
Linux on the Sun JavaStation NC HOWTO

Table of Contents

Linux on the Sun JavaStationNC HOWTO...1
Robert S. Dubinski...1

META Information...4
The Purpose of this Document...4
Acknowledgments..4
Document Contributors..5
History of this document..5
Document Copyright and Licenses..6
Location of the Latest Version and Source..7

What is a JavaStation?...8
What is a JavaStationNC?..8
Definition of an NC including the Differentiation from PC's...8
Description of the JavaStation Model Line including Hardware Specs...9

JavaStation−1 ["Mr. Coffee"] ["the brick"] [Sun Option No. JJ−xx].......................................9
JavaStation−NC ["JavaStation−10"] ["Krups"] ["the tower"] ["the percolator"] [Sun Option No. JK−xx]0
JavaStation−E ["Espresso"] [Sun Option No. JE−xx]...11
JavaEngine−1 ["JE−1"]...12
The "Dover"JavaStation model..12
The Generation 3 "Super JavaStation"...12

Reasons for Running Linux and NC Myths Dispelled..13
Why JavaStations are No Longer Produced...14
Where to Purchase a JavaStation...17

Background Requirements for Linux on a JavaStation..18
Complete Hardware Requirements..18
Network Service Requirements...18
Understand the JavaStation Boot Sequence...18
Additional Software Requirements: Replacement Firmware (PROLL)..19
Decide on your Filesystem: NFS−Root, or Embedded?...20

"NFS−Root" Filesystem...20
"Embedded−Root" Filesystem..20

Build Your Kernel...21
Before you begin..21
Make sure you use 32−bit mode..21
Supported Linux Kernel Versions...21
Required Kernel Configuration Options..22
Necessary Patch for "Embedded−Root" FS Configurations..23
Build the JavaStation−Ready Kernel...23
JavaStation−Ready Kernel Images and ".config" File Samples..24

Sample ".config" Files..24
Sample JavaStation−Ready Kernel Files...24

Build A JavaStation−Ready FileSystem...25
Preparing Yourself to Build Your Own Filesystem...25

Linux on the Sun JavaStation NC HOWTO

i

Table of Contents

Contents of the "/etc/fstab" File...25
"NFS−Root" Filesystem fstab...25
"Embedded−Root" Filesystem fstab...26

The "Embedded−Root" Image Creation Procedure...26
Sample FileSystems...28

Set up Your Server..29
Preface..29
Setting up the RARP service...29
Setting up the DHCP service...30
Set up NFS service ("NFS−Root Options" Only)..30
Setting up for Boot with TFTP..31
The Last Configuration Step..32

Troubleshooting..33
When booting, the message "The file just loaded does not appear to be executable." Why?..............33
Cannot Boot an "Embedded−Root" image > 10 MB on my JavaStation. Why?..................................33
After Booting, Typing Anything Yields Garbage Characters. Why?...33
In X Sessions to a Solaris server, the font server "xfs" crashes. Why?..34
Performing Indirect XDMCP to a Solaris Server Results in Session Login Failures. Why?...............34

Answers to Miscellaneous Questions...35
Regarding RARP: Is it Needed or Not?...35
Can One Use the Smart Card Reader on the Espresso models?..35
Can One Use the SolarisDHCP server instead of ISC?...35
Can One Pass Arguments to "/sbin/init" in a Diskless Boot like This?..36
Enabling X on the JavaStation...36
Is There Mailing List Help?...37
Are There Alternate Help Sources Available?...37

Unanswered Questions...38
Does "Piggyback" work for the x86 too?..38
Where Can One Find Espressos for Sale?...38
Do Tools Exist to Configure Net Boot Entries Quickly?..38

Appendix..39
Mr. Coffee Jumper Info...39
Krups Jumper Info...39
JavaStation Photo Gallery..39

Linux on the Sun JavaStation NC HOWTO

ii

Linux on the Sun JavaStationNC HOWTO

Robert S. Dubinski

2000−Apr−25

This is a HOWTO document describing how to enable the GNU/Linux OS on the Sun JavaStation NC.

Table of Contents

META Information

The Purpose of this Document

Acknowledgments

Document Contributors

History of this document

Document Copyright and Licenses

Location of the Latest Version and Source

What is a JavaStation?

What is a JavaStationNC?

Definition of an NC including the Differentiation from PC's

Description of the JavaStation Model Line including Hardware Specs

Reasons for Running Linux and NC Myths Dispelled

Why JavaStations are No Longer Produced

Where to Purchase a JavaStation

Background Requirements for Linux on a JavaStation

Complete Hardware Requirements

Linux on the Sun JavaStationNC HOWTO 1

Network Service Requirements

Understand the JavaStation Boot Sequence

Additional Software Requirements: Replacement Firmware (PROLL)

Decide on your Filesystem: NFS−Root, or Embedded?

Build Your Kernel

Before you begin

Make sure you use 32−bit mode

Supported Linux Kernel Versions

Required Kernel Configuration Options

Necessary Patch for "Embedded−Root" FS Configurations

Build the JavaStation−Ready Kernel

JavaStation−Ready Kernel Images and ".config" File Samples

Build A JavaStation−Ready FileSystem

Preparing Yourself to Build Your Own Filesystem

Contents of the "/etc/fstab" File

The "Embedded−Root" Image Creation Procedure

Sample FileSystems

Set up Your Server

Preface

Setting up the RARP service

Setting up the DHCP service

Set up NFS service ("NFS−Root Options" Only)

Setting up for Boot with TFTP

The Last Configuration Step

Linux on the Sun JavaStation NC HOWTO

Linux on the Sun JavaStationNC HOWTO 2

Troubleshooting

When booting, the message "The file just loaded does not appear to be executable." Why?

Cannot Boot an "Embedded−Root" image > 10 MB on my JavaStation. Why?

After Booting, Typing Anything Yields Garbage Characters. Why?

In X Sessions to a Solaris server, the font server "xfs" crashes. Why?

Performing Indirect XDMCP to a Solaris Server Results in Session Login Failures. Why?

Answers to Miscellaneous Questions

Regarding RARP: Is it Needed or Not?

Can One Use the Smart Card Reader on the Espresso models?

Can One Use the SolarisDHCP server instead of ISC?

Can One Pass Arguments to "/sbin/init" in a Diskless Boot like This?

Enabling X on the JavaStation

Is There Mailing List Help?

Are There Alternate Help Sources Available?

Unanswered Questions

Does "Piggyback" work for the x86 too?

Where Can One Find Espressos for Sale?

Do Tools Exist to Configure Net Boot Entries Quickly?

Appendix

Mr. Coffee Jumper Info

Krups Jumper Info

JavaStation Photo Gallery

Linux on the Sun JavaStation NC HOWTO

Linux on the Sun JavaStationNC HOWTO 3

META Information
This chapter lists the meta−information of this document. The hows, whys, location and changes to the
structure of the document are documented here. The main content begins in the next chapter.

The Purpose of this Document

This document is to serve as a comprehensive HOWTO and FAQ collection regarding the Sun JavaStation
NC and enabling the GNU/Linux OS on it.

The intended audience of this document is anyone who has an interest in enabling Linux on the Sun
JavaStations. The document structure is laid out to serve as either a top−to−bottom read for a newcomer, or
as quick reference on a single topic for advanced users. Pointers to sample files submitted by users are
included for extremely hurried readers.

The author of this document is Robert Dubinski <dubinski@mscs.mu.edu>, Computer Technician and
UNIX systems administrator for Marquette University's Math, Statistics and Computer Science Department.
In the MU MSCS department, 125 JavaStations are currently running Linux, configured using the
information, techniques and files presented in this document.

In early 1999, Eric Brower <ebrower@mscs.mu.edu> wrote the first informal HOWTO for the
JavaStation. Parts of this document are inspired by his work, and all unique information presented there have
since been merged into this document.

This HOWTO also aims to serve as a member document of the Linux Documentation Project. The LDP can
be reached at: http://www.linuxdoc.org

Acknowledgments

Enabling Linux on the JavaStations, and allowing this HOWTO to come to be would never have been
possible without the fine work of the following people:

•
Pete Zaitcev <zaitcev@metabyte.com> (JavaStation kernel mod author)

•
Eric Brower <ebrower@usa.net> (XFree mods and author of the original embedded−build
HOWTO)

•
Varol Kaptan <varol@ulakbim.gov.tr> (made available his Krups images and patches.
Backported kernel support to 2.2.x series)

•
David Miller <davem@redhat.com> (the original Linux/SPARC kernel porter)

•

META Information 4

mailto:dubinski@mscs.mu.edu
http://www.marquette.edu
http://www.marquette.edu
www.mscs.mu.edu
www.mscs.mu.edu
www.mscs.mu.edu
www.mscs.mu.edu
www.mscs.mu.edu
www.mscs.mu.edu
mailto:ebrower@mscs.mu.edu
http://www.linuxdoc.org
mailto:zaitcev@metabyte.com
mailto:ebrower@usa.net
mailto:varol@ulakbim.gov.tr
mailto:davem@redhat.com

The Linux/SPARC kernel porters and mailing list
•

The thousands of contributors to the Linux kernel

The HOWTO author wishes to give a second thank−you to Pete and Eric for their work:

Pete got me going with Linux on the JavaStation in December 1998, has been the main
kernel programmer adding in support for the JavaStation line, and despite his busy
work schedule was nice enough to find time to answer all my email queries for help
over the last 15 months.

Eric worked on bringing X support to the JavaStation when it had none. He had been
working on a dedicated server for the JavaStation in early 1999, and kept me informed
of his progress. In mid−1999, he switched tactics and sent a working framebuffer
example to test out. He also wrote the first comprehensive mini−HOWTO for the
JavaStations, answered my email questions, and got me interested in the embedded
solution which I employ here at Marquette.

Thank−you Pete and Eric!

−−Robert Dubinski

Document Contributors

The following people have contributed to this specific document:

•
Pete Zaitcev <zaitcev@metabyte.com> (Proofreading and factual corrections of initial drafts)

•
Magdalena Wodzinska <magdalena.wodzinska@marquette.edu> (Proofreading and
document layout suggestions)

History of this document

Revision History

Revision 1.01 25 Apr 2000

"Brown Paper Bag" Revision.

Revision 1.0 24 Apr 2000

First submission to the LDP.

Revision 0.9 18 Apr 2000

Continued reorganization and final merges.

Revision 0.7 15 Apr 2000

Linux on the Sun JavaStation NC HOWTO

Document Contributors 5

mailto:zaitcev@metabyte.com
mailto:magdalena.wodzinska@marquette.edu

Migration from LinuxDoc DTD to Docbook DTD.

Revision 0.71 14 Apr 2000

Received word doc was forwarded inside Sun.

Revision 0.7 14 Apr 2000

Linked on Pete Zaitcev's Website.

Revision 0.6 9 Apr 2000

First semi−public release.

Revision 0.4 24 Mar 2000

First move to comprehensive HOWTO.

Revision 0.2 15 Oct 1999

More notes collected and merged.

Revision 0.1 24 Jun 1999

Initial scraps put together.

Document Copyright and Licenses

This particular document and its source as a whole is Copyright 1999−2000, Robert Dubinski
<dubinski@mscs.mu.edu>. You may mirror or redistribute this document as a whole or in part for
either public or commercial purposes provided the following: 1) you do not make any modifications to this
work , 2) retain this license information and author copyright section, even when redistributing just a part of
this document, and 3) include acknowledgement of where this document as a whole may be obtained . This
ensures that any comments written by the document author do not get taken out of context or modified
incorrectly, acknowledges the work of the author, allows for inclusion in commercial projects, and points
readers to where they may find potentially updated versions of the information presented.

The document author makes no warranties that all the information presented here is completely accurate, and
cannot be held liable to any loss you experience as a result of the information you use from here.

Best efforts have been made to ensure everything included is accurate as of the publication date listed at the
beginning of this document, but there is always a possibility something may be wrong. In this case,
doublecheck with alternative sources first before considering implementing anything at a production−level. If
you find something wrong, drop the author a line at <dubinski@mscs.mu.edu> or send me a patch to
the document source, and corrections will be made immediately.

In the future, this document may be re−released under the Open Content or other Free Document license, but
for now all Open Documentation licenses are currently being investigated by the author. If you have
comments into this legal matter, drop the author a line at <dubinski@mscs.mu.edu>. As it stands, the
license presented above captures the spirit of the LDP boilerplate license without specifically mentioning it.

This document is a member document of the Linux Documentation Project.

Linux on the Sun JavaStation NC HOWTO

Document Copyright and Licenses 6

mailto:dubinski@mscs.mu.edu
mailto:dubinski@mscs.mu.edu
mailto:dubinski@mscs.mu.edu
http://www.linuxdoc.org
http://www.linuxdoc.org
http://www.linuxdoc.org

Location of the Latest Version and Source

The latest online version of this document can be found at: http://www.mscs.mu.edu/~tech/Linux_on_JS .

The pre−processed SGML source to this document, written to the Docbook DTD, is available from:
http://www.mscs.mu.edu/~tech/Linux_on_JS/Files/JavaStation−HOWTO.sgml

Copies of this document are also available from the Linux Documentation Project at:
http://www.linuxdoc.org/HOWTO/JavaStation−HOWTO.

Linux on the Sun JavaStation NC HOWTO

Location of the Latest Version and Source 7

http://www.mscs.mu.edu/˜tech/Linux_on_JS
http://www.mscs.mu.edu/˜tech/Linux_on_JS/Files/JavaStation-HOWTO.sgml
http://www.linuxdoc.org/HOWTO/JavaStation-HOWTO/

What is a JavaStation?
This chapter explains to the reader what the JavaStation line is, its components, NC concepts, how to get one,
and why one would choose the Linux OS for it.

What is a JavaStationNC?

The JavaStationNC is a model line of network computers built and sold by Sun Microsystems between
November 1996 and March 2000. The JavaStation line was Sun's low−cost terminal option during that
timeframe.

The JavaStation hardware ran Sun's own JavaOS and either Sun's Hotjava web browser, Sun's HotJava
Views task−manager software, or custom Java applications of the customer's choice.

The JavaStation was originally billed in November 1996 sneak previews as a low−cost desktop terminal,
providing customers access to hot new Java applications, "legacy"X applications, and "legacy"MS
Windows apps. During its lifetime, The JavaStation's marketed functionality was changed twice from
"desktop terminal" to "single−app desktop device" to finally a "browser−based kiosk device".

At no time did Sun market the JavaStation as capable of running its flagship Solaris operating system or the
Linux OS.

Definition of an NC including the Differentiation from PC's

A network computer, or NC, was hailed as "the next big thing" in computing from late 1995 to early 1998.
Conventional PC's, called "fat clients", were expected to be minimized in businesses by thin−client NC's.

Thin−clients get their OS, applications, and data files entirely through the network. They are different from
dumb−terminals; they run full−scale graphical applications. Thin−clients are also different than graphical
X−terminals. X−terminals typically run an X server and display the client programs of a remote server. Thin
clients generally run full−scale graphical programs locally, such as a web browser, a Java application, or a
"legacy−connectivity program", which enables the thin−client to display X apps or MS Windows apps which
run on more powerful servers.

Advantages of NC's include:

•
"Zero−Administration". (Add a new NC and it will get everything it needs off the network, without
an admin ever needing to visit it.)

•
Lower Total−Cost−of−Ownership (TCO) (No internal hard drives, floppy drives or CD players
reduces form−factor, repair expenses, selling price and thus total−cost−of−ownership.)

•
Access to all web−based apps as well as "legacy"X and MS Windows apps.

What is a JavaStation? 8

http://www.sun.com
http://www.sun.com
http://www.sun.com/solaris
http://www.linux.com
http://www.linux.com

• Quick upgrades (just upgrade your server and the changes propogate throughout)
•

Longer lifespan (just upgrade the software, growing hard disk and memory requirements is not an
issue)

•
Smaller OS footprint (when running brower−based apps)

Disadvantages of NC's:

•
No local access to data files (all your files stored on a remote server)

•
Requires fast, stable networks

Description of the JavaStation Model Line including
Hardware Specs

Depending on who you talk to, the number of JavaStation models that were created is anywhere from one to
six. The descriptions below will explain why.

JavaStation−1 ["Mr. Coffee"] ["the brick"] [Sun Option No. JJ−xx]

This model is the most prevalent JavaStation model you are likely to find, although it wasn't the one and only
JavaStation model Sun wished to sell to the public. The JavaStation−1 was the first generation JavaStation,
released in November 1996 to pilot deployments as Sun's "proof of concept" of the Java NC design.

Hardware−wise, the JavaStation−1 is a Sun4M architecture machine. It is based on the
SPARCStation−4 design, with some deletions and PC−like modifications. It is powered by a 100 Mhz
MicroSPARC IIe CPU and has no SCSI, internal disks, floppy, CD or expansion slots. The Mr.
Coffeemotherboard is Sun Part No. 501−3141.

Instead of using the Sun−type keyboard and mice, JavaStation−1 uses PC−like PS2 parts instead. One of the
original marketing highlights of the JavaStation was that it would use standard PC parts wherever possible to
keep overall price down.

The "brick" has four PC−like SIMM slots. The SIMMs taken are industry−standard 60ns, 32−bit, 72−pin, 5V
fast page SIMMs, installed in pairs. Each slot is capable of holding up to a 16MB SIMM, bringing the
maximum total capacity of the unit to 64MB. The "xx" in the Sun Option# of the unit indicated how much
memory the unit shipped with.

For video display, the JavaStation−1 utilizes the Sun TCX framebuffer, capable of 1024x768@70Hz in 8−bit
color. The port connector however, is a standard VGA jack, enabling the user to use standard PCmonitors if
desired (again, low cost in mind). The on−board audio is a Crystal CS4231 chip, and the network interface is
the Sun Lance 10Mbps interface. In addition, the "brick" also came with a 9−pin serial port and 1/8" audio

Linux on the Sun JavaStation NC HOWTO

Description of the JavaStation Model Line including Hardware Specs 9

out jack on its back.

The JavaStation−1 was fitted into the Sun "unidisk" form factor case, and has been seen in a number of color
schemes. JavaStations have been fitted with casings in the white with light blue trim scheme used in Sun
workstations, as well as the dark blue−grey "new desktop" scheme. Some say "JavaStation" and have the Java
coffee cup logo written on it, others do not. Collectors may wish to collect all case variations.

The JavaStation−1 was used in early Sun demos, and sold to pilot sites. When first brought out, the cost to
pilot sites was $699US. This was at a time when PC's were still higher than $1000US. By the end of the pilot
run, Sun was selling any remaining or used units for $299−$399US, in anticipation for its
"real"JavaStation model.

See the JavaStation−1 at: http://studsys.mscs.mu.edu/~tech/Linux_on_JS/Files/mr_coffee_front_view.jpg

JavaStation−NC ["JavaStation−10"] ["Krups"] ["the tower"] ["the
percolator"] [Sun Option No. JK−xx]

This model is the second most prevalent JavaStation model you are likely to find. When you talk to industry
folks about the "JavaStation", this is typically the model remembered first. Delayed numerous times, the
Krups model officially went on sale to the general public Mar. 26, 1998 at the annual JavaOne conference.

Though generation two of the JavaStation line, the Krups model was the JavaStation . Sporting a completely
different board design than JavaStation−1, Krups establishes what was to be the characteristic
JavaStation architecture.

Krups is powered by a 110Mhz MicroSPARC IIep chip, (note the 'p'). Its mainboard had the internal addition
of a PCI bus, about a year before this standard bus made its well−publicized appearance on the Sun
Ultra workstation line. The Krupsmotherboard is Sun Part no. 501−4267.

Krups keeps the PS2 keyboard and PS2 mouse ports from JavaStation−1, keeping in mind the low−cost,
interoperable goal of generation 1.

With the new board design, came new memory chip sockets. Instead of SIMMs, the "tower" moved to
168−pin DIMMs. DIMMs had begun to make their way from the workstation realm to PC's in the time
between generations one and two of the JavaStation line, so it was fitting for Sun to switch to it in
anticipation of their status low−cost commodity memory chips. The DIMMs accepted by the "tower" are
168pin, 3.3V unbuffered DIMMs. With two sockets capable of holding a 32MB DIMM each, the Krups has a
maximum capacity of 64MBRAM. As with the JavaStation−1, the number "xx" in the Sun option number
refers to the amount of memory shipped with the unit.

For video display, the JavaStation−NC utilizes the PCI−based IGS C1682 framebuffer, capable of
1280x1024@80Hz in 24−bit "true color". This is a step up from the 8−bit display on JavaStation−1. The port
connector remained a standard VGA jack like JavaStation−1, enabling the user to use standard PC monitors if
desired. The on−board audio remains a Crystal CS4231 chip like JavaStation−1. The network interface on
Krups is the Sun HappyMeal 10/100 Mbps interface, another step up from the original offering of
JavaStation−1.

The "tower" came with the 9−pin serial port and 1/8" audio out jack as JavaStation−1, but it also added a 1/8"
audio−in jack, to do sound recording with.

Linux on the Sun JavaStation NC HOWTO

JavaStation−NC ["JavaStation−10"] ["Krups"] ["the tower"] ["the percolator"] [Sun Option No. JK−xx]10

http://studsys.mscs.mu.edu/~tech/Linux_on_JS/Files/mr_coffee_front_view.jpg

Another addition in the JavaStation−NC is a flash memory chip. This allows one to load the current revision
of the OS onboard, increasing boot−speed tremendously.

Perhaps the thing most memorable about the JavaStation−NC is its case design. The Krups comes in an
aesthetically appealing casing. The mainboard is mounted vertically, and the shell entraps it, giving it the
"tower" or "percolator" shape referred to. With the streamlined case, the power supply is moved outside to
small transformer. The Krups unit gives off so little heat that there are no onboard cooling fans, making the
Krups a dead−silent machine. Imagine the difference in noise when replacing a lab of traditional desktops
with the Krups! This case design earned Krups a"1998 Industrial Design Excellence Award" from the
Industrial Designers Society of America. This award announcement is archived for read at:
http://www.idsa.org/whatis/seewhat/idea98/winners/javastation.htm"

The Krups had an initial base price of $599US, $100US cheaper than Mr. Coffee's rollout price. Due to it
being the only model formally sold by Sun to the general public, this is how Krups is sometimes referred to
as the only JavaStation, and not one model of a product line.

See the JavaStation−NC at: http://studsys.mscs.mu.edu/~tech/Linux_on_JS/Files/krups_front_view.jpg

JavaStation−E ["Espresso"] [Sun Option No. JE−xx]

This model is extremely rare to find. It was never available for sale in quantities to either the general public
or the initial JavaStation deployments, limiting the model's production quantity. To call this "Generation
Three" of the JavaStation may be improper, as Espresso is nothing like the generation three
JavaStation written about in early Sun literature.

The Espresso was designed as an extension of the Krups. It was geared to sites that wanted a little bit more
functionality and expansion capability from their JavaStations: a cross between an NC and a workstation.

Espresso is powered by the same 110Mhz MicroSPARC IIep chip as Krups. It's mainboard is similar to
Krups, with the addition of PCI slots and an IDE channel for local hard disks. The IDE on Espresso was not
enabled in the demo units. Those who have tried to make it work have concluded the wiring is incorrect, and
it requires a hardware rework to get working.

Espresso continues with the PS2 keyboard and PS2 mouse ports from Mr. Coffee and Krups.

Espresso uses the same 168−pin, 3.3V unbuffered DIMMs as Krups. The maximum allowed is not known at
the time of this document's writing. As with the Mr. Coffee and Krups, the number "xx" in the Sun option
number refers to the amount of memory shipped with the unit.

For video display, the Espresso uses the PCI−based IGS C2000 framebuffer, along with the same standard
VGA port connector as Krups and Mr. Coffee. The on−board audio remains a Crystal CS4231 chip like
Krups, and the network interface remains a Sun HappyMeal 10/100 Mbps interface like Krups as well.

Espresso came with the 9−pin serial port and 1/8" audio out and 1/8" audio in jacks of Krups, and a new
addition of a parallel port, and a second 9−pin serial port. Espresso also comes with the flash memory to load
your OS on and bypass the network boot cycle.

One new addition to the Espresso is a smart card slot.

Linux on the Sun JavaStation NC HOWTO

JavaStation−E ["Espresso"] [Sun Option No. JE−xx] 11

http://www.idsa.org/whatis/seewhat/idea98/winners/javastation.htm
http://studsys.mscs.mu.edu/~tech/Linux_on_JS/Files/krups_front_view.jpg

The Espresso comes in a "pizza box" style case like the old Sun SparcStations, only a little taller, and not
quite as wide.

The Espresso was never sold to the public. There was an internal testing period at Sun, but the units never
went into mass−production.

Pete Zaitcev <zaitcev@metabyte.com> currently uses his Espresso as both a server and router, with
the addition of an IDE disk and 3C905 ethenet card, demonstrating the expandability of this unit.

See the JavaStation−E at: http://studsys.mscs.mu.edu/~tech/Linux_on_JS/Files/espresso_front_view.jpg

JavaEngine−1 ["JE−1"]

Like the Espresso, this unit is also an extremely rare find.

This unit is supposed to be of similar board design to the Krups, but in an ATX form factor, without flash
memory, and with a regular SVGA video chipset.

Gleb Raiko <raiko@niisi.msk.ru)> with the help of Vladimir Roganov
<roganov@niisi.msk.ru> did initial the Linux kernel support on "JE−1". Pete Zaitcev
<zaitcev@metabyte.com> later obtained a "JE−1" unit and restored full support in Linux kernel 2.3.x+.

As the author of this document has never seen a "JE−1", submissions from the public are welcome.

See the JavaEngine−1 at: http://studsys.mscs.mu.edu/~tech/Linux_on_JS/Files/je1_overhead_view.jpg

The "Dover"JavaStation model

This is another box which does not exist officially outside of Sun. Little is known of it.

A nice speculation would be that the next step in the JavaStation evolution was more of a low−cost NC based
on PC boards. The PCI, PS2, and SVGA (as in "JE−1") was already present. The next step would have been a
non−proprietary, industry−standard mainboard. Since nobody's talking, this is all speculation.

However, the document author has been informed it is fully supported by the Linux kernel, should you be
lucky enough to find one.

The Generation 3 "Super JavaStation"

Sun originally envisioned three generation models of the JavaStation: Mr. Coffee, the Krups, and the "Super
JavaStation". Generation Three was billed in early literature as going to be the fastest JavaStation offerred,
with a high−speed CPU and a JavaChip co−processor to translate Java−bytecode in hardware.

All indications are that it never got beyond the mental stage, and was more of a marketing myth than
anything else.

Linux on the Sun JavaStation NC HOWTO

JavaEngine−1 ["JE−1"] 12

mailto:zaitcev@metabyte.com
http://studsys.mscs.mu.edu/~tech/Linux_on_JS/Files/espresso_front_view.jpg
mailto:raiko@niisi.msk.ru)
mailto:roganov@niisi.msk.ru
mailto:zaitcev@metabyte.com
http://studsys.mscs.mu.edu/~tech/Linux_on_JS/Files/je1_overhead_view.jpg

First, consider that the cost of higher performance CPU as a factor. If Sun packaged a high−performance
CPU into a JavaStation, the low−cost advantage of an NC goes away.

Next, Sun did have their PicoJava chip available to decode Java bytecode, but word is the performance was
not as good as expected, and the JavaChip project was shelved in the Summer of 1998, not long after
Krups was formally released. The "Dover" project was being worked on, but the "Corona" project which
would go on to become the Sun Ray was the final nail in the JavaStation 's coffin.

So all indications are that this model is a piece of "vaporware". It is included here though, for the sake of
completeness.

Reasons for Running Linux and NC Myths Dispelled

It turns out that Linux makes the JavaStations perform more than adequately on the desktop. Thanks to the
kernel work of Pete Zaitcev <zaitcev@metabyte.com> with mods and documentation contributed by
others, the JavaStations offer users the low−cost, zero−admin, versatile desktop NC's they were originally
billed to be, but with the added freedom granted by the Linux OS.

While low−cost PC's now eclipse the JavaStation in terms of default CPU speed and RAM size, the
JavaStations running Linux are still well−suited for a number of tasks:

•
Diskless X−Terminal. (Gives the JavaStations the capability of the Sun Xterminal 1 hardware that
they replaced).

•
The NC solution, Linux−style: local X + a java−capable browser can make the JavaStations perform
like they did with JavaOS/HotJava, only many times faster.

•
A beowulf node, or a dedicated RC5/SETI@HOME client. The JavaStation running Linux makes a
stable, long−lasting number cruncher.

•
A small, standalone machine. While a task more suited on today's low−cost machines, there's not
much that prevents the JavaStation from performing as a full−fleged standalone UNIX machine by
itself. Just remember to set your expectations appropriately when doing so; they were
"low−budget" clients when they were sold, and should not be directly compared to today's
workstation offerings.

•
A router and server, as Pete Zaitcev <zaitcev@metabyte.com> demonstrates as possible with
his Espresso model JavaStation decked out with IDE disk and ethernet card.

In all of the above scenarios, there is little to no maintenance of the machine once configured properly. Such
is the advantage of the NC hardware.

JavaStations run so much better with Linux than JavaOS, one would think that even Sun should have offered
it as an option. Unfortunately, Sun has killed the line in favor of the Sun Ray. While the performance of the
Sun Ray is good, keep in mind it is not a dedicated computing device and is little more than a graphics
display hanging off your Sun server, which can give you some unexpected features (translation: "brand−name

Linux on the Sun JavaStation NC HOWTO

Reasons for Running Linux and NC Myths Dispelled 13

mailto:zaitcev@metabyte.com
mailto:zaitcev@metabyte.com

product lock"). The performance on the JavaStations with Linux will be similar to what you can get with a
Sun Ray, but if ever you want to do something different with your machines, you have the flexibility to do so
with the JavaStations.

Lastly, if you're thinking of switching to diskless Xterminals on your network, you might consider the
JavaStations over stripped down PC's. The hardware is standardized, smaller, and you do not need to worry
about burning boot PROM's and the like.

Why JavaStations are No Longer Produced

Sun's official stance is that the JavaStation line was terminated in favor of the new Sun Ray line. A trip to the
former JavaStation section of Sun's website at http://www.sun.com/javastation verifies this formal
positioning.

As the Sun Ray is not an NC in the traditional sense (it is merely a framebuffer, and not a computing device
itself), there is no explanation why the two do not co−exist.

In talking to the users of the JavaStations, you will find strong opinions as to why the JavaStations are no
more. The common thread in almost all opinions collected is that the software provided by Sun was
inadequete for a production environment. Here are collected opinions from users of the Sun−provided
software, included with their permission:

I only used the Java Stations last summer while teaching 51 and 55/154. GoJoe was
incredibly slow and I seem to remember having to login to several different screens and
browsers just to be able to start anything.

I had to apologize to my students for the slow and inconvenient machines −−− I
remember making some jokes about technological progress.

−−Dr. Alex Ryba, Professor at Marquette University <alexr@mscs.mu.edu>

Well, of course the old JavaStations were practically unusable. It's not a matter of just
my opinion; we used to have CU 310 full of students using the Xterms all the time. As
soon as the JavaStations appeared there were NO STUDENTS in there at all. The
JavaStations killed CU 310. Now that the JavaStations are (thanks to you) back up to
speed, students are beginning to come back, but they've gotten out of the habit of
working in our lab, and are used to working on their own in the dorms. I think this is a
big loss −− they don't learn anything from talking to each other in the labs anymore.

Ghostview was slow, etc, but even vi was too slow. I am used to typing quickly, and
when the cursor can't keep up with me, I can't handle it. I would also have worked at
home if I didn't have to be here. And there were those annoying red squares left all over
the Xterm window when you were in vi. I had to type ^L every few lines to get rid of
them to see what I was typing... The pits. The whole setup made me lose a lot of
respect for Sun (although I try to separate the different product lines as much as
possible); I also think Sun will not get respect for hyping a product like the JavaStation
so strongly, and then just dumping it. I would wonder why anyone would not just dump
Sun...

Linux on the Sun JavaStation NC HOWTO

Why JavaStations are No Longer Produced 14

http://www.sun.com/javastation
mailto:alexr@mscs.mu.edu

BTW, the JavaStations, now that they are fast, are quite fine. I really like mine, and
don't see why they aren't a viable product.

−−Dr. Mark Barnard, Professor at Marquette University <markb@mscs.mu.edu>

I believe that it was the triple combination of Sun's JavaOS, the Hotjava software, and
GraphOn's GoJoe X−connectivity software which ultimately doomed the JavaStation
line.

JavaOS was always sluggish in performance for us. It was rated as having one of the
slowest Java VMs by a ZDNet Online Magazane review at
http://www.zdnet.com/pcmag/features/javaguide/hfgr10.htm . I speculate this was the
the main cause of delaying the JavaStation's formal public release to April 1998.

JavaOS also always lagged behind the current Java developer spec (ie running Java 1.0
when Java 1.1 was prevalent, and Java 1.1 when Java 1.2 was issued). It was tough
explaining to students why the books they were buying were all using the new
event−model of Java 1.1, but they could not program to it and have it run on "the Java
machine". There were also some implementation problems with some of the AWT
peers which sometimes made programming across platforms difficult.

These performance and implementation problems were never addressed in subsequent
build of JavaOS for the duration we ran it. I believe the last edition we had used a Java
1.1.4 runtime, when we had a Java 1.2 development kit on the server.

The HotJava browser software suffered from not being able to handle web standards
HTML4, cascading style−sheets, or the ECMA javascript. All of these standards were
employed in commercial sites at the time, resulting in many sites that weren't viewable
by the JavaStations. The Hotjava Browser engine also had serious printing problems
with certain webpages, some of which appeared on Sun's own website!

The HotJava Views task selector software also was rough. Users could have multiple
apps running, but only one displayed at a time. Manipulation of multiple window panes
was difficult (no minimization, no quick list to all apps, resizing not always possible).
Flexibility users had grown accustomed to was tossed out in favor of this task−selector
approach. On Sun's Java website there was a page boasting of a committee formed that
decided this was the "right way" to make a desktop. Tell that to our users.

The GraphOn Go−Joe software was by far the most damaging piece of software to the
JavaStation line. This was an X−connectivity software Sun licensed from GraphOn to
give users access to the Solaris servers' X apps. The connectivity worked via a daemon
installed on the Solaris server, which was connected to by a Java connectivity applet on
the NC side. This small applet (only about 250K) simply threw up the latest display
state and sent back to the daemon the mouse and keyboard strokes of the user. Unlike
Xterminals though, the actual Xserver process was spawned and communicated with on
the remote server−side by the daemon. Communication between the GraphOn client
applet and the server daemon was supposedly done by a patented protocol to compress
communication and speed things up. However, the performance of X under Go−Joe
was terribly sluggish, with horrible refresh rates (10−seconds for some page scroll
refreshes). Many sites operators I spoke to elected to not run the Go−Joe software past
a trial period for this reason. We had to run it though, as our users were heavily X

Linux on the Sun JavaStation NC HOWTO

Why JavaStations are No Longer Produced 15

mailto:markb@mscs.mu.edu
http://www.zdnet.com/pcmag/features/javaguide/jfgr10.htm

dependant. Alternatives like Weird/X were not available at this time, and VNC proved
not up to snuff given the slow JavaOS VM.

This performance in Go−Joe alone was enough to give uninformed users the
impression that the JavaStation was an underpowered machine, especially when placed
side−by−side with the low−cost, end−of−lifed Sun Xterminal 1 hardware it was meant
to replace. Our students left labs in droves, faculty were upset, and giving demos to
outsiders was downright embarrassing. In reality the hardware was solid and stable, but
was hampered by this new, untested OS and new, untested applications running on a
new, untested hardware architecture. This triple−threat combination, and Sun's timeline
for fixing the problems is what I feel truly doomed the JavaStation.

I remember that in 1998, Sun publicized that it had rolled out 3000 of these machines
in−house, including one on Scott McNealy's desk. One who has used the JavaStations
with the Sun software would have to wonder whether he ever turned it on and used it
solely for a day? Had he done so, I'm sure he'd demand things be done differently. Why
Sun never ported and released its tried and tested XTerminal software to the
JavaStation, or even a mini−Solaris, remained a mystery to us the whole time before
we switched to Linux. It was only after we moved to Linux and the JavaStation line
was formally killed by Sun when we learned from some inside Sun sources that Solaris
actually was ported to Mr. Coffee, but released only internally at Sun. As a heavily
invested customer site who had begged for help, this was not only disheartening, but
insulting to discover.

Lastly, the customer support we received at the time was horrible. We pled our case on
more than a few occassions, but requests always seemed to fall on deaf ears. Calling up
SunSolve for JavaStation help always resulted in a transfer to a Java
Language engineer. If the Sun employees do not know their own products, that's a
problem!

>From our view, there no doubt was politics involved in this, and as customers, we
were the ones to bear the results of this. We continue using Sun equipment when it
comes to the proven models like the Enterprise−class servers and diskarrays, but on the
latest low−cost desktop offerings, we will be forever cautious given the JavaStation
history.

Linux now proves the JavaStations are adequate machines, and Sun could take this bait
and go with it. If they sell the JavaStations for $250 a piece and the JavaStation running
a proven OS like Linux (or Solaris) with proven apps (X), the JavaStation makes for a
great network appliance. The recent NetPliance I−Opener Linux hack and subsequent
controversy proves there certainly is a market for this type of low−cost device.

−−Robert Dubinski, Computer Systems Technician at Marquette University
<tech@mscs.mu.edu>

More comments and rebuttal statements by Sun employees are always welcome.

Linux on the Sun JavaStation NC HOWTO

Why JavaStations are No Longer Produced 16

mailto:tech@mscs.mu.edu

Where to Purchase a JavaStation

Since Sun has canceled production of the JavaStation line, it no longer sells them through their official
channels. It should be possible to order any remaining JavaStation stock from the Sun Spares site at
http://www.sunspares.com.

Your best bet to get JavaStations though is out on the open market. Educational institutions which received a
handful from Sun as demo units are now trying to offload them any way they can. Search around the auction
sites like Ebay and Yahoo Auctions, and you should be able to turn some up.

Lastly, a great resource for JavaStations is "Bodoman's JavaStation site" at:
http://www.bodoman.com/javastation/javastation.html . Here you can find Mr. Coffee and Krups models.

The current going price as of May 2000 for a Mr. Coffee model without memory or monitor is about
$70−100US, while the Krups goes for about $85−100US. Anything more is typically due to memory
pre−installed. Since the Taiwanese earthquake of 1999, memory prices have fluctuated on a near daily basis,
making it difficult to pin a price range down in this manner.

You might also get lucky and stumble on someone who wants to get rid of JavaStations cheap. Pete Zaitcev
<zaitcev@metabyte.com> purchased a 32−MB Krups for $75US in a pristine unopened box.

Linux on the Sun JavaStation NC HOWTO

Where to Purchase a JavaStation 17

http://www.sunspares.com
http://www.bodoman.com/javastation/javastation.html
mailto:zaitcev@metabyte.com

Background Requirements for Linux on a
JavaStation
This chapter describes the base hardware and software requirements for enabling Linux on the JavaStation.

Complete Hardware Requirements

For hardware, you will need one or more JavaStation clients and a server to feed it its Linux image from, all
networked on the same net segment.

This server you use can be any server which supports DHCP and TFTP, and RARP. These are the base
protocols needed to perform a network boot of the JavaStations. You may also need NFS service as well, but
it is not necessary in one type of configuration this HOWTO describes. Also, you can get by without
RARP on both the Krups and Espresso models.

This document will describe how to set up serving the network Linux OS image to the JavaStation from a
Sun server running SparcLinux. While you do not need a Sun server to serve your Linux image off of, the
Sun SparcLinux server is needed should you wish to compile a kernel of your own, or prototype a new
filesystem for your JavaStations to use. Otherwise, you will need to use prepackaged kernels and filesystems
somebody else has pre−built and made publicly available for use.

Your network can be a simple 10 Mbps ethernetLAN, but when you begin using more than 50 JavaStations at
once, a switched 100 Mbps network becomes desirable for your server to handle multiple concurrent boot
requests.

This HOWTO includes example kernels and filesystems for you to use, eliminating your need of a
Linux/SPARC server, but you still need a server of some type to feed the image to the JavaStations as they
boot.

Network Service Requirements

As discussed in the last section, the JavaStation boot cycle will make use of DHCP and TFTP with possibly
NFS and RARP. To understand why, read up on the JavaStation boot sequence in the next section.

Understand the JavaStation Boot Sequence

The JavaStations follow a typical diskless workstation boot sequence.

When powered on, the JavaStation sends out a broadcast request for its IP. It gets its IP info via RARP or
DHCP. With a DHCP response, it gets information about the network it is on and where to go download its
boot image from via TFTP.

Background Requirements for Linux on a JavaStation 18

There are subtle variations in diskless boots from one diskless machine to the next. For instance,
BOOTP may sometimes be substituted where DHCP is, and RARP may be eliminated in favor of either of
the two. But in general, the sequence is typically the same between the client and the server:

1.
C: "Who am I?"

2.
S: "You are xxx"

3.
C: "Where do I go for my boot image?"

4.
S: "You go here."

5.
C: "Give me my image from here...Please?"

6.
S: "Here's your image."

After the kernel is finished loading, your diskless client typically mounts its root filesystem from the network
via NFS. Alternatively, it may load and mount it from a RAMdisk.

Additional Software Requirements: Replacement Firmware
(PROLL)

JavaStations came with two different PROMs installed in them. Version 2.30 shipped with the earliest Mr.
Coffee models, and was updated by latter versions of the Sun Netra J software environment to 3.11.
Krups and Espresso came with 3.x versions of the PROM by default.

It turns out the later 3.x series of PROMs is not conducive to booting Linux upon. Fortunately, kernel hacker
Pete Zaitcev <zaitcev@metabyte.com> wrote a complete PROM replacement called PROLL.

PROLL becomes the first image your JavaStation grabs by TFTP. It then will load your true kernel image
and boot into Linux.

No matter what PROM revision you have, get PROLL. This can make troubleshooting new installs easier.

The current, master version of PROLL is available from Pete Zaitcev's website at:
http://www.metabyte.com/~zaitcev/linux.

The current version at the time of this writing is "11".

PROLL can also be found mirrored on "VGER", and also on this HOWTO's distribution site at:
http://www.mscs.mu.edu/~tech/Linux_on_JS/Files/proll_11.tar.gz (HOWTO website mirror)".

Linux on the Sun JavaStation NC HOWTO

Additional Software Requirements: Replacement Firmware (PROLL) 19

mailto:zaitcev@metabyte.com
http://www.metabyte.com/~zaitcev/linux/
http://www.mscs.mu.edu/~tech/Linux_on_JS/Files/proll_11.tar.gz

Decide on your Filesystem: NFS−Root, or Embedded?

Before you begin, you must decide upon the root−filesystem type you wish to use for your diskless
JavaStation.

"NFS−Root" Filesystem

In this setup, after the boot kernel is retrieved off the network, the running JavaStation makes an
NFS connection for its root filesystem. The root directory "/" is mounted off the network for the duration of
the current session.

The "NFS−Root" solution is the recommended way to go for beginners, as it is easier to troubleshoot if there
are problems. It also makes it easier to prototype the proper filesystem, as any changes you make on a
running system can be propogated for the next boot cycle (so long as you are in read−write mode, of course).

"Embedded−Root" Filesystem

In this setup, the root filesystem is loaded directly into RAM and accessed from there.

The advantage of this setup is that there is no NFS traffic to worry about, resulting in a clean solution.

The disadvantage of this configuration is that you can no longer do rapid prototyping of your filesystem, as
any changes you make to a running system are lost. If you have no "NFS−Root" setup available, you develop
an embedded filesystem by making small tweaks and performing reboots to test.

First time users will want to set up an "NFS−Root" configuration. When you have things stabilized, move to
"Embedded−Root" and make use of its advantages.

Linux on the Sun JavaStation NC HOWTO

Decide on your Filesystem: NFS−Root, or Embedded? 20

Build Your Kernel
Before you begin

This chapter assumes you wish to compile your own Linux kernel for the JavaStation. It assumes you already
know how to compile Linux kernels in general, perhaps on PC, a SPARC server running Linux, or any of the
other Linux ports. If not, read the Kernel−HOWTO and the README file of your kernel source.

Compiling a kernel for a JavaStation is not much different than compiling a Linux kernel elsewhere. You just
need to know the right options to pick. In general, you're compiling for a Sun4M class architecture, and
enabling JavaStation−specific options. The following sections in this chapter will take you through the steps.

While it may be possible to compile the JavaStation −enabled kernel on alternate platforms, this HOWTO
assumes you do it on a Linux/Sparc based server running in 32−bit mode.

Make sure you use 32−bit mode

When compiling your own JavaStation−capable kernel, you need to make sure the Sun server you are
working on is set to 32−bit mode. So, if you're on an Ultra−class machine, be sure you first switch to 32−bit
mode before you begin compiling.

To check what mode you're in, do a uname −a. If it says "sparc", you're in 32−bit mode and don't have to
do anything. If it reports "sparc64", then you should perform a sparc32 bash first to switch to 32−bit
mode. A subsequent uname −a should reflect the change.

Supported Linux Kernel Versions

The kernel source revision you should use depends on which model of JavaStation you have.

Mr. Coffee support has worked since about kernel version 2.2.5, and definitely works out of the box with the
RedHat 6.0+/SPARC distribution kernels.

Krups support did not work well out of the box until the latter 2.3.x kernel cycle. Pete Zaitcev
<zaitcev@metabyte.com> added Krups support in the early 2.3.x sequence, but the MMU changes to
the 32−bit SPARC kernel kept it from compiling cleanly until later on. The kernel is known to compile
cleanly with the Mar. 17 CVS kernel, and should compile cleanly with any 2.3.99pre3+ version kernel.
Krups support has been backported by Varol Kapton <varol@ulakbim.gov.tr>, and it is fully
supported in the 2.2.15−prepatch versions.

By the time this document gets widespread exposure, it is hoped that the 2.4.x stable kernel cycle will be
ready, at which time any 2.4.x kernel should compile cleanly with support for the entire JavaStation line.

If you can not get a kernel to compile, you should try the samples pointed to by this document.

Build Your Kernel 21

mailto:zaitcev@metabyte.com
mailto:varol@ulakbim.gov.tr

Required Kernel Configuration Options

When you do your make config command to enter the kernel configuration stage, there are a few things
you are required to enable:

For all JavaStations, you want to enable PCI support:

CONFIG_PCI=y

Don't forget your mouse:

CONFIG_BUSMOUSE=y
CONFIG_SUN_MOUSE=y

You'll want video, done with the Linux framebuffer interface:

CONFIG_FB_TCX=y (for Mr. Coffee)
CONFIG_FB_PCI=y
CONFIG_FB_IGA=y (for Krups/Espresso)

Audio is done with the Crystal Audio 4231 chipset:

CONFIG_SPARCAUDIO=y
CONFIG_SPARCAUDIO_CS4231=y

Don't forget your network interface:

CONFIG_SUNLANCE=y (Mr. Coffee)
CONFIG_HAPPYMEAL=y (Krups/Espresso)

You'll no doubt need to support a filesystem:

CONFIG_EXT2_FS=y

You'll want IP autoconfiguration, and RARP/BOOTP support:

CONFIG_IP_PNP=y
CONFIG_IP_PNP_BOOTP=y
CONFIG_IP_PNP_RARP=y

When doing the "NFS−Root" filesystem configuration, you will need both NFS and NFS−Root support:

CONFIG_NFS_FS=y
CONFIG_ROOT_NFS=y

When doing the "Embedded−Root" filesystem, configure both RAM disks and "initial ramdisk" support:

CONFIG_BLK_DEV_RAM=y
CONFIG_BLK_DEV_INITRD=y

You can get a working ".config" file which has these options set later in this chapter.

Linux on the Sun JavaStation NC HOWTO

Required Kernel Configuration Options 22

Necessary Patch for "Embedded−Root" FS Configurations

If you have decided to go with the "Embedded−Root" filesystem option, you will want to make a patch to the
RAMdisk driver source first.

The default size of a RAM disk when using the RAMdisk driver is 4 MB. Chances are that you will want an
embedded filesystem of more than that size, particularly when you start thinking about running an X server,
or including a Java runtime.

You can do this change by yourself, or by using the patch pointed to below. The change is a one−line edit in
the file <LINUXROOT>/drivers/block/rd.c . Look for a line that says:

int rd_size = 4096; /* Size of the RAM disks */

and change it to the size of the RAMdisk you wish. Typically, most embedded systems are under 16 MB, so a
common edit is to change the line to:

int rd_size = 4 * 4096; /* Size of the RAM disks */

If you can not do this, the patch below makes the edit for you.

4MB to 16MB kernel patch file is at: http://studsys.mscs.mu.edu/~tech/Linux_on_JS/Files/ramdisk_patch

It should be noted in this section that there is currently a limit on the size of Linux boot image for all
JavaStation models, due to the implementation of PROLL. This limit is technically 8 MB. This topic is
mentioned again in the "TroubleShooting" section of this document.

Build the JavaStation−Ready Kernel

To build the kernel, you type make vmlinux. If you come from an x86 Linux background, you might be
surprised that you do not perform a make bzImage or make zImage. Do not be alarmed: this command
is correct.

When the compile is finished, you will find a file named "vmlinux" in the kernel source root directory. You
are almost ready to put this kernel to use.

You need to make one more change to your kernel before it is ready for use. You need to convert it from
ELF to AOUT executable format. You can do this with the "elftoaout" utility included in most
Linux/SPARC distributions.

To convert your kernel image to the AOUT executable format, you issue the command:

elftoaout −o vmlinux.aout vmlinux

You will probably now want to rename the image file to a longer name which includes the current date and
kernel revision you used, so as not to get confused with when you have multiple boot kernel images down the
road.

Linux on the Sun JavaStation NC HOWTO

Necessary Patch for "Embedded−Root" FS Configurations 23

http://studsys.mscs.mu.edu/~tech/Linux_on_JS/Files/ramdisk_patch

JavaStation−Ready Kernel Images and ".config" File
Samples

Here are some sample ".config" and JavaStation−ready kernel images. They have been donated by
Linux−running JavaStation users.

Sample ".config" Files

http://www.mscs.mu.edu/~tech/Linux_on_JS/Files/kernel_config_2_3_99_pre3_mar_17

This is a ".config" file donated by Robert Dubinski <dubinski@mscs.mu.edu>. It was used at
Marquette University to build a boot image from the Mar. 17, 2000 CVS kernel version. This includes
support for both Mr. Coffee and Krups in an "Embedded−Root" filesystem configuration. These options
should be valid for newer kernels as well; Perform a make oldconfig when using with latter kernels.

Sample JavaStation−Ready Kernel Files

http://studsys.mscs.mu.edu/~tech/Linux_on_JS/Files/vmlinux_2_3_99pre3_mar_17

This is a kernel file donated by Robert Dubinski <dubinski@mscs.mu.edu>. It was built for Marquette
University and is based off the Mar. 17, 2000 CVS kernel version.

This kernel image includes support for both Mr. Coffee and Krups models in an
"Embedded−Root" filesystem configuration.

This boot kernel image has already been converted to the required AOUT executable format.

Linux on the Sun JavaStation NC HOWTO

JavaStation−Ready Kernel Images and ".config" File Samples 24

http://www.mscs.mu.edu/~tech/Linux_on_JS/Files/kernel_config_2_3_99_pre3_mar_17
mailto:dubinski@mscs.mu.edu
http://studsys.mscs.mu.edu/~tech/Linux_on_JS/Files/vmlinux_2_3_99pre3_mar_17
mailto:dubinski@mscs.mu.edu

Build A JavaStation−Ready FileSystem
This chapter details how one constructs a filesystem suitable for use on the Linux−running JavaStations.

Preparing Yourself to Build Your Own Filesystem

Building a filesystem for use with the JavaStations is a time−consuming, but rewarding task for those who
undertake it. You will learn more about library dependencies than you ever thought you could, all the time
while trying to keep the overall image size as small as possible.

There are two common approaches one can take when rolling a new JavaStation−ready filesystem.

1.
Start with an established distribution's filesystem and whittle down to the core.

2.
Start with an established distribution's "rescue disk" filesystem and add desired functionality.

Which path you take, of course, is entirely up to you. The "rescue disk" build procedure seems to work best
though, as more base commands in a rescue disk are statically linked, increasing the starting image size but
causing less initial library headaches.

Obviously when building a filesystem in the context of the JavaStation, you will be basing off of an existing
Linux/SPARC filesystem. The filesystems that come with the RedHat and Debian distributions are good
starting points.

Warning

In the future, you will also need to make sure you base off a filesystem built with compiled 32−bit mode
executables, as a 64−bit userland project is presently in progress for 64−bit SPARCLinux kernels.

Contents of the "/etc/fstab" File

The configuration lines placed into "/etc/fstab" depend on whether you will be using the "NFS−Root" or
"Embedded−Root" filesystem configuration.

"NFS−Root" Filesystem fstab

Here is an example of an "/etc/fstab" for an "NFS−Root" boot option.

###
#
your.nfs.server:/path/to/filesystem / nfs defaults,rsize=8192,wsize=8192 1 1

Build A JavaStation−Ready FileSystem 25

#
none /proc proc defaults 0 0
###

"Embedded−Root" Filesystem fstab

Here is an example of an "/etc/fstab" for an "Embedded−Root" boot option.

###
#
/dev/ram / ext2 defaults
#
/proc /proc proc defaults
###

The "Embedded−Root" Image Creation Procedure

Prepping up the "Embedded−Root" boot image requires a number of extra steps. Due to these extra steps, the
"NFS−Root" filesystem option is recommended for beginners to Linux on the JavaStation. You might also try
the samples pointed to in this document. Should you still wish to build and embedded image on your own,
this section outlines the basic instructions.

Creating the "Embedded−Root" boot image is a 5−Step Procedure:

1.
Prototype Your Filesystem

This whole chapter deals with rolling your own filesystem. In this step, it is assumed you create your
own filesystem, perhaps by prototyping one on a working "NFS−Root" filesystem configuration.

One thing to keep in mind is that unlike your "NFS−Root" filesystem, the
"Embedded−Root" filesystem must fit within the confines of your allocated RAMdisk, generally
4−16 MB. Your maximum size is dependant on the setting of the RAMdisk driver.

2.
Create an Empty File for Your FileSystem

You now need to create a file−based filesystem "container". This is just a file that is the size of your
RAMdisk.

To create this, try the dd command:

dd if=/dev/zero of=./fs_test.img bs=1k count=8000

Using this example, you now should have an 8 MB file named "fs_test.img". Note: Be sure the count
you use matches the RAMdisk size you allocated for in the kernel's RAMdisk driver!

3.
Format your Filesystem "Container"

Linux on the Sun JavaStation NC HOWTO

"Embedded−Root" Filesystem fstab 26

Now that you have a "container" for your filesystem, it is time to format it and place a bare
filesystem on it.

In our kernel phase, we added in support for the ext2 filesystem. We'll now format our
"container" with this filesystem type.

mkfs.ext2 ./fs_test.img

Ignore any warnings about the file not being a block device, and proceed anyway. This is an expected
warning message.

4.
Mount the Filesystem "Container" and Write to It

Now that you have your filesystem container, you can mount it and load your prototyped filesystem
on it.

To mount the container, use the kernel loopback device. Make sure your server's kernel has loopback
support enabled and issue a:

mount −o loop ./fs_test.img /mnt

Copy your files to the filesystem, and make sure "/etc/fstab" has the RAMdisk entries as described
elsewhere in this document.

To avoid symbolic links being changed into actual copies of files, use a copy tool like "tar" or
"cpio" instead of a "cp".

5.
Unmount and Compress the Root Filesystem

Unmount the root filesystem you just created.

umount /mnt

Compress the filesystem file with maximum "gzip" compression levels.

gzip −v9 ./fs_test.img

You should now have "fs_test.img.gz" file.
6.

Hook the Root−Filesystem Onto the Back of Your Kernel Image

Now you must append the filesystem image onto your kernel.

You do this with a utility program called "piggyback". The piggyback program takes care of the task
of appending the two and letting the kernel know where both it and the filesystem begins and ends.

The "piggyback" program is found in your kernel source tree under
<LINUXROOT>/arch/sparc/boot. It might also be found on your favorite ftp.kernel.org site.

For piggyback to work, it needs your AOUT format kernel image, the System.map file from your
kernel source root directory, and the compressed root−filesystem you just created.

Linux on the Sun JavaStation NC HOWTO

"Embedded−Root" Filesystem fstab 27

We put it all together with a:

piggyback vmlinux.aout System.map fs_test.img.gz

Be sure to backup your kernel image first, as piggyback used the same "vmlinux.aout" filename for
output. Check the filesize of your "vmlinux.aout" file after giving this command and you can verify
the filesystem has indeed been appended.

Congratulations! You've created an "Embedded−Root" kernel/filesystem boot image.

Sample FileSystems

Here are some sample filesystems for you to start with.

A filesystem image contributed by Varol Kapton <varol@ulakbim.gov.tr> is at:
http://studsys.mscs.mu.edu/~tech/Linux_on_JS/Files/jsroot_varol.tar.gz

Linux on the Sun JavaStation NC HOWTO

Sample FileSystems 28

mailto:varol@ulakbim.gov.tr
http://studsys.mscs.mu.edu/~tech/Linux_on_JS/Files/jsroot_varol.tar.gz

Set up Your Server
This chapter describes the configuration steps necessary for the server machine to hand−off your
JavaStation boot image.

Preface

It is now time to setup your server to deliver the OS and filesystem to the JavaStation.

In our examples here, we configure a Linux/SPARC server "lnxserv" at private IP 192.168.128.100 to deliver
a boot image to JavaStation"java01" at private IP 192.168.128.1. Both are on private network
192.168.128/24. When using an "NFS−Root" Filesystem, the location on the server of the filesystem in our
sample is at "/path/to/nfsroot".

Setting up the RARP service

We first need to set up RARP service on our server, so the JavaStation can auto−configure its IP.

First, populate the "/etc/ethers" file with the mapping of the mac address of the JavaStation to its hostname:

/etc/ethers
8:0:20:82:7a:21 lnxserv # 192.168.128.100 (server is not necessary,)
(just for completeness)
#
#
08:00:20:81:C2:ae java01 # 192.168.128.1 (JavaStation)
#
###

Next, populate the "/etc/hosts" file with the IP to hostname maps:

/etc/hosts
192.168.128.100 lnxserv
192.168.128.1 java01
###

Lastly, configure the RARP cache to fill at start−up (Linux/SPARC has no RARP daemon, per se):

Part of rc.local
#
If necessary, first load the rarp module to be able to fill the cache.
/sbin/insmod rarp
#
Now we fill the rarp cache. You better have the rarp command available.
if [−f /sbin/rarp]; then
 /sbin/rarp −f
fi
###

Set up Your Server 29

Setting up the DHCP service

You now need to configure your server to deliver DHCP service. This will help identify the JavaStation, the
network it is on, and where to get its boot image from.

The following is a sample "dhcpd.conf" file for the ISC DHCP server software which ships with most
Linux/SPARC distributions.

Sample /etc/dhcpd.conf file for ISC DHCPD
#
deny unknown−clients;
#
subnet 192.168.128.0 netmask 255.255.255.0
{
 range 192.168.128.1 192.168.128.150;
}

group
{
 host java01
 {
 hardware ethernet 08:00:20:81:C2:ae;
 filename "C0A88003"; # "/tftpboot/xxx"
 fixed−address java01; # 192.168.128.1
 }
}
#
End dhcpd.conf file

Note: Some early versions of ISC DHCPD are reported to not work well. It is recommended you use ISC
DHCPD Version 2.0 and above.

Pete Zaitcev sent a longer dhcpd.conf for demonstration purposes.

Set up NFS service ("NFS−Root Options" Only)

When you are serving up an "NFS−Root" filesystem, you need to share the filesystem you created to the
JavaStation client. You do this with the "/etc/exports" file.

###/etc/exports
/path/to/nfsroot java01(rw,no_root_squash)
###

Be sure your NFS server gets properly started up at boot−time.

Linux on the Sun JavaStation NC HOWTO

Setting up the DHCP service 30

http://studsys.mscs.mu.edu/~tech/Linux_on_JS/Files/petes_dhcpd.conf.txt

Setting up for Boot with TFTP

Now we need to set up the last step on our server: the TFTP configuration. For this step, you will need the
kernel you created (using the "NFS−Root" option) or the piggybacked kernel/fs boot image (using the
"Embedded−Root" option), the appropriate PROLL, and some knowledge of hexadecimal numbering.

The first thing you need to do is verify that "TFTPd" is enabled in your "/etc/inetd.conf" file:

tftp dgram udp wait root /usr/sbin/tcpd in.tftpd

Now, you move your copy of proll for your JavaStation architecture, along your kernel or piggybacked kernel
image to /tftpboot.

Now, you create of symbolic link from the hexidecimal version of your IP to your PROLL image, and a map
from "HEXIP.PROL" to your real kernel image. If you are using "Embedded−Root" option, you point to your
"Embedded−Root" Filesystem plus Kernel image. If you are using the "NFS−Root" option, you need to point
to the normal "vmlinux.aout" image, plus have a separate map of IP−>nfsroot location. For sake of
completeness, you might also want a "HEXIP.SUN4M" −> "HEXIP" map, as that is the custom way of
dealing with net boot situations with the Sun.

Example for java01 booting from "NFS−Root":

 $ ls −ld /tftpboot
 −rw−r−−r−− 1 root root 89608 Mar 20 10:15 proll.aout.krups.11
 −rw−r−−r−− 1 root root 52732 Mar 17 11:52 proll.aout.mrcoffee.11
 lrwxrwxrwx 1 root root 19 Mar 20 10:16 proll.krups −62; proll.aout.krups.11
 lrwxrwxrwx 1 root root 22 Mar 17 11:54 proll.mrcoffee −62; proll.aout.mrcoffee.11
 lrwxrwxrwx 1 root root 10 Apr 1 13:00 C0A88001.SUN4M −62; COA88001
 lrwxrwxrwx 1 root root 10 Apr 1 13:00 C0A88001 −62; proll.mrcoffee
 lrwxrwxrwx 1 root root 12 Apr 1 13:00 C0A88001.PROL −62; vmlinux.aout
 −rw−r−−r−− 1 root root 1456189 May 21 12:53 vmlinux.aout
 −rw−r−−r−− 1 root root 6743821 Apr 1 12:53 vmlinux_embed.aout
 lrwxrwxrwx 1 root root 18 Apr 1 12:53 192.168.128.1 −62; /path/to/nfsroot

Example for java01 booting from "Embedded−Root" boot image:

 $ ls −ld /tftpboot
 −rw−r−−r−− 1 root root 89608 Mar 20 10:15 proll.aout.krups.11
 −rw−r−−r−− 1 root root 52732 Mar 17 11:52 proll.aout.mrcoffee.11
 lrwxrwxrwx 1 root root 19 Mar 20 10:16 proll.krups −62; proll.aout.krups.11
 lrwxrwxrwx 1 root root 22 Mar 17 11:54 proll.mrcoffee −62; proll.aout.mrcoffee.11
 lrwxrwxrwx 1 root root 10 Apr 1 13:00 C0A88001.SUN4M −62; COA88001
 lrwxrwxrwx 1 root root 10 Apr 1 13:00 C0A88001 −62; proll.mrcoffee
 lrwxrwxrwx 1 root root 12 Apr 1 13:00 C0A88001.PROL −62; vmlinux_embed.aout
 −rw−r−−r−− 1 root root 1456189 May 21 12:53 vmlinux.aout
 −rw−r−−r−− 1 root root 6743821 Apr 1 12:53 vmlinux_embed.aout

Linux on the Sun JavaStation NC HOWTO

Setting up for Boot with TFTP 31

The Last Configuration Step

The last step to configuring your Linux−running JavaStation: boot it and cross your fingers!

Tip: Report of success are also heard of where one or more of these configuration steps have
been used: knocking on a wooden surface, booting during a full moon, walking under
ladders, breaking of mirrors, throwing salt over one's shoulder, hunting black cats and
sacrificing chickens (KFC will suffice).

Linux on the Sun JavaStation NC HOWTO

The Last Configuration Step 32

Troubleshooting
This chapter is intended to provide solutions to frequently and infrequently encountered problems in enabling
Linux on the JavaStations.

When booting, the message "The file just loaded does not
appear to be executable." Why?

This symptom likely means you forgot to run elftoaout on your kernel image.

Cannot Boot an "Embedded−Root" image > 10 MB on my
JavaStation. Why?

There is a known limit of 8 MB when using the "Embedded−Root" boot image option.

The cause of this is the current version of the PROLL software, which map only 8 MB of low memory. Any
more and banking support would need to be added to it.

Pete Zaitcev <zaitcev@metabyte.com>, author of PROLL answers this can be fixed if needed by
someone, as the source to PROLL has been released under the General Public License GPL.

So in reality, the embedded image size limit is really 8 MB , not 10 MB. If 10 MB somehow works for you, it
is by "luck"!

After Booting, Typing Anything Yields Garbage Characters.
Why?

There are a few possibilities for this. Among them:

1.
You have an incorrect device # for tty0.

2.
A "keytable" loaded is incorrect. Make sure you use "sun" instead of "PC" if you use the keytable
program. Look for the keytable configuration file if it exists.

Troubleshooting 33

mailto:zaitcev@metabyte.com

In X Sessions to a Solaris server, the font server
"xfs" crashes. Why?

If you do X sessions to a Solaris server, and you find that your sessions are no longer opening up new
windows, chances are the font server on the Solaris host has crashed. This is a known bug in Solaris 2.6 and
2.7 when you have about 2 dozen X terminals sessions running.

The fix is to move the font server to a different architecture and point your JavaStations there, or to upgrade
your Solaris to the 2.7 11/99 maintenance release or Solaris 8 which both have fixes to this problem.

Performing Indirect XDMCP to a Solaris Server Results in
Session Login Failures. Why?

Congratulations! You must have one of patch numbers 107180−12 through 107180−19 installed on a Solaris
7 server. You need to upgrade to 107180−20 or above to fix this problem.

Here's a little rant:

I reported this problem to Sun in November 1999, at which time I was told a fix was
not scheduled to be made, since I was using an "unsupported configuration.". Never
mind the client was a piece of hardware made by Sun itself. Also never mind that
indirect XDMCP queries is a standard itself which was broken by Sun. A call back in
late January 2000, and I learn that the record of my previous call was non−existant, but
a fix was now on its way. The fix finally was made available in April 2000, five
months after first reporting the problem. Considering revisions to this patch during the
broken XDMCP period dealt with fixing system security issues, we were forced to run
the older insecure software for five months while waiting for a fix to a problem which
should have been patched immediately.

The moral of the story: test your JavaStation configuration against an upgraded server
that is not in production mode.

−−Robert Dubinski, Computer Systems Technician at Marquette University
<tech@mscs.mu.edu>

Linux on the Sun JavaStation NC HOWTO

In X Sessions to a Solaris server, the font server "xfs" crashes. Why? 34

mailto:tech@mscs.mu.edu

Answers to Miscellaneous Questions
This chapter aims to answer some miscellaneous questions about Linux and the JavaStations.

Regarding RARP: Is it Needed or Not?

RARP is not needed with the Krups or Espresso models and recent PROLL software. RARP is required for
Mr. Coffee, however.

This document explains how to set up kernel−level RARP for the remaining models. In kernel versions
2.3.x/2.4.x, kernel−level RARP support is removed. Pete Zaitcev <zaitcev@metabyte.com> has made
a patch to ANK userland RARP that allows it to compile on Linux/SPARC. It is available from:
ftp://corp.metabyte.com/private/linux_roxy/tools/". The command to use then is rarpd−ank −e eth0.
"−e" makes it ignore /tftpboot checking, and "eth0" is needed if you are behind a firewall.

Can One Use the Smart Card Reader on the Espresso
models?

This is not currently supported, but the reader follows an ISO standard (ISO 7816−3). On Espresso, if you
look into PROLL, there are definitions for the GPIO smartcard data/clock in "eeprom.c". So a programmer
should technically be able to get the Smart Card slot running.

Can One Use the SolarisDHCP server instead of ISC?

Yes, this is possible. Earlier ISC daemons had problems, while the Solaris server was more robust. Here is
how to configure it:

First, fill in your /var/dhcp/"networks" file, populating it with ethernet to IP info, and the appropriate leastime.

This example uses "infinite" leastime
#
0108002081C2AE 03 192.168.128.1 192.168.128.100 java01 # JavaStation
010800208E4CF6 03 192.168.128.2 192.168.128.100 java02 # JavaStation

Next, fill in your /var/dhcp/dhcptab file with entries similar to:

##
First, some network info
#
Locale m :UTCoffst=21600:
studsys m :Include=Locale:Timeserv=192.168.128.100:DNSdmain=my.own.net:DNSserv=192.168.128.100:
192.168.128.0 m :Broadcst=192.168.128.255:Subnet=255.255.255.0:MTU=1500:BootSrvA=192.168.128.100:Router=192.168.128.101:NISdmain=my.own.net:NISservs=192.168.128.100:
#
note: BootServA can point to a different TFTP server to get the kernel image
off of.

Answers to Miscellaneous Questions 35

mailto:zaitcev@metabyte.com
ftp://corp.metabyte.com/private/linux_roxy/tools/

#
#
##
Now we define the JavaStation TFTPboot parameters
#
SUNW.Linux m :Include=studsys:JOSchksm=0x155dbf97:Rootpath=/tftpboot:BootFile=proll.mrcoffee:BootSrvA=192.168.128.100:TFTPsrvN=lnxserv:
SUNW.Linux.Krups m :Include=studsys:Rootpath=/tftpboot:BootFile=proll.krups:BootSrvA=192.168.128.100:TFTPsrvN=lnxserv:
#
#
note: different classes are defined for the different PROLL images.
#
##
Lastly, we list our hosts and which boot class each one gets.
java01 m :LeaseTim=−1:Include=SUNW.Linux:
java02 m :LeaseTim=−1:Include=SUNW.Linux.Krups:
#
#
#
###

Can One Pass Arguments to "/sbin/init" in a Diskless Boot
like This?

PROLL ships with DHCP options disabled, but it could be changed. You would then do something like
"/tftpboot/0A0A0000.ARGS" to get those parameters in.

If you boot from flash memory, PROLL picks up SILO options (where SILO is > version 0.9.6 and
PROLL is >= version 11)

Enabling X on the JavaStation

Enabling X on the JavaStation is possible.

First, be sure you have enabled the appropriate framebuffer device in your kernel's configuration (as
described elsewhere in this document).

Next, you'll want to use the generic Sun Framebuffer X server and "XF86Config" file. You can build this
yourself, or you can try someone's prebuilt binaries, like the samples pointed to below.

As of this time, XFree 4.0 does not work on the SPARC line. You'll need to use an XFree 3.3.x variant in the
meantime. The new driver model of 4.0 will provide the path necessary to provide a dedicated accellerated X
server for the JavaStations.

Sample XFree Sun Frambuffer X Server File is at:
http://studsys.mscs.mu.edu/~tech/Linux_on_JS/Files/XF86_FBDev

Sample XFree JavaStation−Ready XF86Config File is at:
http://studsys.mscs.mu.edu/~tech/Linux_on_JS/Files/XF86Config

Linux on the Sun JavaStation NC HOWTO

Can One Pass Arguments to "/sbin/init" in a Diskless Boot like This? 36

http://studsys.mscs.mu.edu/~tech/Linux_on_JS/Files/XF86_FBDev
http://studsys.mscs.mu.edu/~tech/Linux_on_JS/Files/XF86Config

Is There Mailing List Help?

There is a mailing devoted exclusively to running Linux on SPARC processor based machines like the
JavaStations.

The mailing list address is "sparclinux@vger.rutgers.edu". You should first subscribe to it by sending a
message to "majordomo@vger.rutgers.edu" with a subject and body line of "subscribe sparclinux
<your_email_address>". You can leave out your email address, but it is helpful to put it in if you have
multiple valid addresses at your site.

Archives of the Linux/Sparc mailing list are kept at:
http://www.progressive−comp.com/Lists/?l=linux−sparc&r=1&w=2"

Are There Alternate Help Sources Available?

There are a few known sources of Linux on JavaStation help outside of this HOWTO and the
Linux/Sparc mailing list.

1.
Pete Zaitcev <zaitcev@metabyte.com> was the driving force in programming the Linux
kernel support for the JavaStation line. He maintains a website of low−level hardware details at
http://corp.metabyte.com/~zaitcev/linux. Here you will find all kinds of little source patches, though
none presented are necessary for basic JavaStation support as described in this document.

Additional sources of information will be added as they appear.

Linux on the Sun JavaStation NC HOWTO

Is There Mailing List Help? 37

http://www.progressive-comp.com/Lists/?l=linux-sparc&r=1& w=2
mailto:zaitcev@metabyte.com
http://corp.metabyte.com/~zaitcev/linux

Unanswered Questions
This chapter lists questions which have been asked by the author or others, but as of now have no answers to.

Does "Piggyback" work for the x86 too?

Enquiring minds want to know.

Where Can One Find Espressos for Sale?

Enquiring minds want to know.

Do Tools Exist to Configure Net Boot Entries Quickly?

Enquiring minds want to know.

Unanswered Questions 38

Appendix
This section is a collection of various reference documents which do not belong in any other section.

Mr. Coffee Jumper Info

Mr. Coffee Jumper Assignments

J0206 JTAG header, perhaps JSCC compatible.
J0904 1−2 shortened Enter POST − output ttya, input ttya
 1−2 open Skip POST − output screen, input ttya
 3−4 Unused
 5−6 Unused
 7−8 Unused
J1101 1−2 open (dflt) TPE squelch
 1−2 short Reduced squelch threshold
J1102 1−2 open (dflt) 100 Ohm TPE termination
 short 150 Ohm TPE termination
J1602 Manufacturing test of unknown sort
J1603 1−2 PROM select (unfortunately PROM socket is emply)
 2−3 (default) Flash select
J1604 1−2 FPROM write disable
 2−3 (default) FPROM write enable

J0904 block is a bit block of pullup resistors which a user may shorten.
They may be read from the keyboard controller with a command 0xDD.

Krups Jumper Info

Krups Jumper Assignments

J1202 1−2 Use Flash
 2−3 Select optional diagnostic FLASH PROM in socket J1203
 (this does not sound quite right ...)
J1300 1−2 Software debug use
 3−4 Factory use − PROM switch??
 5−6 Unused
 7−8 Flash update recovery
J0500 JTAG

JavaStation Photo Gallery

This section contains links to pictures of the JavaStation line.

Front view of Mr. Coffee is at:
http://studsys.mscs.mu.edu/~tech/Linux_on_JS/Files/mr_coffee_front_view.jpg

Appendix 39

http://studsys.mscs.mu.edu/~tech/Linux_on_JS/Files/mr_coffee_front_view.jpg

Top view of Mr. Coffee is at: http://studsys.mscs.mu.edu/~tech/Linux_on_JS/Files/mr_coffee_top_view.jpg

Inside view of Mr. Coffee is at:
http://studsys.mscs.mu.edu/~tech/Linux_on_JS/Files/mr_coffee_inside_view.jpg

Mr. Coffee white case variation #1 at:
http://studsys.mscs.mu.edu/~tech/Linux_on_JS/Files/mr_coffee_white_case_1.jpg

Mr. Coffee white case variation #2 at:
http://studsys.mscs.mu.edu/~tech/Linux_on_JS/Files/mr_coffee_white_case_2.jpg

Front view of krups is at: http://studsys.mscs.mu.edu/~tech/Linux_on_JS/Files/krups_front_view.jpg

Side view of krups is at: http://studsys.mscs.mu.edu/~tech/Linux_on_JS/Files/krups_side_view.jpg

Top view of krups is at: http://studsys.mscs.mu.edu/~tech/Linux_on_JS/Files/krups_top_view.jpg

Front view of Espresso is at: http://studsys.mscs.mu.edu/~tech/Linux_on_JS/Files/espresso_front_view.jpg

Side view of Espresso is at: http://studsys.mscs.mu.edu/~tech/Linux_on_JS/Files/espresso_side_view.jpg

Rear view of Espresso is at: http://studsys.mscs.mu.edu/~tech/Linux_on_JS/Files/espresso_rear_view.jpg

Inside view of Espresso is at: http://studsys.mscs.mu.edu/~tech/Linux_on_JS/Files/espresso_inside_view.jpg

See the JavaEngine−1 at: http://studsys.mscs.mu.edu/~tech/Linux_on_JS/Files/je1_overhead_view.jpg

View of the JavaStation mousepad is at:
http://studsys.mscs.mu.edu/~tech/Linux_on_JS/Files/javastation_mousepad.jpg

View of a Lab of JavaStations running Linux is at:
http://studsys.mscs.mu.edu/~tech/Linux_on_JS/Files/lab_of_javastations.jpg

Linux on the Sun JavaStation NC HOWTO

Appendix 40

http://studsys.mscs.mu.edu/~tech/Linux_on_JS/Files/mr_coffee_top_view.jpg
http://studsys.mscs.mu.edu/~tech/Linux_on_JS/Files/mr_coffee_inside_view.jpg
http://studsys.mscs.mu.edu/~tech/Linux_on_JS/Files/mr_coffee_white_case_1.jpg
http://studsys.mscs.mu.edu/~tech/Linux_on_JS/Files/mr_coffee_white_case_2.jpg
http://studsys.mscs.mu.edu/~tech/Linux_on_JS/Files/krups_front_view.jpg
http://studsys.mscs.mu.edu/~tech/Linux_on_JS/Files/krups_side_view.jpg
http://studsys.mscs.mu.edu/~tech/Linux_on_JS/Files/krups_top_view.jpg
http://studsys.mscs.mu.edu/~tech/Linux_on_JS/Files/espresso_front_view.jpg
http://studsys.mscs.mu.edu/~tech/Linux_on_JS/Files/espresso_side_view.jpg
http://studsys.mscs.mu.edu/~tech/Linux_on_JS/Files/espresso_rear_view.jpg
http://studsys.mscs.mu.edu/~tech/Linux_on_JS/Files/espresso_inside_view.jpg
http://studsys.mscs.mu.edu/~tech/Linux_on_JS/Files/je1_overhead_view.jpg
http://studsys.mscs.mu.edu/~tech/Linux_on_JS/Files/javastation_mousepad.jpg
http://studsys.mscs.mu.edu/~tech/Linux_on_JS/Files/lab_of_javastations.jpg

	Table of Contents
	Linux on the Sun JavaStationNC HOWTO
	Robert S. Dubinski

	META Information
	The Purpose of this Document
	Acknowledgments
	Document Contributors
	History of this document
	Document Copyright and Licenses
	Location of the Latest Version and Source

	What is a JavaStation?
	What is a JavaStationNC?
	Definition of an NC including the Differentiation from PC's
	Description of the JavaStation Model Line including Hardware Specs
	JavaStation-1 ["Mr. Coffee"] ["the brick"] [Sun Option No. JJ-xx]
	JavaStation-NC ["JavaStation-10"] ["Krups"] ["the tower"] ["the percolator"] [Sun Option No. JK-xx]
	JavaStation-E ["Espresso"] [Sun Option No. JE-xx]
	JavaEngine-1 ["JE-1"]
	The "Dover"JavaStation model
	The Generation 3 "Super JavaStation"

	Reasons for Running Linux and NC Myths Dispelled
	Why JavaStations are No Longer Produced
	Where to Purchase a JavaStation

	Background Requirements for Linux on a JavaStation
	Complete Hardware Requirements
	Network Service Requirements
	Understand the JavaStation Boot Sequence
	Additional Software Requirements: Replacement Firmware (PROLL)
	Decide on your Filesystem: NFS-Root, or Embedded?
	"NFS-Root" Filesystem
	"Embedded-Root" Filesystem

	Build Your Kernel
	Before you begin
	Make sure you use 32-bit mode
	Supported Linux Kernel Versions
	Required Kernel Configuration Options
	Necessary Patch for "Embedded-Root" FS Configurations
	Build the JavaStation-Ready Kernel
	JavaStation-Ready Kernel Images and ".config" File Samples
	Sample ".config" Files
	Sample JavaStation-Ready Kernel Files

	Build A JavaStation-Ready FileSystem
	Preparing Yourself to Build Your Own Filesystem
	Contents of the "/etc/fstab" File
	"NFS-Root" Filesystem fstab
	"Embedded-Root" Filesystem fstab

	The "Embedded-Root" Image Creation Procedure
	Sample FileSystems

	Set up Your Server
	Preface
	Setting up the RARP service
	Setting up the DHCP service
	Set up NFS service ("NFS-Root Options" Only)
	Setting up for Boot with TFTP
	The Last Configuration Step

	Troubleshooting
	When booting, the message "The file just loaded does not appear to be executable." Why?
	Cannot Boot an "Embedded-Root" image > 10 MB on my JavaStation. Why?
	After Booting, Typing Anything Yields Garbage Characters. Why?
	In X Sessions to a Solaris server, the font server "xfs" crashes. Why?
	Performing Indirect XDMCP to a Solaris Server Results in Session Login Failures. Why?

	Answers to Miscellaneous Questions
	Regarding RARP: Is it Needed or Not?
	Can One Use the Smart Card Reader on the Espresso models?
	Can One Use the SolarisDHCP server instead of ISC?
	Can One Pass Arguments to "/sbin/init" in a Diskless Boot like This?
	Enabling X on the JavaStation
	Is There Mailing List Help?
	Are There Alternate Help Sources Available?

	Unanswered Questions
	Does "Piggyback" work for the x86 too?
	Where Can One Find Espressos for Sale?
	Do Tools Exist to Configure Net Boot Entries Quickly?

	Appendix
	Mr. Coffee Jumper Info
	Krups Jumper Info
	JavaStation Photo Gallery

