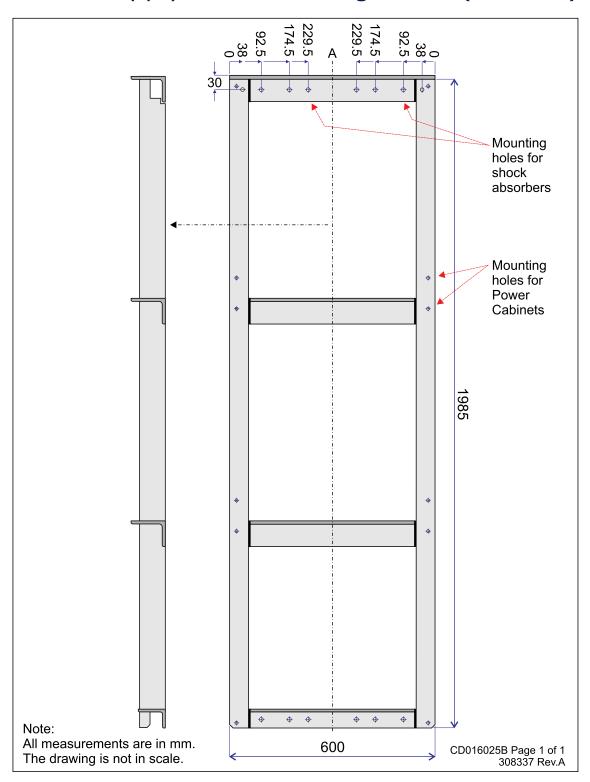

Multibeam Operator Station (341305)



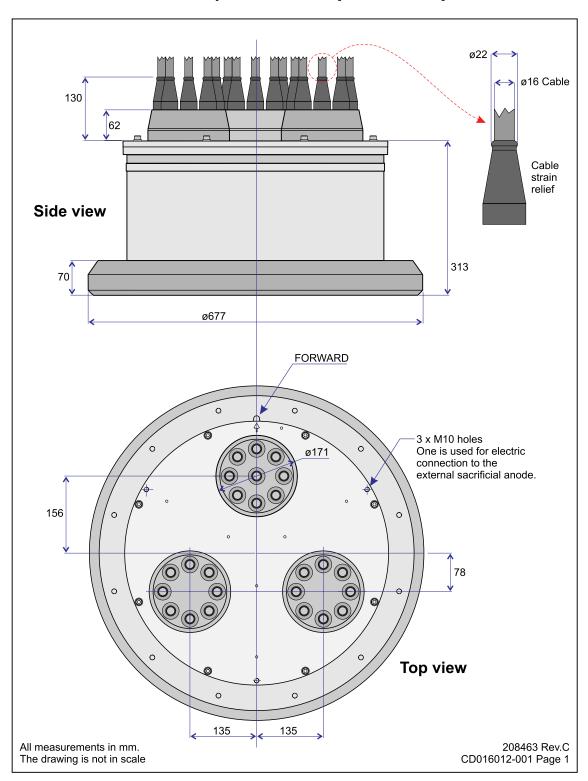
Transceiver Unit outline (281020)

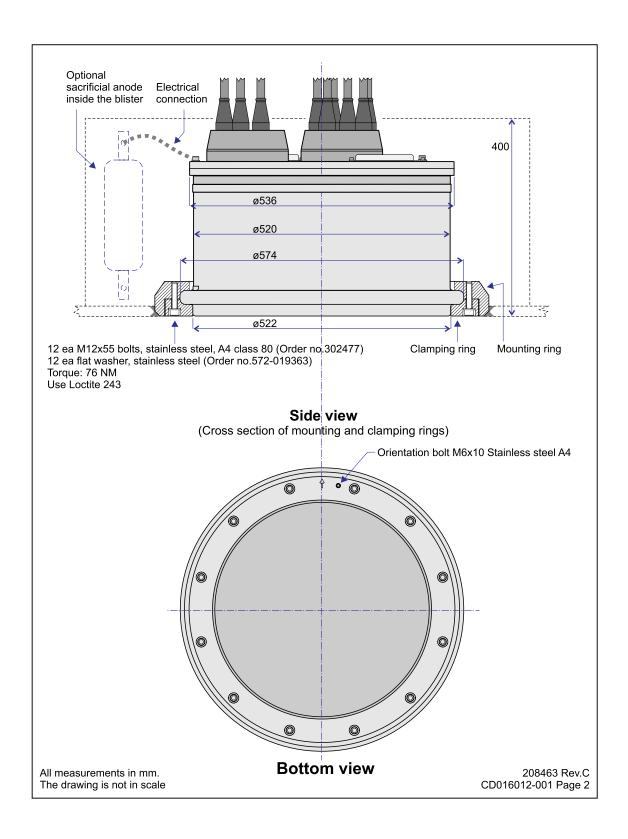




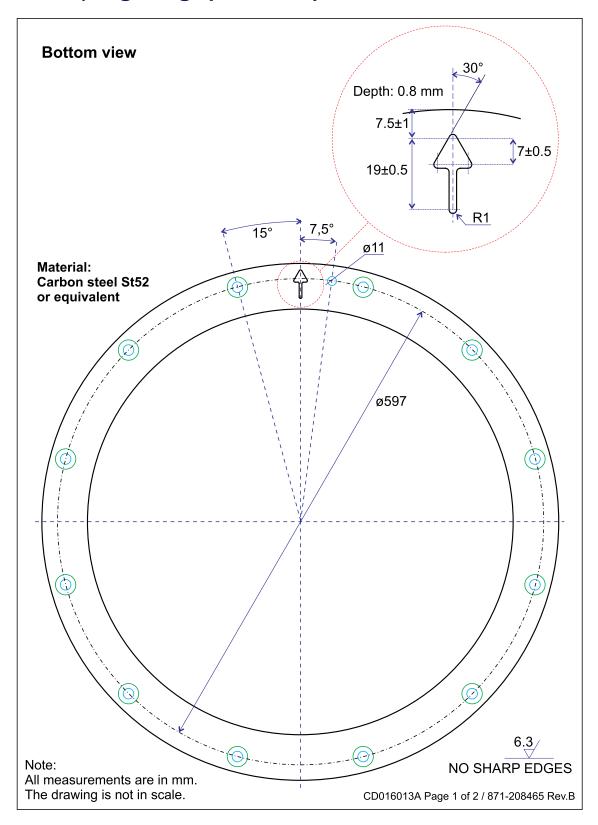


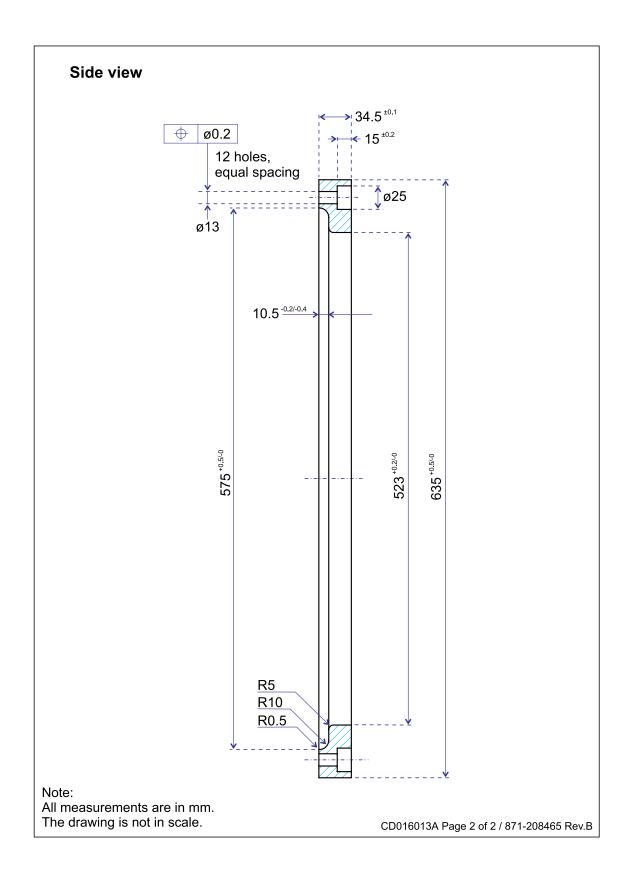
Power Supply Unit outline (311237)

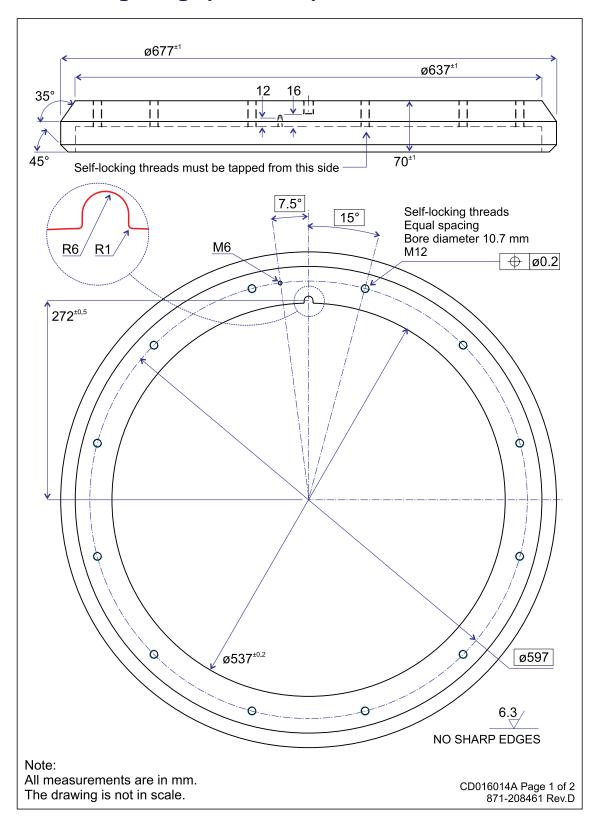


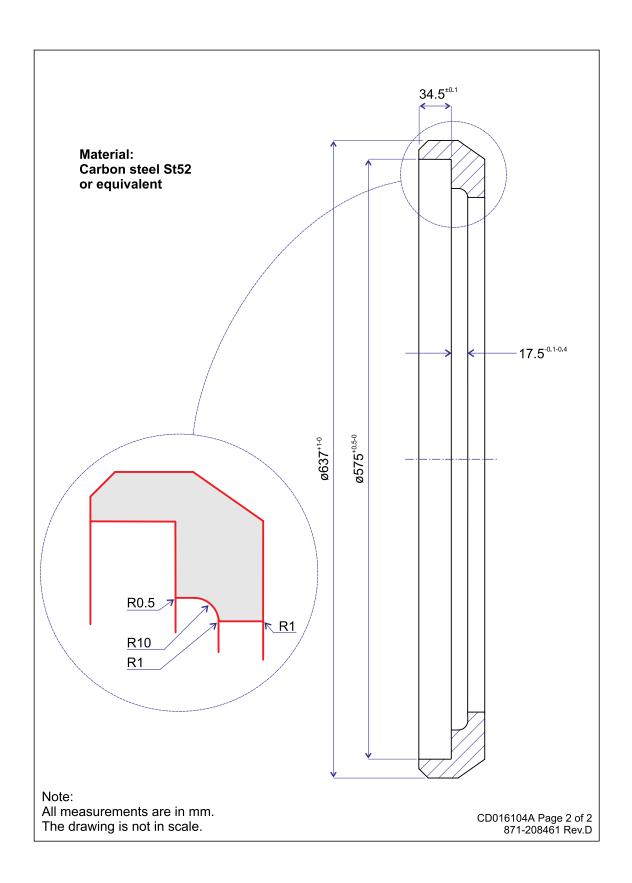


Power Supply Unit mounting frame (308337)




Transducer Array outline (208463)




Clamping ring (208465)

Mounting ring (208461)

Appendix A Equipment handling

This section provides the basic rules for transportation, storage and handling of units. In this context, a unit may be any large or small part of the system. It can be supplied as part of the initial delivery, or as a spare part.

Topics

Transportation

Unless otherwise stated in the accompanying documentation, electronic, electro-mechanical and mechanical units supplied by Kongsberg Maritime can be transported using all methods approved for delicate equipment; (by road, rail, air or sea). The units are to be transported in accordance with general or specific instructions for the appropriate unit(s), using pallets, transport cases, or carton boxes as appropriate.

Note				
C	 	4 4 ?	1: . 1	

Special local restrictions concerning air transportation may be applied to units containing certain types of batteries. These units must be checked properly, and the regulations must be investigated by the packer/shipper before the unit is dispatched.

All local transportation must be carried out according to the same specifications as for the initial delivery. In general, all units must be handled with care.

The carton or case containing the unit must be kept dry at all times, and must be sheltered from the weather. It must not be subjected to shocks, excessive vibration or other rough handling. The carton or case will normally be marked with text or symbols indicating which way it is to be placed. Follow any instructions given, and ensure the case is always placed with its "top" uppermost.

The carton or case must not be used for any purpose for which it was not intended (step, table, etc.), and in the absence of other information, no other cartons or cases must be stacked on top of it.

Lifting

A heavy crate will normally be marked with its weight, and the weights of other cartons or crates will normally be entered on the packing list.

- You must always check the weight of a crate before you attempt to lift it.
- You must always use lifting apparatus that is approved and certified for the load.

Heavy units may be equipped with lifting lugs for transportation by crane within the workshop or installation area. Before you use a crane:

- You must check the applicable weight certificate for the crane.
- You must check the security of the lifting lugs.

Ensure that all available lifting lugs are used. Ensure the unit remains under control during the operation to avoid damage to the unit, equipment or personnel.

Heavy units may be transported using a forklift truck. Special attention must then be paid to the position of the unit's centre of gravity. The units must be properly secured to the truck.

Storage prior to installation or use

When a system, a unit or a spare part has been delivered to the customer, it may be subject to long time storage prior to installation and use. During this storage period, certain specifications must be met. The equipment must be preserved and stored in such a way that it does not constitute any danger to health, environment or personal injury.

- 1 The equipment must be stored in its original transportation crate.
- 2 Ensure that the units are clearly separated in the shelves and that each unit is easily identifiable.
- 3 The crate must not be used for any purpose for which it was not intended (eg. work platform etc.).
- 4 The crates must not be placed on top of each other, unless specific markings permit this.
- 5 The crates must not be placed directly on a dirt-floor.
- 6 Do not open the crate for inspection unless special circumstances permit so.
 - "Special circumstances" may be suspected damage to the crate and its content, or inspections by civil authorities.
 - If any units are damaged, prepare an inspection report stating the condition of the unit and actions taken. Describe the damage and collect photographic evidence if possible. Re-preserve the equipment.
 - If the units are not damaged, check the humidity absorbing material. If required, dry or replace the bags, then re-pack the unit(s) according to the packing instructions.
- 7 If the crate has been opened, make sure that is it closed and sealed after the inspection. Use the original packing material as far as possible.

- **8** The storage room/area must be dry, with a non-condensing atmosphere. It must be free from corrosive agents.
- 9 The storage area's mean temperature must not be lower than -30° C, and not warmer than +70° C. If other limitations apply, the crates will be marked accordingly.
- 10 The crate must not be exposed to moisture from fluid leakages.
- 11 The crate must not be exposed to direct sunlight or excessive warmth from heaters.
- 12 The crate must not be subjected to excessive shock and vibration.
- 13 If the unit contains normal batteries, these may have been disconnected/isolated before the unit was packed. These must only be reconnected before the installation starts. Units containing batteries are marked.

\sim			
Cai	1+	-	n
	,,,	,,,	,,,

Units containing lithium or alkaline batteries must be handled separately and with care. Such units are marked accordingly. Do not attempt to recharge such batteries, open them or dispose of them by incineration. Refer to the applicable product data sheets.

Inspection

An inspection must be carried out immediately after the unit(s) have arrived at their destination.

- 1 Check all wooden or cardboard boxes, plastic bags and pallets for physical damage. Look for signs of dropping, immersion in water or other mishandling.
- 2 If damage is detected externally, you will have to open the packaging to check the contents. Request a representative of the carrier to be present while the carton is opened, so any transportation damage can be identified.
- 3 If any units are damaged, prepare an inspection report stating the condition of the unit and actions taken. Describe the damage and collect photographic evidence if possible. Send the inspection report to Kongsberg Maritime as soon as possible.
- 4 If the units are not damaged, check the humidity absorbing material. If required, dry or replace the bags, then re-pack the unit(s) according to the packing instructions.

Unpacking

General unpacking procedure

Normal precautions for the handling, transportation and storage of fragile electronic equipment must be undertaken.

Note		

If the unit is not to be prepared for immediate use, you may consider storing it unopened in its original packing material. However, it may be useful to open the case to check its contents for damage and retrieve any accompanying documentation.

Do not use a knife to open cardboard cartons - the contents may lie close to the surface, and may be damaged by the blade.

- 1 Check the carton before opening it to ensure it shows no signs of dropping, immersion in water or other mishandling. If the carton shows signs of such damage, refer to the paragraph covering Inspection on receipt.
- 2 Place the carton on a stable work bench or on the floor with the top of the carton uppermost.
- 3 In the absence of other instructions, always open the top of the carton first. The contents will normally have been lowered into the carton from above, so this will usually be the easiest route to follow. Care must be used when opening the carton to ensure the contents are not damaged. Do not use a knife to open cardboard cartons
- 4 If the carton has been closed using staples, remove the staples from the carton as you open it. This will reduce the possibilities of scratch injury to yourself and damage to the contents.
- 5 If a wooden crate has been closed using screws, always remove them using a screwdriver. Do not attempt to prise the lid off with a crowbar or similar.
- 6 Once the carton is open, carefully remove all loose packing and insulation material. Check for manuals and other documents that may have been added to the carton during packing, and put these to one side. Check also for special tools, door keys etc.

Unpacking electronic and electromechanical units

Electronic and electromechanical units will normally be wrapped in a clear plastic bag. Lift the unit, in its bag, out of the carton and place it in a stable position on the floor/work bench.

Inspect the unit for damage before opening the plastic bag.

=	=	 _	
Note			
11000			

Beware of the dangers of Electro-Static Discharge (ESD) both to yourself and to the equipment, when handling electronic units and components.

Cables must **never** be used as carrying handles or lifting points.

Do not break the seal to open a circuit board package before the board is to be used. If the board package is returned to the manufacturer with the seal broken, the contents will be assumed to have been used and the customer will be billed accordingly.

Assuming all is well, open the bag and remove the unit.

Open the unit and check inside. Remove any packing and desiccant material that may be inside.

Unpacking mechanical units

Mechanical units may be heavy. Using a suitably certified lifting apparatus, lift the unit out of the crate and place it in a stable position on the floor/work bench.

Inspect the unit for damage and remove any packing material that may be inside the unit.

Unpacking transducers

Transducers may be supplied mounted to a hull unit (if any), or packed separately. Crates are normally identified by the order number and the serial number.

The transducer face must be protected by a rigid, padded cover (e.g. a wooden box lined with foam rubber) all the time it is exposed to the risk of physical damage.

Caution			

Once transducer is unpacked, great care must be taken to ensure that transducer body and cabling is not exposed to any mechanical stress.

Storage after unpacking

The unit must whenever possible be stored in its original transportation crate until ready for installation. The crate must not be used for any purpose for which it was not intended (eg. work platform etc.).

Once unpacked, the equipment must be kept in a dry, non condensing atmosphere, free from corrosive agents and isolated from sources of vibration.

Note			

Do not break the seal to open a circuit board package before the board is to be used. If the board package is returned to the manufacturers with the seal broken, the contents will be assumed to have been used and the customer will be billed accordingly.

The unit must be installed in its intended operating position as soon as possible after unpacking. If the unit contains normal batteries, these may have been disconnected/isolated before the unit was packed. These must then be reconnected during the installation procedure. Units containing batteries are marked.

Note			

Units containing lithium or alkaline batteries must be handled separately and with care. Such units are marked accordingly. Do not attempt to recharge such batteries, open them or dispose of them by incineration. Refer to the applicable product data sheets.

194 331549/B

Storage after use

If a unit is removed from its operating location and placed into storage, it must be properly cleaned and prepared before packing.

Cleaning cabinets

If a cabinet has been exposed to salt atmosphere while it was in use, it must be thoroughly cleaned both internally and externally to prevent corrosion.

- 1 Wipe the cabinet externally using a damp cloth and a little detergent. Do not use excessive amounts of water as the unit may not be water tight. On completion, dry the unit thoroughly.
- All surfaces must be inspected for signs of corrosion, flaking/bubbling paint, stains etc. Damaged or suspect areas must be cleaned, prepared and preserved using the correct preservation mediums for the unit. The mediums to be used will usually be defined in the units' maintenance manual.
- 3 Open the unit, and using a vacuum cleaner, remove all dust etc. from the unit. Great care must be taken to ensure the circuit boards and modules are not damaged in the process.

Mechanical units

If a mechanical unit may has been exposed to a salt atmosphere while it was in use, it must be thoroughly cleaned both internally and externally to prevent corrosion.

- 1 If the construction materials and type of unit permits, wash the unit using a high-pressure hose and copious amounts of fresh water. Examples are the lower parts of hull units (outside the hull) or subsea units
- 2 Ensure that all traces of mud and marine growth are removed. Use a wooden or plastic scraper to remove persistent growth, barnacles etc. On completion, dry the unit thoroughly.

~		
COLIFICA		
Caution		

Do not use a high pressure hose in the vicinity of cables or transducers. Do not use sharp or metal tools on a transducer face.

- 3 If the materials or type of unit prevents the use of a high-pressure hose, wipe the unit using a cloth dampened with water containing a little detergent. Examples are the upper parts of hull units (inside the hull) and hydraulic systems
- 4 Do not use excessive amounts of water as some components on the unit may not be water tight. Wipe off the detergent with a damp cloth, then dry the unit thoroughly.
- 5 All surfaces must be inspected for signs of corrosion, flaking/bubbling paint, stains etc. Damaged or suspect areas must be cleaned, prepared and preserved using the correct preservation mediums. The mediums to be used will normally be defined in the unit's maintenance manual.

Cables

Wipe clean all exposed cables, and check for damage. If a cable shows signs of wear or ageing, contact Kongsberg Maritime for advice.

Internal batteries

If the unit contains batteries, these may discharge slowly during storage. If the unit is to be stored for an extended period, disconnect or remove all internal batteries.

A suitable piece of insulating material can be placed between the battery and the electrical contacts to prevent electrical discharge. The battery can then remain in the unit, reducing the risk of it being misplaced during the storage period.

Caution _____

Units containing lithium or alkaline batteries must be handled separately and with care. Such units are marked accordingly. Do not attempt to recharge such batteries, open them or dispose of them by incineration. Refer to the applicable product data sheets.

Dehumidifier

Place a suitably sized bag of desiccant material (silica gel or similar) into the unit to keep the electronic components as dry as possible.

Coatings

Spray the unit externally with a corrosion inhibitor (e.g. a light oil) before packing.

Re-packaging

Whenever possible, the unit must be stored and transported in its original packing material and/or crate. In the event that this material is not available, proceed as follows:

- Small units must be protected from damp by being placed within a plastic bag at least 0.15 mm thick. An appropriate quantity of desiccant material should be placed inside this bag, and the bag sealed. The sealed unit must then be placed in an appropriate carton or crate, and supported in the container by appropriate shock-absorbing insulation (polystyrene foam chips etc.).
- Large units must be placed in a suitable cardboard box or wooden crate. The unit
 must be protected against physical damage by means of shock-absorbing insulation
 mats. The box must be clearly marked with its contents, and must be stored in a
 dry and dust-free area.

196 331549/B

Temperature protection

If the unit must be protected against extremes of temperature, the carton/crate must be lined on all walls, base and lid with 5 cm thick polyurethane or polystyrene foam. These units will be identified as delicate in the applicable documentation.

The package must then be clearly marked:

Must not be transported or stored in temperatures below -5 degrees Celsius.

Other units can normally be stored in temperatures between -30° C and +70° C, refer to the system's technical specifications for details.

Note		
Unless otherwise specified, and above +55° C.	transducers must not be stored in temperatures below -	20° C

Circuit board handling and packaging

Circuit boards are delicate items. They may work year after year in an advanced product, but then fail due to a small spark of static electricity. For this reason, it is very important that they are properly handled and protected during shipping.

Beware of ESD!

When you handle electronic circuit boards, you must beware of the dangers of electrostatic discharge (ESD), both to yourself and to the equipment. In order to ensure safe transport and storage, circuit boards and other electronic units will always be wrapped in a clear plastic protective bag, and the bag will be sealed. See also section *Electro-Static Discharge (ESD)* on page 198.

Unpacking and handling circuit boards

Observe the following steps to unpack a circuit board.

- Wherever possible, prepare a suitable workbench. It must have an approved conductive service mat, and it must be connected directly to a reliable earth point via its earthing cord. You must wear a wristband in direct contact with the skin, and the wristband must be connected to the service mat.
- 2 Lift the circuit board, in its protective bag, out of the carton and place it in a stable position on the a floor/work bench.
- 3 Inspect the unit for damage before you open the plastic bag.
- 4 Do not break the seal to open a circuit board package before the board shall to be used. If the board package is returned with the seal broken, we will assume that the content has been used, and we will bill you accordingly.
- 5 Assuming all is well, open the bag and remove the unit.
- Take out and keep the documentation. You will need it if the circuit board shall be returned to us. Also, remove any packing and desiccant material that may be inside.

7 Keep the protective plastic bag for future use.

Unpacking on board the vessel

When you are working on board a vessel, an "approved conductive service mat" is often far away. As you still need to unpack circuit boards, make sure that you do it in the instrument room, or at another location where you have a steel deck. Keep far away from the bridge or any other rooms with wall-to-wall carpets! If possible, bring a wristband and ground yourself.

Returning a circuit board

11 you v	wish to return a circ	uit board to us, ob	serve the following	Tuics.	
Note _					

Failure to follow these rules may result in unserviceable circuit boards.

If you wish to return a circuit board to us, observe the following rules

- 1 Place the circuit board to be returned in the same protective plastic bag as you originally received it in or a protective bag of similar ESD protection quality.
- 2 <u>DO NOT</u> use standard plastic bags, such as commercial bubble wrap.
- 3 Fill in all the necessary information on the applicable documentation and place it inside the bag.
- 4 Seal the bag.
- 5 Place the circuit board in a suitable carton, and secure it for shipping.

Electro-Static Discharge (ESD)

What is ESD?

Electro-Static Discharge (ESD) is the transfer of an electrostatic charge between two bodies at different electrostatic levels, caused either by direct contact or induction by an electrostatic field. The passing of a charge through an electronic device can cause localised overheating, and it can also "puncture" insulating layers within the structure of the device. This may deposit a conductive residue of the vaporised metal on the device, and thus create a short circuit. This may result in a catastrophic failure, or degraded performance of the device.

ESD protection

Sensitive electronic circuit boards must be transported and stored in protective packing bags. The circuit boards must not be transported or stored close to strong electrostatic, electro-magnetic or radioactive fields.

If it is necessary to open and touch the circuit board inside the protective bag, then the following precautions must be taken:

- 1 The working area must be covered by an approved conductive service mat that has a resistance of between 50 k Ω and 2 M Ω , and is connected directly to a reliable earth point via its earthing cord.
- 2 The service personnel involved must wear a wristband in direct contact with the skin, connected to the service mat.
- 3 Printed circuit boards must be placed on the conductive service mat during installation, maintenance etc.
- 4 If, for any reason, it is necessary to move the circuit board from the conductive service mat, it must be placed in an approved antistatic transportation container (e.g. static shielding bag) before transportation.
- 5 During installation and servicing, all electrical equipment (soldering irons, test equipment etc.) must be earthed.

Disposal

At the end of the product lifetime, all Kongsberg Maritime products must be disposed in an environmental friendly way.

All electrical and electronic components must be disposed of separately from the municipal waste stream via designated collection facilities appointed by the government or local authorities. The correct disposal and separate collection of your old appliance will help prevent potential negative consequences for the environment and human health. This is a precondition for reuse and recycling of used electrical and electronic equipment. For more detailed information about disposal of your old appliance, please contact your local authorities or waste disposal service.

All disposal of mechanical, electromechanical, electronic and chemical waste – including all types of batteries – must thus be disposed of according to national and international rules and regulations. Observe the relevant Waste Electronical and Electronic Equipment (WEEE) regulations.

Appendix B Basic cable requirements

This chapter provides general information related to the installation of system cables.

Topics

- Cable trays on page 200
- Radio Frequency interference on page 201
- Physical protection on page 201
- Grounding on page 202
- Cable connections on page 202
- Cable terminations on page 202
- Cable identification on page 203

Cable trays

All permanently installed cables associated with the system must be supported and protected along their entire lengths using conduits and/or cable trays. The only exception to this rule is over the final short distance (maximum. 0,5 meters) as the cables run into the cabinets/units to which they are connected. These short service loops are to allow the cabinets to move on their shock mounts, and to allow maintenance and repair.

- Wherever possible, cable trays must be straight, accessible and placed so as to avoid
 possible contamination by condensation and dripping liquids (oil, etc.). They must be
 installed away from sources of heat, and must be protected against physical damage.
 Suitable shields must be provided where cables are installed in the vicinity of heat
 sources.
- Unless it is absolutely unavoidable, cables should not be installed across the vessel's expansion joints. If the situation is unavoidable, a loop of cable having a length proportional to the possible expansion of the joint must be provided. The minimum internal radius of the loop must be at least twelve times the external diameter of the cable.
- Where a service requires duplicate supply lines, the cables must follow separate paths through the vessel whenever possible.

200 331549/B

- Signal cables must not be installed in the same cable tray or conduit as high-power cables.
- Cables containing insulation materials with different maximum-rated conductor temperatures should not be bunched together (that is, in a common clip, gland, conduit or duct). When this is impractical, the cables must be carefully arranged such that the maximum temperature expected in any cable in the group is within the specifications of the lowest-rated cable.
- Cables with protective coverings which may damage other cables should not be grouped with other cables.
- Cables having a copper sheath or braiding must be installed in such a way that galvanic corrosion by contact with other metals is prevented.
- To allow for future expansion of the system, all cables should be allocated spare conductor pairs. Also, space within the vessel should be set aside for the installation of extra cables.

Radio Frequency interference

All cables that are to be permanently installed within 9 m (30 ft) of any source of Radio Frequency (RF) interference such as a transmitter aerial system or radio transmitters, must, unless shielded by a metal deck or bulkhead, be adequately screened by sheathing, braiding or other suitable material. In such a situation flexible cables should be screened wherever possible.

It is important that cables, other than those supplying services to the equipment installed in a radio room, are not installed through a radio room, high power switch gear or other potential sources of interference. Cables which must pass through a radio room must be screened by a continuous metal conduit or trunking which must be bonded to the screening of the radio room at its points of entry and exit.

Physical protection

Cables exposed to the risk of physical damage must be enclosed in a steel conduit or protected by a metal casing unless the cable's covering (e.g. armour or sheath) is sufficient to protect it from the damage risk.

Cables exposed to an exceptional risk of mechanical damage (for example in holds, storage-spaces and cargo-spaces) must be protected by a suitable casing or conduit, even when armoured, if the cable covering does not guarantee sufficient protection for the cables.

Metallic materials used for the physical protection of cables must be suitably protected against corrosion.

Grounding

All metallic cable coverings (armour, metallic sheathing etc.) must be electrically connected to the vessel's hull at both ends except in the case of final sub-circuits where they should be connected at the supply end only.

Grounding connections should be made using a conductor which has a cross-sectional area appropriate for the current rating of the cable, or with a metal clamp which grips the metallic covering of the cable and is bonded to the hull of the vessel. These cable coverings may also be grounded by means of glands specially intended for this purpose and designed to ensure a good ground connection. The glands used must be firmly attached to, and in good electrical contact with, a metal structure grounded in accordance with these recommendations.

Electrical continuity must be ensured along the entire length of all cable coverings, particularly at joints and splices. In no case should the shielding of cables be used as the only means of grounding cables or units.

Metallic casings, pipes and conduits must be grounded, and when fitted with joints these must be mechanically and electrically grounded locally.

Cable connections

All cable connections are shown on the applicable cable plan and interconnection diagrams.

Where the cable plan shows cable connections outside an equipment box outline, the connections are to be made to a plug or socket which matches the plug or socket on that particular item of equipment.

Where two cables are connected in series via a junction box or terminal block, the screens of both cables must be connected together but not grounded.

Cable terminations

Care must be taken to ensure that the correct terminations are used for all cable conductors, especially those that are to be connected to terminal blocks. In this case, crimped sleeve-terminations must be fitted to prevent the conductor core from fraying and making a bad connection with the terminal block. It is also of the utmost importance that where crimped terminations are used, the correct size of crimp and crimping tool are used. In addition, each cable conductor must have a minimum of 15 cm slack (service loop) left before its termination is fitted.

Cable identification

Cable identification codes corresponding to the cable number shown in the cable plan must be attached to each of the external cables. These identification codes should be positioned on the cable in such a way that they are readily visible after all panels have been fitted. In addition, each cable conductor should be marked with the terminal board number or socket to which it is connected.

Index

1000Base-T, 147	Transceiver Unit fan	requirements, 202
1000Base-1, 147	module, 143	Connectors
	Transceiver Unit	Ethernet switch, 83
\mathbf{A}	synchronization, 144	Coordinate system
A la post	transducer, 156	sensor location, 37
About this manual 0	Cable plan	sensor rotation, s ,
this manual, 9 AC mains cable	ethernet, 85–86	
230 Vac, 145	interconnections, 84	D
Access	Multibeam Operator	Description
sonar room, 25	Station, 95	functional, 11
Accuracy	transducer, 90	Multibeam Operator
heading sensor	Cable protection	Station, 14
location, 41	sonar room, 26	Operator Station, 14
motion sensor location, 40	Cable requirements	Power Supply Unit, 15, 54
positioning system	connections, 202	system, 13
location, 41	grounding, 202	Transceiver Unit, 14, 47, 65
sensor measurements, 39	identification, 203	transducer, 15, 29
transducer array	physical protection, 201	Diagram
location, 40	radio frequency	system, 13
water line distance, 41	interference, 201	Dimensions
Acoustic window, 44	terminations, 202	APC12 Processor Unit, 176
Air conditioning	trays, 200	Multibeam Operator
sonar room, 26	Cable trays	Station, 176
Alignment	requirements, 200 Cables, 80	Power Supply Unit, 181
coordinate system, 37	Cabling	Power Supply Unit,
measurements, 36	detailed drawings, 129	mounting frame, 183
summary, 43	overview, 82	Transceiver Unit, 177
transducer array, 36	requirements, 26	Transducer Array, 184
Anti-fouling	shipyard cables, 81	Transducer clamping
paint, 45 APC12 Processor Unit	specifications, 96	ring, 186
outline dimensions	system cables, 81	Transducer mounting
drawing, 176	transducer cables	ring, 188
Approval	specifications, 115	Display installation, 62
classification society, 18	Changes	Disposal
installation drawings, 21	to this manual, 10	equipment, 199
	Circuit board	Docking
	handling, 197	transducer location, 18
В	packaging, 198	Docking plan, 19
Bilge pump	returning, 198	Drawing
sonar room, 26	unpacking, 197	Multibeam Operator
50Hur 100Hi, 20	Circuit breaker	Station, outline
	wiring, 146	dimensions, 176
\mathbf{C}	Classification society	Power Supply Unit
Cable	approval, 18, 21	mounting frame,
230 Vac, 145	Cleaning transducer face, 44	outline dimensions,
circuit breaker, 146	Colour display	183
ethernet, crossover, 149	installation, 62	Power Supply Unit
ethernet, straight, 147	Compass deviation	outline dimensions, 181
external trigger, 131–132	responsibility, 18	Processor Unit, outline
mouse, 152	Computer	dimensions, 176
Power Supply Units, 137	installation, 60	system, 13 Transceiver Unit outline
requirements, 200	Configuration	dimensions, 177
RS-422 three-wire, 134	system, 1, 10	difficusions, 1//
serial line adapter, 154	Connections	

204 331549/B

Transducer Array,	requirements, 202	Interconnection cables, 80
outline dimensions,	•	Interconnections
184	***	cable plan, 84
Transducer clamping	Н	Interface
ring, outline	Handling	specifications, 169
dimensions, 186	circuit boards, 197	Introduction
Transducer mounting	transducer, 44	Simrad MS70, 11
	Handling rules	Silliad WiS70, 11
ring, outline	transducer, 44	
dimensions, 188	Heading sensor	J
Drawings, 175		o
installation, 10	location accuracy, 41	Jotun, 45
Dry docking	Heat, excessive	
transducer location, 18	do NOT expose	-
	transducer, 44	\mathbf{L}
E	Heating	Lifting
	sonar room, 25	•
Electro-static discharge, 198	How to	equipment, 191
Element	deal with ESD, 198	transducer, 44
transducer organisation, 115	pack a circuit board, 198	Lights
Environmental	return a circuit board, 198	sonar room, 26
specifications, 174	unpack a circuit board, 197	Line replaceable units
Equipment	unpack a circuit board	Transceiver Unit, 50, 65
disposal, 199	on board, 198	Location
handling, 190	Humidity	sensors, 38, 41, 43
inspection, 192	specifications, 174	LRU
lifting, 191	specifications, 174	Transceiver Unit, 50, 65
		LRUs
re-packaging, 196	I	Transceiver Unit, 50, 65
receipt, 17	Identification	, ,
responsibility, 17	cable requirements, 203	
storage, 17		M
storage after unpacking, 194	IEC plug, 145	
storage after unpacking, 194 storage after use, 195	IEC plug, 145 IEEE 802.3ab, 147	Main parts
storage after unpacking, 194 storage after use, 195 storage before use, 191	IEC plug, 145 IEEE 802.3ab, 147 Information	Main parts Power Supply Unit, 57
storage after unpacking, 194 storage after use, 195 storage before use, 191 transportation, 190	IEC plug, 145 IEEE 802.3ab, 147 Information support, 19	Main parts Power Supply Unit, 57 Transceiver Unit, 50, 65
storage after unpacking, 194 storage after use, 195 storage before use, 191 transportation, 190 unpacking, 17, 192	IEC plug, 145 IEEE 802.3ab, 147 Information support, 19 Inspection	Main parts Power Supply Unit, 57 Transceiver Unit, 50, 65 Main units, 13–14, 163
storage after unpacking, 194 storage after use, 195 storage before use, 191 transportation, 190 unpacking, 17, 192 ESD protection, 198	IEC plug, 145 IEEE 802.3ab, 147 Information support, 19 Inspection equipment, 192	Main parts Power Supply Unit, 57 Transceiver Unit, 50, 65 Main units, 13–14, 163 Mains cable
storage after unpacking, 194 storage after use, 195 storage before use, 191 transportation, 190 unpacking, 17, 192	IEC plug, 145 IEEE 802.3ab, 147 Information support, 19 Inspection equipment, 192 Installation	Main parts Power Supply Unit, 57 Transceiver Unit, 50, 65 Main units, 13–14, 163 Mains cable 230 Vac, 145
storage after unpacking, 194 storage after use, 195 storage before use, 191 transportation, 190 unpacking, 17, 192 ESD protection, 198	IEC plug, 145 IEEE 802.3ab, 147 Information support, 19 Inspection equipment, 192 Installation computer, 60	Main parts Power Supply Unit, 57 Transceiver Unit, 50, 65 Main units, 13–14, 163 Mains cable 230 Vac, 145 Maintenance
storage after unpacking, 194 storage after use, 195 storage before use, 191 transportation, 190 unpacking, 17, 192 ESD protection, 198 ESD, what is it?, 198	IEC plug, 145 IEEE 802.3ab, 147 Information support, 19 Inspection equipment, 192 Installation computer, 60 display monitor, 62	Main parts Power Supply Unit, 57 Transceiver Unit, 50, 65 Main units, 13–14, 163 Mains cable 230 Vac, 145 Maintenance transducer, 44
storage after unpacking, 194 storage after use, 195 storage before use, 191 transportation, 190 unpacking, 17, 192 ESD protection, 198 ESD, what is it?, 198 Ethernet	IEC plug, 145 IEEE 802.3ab, 147 Information support, 19 Inspection equipment, 192 Installation computer, 60	Main parts Power Supply Unit, 57 Transceiver Unit, 50, 65 Main units, 13–14, 163 Mains cable 230 Vac, 145 Maintenance
storage after unpacking, 194 storage after use, 195 storage before use, 191 transportation, 190 unpacking, 17, 192 ESD protection, 198 ESD, what is it?, 198 Ethernet cable plan, 85–86 crossover cable, 149	IEC plug, 145 IEEE 802.3ab, 147 Information support, 19 Inspection equipment, 192 Installation computer, 60 display monitor, 62	Main parts Power Supply Unit, 57 Transceiver Unit, 50, 65 Main units, 13–14, 163 Mains cable 230 Vac, 145 Maintenance transducer, 44
storage after unpacking, 194 storage after use, 195 storage before use, 191 transportation, 190 unpacking, 17, 192 ESD protection, 198 ESD, what is it?, 198 Ethernet cable plan, 85–86	IEC plug, 145 IEEE 802.3ab, 147 Information support, 19 Inspection equipment, 192 Installation computer, 60 display monitor, 62 drawings, 175	Main parts Power Supply Unit, 57 Transceiver Unit, 50, 65 Main units, 13–14, 163 Mains cable 230 Vac, 145 Maintenance transducer, 44 Maintenance rules
storage after unpacking, 194 storage after use, 195 storage before use, 191 transportation, 190 unpacking, 17, 192 ESD protection, 198 ESD, what is it?, 198 Ethernet cable plan, 85–86 crossover cable, 149 straight cable, 147 Ethernet switch	IEC plug, 145 IEEE 802.3ab, 147 Information support, 19 Inspection equipment, 192 Installation computer, 60 display monitor, 62 drawings, 175 operator station, 59 planning, 21	Main parts Power Supply Unit, 57 Transceiver Unit, 50, 65 Main units, 13–14, 163 Mains cable 230 Vac, 145 Maintenance transducer, 44 Maintenance rules transducer, 45
storage after unpacking, 194 storage after use, 195 storage before use, 191 transportation, 190 unpacking, 17, 192 ESD protection, 198 ESD, what is it?, 198 Ethernet cable plan, 85–86 crossover cable, 149 straight cable, 147 Ethernet switch connectors, 83	IEC plug, 145 IEEE 802.3ab, 147 Information support, 19 Inspection equipment, 192 Installation computer, 60 display monitor, 62 drawings, 175 operator station, 59 planning, 21 Power Supply Unit, 53	Main parts Power Supply Unit, 57 Transceiver Unit, 50, 65 Main units, 13–14, 163 Mains cable 230 Vac, 145 Maintenance transducer, 44 Maintenance rules transducer, 45 Manual Target audience, 9
storage after unpacking, 194 storage after use, 195 storage before use, 191 transportation, 190 unpacking, 17, 192 ESD protection, 198 ESD, what is it?, 198 Ethernet cable plan, 85–86 crossover cable, 149 straight cable, 147 Ethernet switch connectors, 83 External trigger	IEC plug, 145 IEEE 802.3ab, 147 Information support, 19 Inspection equipment, 192 Installation computer, 60 display monitor, 62 drawings, 175 operator station, 59 planning, 21 Power Supply Unit, 53 requirements, 18	Main parts Power Supply Unit, 57 Transceiver Unit, 50, 65 Main units, 13–14, 163 Mains cable 230 Vac, 145 Maintenance transducer, 44 Maintenance rules transducer, 45 Manual Target audience, 9 Maritime authority
storage after unpacking, 194 storage after use, 195 storage before use, 191 transportation, 190 unpacking, 17, 192 ESD protection, 198 ESD, what is it?, 198 Ethernet cable plan, 85–86 crossover cable, 149 straight cable, 147 Ethernet switch connectors, 83	IEC plug, 145 IEEE 802.3ab, 147 Information support, 19 Inspection equipment, 192 Installation computer, 60 display monitor, 62 drawings, 175 operator station, 59 planning, 21 Power Supply Unit, 53 requirements, 18 Transceiver Unit, 47	Main parts Power Supply Unit, 57 Transceiver Unit, 50, 65 Main units, 13–14, 163 Mains cable 230 Vac, 145 Maintenance transducer, 44 Maintenance rules transducer, 45 Manual Target audience, 9 Maritime authority approval, 21
storage after unpacking, 194 storage after use, 195 storage before use, 191 transportation, 190 unpacking, 17, 192 ESD protection, 198 ESD, what is it?, 198 Ethernet cable plan, 85–86 crossover cable, 149 straight cable, 147 Ethernet switch connectors, 83 External trigger cable specifications, 131–132	IEC plug, 145 IEEE 802.3ab, 147 Information support, 19 Inspection equipment, 192 Installation computer, 60 display monitor, 62 drawings, 175 operator station, 59 planning, 21 Power Supply Unit, 53 requirements, 18 Transceiver Unit, 47 transducer, 28	Main parts Power Supply Unit, 57 Transceiver Unit, 50, 65 Main units, 13–14, 163 Mains cable 230 Vac, 145 Maintenance transducer, 44 Maintenance rules transducer, 45 Manual Target audience, 9 Maritime authority approval, 21 Measurement
storage after unpacking, 194 storage after use, 195 storage before use, 191 transportation, 190 unpacking, 17, 192 ESD protection, 198 ESD, what is it?, 198 Ethernet cable plan, 85–86 crossover cable, 149 straight cable, 147 Ethernet switch connectors, 83 External trigger	IEC plug, 145 IEEE 802.3ab, 147 Information support, 19 Inspection equipment, 192 Installation computer, 60 display monitor, 62 drawings, 175 operator station, 59 planning, 21 Power Supply Unit, 53 requirements, 18 Transceiver Unit, 47 transducer, 28 Uninterrupted Power	Main parts Power Supply Unit, 57 Transceiver Unit, 50, 65 Main units, 13–14, 163 Mains cable 230 Vac, 145 Maintenance transducer, 44 Maintenance rules transducer, 45 Manual Target audience, 9 Maritime authority approval, 21 Measurement accuracy, 39
storage after unpacking, 194 storage after use, 195 storage before use, 191 transportation, 190 unpacking, 17, 192 ESD protection, 198 ESD, what is it?, 198 Ethernet cable plan, 85–86 crossover cable, 149 straight cable, 147 Ethernet switch connectors, 83 External trigger cable specifications, 131–132	IEC plug, 145 IEEE 802.3ab, 147 Information support, 19 Inspection equipment, 192 Installation computer, 60 display monitor, 62 drawings, 175 operator station, 59 planning, 21 Power Supply Unit, 53 requirements, 18 Transceiver Unit, 47 transducer, 28 Uninterrupted Power Supply, 63	Main parts Power Supply Unit, 57 Transceiver Unit, 50, 65 Main units, 13–14, 163 Mains cable 230 Vac, 145 Maintenance transducer, 44 Maintenance rules transducer, 45 Manual Target audience, 9 Maritime authority approval, 21 Measurement accuracy, 39 Measurements
storage after unpacking, 194 storage after use, 195 storage before use, 191 transportation, 190 unpacking, 17, 192 ESD protection, 198 ESD, what is it?, 198 Ethernet cable plan, 85–86 crossover cable, 149 straight cable, 147 Ethernet switch connectors, 83 External trigger cable specifications, 131–132 F Familiarization	IEC plug, 145 IEEE 802.3ab, 147 Information support, 19 Inspection equipment, 192 Installation computer, 60 display monitor, 62 drawings, 175 operator station, 59 planning, 21 Power Supply Unit, 53 requirements, 18 Transceiver Unit, 47 transducer, 28 Uninterrupted Power Supply, 63 Installation drawings, 10	Main parts Power Supply Unit, 57 Transceiver Unit, 50, 65 Main units, 13–14, 163 Mains cable 230 Vac, 145 Maintenance transducer, 44 Maintenance rules transducer, 45 Manual Target audience, 9 Maritime authority approval, 21 Measurement accuracy, 39 Measurements alignment, 36
storage after unpacking, 194 storage after use, 195 storage before use, 191 transportation, 190 unpacking, 17, 192 ESD protection, 198 ESD, what is it?, 198 Ethernet cable plan, 85–86 crossover cable, 149 straight cable, 147 Ethernet switch connectors, 83 External trigger cable specifications, 131–132 F Familiarization Simrad MS70, 11	IEC plug, 145 IEEE 802.3ab, 147 Information support, 19 Inspection equipment, 192 Installation computer, 60 display monitor, 62 drawings, 175 operator station, 59 planning, 21 Power Supply Unit, 53 requirements, 18 Transceiver Unit, 47 transducer, 28 Uninterrupted Power Supply, 63 Installation drawings, 10 approval, 21	Main parts Power Supply Unit, 57 Transceiver Unit, 50, 65 Main units, 13–14, 163 Mains cable 230 Vac, 145 Maintenance transducer, 44 Maintenance rules transducer, 45 Manual Target audience, 9 Maritime authority approval, 21 Measurement accuracy, 39 Measurements alignment, 36 Mechanical
storage after unpacking, 194 storage after use, 195 storage before use, 191 transportation, 190 unpacking, 17, 192 ESD protection, 198 ESD, what is it?, 198 Ethernet cable plan, 85–86 crossover cable, 149 straight cable, 147 Ethernet switch connectors, 83 External trigger cable specifications, 131–132 F Familiarization Simrad MS70, 11 Fan module	IEC plug, 145 IEEE 802.3ab, 147 Information support, 19 Inspection equipment, 192 Installation computer, 60 display monitor, 62 drawings, 175 operator station, 59 planning, 21 Power Supply Unit, 53 requirements, 18 Transceiver Unit, 47 transducer, 28 Uninterrupted Power Supply, 63 Installation drawings, 10 approval, 21 Installation principles	Main parts Power Supply Unit, 57 Transceiver Unit, 50, 65 Main units, 13–14, 163 Mains cable 230 Vac, 145 Maintenance transducer, 44 Maintenance rules transducer, 45 Manual Target audience, 9 Maritime authority approval, 21 Measurement accuracy, 39 Measurements alignment, 36 Mechanical drawings, 175
storage after unpacking, 194 storage after use, 195 storage before use, 191 transportation, 190 unpacking, 17, 192 ESD protection, 198 ESD, what is it?, 198 Ethernet cable plan, 85–86 crossover cable, 149 straight cable, 147 Ethernet switch connectors, 83 External trigger cable specifications, 131–132 F Familiarization Simrad MS70, 11 Fan module cable specifications, 143	IEC plug, 145 IEEE 802.3ab, 147 Information support, 19 Inspection equipment, 192 Installation computer, 60 display monitor, 62 drawings, 175 operator station, 59 planning, 21 Power Supply Unit, 53 requirements, 18 Transceiver Unit, 47 transducer, 28 Uninterrupted Power Supply, 63 Installation drawings, 10 approval, 21 Installation principles transducer, 31	Main parts Power Supply Unit, 57 Transceiver Unit, 50, 65 Main units, 13–14, 163 Mains cable 230 Vac, 145 Maintenance transducer, 44 Maintenance rules transducer, 45 Manual Target audience, 9 Maritime authority approval, 21 Measurement accuracy, 39 Measurements alignment, 36 Mechanical drawings, 175 Monitor
storage after unpacking, 194 storage after use, 195 storage before use, 191 transportation, 190 unpacking, 17, 192 ESD protection, 198 ESD, what is it?, 198 Ethernet cable plan, 85–86 crossover cable, 149 straight cable, 147 Ethernet switch connectors, 83 External trigger cable specifications, 131–132 F Familiarization Simrad MS70, 11 Fan module cable specifications, 143 Functional	IEC plug, 145 IEEE 802.3ab, 147 Information support, 19 Inspection equipment, 192 Installation computer, 60 display monitor, 62 drawings, 175 operator station, 59 planning, 21 Power Supply Unit, 53 requirements, 18 Transceiver Unit, 47 transducer, 28 Uninterrupted Power Supply, 63 Installation drawings, 10 approval, 21 Installation principles transducer, 31 Installation procedure	Main parts Power Supply Unit, 57 Transceiver Unit, 50, 65 Main units, 13–14, 163 Mains cable 230 Vac, 145 Maintenance transducer, 44 Maintenance rules transducer, 45 Manual Target audience, 9 Maritime authority approval, 21 Measurement accuracy, 39 Measurements alignment, 36 Mechanical drawings, 175 Monitor installation, 62
storage after unpacking, 194 storage after use, 195 storage before use, 191 transportation, 190 unpacking, 17, 192 ESD protection, 198 ESD, what is it?, 198 Ethernet cable plan, 85–86 crossover cable, 149 straight cable, 147 Ethernet switch connectors, 83 External trigger cable specifications, 131–132 F Familiarization Simrad MS70, 11 Fan module cable specifications, 143	IEC plug, 145 IEEE 802.3ab, 147 Information support, 19 Inspection equipment, 192 Installation computer, 60 display monitor, 62 drawings, 175 operator station, 59 planning, 21 Power Supply Unit, 53 requirements, 18 Transceiver Unit, 47 transducer, 28 Uninterrupted Power Supply, 63 Installation drawings, 10 approval, 21 Installation principles transducer, 31 Installation procedure transducer array, 31	Main parts Power Supply Unit, 57 Transceiver Unit, 50, 65 Main units, 13–14, 163 Mains cable 230 Vac, 145 Maintenance transducer, 44 Maintenance rules transducer, 45 Manual Target audience, 9 Maritime authority approval, 21 Measurement accuracy, 39 Measurements alignment, 36 Mechanical drawings, 175 Monitor installation, 62 Motion sensor
storage after unpacking, 194 storage after use, 195 storage before use, 191 transportation, 190 unpacking, 17, 192 ESD protection, 198 ESD, what is it?, 198 Ethernet cable plan, 85–86 crossover cable, 149 straight cable, 147 Ethernet switch connectors, 83 External trigger cable specifications, 131–132 F Familiarization Simrad MS70, 11 Fan module cable specifications, 143 Functional	IEC plug, 145 IEEE 802.3ab, 147 Information support, 19 Inspection equipment, 192 Installation computer, 60 display monitor, 62 drawings, 175 operator station, 59 planning, 21 Power Supply Unit, 53 requirements, 18 Transceiver Unit, 47 transducer, 28 Uninterrupted Power Supply, 63 Installation drawings, 10 approval, 21 Installation principles transducer, 31 Installation procedure transducer array, 31 transducer cables, 35	Main parts Power Supply Unit, 57 Transceiver Unit, 50, 65 Main units, 13–14, 163 Mains cable 230 Vac, 145 Maintenance transducer, 44 Maintenance rules transducer, 45 Manual Target audience, 9 Maritime authority approval, 21 Measurement accuracy, 39 Measurements alignment, 36 Mechanical drawings, 175 Monitor installation, 62 Motion sensor location accuracy, 40
storage after unpacking, 194 storage after use, 195 storage before use, 191 transportation, 190 unpacking, 17, 192 ESD protection, 198 ESD, what is it?, 198 Ethernet cable plan, 85–86 crossover cable, 149 straight cable, 147 Ethernet switch connectors, 83 External trigger cable specifications, 131–132 F Familiarization Simrad MS70, 11 Fan module cable specifications, 143 Functional description, 11	IEC plug, 145 IEEE 802.3ab, 147 Information support, 19 Inspection equipment, 192 Installation computer, 60 display monitor, 62 drawings, 175 operator station, 59 planning, 21 Power Supply Unit, 53 requirements, 18 Transceiver Unit, 47 transducer, 28 Uninterrupted Power Supply, 63 Installation drawings, 10 approval, 21 Installation principles transducer, 31 Installation procedure transducer array, 31 transducer cables, 35 Installation requirements	Main parts Power Supply Unit, 57 Transceiver Unit, 50, 65 Main units, 13–14, 163 Mains cable 230 Vac, 145 Maintenance transducer, 44 Maintenance rules transducer, 45 Manual Target audience, 9 Maritime authority approval, 21 Measurement accuracy, 39 Measurements alignment, 36 Mechanical drawings, 175 Monitor installation, 62 Motion sensor location accuracy, 40 Mouse
storage after unpacking, 194 storage after use, 195 storage before use, 191 transportation, 190 unpacking, 17, 192 ESD protection, 198 ESD, what is it?, 198 Ethernet cable plan, 85–86 crossover cable, 149 straight cable, 147 Ethernet switch connectors, 83 External trigger cable specifications, 131–132 F Familiarization Simrad MS70, 11 Fan module cable specifications, 143 Functional description, 11	IEC plug, 145 IEEE 802.3ab, 147 Information support, 19 Inspection equipment, 192 Installation computer, 60 display monitor, 62 drawings, 175 operator station, 59 planning, 21 Power Supply Unit, 53 requirements, 18 Transceiver Unit, 47 transducer, 28 Uninterrupted Power Supply, 63 Installation drawings, 10 approval, 21 Installation principles transducer, 31 Installation procedure transducer array, 31 transducer cables, 35 Installation requirements Operator Station, 60	Main parts Power Supply Unit, 57 Transceiver Unit, 50, 65 Main units, 13–14, 163 Mains cable 230 Vac, 145 Maintenance transducer, 44 Maintenance rules transducer, 45 Manual Target audience, 9 Maritime authority approval, 21 Measurement accuracy, 39 Measurements alignment, 36 Mechanical drawings, 175 Monitor installation, 62 Motion sensor location accuracy, 40 Mouse cable, 152
storage after unpacking, 194 storage after use, 195 storage before use, 191 transportation, 190 unpacking, 17, 192 ESD protection, 198 ESD, what is it?, 198 Ethernet cable plan, 85–86 crossover cable, 149 straight cable, 147 Ethernet switch connectors, 83 External trigger cable specifications, 131–132 F Familiarization Simrad MS70, 11 Fan module cable specifications, 143 Functional description, 11 G General supply conditions, 17	IEC plug, 145 IEEE 802.3ab, 147 Information support, 19 Inspection equipment, 192 Installation computer, 60 display monitor, 62 drawings, 175 operator station, 59 planning, 21 Power Supply Unit, 53 requirements, 18 Transceiver Unit, 47 transducer, 28 Uninterrupted Power Supply, 63 Installation drawings, 10 approval, 21 Installation principles transducer, 31 Installation procedure transducer array, 31 transducer cables, 35 Installation requirements Operator Station, 60 Insulation	Main parts Power Supply Unit, 57 Transceiver Unit, 50, 65 Main units, 13–14, 163 Mains cable 230 Vac, 145 Maintenance transducer, 44 Maintenance rules transducer, 45 Manual Target audience, 9 Maritime authority approval, 21 Measurement accuracy, 39 Measurements alignment, 36 Mechanical drawings, 175 Monitor installation, 62 Motion sensor location accuracy, 40 Mouse cable, 152 MS70
storage after unpacking, 194 storage after use, 195 storage before use, 191 transportation, 190 unpacking, 17, 192 ESD protection, 198 ESD, what is it?, 198 Ethernet cable plan, 85–86 crossover cable, 149 straight cable, 147 Ethernet switch connectors, 83 External trigger cable specifications, 131–132 F Familiarization Simrad MS70, 11 Fan module cable specifications, 143 Functional description, 11	IEC plug, 145 IEEE 802.3ab, 147 Information support, 19 Inspection equipment, 192 Installation computer, 60 display monitor, 62 drawings, 175 operator station, 59 planning, 21 Power Supply Unit, 53 requirements, 18 Transceiver Unit, 47 transducer, 28 Uninterrupted Power Supply, 63 Installation drawings, 10 approval, 21 Installation principles transducer, 31 Installation procedure transducer array, 31 transducer cables, 35 Installation requirements Operator Station, 60	Main parts Power Supply Unit, 57 Transceiver Unit, 50, 65 Main units, 13–14, 163 Mains cable 230 Vac, 145 Maintenance transducer, 44 Maintenance rules transducer, 45 Manual Target audience, 9 Maritime authority approval, 21 Measurement accuracy, 39 Measurements alignment, 36 Mechanical drawings, 175 Monitor installation, 62 Motion sensor location accuracy, 40 Mouse cable, 152

MS70 transducer	Power	a circuit board, 198
description, 15	specifications, 173	RJ45
Multibeam Operator	Power Supply Unit	plug, 147, 149
Station	cable specifications, 137	RS-232
cable plan, 95	description, 15, 54	serial line adapter, 154
description, 14	installation, 53	RS-422
uesempuon, 1	installation preparations, 54	cable specifications, 134
	installation procedure, 57	caste specifications, 13 i
N	outline dimensions	
		S
Noise sources	drawing, 181	
inspection, 18	population, 57	Sensor
	steel conduits, 56	locations, 38, 41, 43
0	Power Supply Unit,	Sensors
O	mounting frame	coordinate system, 37
Operational principle, 11	outline dimensions	Serial line
Operator Station	drawing, 183	adapter, 154
cable plan, 95	Preparations	Serial line adapter
description, 14	Power Supply Unit	cable, 154
installation, 59	installation, 54	Shipyard
· ·	Transceiver Unit	cables, 81
Installation	installation, 49	Simrad MS70
requirements, 60	Procedure	
Organisation	Power Supply Unit	familiarization, 11
transducer elements, 115	installation, 57	introduction, 11
Outline dimensions, 171	start-up sonar, 161	main units, 13–14
APC12 Processor Unit, 176	Transceiver Unit, 50	Size
drawings, 175	transducer installation, 31	sonar room, 25
Multibeam Operator	Processor Unit	Sonar room
Station, 176	outline dimensions	access, 25
Power Supply Unit, 181	drawing, 176	bilge pump, 26
Power Supply Unit,	Product recycling, 199	cable protection, 26
mounting frame, 183		heating, 25
Transceiver Unit, 177	Protection	insulation, 26
Transducer Array, 184	against ESD, 198	lightning, 26
Transducer clamping	temperature, 197	size, 25
ring, 186	Purpose	ventilation, 26
Transducer mounting	this manual, 9	Space requirements
ring, 188		Power Supply Unit, 54
Overview	D	Transceiver Unit, 49
Transceiver Unit, 50, 65	R	Specifications, 162
Transcerver Cint, 50, 05	Radio Frequency	environmental, 174
	interference	humidity, 174
P	requirements, 201	interfaces, 169
D 1 '	Re-packaging	outline dimensions, 171
Packaging	equipment, 196	performance, 164
circuit boards, 198	Receipt	power, 173
Paint	equipment, 17	temperatures, 174
anti-fouling, 45	Record of changes, 10	Uninterrupted power
Painting	Recycling, 199	supply, 15–16, 63
transducer face, 44	Requirements	
Performance	•	weights, 171
specifications, 164	cables, 200	Start-up procedures, 161
Physical cable protection	cabling, 26	Steel conduits
requirements, 201	for installation, 18	Power Supply Unit, 56
Planning	Operator Station	Storage, 17
installation, 21	installation, 60	equipment (after
Population	Responsibility	unpacking), 194
Power Supply Unit, 57	compass deviation, 18	equipment (after use), 195
Positioning system	equipment, 17	equipment (before use), 191
location accuracy, 41	Returning	Sunlight

206 331549/B

do NOT expose transducer, 44 Supply conditions, 17 Supply power tolerance, 18 Support information, 19 Synchronization cable specifications, 144 System cables, 81 components, 163 description, 13 diagram, 13 System configuration, 1, 10 System specifications, 162 System units, 13–14	docking, 18 element organisation, 115 handling, 29, 44 installation, 28 installation principles, 31 installation procedure, 31 lifting, 30, 44 location accuracy, 40 maintenance, 44–45 Transducer Array outline dimensions drawing, 184 Transducer clamping ring outline dimensions drawing, 186 Transducer face cleaning, 44 painting, 44	WEEE, 199 Weights, 171 Wiring general requirements, 19
T	Transducer mounting ring outline dimensions	
T-568B, 147	drawing, 188	
Target audience, 9	Transport protection, 44 Transportation	
Technoial	equipment, 190	
support, 19 Technical specifications, 162		
Temperature	U	
protection, 197 specifications, 174	Uninterrupted power	
Terminations	supply, 15, 63	
requirements, 202	included in delivery, 16, 63	
Tolerance	minimum specifications, 16	
supply power, 18 Transceiver Unit	use, 15, 63 Uninterrupted Power	
description, 14, 47, 65	Supply, 18	
installation, 47	installation, 63	
installation preparations, 49 installation procedure, 50	Units main, 13–14	
line replaceable units,	Unpacking, 17	
50, 65	circuit boards, 197	
Line replaceable units, 50, 65	equipment, 192 UPS, 15, 18, 63	
LRU, 50, 65	included in delivery, 16, 63	
main parts, 50, 65	installation, 63	
outline dimensions drawing, 177	minimum specifications, 16 use, 15, 63	
overview, 50, 65	use, 13, 03	
Transceiver Unit fan	*7	
module	V	
cable specifications, 143 Transceiver Unit	Ventilation	
synchronization	sonar room, 26	
cable specifications, 144	***	
Transducer alignment, 36	W	
Cable descriptions, 115	Waste Electronical and	
cable plan, 90	Electronic Equipment, 199 Water line	
cables, 35, 156 description, 15, 29	measurement accuracy, 41	
400011p4011, 10, 27	3 /	

©2011 Kongsberg Maritime AS

Simrad MS70 Scientific multibeam sonar Installation manual

Simrad MS70 Scientific multibeam sonar Installation manual

Simrad MS70 Scientific multibeam sonar Installation manual