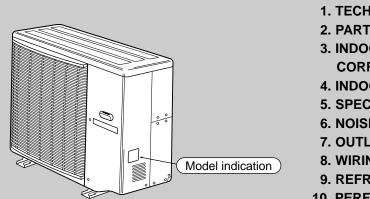


Revision B:
"Check of HPS" and PARTS LIST have been corrected.


Please void OB254 REVISED EDITION-A.

No. OB254 REVISED EDITION-B

SERVICE MANUAL

Inverter-controlled multi system Models

MXZ-32SV - E1 MXZ-32SV - E2

CONTENTS

1. TECHNICAL CHANGES2
2. PART NAMES AND FUNCTIONS2
3. INDOOR/OUTDOOR
CORRESPONDENCE TABLE3
4. INDOOR UNITS COMBINATION4
5. SPECIFICATION8
6. NOISE CRITERIA CURVES9
7. OUTLINES AND DIMENSIONS 10
8. WIRING DIAGRAM11
9. REFRIGERANT SYSTEM DIAGRAM12
10. PERFORMANCE CURVES13
11. MICROPROCESSOR CONTROL
12. TROUBLESHOOTING25
13. DISASSEMBLY INSTRUCTIONS
14. PARTS LIST40
15. OPTIONAL PARTS43

This manual describes technical data of outdoor unit. For indoor unit, refer to the service manuals No. OB229, OB227, OB252, OB212, OB239 and OC165.

Revision A:

• MXZ-32SV - E2 has been added.

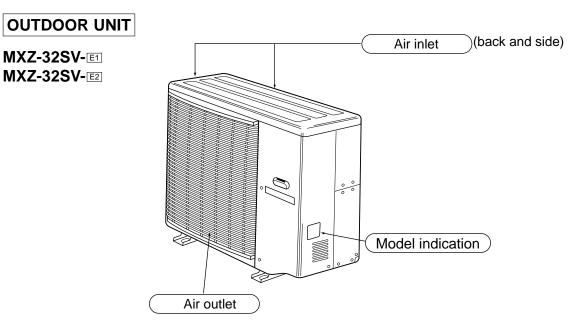
Revision B:

1

2

"Check of HPS" and PARTS LIST have been corrected.

TECHNICAL CHANGES


MXZ-32RV - E1 → MXZ-32SV - E1

- 1. The combination pattern of the indoor unit has been increased.
- 2. Crankcase heater has been disused.
- 3. Refrigerant circuit has been changed.
 - Disuse of 2-way valve.
 - Disuse of capillary tube $\phi 3 \times \phi 2 \times 500$.
 - Disuse of low pressure switch.
 - Disuse of suction pipe temperature thermistor.

MXZ-32SV - E1 → MXZ-32SV - E2

- 1. Combinations of the connectable indoor units have been increased.
- 2. Noise filter P.C. board has been changed to improve the capacity for protecting the inverter-controlled circuit when the voltage higher than the rated one is aupplied with the inverter-controlled circuit.
- 3. Noise filter P.C. board for "E1" and "E2" are not interchangeable.
- 4. Service parts have been changed as follows according to above change;
 •The value of R(resistor)has been changed. 10Ω → 20Ω
 - •TB6(terminal block) has been removed.

PART NAMES AND FUNCTIONS

INDOOR / OUTDOOR CORRESPONDENCE TABLE

3

NOTE: SLH-1AR is equivalent to class 09 (9000BTU). MCFH-13NV, SEH-1.6AR, SLH-1.6AR is equivalent to class 12 (12000BTU). MCFH-18NV, SEH-2AR, SLH-2AR is equivalent to class 18 (18000BTU).

	OUTDOOR UNIT
	MXZ-32SV-E1, MXZ-32SV-E2
	07+07
	07+09
	07+12
	07+18
	09+09
	09+12
	09+18
	12+12
	12+18
	18+18
	07+07+07
nits	07+07+09
L u	07+07+12
00	07+07+18
inc	07+09+09
ole	07+09+12
Combination of the connectable indoor units	07+09+18
Dec	07+12+12
i uo	07+12+18
e c	07+18+18
f th	09+09+09
o	09+09+12
tior	09+09+18
ina	09+12+12
qu	09+12+18
Ö	09+18+18
	12+12+12
	12+12+18
	07+07+07
	07+07+09
	07+07+07+12
	07+07+18
	07+07+09+09
	07+07+09+12
	07+07+09+18
	07+07+12+12
	07+07+12+18
	07+09+09
	07+09+09+12
	07+09+09+18
	07+09+12+12
	09+09+09
	09+09+12
	09+09+18
	09+09+12+12

*There is no combination other than this table.

$\ensuremath{\mathsf{MXZ-32SV}}\xspace$ -E1 , $\ensuremath{\mathsf{MXZ-32SV}}\xspace$ -E2

4

			Cooling	capacity	NOTE: Electrical data is for outdoo Outdoor unit Current			Power	
Indoor units combination	Unit A	Unit B	Unit C	Unit D	Total	power consumption (kW)	(A 220V		facto facto
07	2.2	-	-	-	2.2 (0.9-2.7)	0.75 (0.26-0.93)	3.79	3.47	90
09	2.8	-	-	-	2.8 (0.9-3.2)	0.90 (0.26-1.04)	4.55	4.17	90
12	4.0	-	-	-	4.0 (0.9-4.5)	1.44 (0.26-1.70)	7.27	6.67	90
18	5.0	-	-	-	5.0 (0.9-5.4)	2.30 (0.26-2.98)	11.62	10.65	90
07+07	2.2	2.2	-	-	4.4 (1.8-5.4)	1.54 (0.58-1.96)	7.78	7.13	90
07+09	2.2	2.8	-	-	5.0 (1.8-5.8)	1.62 (0.58-2.05)	8.18	7.50	90
07+12	2.2	4.0	-	-	6.2 (1.8-6.6)	2.28 (0.58-2.51)	11.52	10.56	90
07+18	2.2	5.0	-	-	7.2 (1.8-7.7)	3.09 (0.58-3.65)	15.61	14.31	90
09+09	2.8	2.8	-	-	5.6 (1.8-6.2)	1.90 (0.58-2.18)	9.60	8.80	90
09+12	2.8	4.0	-	-	6.8 (1.8-7.3)	2.73 (0.58-3.22)	13.79	12.64	90
09+18	2.8	5.0	-	-	7.8 (1.8-8.5)	3.74 (0.58-4.56)	18.89	17.31	90
12+12	4.0	4.0	-	-	8.0 (1.8-8.8)	3.96 (0.58-4.90)	20.00	18.33	90
12+18	3.5	4.5	-	-	8.0 (1.8-8.8)	3.96 (0.58-4.90)	20.00	18.33	90
18+18	4.0	4.0	-	-	8.0 (1.8-8.8)	3.96 (0.58-4.90)	20.00	18.33	90
07+07+07	2.2	2.2	2.2	-	6.6 (2.4-8.1)	2.20 (0.70-3.65)	11.11	10.19	90
07+07+09	2.2	2.2	2.8	-	7.2 (2.4-8.6)	2.43 (0.70-4.11)	12.27	11.25	90
07+07+12	2.1	2.1	3.8	-	8.0 (2.4-9.0)	2.98 (0.70-4.27)	15.05	13.80	90
07+07+18	1.9	1.9	4.2	-	8.0 (2.4-9.0)	2.98 (0.70-4.27)	15.05	13.80	90
07+09+09	2.2	2.8	2.8	-	7.8 (2.4-8.9)	2.80 (0.70-4.23)	14.14	12.96	90
07+09+12	1.9	2.5	3.6	-	8.0 (2.4-9.0)	2.98 (0.70-4.27)	15.05	13.80	90
07+09+18	1.7	2.3	4.0	-	8.0 (2.4-9.0)	2.98 (0.70-4.27)	15.05	13.80	90
07+12+12	1.8	3.1	3.1	-	8.0 (2.4-9.0)	2.98 (0.70-4.27)	15.05	13.80	90
07+12+18	1.6	2.8	3.6	-	8.0 (2.4-9.0)	2.98 (0.70-4.27)	15.05	13.80	90
07+18+18	1.5	3.25	3.25	-	8.0 (2.4-9.0)	2.98 (0.70-4.27)	15.05	13.80	90

NOTE: SLH-1AR is equivalent to class 09 (9000BTU).

MCFH-13NV, SEH-1.6AR, SLH-1.6AR is equivalent to class 12 (12000BTU).

MCFH-18NV, SEH-2AR, SLH-2AR is equivalent to class 18 (18000BTU).

					NOTE: Electrical data	a is for c	butdoor	unit only
oor units			capacity	(kW)	Outdoor unit	Current		Power
Unit A	Unit B	Unit C	Unit D	Total	power consumption (kW)	(/ 220V	4) 240V	factor (%)
2.67	2.67	2.67	-	8.0 (2.4-9.0)	2.98 (0.70-4.27)	15.05	13.80	90
2.3	2.3	3.4	-	8.0 (2.4-9.0)	2.98 (0.70-4.27)	15.05	13.80	90
2.1	2.1	3.8	-	8.0 (2.4-9.0)	2.98 (0.70-4.27)	15.05	13.80	90
2.0	3.0	3.0	-	8.0 (2.4-9.0)	2.98 (0.70-4.27)	15.05	13.80	90
1.9	2.7	3.4	-	8.0 (2.4-9.0)	2.98 (0.70-4.27)	15.05	13.80	90
1.8	3.1	3.1	-	8.0 (2.4-9.0)	2.98 (0.70-4.27)	15.05	13.80	90
2.67	2.67	2.67	-	8.0 (2.4-9.0)	2.98 (0.70-4.27)	15.05	13.80	90
2.45	2.45	3.1	-	8.0 (2.4-9.0)	2.98 (0.70-4.27)	15.05	13.80	90
2.0	2.0	2.0	2.0	8.0 (2.8-9.0)	2.98 (0.80-4.27)	15.05	13.80	90
1.87	1.87	1.87	2.4	8.0 (2.8-9.0)	2.98 (0.80-4.27)	15.05	13.80	90
1.7	1.7	1.7	2.9	8.0 (2.8-9.0)	2.98 (0.80-4.27)	15.05	13.80	90
1.5	1.5	1.5	3.5	8.0 (2.8-9.0)	2.98 (0.80-4.27)	15.05	13.80	90
1.8	1.8	2.2	2.2	8.0 (2.8-9.0)	2.98 (0.80-4.27)	15.05	13.80	90
1.6	1.6	2.0	2.8	8.0 (2.8-9.0)	2.98 (0.80-4.27)	15.05	13.80	90
1.5	1.5	1.8	3.2	8.0 (2.8-9.0)	2.98 (0.80-4.27)	15.05	13.80	90
1.4	1.4	2.6	2.6	8.0 (2.8-9.0)	2.98 (0.80-4.27)	15.05	13.80	90
1.3	1.3	2.4	3.0	8.0 (2.8-9.0)	2.98 (0.80-4.27)	15.05	13.80	90
1.7	2.1	2.1	2.1	8.0 (2.8-9.0)	2.98 (0.80-4.27)	15.05	13.80	90
1.5	1.9	1.9	2.7	8.0 (2.8-9.0)	2.98 (0.80-4.27)	15.05	13.80	90
1.4	1.75	1.75	3.1	8.0 (2.8-9.0)	2.98 (0.80-4.27)	15.05	13.80	90
1.35	1.75	2.45	2.45	8.0 (2.8-9.0)	2.98 (0.80-4.27)	15.05	13.80	90
2.0	2.0	2.0	2.0	8.0 (2.8-9.0)	2.98 (0.80-4.27)	15.05	13.80	90
1.8	1.8	1.8	2.6	8.0 (2.8-9.0)	2.98 (0.80-4.27)	15.05	13.08	90
1.67	1.67	1.67	3.0	8.0 (2.8-9.0)	2.98 (0.80-4.27)	15.05	13.08	90
1.65	1.65	2.35	2.35	8.0 (2.8-9.0)	2.98 (0.80-4.27)	15.05	13.08	90
	2.67 2.3 2.1 2.0 1.9 1.8 2.67 2.45 2.0 1.87 1.7 1.5 1.8 1.6 1.5 1.4 1.3 1.7 1.5 1.4 1.3 1.7 1.5 1.4 1.3 1.7 1.5 1.4 1.3 1.7 1.5 1.4 1.35 2.0 1.8	2.67 2.67 2.3 2.3 2.1 2.1 2.0 3.0 1.9 2.7 1.8 3.1 2.67 2.67 2.45 2.67 2.45 2.45 2.0 2.0 1.87 1.87 1.7 1.7 1.5 1.5 1.8 1.8 1.6 1.6 1.3 1.3 1.4 1.4 1.3 1.75 1.4 1.75 1.5 1.9 1.4 1.75 1.35 1.75 1.36 1.75 1.4 1.75 1.35 1.75 1.4 1.75 1.35 1.75 2.0 2.0 1.8 1.8 1.8 1.8	Unit A Unit B Unit C 2.67 2.67 2.67 2.3 2.3 3.4 2.1 2.1 3.8 2.0 3.0 3.0 1.9 2.7 3.4 1.8 3.1 3.1 2.67 2.67 2.67 2.1 2.1 3.8 2.0 3.0 3.0 1.9 2.7 3.4 1.8 3.1 3.1 2.67 2.67 2.67 2.45 2.45 3.1 2.0 2.0 2.0 1.87 1.87 1.87 1.7 1.7 1.7 1.5 1.5 1.5 1.8 1.8 2.2 1.6 1.6 2.0 1.5 1.5 1.8 1.4 1.4 2.6 1.3 1.3 2.4 1.7 2.1 2.1 1.5 1.9	Unit A Unit B Unit C Unit D 2.67 2.67 2.67 - 2.3 2.3 3.4 - 2.1 2.1 3.8 - 2.0 3.0 3.0 - 1.9 2.7 3.4 - 2.67 2.67 3.1 - 1.9 2.7 3.4 - 2.67 2.67 2.67 - 2.67 2.67 2.67 - 2.45 3.1 - - 2.67 2.67 2.67 - 2.67 2.67 3.1 - 2.67 2.67 3.1 - 2.67 1.87 1.87 2.0 1.87 1.87 1.87 3.1 1.7 1.7 1.7 2.9 1.5 1.5 1.8 3.2 1.6 1.6 2.0 2.8 1.5 1.5 1.8	2.672.672.672.67. $\begin{pmatrix} 8.0\\ (2.4+9.0) \end{pmatrix}$ 2.32.33.4- $\begin{pmatrix} 8.0\\ (2.4+9.0) \end{pmatrix}$ 2.12.13.8- $\begin{pmatrix} 8.0\\ (2.4+9.0) \end{pmatrix}$ 2.03.03.0- $\begin{pmatrix} 8.0\\ (2.4+9.0) \end{pmatrix}$ 1.92.73.4- $\begin{pmatrix} 8.0\\ (2.4+9.0) \end{pmatrix}$ 1.83.13.1- $\begin{pmatrix} 8.0\\ (2.4+9.0) \end{pmatrix}$ 2.672.672.67- $\begin{pmatrix} 8.0\\ (2.4+9.0) \end{pmatrix}$ 2.672.672.67- $\begin{pmatrix} 8.0\\ (2.4+9.0) \end{pmatrix}$ 2.453.1- $\begin{pmatrix} 8.0\\ (2.4+9.0) \end{pmatrix}$ 2.02.02.02.0 $\begin{pmatrix} 8.0\\ (2.4+9.0) \end{pmatrix}$ 2.11.871.872.4 $\begin{pmatrix} 8.0\\ (2.8+9.0) \end{pmatrix}$ 1.871.871.872.4 $\begin{pmatrix} 8.0\\ (2.8+9.0) \end{pmatrix}$ 1.51.51.53.5 $\begin{pmatrix} 8.0\\ (2.8+9.0) \end{pmatrix}$ 1.81.82.22.2 $\begin{pmatrix} 8.0\\ (2.8+9.0) \end{pmatrix}$ 1.81.82.22.2 $\begin{pmatrix} 8.0\\ (2.8+9.0) \end{pmatrix}$ 1.51.51.83.2 $\begin{pmatrix} 8.0\\ (2.8+9.0) \end{pmatrix}$ 1.41.42.62.6 $\begin{pmatrix} 2.8+9.0\\ (2.8+9.0) \end{pmatrix}$ 1.51.91.92.7 $\begin{pmatrix} 8.0\\ (2.8+9.0) \end{pmatrix}$ 1.51.91.92.7 $\begin{pmatrix} 8.0\\ (2.8+9.0) \end{pmatrix}$ 1.41.751.753.1 $\begin{pmatrix} 2.8+9.0\\ (2.8+9.0) \end{pmatrix}$ 1.351.752.45 $\begin{pmatrix} 2.8-9\\ (2.8+9.0) \end{pmatrix}$ 1.451.671.673.0 $\begin{pmatrix} 2.8-9\\ (2.8+9.0) \end{pmatrix}$ 1.51.671.673.0 $\begin{pmatrix} 2.8-9\\ (2.8+9.0) \end{pmatrix}$	Lonit A Unit B Unit C Unit D Total Outdoor unit power consumption (kW) 2.67 2.67 2.67 - $\begin{pmatrix} 8.0 \\ (2.4-9.0) \\ (2.4-9.0) \\ (2.4-9.0) \\ (0.70-4.27) \\ (0.70-4.27) \\ (0.70-4.27) \\ (2.1) 2.1 3.8 - \begin{pmatrix} 8.0 \\ (2.4-9.0) \\ (0.70-4.27) \\ (0.80-4.27) \\$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Unit A Unit B Unit C Unit D Total power consumption (kV) (A) 2.67 3.80 2.98 15.05 13.80 2.0 3.0 3.0 - $(2.49.0)$ $(0.70-4.27)$ 15.05 13.80 1.8 3.1 3.1 - $(2.49.0)$ $(0.70-4.27)$ 15.05 13.80 2.467 2.67 2.67 - $(2.49.0)$ $(0.70-4.27)$ 15.05 13.80 2.45 2.45 3.1 - $(2.49.0)$ $(0.80-4.27)$ 15.05 13.80 2.45 2.45 3.1 - $(2.8-0)$ $(2.98 - 0)$

NOTE: Electrical data is for outdoor unit only.

NOTE: SLH-1AR is equivalent to class 09 (9000BTU). MCFH-13NV, SEH-1.6AR, SLH-1.6AR is equivalent to class 12 (12000BTU). MCFH-18NV, SEH-2AR,SLH-2AR is equivalent to class 18 (18000BTU).

						NOTE: Electrical data	a is for o	utdoor u	unit only
Indoor units		1	Heating	capacity	(kW)	Outdoor unit		rent	Power
combination	Unit A	Unit B	Unit C	Unit D	Total	power consumption (kW)	(/ 220V	4) 240V	factor (%)
07	3.2	-	-	-	3.2 (0.9-4.1)	1.13 (0.27-1.60)	5.71	5.23	90
09	4.0	-	-	-	4.0 (0.9-4.8)	1.32 (0.27-1.70)	6.67	6.11	90
12	6.0	-	-	-	6.0 (0.9-7.2)	1.91 (0.27-2.57)	9.65	8.84	90
18	7.1	-	-	-	7.1 (0.9-7.8)	2.30 (0.27-2.83)	11.62	10.65	90
07+07	3.2	3.2	-	-	6.4 (1.8-7.2)	1.93 (0.48-2.30)	9.75	8.94	90
07+09	3.2	4.0	-	-	7.2 (1.8-8.7)	2.05 (0.48-2.68)	10.35	9.49	90
07+12	3.2	5.4	-	-	8.6 (1.8-10.6)	2.55 (0.48-3.80)	12.88	11.81	90
07+18	2.8	6.2	-	-	9.0 (1.8-10.9)	2.68 (0.48-3.89)	13.54	12.41	90
09+09	4.0	4.0	-	-	8.0 (1.8-10.1)	2.35 (0.48-3.56)	11.87	10.88	90
09+12	3.5	5.3	-	-	8.8 (1.8-10.8)	2.62 (0.48-3.86)	13.23	12.13	90
09+18	3.35	5.95	-	-	9.3 (1.8-11.2)	2.78 (0.48-3.98)	14.04	12.87	90
12+12	4.65	4.65	-	-	9.3 (1.8-11.2)	2.78 (0.48-3.98)	14.04	12.87	90
12+18	4.3	5.0	-	-	9.3 (1.8-11.2)	2.78 (0.48-3.98)	14.04	12.87	90
18+18	4.65	4.65	-	-	9.3 (1.8-11.2)	2.78 (0.48-3.98)	14.04	12.87	90
07+07+07	2.87	2.87	2.87	-	8.6 (2.1-10.6)	2.42 (0.52-3.00)	12.22	11.20	90
07+07+09	2.75	2.75	3.5	-	9.0 (2.1-11.1)	2.50 (0.52-3.30)	12.63	11.57	90
07+07+12	2.4	2.4	4.5	-	9.3 (2.1-11.6)	2.78 (0.52-3.50)	14.04	12.87	90
07+07+18	2.2	2.2	4.9	-	9.3 (2.1-11.6)	2.78 (0.52-3.50)	14.04	12.87	90
07+09+09	2.7	3.3	3.3	-	9.3 (2.1-11.6)	2.78 (0.52-3.50)	14.04	12.87	90
07+09+12	2.25	2.8	4.25	-	9.3 (2.1-11.6)	2.78 (0.52-3.50)	14.04	12.87	90
07+09+18	2.1	2.6	4.6	-	9.3 (2.1-11.6)	2.78 (0.52-3.50)	14.04	12.87	90
07+12+12	2.0	3.65	3.65	-	9.3 (2.1-11.6)	2.78 (0.52-3.50)	14.04	12.87	90
07+12+18	1.85	3.4	4.05	-	9.3 (2.1-11.6)	2.78 (0.52-3.50)	14.04	12.87	90
07+18+18	1.7	3.8	3.8	-	9.3 (2.1-11.6)	2.78 (0.52-3.50)	14.04	12.87	90

NOTE: Electrical data is for outdoor unit only.

NOTE: SLH-1AR is equivalent to class 09 (9000BTU).

MCFH-13NV, SEH-1.6AR, SLH-1.6AR is equivalent to class 12 (12000BTU).

MCFH-18NV, SEH-2AR,SLH-2AR is equivalent to class 18 (18000BTU).

						NOTE: Electrical dat	a is for o	outdoor	unit only
Indoor units					(kW)	Outdoor unit	Current n (A)		Power factor
combination	Unit A	Unit B	Unit C	Unit D	Total	power consumption (kW)	(/ 220V	4) 240V	(%)
09+09+09	3.1	3.1	3.1	-	9.3 (2.1-11.6)	2.78 (0.52-3.50)	14.04	12.87	90
09+09+12	2.65	2.65	4.0	-	9.3 (2.1-11.6)	2.78 (0.52-3.50)	14.04	12.87	90
09+09+18	2.45	2.45	4.4	-	9.3 (2.1-11.6)	2.78 (0.52-3.50)	14.04	12.87	90
09+12+12	2.3	3.5	3.5	-	9.3 (2.1-11.6)	2.78 (0.52-3.50)	14.04	12.87	90
09+12+18	2.2	3.3	3.8	-	9.3 (2.1-11.6)	2.78 (0.52-3.50)	14.04	12.87	90
09+18+18	2.0	3.65	3.65	-	9.3 (2.1-11.6)	2.78 (0.52-3.50)	14.04	12.87	90
12+12+12	3.1	3.1	3.1	-	9.3 (2.1-11.6)	2.78 (0.52-3.50)	14.04	12.87	90
12+12+18	2.9	2.9	3.5	-	9.3 (2.1-11.6)	2.78 (0.52-3.50)	14.04	12.87	90
07+07+07+07	2.32	2.32	2.32	2.32	9.3 (2.8-11.6)	2.78 (0.60-3.50)	14.04	12.87	90
07+07+07+09	2.2	2.2	2.2	2.7	9.3 (2.8-11.6)	2.78 (0.60-3.50)	14.04	12.87	90
07+07+07+12	1.9	1.9	1.9	3.6	9.3 (2.8-11.6)	2.78 (0.60-3.50)	14.04	12.87	90
07+07+07+18	1.8	1.8	1.8	3.9	9.3 (2.8-11.6)	2.78 (0.60-3.50)	14.04	12.87	90
07+07+09+09	2.1	2.1	2.55	2.55	9.3 (2.8-11.6)	2.78 (0.60-3.50)	14.04	12.87	90
07+07+09+12	1.8	1.8	2.3	3.4	9.3 (2.8-11.6)	2.78 (0.60-3.50)	14.04	12.87	90
07+07+09+18	1.7	1.7	2.15	3.75	9.3 (2.8-11.6)	2.78 (0.60-3.50)	14.04	12.87	90
07+07+12+12	1.6	1.6	3.05	3.05	9.3 (2.8-11.6)	2.78 (0.60-3.50)	14.04	12.87	90
07+07+12+18	1.6	1.6	2.8	3.3	9.3 (2.8-11.6)	2.78 (0.60-3.50)	14.04	12.87	90
07+09+09+09	1.95	2.45	2.45	2.45	9.3 (2.8-11.6)	2.78 (0.60-3.50)	14.04	12.87	90
07+09+09+12	1.75	2.15	2.15	3.25	9.3 (2.8-11.6)	2.78 (0.60-3.50)	14.04	12.87	90
07+09+09+18	1.65	2.0	2.0	3.65	9.3 (2.8-11.6)	2.78 (0.60-3.50)	14.04	12.87	90
07+09+12+12	1.55	1.95	2.9	2.9	9.3 (2.8-11.6)	2.78 (0.60-3.50)	14.04	12.87	90
09+09+09+09	2.32	2.32	2.32	2.32	9.3 (2.8-11.6)	2.78 (0.60-3.50)	14.04	12.87	90
09+09+09+12	2.05	2.05	2.05	3.15	9.3 (2.8-11.6)	2.78 (0.60-3.50)	14.04	12.87	90
09+09+09+18	1.95	1.95	1.95	3.45	9.3 (2.8-11.6)	2.78 (0.60-3.50)	14.04	12.87	90
09+09+12+12	1.85	1.85	2.8	2.8	9.3 (2.8-11.6)	2.78 (0.60-3.50)	14.04	12.87	90

NOTE: Electrical data is for outdoor unit only.

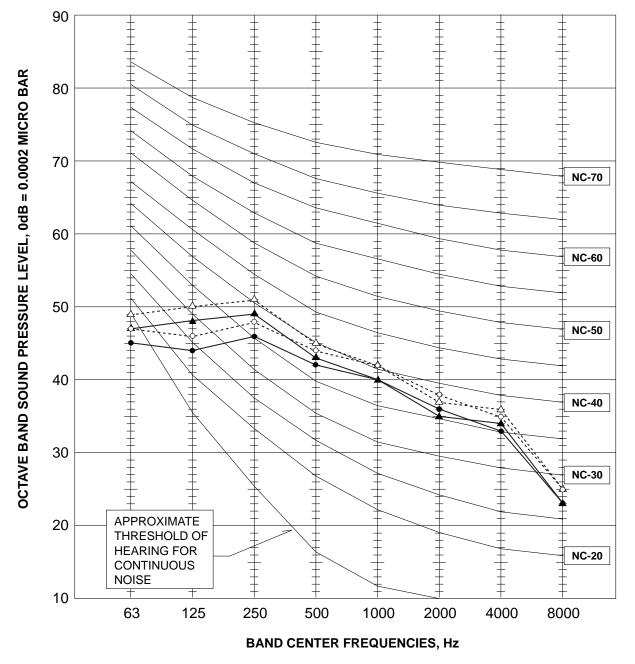
NOTE: SLH-1AR is equivalent to class 09 (9000BTU). MCFH-13NV, SEH-1.6AR, SLH-1.6AR is equivalent to class 12 (12000BTU). MCFH-18NV, SEH-2AR,SLH-2AR is equivalent to class 18 (18000BTU).

5

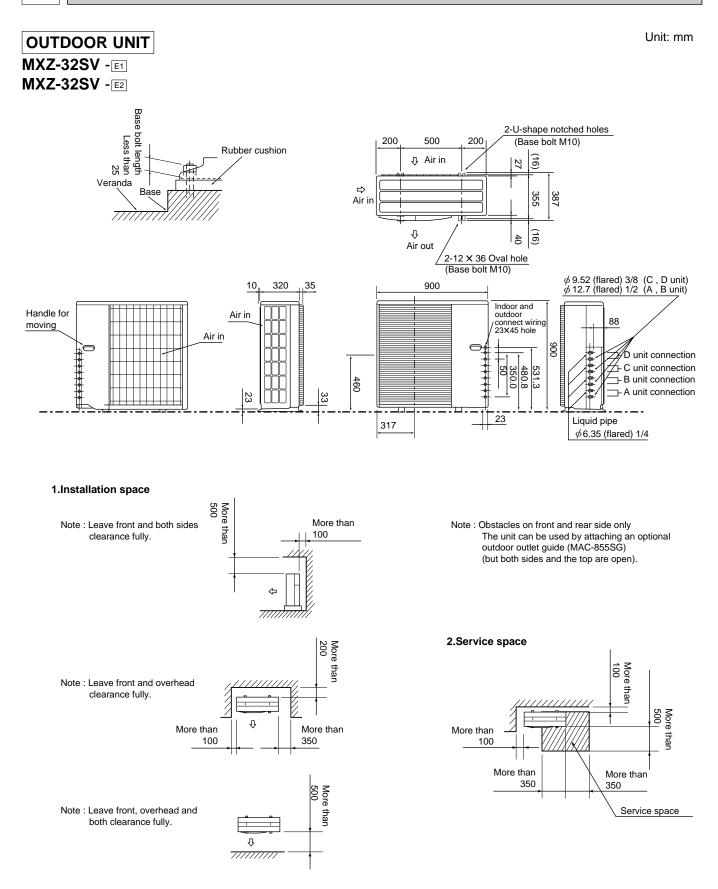
	Outdoor model	MXZ-32SV - E1 . MXZ-32SV - E2			
	Outdoor unit power supply		Single phase		
	Indoor units number	220-240V,50Hz 2 to 4			
		tabla)		o 4 el name 42	
	Indoor units total capacity (Connection				
ten	indoor units total capacity (Simulta	neous operation)		el name 42	
System	Piping total length			x. 60	
	Connecting pipe length	\r)		c. 25	
	Height difference (Indoor ~ Outdoo Height difference (Indoor ~ Indoor)			0	
	Function		Cooling	0 Heating	
≥	Capacity	kW	8.0 (0.9~9.0)	9.3 (0.9~11.6)	
acit	Dehumidification	l /h			
Capacity	Outdoor air flow	m³ /h	2400-	2640	
	Power outlet	A		5	
	Running current	A	15.05-13.80	14.04-12.87	
	Power input	W	2980(260~4270)	2780(270~3500)	
<u>_</u>	Auxiliary heater	A(kW)			
Electrical data	Crankcase heater	W			
Elec	Power factor	%	90).0	
	Starting current	A		-13.80	
	Compressor motor current	A	15.71-14.35	13.44-12.27	
	Fan motor current	A		.6	
c	oefficient of performance(C.O.P)		2.68	3.35	
	Model		THV-247FBA (ROTARY)		
Compressor	Output	W		00	
mpr	Winding		U-V		
Ŝ	resistance(at20°C)	Ω	V-W 0.61		
	Model		RA6V60-BA		
Fan motor	Winding			BLK-YLW 26.9	
μËΕ	resistance(at20°C)	Ω	-	BLU-RED 83.6	
	Dimensions W×H×D	mm		320 (+35)	
	Weight	kg	7		
	Sound level (Hi)	dB	45-47	46-48	
	Fan speed (Hi)	rpm	630-	-675	
	Fan speed regulator			3	
	Refrigerant filling	kg	o	.9	
ks al	capacity(R-22)	Ng	3.	.9	
Special remarks	Refrigerating oil (Model)	СС	870 (I	MS-56)	
S a	Thermistor RT61	kΩ	13.4 (at	: 100℃)	
	Thermistor RT62	kΩ	10.0 (a	t 25℃)	
	Thermistor RT63	kΩ	17.0 (a		
	Thermistor RT65	kΩ	10.0 (a	t 25℃)	
	Thermistor RT66,67	kΩ	10.0 (a		
	Thermistor RT68,69	kΩ	10.0 (a	t 25℃)	

***1** Electrical data is for only outdoor unit.

TEST CONDITIONS COOLING INDOOR	DB27.0°C	WB19.0°C
OUTDOOR	2 DB35.0°C	WB24.0°C
HEATING INDOOR	DB20.0°C	
OUTDOOR	R DB 7.0°C	WB 6.0°C

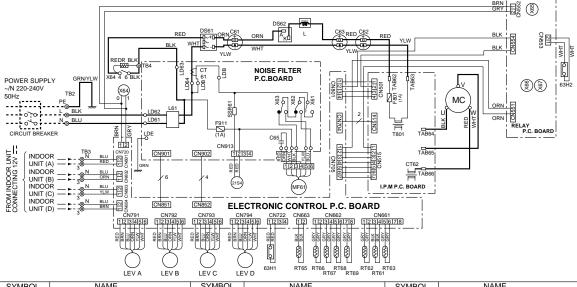

NOTCH	SPL(dB(A))	LINE
COOL(220V)	45	• •
COOL(240V)	47	00
HEAT(220V)	46	A
HEAT(240V)	48	ΔΔ

MXZ-32SV - E1


6

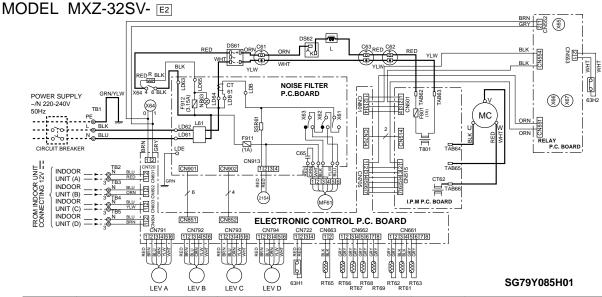
MXZ-32SV - E2

Cooling :DB35℃ WB24℃ Heating :DB 7℃ WB 6℃


OUTLINES AND DIMENSIONS

OUTDOOR UNIT

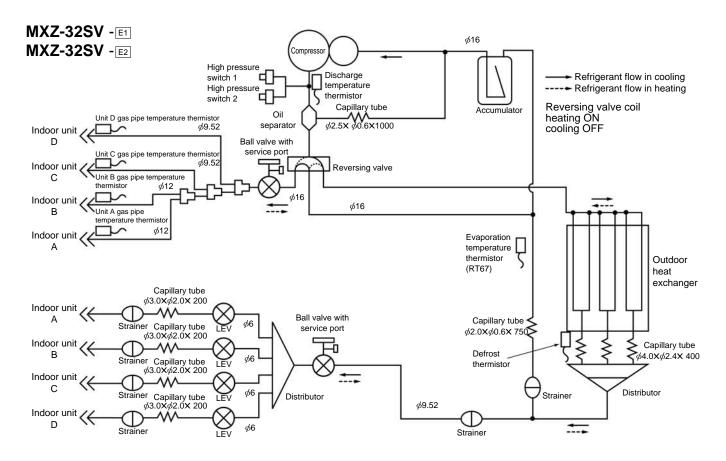
8


MODEL MXZ-32SV- [E1]

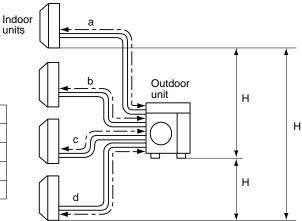
SYMBOL	NAME	SYMBOL	NAME	SYMBOL	NAME
C61	POWER FACTOR CAPACITOR	LEV A~D	EXPANSION VALVE	SSR61	SOLENOID COIL RELAY
C62,63	SMOOTHING CAPACITOR	MC	COMPRESSOR	T801	TRANSFORMER
C65	OUTDOOR FAN CAPACITOR	MF61	OUTDOOR FAN MOTOR (INNER FUSE)	TB2,3,4	TERMINAL BLOCK
CT61,62	CURRENT TRANSFORMER	R	RESISTOR	X61,62,63	FAN MOTOR RELAY
DS61	DIODE MODULE	RT61	DISCHARGE TEMPERATURE THERMISTOR	X64,65	RELAY
DS62	DIODE STACK	RT62	DEFROST TEMPERATURE THERMISTOR	X66,67	RELAY
F801	FUSE (1A)	RT63	EVAPORATION TEMPERATURE THERMISTOR	21S4	R.V. COIL
F911	FUSE (1A)	RT65	FIN TEMPERATURE THERMISTOR	63H1	HIGH PRESSURE SWITCH
L	REACTOR	RT66,67	GAS PIPE TEMPERATURE THERMISTOR	63H2	HIGH PRESSURE SWITCH
L61	COMMON MODE CHOKE COIL	RT68,69	GAS PIPE TEMPERATURE THERMISTOR		

NOTE: 1. About the indoor side electric wiring refer to the indoor unit electric wiring diagram for servicing.

2.Use copper conductors only. (For field wiring) 3.Symbols below indicate. © : Terminal block ☐ . Connector


SYMBOL	NAME	SYMBOL	NAME	SYMBOL	NAME
C61	POWER FACTOR CAPACITOR	MC	COMPRESSOR	TB1,2,3,4,5	TERMINAL BLOCK
C62,63	SMOOTHING CAPACITOR	MF61	OUTDOOR FAN MOTOR (INNER FUSE)	X61,62,63	FAN MOTOR RELAY
C65	OUTDOOR FAN CAPACITOR	R	RESISTOR	X64,65	RELAY
CT61,62	CURRENT TRANSFORMER	RT61	DISCHARGE TEMPERATURE THERMISTOR	X66,67	RELAY
DS61	DIODE MODULE	RT62	DEFROST TEMPERATURE THERMISTOR	21S4	R.V. COIL
DS62	DIODE STACK	RT63	EVAPORATION TEMPERATURE THERMISTOR	63H1	HIGH PRESSURE SWITCH
F801	FUSE (1A)	RT65	FIN TEMPERATURE THERMISTOR	63H2	HIGH PRESSURE SWITCH
F911	FUSE (1A)	RT66,67	GAS PIPE TEMPERATURE THERMISTOR	F912	FUSE(3.15A)
L	REACTOR	RT68,69	GAS PIPE TEMPERATURE THERMISTOR	NR63	VARISTOR
L61	COMMON MODE CHOKE COIL	SSR61	SOLENOID COIL RELAY		
LEV A~D	EXPANSION VALVE	T801	TRANSFORMER		

LEV A~D | EXPANSION VALVE T801


NOTE: 1. About the indoor side electric wiring refer to the indoor unit electric wiring diagram for servicing.

2.Use copper conductors only. (For field wing) 3.Symbols below indicate. ©: Terminal block

REFRIGERANT SYSTEM DIAGRAM

Piping length each indoor unit (a, b, c, d)	25m
Total piping length (a+b+c+d)	60m
Height difference between units (H)	10m
Bending point for each unit	25
Total bending point	60

*It does not matter which unit is higher.

9

- Refrigerant pipe diameter is different according to indoor unit to be connected. When using extension pipes, refer to the tables below.
- When diameter of refrigerant pipe is different from that of outdoor unit union, use optional Different-diameter pipe.
 For further information on Different-diameter pipe, see page BACK COVER.
 Unit : mm (inch)

Indoor unit Extension pipe diameter class Pipe diameter Liquid 6.35(1/4) Liquid 6.35(1/4) 07/09 Gas 9.52(3/8) Gas 9.52(3/8) 6.35(1/4) 6.35(1/4) Liquid Liquid 12(13) 12.7(1/2) Gas 12.7(1/2) Gas Liquid 6.35(1/4) Liquid 6.35(1/4) 18 Gas 15.88(5/8) Gas 15.88(5/8)

Outdoor unit union diameter						
For						
Indoor unit A	Liquid	6.35(1/4)				
	Gas	12.7(1/2)				
Indoor unit B	Liquid	6.35(1/4)				
	Gas	12.7(1/2)				
Indoor unit C	Liquid	6.35(1/4)				
	Gas	9.52(3/8)				
Indoor unit D	Liquid	6.35(1/4)				
	Gas	9.52(3/8)				

PERFORMANCE CURVES

The standard data contained in these specifications apply only to the operation of the air conditioner under normal conditions, since operating conditions vary according to the areas where these units are installed. The following information has been provided to clarify the operating characteristics of the air conditioner under the conditions indicated by the performance curve.

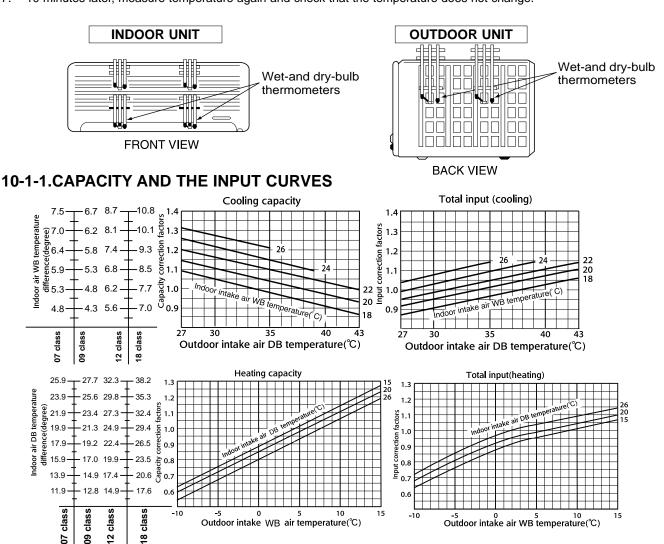
(1) GUARANTEED VOLTAGE

198 ~ 264V

10

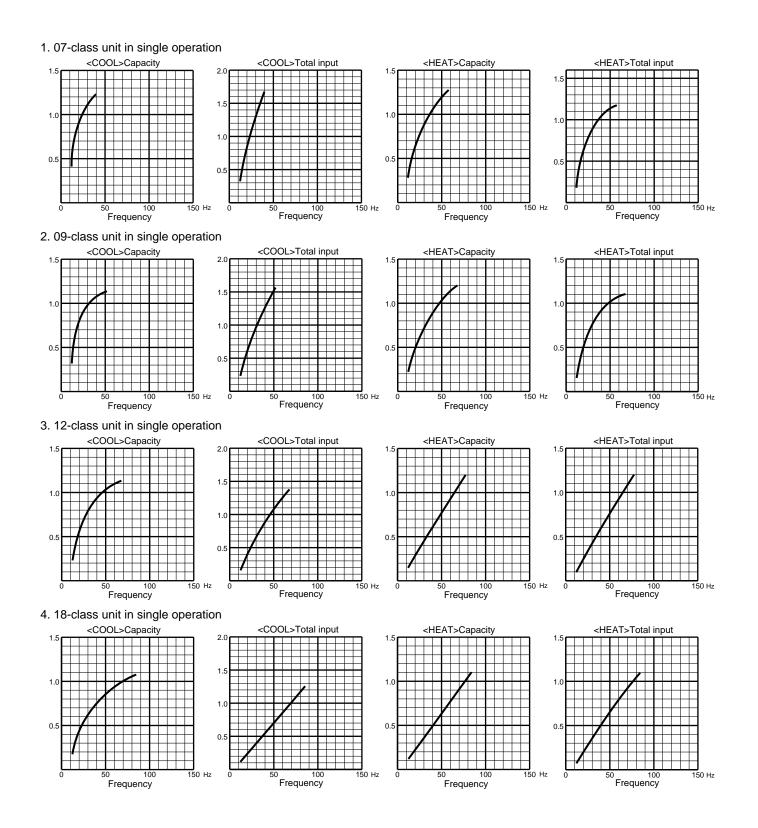
(2) AIR FLOW

Air flow should be set at MAX.


(3) MAIN READINGS

(1) Indoor intake air wet-bulb temperature :	°CWB	
(2) Indoor outlet air wet-bulb temperature :	°CWB	Cooling
(3) Outdoor intake air dry-bulb temperature :	°CDB	J
(4) Total input:	W	
(5) Indoor intake air dry-bulb temperature :	°CDB	
(6) Outdoor intake air wet-bulb temperature :	°CWB	Heating
(7) Total input :	W	
Indeer air wet/dw/ built terrerereture differences on the		سيمثطاء مرمية سمما

Indoor air wet/dry-bulb temperature difference on the left side of the chart on this page shows the difference between the indoor intake air wet/dry-bulb temperature and the indoor outlet air wet/dry-bulb temperature for your reference at service.


How to measure the indoor air wet-bulb/dry-bulb temperature difference

- Attach at least 2 sets of wet-and dry-bulb thermometers to the indoor air intake as shown in the figure, and at least 2 sets of wet-and dry-bulb thermometers to the indoor air outlet. The thermometers must be attached to the position where air speed is high.
- 2. Attach at least 2 sets of wet-and dry-bulb thermometers to the outdoor air intake.
- Cover the thermometers to prevent direct rays of the sun.
- 3. Check that the air filter is cleaned.
- 4. Open windows and doors of room.
- 5. Press the EMERGENCY OPERATION switch once(twice) to start the EMERGENCY COOL(HEAT) MODE.
- 6. When system stabilizes after more than 15 minutes, measure temperature and take an average temperature.
- 7. 10 minutes later, measure temperature again and check that the temperature does not change.

10-3-.2. Capacity and input correction by inverter output frequency

(OUTDOOR UNIT:MXZ-32SV) The dotted line on graphs connects the frequency range in normal operation shown by the full line and the frequency in test run shown by the point.

10-3-4.Outdoor low pressure and outdoor unit current

1. 07-class unit in single operation

NOTE: The unit of pressure has been changed to MPa on the international system of units(SI unit system).

The converted score against the traditional unit system can be gotten according to the formula below.

33Hz

1(MPa • G) =10.2(kgf/cm² • G)

(1) COOL operation

①Both indoor and outdoor units are under the same temperature/humidity condition.

Dry-bulb temperature(°C)	Relative humidity(%)
20	50
25	60
30	70

②Air flow speed : HI

8

7

6

5

4

3

2

③Inverter output frequency : 33Hz

(kgf/cm²•Gauge) (MPa•Gauge)

0.8

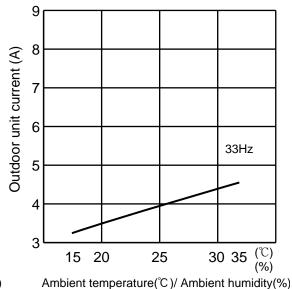
0.7

0.6

0.5

0.4

0.3


0.2

15

20

<How to work fixed-frequency operation>

- 1.Set emergency switch to COOL or HEAT. The switch is located on indoor unit.
- 2.Press emergency run ON/OFF button.
- 3.Compressor starts running at rated frequency.
- 4.Indoor fan runs at HI speed and continues for 30 minutes.
- 5.To cancel this operation, press emergency run ON/OFF button or any button on remote controller.

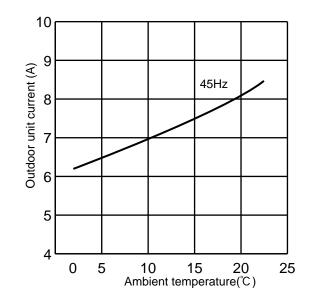
^(%) Ambient temperature(°C)/ Ambient humidity(%)

(°C)

35

30

(2) HEAT operation


Outdoor low pressure

25

② Set air flow to Hi speed.

③ Inverter output frequency is 45Hz.

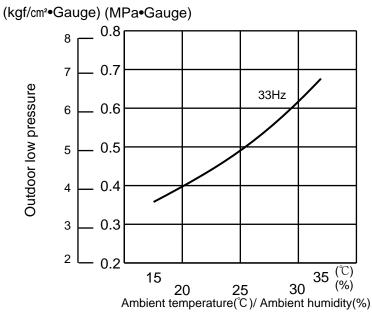
2. 09-class unit in single operation

NOTE:The unit of pressure has been changed to MPa on the international system of units(SI unit system). The converted score against the traditional unit system can be gotten according to the formula below.

(1) COOL operation

1(MPa • G) =10.2(kgf/cm² • G)

①Both indoor and outdoor units are under the same


temperature/humidity condition.

Dry-bulb temperature(°C)	Relative humidity(%)
20	50
25	60
30	70

<How to work fixed-frequency operation>

- 1.Set emergency switch to COOL or HEAT. The switch is located on indoor unit.
- 2.Press emergency run ON/OFF button.
- 3.Compressor starts running at rated frequency.
- 4. Indoor fan runs at HI speed and continues for 30 minutes.
- 5.To cancel this operation, press emergency run ON/OFF button or any button on remote controller.

②Air flow speed : HI③Inverter output frequency : 33Hz

Outdoor

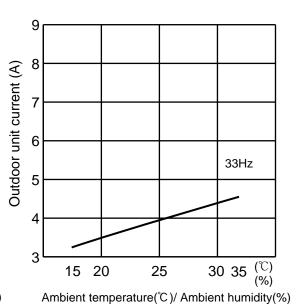
DB(°C)

WB(°C)

2

1

7


6

15

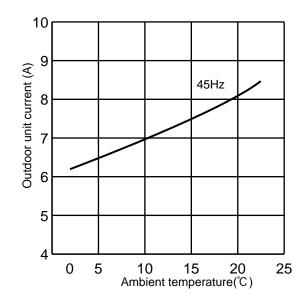
12

20.0

14.5

(2) HEAT operation

1 Indoor


WB(°C) 14.5

DB(°C)

² Set air flow to Hi speed.

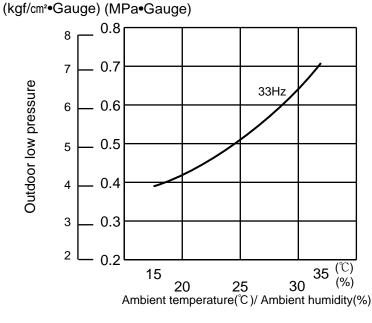
^③ Inverter output frequency is 45Hz.

20.0

3. 12-class unit in single operation

NOTE:The unit of pressure has been changed to MPa on the international system of units(SI unit system). The converted score against the traditional unit system can be gotten according to the formula below.

(1) COOL operation


1(MPa • G) =10.2(kgf/cm² • G)

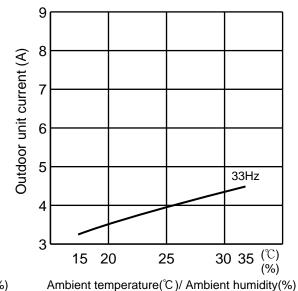
①Both indoor and outdoor units are under the same temperature/humidity condition.

Dry-bulb temperature(°C)	Relative humidity(%)
20	50
25	60
30	70

②Air flow speed : HI

③Inverter output frequency : 33Hz

<How to work fixed-frequency operation>

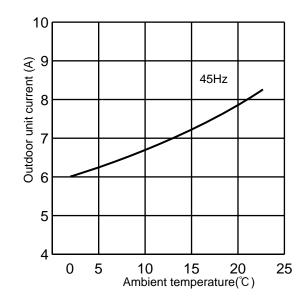

1.Set emergency switch to COOL or HEAT. The switch is located on indoor unit.

2.Press emergency run ON/OFF button.

3.Compressor starts running at rated frequency.

4. Indoor fan runs at HI speed and continues for 30 minutes.

- 5. To cancel this operation, press emergency run ON/OFF button
- or any button on remote controller.



(2) HEAT operation

1 Indoor	DB(°C)	20.0	Outdoor	DB(°C)	2	7	15	20.0
	WB(°C)	14.5		WB(°C)	1	6	12	14.5

² Set air flow to Hi speed.

^③ Inverter output frequency is 45Hz.

4. 18-class unit in single operation

NOTE: The unit of pressure has been changed to MPa on the international system of units(SI unit system). The converted score against the traditional unit system can be gotten according to the formula below. 1(MPa • G) =10.2(kgf/cm² • G)

(1) COOL operation

^① Both indoor and outdoor units are under the same temperature/humidity condition.

Dry-bulb temperature(°C)	Relative humidity(%)
20	50
25	60
30	70

② Air flow speed : HI

^③ Inverter output frequency : 33Hz

0.8

0.7

0.6

0.5

0.4

0.3

0.2

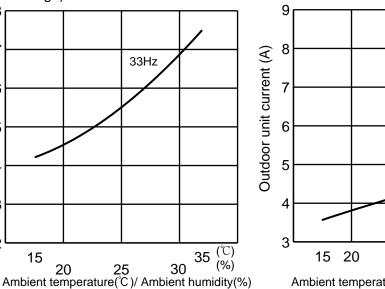
(kgf/cm²•Gauge) (MPa•Gauge)

8

7

6

5


4

3

2

<How to work fixed-frequency operation>

- 1.Set emergency switch to COOL or HEAT. The switch is located on indoor unit.
- 2.Press emergency run ON/OFF button.
- 3.Compressor starts running at rated frequency.
- 4.Indoor fan runs at HI speed.
- 5.To cancel this operation, press emergency run ON/OFF button or any button on remote controller.

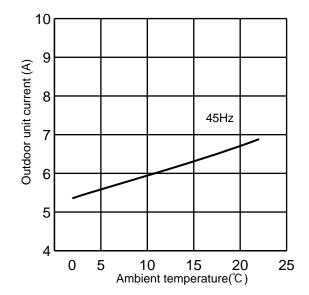
Ambient temperature(°C)/ Ambient humidity(%)

25

33Hz

30 35

(°C)


(2) HEAT operation

Outdoor low pressure

1 Indoor Outdoor DB(°C) DB(°C) 20.0 2 7 15 20.0 WB(°C) WB(°C) 6 12 14.5 1 14.5

⁽²⁾ Set air flow to Hi speed.

^③ Inverter output frequency is 45Hz.

INVERTER MULTI SYSTEM CONTROL

MXZ-32SV -E1 MXZ-32SV -E2

11

11-1.LEV control

Linear expansion valve (LEV) is controlled by "Thermostat ON" commands given from each unit.

Indoor unit status Stop of all indoor unit	LEV opening
	Opening before stop \rightarrow 500 pulse in 15 minutes
When outdoor unit is operating, some indoor unit stops and some operates.	COOL : 5 pulse (fully closed) HEAT : 59 pulse (slightly opened)
Thermostat OFF in COOL or DRY mode	When the outdoor unit operation (When the other indoor unit operates): 5 pulse. When outdoor unit stops. (When the other indoor unit stops or thermo off): Maintain LEV opening before stop \rightarrow 500 pulse in 15 minutes
Thermostat ON in COOL or DRY mode	 LEV opening for each indoor unit is determined by adding adjustment in accordance with the number of operating unit and the capacity class to standard opening, based on the operation frequency: Ex.) Opening 130 pulse in standard opening 1 → Minimum 80 pulse, Maximum 205 pulse. (Capacity code 4 at 1 unit operation) (Capacity code 1 at 4 unit operation) After starting operation, adjustment in accordance with intake superheat, discharge temperature is included in standard opening. *1 Note: LEV opening in each frequency at DRY operation and COOL operation is the same. However, velocity and compressor operation frequency controls are different. See 11-2 Operational frequency range (As far as the indoor unit velocity control goes, refer to DRY operation in MICROPROCESSOR CONTROL in the indoor unit service manual.)
Thermostat OFF in HEAT mode	 When the outdoor unit operates. (When the other indoor unit operates): 59 pulse When the outdoor unit stops. (When the other indoor unit stops or thermo off): Maintain LEV opening before stop → 500 pulse in 15 minutes.
Thermostat ON in HEAT mode	 LEV opening for each indoor unit is determined by adding adjustment in accordance with the number of operating unit and the capacity class to standard opening, based on the operation frequency: Ex.) Opening 120 pulse in standard opening 1 → Minimum 70 pulse, Maximum 165 pulse. (Capacity code 4 at 1 unit operation) (Capacity code 1 at 4 unit operation) After starting operation, opening becomes the one that adjustment in accordance with discharge temperature was added to basic opening. *1

*1 LEV opening when the outdoor is unit operating: Upper limit 500, Lower limit 59

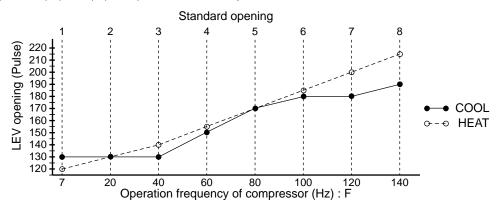
Determination of LEV standard opening in each indoor unit

 The standard opening is on the straight line, which connects each standard point in the section where divided into seven according to the operation frequency of compressor as shown in the figure below. (LEV opening is controlled in proportion to the operation frequency.)

Note: Opening is adjusted at the standard opening according to the indoor unit conditions.

However, inclination of standard opening in each point of opening does not change with the original curve. • Add opening provided in Difference in Capacity in the table below to the standard opening from 1 to 8,

when capacity of the indoor unit is excluding code 1.


• Add opening provided in Difference in Operation number in the table below to determined LEV opening for each indoor unit, when 2, 3 or 4 indoor units are operated at the same time.

Note: Even when the adjusted standard opening exceeds the driving range from 59 to 500 pulse, actual driving output opening is in a range from 59 to 500 pulse.

< Calculation example of LEV opening >

Cool operation: Compressor frequency 70Hz: 2 unit ON: 18class

(170-150)÷(80-60)×(70-60)+150+75-30=205 pulse

	Standard opening								ference bacity	e in		ence in tion nu		
	1	2	3	4	5	6	7	8	Code2	Code3	Code4	2	3	4
COOL	130	130	130	150	170	180	180	190	25	50	75	-30	-40	-50
HEAT	120	120 130 140 155 170 185 200 215						15	30	45	-10	-40	-50	
Capacity code	1	2	3	4	8									
Indoor unit	07	09	12	18										

<Correction>

	COOL	DRY	HEAT
 ① Suction superheat (MIN gas pipe temperature thermistor - Evaporation temperature thermistor) 			
 ② Each correction * 1 • (Each gas pipe temperature thermistor - Evaporation temperature thermistor) • (Main pipe temperature thermistor - sub pipe temperature thermistor) 	•	•	—
③ Discharge temperature	● * 2	•*2	•

* 1 Perform this, when number of operation units is 2 units or more

* 2 When the correction opening of suction superheat is 0, correct the LEV opening by discharge temperature.

(1) LEV opening correction by suction superheat (COOL, DRY) (Suction superheat) = (Minimum gas pipe temperature) - (Evaporation temperature) When COOL and DRY, correct the LEV openings corrected from the table below

Suction superheat (S.H.)	LEV opening correction (pulse)		
more than 12	6		
10 to12	4		
8 to 10	3		
6 to 8	2		
6 or less	0		

(2) Separate correction (COOL,DRY)

(When number of operation unit is 2 units or more)

(a) Correction by the separate superheat

Correct the LEV separately by temperature difference between each gas pipe temperature thermistor and evaporator temperature thermistor.

① Calculate each superheat of the unit from the expression below;

(Superheat) = (Gas pipe temperature thermistor) - (Evaporation temperature thermistor)

② Select minimum superheat from among them.

③ Each LEV opening is corrected by difference between each superheat and minimum superheat.

Difference of superheat	LEV opening correction (pulse)
more than 9	8
6 to 9	6
3 to 6	2
6 or less	0

(3) LEV opening correction by discharge temperature

When LEV correction output is 0 pulse by the suction superheat at cool or dry operation, or dry operating, correct LEV is corrected according to the following table.

The target discharge temperature is determined according to frequency zone and number of operation unit of the compressor.

0		COOL	., DRY			HE	AT	
Operation frequency	N	lumber of o	perating u	nit.	N	lumber of o	perating u	nit.
of compressor	Single	Double	Triple	Quadruple	Single	Double	Triple	Quadruple
Minimum ~ 20	51	60	62	64	55	49	48	47
21 ~ 30	57	64	66	68	58	52	51	50
31 ~ 40	65	68	73	75	63	55	54	53
41 ~ 55	67	72	79	81	70	58	57	56
56 ~ 70	70	77	86	88	80	63	62	61
71 ~ 90	72	83	90	90	85	69	68	67
91 ~ maximum	74	84	90	90	85	74	73	72

Correct the LEV opening according to difference between the target discharge temperature and discharge temperature.

Discharge temperature ($^{\circ}$ C)	LEV ope correctio	
	COOL	HEAT
more than Target discharge temperature+11	10	7
Target discharge temperature+11 to Target discharge temperature+8	4	6
Target discharge temperature+8 to Target discharge temperature+5	2	3
Target discharge temperature+5 to Target discharge temperature+2	1	2
Target discharge temperature+2 to Target discharge temperature-2	0	0
Target discharge temperature-2 to Target discharge temperature-5	-1	-1
Target discharge temperature-5 to Target discharge temperature-8	-2	-1
Target discharge temperature-8 to Target discharge temperature-11	-5	-3
Target discharge temperature-11 or less	-8	-7

11-2.Operational frequency range

Number of	capacity		COOL		DRY		HE	AT	
operating	ċord í	Min.	Max.	Rated		Min.	Max.	Defrost	Rated
	1		40	24			62	62	36
1	2	18	52	33	25	18	70	70	49
	2 3 4		68	46			80	80	65
	4		85	82			86	86	80
	3		80	70			90	95	80
2	4 5	20	105	80	40	20	90	100	88
	2 3 4 5 6 7 8		110	90			110	100	100
3	8 3 4 5 6 7 8 9	30	120	93	58	30	120	100	108
4	4 5 6 7 8 9 10	40	120	101	58	40	120	100	108

Note: When the fan speed of indoor unit is totally Lo notch, restrict the maximum frequency is restricted in 6/7 of the rated frequency.

DRY	COOL	Maximum frequency
1	1	8/10 of maximum frequency
2	2	o/ To of maximum frequency
1	2	9/10 of maximum frequency
1	3	9/10 of maximum frequency
2	1	7/10 of maximum frequency
3	1	77 TO OF MAXIMUM Requency

11-3.Heat defrosting control

- (1) Conditions to enter defrosting mode
 - \bigcirc . When temperature of defrosting thermistor is -3[°]C or less.
 - ⁽²⁾.When specified non-defrosting time is counted in the control P.C.board.
 - (Total time of compressor operating)

Going to defrosting mode at both condition of ① and ②.

- (2) Defrosting operation
 - ①. Compressor stops for 50 seconds. Indoor fan is off. Defrosting lamp lights.
 - 2.4-way valve reverses flow. Compressor operates by the frequency in heat defrosting control.
 - ③. After compressor stops for 35 seconds, 4-way valve reverses flow, then defrosting finishes.
- (3) Conditions to finish defrosting mode
 - \bigcirc . When the defrosting thermistor temperature is 8°C or more.
 - ②. When it has spent 10 minutes for defrosting.
 - Defrosting finishes at condition of \bigcirc or \oslash .

11-4. High or low pressure protection

- (1) High pressure protection control on heat mode
 - Temperature of the main pipe temp. thermistor in the indoor unit controls the operation frequency.
 - When temperature of the main pipe temp. thermistor is approx. 49° , the operation frequency is set at the current level. When temperature of the main pipe temp. thermistor is approx. 52° the protection control decreases the frequency at the speed of 3Hz a minutes.
 - When temperature of the main pipe temp. thermistor is approx. 57° the protection decreases the frequency at the speed of 4Hz a minute and changes the outdoor fan to Low.

Note: Temperature of the pipe temp. thermistor is different depending on the indoor unit.

Temperature of the pipe temp. thermistor is 45° C or less, the protection control is released.

- (2) High pressure protection control by high pressure switch (H.P.S)
 - High-pressure switch controls the operation frequency and outdoor fan motor.
 - <Control status>
 - When high-pressure switch is ON.
 - (When discharge pipe pressure is 2.75 MPa or more.)
 - <Control details>
 - (a) When cooling or drying
 - The protection control decreases the compressor frequency at the speed of 10Hz a minute.
 - (The compressor operates continuously in min. frequency according to a command to decrease more than the min. level.) (b) When heating
 - The protection control decreases the compressor frequency at the speed of 10Hz a minute.

The protection control changes the outdoor fan to Low.

<Release status>

When high-pressure switch is OFF. (When discharge pipe pressure is 2.35 MPa or more.) Or, the compressor stops.

11-5.Discharge temperature protection control

This protection controls the compressor ON/OFF and operation frequency according to temperature of the discharge temp. thermistor.

(1) Compressor ON/OFF

When temperature of the discharge temp. thermistor exceeds 116° , the control stops the compressor. When temperature of the discharge temp. thermistor is 80° or less, the controls starts the compressor.

- (2) Compressor operation frequency
- When temperature of the discharge temp. thermistor is expected to be higher than 116°C, the control decreases 12Hz from the current frequency.
- When temperature of the discharge temp. thermistor is expected to be higher than 111°C and less than 116°C, the control decreases 6Hz from the current frequency.
- When temperature of the discharge temp. thermistor is expected to be higher than 104°C and less than 111°C, the control is set at the current frequency.

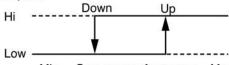
11-6.Refrigerant recovery control on heating

<Control status>

- The control performs when the following status are satisfied everything;
- When there is 1 unit or more not operating indoor unit on heat operation. (Excluding thermo OFF)
- When discharge temperature becomes 107° or more.
- When it passed 60 minutes or more since the operation has started or the last refrigerant recovery has controlled.

<Control details>

LEV opening, which adjusts to not operating indoor unit, is considered to be 80 pulse.


<Control finish status>

- The control finishes either as follows. However, the LEV opening is considered to be 59 pulse.
- When it passed 60 seconds since the control has started.
- When the discharge temperature is $90^\circ\!\!\mathbb{C}$ or less.

11-7.Outdoor fan control

Fan speed is switched according to a number of operating indoor unit and the compressor frequency.

Fan speed

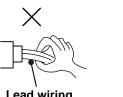
Min. Compressor frequency Max.

<Relation between compressor frequency and fan speed.>

Mode			Indoor unit	operation	
Mode	Fan speed	Single	Double	Triple	Quadruple
COOL	Up	55 Hz	50Hz	50 Hz	50 Hz
COOL	Down	45 Hz	45 Hz	45 Hz	45 Hz
HEAT	Up	60 Hz	45 Hz	40 Hz	40 Hz
HEAT	Down	50 Hz	40 Hz	35 Hz	35 Hz

Note

- •When operation, fan speed of Hi/ Low mode changes to VHi/ Hi mode by promoting those fan speeds respectively by 1 step after defrosting is operated. This control is cleared, when the compressor off.
- •When overheat protection of P.C. board temperature or fin temperature operates, the outdoor fan speed is fixed to VHi mode regardless of compressor frequency. Also, when the overheat protection is cleared, the fan speed is back to normal
- •When the indoor coil thermistor is 57° or more on HEAT operation, fan speed is fixed to Low notch . Or, the indoor coil thermistor is 45° or less on HEAT operation, fan speed is back to normal.


11-8.Relation between main sensor and actuator

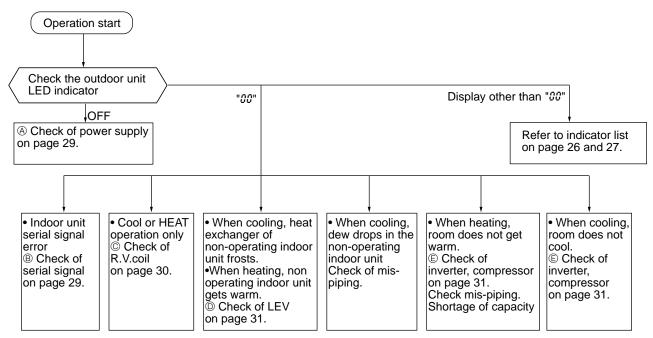
Relation between main sensor and actuator.

			Actu	uator	
Sensor	Purpose	Compressor	LEV	Outdoor fan motor	Reversing valve
Discharge temperature thermistor	Protection	0	0		
Indoor pipe temperature thermistor	Defrosting Protection	0	0	0	
Defrost thermistor	Defrosting	0	0		0
Evaporation temperature thermistor	Control		0		
Gas pipe temperature thermistor	Control		0		
High pressure switch	Protection	0		0	
Fin temperature thermistor	Protection	0		0	
Capacity code	Control	0	0	0	

12-1. Cautions on troubleshooting

- 1. Before troubleshooting, check the following:
 - 1) Check the power supply voltage.
 - 2) Check the indoor/outdoor connecting wire for mis-wiring.
- 2. Take care the following during servicing.
 - 1) Before servicing the air conditioner, be sure to first turn off the remote controller to stop the unit, and then after confirming the horizontal vane is closed, turn off the breaker and / or disconnect the power plug.
 - 2) Be sure to unplug the power cord before removing the front panel, the cabinet, the top panel, and the electronic control P.C. board.
 - 3) When removing the electronic control P.C. board, hold the edge of the board with care NOT to apply stress on the components.
 - 4) When connecting or disconnecting the connectors, hold the housing of the connector. DO NOT pull the lead wires.

Lead wiring


Housing point

3. Troubleshooting procedure

- 1) First, check if the OPERATION INDICATOR lamp on the indoor unit is flashing on and off to indicate an abnormality. To make sure, check how many times the abnormality indication is flashing on and off before starting service work.
- 2) If the electronic control P.C. board is supposed to be defective, check the copper foil pattern for disconnection and the components for bursting and discoloration.
- 3) When troubleshooting, refer to the flow chart on this page and the check table on page 26 and 27.

12-2. Instruction of troubleshooting

 Check the indoor unit with referring to the indoor unit service manual, and confirm that there is any problem in the indoor unit. Then, check the outdoor unit with referring to this page.

12-3. Troubleshooting check table

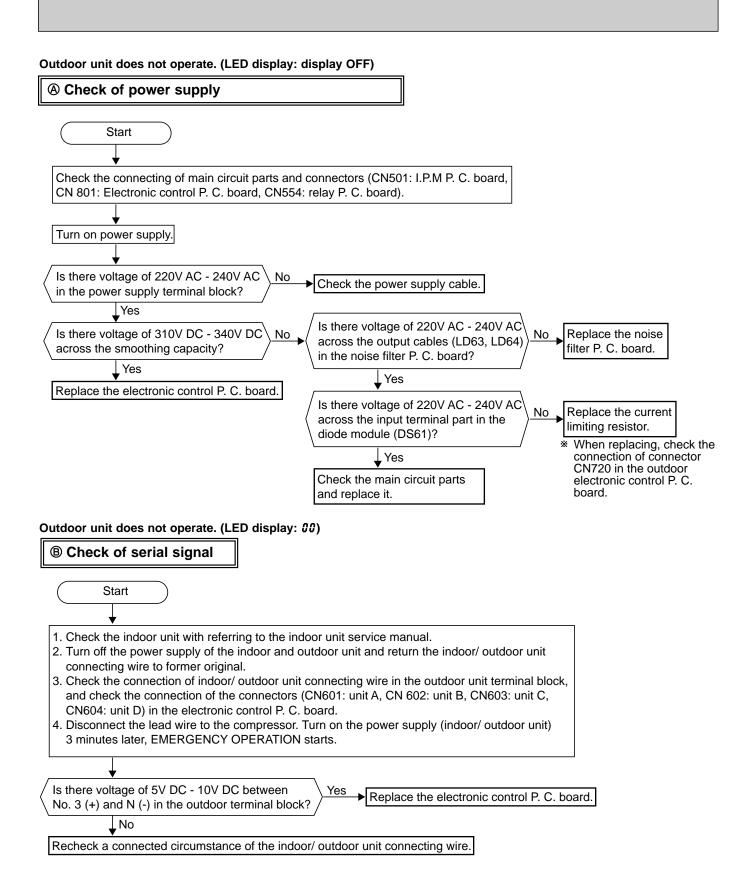
Note . LED indicates "00" in the normal status.

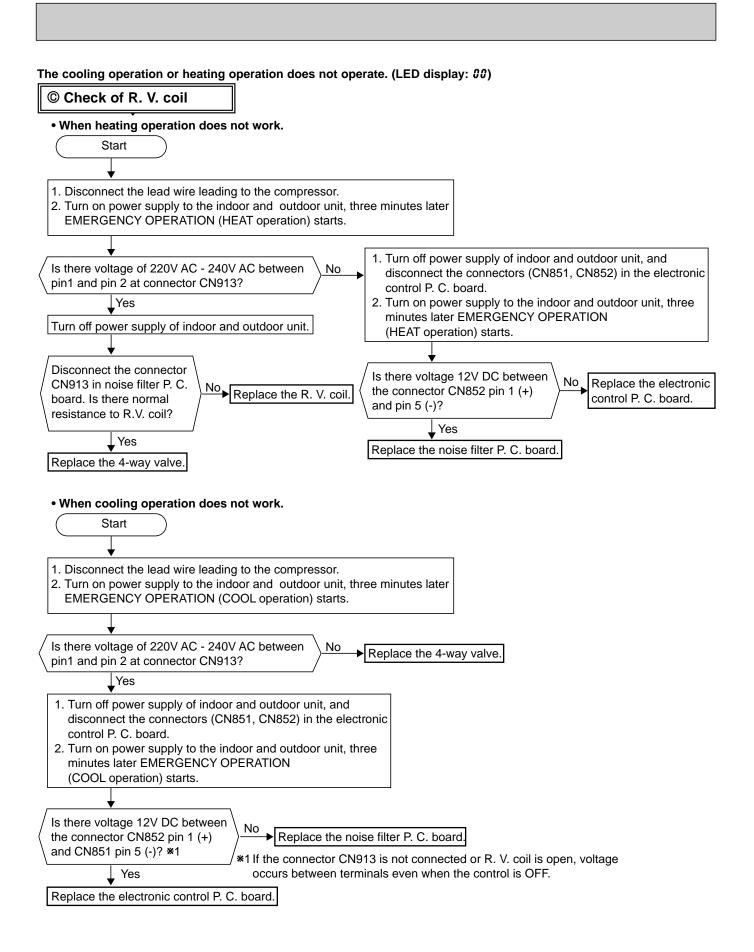
7-segment LED display	Error mode
00	Normal

* If there is defect in the following parts (electronic control P.C. board, relay P.C. board, high pressure switches (63H1,63H2), indoor /outdoor fan motor, or indoor coil thermistor), the compressor may stop even with the display remained at " 00 ". In any case, reset the breaker and check the above-stated parts.

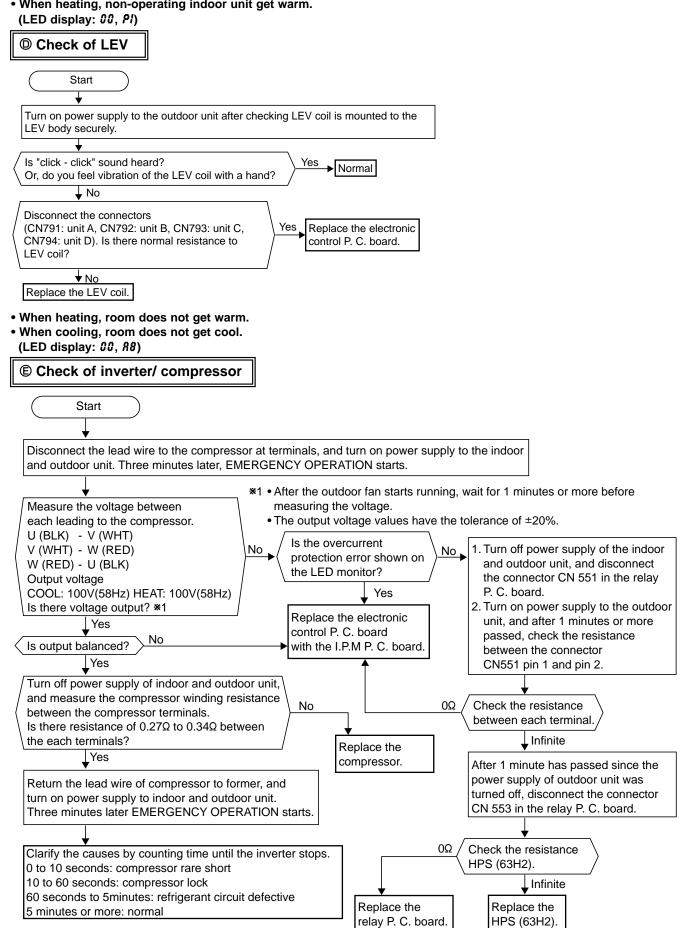
Symptom		Outdoor unit does not operate.	
Display	Detecting method	Detecting method	Check points
ЯЧ (A4)	Outdoor power system abnor- mality	When the compressor operation has been interrupted by overcurrent protection continuously three times within 1 minute after start-up, the compressor stops operation.	
R3 (A3)	Outdoor electronic control P.C. board abnormality	When the nonvolatile memory data cannot be read properly on the out- door controller board	Outdoor electronic control P.C. board
P; (P1)	Indoor unit and LEV abnor- mality	When the drain abnormality is detected in the indoor unit and the indoor main coil temperature is too low, or when any abnormality is detected in the components of indoor unit	 Check the abnormality indication on the indoor unit. LEV

Symptom		Outdoor unit stops and restarts every 3 minutes.	
Display	Detecting method	Detecting method	Check points
E9 (E9)	Evaporation temperature ther- mistor abnormality	The compressor stops when a short or open circuit occurs in the evap- oration temperature thermistor during compressor running.	 Check the characteristic of the evaporation temperature thermistor. Refer to (P) on page 32. Check the contact of P.C. board connectors.
£8 (E6)	Discharge temperature ther- mistor abnormality	The compressor stops when a short or open circuit occurs in the dis- charge temperature thermistor during compressor running.	 Check the characteristic of the discharge temperature thermistor. Refer to ^(D) on page 32. Check the contact of P.C. board connectors.
F 8 (F8)	Fin temperature thermistor abnormality	The compressor stops when a short or open circuit occurs in the fin tem- perature thermistor during compressor running.	 Check the characteristic of the fin temper- ature thermistor. Refer to [®] on page 32. Check the contact of P.C. board connec- tors.
R8 (A8)	Overcurrent protection	When over current is applied to the power module, the compressor stops and restarts in 3 minutes.	 Check the inverter and compressor. Refer to © on page 31. Check the amount of gas. Check the indoor/outdoor air flow for short cycle. Check the indoor unit air filter for clogging.
d 5 (d6)	Discharge temperature over- heat protection	When the discharge temperature thermistor detects 116°C or above, the compressor stops and restarts operation in 3 minutes. (Protection will be released at 100°C or below.)	 Check the amount of gas and the refriger- ant cycle. Check the outdoor unit air passage.
d 4 (d4)	Fin temperature overheat pro- tection	When the fin temperature thermistor detects 89°C or above, the com- pressor stops and restarts operation in 3 minutes.	 Check the outdoor unit air passage. Check the power module. Check the outdoor fan motor. Refer to on page 32.
d1 (d7)	High pressure protection	When the compressor starts, primary current or output voltage stops the compressor and restarts in 3 minutes.	 Amount of gas Outdoor unit air passage. Check the ball valve.
F5 (F5)	Room-A gas pipe temperature thermistor abnormality	When a short or open circuit occurs in the Room-A gas pipe temperature thermistor.	 Room A gas pipe temperature thermistor characteristic. Contact of P.C. board connectors.
F 5 (F6)	Room-B gas pipe temperature thermistor abnormality	When a short or open circuit occurs in the Room-B gas pipe temperature thermistor.	 Room B gas pipe temperature thermistor characteristic. Contact of P.C. board connectors.
F1 (F7)	Room-C gas pipe temperature thermistor abnormality	When a short or open circuit occurs in the Room-C gas pipe temperature thermistor.	 Room C gas pipe temperature thermistor characteristic. Contact of P.C. board connectors.
(P9)	Room-D gas pipe temperature thermistor abnormality	When a short or open circuit occurs in the Room-D gas pipe temperature thermistor.	 Room D gas pipe temperature thermistor characteristic. Contact of P.C. board connectors.

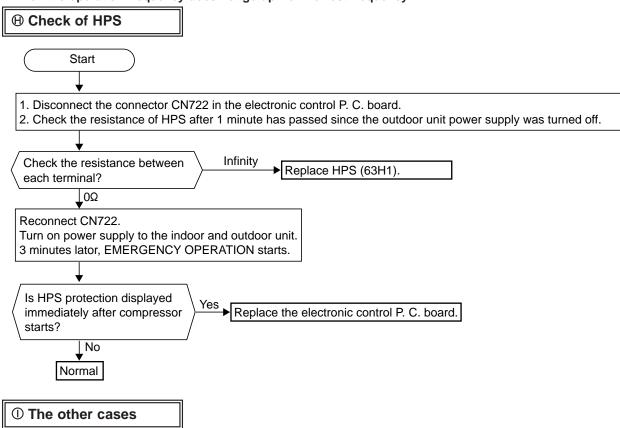

Symptom		Outdoor unit operates. (The compressor operates at reduced freq	uency.)
Display	Detecting method	Detecting method	Check points
d 8 (d8)	Frequency drop by current protection	When the outdoor unit input current exceeds 22.5 A, the compressor operates at reduced frequency.	
d 9 (d9)	Frequency drop by overload protection	When the compressor load exceeds the specified value, the compressor operates at reduced frequency.	These symptoms do not mean any abnormality of the product, but check the
ሪገ	Frequency drop by high pres- sure protection	When indoor pipe temperature exceeds 55°C during heating, the com- pressor operates at reduced frequency.	following points. • Air filter clogging.
(d7)	Frequency drop by defrosting in cooling	When the indoor pipe temperature falls to 6°C or below during cooling, the compressor operates at reduced frequency.	Amount of gas. Short cycle of indoor/outdoor air flow.
d 6 (d6)	Frequency drop by discharge temperature protection	When the discharge temperature exceeds 110°C, the compressor oper- ates at reduced frequency.	
d 3 (d3)	Frequency drop by high pres- sure switch protection	When the high pressure exceeds 2.75MPa (28 kgf/cm ² -G), the compressor operates at reduced frequency. In addition, the fan speed changes.	 Amount of gas. Outdoor unit air passage.
d: (d1)	Low discharge temperature protection	When the state with low discharge temperature of which 50°C in COOL and 48.4 or less in HEAT for 20 minutes, the compressor operates continuously.	Check the amount of gas. Replace the outdoor controller board. Check the contact of LEV board connectors.


Symptom		Outdoor unit operates.	
Display	Detecting method	Detecting method	Check points
£1 (E7)	Defrost thermistor abnormality	When a short or open circuit occurs in the defrost thermistor during heating * In this case, the compressor continues to operate.	 Defrost thermistor characteristic. Contact of P. C. board connectors.
አ ዛ (h4)	Power factor detection abnor- mality	When the compressor power factor cannot be detected * In this case, the compressor keeps running.	Compressor wiring.

12-4. Trouble criterion of main parts

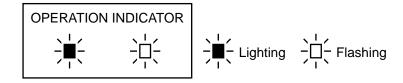

Part name		Check method	and criterion			
Defrost thermistor Evaporation / Gas pipe	Measure the resistance (Part temperature -10°					
temperature thermistor		Normal	ab	normal		
	5k	$5k\Omega \sim 55k\Omega$ Opened or		r short-circu	lited	
Discharge temperature	Measure the resistanc (Part temperature : 20	e using a tester, after war °C ~40°C)	ming up the therm	istor by hol	ding by hand.	
thermistor		Normal	ab	normal		
		100kΩ ~ 250kΩ Opened or short-circuited				
Compressor	Measure the resistance (Winding temperature	e between terminals using : -10°C ~ 40°C)	g a tester.			
(mar ele)		Normal		onormal		
WHT BLK	1Each pha	ase 0.53Ω ~ 0.66Ω	Opened o	r short-circu	uited	
Outdoor fan motor	Measure the resistance (Part temperature : -10	e between lead wires usin 0°C ~ 40°C)	ig a tester.			
		Normal		ab	normal	
	WHT - BLK	69.0 Ω ~ 86.		Ope	ened or	
BLK	BLK - YLW	23.0Ω ~ 30.		short	-circuited	
\bigcirc				(Not including		
Protector specification	YLW - BLU					
Protector specification Short 95±15° Open 135±5°	YLW - BLU RED - BLK	<u>10.0Ω</u> ~ 13. 73.0Ω ~ 91.			- ORN)	
Short 95±15°C	RED - BLK		0Ω	WH1		
Short 95±15°C Open 135±5°C	RED - BLK	73.0Ω ~ 91.	0Ω perature -10°C ~	WH1		
Short 95±15°C Open 135±5°C	RED - BLK	73.0Ω ~ 91. e using a tester. (Part tem	0Ω perature -10°C ~ at	40°C)	- ORN)	
Short 95±15°C Open 135±5°C R. V. coil	RED - BLK Measure the resistance 164	$73.0\Omega \sim 91.$ we using a tester. (Part tem Normal $0\Omega \sim 2310\Omega$	0Ω perature -10°C ~ at Opened o	40°C)	- ORN)	
Short 95±15°C Open 135±5°C R. V. coil	RED - BLK Measure the resistance 164	73.0Ω ~ 91. e using a tester. (Part tem Normal	0Ω perature -10°C ~ at Opened o	40°C)	- ORN)	
Short 95±15°C Open 135±5°C R. V. coil	RED - BLK Measure the resistance 164	$73.0\Omega \sim 91.$ re using a tester. (Part tem Normal $0\Omega \sim 2310\Omega$ re using a tester.(Part temp	0Ω perature -10°C ~ at Opened o	40°C)	ited	
Short 95±15°C Open 135±5°C R. V. coil Linear expansion valve	RED - BLK Measure the resistance 164 Measure the resistance Lead wire color WHT - RED	$73.0\Omega \sim 91.$ re using a tester. (Part tem Normal $0\Omega \sim 2310\Omega$ re using a tester.(Part temp	0Ω perature -10°C ~ at Opened o	40°C) onormal r short-circu	ited	
Short 95±15°C Open 135±5°C R. V. coil Linear expansion valve	RED - BLK Measure the resistance 164 Measure the resistance Lead wire color WHT - RED RED - ORN	$73.0\Omega \sim 91.$ re using a tester. (Part tem Normal $0\Omega \sim 2310\Omega$ re using a tester.(Part temp	0Ω perature -10°C ~ at Opened o perature -10°C ~ 4	40°C) onormal r short-circu 40°C) Abnorma	- ORN) uited	
Short 95±15°C Open 135±5°C R. V. coil Linear expansion valve	RED - BLK Measure the resistance 164 Measure the resistance Lead wire color WHT - RED RED - ORN YLW - BRN	$73.0\Omega \sim 91.$ re using a tester. (Part tem Normal $0\Omega \sim 2310\Omega$ re using a tester.(Part temp Normal	0Ω perature -10°C ~ at Opened o perature -10°C ~ 4	40°C) onormal r short-circu	- ORN) uited	
Short 95±15°C Open 135±5°C R. V. coil Linear expansion valve	RED - BLK Measure the resistance 164 Measure the resistance Lead wire color WHT - RED RED - ORN	$73.0\Omega \sim 91.$ re using a tester. (Part tem Normal $0\Omega \sim 2310\Omega$ re using a tester.(Part temp Normal	0Ω perature -10°C ~ at Opened o perature -10°C ~ 4	40°C) onormal r short-circu 40°C) Abnorma	- ORN) uited	
Short 95±15°C Open 135±5°C R. V. coil Linear expansion valve	RED - BLK Measure the resistance 164 Measure the resistance Lead wire color WHT - RED RED - ORN YLW - BRN	$73.0\Omega \sim 91.$ re using a tester. (Part tem Normal $0\Omega \sim 2310\Omega$ re using a tester.(Part temp Normal $21 \sim 26\Omega$	0Ω perature -10°C ~ at Opened o perature -10°C ~ 4	40°C) onormal r short-circu 40°C) Abnorma	- ORN) uited	
Short 95±15°C Open 135±5°C R. V. coil Linear expansion valve	RED - BLK Measure the resistance 164 Measure the resistance Lead wire color WHT - RED RED - ORN YLW - BRN BRN - BLU	$73.0\Omega \sim 91.$ re using a tester. (Part temport tempo	0Ω perature -10°C ~ at Opened o perature -10°C ~ 4	40°C) onormal r short-circu 40°C) Abnorma	- ORN) uited	
Short 95±15°C Open 135±5°C R. V. coil Linear expansion valve	RED - BLK Measure the resistance 164 Measure the resistance Lead wire color WHT - RED RED - ORN YLW - BRN BRN - BLU	$73.0\Omega \sim 91.$ re using a tester. (Part tem Normal $0\Omega \sim 2310\Omega$ re using a tester.(Part temp $21 \sim 26\Omega$ re using a tester. $21 \sim 26\Omega$ re using a tester. $C \sim 40^{\circ}C$)	0Ω perature -10°C ~ at Opened o perature -10°C ~ 4	40°C) onormal r short-circu 40°C) Abnorma ed or short	- ORN)	
Short 95±15°C Open 135±5°C R. V. coil Linear expansion valve WHT RED ORN YLW BRN BLU	RED - BLK Measure the resistance 164 Measure the resistance Lead wire color WHT - RED RED - ORN YLW - BRN BRN - BLU	$73.0\Omega \sim 91.$ re using a tester. (Part tem Normal $0\Omega \sim 2310\Omega$ re using a tester.(Part temp $21 \sim 26\Omega$ re using a tester. $21 \sim 26\Omega$ re using a tester. $C \sim 40^{\circ}C$) Pressure	0Ω perature -10°C ~ at Opened o perature -10°C ~ 4	40°C) onormal r short-circu 40°C) Abnorma	- ORN)	
Short 95±15°C Open 135±5°C R. V. coil Linear expansion valve WHT RED ORN YLW BRN BLU	RED - BLK Measure the resistance 164 Measure the resistance Lead wire color WHT - RED RED - ORN YLW - BRN BRN - BLU	$73.0\Omega \sim 91.$ re using a tester. (Part tem Normal $0\Omega \sim 2310\Omega$ re using a tester.(Part temp $21 \sim 26\Omega$ re using a tester. $21 \sim 26\Omega$ re using a tester. $C \sim 40^{\circ}C$) Pressure Operation OFF	0Ω perature -10°C ~ at Opened o perature -10°C ~ 4 Open	40°C) onormal r short-circu 40°C) Abnorma ed or short	- ORN)	
Short 95±15°C Open 135±5°C R. V. coil Linear expansion valve	RED - BLK Measure the resistance 164 Measure the resistance Lead wire color WHT - RED RED - ORN YLW - BRN BRN - BLU Measure the resistance (Part temperature -10)	$73.0\Omega \sim 91.$ The using a tester. (Part term Normal $0\Omega \sim 2310\Omega$ The using a tester.(Part temp Normal 21 ~ 26\Omega The using a tester. C ~ 40°C) Pressure Operation OFF 2.35 ± 0.15MPa (24 ±	0Ω perature -10°C ~ at Opened o perature -10°C ~ 4 Open Open 1.5kg / cm ²)	40°C) onormal r short-circu 40°C) Abnorma ed or short	- ORN)	
Short 95±15°C Open 135±5°C R. V. coil Linear expansion valve WHT RED ORN YLW BRN BLU	RED - BLK Measure the resistance 164 Measure the resistance Lead wire color WHT - RED RED - ORN YLW - BRN BRN - BLU Measure the resistance (Part temperature -10) HPS1	$73.0\Omega \sim 91.$ re using a tester. (Part tem Normal $0\Omega \sim 2310\Omega$ re using a tester.(Part temp $21 \sim 26\Omega$ re using a tester. $21 \sim 26\Omega$ re using a tester. $C \sim 40^{\circ}C$) Pressure Operation OFF	0Ω perature -10°C ~ at Opened o perature -10°C ~ 4 Open Open 1.5kg / cm ²) 2kg / cm ²)	40°C) onormal r short-circu 40°C) Abnorma ed or short	- ORN)	

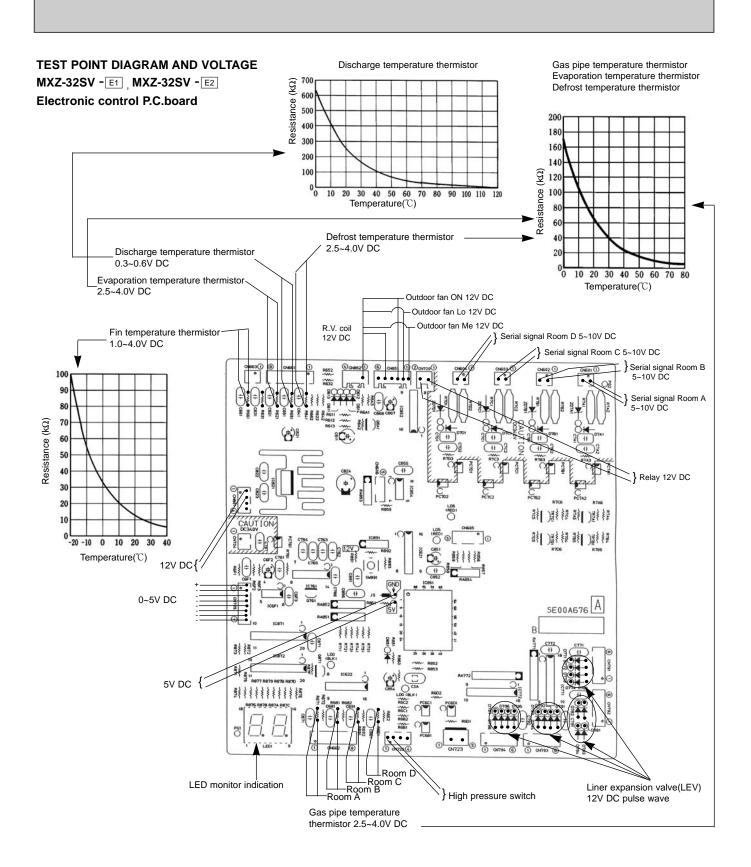
P Inner protector



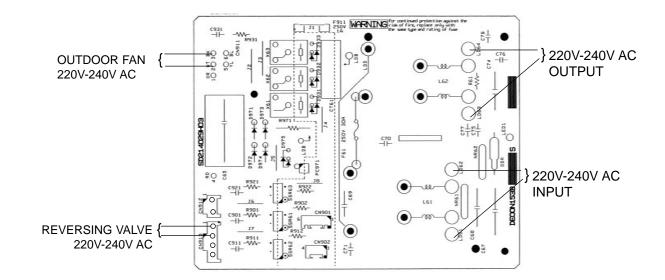
- When cooling, heat exchanger of non-operating indoor unit frosts.
- When heating, non-operating indoor unit get warm.

When thermistor is abnormal.			
© Check of thermistor			
Start			
Disconnect the connector in the electronic cor	ntrol P. C. boa	ard (see below table), and Abnorm	
\langle measure the resistance of thermistor to check			Replace the thermistor.
↓Normal			
Reconnect the connectors (CN661, CN662 an			
Turn on power supply to the indoor and outdoo	or unit. Three	e minutes later EMERGENCY OPERA	TION starts.
,			
Does thermistor operate 10 minutes or more t thermistor abnormality is not displayed?	hough the $ ightarrow$	No Replace the electronic control P. C. board.	
	/	control 1. O. board.	
Normal			
Noma			
Thermistor	Symbol	Connector, Pin No.	
Defrost thermistor Discharge temperature thermistor	RT62 RT61	Between CN661 pin1 and pin2 Between CN661 pin3 and pin4	_
Evaporation temperature thermistor	RT63	Between CN661 pin5 and pin4	_
Gas pipe temperature thermistor (Unit A)	RT66	Between CN662 pin1 and pin2	
Gas pipe temperature thermistor (Unit B)	RT67	Between CN662 pin3 and pin4	
Gas pipe temperature thermistor (Unit C)	RT68	Between CN662 pin5 and pin6	_
Gas pipe temperature thermistor (Unit D) Fin temperature thermistor	RT69 RT65	Between CN662 pin7 and pin8 Between CN663 pin1 and pin2	_
		· · ·	
• Fan motor does not operate. Or, fan motor s	stops at once	e' after fan motor operates.	
Check of fan motor			
(Start			
↓			
Check the connection of fan motor connector,		CN851, CN852) on electronic control	P. C. board, and
connectors (CN901, CN902) on noise filter P. (J. DOAIG.		
Disconnect the fan motor connector, and meas fan motor winding to check the winding charac		stance of the Abnormal	▶ Replace the fan motor.
		/	↑
 1. Disconnect the lead wire leading to the com 	pressor Turr	on nower supply to the	
indoor and outdoor unit. Three minutes later			
2. Check the voltage between pin 2 and pin 3,			onnector.
Is there voltage of 220V AC - 240V AC?			
↓ No			
1. Turn off power supply of the indoor and out	door unit. and	disconnect the connector	1
(CN851, CN852).		\ <u>No</u>	➡ Replace the electronic control P. C. board.
2. Is the voltage 0V, when the voltage between $rin2()$ or $rin2()$ are measured after the p			
pin2 (-), or pin3 (-) are measured after the p			
↓ Yes			
Is there voltage of 12V DC between CN852 pir turns on the indoor unit and EMERGENCY OP			
↓ Yes			
Replace the noise filter P. C. board.			

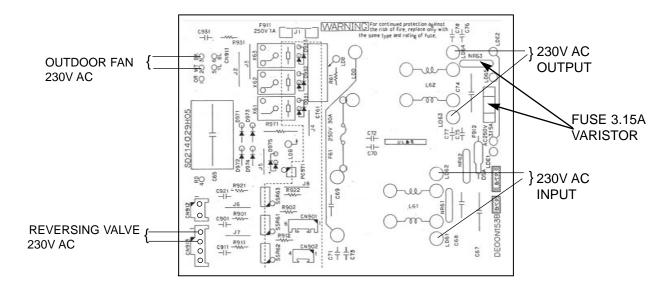

• When the operation frequency does not go up from lowest frequency.

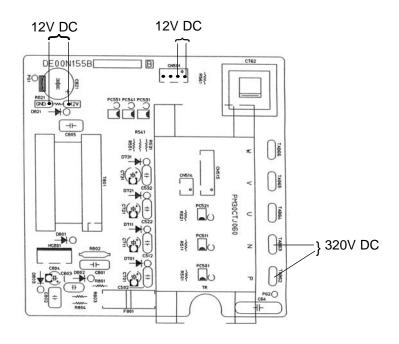


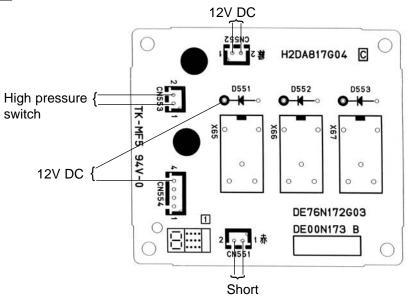
① In the case that the indoor fan and outdoor fan operate but the compressor does not operate, it causes that the high pressure switch can be operated once.


First of all, check the high pressure switch can be shorted, turn OFF the power and turn ON again 1 minute later. (2) Indoor unit dose not operate. (difference modes)

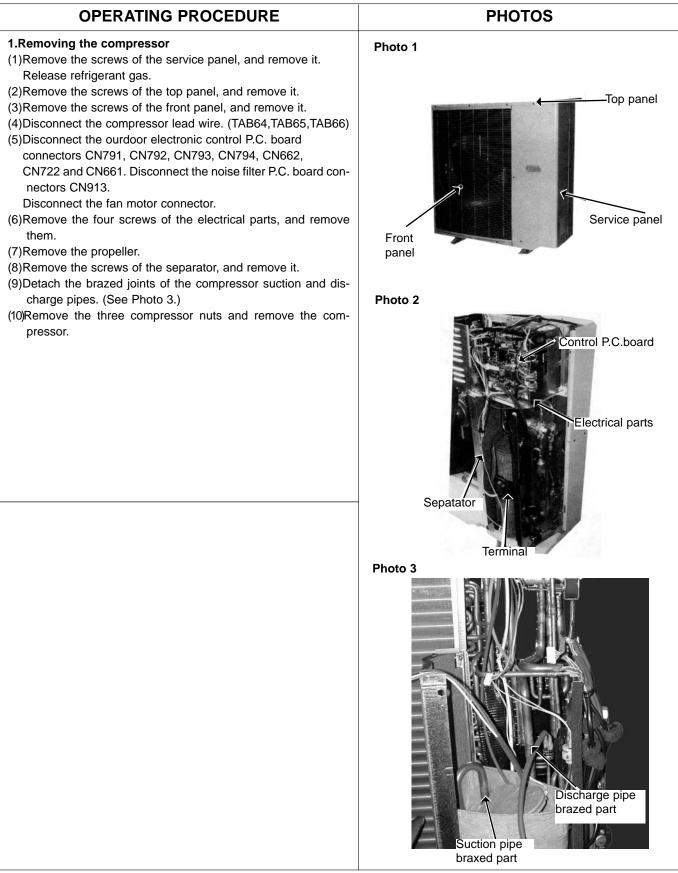
- When you try to run two indoor unit simultaneously, one for cooling and the other for heating, the unit which transmits signal to the outdoor units earlier decides the operation mode. The other unit indicates as shown in the figure below.
- When the above situation occurs, set all the indoor units to the same mode, turn OFF the indoor units, and then turn them back ON.
- Though the top of the indoor unit sometimes gets warm, this does not mean malfunction. The reason is that the refrigerant gas continuously flows into the indoor unit even while it is not operating.




Noise filter P.C.board MXZ-32SV - E1


MXZ-32SV - E2

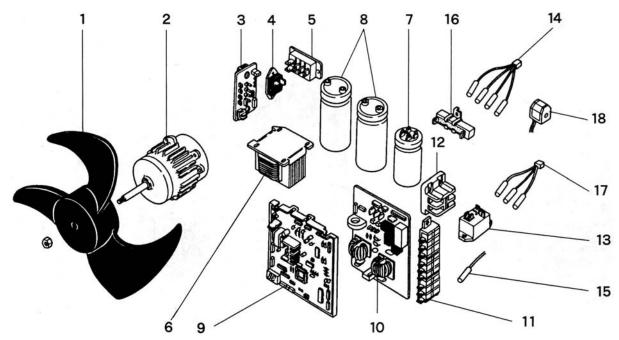
I.P.M P.C.board MXZ-32SV - E1 MXZ-32SV - E2



DISASSEMBLY INSTRUCTIONS

13-1. MXZ-32SV - E1 , MXZ-32SV - E2 OUTDOOR UNIT

13



OPERATING PROCEDURE	PHOTOS
 2.Removing the fan motor (1)Remove the top panel (five screws), the service panel (four screws), and the front panel (two screws). (See Photo 1.) (2)Disconnect the fan motor connector. (3)Remove the propeller. (4)Remove the fan motor. 	
 3.Removing the 4-way valve (1)Remove the screws of the top panel, and remove it. (See Photo 1.) (2)Remove the service panel, rear panel, and connect cover panel.Recover refrigerant gas. (3)Remove the electrical parts. (See Photo 2.) (4)Detach the brazed joint of 4-way valve and pipe. (See Photo 4.) 	Photo 4
 4.Removing the linear expansion valve (1)Remove the service panel. (See Photo 1.) (Gas recovery is not required if the unit is pumped down.) (2)Remove the coil of linear expansion valve. (3)Detach the brazed joint of linear expansion valve and pipe. 	Photo 5

OPERATING PROCEDURE	PHOTOS
5.Removing the reactor	
(1)Remove the screws of the top panel, and remove it. (See Photo 1.)	Photo 6
(2)Disconnect the reactor lead wire.	
(3)Remove the screws of the reactor, and take it out.	Reactor
	= = = = =

14 PARTS LIST

14-1. OUTDOOR UNIT FUNCTIONAL PARTS MXZ-32SV -E1 MXZ-32SV -E2

Part numbers that are circled are not shown in the illustration.

			Symbol	Q'ty / u		
No.	Parts No.	Parts Name	in Wiring	MXZ-32SV-E1	MX7 226V E2	Remarks
			Diagram			
1	M21 17A 501	PROPELLER FAN		1	1	
2	T2W E40 301	OUTDOOR FAN MOTOR	MF61	1	1	RA6V60-□□
3	T2W E40 452	I.P.M P.C. BOARD		1	1	
4	M21 17A 447	DIODE STACK	DS62	1	1	
5	M21 17A 443	DIODE MODULE	DS61	1	1	
6	M21 17E 337	REACTOR	L	1	1	220 <i>µ</i> F 400V
7	T2W E40 357	POWER FACTOR CAPACITOR	C61	1	1	2500 <i>µ</i> F 400V
8	T2W E40 356	SMOOTHING CAPACITOR	C62,C63	2	2	
9	T2W E70 451	ELECTRONIC CONTROL P.C. BOARD		1	1	
10	T2W E79 424	NOISE FILTER P.C. BOARD		1		
	T2W G01 424	NOISE FILTER P.C. BOARD			1	
11	T2W E58 376	TERMINAL BLOCK		4	4	Indoor unit connecting
12	T2W E65 375	TERMINAL BLOCK		1	1	Power supply
13	M21 42A 340	RELAY	X64	1	1	
14	T2W E70 307	GAS PIPE TEMPERATURE THERMISTOR	RT66,67,68,69	1	1	A,B,C,D
15	M21 42A 308	FIN TEMPERATURE THERMISTOR	RT65	1	1	
16	M21 17A 362	RESISTOR	R	1		
	T2W G01 362	RESISTOR			1	
17	T2W E70 308	THERMISTOR SET	RT61, 62, 63	1		EVAPORATION DISCHARGE, DEFROST
18	T2W E70 398	R. V. COIL	21S4	1	1	
19	T2W E40 441	RELAY P.C. BOARD		1	1	
20	T2W E66 382	FUSE	F801, F911	2	2	
21	T2W E89 313	FUSE & VARISTOR SET	F912, NR63		1	250V/ 3.15A
22	M21 370 378	TERMINAL BLOCK	TB4	1		

14-2. OUTDOOR UNIT STRUCTURAL PARTS MXZ-32SV - E1 17 16 15 14 13 12 MXZ-32SV - [E2] 11 10 Part numbers that are circled are not shown in the illustration. 3 5 4 8

2

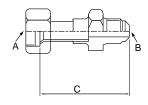
Symbol Q'ty / unit in Wiring No. Parts No. Parts Name Remarks MXZ-32SV- E1 MXZ-32SV- E2 Diagram 1 M21 AS2 232 FRONT PANEL 1 1 1 2 M21 17A 245 SERVICE PANEL 1 3 T92 500 800 COMPRESSOR MC 1 1 THV-247FBA LEV D T2W E70 654 **EXPANSION VALVE** 1 1 D room T2W E95 654 LEV COIL 1 D room 4 1 T2W E95 655 **EXPANSION VALVE** 1 D room 1 T2W E70 653 **EXPANSION VALVE** LEV C 1 C room 1 5 T2W E95 653 LEV COIL 1 1 C room T2W E95 655 EXPANSION VALVE C room 1 1 T2W E70 652 **EXPANSION VALVE** LEV B B room 1 1 6 T2W E95 652 LEV COIL 1 **B** room 1 T2W E95 655 **EXPANSION VALVE** 1 **B** room 1 T2W E70 651 **EXPANSION VALVE** LEV A 1 A room 1 7 T2W E95 651 LEV COIL 1 A room 1 T2W E95 655 EXPANSION VALVE 1 A room 1 8 T2W E79 290 BASE ASSEMBLY 1 1 9 M21 42E 644 UNION 1 1 1/2,3/8,1/4 SET 10 T2W E40 247 **PIPE COVER** 1 1 11 T2W E70 248 REAR PANEL 1 1 12 M21 48A 961 **4-WAY VALVE** 1 1 13 T2W E79 646 **HIGH PRESSURE SWITCH** 1 1 14 M21 17A 297 TOP PANEL 63H1 1 1 2.75MPa(28kg/cm²) 15 T2W E40 523 1 **REAR GUARD** 1 16 M21 42E 630 HEAT EXCHANGER 1 1 17 M21 17A 249 SIDE PANEL 1 1 (18) T2W E40 646 HIGH PRESSURE SWITCH 63H2 1 1 3.43MPa(35kg/cm²) (19) M21 986 936 CAPILLARY TUBE(ϕ 4.0× ϕ 2.4×2000) *ϕ***4.0×***ϕ***2.4×400** 3 3 (20) M21 LV0 936 CAPILLARY TUBE SET(\$\phi 3.0 \times \phi 2.0 \times 200) 4 4 Ø3.0ר2.0×200 4PCS/SET (21) T2W E59 936 **CAPILLARY TUBE (** ϕ **2.5**× ϕ **0.6**×1000) 1 1 *ϕ*2.5×*ϕ*0.6×1000 22 T2W E70 936 CAPILLARY TUBE (ϕ 2.0× ϕ 0.6×750) 1 *ϕ*2.5×*ϕ*0.6×750 1

6

When servicing, cut the tube to the proper length as shown in the REFRIGERANT SYSTEM DIAGRAM on page 12.

14-3. ACCESSORY PARTS

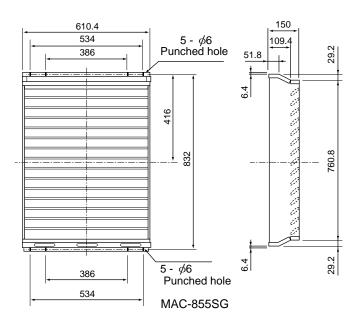
MXZ-32SV -E1 MXZ-32SV -E2


			Symbol	Q'ty	/ unit	
No.	Parts No.	Parts Name	in Wiring	MXZ-	32SV	Remarks
			Diagram	E1	E2	
1	T2W E59 704	DRAIN SOCKET ASSEMBLY		1	1	DRAIN SOCKET ×1 DRAIN CAP ×2

15-1. Different-diameter pipe

15

MXZ-32SV	Model name	Model code	Connected pipes diameter (mm)	Length A	Length B	Length C
	MAC-454JP	51H-454	φ9.52 — φ12.7 (3/8) (1/2)	∮9.52 (3/8)	φ12.7 (1/2)	69
For different- diameter pipes	MAC-455JP	51H-455	φ12.7 — φ9.52 (1/2) (3/8)	¢12.7 (1/2)	∮9.52 (3/8)	65
	MAC-456JP	516456	φ12.7 — φ15.88 (1/2) (5/8)	¢12.7 (1/2)	¢15.88 (5/8)	66.5


Unit : mm (inch)

15-2. Outlet guide

Changes air discharge direction.

Applied unit	Model name	Model code
MXZ-32SV	MAC-855SG	51H-855

HEAD OFFICE: TOKYO BLDG., 2-7-3, MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN

© Copyright 2000 MITSUBISHI ELECTRIC ENGINEERING CO.,LTD Distributed in Jun. 2006. No.OB254 REVISED EDITION-B 7 Distributed in Jan. 2003. No.OB254 REVISED EDITION-A 7 Reprinted in Feb. 2002. No.OB254 12 Reprinted in Dec. 2001. No.OB254 5 Reprinted in Dec. 2001. No.OB254 50 Reprinted in Feb. 2001. No.OB254 10 Distributed in May 2000. No.OB254 523 Made in Japan