
IBM WebSphere Portal software family 
Your world. Your way. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
  

IBM WebSphere Portal 6.1.X 
Performance Tuning Guide 
 
 

IBM WPLC Performance Team 
March 2009 
 

Document version 2.1 
 

 



 
 

 

Contents 
PERFORMANCE TUNING OVERVIEW ............................................................................................................... 2 

Environment Considerations ................................................................................................................ 3 

32-bit and 64-bit Considerations....................................................................................................... 3 

Hardware Multithreading (Hyper-Threading) ........................................................................................ 3 

BASE PORTAL TUNING ................................................................................................................................. 4 

Application Server Tuning ................................................................................................................... 5 

JVM Initial and Maximum Heap Size ................................................................................................. 5 

JVM Heap Large Page .................................................................................................................. 7 

JVM Heap New Area Size .............................................................................................................. 8 

Additional SUN JVM Arguments....................................................................................................... 8 

Session Timeout ......................................................................................................................... 9 

Web Container Thread Pool Size ..................................................................................................... 9 

Security Attribute Propagation ....................................................................................................... 10 

VMM Context Pooling ................................................................................................................. 11 

ORB Service Tuning For z/OS ....................................................................................................... 11 

WebSphere Portal Services ............................................................................................................... 12 

Navigator Service ...................................................................................................................... 12 

Registry Service........................................................................................................................ 13 

Cache Manager Service .............................................................................................................. 14 

Database Tuning ............................................................................................................................ 15 

Datasource Tuning For DB2 ......................................................................................................... 15 

DB2 Database Server Tuning........................................................................................................ 15 

Oracle Database Server Tuning ..................................................................................................... 19 

Other Database Considerations ..................................................................................................... 21 

Directory Server Tuning.................................................................................................................... 22 

Web Server Tuning ......................................................................................................................... 23 

Operating System Tuning.................................................................................................................. 25 

AIX........................................................................................................................................ 25 

Linux ..................................................................................................................................... 26 

Windows 2003.......................................................................................................................... 26 

Solaris.................................................................................................................................... 27 

Z/OS...................................................................................................................................... 29 

Required Fixes .............................................................................................................................. 29 

WEB 2.0 THEME TUNING............................................................................................................................. 30 

JVM Initial and Maximum Heap Size .................................................................................................... 30 

Navigator Service Properties.............................................................................................................. 30 

Internet Explorer Support of Vary Header............................................................................................... 31 

Caching Proxy Tuning...................................................................................................................... 31 



 
 

 

Web Server Tuning ......................................................................................................................... 32 

Portlet Caching .............................................................................................................................. 33 

MANY PAGES TUNING................................................................................................................................ 34 

DB2 Database Tuning...................................................................................................................... 34 

Cache Manager Service ................................................................................................................... 35 

Required Fixes .............................................................................................................................. 35 

WEB CONTENT MANAGEMENT TUNING ......................................................................................................... 36 

Application Server Tuning ................................................................................................................. 36 

WebSphere Portal Service Properties ................................................................................................... 37 

Cache Manager Service .............................................................................................................. 37 

Navigation Service ..................................................................................................................... 38 

WCM Object Cache ........................................................................................................................ 38 

WCM Configuration Service............................................................................................................... 39 

JCR Text Search ............................................................................................................................ 39 

DB2 Tuning (Authoring Environment) ................................................................................................... 40 

Multiplatform (LUW) ................................................................................................................... 40 

Z/OS...................................................................................................................................... 41 

COMPOSITE APPLICATIONS TUNING ............................................................................................................ 43 

Cache Manager Service Properties...................................................................................................... 43 

Composite Applications Best Practices ................................................................................................. 44 

CLUSTER TUNING ..................................................................................................................................... 46 

Application Server Tuning ................................................................................................................. 46 

Dynacache Custom Properties ...................................................................................................... 46 

z/OS Dynacache Custom Property.................................................................................................. 46 

Thread Pools ........................................................................................................................... 47 

Transport Buffer Size .................................................................................................................. 47 

WMM Context Pooling ................................................................................................................ 47 

Web Server Tuning ......................................................................................................................... 48 

Session Persistence To Database Tuning .............................................................................................. 49 

Vertical Cluster Tuning ..................................................................................................................... 50 

Required Fixes .............................................................................................................................. 51 

OTHER PERFORMANCE TUNING OPTIONS..................................................................................................... 52 

Improving Portal Startup Performance .................................................................................................. 52 

Managing the Retrieval of User Attributes .............................................................................................. 53 

Identifying a Full Fetch of User Attributes .......................................................................................... 54 

Minimum Attribute Set................................................................................................................. 55 

Use of Dynamic Content Features ....................................................................................................... 55 

Real-World Network Considerations ..................................................................................................... 56 

Compress Content on the HTTP Server ........................................................................................... 56 

Enabling Client-Side Caching ........................................................................................................ 57 



 
 

 

WEBSPHERE PORTAL CACHES.................................................................................................................... 58 

General Information ........................................................................................................................ 58 

Cache Configuration Properties ..................................................................................................... 58 

Cache Usage Patterns ..................................................................................................................... 61 

Cache Instances ............................................................................................................................ 62 

Access Control ......................................................................................................................... 62 

Portal User Management ............................................................................................................. 67 

Datastore ................................................................................................................................ 68 

Model .................................................................................................................................... 69 

URL Mappings.......................................................................................................................... 74 

Virtual Portals........................................................................................................................... 74 

WSRP.................................................................................................................................... 75 

Dynamic Assembly / Process Integration .......................................................................................... 77 

Policy..................................................................................................................................... 78 

Collaboration Services ................................................................................................................ 78 

Miscellaneous .......................................................................................................................... 79 

Example Scenarios ......................................................................................................................... 82 

General Comments .................................................................................................................... 82 

Small Number of Pages and Small Number of Users............................................................................ 83 

Small Number of Pages and Large Number of Users............................................................................ 83 

Portals with Long Session Timeouts ................................................................................................ 84 

Portals with Many Pages ............................................................................................................. 84 

WEB CONTENT MANAGEMENT CACHES ........................................................................................................ 86 

WCM Cache Instances..................................................................................................................... 86 

WCM Item caching..................................................................................................................... 86 

WCM Summary ........................................................................................................................ 86 

WCM Basic Caching................................................................................................................... 87 

Advanced and Resources ............................................................................................................ 87 

Session Cache ......................................................................................................................... 87 

Menu ..................................................................................................................................... 88 

Navigator ................................................................................................................................ 88 

Absolute path ........................................................................................................................... 88 

Missed Items............................................................................................................................ 88 

Library.................................................................................................................................... 88 

Library Parent........................................................................................................................... 89 

Draft Summary ......................................................................................................................... 89 

User cache .............................................................................................................................. 89 

Appendix A. References ............................................................................................................................ 90 

Appendix B. Credits ................................................................................................................................. 91 



 
 

 

Figures 
Figure 1 Portal Access Control Cache Hierarchy .................................................................................................. 63 

Figure 2 Portal Model Cache Hierarchy.............................................................................................................. 70 

Tables    
Table 1: Additional Sun JVM Settings.................................................................................................................. 8 

Table 2: WebSphere Security Attribute Propagation Settings.................................................................................... 10 

Table 3: VMM Context Pool Setting .................................................................................................................. 11 

Table 4: Navigation Service Settings................................................................................................................. 12 

Table 5: Registry Service Settings.................................................................................................................... 13 

Table 6: Cache Manager Service Settings .......................................................................................................... 14 

Table 7: DB2 Database Domains ..................................................................................................................... 15 

Table 8: Oracle Database Tuning..................................................................................................................... 20 

Table 9: IDS Tuning ..................................................................................................................................... 22 

Table 10: Web Server Tuning ......................................................................................................................... 23 

Table 11: AIX Network Settings ....................................................................................................................... 25 

Table 12: Linux Network Settings..................................................................................................................... 26 

Table 13: Windows Network Settings ................................................................................................................ 26 

Table 14: Solaris Network Settings ................................................................................................................... 27 

Table 15: z/OS System Tuning........................................................................................................................ 29 

Table 16: Navigation Service Settings for Web 2.0 Theme....................................................................................... 30 

Table 17: Reverse Proxy Settings .................................................................................................................... 31 

Table 18: DB2 Database Settings for Many Pages ................................................................................................ 34 

Table 19: Cache Manager Service Settings for Many Pages .................................................................................... 35 

Table 20: Cache Manager Service Settings for WCM............................................................................................. 37 

Table 21: Navigation Service Settings for WCM ................................................................................................... 38 

Table 22: WCM Object Cache Settings .............................................................................................................. 38 

Table 23: DB2 z/OS Bufferpool Settings............................................................................................................. 41 

Table 24: DB2 z/OS Default Bufferpool Settings ................................................................................................... 42 

Table 25: Cache Manager Serivce Properties for Application Infrastructure .................................................................. 43 

Table 26: Web Server Tuning for Clusters .......................................................................................................... 48 

Table 27: WebSphere Session Persistence Tuning ............................................................................................... 49 

Table 28: IDS Tuning in Vertical Cluster............................................................................................................. 51 

 

 



 
 

 

ABOUT THIS DOCUMENT 
 

This white paper provides a basis for parameter and application tuning for IBM WebSphere 
Portal for Multiplatform V6.1. Remember that both tuning and capacity are affected by many 
factors, including the workload scenario and the performance measurement environment. 
For tuning, the objective of this paper is not to recommend that you use the values we used 
when measuring our scenarios, but to make you aware of those parameters used in our 
configuration. When tuning your individual systems, it is important to begin with a baseline, 
monitor the performance metrics to determine if any parameters should be changed and, 
when a change is made, monitor the performance metrics to determine the effectiveness of 
the change. 



 

2 
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

PERFORMANCE TUNING OVERVIEW 

Tuning a WebSphere Portal environment involves tuning and configuring the various 
systems and components of the environment. This chapter discusses some general 
concepts and details the specifics of the configuration used in our measurement 
environments. These specifics entail:  

� Configuring the application server and the resources defined for that application 
server  

� Tuning the database(s) and database server  

� Tuning the directory server and its database  

� Tuning the web server and/or proxy server 

� Tuning the operating system and network  

� Tuning the WebSphere Portal services  

When tuning your individual systems, it is important to begin with a baseline, monitor the 
performance metrics to determine if any parameters should be changed and, when a 
change is made, monitor the performance metrics to determine the effectiveness of the 
change. 

In addition to the tuning changes we made in our measurement environments, there are 
some additional tuning options available which can improve performance in certain 
circumstances; these will be discussed in a separate section. 

1 

� 



 

3 
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

Environment Considerations 

Before beginning your install of WebSphere Portal you should consider how to use the 
environment in order to achieve ideal performance. Topics to consider include: 

• Choosing between 32-bit and 64-bit JVMs 

• Use of hardware multithreading, also known as Simultaneous Multithreading or 
Hyper-Threading. 

3 2 - B I T  A N D  6 4 - B I T  C O N S I D E R A T I O N S  

The choice of a 32-bit or 64-bit JVM involves some trade-offs. The key advantage of a 64-bit 
JVM is its vastly larger address space. Heap sizes of 2.5GB or larger can be practical on 
modern server systems. This can be a significant benefit for applications with high memory 
demands. 

A 64-bit JVM does have disadvantages as well. Machine instructions and memory 
references in a 64-bit JVM are larger than in a 32-bit JVM. This means that Java objects, 
which typically contain multiple memory references, are larger in a 64-bit JVM than 
compared to a 32-bit JVM. Therefore a 64-bit JVM will need a larger heap than a 32-bit JVM 
for the same population of objects. 

The increased size of instructions and memory references imposes a second performance 
penalty. They increase the demand on the memory subsystem of the system, causing more 
cache misses and a higher demand for memory bandwidth. As a result, executing a set of 
operations in a 64-bit JVM can be slower than executing the same operations in a 32-bit 
JVM.  

When considering a deployment of WebSphere Portal 6.1, consider the memory demands 
your applications will have. If you expect a high demand for memory, the best performance 
will probably come from a 64-bit JVM. On the other hand, if the memory demand is lower, a 
32-bit JVM is likely to give superior performance. 

 

H A R D W A R E  M U L T I T H R E A D I N G  ( H Y P E R - T H R E A D I N G )  

Many modern processor architectures support hardware multithreading. For example, this is 
known as Hyper-Threading (HT) on Intel processors and Simultaneous Multithreading 
(SMT) on Power-series processors. Our experience is that using hardware multithreading 
provides an improvement in capacity in all of the scenarios and platforms reported in this 
report, so we would recommend its use on platforms where this is an option. 

  



 

4 
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

BASE PORTAL TUNING 

The Base Portal Scenario covers user login, page navigation, and interaction with simple 
portlets. Users can see a small set of pages, some of which are visible to all authenticated 
users, with access to others based on their group membership. 

We have also benchmarked a number of other scenarios, which focus on different functions 
or use cases for WebSphere Portal. For example, there are scenarios which make use of 
Web Content Management (WCM), and a scenario where users have access to thousands 
of pages. While we have used different tuning to optimize performance for some of those 
scenarios, the tuning is all based on the tuning done in the Base Portal Scenario. 

In all of our measurement environments, we use a separate database server and directory 
server, in addition to the WebSphere Portal server. We run these servers on separate 
systems to avoid resource contention on the system running the WebSphere Portal server.  
This helps improve the maximum capacity achievable. 

 

 
 

 

2 

� 



 

5 
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

Application Server Tuning  

There are many aspects to configuring and tuning an application server in WebSphere 
Application Server. We found that those aspects presented here were critical to a correctly 
functioning and optimally performing WebSphere Portal in our laboratory environment.  

For more details on tuning a WebSphere Application Server, see the Tuning Section of the 
information center located at: 

http://www-01.ibm.com/software/webservers/appserv/was/library/ 

How to get to Admin Console 
 
There are two methods to get to WebSphere Administrative Console. 

• Start Server1 and use port 10001 
1. In <WAS_root>/profiles/wp_profile/bin  
2. ./startServer.sh server1 
3. http://yourhost:10001/admin 

 
• Start Portal and use port 10027 

1. In <WAS_Root>/profile/wp_profile/bin  
2. ./startServer.sh WebSphere_Portal 
3. http://yourhost:10027/ibm/console 
 

Customer ports can differ from the ports 10001 or 10027 mentioned on this page. To find out the 
ports in use for your installation, look for ‘adminhost’ in <wp_profile 
root>/config/cells/<cell_name>/nodes/<node_name>/serverindex.xml. 

The following are settings based on our experience with the Base Portal workloads 
described above: 

 
J V M  I N I T I A L  A N D  M A X I M U M  H E A P  S I Z E  

Java Virtual Machine heap size: The value of the JVM Heap size is directly related to the 
amount of physical memory on the system.  Never set the JVM heap size larger than the 
physical memory on the system. 

How-To Set:  In the WebSphere Administrative Console:  Servers � Application Servers � 
WebSphere Portal � Server Infrastructure: Java and Process Management�Process Definition � 
Java Virtual Machine 
- Initial Heap Size 
- Maximum Heap Size 
See  JVM Max Heap Size Limits for further discussion. 

See instruction on How to get to Admin Console 



 

6 
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

J V M  M AX I M U M  H E AP  S I Z E  L I M I T S  

When setting the heap size for an application server, keep the following in mind:   
� Make sure that the system has enough physical memory for all of the processes to fit 

into physical memory, plus enough for the operating system. When more memory is 
allocated than the physical memory in the system, paging will occur, and this can 
result in very poor performance. 

� We set the minimum and maximum heap sizes to the same values since we’re using 
the gencon garbage collection policy available in 1.5 IBM JDK which avoids heap 
fragmentation, this may not be the best choice if you plan to use a different garbage 
collection. In our measurement runs, the system is under load for a relatively short 
time (around 3 hours), and it is running with portlets which do not have large memory 
requirements. When using portlets which have larger memory requirements, or for 
continuous operation, it may be possible to reduce heap fragmentation by setting the 
initial heap size to 320 megabytes. 

� After doing any tuning of heap sizes, monitor the system to make sure that paging is 
not occurring. As mentioned above, paging can cause poor performance.   

� 32-bit operating systems have an address space limit of 4GBytes, regardless of the 
amount of physical memory in the system. This space limits the maximum size of 
each individual process in the system. In addition, some operating systems restrict 
the size of processes to be even less than this limit.  Many versions of Windows limit 
processes to 2GBytes in size; you can find more information at 
http://support.microsoft.com/default.aspx?scid=kb;en-us;555223. 

� The address space limit further restricts the size of the JVM process. If the process 
grows larger than the limit imposed by the operating system, it may terminate 
unexpectedly.  

Due to the demands on native memory by WebSphere Portal V6.1 and its underlying 
components, we chose a maximum heap size of 1408MB in our Windows environments. 
There is a balance between JVM heap and native memory, all of which must fit within the 
2GB restriction in 32-bit Windows. 1408MB was the largest value we could use to 
successfully measure all of our Windows configurations and workloads. If your application 
has additional native memory requirements then you may need to choose a smaller 
maximum heap size. For more information, see the WebSphere Application Server 
information center. 

On Solaris and zLinux, we use 3.5GB heap size in 64-bit environment. 

Parameter  AIX 
POWER5 Linux Solaris Windows 

2003 z/Linux z/OS 

Initial and 
Maximum 
heap size 
(Mbytes) 

1792   2048 3584 1408  3584 2048 



 

7 
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

 

J V M  H E A P  L A R G E  P A G E  

Large pages can reduce the CPU overhead needed to keep track of heap. With this setting 
we have seen 10% throughput improvement in our measurements. 

This setting does improve performance on Windows, we did not set it for our measurements because 
Portal doesn’t start reliably when –Xlp is set, sometimes it requires a system reboot to get the jvm to 
start. 

How-to Set:  In the WebSphere Administrative Console: Servers -> Application Servers -> 
WebSphere Portal -> Server Infrastructure: Java and Process Management -> Process Definition -> 
Java Virtual Machine -> Generic JVM Argument.  Add –Xlp. 

Large pages are supported by systems running Linux kernels V2.6 or higher. See JVM 
Large Page Tuning for AIX Operation System. 

J V M  L AR G E P AG E  T U N I N G  O N  AI X  O P ER AT I N G  S Y S T E M  

To use JVM Large Page, AIX operating system must be configured to support large pages.  

How-To Set:   

1. We use the following steps to allocate 4GB of RAM as large pages (16MB) . We chose 
this amount based on having 8GB of physical memory in these systems. These values 
may need to be adjusted on systems with different amounts of physical memory. 

vmo -r -o lgpg_regions=256 -o lgpg_size=16777216 
      bosboot -ad /dev/ipldevice 
      reboot -q 
      vmo -p -o v_pinshm=1 
      chuser capabilities=CAP_BYPASS_RAC_VMM,CAP_PROPAGATE  $USER 

2. Add: -Xlp command-line option as described above. 
3. In the WebSphere Administrative Console:  Servers � Application Servers � 

WebSphere Portal � Server Infrastructure: Java and Process Management�Process 
Definition-> Environment Entries � New � EXTSHM=OFF (note: When EXTSHM is 
on it prevents use of large page). 

4. Restart Portal Server. To verify if large pages are being used, run the AIX command  
vmstat -l 1 5 and check the "alp" column which is the active large page used.  It should 
be a non-zero value if large pages are being used.  

 

Parameter  AIX 
POWER5 Linux  Solaris Windows 

2003 z/Linux z/OS 

JVM Heap 
Large page 

-Xlp -Xlp Not 
Applicable 

Not 
Applicable 

Not 
Applicable 

Not 
Applicable 

 



 

8 
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

J V M  H E A P  N E W  A R E A  S I Z E  

The Generational Garbage Collector introduced in Java 5.0 is efficient to Portal application JVM 
memory management, and it is set as default by installation with the –Xgcpolicy:gencon command-
line option. Use –Xmn to further fine tune the Java heap new area (Nursery). 
The –Xgcpolicy:gencon  option does not apply to Solaris. 
 
How To Set:   In the WebSphere Administrative Console:  Servers � Application Servers � 
WebSphere Portal � Server Infrastructure: Java and Process Management�Process Definition � 
Java Virtual Machine -> Generic JVM Arguments:–Xmn256m 

Parameter  AIX 
POWER5 Linux Solaris Windows 

2003 z/Linux z/OS 

New Area Size  -Xmn320m -Xmn256m -Xmn768m -Xmn256m -Xmn1024m -Xmn320m 
 

A D D I T I O N A L  S U N  J V M  A R G U M E N T S  

On the Solaris platform, we use the following Java HotSpot parameters to achieve optimum 
performance. 

Table 1: Additional Sun JVM Settings 

Parameter Value Additional Information 

-server  Offers higher throughput than the "client" mode. 

-XX:MaxPermSize 768m  

-XX:+UseConcMarkSweepGC  Use concurrent mark-sweep collection for the tenured 
generation. The application is paused for short periods 
during the collection; we found this collector works best 
in Portal. 

-XX:SurvivorRatio 6  

-XX:+UseParNewGC  By default concurrent low pause collector uses the 
default, single threaded young generation copying 
collector. Set this parameter to use parallel young 
generation collector for new area. 

-XX:ParallelGCThreads 5 Reduces the number of garbage threads. On the Chip 
multithreading processor based system, we set the 
threads no higher than one quarter of the hardware 
threads. We also distribute the threads for 6 JVMs. Our 
system has 128 virtual processors, we set a total of 
(128/4)=32 GC threads across all the JVMs. So 5 or 6 
GC threads per JVM. 

-XX:+PrintGCDetails  Print more details at garbage collection. This does not 
improve performance, but it provides additional 
information related to garbage collection activity, which 
is useful in tuning garbage collection. 

-XX:+PrintGCTimeStamps  Print timestamps at garbage collection. See above. 



 

9 
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

S E S S I O N  T I M E O U T  

Session timeout:  The default value of Session Timeout is 30 minutes.   Reducing this 
value to a lower number can help reduce memory consumption requirements, allowing a 
higher user load to be sustained for longer periods of time.  Reducing the value too low can 
interfere with the user experience.   

For Solaris, on a T5240 hardware, we used a much lower think time, 5 seconds, than was 
used for other platform hardware measurement of 12 seconds. With a lower thinktime, fewer 
vusers will result in a heavier load on the system.  The reason we lowered the thinktime was 
specifically to decrease the number of vusers required for this measurement. Our pool of 
LoadRunner vuser licenses was inadequate to generate enough load with the higher think 
time.  With a shorter think time than is used in the other measurements, the duration of each 
virtual user's interaction with the site is shorter by approximately 2 minutes. To compensate 
for this, and keep the sessions live on the server for the same period of time, we increased 
the session timeout by 2 minutes, to 12 minutes. 

How To Set:   In the WebSphere Administrative Console:  Servers � Application Servers � 
WebSphere Portal � Container Settings: Web Container Settings � Session Management 
� Session Timeout -> Set Timeout 

Parameter  AIX 
POWER5 Linux Solaris Windows 

2003 z/Linux z/OS 

Session 
timeout 

10 minutes 10 minutes 12 minutes 10 minutes 10 minutes 10 minutes 

 
 

W E B  C O N T A I N E R  T H R E A D  P O O L  S I Z E  

Servlet engine thread pool size:  Set this value and monitor the results.  Increase this value if 
all the servlet threads are busy most of the time. 

How To Set:   In the WebSphere Administrative Console:  Servers � Application Servers � 
WebSphere Portal� Additional Properties:  Thread Pools� Web Container � Thread Pool 
- Minimum size threads - Maximum size threads 

Parameter  AIX 
POWER5 Linux Solaris  Windows 

2003 z/Linux z/OS 

Web Container 
Thread pool 
size 

50 50 50 50 50 50 

 

 

 



 

1 0  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

S E C U R I T Y  A T T R I B U T E  P R O P A G A T I O N  

To reduce the Security Attribute Propagation (SAP) overhead, please use a custom property 
'disable Callerlist'. If SAP is not used, you can disable that, to remove the extra overhead to 
improve the login performance.   

If Subject has not been customized, then there is no need to enable Security Attribute 
Propagation. Security Attribute Propagation can add extra overhead due to some extra 
processing that is required. However, there are certain configurations where performance 
might be better with security propagation enabled due to reduction of remote registry calls.  
See the WebSphere 6.1 InfoCenter (search for 'security attribute propagation') for a 
discussion of when propagating security attributes is desirable.  If you want to enable SAP 
for functional reasons, you can improve the performance with CallerList tuning mentioned 
below. 

These settings apply to all platforms. 

How to Set:  In the WebSphere Administrative Console: Security->Secure Administration, 
Applications, and Infrastructure -> Custom properties ->  

Table 2: WebSphere Security Attribute Propagation Settings 

Name Value 

com.ibm.CSI.disablePropagationCallerList true 

com.ibm.CSI.rmiOutboundPropagationEnabled false 

com.ibm.CSI.rmiInboundPropagationEnabled false 

Security 
Attribute 
Propagation 

com.ibm.ws.security.webInboundPropagationEnabled   false 

 

For com.ibm.CSI.disablePropagationCallerList  create a new property, for the other 3 
properties, modify their value to “false”.  

 

Note to WAS 7: 

In our WAS 7 environment, we add com.ibm.CSI.disablePropagationCallerList = true, and 
use the other 3 default true attributes.  For was7, this field is accessed through: 
Security->Global Security ->CustomProperties->New.   

 

 



 

1 1  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

V M M  C O N T E X T  P O O L I N G  

Tune VMM Context Pooling to improve the performance of concurrent access to an LDAP 
server. 

We changed the following Context Pooling settings line in: 
<wp_profile_root>/config/cells/<cellname>/wim/config/wimconfig.xml 

<config:contextPool enabled="true" initPoolSize="10 " maxPoolSize="0" 
poolTimeOut="0" poolWaitTime="3000" prefPoolSize="3 0"/> 
 
You can also set them via the administrative console as described in 
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websph
ere.base.doc/info/aes/ae/uwim_ldapperfsettings.html  
 

Table 3: VMM Context Pool Setting 

Context Pool Setting Default Value Value 

initPoolSize 1 10 

prefPoolSize 3 30 

Number of open connections to maintain to 
LDAP server. 

maxPoolSize 20 0. 

A value of 0 allows the pool to grow as large 
as needed. If access to the LDAP server is 
shared by many systems, this setting may 
allow an excessive number of connections to 
the LDAP server; in such a case, set the 
maximum pool size to a value appropriate to 
your environment. 

 
 

O R B  S E R V I C E  T U N I N G  F O R  Z / O S  

 In the WAS Admin Console, set the ORB Service to be "pass by reference " instead of  
"pass by value " (default) for both server1 and WebSphere_Portal 

How to Set: 
- Servers� Application Servers� server1� Orb Service 

                   - check box for "Pass by Reference" 

- Servers� Application Servers �WebSphere_Portal � Orb Service 

  - check box for "Pass by Reference" 



 

1 2  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

WebSphere Portal Services 

WebSphere Portal has a number of configurable “services”; each service has several 
parameters available to it. This section describes which services we tuned, the tuning values 
used, and the rationale for those changes. 

How to Set: 
1. Edit  <wp_profile_root>/PortalServer/config/properties/xxxService.properties 
2. uncomment the line, then change the size. 
3. run <wp_profile_root>/ConfigEngine/ConfigEngine.sh update-properties 
The changes should appear on WAS Console -> Resource Environment Providers -> 
WP_xxxService -> Custom properties 

 
N A V I G A T O R  S E R V I C E  

The navigator service manages the content model for unauthenticated users, which controls 
the pages those users are able to see. This content model is periodically reloaded by 
WebSphere Portal; new pages which are visible to unauthenticated users will not be 
available until the next reload occurs. Our environment assumes a low rate of change for 
pages, so we set this reload to only occur once per hour. In a production environment where 
new pages for unauthenticated users are rarely created, setting this reload time to an hour 
or more will give better performance. In a test or staging environment where updates to 
unauthenticated pages need to be seen more often, a lower reload time is more appropriate. 

This service also controls the HTTP cache-control headers which will be sent on 
unauthenticated pages. While our environment did not exploit HTTP page caching, 
increasing these cache lifetimes in a production environment can reduce load on the portal. 
For more discussion of the use of HTTP cache-control headers with WebSphere Portal, 
refer to the “Caching” section of the “Tuning” topic in the WebSphere Portal V6.1 InfoCenter. 

Table 4: Navigation Service Settings 
NavigatorService.properties 

Parameter Default 
Value 

Value 
Used Definition 

public.expires (seconds) 60 3600  Determines cache expiration time for caches 
outside of WebSphere Portal and for 
unauthenticated portal pages only.  If the setting 
remote.cache.expiration is also set to a value 
greater than or equal to 0, the smaller one of the 
two values is used. 

public.reload (seconds) 60 3600 Determines cache expiration time for the portal 
internal cache for unauthenticated pages 

remote.cache.expiration 
(seconds) 

60 28800 Determines cache expiration for caches outside 
of portal server for authenticated as well as for 
unauthenticated pages 



 

1 3  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

R E G I S T R Y  S E R V I C E  

WebSphere Portal maintains information about many resource types in its databases. Some 
of these resources are replicated into memory for faster access; this is provided by the 
registry service. This replicated information will be periodically reloaded from the database, 
thus picking up any changes which may have been made on a peer node in a clustered 
environment. 

The registry service allows configuring a reload time, in seconds, for each type of data which 
it is managing. In a production environment, we expect this type of information changes very 
infrequently, so we used very long reload times for the registry service. A full list of the types 
of information managed by the registry service is in table 4. 

Table 5: Registry Service Settings 
RegistryService.properties 

Parameter Default 
Value 

Value 
Used Definition 

default.interval 1800 28800 Reload frequency for any object types not 
explicitly specified in the file. 

bucket.application.interval 600 28800 Reload frequency for application definitions 

bucket.portlet.interval 600 28800 Reload frequency for portlet definitions 

bucket.theme.interval 3000 28800 Reload frequency for theme definitions 

bucket.skin.interval 3500 28800 Reload frequency for skin definitions 

bucket.client.interval 19000 28800 Reload frequency for client definitions 

bucket.markup.interval 20000 28800 Reload frequency for markup definitions 

bucket.transformation 
application.interval 

600 28800 Reload frequency for transformation 
application definitions 

bucket.transformation.interval 600 28800 Reload frequency for transformation 
definitions 

 



 

1 4  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

C A C H E  M A N A G E R  S E R V I C E  

The cache manager service in WebSphere Portal is used to cache a wide variety of types of 
information in memory. These caches are somewhat similar to the registries maintained by 
the registry service, as each type of information gets its own cache. The key differences are: 
 
� The information stored in the cache manager service’s caches tends to be more 

dynamic than the information stored in the registry service’s registries. 

� The caches used by the cache manager service are limited in size, and entries will 
be discarded when the caches become full. The registries used by the registry 
service are not size-limited; they contain all entries of the specific data type. 

� Expiry times are managed individually for each entry in the cache, managed by the 
cache manager service. In contrast, when the reload time is reached for a registry, 
the entire contents of that registry are reloaded. 

Each cache has several configurable options. A full discussion of these options, along with a 
list of the caches in WebSphere Portal V6.1, is given in chapter 2. Table 5 lists the changes 
which we made to the cache manager service configuration file.  Size values are specified in 
“number of objects” and lifetime values are specified in “seconds”. 

Table 6: Cache Manager Service Settings 
CacheManagerService.properties 

Cache Name Default Value Value Used 

com.ibm.wps.model.factory.ContentModelCache.live.size 1000 2500 

com.ibm.wps.ac.ExplicitEntitlements Cache.USER_GROUP.size 1000 2000 

com.ibm.wps.model.factory.Navigation 
SelectionModelCache.live.size 

1000 2500 

com.ibm.wps.ac.OwnedResourcesCache.enabled true false 

com.ibm.wps.ac.ProtectedResourceCache.lifetime 5000 14400 

com.ibm.wps.datastore.services.Identification.SerializedOidString 
Cache.size 

2500 5000 

com.ibm.wps.puma.DN_OID_Cache.size  500 5000 

com.ibm.wps.puma.DN_User_Cache.size 500 3000 

com.ibm.wps.puma.DN_Group_Cache.size 500 1500 

com.ibm.wps.puma.OID_DN_Cache.size  1500 3000 

com.ibm.wps.puma.OID_User_Cache.size  1500 3000 

com.ibm.wps.puma.OID_Group_Cache.size 1500 5000 

com.ibm.wps.ac.groupmanagement.NestedGroupCache.enabled true False 

com.ibm.wps.ac.RolesCache.enabled true False 

com.ibm.wps.ac.ChildResourcesCache.lifetime 7200 28800 

com.ibm.wps.policy.services.PolicyCacheManager.lifetime 7780 43200 



 

1 5  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

Database Tuning 

 
D A T A S O U R C E  T U N I N G  F O R  D B 2  

Multiple databases are used to hold information in WebSphere Portal V6.1. We used six 
separate DB2 databases, each representing a separate database domain and having their 
own datasources.  These are: 

      Table 7: DB2 Database Domains 
Database Database name Datasource name 
Release release reldbDS 
Community community commdbDS 
Customization custom cusdbDS 
Feedback fdbkdb fdbkdbDS 
Likeminds Lmdb lmdbDS 
JCR jcrdb jcrdbDS 

 

All datasources are configured in a similar manner by logging on to the WebSphere 
Application Server administrative console. For the prepared statement cache size, the path 
is Resources → JDBC Providers → provider name → Data Sources → datasource name. 
The provider name and datasource name are based on the names selected for that 
database during the database transfer step. Look for the parameter Statement cache size.  

For the connection pool settings, the path in the WebSphere Application Server 
administrative console is Resources → JDBC Providers → Provider name → Data Sources 
→ Datasource name → Connection Pools. The settings are Minimum connections and 
Maximum connections.  

The default settings were used for the prepared statement cache size, and connection pool 
minimum and maximum sizes.   

 
D B 2  D A T A B A S E  S E R V E R  T U N I N G  

WebSphere Portal V6.1 uses database servers for core functionality.  In our measurement 
environment, we used DB2 database server for the Portal application. The LDAP server, 
IBM Tivoli Directory Server also included a DB2 database as a repository, but it is largely 
unseen and was operated as an out of box configuration. 

We recommend using a remote database server for the largest capacity. For our 
measurements we used IBM DB2 Enterprise Edition V9.1 fixpack 5 as our database server.   
WebSphere Portal V6.1 uses the concept of Database domains to designate either groups 
of tables belonging to one domain, or even entirely separate databases to store the data 
specific to each domain.  



 

1 6  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

We built six separate databases within one database server to house the tables and data 
needed to support each domain. For the Base Portal and Many Pages measurements, the 
Release domain is the primary database being exercised. 

The databases and related domains supported by Portal V6.1 are: 

1. Release (release domain). This is the primary database domain used by the Base 
Portal and Many Pages Scenarios. 

2. Customization (customization domain).   This database receives some light traffic in 
our scenarios. 

3. Community (community domain). This database receives some light traffic in our 
scenarios. 

4. JCR (JCR domain). JCR database is used heavily in WCM (Web Content 
Management) Scenario. This database receives light traffic in all other scenarios 
measured in our Benchmark report. 

5. Likeminds database, used for Likeminds enabled systems.  This database is not used 
in the scenarios measured in our Benchmark report. 

6. Feedback database, used by the feedback subsystem.  This database is not used in 
the scenarios measured in this report. 

D B 2  O N  AI X  S E T U P 

We configure our DB2 database on AIX using the following setup,  

• Set the filesystem which will hold the Portal databases to be a Enhanced 
Journal File System (JFS2) because a large file system is limited to 64GB. 

• Turn on concurrent I/O (CIO) for Enhanced Journal File System as this improves 
performance. 

           To enable CIO, use the following command to mount the database fileset. 

              Mount –o cio /portaldb 

• Increase AIX maximum number of processes per user to 4096. 

             The default 500 processes per user is too low for database server, we increase 
it to 4096 in our AIX environment. To increase it,  

       chdev –l sys0 –a maxuproc=’4096’ 

 



 

1 7  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

               While the Portal databases are configured for high capacity performance, various tuning 
adjustments may be necessary from time to time. Typically these tuning needs are based 
on the volume of database traffic and the size of table populations. 

              Our database tuning settings is documented in the Portal Info Center under ‘Creating 
Remote Database’ section. 

D B 2  O N  Z / O S  S E T U P  

After transferring the database tables, first Identify what tables need to be reorganized. 

Perform a re-org check to improve performance. 

• Run the EJPSDBTC job after database transfer.  This job contains the DB2 
check and RUNSTATS utility for the JCR, Likemind and  Feedback database. 

• For details on re-org DB2 database, visit WebSphere Portal Info Center. 

        Create a Re-org job  to re-org all  table spaces in WPSDBJCR database. 

 

R E C O M M EN D E D  D AT AB AS E  M AI N T E N AN C E F O R  D B 2  L U W  

Two of the database attributes, which DB2 relies upon to perform optimally, are the 
database catalog statistics and the physical organization of the data in the tables.  
Catalog statistics should be recomputed periodically during the life of the database, 
particularly after periods of heavy data modifications (inserts, updates, and deletes) 
such as a population phase.  Due to the heavy contention of computing these statistics, 
we recommend performing this maintenance during off hours, periods of low demand, 
or when the portal is off-line.  The DB2 runstats command is used to count and record 
the statistical details about tables, indexes and columns.  We have used two techniques 
in our environment to recompute these statistics.  The form we recommend is: 
 
db2 runstats on table tableschema.tablename on all columns with 
distribution on all columns and sampled detailed in dexes all 
allow write access 
 
These options allow the optimizer to determine optimal access plans for complex SQL. 
 
A simpler, more convenient technique for recomputing catalog statistics is: 
 
db2 reorgchk update statistics on table all 
 
Not only does this command count and record some of the same catalog statistics, it 
also produces a report that can be reviewed to identify table organization issues.  
However, we have found instances where this produces insufficient information for the 



 

1 8  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

optimizer to select an efficient access plan for complex SQL, particularly for queries of 
the JCR database. 
 
We have determined a technique that has the same convenience of the reorgchk 
command and provides the detailed statistics preferred by the optimizer. 
 
db2 -x -r "runstats.db2" "select rtrim(concat('runs tats on table 
',concat(rtrim(tabSchema),concat('.',concat(rtrim(t abname),' on all 
columns with distribution on all columns and sample d detailed indexes 
all allow write access'))))) from syscat.tables whe re type='T'" 
db2 -v -f "runstats.db2" 
 
The first command is used to create a file, runstats.db2, which contains all of the 
runstats commands for all of the tables.  The second command uses the db2 command 
processor to run these commands. 
 
To determine which tables might benefit from reorganization, we use the command: 
 
db2 reorgchk current statistics on table all  > "re orgchk.txt" 
 
For those tables which require reorganization, we use the command: 
 
db2 reorg table tableschema.tablename 
 
to reorganize the table based upon its primary key. 
 
You should also ensure that your database servers have adequate numbers of disks.  
Multiple disks allow for better throughput by the database engine.  Throughput is also 
improved by separating the database logs onto separate physical devices from the 
database. 
 
You should ensure that the database parameter MaxAppls is greater than the total 
number of connections for both the datasource and the session manager for each 
WebSphere Portal application server instance.  If MaxAppls is not large enough, you will 
see exceptions in your connection pools. 
 
You should use System Managed Storage (SMS) for temporary table spaces to benefit 
complex SQL which require temporary tables to compute their result sets.  This saves 
time in buffer writes and improves disk utilization. 
 
Database performance is very important for obtaining good performance from 
WebSphere Portal.  The maintenance tasks and practices mentioned here were found 
to be critical to the performance and correct operation of WebSphere Portal in our lab 
environment.  Additional database maintenance and tuning may be needed in your 
production environments.  For further information on DB2 administration and tuning, 
refer to the DB2 Information Center.  
 



 

1 9  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

 

O R A C L E  D A T A B A S E  S E R V E R  T U N I N G  

WebSphere Portal V6.1 uses database servers for core functionality.  In this measurement 
environment, we used Oracle database server for the Portal application. The LDAP server, 
IBM Tivoli Directory Server included a DB2 database as a repository. 

P L AN N I N G  F O R  O R AC L E  E N T E R P R I S E  E D I T I O N  D AT AB AS E   

For our Solaris platform measurements we also used Oracle 10g R2 as our database 
server.   WebSphere Portal V6.1 uses the concept of Database domains to designate either 
groups of tables belonging to one domain, or even entirely separate databases to store the 
data specific to each domain.  

On Oracle, we built a single database and create Oracle users to own the tables and data 
needed to support each domain. The domains are listed in PortalDatabaseDomain, above.  
For the Base Portal measurements, the Release domain is the primary database being 
exercised.  

A well designed database can save a lot of trouble later down the road, and improve 
database performance. We recommend that you refer to the Oracle Administrator’s 
Guide to help you make informed database design decisions. Here are the key choices 
we have implemented in our Oracle database. 
 

• To avoid I/O contention and allow for better throughput, you should ensure your 
database server have adequate number of disks. Our database is on seven stripped 
disks.   

• For better management and performance of storage structures, Oracle-Managed 
Files are used for database, as well as redo logs, and control files. 

• Database block size: 8k 

• The following tablespace sizing was required to support roughly a medium sized 
Portal, with 100,000 authenticated users, approximately 180 installed portlets and 
220 pages, which the load generally consisting of database read operations. We 
recommend monitoring your tablespace sizing and growth on a regular basis. We 
used DBCA to create database with the following Tablespace size: 

o SYSAUX: 800MB 

o SYSTEM: 800MB 

o TEMP: 800MB 

o UNDOTBS: 1024MB 

o USERS: 2048MB 

• Redo log groups: 500MB each. 

 



 

2 0  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

O R AC L E  O N  AI X  S ET U P  

We configure our Oracle database on AIX using the following setup,  

• Set the filesystem which will hold the Portal databases to be a Enhanced 
Journal File System (JFS2). 

• Turn on concurrent I/O (CIO) for database filesystem as this improves 
performance. Do not enable CIO for Oracle product filesystem, ie, /u01, as 
Oracle could fail to start. 

           To enable CIO, use the following command to mount the database fileset. 

            Mount –o cio /u02 

• Increase AIX maximum number of processes per user to 4096. 

             The default 500 processes per user is too low for database server, we increase 
it to 4096 in our AIX environment. To increase it,  

       chdev –l sys0 –a maxuproc=’4096’ 

• Enable AIX async I/O, and increase MinServer to 5. 

smitty aio � Change/Show Characteristics of Async I/O � 
MinServers = 5 

• We also set in oracle user’s profile as Oracle Installation Guide for AIX 
recommends, 

        AIXTHREAD_SCOPE=S 
 
O R AC L E  E N T E R P R I S E  E D I T I O N  D AT AB A S E  P AR AM E T E R  T U N I N G  

Database performance is very important for obtaining good performance from WebSphere 
Portal. Below is a list of tuning applied on our Oracle database server with the alter system 
command. Additional database tuning maybe needed in your production environments. For 
further information on Oracle database tuning, refer to Oracle Performance Tuning Guide at  
http://www.oracle.com/technology/documentation/database10g.html. 

    Command used: 

          Alter system set <parameter> scope=spfile; 

Table 8: Oracle Database Tuning 

Parameter Value 

sessions 900 

sga_target 1813M 

pga_aggregate_target 604M 

processes 750 

open_cursors 1500 

db_files 1024 



 

2 1  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

R E C O M M EN D E D  O R A C L E  D AT AB AS E  M AI N T E N AN C E  

Optimizer statistics are a collection of data about the database and the objects in the 
database, these statistics are used by the query optimizer to choose the best execution 
plan for each SQL statement. Because the objects in a database can be constantly 
changing, statistics must be regularly updated so that they accurately describe these 
database objects, particularly after periods of heavy data modifications (inserts, 
updates, and deletes) such as a population phase.  We have used the following 
commands in our environment to recompute these statistics: 
 
execute 
dbms_stats.gather_database_stats(dbms_stats.auto_sa mple_size, 
method_opt=>'FOR ALL INDEXED COLUMNS SIZE AUTO',cas cade=>TRUE); 
 
 

O T H E R  D A T A B A S E  C O N S I D E R A T I O N S  

WebSphere Portal maintains some information about users in its database tables, which 
grow when a user first logs in. We were interested in the steady-state performance of 
WebSphere Portal, not the performance of a user’s first login to the site. Therefore our 
performance evaluates after all users logged in at least one time. 

One of the most important database tuning factors is bufferpool sizing. It is important to 
evaluate the database's physical versus logical reads and size the bufferpools to achieve as 
much as a 95% logical read rate if possible. 

 



 

2 2  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

Directory Server Tuning 

Our measurements used IBM Tivoli Directory Server versions 6.0 as the directory server. 
These products use a database for storing user information; DB2 Enterprise Server was 
used for this database in our environment. This database is typically located on the same 
system as the directory server. If your workload involves creating, updating, or deleting 
users, then database maintenance described above may be needed on this database. 

The following table shows the tuning values used for the directory servers in our  Solaris 
Base Portal Scenario measurements  

How-to-Set: These values are in the file /opt/IBM/ldap/V6.0/etc/SchemaV6.0/ibmslapd.conf. You 
must restart the LDAP server after changing these values. 

Table 9: IDS Tuning 

Parameter Value 

Ibm-slapdACLCacheSize 250000 

Ibm-slapdEntryCacheSize 250000 

Ibm-slapdFilterCacheSize 250000 

Ibm-slapdFilterCacheBypassLimit 7500 

 

The IBM Tivoli Directory Server uses IBM DB2 as the database server. The database 
instance and alias are named IDSLDAP. We applied the following tuning to this database: 

db2 “update db config for idsldap using dbheap 4800 ” 

db2 “update db config for idsldap using num_ioserve rs 10” 

db2 “update db config for idsldap using num_ioclean ers 5” 

db2 alter bufferpool LDAPBP size 3690 

db2 alter bufferpool IBMDEFAULTBP size 88500 



 

2 3  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

Web Server Tuning 

We used IBM HTTP Server 6.1 in our measurement environment. The cluster configuration 
and the Solaris configuration has a remote web server, find the tuning in Web Server Tuning 
in Cluster Tuning section. All other configurations have the web server running on the same 
system as the WebSphere Portal application server. If, during your monitoring, you notice 
insufficient processor capacity on the system when running the web server and the portal 
application server on a single system, consider separating the servers onto different 
systems. We used the following tuning on our web servers: 

Table 10: Web Server Tuning 

Parameter AIX 
POWER5 Linux  Windows 

2003 z/Linux  Additional Information 

KeepAliveTimeout 5 5 5 5 This value is less than the think 
time defined in our scripts to 
ensure that testing is 
conservative. Each user is 
assumed to open a new TCP 
connection for each page view. 
However, in a live environment, it 
can be helpful to increase the 
KeepAlive Timeout.  A higher 
timeout value can increase 
contention for HTTP server 
processes, if you are running out 
of HTTP processes, decrease 
this value. 

ThreadsPerChild 25 25 2000 25 The higher number of threads per 
child on Windows is due to a 
different process model for IHS 
on Windows. 

MaxKeepAliveRequests  0 0 0 0 Selecting 0 lets an unlimited 
number of requests on a single 
TCP connection. 

MaxRequestsPerChild 0 0 0 0  

StartServers 2 2 N/A 2  

Access logging off off off off This was turned off by 
commenting out the following 
configuration line: 
CustomLog 
/usr/HTTPServer/logs/access_log 
common 

ThreadLimit 25 25 2000 25  

ServerLimit 150 120 N/A 180 Set it 



 

2 4  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

MaxClient/ThreadsPerChild. 

MinSpareThreads 25 25 N/A 25  

MaxSpareThreads 3750 4500 N/A 4500 Set it same as MaxClients. 

MaxClients 3750 4500 N/A 4500  

 

We also enabled the server-status  module so that we could monitor the number of 
running and available Web server processes. This enables appropriate tuning of the 
MaxClients  and ThreadsPerChild  parameters. 

We did additional Web Server tuning in Web 2.0 Scenario. See Web 2.0 section for details. 

Note:  For z/OS, no Web Server was configured. 

 



 

2 5  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

Operating System Tuning 

In any high-load environment, the network must be closely monitored to ensure that its 
performance is acceptable and consistent.  Note that, the following is not to suggest that all 
network parameters are set to these values, but merely make the reader aware that the 
network is also an entity in the performance environment and bottleneck resolution process. 

 

A I X  

N E T W O R K  T U N I N G  

Use smitty->Performance and Resource Scheduling->Tuning Kernel and Network 
Parameters->Tuning Network Option Parameters->Change/Show Current Parameters to 
change. These will take effect immediately, improving the network layer performance in high 
volume environments. 

Then remember to ‘Save current parameters for Next Boot’. 

Table 11: AIX Network Settings 

Parameter Value 

tcp_sendspace 131072 

tcp_recvspace 131072 

udp_sendspace 65536 

udp_recvspace 655360 

somaxconn 10000 

tcp_nodelayack 1 

rfc1323 1 

 



 

2 6  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

L I N U X  

N E T W O R K  T U N I N G  

For Red Hat Linux and z/Linux (Suse Linux on zOS), we add the following settings to file 
/etc/sysctl.conf, then run the command: sysctl -p  

To inspect current TCP parameters, run the command: sysctl -a | fgrep tcp 

Table 12: Linux Network Settings 
Parameter Value 

net.ipv4.ip_forward 0 

net.ipv4.conf.default.rp_filter 1 

net.ipv4.conf.default.accept_source_route 0 

net.core.rmem_max 16777216 

net.core.wmem_max 16777216 

net.ipv4.tcp_rmem 4096 87380 16777216 

net.ipv4.tcp_wmem 4096 65536 16777216 

net.ipv4.tcp_fin_timeout 30 

net.core.netdev_max_backlog 3000 

net.core.somaxconn 10000 

net.ipv4.tcp_keepalive_intvl 15 

net.ipv4.tcp_keepalive_probes 5 

 

W I N D O W S  2 0 0 3  

N E T W O R K  T U N I N G  

Use the regedit  command, the following registry settings were made in the section 
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Service s\ 
Tcpip\Parameters. Create a new REG_DWORD named below. 

Table 13: Windows Network Settings 
Parameter Value 

MaxFreeTcbs dword:00011940 

MaxHashTableSize dword:0000ffff 

MaxUserPort dword:0000fffe 

TcpTimedWaitDelay dword:0000001e 

TcpWindowSize dword:0000ffff (65535) 

 



 

2 7  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

S O L A R I S  

N E T W O R K  T U N I N G  

For Solaris, use the ndd  command to set the following TCP layer parameters.  These will 
take effect immediately, improving the network layer performance in high-volume 
environments. We use the following settings in Portal server running Solaris 10: 

How-to-Set:  ndd -set /dev/tcp <PARAMETER> <VALUE> 

Table 14: Solaris Network Settings 

Parameter Value 

tcp_time_wait_interval 60000 

tcp_keepalive_interval 15000 

tcp_fin_wait_2_flush_interval 67500 

tcp_conn_req_max_q 16384 

tcp_conn_req_max_q0 16384 

tcp_xmit_hiwat 400000 

tcp_recv_hiwat 400000 

tcp_cwnd_max 2097152 

tcp_ip_abort_interval 60000 

tcp_rexmit_interval_initial 4000 

tcp_rexmit_interval_max 10000 

tcp_rexmit_interval_min 3000 

tcp_max_buf 4194304 
 

K E R N E L T U N I N G  

Our Portal Server is running on Solaris 10. In Solaris 10, we use the following ‘projmod ’ 
commands to set system parameters. After making the changes, we must logout then login 
to take these changes into effect. To examine your current settings, do ‘cat /etc/project’. 

projmod -s -K 'project.max-shm-memory=(privileged,4 294967296,deny)' user.root 

projmod -s -K 'project.max-shm-ids=(privileged,1024 ,deny)' user.root 

projmod -s -K 'project.max-sem-ids=(privileged,1024 ,deny)' user.root 

projmod -s -K 'process.max-sem-nsems=(privileged,40 98,deny)' user.root 

projmod -s -K 'process.max-sem-ops=(privileged,1638 4,deny)' user.root 

projmod -s -K 'process.max-file-descriptor=(privile ged,16384,deny)' user.root 



 

2 8  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

S O L AR I S  C O N T AI N E R  

Use Solaris Containers to better utilize your modern, powerful T2 server with hundreds of 
virtual processors. In our lab, we use Processor Sets to partition virtual processors. We 
create a vertical cluster with six Portal members, then bind each member to a Solaris 
Processor Set, this configuration gives the optimum performance result.   

The commands we use to setup, 

1.”pooladm –e”  to enable pool facility 

2.”pooladm –s” to create a static configuration file that matches the current dynamic 
configuration 

3.”poolcfg –c ‘create wp_pset1 (unit pset.min=20; unit pset.amx =21)’” 

    Create a processor set, named wp_pset1 or your choice, with between 20 and 21 
processors. Create one per processor set. 

 4.”poolcfg –c ‘create pool wp_pool1’” 

    Create resource pool named wp_pool1 or your choice.  

    Create one per pool. 

5.”poolcfg –c ‘associate pool wp_pool1(pset wp_pset1)’” 

     Join the pool and the processor set with an association. 

     Do this for each Processor set. 

6.”pooladm –c” 

    Commit the configuration at /etc/pooladm.conf. 

7.”poolbind –p wp_pool1 <PortalPID>” 

     Bind the resource pool to a Portal process. 

Refer to IBM Redbook “IBM WebSphere Application Server V6.1 on the Solaris 10 
Operating System”, sg247584. 

 

 



 

2 9  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

Z / O S  

S YS T E M  T U N I N G  

In the PARMLIB member BPXPRMxx check the values of the following parameters: 

Table 15: z/OS System Tuning 

Parameter Value Additional Information 

MAXPROCSYS 15000 System will allow at most 15000  processes to be 
active concurrently. 

MAXPROCUSER 15000 Allow each user (same UID) to  have at most 15000 
concurrent processes active. 

MAXUIDS 200 Allow at most 200 z/OS UNIX  users to be active 
concurrently. 

MAXFILEPROC 65535 Allow at 65535 open files per user. 

MAXPTYS 800 Allow up to 800 pseudo-terminal sessions 

MAXTHREADTASKS 5000 System will allow at most 5000 threads tasks to be 
active concurrently in a single process 

MAXTHREADS 10000 System will allow at most 10000 threads to be active 
concurrently in a single process. 

MAXMMAPAREA 40960 System will allow at most 40960 pages to be used for 
memory mapping. 

MAXFILESIZE NOLIMIT Unlimited file size. 

MAXCORESIZE 4194304  

MAXASSIZE 2147483647 This size is same as the region size for TSO. By 
default USS ids get some pre-defined minimum  
which is usually not enough for WPS kind of stuff. To 
avoid problems instantiating java processes this size 
should be set to 214783647. 

MAXCPUTIME 2147483647 To improve the CPU process time. 

MAXSHAREPAGES 32768000 System will allow at most 32768000 pages of shared 
storage to be concurrently in use. 

 

Required Fixes 

The following fix is required to apply in WebSphere Portal Version 6.1 Solaris environment. 

PK73368: Cache synchronization issue, deadlocks can occur in the CacheOnRequest 
class. This fix is included in WebSphere Portal 6.1.0.1 and later.  



 

3 0  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

WEB 2.0 THEME TUNING 

In the Web 2.0 theme environment a reverse proxy was used to cache content outboard of 
WebSphere Portal. The reverse proxy was set up to take advantage of the fact that portlet 
fragments are fetchable and cacheable.  This avoids having to refetch the entire portal page 
in many cases.  This allowed some content to be fetched without going to the web server or 
the portal server. Performance can be further improved by having the reverse proxy set up 
to gzip much of the content.   

In general, the same tuning that was used for the Base Portal Scenario described in 
previous section was used for the Web 2.0 Scenario.  The differences in tuning are 
mentioned below. 

JVM Initial and Maximum Heap Size 

JVM’s Initial and Maximum heap size (ms and mx) were set to 1280.  With higher values the 
system ran out of native memory under high Vuser load.  This can be alleviated by using the 
– Xalwaysclassgc jvm parameter along with setting -Xmx=1408. However the throughput 
was better with -Xmx=1280 than when using – Xalwaysclassgc and –Xmx=1408. 

Navigator Service Properties  

The following values were specified in NavigatorService.properties  in addition to the 
parameters changed in the Base Portal tuning. 

Table 16: Navigation Service Settings for Web 2.0 Theme 

Parameter Setting Used 

remote.cache.expiration.feed.cm 600 

remote.cache.expiration.feed.nm 600 

remote.cache.expiration.feed.lm 600 

remote.cache.expiration.feed.pm 600 

3 

� 



 

3 1  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

     

Internet Explorer Support of Vary Header 

When Internet Explorer 7 is sent a ‘vary’ http header, it is unable to cache that reply 
effectively.  To configure WebSphere portal to not send the vary header to IE 7, log in as 
portal administrator and navigate to Administration -> Portal Settings -> Supported Clients.  
Then select IE 7 as the browser and remove support for the ‘vary’ header. 

Caching Proxy Tuning 

The following are the settings and tunings specified in the reverse proxy’s ibmproxy.conf file 
for the Web 2.0 performance test. 

Table 17: Reverse Proxy Settings 

Parameter Setting Used Additional Information 

Proxy /wps/* http://{server-name}/wps/* Proxy for /wps 

Proxy /wps_semanticTag* http://{server-
name}/wps_semanticTag* :80 

Proxy for /wps_semanticTag 

Proxy /searchfeed* http://{server-name}/searchfeed* :80 Proxy for /searchfeed 

ConnThreads 15  

ServerConnPool on  

MaxSocketPerServer 20  

CacheTimeMargin   5 seconds  

CacheFileSizeLimit        2 M  

flexibleSocks off  

LimitRequestFieldSize 16384  

CompressionFilterEnable C:\PROGRA~1\IBM\edge\ 
cp\Bin\mod_z.dll 

 

CompressionFilter 
AddContentType   

Image/bitmap,text/css,text/
xml,application/xml 

Compresses everything except text/html, 
application/atom+xml, text/plain, 
application/x-javascript.  Portal 
compresses those types.  Experiments 
were done where reverse proxy gzipped 
those files as well which caused the 
reverse proxy CPU to become a 
bottleneck.  If a more powerful reverse 
proxy server was available, it might make 
sense to do all gzipping on the reverse 
proxy.  Note that fixes for PMR 43866,499 
were applied to Edge Server v6.02 to get 
proper gzipping behavior. 



 

3 2  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

Web Server Tuning 

Http server tuning for cacheability: 

# uncommented these to enable statics to be cached 

LoadModule expires_module modules/mod_expires.so 

LoadModule headers_module modules/mod_headers.so 

 

# from http://www.contentwithstyle.co.uk/blog/147 a void gzip bug in IE 6  

BrowserMatch ^Mozilla/4\.[0678] no-gzip  

BrowserMatch \bMSIE\s7 !no-gzip !gzip-only-text/htm l  

 

# added this for caching of dojo javascript and the  theme’s xsl files, max-age = 1 day  

<Location /wps/themes/dojo> 

Header set Cache-Control public;max-age=86400 

</Location> 

<Location /wps/themes/html/PortalWeb2/xsl> 

Header set Cache-Control public;max-age=86400 

</Location> 

# info for these directives at http://httpd.apache.org/docs/2.0/mod/mod_expires.html 

# http://httpd.apache.org/docs/2.0/mod/mod_headers.html 

 

# set cache-control public for various static conte nt 

<FilesMatch "\.(gif|jpeg|jpg|png|ico|css|js|swf)$">   

Header set cache-control "public"  

</FilesMatch>  

 



 

3 3  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

# expire images after a month in the client's cache .  Note that one month expiration 
worked fine for a performance evaluation in a test lab. It should be set appropriately 
for your environment where images might be updated more frequently than once a 
month.  

ExpiresActive On 

ExpiresByType image/gif A2592000 

ExpiresByType image/jpg A2592000 

ExpiresByType image/jpeg A2592000 

ExpiresByType image/png A2592000 

ExpiresByType application/x-javascript "access plus  1 week" 

ExpiresByType text/javascript "access plus 1 week" 

ExpiresByType text/css "access plus 1 week" 

ExpiresByType application/xml "access plus 1 week" 

ExpiresByType application/vnd.mozilla.xul+xml "acce ss plus 1 week" 

ExpiresByType application/x-www-form-urlencoded "ac cess plus 1 week" 

ExpiresByType text/html "access plus 1 week" 

ExpiresByType text/xml "access plus 1 week" 

Portlet Caching 

portlet.xml  is part of a portlet’s war file. It is located in the portlet’s WEB-INF directory. To 
make portlet fragments publicly cacheable set: 

a.  <expiration-cache>28800</expiration-cache> 

b.  <cache-scope>public</cache-scope> 

 



 

3 4  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

MANY PAGES TUNING  

The “Many Pages Scenario”, derived from the Base Portal Scenario, measures the effects of 
having larger numbers of pages visible to the users.  

Since it is derived from the Base Portal Scenario, the same tuning that was used for the 
Base Portal Scenario applied for the Many Pages Scenario.  The differences in tuning are 
mentioned below. 

DB2 Database Tuning 

We applied the following tunings to our Release database. 

Table 18: DB2 Database Settings for Many Pages 
Release DB 

Parameter Setting Used 
dbheap 4800 

applheapsz 4096 

logbufsz 256 

num_IOServers 8 

num_IOCleaners 8 

 

How-To Set:  In the DB2 server run the following commands: 

db2 “update db cfg for release using dbheap 4800” 
db2 “update db cfg for release using applheapsz 409 6” 
db2 “update db cfg for release using logbufsz 256” 
db2 “update db cfg for release using app_ctl_heap_s z 4096” 
db2 “update db cfg for release using num_IOServers 8” 
db2 “update db cfg for release using num_IOCleaners  8” 

4 

� 



 

3 5  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

Cache Manager Service 

Table 19: Cache Manager Service Settings for Many Pages 

Parameter Setting Used 

com.ibm.wps.datastore.pageinstance.OIDCache.size 10000 

com.ibm.wps.datastore.pageinstance.OIDCache.lifetime 28800 

com.ibm.wps.datastore.pageinstance.DerivationCache.size 10000 

com.ibm.wps.datastore.pageinstance.DerivationCache.lifetime 28800 

 
 

Required Fixes 

On WebSphere Portal 6.1, PK70946 is required in Many Pages Scenario. This fix is 
included in WebSphere Portal 6.1.0.1 and later.  



 

3 6  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

WEB CONTENT MANAGEMENT TUNING 

In general, the same tuning that was used for the Base Portal Scenario was used for the 
WCM authoring, rendering and API Scenario.  The main differences are to the cache 
tuning settings: WCM increases demands on the portal access control component 
which requires a different set of cache tunings to accommodate and WCM has an 
internal set of object caches that can be tuned as well.  On top of cache tunings, WCM 
can require more Web Container threads and JCR data source connections than the 
Base Portal Scenario, especially for heavy authoring workloads.  The differences in 
tuning are mentioned below. 
 
 

Application Server Tuning 

• Web Container Thread Pool  – we used 60 threads for both the minimum 
and maximum value 

 
• Data Source Connection Pool  – We used the following values: 

 
 

Data Source Rendering Value 
(min/max) 

Authoring/API 
Value (min/max) 

JCRDB 10/150 10/150 

 

5 

� 



 

3 7  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

WebSphere Portal Service Properties 

C A C H E  M A N A G E R  S E R V I C E  

Portal Caches sizes – Ignore the Base Portal values and set the following in 
CacheManagerService.properties: 

 
Table 20: Cache Manager Service Settings for WCM 

CacheManagerService.properties File 

Cache Name Value Used 

cacheinstance.com.ibm.workplace.searchmenu.helper.SearchMenuCacheHelper.size 5000 

cacheinstance.com.ibm.wps.ac.ContainedRolesCache.size 500 

cacheinstance.com.ibm.wps.ac.AccessControlUserContextCache.size 5000 

cacheinstance.com.ibm.wps.ac.ApplicationRolesForPrincipalCache.size 12500 

cacheinstance.com.ibm.wps.ac.AccessControlUserContextCache.lifetime 10800 

cacheinstance.com.ibm.wps.ac.ExplicitEntitlementsCache.size 500 

cacheinstance.com.ibm.wps.ac.ExplicitEntitlementsCache.ICM_CONTENT.size 12000 

cacheinstance.com.ibm.wps.ac.ExplicitEntitlementsCache.VIRTUAL.size 500 

cacheinstance.com.ibm.wps.ac.ProtectedResourceCache.size 12500 

cacheinstance.com.ibm.wps.ac.ExternalOIDCache.size 12000 

cacheinstance.com.ibm.wps.ac.AccessControlUserContextCache.lifetime 10800 

cacheinstance.com.ibm.wps.ac.RolesCache.size 7500 

cacheinstance.com.ibm.wps.ac.groupmanagement.NestedGroupCache.size 1200 

cacheinstance.com.ibm.wps.datastore.pageinstance.DerivationCache.size 250 

cacheinstance.com.ibm.wps.datastore.pageinstance.OIDCache.size 250 

cacheinstance.com.ibm.wps.datastore.services.Identification.SerializedOidString.cache.size 500 

cacheinstance.com.ibm.wps.model.content.impl.ResourceCache.size 500 

cacheinstance.com.ibm.wps.model.content.impl.TopologyCache.size 500 

cacheinstance.com.ibm.wps.pe.portletentity.size 250 

cacheinstance.com.ibm.wps.services.cache.cachedstate.CachedStateServiceSession 
Bound.cache.size 250 

cacheinstance.com.ibm.wps.ac.ApplicationRoleChildrenCache.size 500 

cacheinstance.com.ibm.wps.ac.ApplicationRoleDescriptorCache.size 500 

cacheinstance.com.ibm.wps.ac.ApplicationRoleOIDCache.size 500 

cacheinstance.com.ibm.wps.ac.ChildEntitlementsCache.size 500 

cacheinstance.com.ibm.wps.ac.ExplicitEntitlementsCache.APPLICATION_ROLE.size 500 

cacheinstance.com.ibm.wps.policy.services.PolicyCacheManager.lifetime 28800 

cacheinstance.com.ibm.wps.model.content.impl.ResourceCache.lifetime 14400 



 

3 8  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

 
N A V I G A T I O N  S E R V I C E  

Portal Navigator Service – In addition to the settings mentioned for Base Portal we set 
the following property to allow public sessions required for rendering portlets on 
anonymous pages: 
 
Table 21: Navigation Service Settings for WCM 

NavigatorService.properties File 
 

Parameter Default 
Value 

Value 
Used Definition 

public.session false true 
Controls whether anonymous users have 
sessions 

 

WCM Object Cache 

Table 22: WCM Object Cache Settings 
WCM Object Caches 

Cache Name Value Used 

abspath 8000 

abspathreverse 8000 



 

3 9  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

 

processing 10000 

session 6000 

menu 500 

nav 500 

strategy 8000 

global 100 

module 100 

 

How-To Set:  Login to the WAS Administration Console → Resources → Cache instances → 
Object cache instances. 

WCM Configuration Service 

Enable the user cache 
 
Find the WCMConfigService.properties file under: 
<wp_profile>/PortalServer/wcm/shared/app/config/wcm services  
 
Set user.cache=true  

 

JCR Text Search 

icm.properties – Disable jcr textsearch 
 

During our measurements, we have disabled text indexing. Text indexing is done 
periodically, adding new content to the text index. However, the indexing interval is not 
synchronized with our load plateaus. As a result, if we let text indexing run during our 
performance measurements, it would likely reduce the reliability and repeatability of our 
measurements. 
 
We do not recommend disabling text indexing in production environments, as doing so 
would mean that new content will not be added to the text index, and therefore would 
not appear in search results. 
 
If you wish to disable text indexing, this can be done in the file icm.properties , by 
setting the property jcr.textsearch  to the value false. This file is found in the directory 
<wp_profile>/PortalServer/jcr/lib/com/ibm/icm . 

 



 

4 0  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

DB2 Tuning (Authoring Environment) 

M U L T I P L A T F O R M  ( L U W )  

On top of the DB2 tunings for the base portal scenario, during our testing we found that the 
following tunings to the JCR database below significantly decreased load on the CPU and 
disk i/o of the DB2 server in our environment.   

In our authoring scenario we found that it was necessary to initially size the IBMDEFAULTP 
and ICMLSMAINBP32 bufferpools. This was because DB2 was unable to autosize them 
fast enough during our user ramp ups and it was therefore causing inconsistent results 
during the early stages of the scenario.  We also noticed a large amount of database file 
handles being opened and closed during our runs stressing the disk i/o prompting us to 
increase the maximum number of file handles that can be opened for the JCR database.  
Finally, three indexes were added to eliminate some troublesome queries that were table 
scanning. 

 

db2 connect to jcrdb 

db2 alter bufferpool IBMDEFAULTBP IMMEDIATE size 26 000 

db2 alter bufferpool ICMLSMAINBP32 IMMEDIATE size 2 4000  

db2set DB2_ASYNC_IO_MAXFILOP=512 

db2 update db cfg for jcrdb using MAXFILOP 512 

db2 create index taw_ut01590_idx6 on jcr.icmut01590 001 
(attr0000001334, itemid, versionid ) 

db2 reorgchk update statistics on table jcr.icmut01 590001  

db2 create index taw_entry_idx2 on jcr.ev_entry (pa rentid) 

db2 reorgchk update statistics on table jcr.ev_entr y 

db2 create index taw_ICMSTJCRWSX_2 on jcr.icmstjcrw s (basewsid, 
wstype) 

db2 reorgchk update statistics on table jcr.icmstjc rws 

 

db2stop force 

db2start 

 



 

4 1  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

Z / O S  

The following section details the tunings that we made in our DB2 9 for z/OS backend 
database during our testing. To start here are a few general recommendations: 

• When the DB2 z/OS server is on a different server to the Portal/WCM installation, the 
use of the Universal Driver type 4 database driver is recommended  

• For data sharing groups, we additionally recommend enabling Sysplex Distributor to 
enhance high availability and exploit workload balancing.   

In our environment we created nine databases to support WCM on Portal. The release, 
customization, community, likeminds, and feedback are required for Portal.  For WCM, a 
minimum of two JCR databases are required for scalability and in our environment we used 
four. 

T AB L E S P AC E S  

Following DB2 best practices, it is recommended to create all tables into individual 
tablespaces. This will avoid device contention and provides better monitoring possibilities. 
Furthermore, most DB2 utilities such as REORG operate with tablespaces rather than 
tables. 

B U F F E R P O O L S  

It is also beneficial to create separate bufferpools for use by Portal to avoid contention.  
When creating your database, ensure that each tablespace/indexspace has a specific 
bufferpool specified by the BUFFERPOOL/INDEXBP attributes rather than using the DB2 
system defaults.  It is recommended that a set of bufferpools separate from the Portal 
databases gets created for the JCR databases.  The following table shows the settings for 
our configuration.   

Table 23: DB2 z/OS Bufferpool Settings 
  Bufferpool settings 
   

Database Domain wkplc_comp.properties DB2 
BP 

BP 
Pagesize 

(KB) 

BP 
Size 

<domain>.Db4KBufferPoolName BP2 4 40000 

<domain>.DbIndex4KBufferPoolName BP3 4 5000 

RELEASE 
CUSTOMIZATION 
COMMUNITY 
LIKEMINDS 
FEEDBACK <domain>.Db32KBufferPoolName BP32K 32 1000 

jcr.Db4KBufferPoolName  BP4 4 80000 

jcr.DbIndex4KBufferPoolName BP5 4 40000 JCR 

jcr.Db32KBufferPoolName BP32K1 32 20000 

 
Note: When running Portal, DB2 objects like tablespaces will be created dynamically. It is 
important to keep your default bufferpools well defined to avoid causing contention due to an 
overloaded bufferpool. This is especially true for LOB and 4-KB tablespaces as they default 



 

4 2  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

to BP0. In DB2 9 for z/OS, ZPARM’s can be set to specifiy default bufferpools.  In our 
environment we used the following values. 

Table 24: DB2 z/OS Default Bufferpool Settings 
  Default Bufferpool Settings 
   

 

ZPARM Value Used BP Size Description 

TBSBPLOB BP16K0 10000 
Specifies the default buffer pool to use for LOB table spaces that 
are created implicitly and for LOB table spaces that are created 
explicitly without the BUFFERPOOL clause. 

TBSBPOOL BP4 80000 
Specifies the default buffer pool to use for 4-KB page size table 
spaces that are created implicitly and for 4-KB page size table 
spaces that are created explicitly without the BUFFERPOOL 
clause. 

TBSBP8K BP8K0 35000 
Specifies the default buffer pool to use for 8-KB page size table 
spaces that are created implicitly and for 8-KB page size table 
spaces that are created explicitly without the BUFFERPOOL 
clause. 

TBSBP16K BP16K0 10000 
Specifies the default buffer pool to use for 16-KB page size table 
spaces that are created implicitly and for 16-KB page size table 
spaces that are created explicitly without the BUFFERPOOL 
clause. 

TBSBP32K BP32K 1000 
Specifies the default buffer pool to use for 32-KB page size table 
spaces that are created implicitly and for 32-KB page size table 
spaces that are created explicitly without the BUFFERPOOL 
clause. 

IDXBPOOL BP5 40000 

DB2 uses the IDXBPOOL value if you do not specify a value for 
INDEXBP on the CREATE DATABASE statement. DB2 does not 
use this value for a CREATE INDEX statement without the 
BUFFERPOOL option. In that case, DB2 uses the default index 
buffer pool for the database. 

 

D B 2  F O R  Z / O S  V 8  F I X E S  

The following fixes are required for running WCM on WPS 610x on DB2 for z/OS v8. 

• PK62728 - DB2 improves the performance of selected queries (UK36555) 

• PK67292 - DB2 was fixed to transform the subquery into a join (UK37970) 

• PK68259 - Addresses CORRELATED SUBQUERY TO JOIN TRANSFORMATION 
ENHANCEMENT FOR MULTI-TABLE JOINS IN ANY QUERY BLOCK (UK37971) 

AD D I T I O N AL  R E S O U R C E S F O R  D B 2  Z / O S  

• WCM/JCR database table usage information for WebSphere Portal v6 
http://www-01.ibm.com/support/docview.wss?uid=swg21255445 

• Performance Improvement Possible For Remote TCP Access to z/OS 
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/FLASH10621  

• DB2 9 for z/OS Performance Topics 
http://www.redbooks.ibm.com/redbooks/pdfs/sg247473.pdf  



 

4 3  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

COMPOSITE APPLICATIONS TUNING 

For the Composite Application Infrastructure scenario, we started with the tuning given in the 
Base Portal Scenario above. However, the Composite Application Infrastructure scenario 
accesses a large number of applications, and therefore a large number of pages and 
portlets. Therefore there is higher demand on some of the caches in WebSphere Portal; to 
improve performance in this scenario, we modified the sizes of some of the caches in 
WebSphere Portal. 

Cache Manager Service Properties 

The following values were specified in CacheManagerService.properties in addition to the 
parameters changed in the Base Portal tuning. We recommend that you monitor the caches 
in your environment to determine which caches might need tuning. 

Table 25: Cache Manager Serivce Properties for Application Infrastructure 

Parameter Value 

cacheinstance.com.ibm.wps.resolver.friendly.cache.size 8000 

cacheinstance.com.ibm.wps.ac.ProtectedResourceCache.size 10000 

cacheinstance.com.ibm.wps.ac.PermissionCollectionCache.lifetime 28800 

cacheinstance.com.ibm.wps.ac.AccessControlUserContextCache.lifetime 28800 

cacheinstance.com.ibm.wps.ac.ProtectedResourceCache.lifetime 28800 

cacheinstance.com.ibm.wps.ac.OwnedResourcesCache.lifetime 28800 

cacheinstance.com.ibm.wps.ac.RolesCache.lifetime 28800 

cacheinstance.com.ibm.wps.ac.ParentResourceRoleMappingCache.lifetime 28800 

cacheinstance.com.ibm.wps.ac.ResourceRoleMappingCache.lifetime 28800 

cacheinstance.com.ibm.wps.ac.ExplicitEntitlementsCache.lifetime 28800 

cacheinstance.com.ibm.wps.ac.ChildEntitlementsCache.lifetime 28800 

6 

� 
6 

� 



 

4 4  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

cacheinstance.com.ibm.wps.ac.SingleEntitlementsCache.lifetime 28800 

cacheinstance.com.ibm.wps.ac.ExplicitEntitlementsCache.CONTENT_NODE. 
lifetime 

28800 

cacheinstance.com.ibm.wps.ac.ExplicitEntitlementsCache.WEB_MODULE.lifetime 28800 

cacheinstance.com.ibm.wps.ac.ExplicitEntitlementsCache.APPLICATION_ROLE. 
lifetime 

28800 

cacheinstance.com.ibm.wps.ac.ExplicitEntitlementsCache.PORTLET_APPLICATIO
N_DEFINITION!PORTLET_DEFINITION.lifetime 

28800 

cacheinstance.com.ibm.wps.ac.ExplicitEntitlementsCache.USER_GROUP.lifetime 28800 

cacheinstance.com.ibm.wps.ac.ExplicitEntitlementsCache.VIRTUAL.lifetime 28800 

cacheinstance.com.ibm.wps.ac.ExplicitEntitlementsCache.WSRP_PRODUCER. 
lifetime 

28800 

cacheinstance.com.ibm.wps.ac.ExplicitEntitlementsCache.ICM_CONTENT.lifetime 28800 

cacheinstance.com.ibm.wps.ac.ExternalOIDCache.lifetime 28800 

cacheinstance.com.ibm.wps.ac.ApplicationRoleOIDCache.lifetime 28800 

cacheinstance.com.ibm.wps.ac.ApplicationRoleDescriptorCache.lifetime 28800 

cacheinstance.com.ibm.wps.ac.ApplicationRolesForPrincipalCache.lifetime 28800 

cacheinstance.com.ibm.wps.ac.ApplicationRoleChildrenCache.lifetime 28800 

cacheinstance.com.ibm.wps.ac.ContainedRolesCache.lifetime 28800 

cacheinstance.com.ibm.wps.ac.AuthLevelConfigurationCache.lifetime 28800 

cacheinstance.com.ibm.wps.ai.rt.impl.service.ActiveApplicationOIDCache.lifetime 28800 

 

Composite Applications Best Practices 

As with other components of WebSphere Portal, the way in which teamspaces are used will 
influence the performance of the site. Based on our experience and analysis, the following 
tips can help you achieve better performance with teamspaces:  

• As the measurements above show, the number of teamspaces on the system 
influences the capacity of the system. However, the key determining factor is not the 
total number of teamspaces, but rather the number of teamspaces visible to each 
user. For example, a site with 1,000 teamspaces visible to all users could have a 
capacity lower than a site with 5,000 teamspaces where the typical user can see no 
more than 50 of those. 

• One way to exploit the observation above is to not make teamspaces public by 
default. Public teamspaces are visible to all users, so a large number of public 
teamspaces will increase the average number of teamspaces visible to each user. 



 

4 5  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

• To paraphrase Albert Einstein, “keep teamspaces as simple as possible, but no 
simpler”. In implementing this, consider both the number of pages as well as the 
number of portlets on each page. Adding additional pages or portlets to a teamspace 
increases the overhead associated with that teamspace. While this is not a great 
overhead when considering an individual teamspace, when aggregated across 
thousands of teamspaces, the overhead can become significant. In addition, the 
more portlets are on each page, the more work will required to render that page. 

• Another area to consider regarding teamspace complexity is the number of 
application roles. For many teamspaces, two roles (manager and user) are 
adequate. Don’t create additional roles unless they are really needed. 

• When assigning membership to a teamspace, the best performance will be seen 
when membership is assigned by groups rather than by individual users. For 
example, WebSphere Portal will cache permissions based on the way permissions 
are assigned, giving the chance for more cache hits if permissions are assigned by 
groups. 

• Memory demand increases with the number of teamspaces on the system. 
Therefore, if you expect to use large numbers of teamspaces, a 64-bit JVM will 
probably provide better capacity than a 32-bit JVM. 

See also the section regarding “Use of Dynamic Content Features”. Experiments in our lab 
showed a reduced demand for memory, and thus an improvement in capacity, in the 
application infrastructure scenario when disabling dynamic content support. 



 

4 6  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

CLUSTER TUNING 

The Base Portal Scenario is measured in a three-node horizontal cluster environment, 
with or without session persistence, and six-members vertical cluster environment. 
In general, the same tuning that was used for the Base Portal Scenario was used for 
cluster.  The additional settings are mentioned below: 

Application Server Tuning 

D Y N A C A C H E  C U S T O M  P R O P E R T I E S  

There are several properties which can be set to reduce the number and size of 
Dynacache messages sent between nodes. This will improve scalability and reduce 
resource consumption in a clustered Portal environment. To set these properties, do the 
following: 
         1) Open and log in to the Administrative Console.  
         2) Click Application servers -> WebSphere_Portal -> Java and Process 

Management -> Process Definition -> Java Virtual Machine -> Custom   
properties -> New  

         3) Under General Properties, add the following information:   
Name:  com.ibm.ws.cache.CacheConfig.ignoreValueInInvalidationEvent 
Value:  true 
Name:   com.ibm.ws.cache.CacheConfig.filterTimeOutInvalidation  
Value:  true 
Name:   com.ibm.ws.cache.CacheConfig.filterLRUInvalidation 
Value: true 
 

Z / O S  D Y N A C A C H E  C U S T O M  P R O P E R T Y  

A custom property has been defined: com.ibm.ws.cache.CacheConfig. 
propogateInvalidationsNotShared , which when set to true leads to invalidations 
being sent for cache entry insertions and updates for a NOT_SHARED cache instance.  
This property should be removed on z/OS configurations as it has a major impact on 
performance.  

7 

� 



 

4 7  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

 
T H R E A D  P O O L S  

Increase Default Thread Pool size to help DRS traffic.  
 
How-To Set:  Portal Server->Thread Pools ->DefaultPool=150/150 (default=5/20) 

  
 
T R A N S P O R T  B U F F E R  S I Z E  

Default Transport Buffer size is insufficient. We increase to 200MB. 
 
How-To Set: 
Portal Server-> Core Group Service ->Transport buffer=200mb (default=10MB) 
            
Must also configure the same size for Node Agent & DM. 
             
System Administration -> Deployment Manager-> Core Group Service ->Transport 
buffer size=200 
             
System Administration -> Node agents-> node_agent_name ->under Additional 
properties->Core Group Service ->Transport buffer size=200 
 
 

W M M  C O N T E X T  P O O L I N G  

Tuning Cluster for WMM Context Pooling must be done in Deployment Manager, then do 
full resync to each node from Administrative Console. See VMM Context Pooling on how to 
set.  

 

 

 



 

4 8  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

Web Server Tuning 

Table 26: Web Server Tuning for Clusters 

Parameter Setting Used 

ThreadLimit 25 

ServerLimit 180 

StartServers 2 

MaxClients 4500 

MinSpareThreads 25 

MaxSpareThreads  4500 

ThreadsPerChild 25 

MaxRequestsPerChild 0 

 
Sample configuration: 
<IfModule worker.c> 

ThreadLimit         25 
ServerLimit         180 
StartServers         2 
MaxClients         4500 
MinSpareThreads     25 
MaxSpareThreads     4500 
ThreadsPerChild     25 
MaxRequestsPerChild  0 

</IfModule>   
 

 



 

4 9  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

Session Persistence To Database Tuning 

To enable Session Persistence to Database, a data source with non-XA JDBC driver must 
be created. We also configured DB2 Session Database with 32K page size to optimize 
performance for writing large amounts of data to the database. For details on configuring 
tablespace and page size for DB2 session database visit WebSphere Application Server 
Info Center. Additional tunings are applied below:  

Table 27: WebSphere Session Persistence Tuning 

Parameter Setting Additional Details 
Session in 
memory count 

2000 The default value of Session in memory count is 1000. 
For Session database persistence enabled load, we set 
session in memory count to 2000. 

How-To Set Parameter:   
In the WebSphere Administrative Console:  Servers � 
Application Servers � WebSphere Portal � Container 
Settings: Session Management � Max in memory 
- Set Max in memory 

Allow overflow disable The default value of session allow overflow is checked. 
For Session database persistence enabled load, we 
unchecked it. 

How-To Set Parameter:   
In the WebSphere Administrative Console:  Servers � 
Application Servers � WebSphere Portal � Container 
Settings: Session Management -> Allow overflow -> 
uncheck it. 

Session 
Distributed 
Environment 

Enable with 
database 32K page 
tablespace  

How-To Set Parameter:   
In the WebSphere Administrative Console:  Servers � 
Application Servers � WebSphere Portal � Container 
Settings: � Session Management 
DistributedEnvironment Settings ->database 
    Jndi name: jdbc/sessions (set it according to your    
                       Session datasource) 
     Userid/password: set it according to your session db 
     DB2 Row size: ROW_SIZE_32KB 
     Tablespace name=sess_user32k (set it according to  
                                      your db tablespace) 
      Multiple row schema: uncheck it 

ConnectionPool 
size for Session 
Data Source 

Min=10 

Max=33 

Refer to Datasource Tuning For DB2 on how-to set 
parameter. 

Prepared 
Statement Cache 
size for Session 
Data Source  

15 Refer to Datasource Tuning For DB2 on how-to set 
parameter. 

 



 

5 0  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

 
S E S S I O N  D AT AB AS E  T U N I N G  

In addition to creating bufferpool and tablespace to support 32K page size for Session 
database, we applied the following tunings to our dedicated session database server, 
 
db2set DB2_USE_ALTERNATE_PAGE_CLEANING=ON 
db2set DB2_RR_TO_RS=YES 
db2set DB2_PARALLEL_IO=* 
 
# disable session tablespace FILE SYSTEM CACHING 
db2 alter tablespace sess_user32k NO FILE SYSTEM CA CHING 
db2 alter tablespace sess_temp32k NO FILE SYSTEM CA CHING 
 
db2 “update db cfg for <sess61> using locklist 5120 ” 
db2 “update db cfg for <sess61> using maxlocks 80” 
db2 “update db cfg for <sess61> using dbheap 4800” 
db2 “update db cfg for <sess61> using num_iocleaner s 20” 
db2 “update db cfg for <sess61> using num_ioservers  20” 
db2 “update db cfg for <sess61> using logbufsz 256”  
db2 “update db cfg for <sess61> using logfilsiz 122 88” 
db2 “update db cfg for <sess61> using logprimary 40 ” 

Vertical Cluster Tuning 

We set the following in our vertical cluster environment, 

• See Dynacache Custom Properties in Cluster Tuning section to reduce the number 
and size of Dynacache messages sent between JVMs. Additional DynaCache 
properties for Vertical Cluster: 

Name: com.ibm.ws.cache.CacheConfig.cacheEntryWindow Value: 10 

Name: com.ibm.ws.cache.CacheConfig.cacheInvalidateEntryWindow Value: 10 

Name:com.ibm.ws.cache.CacheConfig.propogateInvalidationNotSharedValue: false 

Name: com.ibm.ws.cache.CacheConfig.useServerClassLoader Value : true 

• See Transport Buffer Size in Cluster Tuning section to increase transfer buffer size. 

• Increase Dynamic cache size to 3500. 

How to set: Portal Server -> Container Services -> Dynamic Cache Service -> Cache size = 
3500 

• See WMM Context Pooling on how to improve the performance of concurrent access 
to an LDAP server. 

• Use the following command to increase DBHEAP for Release database.    

          db2 “update db cfg for <release> using db heap 4800” 

 



 

5 1  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

IBM Tivoli Directory Server Tuning 
The following table shows the tuning values used for the directory servers.  

How-to-Set: These values are in the file /opt/IBM/ldap/V6.0/etc/SchemaV6.0/ibmslapd.conf. You 
must restart the LDAP server after changing these values. 

Table 28: IDS Tuning in Vertical Cluster 

Parameter Setting Used 

Ibm-slapdACLCacheSize 250000 

Ibm-slapdEntryCacheSize 250000 

Ibm-slapdFilterCacheSize 250000 

Ibm-slapdFilterCacheBypassLimit 7500 

 

The IBM Tivoli Directory Server uses IBM DB2 as the database server. The database 
instance and alias are named IDSLDAP. We applied the following tuning to this database: 

db2 “update db config for idsldap using dbheap 4800 ” 

db2 “update db config for idsldap using num_ioclean ers 5” 

db2 “update db config for idsldap using num_ioserve rs 10” 

db2 alter bufferpool IBMDEFAULTBP size 88500 

db2 alter bufferpool LDAPBP size 3690 

Required Fixes 

• The following fixes are required to apply in 6.1 Cluster environment, 

• PK67324 (for Windows is PK67800) 

• WAS DynaCache PK67942 

• WAS DynaCache PK59026 (include PK62850 and prereq PK67942), to 
eliminate renounce messages 

• PK70944: to eliminate GroupCache invalidation 

• PK70890: Friendly URL fix   

• The following fix is required to apply in 6.1.0.1 Cluster environment 

PK76988: Cluster performance Degradation by large amount of DRS invalidation 
messages 

 

 



 

5 2  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

OTHER PERFORMANCE TUNING OPTIONS 

In addition to the scenarios discussed above, WebSphere Portal has some other tuning 
options which may be useful in specific scenarios. These options include: 

• Improving portal startup performance 

• Managing the retrieval of user attributes 

• Use of dynamic content features 

Improving Portal Startup Performance 

WebSphere Portal 6.1 introduced a “development mode” that greatly improves startup 
performance, so that WebSphere Portal will start more quickly. This can be very useful for 
development environments where WebSphere Portal must be stopped and started 
frequently. 

However, it’s important to note that this mode is only meant to be used for development or 
test environments, not production or performance benchmark environments. Development 
mode turns on lazy-start for almost all applications in WebSphere Portal, and this can cause 
a performance impact the first time an application is accessed under load. Development 
mode also changes the way the JVM is started to give better startup speed at the cost of 
reducing capacity under load. 

To switch to development mode, run the enable-develop-mode-startup-
performance  configuration task to complete the configuration and optimize the portal 
startup. The changes can be reverted to the original values using the disable-develop-
mode-startup-performance  configuration task. 
 
For more information, please visit the following URL: 
http://publib.boulder.ibm.com/infocenter/wpdoc/v6r1m0/index.jsp?topic=/com.ibm.wp.ent.doc/install/inst_opt.html 

8 

� 



 

5 3  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

Managing the Retrieval of User Attributes 

A user directory doesn’t just contain a user’s ID and password; it also contains a number of 
other pieces of information – attributes – about the user. A directory server can contain a lot 
of attributes for each user, so if every reference to a user required retrieving all of these 
attributes, this would impose a performance penalty on both the Portal server node(s) and 
the directory server node(s). 

Therefore WebSphere Portal attempts to optimize the loading of these attributes. Two sets 
of user attributes are defined: the base set of attributes, and the minimum set of attributes. 
Depending on what action caused the user to be retrieved from the directory, either the base 
or the minimum set of attributes will be retrieved. Typically, the base set of attributes will be 
loaded when the user is retrieved; for example, this is what occurs when a user logs in. If the 
user was looked up when searching for users, then the minimum set of attributes will be 
loaded. For example, this can occur when searching for users to assign access to a page. 

By default, WebSphere Portal defines the user attribute sets as follows: 

• Base set: the following attributes are in the base set: 
o uid 

o cn 

o sn 

o preferredLanguage 

o ibm-primaryEmail 

o givenName 

o displayName 

• Minimum set:  
o uid 

o cn 
 

What happens if additional attributes are needed? For example, consider a portlet which 
requires the user attribute countryName . Assume that the user in question was looked up on 
login, so the base set of attributes was retrieved. The attribute countryName  isn’t in the base 
set, so the full user record – with all of its attributes – will be retrieved from the directory 
server at that point. This will require a second request to the directory server. Also, since all 
user attributes are retrieved on the second request, this can end up consuming more 
memory on the WebSphere Portal server. 

This provides an important performance tuning point to both improve response times and 
reduce load on the directory server. If a user attribute will commonly be needed, then it 
should be included in the base set of attributes so that it’s retrieved on the initial lookup, 
eliminating the need for a second request. However, if an attribute is only needed 
infrequently, consider leaving it out of the base set of attributes, so that it’s not retrieved for 
all users. 



 

5 4  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

I D E N T I F Y I N G  A  F U L L  F E T C H  O F  U S E R  A T T R I B U T E S  

How can you identify a second request is made to the directory server to retrieve the full set 
of user attributes? This is best done in a test or staging environment, rather than a live 
production environment, as it requires turning on tracing in the portal server, and this can 
impose a significant performance overhead. There are two traces to enable to look for this 
condition. The first one will show if the all the needed user attributes have been retrieved. If 
this is false, then a full fetch of the user information will occur. The second trace shows 
which attributes are being requested, so you can tell which ones should be added to the 
base set. 

The two trace strings are: 
com.ibm.wps.um.PrincipalImpl=all=enabled 
com.ibm.wps.um.PumaProfileImpl=all=enabled 

Enable those traces, and then execute the use case you wish to test. Then, look for this 
message in the trace.log: 

PrincipalImpl 3 com.ibm.wps.um.PrincipalImpl isComp letelyLoaded false 

This message may be output multiple times for the same user, so check all occurrences of 
it. If the value after isCompletelyLoaded  is always true , then all the needed attributes have 
already been loaded, and no changes are needed. In this example, the value after 
isCompletelyLoaded  is false , showing that the needed user attributes haven’t all been 
loaded. This will result in reloading all the user information from the user directory.  

In that case, the trace will then typically show a call to reload the information for that user; 
this will tell the full distinguished name of the user whose information is being loaded from 
the user directory: 

PrincipalImpl > com.ibm.wps.um.PrincipalImpl reload  ENTRY id: cn=Yin Yin_000_992, 
cn=users,l=SharedLDAP,c=US,ou=Lotus,o=Software Grou p,dc=ibm,dc=com 

Next, search above that in the trace for the getAttributes call, which will show the attributes 
the user has requested. It will look like this: 

PumaProfileIm > com.ibm.wps.um.PumaProfileImpl getA ttributes ENTRY id: cn=Yin 
Yin_000_992, cn=users,l=SharedLDAP,c=US,ou=Lotus,o= Software Group,dc=ibm,dc=com 

…more user details follow… 
isExternal: false[preferredLanguage, ibm-primaryEma il, countryName, 

displayName, givenName, cn, sn, uid]  

The last line of the log entry shows the attributes being requested. In this case, the attributes 
being requested are [preferredLanguage, ibm-primaryEmail, countryName, displayName, 

givenName, cn, sn, uid] . Comparing this against the list of base user attributes, we can 
see that countryName  is not in the base user attributes. Depending on whether the action 
being executed is a common one or not, consider adding this to the base set of attributes. 

 



 

5 5  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

M I N I M U M  A T T R I B U T E  S E T  

Generally, the minimum set of attributes does not need to be modified from the default 
provided by WebSphere Portal, as that attribute set is satisfactory for the user management 
applications provided with WebSphere Portal. However, if your site contains a custom 
application for managing users and groups, and it uses attributes other than those in the 
minimum set, then you should consider expanding the minimum attribute set. 

Use of Dynamic Content Features 

WebSphere Portal contains dynamic content support infrastructure which supports two 
dynamic content features: dynamic user interfaces and attribute based administration. If 
neither of these features is being used, the dynamic content support can be disabled. Note 
that attribute based administration is only one use of the Personalization capabilities in 
WebSphere Portal; other uses of Personalization, such as placing content spots within a 
portlet, do not require the dynamic content features. 

Disabling the dynamic content features will provide a modest performance benefit. It will 
provide a reduction in the memory needed for each user, and also reduce the processing 
time for generating pages in WebSphere Portal. For example, in one measurement with our 
Base Portal scenario, capacity improved about 5% when disabling the dynamic content 
support. 

Disabling dynamic content support is done by adding a custom property to the 
ConfigService.properties  resource provider. The property is: 

content.topology.dynamic=false 

See “Overview of configuration services” in the WebSphere Portal information center for 
more information on how to update configuration properties. 



 

5 6  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

Real-World Network Considerations 

In our lab environment, we had the luxury of our clients and servers being on the same LAN 
segment, so that they could take advantage of a high-bandwidth, low-latency network 
connection. However, this is typically not the case for real clients. Over a wide-area network, 
latencies can be significant, and bandwidth limited. In this case, the time to transfer the page 
content from the server to the client can become a significant contributor to overall page 
response time.  

Here are some steps which can help alleviate this situation: 

• Compress content on the HTTP server 

• Allow client-side caching of images, Javascript files, and stylesheets, 

Details on these steps will be given below. 

C O M P R E S S  C O N T E N T  O N  T H E  H T T P  S E R V E R  

Much of the content served by a WebSphere Portal site can be compressed to reduce 
transmission time and save network bandwidth. Typically, images should not be 
compressed (as they are usually stored in a compressed format), but other types of content 
can show a significant size reduction from compression. 

IBM HTTP Server supports Deflate compression through the mod_deflate  module. When 
it is enabled, the HTTP server checks the Accept-Encoding:  header sent by the browser 
to see if it can accept a compressed version of the content. If so, the HTTP server will 
compress the content before sending it to the browser.  

In one measurement, we observed an average of 65% network traffic reduction when 
Deflate compression is enabled.  However, the compression operation does not come free 
as we also observed approximately a 10% processor utilization increase on the HTTP 
server.    

To enable deflate compression in IBM HTTP Server, add the following lines in 
httpd.conf : 

# compress everything but images 
LoadModule deflate_module modules/mod_deflate.so 
DeflateFilterNote Input instream 
DeflateFilterNote Output outstream 
DeflateFilterNote Ratio ratio 
 
# Insert filter 
SetOutputFilter DEFLATE 
# Netscape 4.x has some problems... 



 

5 7  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

BrowserMatch ^Mozilla/4 gzip-only-text/html 
# Netscape 4.06-4.08 have some more problems 
BrowserMatch ^Mozilla/4\.0[678] no-gzip 
# MSIE masquerades as Netscape, but it is fine 
BrowserMatch \bMSIE !no-gzip !gzip-only-text/html 
 
# Don't compress images 
SetEnvIfNoCase Request_URI \ 
\.(?:gif|jpe?g|png|exe)$ no-gzip dont-vary 
 

E N A B L I N G  C L I E N T - S I D E  C A C H I N G  

The HTTP protocol allows the server to tell clients how long they can cache responses. 
When the client has the content in their cache, they do not need to request it again, saving 
the round-trip time to the server to retrieve the content. 

This is done by adding Cache-Control: headers to the content which we wish to make 
cacheable. By default, WebSphere Portal will include these headers in the stylesheets it 
uses, making that content cacheable at a client for 5 days (432,000 seconds). It is possible 
to use mod_headers  in IBM HTTP Server to add the same headers to images and 
JavaScript files by adding the following lines to httpd.conf : 

LoadModule headers_module modules/mod_headers.so 
 
<Location ~ "\.(js|gif|jpg|jpeg|png)$">  
       Header add Cache-Control "public, max-age=43 2000, post-
check=172000" 
</Location> 
 



 

5 8  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

9 

� 
WEBSPHERE PORTAL CACHES 

In the preceding chapter we described the specific values we modified for the WebSphere 
Portal caches in our environments.  This chapter describes the WebSphere Portal caches, 
the general parameters for those caches,  which cache instances WebSphere Portal v6.1 
provides, and, finally, some sample portal usage patterns along with suggestions on portal 
cache properties. 

General Information 

With WebSphere Portal V6.1, portal configuration properties, including cache configuration 
properties, are managed via the WebSphere Application Server administrative console.  In 
previous WebSphere Portal releases these configuration properties were maintained in 
properties files.  More information on how to modify portal configuration properties can be 
found in the Setting configuration properties section of the WebSphere Portal Version 6.1 
information center. 

 

C A C H E  C O N F I G U R A T I O N  P R O P E R T I E S  

The cache configuration properties are organized in two groups: global configuration 
properties and cache instance specific properties.  Global properties have the prefix 
cacheglobal  and apply to all caches unless they are specifically overridden with a cache 
instance specific property.  Cache instance specific properties have the prefix 
cacheinstance  and then contain the name of the cache instance and the name of the 
property, for example:   

cacheinstance.com.ibm.wps.ac.ExplicitEntitlementsCache.USER_GROUP.size 

All entries of a cache are governed by a single set of properties. 

The cache configuration properties that are safe to modify are: enabled, lifetime, 
size, shared, replacement,  and admit-threshold .  The replacement  and 



 

5 9  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

admit-threshold  properties do not apply to all cache implementations.  In general, only 
caches that are not shared will use these properties.  There are other properties that should 
not be modified unless specifically instructed to do so by IBM WebSphere Portal support. 

enabled: The enabled  property determines whether a cache is used or not.  If a cache is 
not enabled, the property has a value of false , then no values are held by the 
cache and every cache lookup will return a null value.  This property should only be 
modified for testing purposes, never in a production environment.  The supported 
values are true  and false  and the global default value is true . 

lifetime:  The lifetime  property determines the number of seconds an entry will exist 
in a cache.  A cache no longer returns an entry once the entry has existed longer 
than the lifetime  property.  Cache entries can also be invalidated prior to reaching 
their lifetime due to explicit invalidation of the entry or Least Recently Used (LRU) 
eviction from the cache.  

A value of -1  indicates an infinite lifetime.  This value should be used with caution 
since cache entries will only be invalidated programmatically.  Infinite lifetimes are 
particularly discouraged with access control caches because:  

� In a cluster there can be rare occurrences when not all cache invalidation 
messages are processed on every node due to race conditions in the 
application server’s dynacache code. While the probability of this occurring is 
low, it can not be completely avoided with the current code base. Finite 
lifetimes allow these entries to be invalidated. 

� Finite lifetimes allow modifications made to roles, which have been 
externalized to an External Security Manager, to be reflected in role caches. 

If updates to production environments are restricted to a well-defined staging 
process using XML Access, it is usually safe to use infinite lifetimes. 

size:  The maximum number of entries in a cache is limited by the size property. If this size 
limit is reached, entries are removed from the cache by an algorithm which usually 
includes 1) remove invalidated entries and entries which have exceeded their lifetime 
and 2) apply a LRU algorithm to the valid entries.   

Any positive integer is allowed.  Cache sizes have a direct impact on the memory 
requirements of your portal, specifically the demands on the Java heap.  You should 
monitor and record the Java heap metrics and any performance impact when 
modifying the size of a cache. 

  

shared: Cluster-aware caches are shared across the nodes of a cluster.  These caches 
propagate invalidations of cache entries by using the WebSphere Application Server 
DistributedMap interface.    



 

6 0  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

Supported values are true  and false .  The default values shipped in WebSphere 
Portal V6.1 should apply to most configurations.  If you do not have a cluster there 
may be a small performance benefit to setting this property to false since a different 
cache implementation is used.  We did not modify the defaults in our single node 
measurement environments. 

If this parameter is false in a cluster, it can ultimately lead to data inconsistencies 
between the cluster members. 

replacement: The cache replacement algorithm used by these caches works on the 
frequency of recent access to cache entries; entries that have been used 
frequently are less likely to be discarded than entries that have not been used 
frequently. This parameter controls how long the access history will be kept. A 
setting of aggressive  means those only recently accessed entries will be 
considered, which causes stale entries to be discarded more quickly. The 
opposite setting, conservative , will consider a longer access history. The 
intermediate setting of moderate  is appropriate for most caches. 

 
admit-threshold: Caches that have a very high insert rate may cause useful entries to 

be discarded prematurely. An admittance threshold restricts the rate at which entries 
are allowed into the cache by only allowing them to enter after an attempt has been 
made to insert the same entry into the cache multiple times. The default value of 0 
means “no admittance threshold”, which will allow entries into the cache on the first 
insert attempt. This is appropriate for most caches. A higher value indicates that a 
cache entry will not be allowed into the cache until that many attempts have been 
made to insert the same key. For example, a value of 2 means that the first two 
attempts to insert a cache entry will be ignored, and the third attempt will insert the 
value into the cache.  We did not modify the admit-threshold  for any cache in 
our measurement environments. 

 
 
 
 
 
 
 
 
 
 
 
 



 

6 1  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

Cache Usage Patterns 

Most WebSphere Portal caches follow the simple paradigm: if an entry already exists use it, 
otherwise add the entry.  However, there are caches that behave differently.  Each cache 
follows one of the following four patterns:  

� Pattern: regular 

The regular pattern, described earlier, is the most common cache pattern:  

value = cache.get(key); 
if (value == null) { 
   value = calculateNewValue(); 
   cache.put(key, value); 
} 
 

� Pattern: invalidation checking 

Invalidating cache entries in a clustered environment is rather expensive.  Therefore, portal caches often check whether the entry to be 
invalidated actually exists in the local cache.  

 
test = cache.get(key); 
if (test != null) { 
   cache.invalidate(key); 
}  
 

Caches following this pattern follow the regular pattern for all but invalidation 
actions. 
 

� Pattern: multiple object types 

Most caches hold only a single object type.  When caches can hold multiple types, 
they follow the regular pattern for each of those types.  

� Pattern: cascading object types 

This pattern is a special case of the ‘multiple object types’ pattern in that two or more object types that are queried in a certain order are 
stored in a single cache.  There may be one cache hit along with a cache miss on a regular basis. 

 
value = cache.get(keyA); 
if (value == null) { 
   value = cache.get(keyB); 
   if (value == null) { 
      value = calculateNewValue(); 
      cache.put(keyA || keyB, value);   // either k ey could be used 
   } 
} 



 

6 2  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

Cache Instances 

This section describes the caches in WebSphere Portal V6.1 along with hints to best 
configure those caches.  As you saw in the modifications we made in our measurement 
environments, the size  and lifetime  properties are the most commonly modified 
properties when tuning portal caches.  You may wish to increase the size of a cache if many 
values are used on a regular basis and there is sufficient space available in the Java heap.  
You may wish to increase the lifetime of the entries of a cache if the cached data rarely, if 
ever, changes and it is not critical to your business to reflect changes immediately in your 
portal.  

Each cache description includes the following attributes: 

� Default size , default lifetime  and cache usage pattern 

� Cache content and scaling factor (i.e. what causes the cache to grow) 

� Information on the read and write access to the cache 

� Approximate costs for re-creating cache entries and relative size of cached objects.  
Small objects range from 16 to 300 bytes and the largest cache entries are not larger 
than a few thousand bytes.  One known exception are access control caches in 
systems with many resources per user can hold entries that are very large, beyond 
50,000 bytes, to reflect all the resources which a user can access. 

� Some cache descriptions include a sample scenario with suggested property values. 

 

A C C E S S  C O N T R O L 1  

This section describes each of the access control caches.  It is critical for proper operation of 
a portal that the access control information be current.  Hence it is vital that these caches be 
shared within a cluster so that the information is propagated to all members of the cluster.  
Different lifetime values should be chosen to avoid concurrent reload of information from 
multiple caches. This pattern of rather random lifetime and invalidation intervals could also 
be applied to other caches. 

The access control caches are divided into two groups: those caches (the first caches in the 
list) used during all access control operations in all portal setups and those caches (starting 
with the cache com.ibm.wps.ac.ApplicationRoleOIDCache ) used for the 
WebSphere Portal Composite Application Infrastructure. 

                                                                            

1 This section is partially taken from another whitepaper: Portal Access Control Performance Tuning: http://www-
128.ibm.com/developerworks/websphere/library/techarticles/0508_buehler/0508_buehler.html  



 

6 3  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

Figure 1 shows the relationships among the various caches. The small cylinders represent 
cache instances. The green caches are caches of the portal user management (PUMA) 
component that are closely related to the caches of the portal access control component. 
The PUMA caches contain information originating from the user registry. Portal access 
control uses these caches for user identification and group membership retrieval. 

The vertical axis represents the cache aggregation direction. The cache instances in layer N 
leverage cache instances of lower layers to compute their values. For example, when 
computing effective permissions (entitlements) for a user (cached in the 
ExplicitEntitlementsCache), the portal access control component leverages existing cache 
values from the ChildResourcesCache and RoleMappingCache. 

Figure 1 Portal Access Control Cache Hierarchy 

 
 
com.ibm.wps.ac.PermissionCollectionCache 

Default size: 2000, default lifetime: 10240, usage pattern: regular (admit-threshold). 

This cache contains permission collections that can be used for permission checks. It 
scales with the number of permissions in the system, i.e. the number of portal resources 
and permissions assigned on those. Entries in the cache typically are requested very 
frequently during permission checks.  An admit-threshold is used to avoid caching rarely 
used permissions.  You may wish to try different admit-threshold settings to tune this 
cache. Entries are never invalidated from the cache. Creating a cache entry is very fast 
since all required information is in-memory. A cache entry is small. 



 

6 4  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

com.ibm.wps.ac.AccessControlUserContextCache  
Default size: 8000, default lifetime: 1200, usage pattern: regular. 

This cache contains the access control user context objects, a local cache for 
permissions assigned to a specific user. If possible all requests against access control 
are answered using this information so that access control methods can return very 
quickly. This cache scales with the number of active users. For fast portal operation, you 
should make sure that the entries for all actively working users fit into the cache, 
especially if a user has access to many portal resources. Entries are invalidated from the 
cache upon any portal administrative action. Creating a cache entry typically is rather 
cheap because most information is in-memory, but can take a while if the required 
information cannot be found in other caches. An entry in the cache can be become very 
large, depending on the number of resources the user can access.  

com.ibm.wps.ac.ProtectedResourceCache  
Default size: 5000, default lifetime: 10143, usage pattern: regular. 

This cache contains the resources protected by portal access control. The size of this 
cache scales with the number of protected resources accessed by the active users in the 
system. Entries are read from the cache during every permission call or entitlements call 
against access control. Entries are invalidated from this cache during resource deletion, 
resource relocation, modification of the resource state (private/shared), modification of 
the resource owner, externalization, internalization, and role block change. Creating a 
cache entry requires a single-row lookup in the portal database. An entry in the cache is 
relatively small. 

com.ibm.wps.ac.OwnedResourcesCache  
Default size: 5000, default lifetime: 10043, usage pattern: invalidation checking. 

This cache maps resource owners (user groups or individual users) to the resources 
they own. This cache scales with the number of active users/groups multiplied with the 
different ResourceTypes they access. There is one entry in the cache per principal per 
resource type per WebSphere Portal domain. Data is read from this cache during many 
portal access control requests, if the corresponding entitlements are not already cached 
in an entitlements cache. Entries are invalidated from this cache during resource 
deletion, modification of the resource owner, externalization, and logout of the user. 
Creating a cache entry means executing a multi-row query against the portal database. 
An entry in the cache is relatively small.  

com.ibm.wps.ac.RolesCache  
Default size: 10000, default lifetime: 3630, usage pattern: invalidation checking. 

This cache contains the role instances. The size of this cache scales with the number of 
active users/groups multiplied by the different ResourceTypes they access. There is one 
entry per role instance per principal per resource type per WebSphere Portal domain. 
Data is read from the cache during many portal access control requests, if the 



 

6 5  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

corresponding entitlements are not already cached. Entries are invalidated from this 
cache during role mapping creation, role mapping deletion, resource deletion, 
externalization, internalization, and logout of the user. Creating a cache entry means 
executing at least one, but potentially multiple database queries. An entry in the cache is 
relatively small.  

com.ibm.wps.ac.ExplicitEntitlementsCache.* and 
com.ibm.wps.ac.ChildEntitlementsCache  

Default size: 10000, default lifetime: varying (around 10000), usage pattern: invalidation 
checking.  

These caches contain the permissions of a user or group on a number of resources of 
the same ResourceType. There are dedicated caches for the different ResourceTypes. 
For example, the cache for pages is called com.ibm.wps.ac. 
ExplicitEntitlementsCache.CONTENT_NODE . All ResourceTypes that are not 
specified explicitly will be cached in the default cache. The size of this cache scales with 
the number of active users/groups multiplied by the different ResourceTypes valid for 
this cache and accessed by the users and groups, either by ‘using’ the resource during 
navigating the portal or by portal administration. There is one entry per set of 
permissions per WebSphere Portal domain. Entries are read during ‘regular’ access 
control requests, during page rendering and, especially, during portal administration. If a 
certain resource type is not used, you will see only misses and no other activity on the 
corresponding cache. Entries are invalidated from this cache during all access control 
modifications and logins. Creating an entry in one of these caches typically can be done 
from in-memory information in the lower-level caches. If the required information is not 
available multiple database requests might be required to create a cache entry. An entry 
into the cache is rather small, but built of multiple objects typically stored in other caches.  

com.ibm.wps.ac.ExternalOIDCache 
Default size: 10000, default lifetime: 8640, usage pattern: regular.  

This cache contains the mapping between the external ObjectIDs of individual protected 
resources, for example page or portlet IDs, and the portal access control specific 
ObjectIDs stored in the database table PROT_RES. Entries are read from the cache 
during many portal access control requests. The size of this cache scales with the 
number of protected resources accessed by the active users in the system. Since this 
mapping is immutable, this cache is never explicitly invalidated. Creating a cache entry 
requires a single row database query. An entry in the cache is fairly small.  

com.ibm.wps.ac.groupmanagement.NestedGroupCache / 
com.ibm.wps.ac.groupmanagement.GroupCache  

Default size: 1000, default lifetime: 3600, usage pattern: regular.  

Only one of these two caches is used in a WebSphere Portal installation depending on 
your ‘nested groups’ setting. If nested groups are supported, the NestedGroupCache 
cache will be used, otherwise the GroupCache is used. The caches contain the nested 



 

6 6  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

or direct groups to which a user belongs. The size of this cache scales with the number 
of active users and the number of virtual portals they access. The cache is accessed 
during login into portal, but typically not during regular portal navigation. Its main use 
case is during administration of users and user groups. Entries are invalidated from this 
cache during login of the user and after user and group administrative changes. Creating 
a new cache entry requires queries against the WMM component and then typically 
against the user repository. An entry in the cache is medium-sized.  

com.ibm.wps.ac.ChildResourcesCache  
Default size: 1000, default lifetime: 7200, usage pattern: regular. 

This cache contains the resource hierarchy within portal access control. The size of this 
cache scales with the number of protected resources accessed by the active users in the 
system, like the protected resources cache. This cache does not contain leaf objects in 
the access control tree, so the number of entries typically is smaller. The cache is 
accessed during most portal access control requests. Entries are invalidated from this 
cache during resource deletion, parent change of the resource, modification of the 
resource owner, externalization, internalization, and role block change. Creating a cache 
entry includes a multi-row query against the portal database. An entry in the cache is 
fairly small.  

com.ibm.wps.ac.ApplicationRoleOIDCache 
Default size: 5000, default lifetime: 7650, usage pattern: regular.  

This cache maps application role names to the corresponding object IDs. It scales with 
the number of application roles defined in the system. Data is read from the cache 
frequently when accessing or administering composite applications. In all other situations 
the cache is basically not used at all. Entries are invalidated when application roles are 
deleted. There is one entry in the cache per application role per WebSphere Portal 
domain, except for the customization domain. Creating a cache entry means reading a 
single row of data from the portal database. A cache entry is fairly small.  

com.ibm.wps.ac.ApplicationRoleDescriptorCache 
Default size: 5000, default lifetime: 8450, usage pattern: regular.  

This cache maps the object ID of an application role to its corresponding descriptor 
object, which contains the application name, parent application and other information. 
The cache scales with the number of application roles defined in the system. Data is 
read from the cache frequently when accessing or administering composite applications. 
In all other situations the cache is basically not used at all. Creating a cache entry means 
reading a single row of data from the portal database. A cache entry is medium-sized. 



 

6 7  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

com.ibm.wps.ac.ApplicationRolesForPrincipalCache 
Default size: 5000, default lifetime: 8760, usage pattern: regular.  

This cache maps the available application roles to a portal user. It scales with the 
number of active users in the system. Data is read from the cache frequently when 
accessing or administering composite applications. In addition this cache is also used as 
a lookup for application role information even if no application roles are used. Hence you 
will see frequent read access on this cache under all circumstances. Creating a cache 
entry is rather expensive. It involves three multi-row queries against three WebSphere 
Portal domains. A cache entry is medium-sized. 

com.ibm.wps.ac.ContainedRolesCache 
Default size: 5000, default lifetime: 8650, usage pattern: regular.  

This cache contains the mappings between application roles and the ‘regular’ roles 
defined in them. The cache scales with the number of application roles in the system. 
There is one entry for every WebSphere Portal domain. Data is read from the cache 
frequently when accessing or administering composite applications. In all other situations 
the cache is basically not used at all. Creating a cache entry is rather expensive. It 
involves two multi-row queries. A cache entry is medium-sized. 

com.ibm.wps.ac.ApplicationRoleChildrenCache 
Default size: 5000, default lifetime: 8760, usage pattern: regular.  

This cache is not used in WebSphere Portal V6.0.  

com.ibm.wps.ac.ParentResourceRoleMappingCache and  
com.ibm.wps.ac.ResourceRoleMappingCache 

Default size: 1000, default lifetime: infinite, usage pattern: regular.  

These two caches are used for special access control scenarios and typically are not 
accessed during portal processing. Settings of these caches should not be modified  

P O R T A L  U S E R  M A N A G E M E N T  

The following caches are used by the portal user management component (PUMA). In so 
far they are closely related to the access control caches and caching within WMM. 

com.ibm.wps.puma.DN_OID_Cache / com.ibm.wps.puma.OI D_DN_Cache  
Default size: 1500, default lifetime: infinite, usage pattern: regular. 

These two caches contain the mapping between the distinguished name of users and 
groups and their internal ObjectID identifier. The size of these caches scales with the 
number of active users and groups or users and groups that are used for delegation. 
Entries are invalidated from this cache during deletion of a user or group. Creating an 
entry requires one database lookup. An entry into the caches is fairly small. 



 

6 8  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

D A T A S T O R E  

The datastore caches contain data read from the portal database. It is not the goal of these 
caches to be a complete image of the DB content, but to have frequently-accessed but raw 
information available for all other portal components to use.  

com.ibm.wps.datastore.services.Identification.OidAn dUniqueName.cache 
Default size: 5000, default lifetime: infinite, usage pattern: regular. 

This cache stores unique names. It is used quite frequently during page rendering and 
especially administration of unique names. Page and portlet unique names make up the 
biggest part of the cache content. The cache should be large enough to hold entries for 
the most frequently used pages and portlets having a unique name associated with 
them. Note that not all resources have a unique name associated with them. To 
eliminate database lookups the cache size could correspond to the database table 
UNIQUE_NAME multiplied by two, to allow for mapping in two directions. Creating a 
cache entry involves reading one entry from the portal database. An entry object into the 
cache is fairly small.   

com.ibm.wps.datastore.PortalIdCache.vpPerLpid.cache  
Default size: 1000, default lifetime: infinite, usage pattern: regular. 

This cache maps long Virtual Portal object IDs to the corresponding portal internal short 
ID. It scales with the number of virtual portals in the system, plus one additional entry. It 
is used heavily only if more than one virtual portal exists in the system. Data is read from 
the cache during every rendering request then. For optimal caching the size should be 
set to the number of Virtual Portals defined in the system. Creating a cache entry 
involves one single-row database lookup. An entry object into the cache is fairly small. 

com.ibm.wps.datastore.PortalIdCache.explicitLpidPer VP 
Default size: 100, default lifetime: infinite, usage pattern: regular. 

This cache maps the short object ID for a virtual portal to the corresponding long ID. In 
comparison to cache com.ibm.wps.datastore.PortalIdCache.vpPerLpid.cache it stores 
the reverse mappings. Hence all other descriptions given above also apply here.  

com.ibm.wps.datastore.pageinstance.OIDCache  
Default size: 3000, default lifetime: infinite, usage pattern: regular. 

This cache stores information on portal pages for fast retrieval during login or page 
navigation. It scales with the number of page instances in the system. It is one of the 
most frequently used caches and should be large enough to hold all pages that are 
frequently accessed by users. Pages are loaded and put into the cache by direct 
navigation, creating a link to another page or by working with the page during portal 
administration (always including all higher derivation levels). Creating a cache entry 
includes one single-row database lookup. An entry to the cache is medium sized. To 



 

6 9  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

achieve best performance, in terms of cache hit rate, the size should be set to a value so 
that all pages defined in the system fit into the cache. This corresponds to the row count 
of the database table PAGE_INST. 

com.ibm.wps.datastore.pageinstance.DerivationCache 
Default size: 3000, default lifetime: infinite, usage pattern: regular. 

This cache stores the mappings between pages and their derivation children, or empty 
mappings if no such children exist. Like the pageinstance.OIDCache cache this one also 
is accessed very frequently during page rendering and administration. Creating a cache 
entry involves one multi-row database query. This cache also scales with the number of 
pages in the system. Hence, you can use the same sizes for the previous cache and this 
one. In most portal usage scenarios the actual size of this cache will be somewhat lower 
than with the page instance cache. An average entry in the cache is rather small. Only if 
all your pages have long lists of derivation children will the entries become larger. To 
achieve best performance, in terms of cache hit rate, the size should be set to a value so 
that all pages defined in the system fit into the cache. This corresponds to the row count 
of the database table PAGE_INST. 

com.ibm.wps.datastore.pageinstance.DynamicNodeCache  
Default size: 5, default lifetime: infinite, usage pattern: regular. 

This cache stores one list per domain. These lists contain all pages in the corresponding 
domain that are flagged as dynamic nodes, i.e. dynamic assembly content nodes can be 
added below these pages. Since the number of domains does not grow, the size as well 
as other properties of this cache should not be modified. The size of one entry into the 
cache ranges from small in a portal with very few dynamic nodes up to medium with 
many dynamic nodes in the system. 

com.ibm.wps.datastore.services.Identification.Seria lizedOidString.cache 
Default size: 2500, default lifetime: infinite, usage pattern: cascading object types. 

This cache stores serialized ObjectIDs used in request parameters or XML Access files. 
It contains a subset of all the loaded ObjectIDs in memory. In so far it scales with the 
number of ObjectIDs in the system, but not for all of these IDs the serialized version is 
requested, hence the actual size is impossible to predict. The cache is used during every 
request. Creating a cache entry is rather cheap. Typically all information can be retrieved 
in memory, database lookups are scarcely necessary. A cache entry is fairly small.  

M O D E L  

The model caches can be categorized into two groups: One group of caches is accessed 
during every portal request during page rendering. The second group of caches is especially 
important for administrative actions. Hence those caches are especially important in those 
environments where content and portal administration is done. Most run-time caches have 
the name suffix live; the administrative caches have the suffix isolated. 



 

7 0  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

Figure 29 describes the hierarchy of caches in the model component and depending portal 
components. The structure of the picture is identical to figure 28: The vertical axis shows 
caches with increasing aggregation of data. The model component only caches data at a 
rather high aggregation level. All data cached here hence is rather valuable, reloads can be 
expensive if the corresponding data is not available in the lower-level caches. Model caches 
are dependent upon the datastore and portal access control caches. The figure only 
features the most important caches. 

Figure 2 Portal Model Cache Hierarchy 

 
 
com.ibm.wps.model.factory.SimpleCacheKey  

Default size: 2500, default lifetime: infinite, usage pattern: regular. 

This cache is a helper cache for other model caches used by the portal model factory. It 
contains a small number of entries based on the model types available in portal. In 
addition there can be one entry per active user session. The size of this cache might be 
adapted to the number of active sessions in one portal JVM. Re-creating a cache entry is 
a rather cheap operation since it usually can be accomplished in memory. A cache entry 
is a small object. 

com.ibm.wps.model.content.impl.ResourceCache 
Default size: 5000, default lifetime: 5600, usage pattern: regular. 

This cache contains aggregated pages. In contrast to the data store page instance 
cache this cache contains the complete models of pages and their content, i.e. the 
portlets and containers on them. The page instance cache rather holds the raw page 
data. This cache scales with the number of pages defined in your portal and the different 



 

7 1  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

sets of access control rights on these pages. This cache contains very ‘valuable’ 
information; it utilizes several other caches, for example, page instance and access 
control caches, to build its data. Hence creating a cache entry usually only requires in-
memory information, but can also lead to many database queries. The size of an entry in 
the cache depends on the complexity of the pages, but typically the objects are medium-
sized, since they are usually made of references to other cached data. The cache should 
be large enough to hold the most frequently accessed pages multiplied with the number 
of different access control settings on these pages. Increasing the cache lifetime can be 
useful if page definitions do not change often in your environment. 

Example: A portal has 500 pages and all users have the same permissions on these. In 
addition there are another 50 pages; two groups of users have different access rights on 
these pages. In this case a maximum of 600 entries would be in the cache.  

com.ibm.wsp.mode.content.impl.TopologyCache 
Default size: 10000, default lifetime: 5700, usage pattern: regular. 

This cache contains portal topology information, i.e. portal navigation elements being 
composed of navigation nodes and their sorted, access control-filtered children. 
Topology elements undergo several processing steps from first loading from the 
database until finally being added to the cache. This cache only contains the completely 
processed topology entities. This cache is explicitly used during login and whenever a 
user navigates to a part of the portal where he has not been before during the same 
session. If a cache entry is not found, a private copy is created that is then further 
processed. Once the private copy is completely processed -that does not happen for all 
navigation nodes- it is added to the cache. If a user finds an entry in the cache a 
reference is copied into his private topology model and additional cache accesses are no 
longer necessary. Hence there is only one cache hit (or miss) per user and navigation 
node. The cache scales with the number of navigation nodes and the number of different 
sets of permissions on these and, possibly, the derivation chain (children and parents) a 
page belongs to. Entries in this cache are expensive to create; they rely on other cached 
information, like the access control caches and the page instance cache. The entries in 
the cache are medium-sized, being mainly some lists of references to other cached data. 
The cache should be sized in a way such the most important pages multiplied with all the 
different sets of permissions that exist on theses page can be stored.  

com.ibm.wps.model.factory.ContentModelCache.live 
Default size: 1000, default lifetime: infinite, usage pattern: regular. 

This run-time cache contains the content models for portal users. There is one entry per 
active portal user. The cache should be large enough to hold all models for these users. 
An entry in the cache has the maximum lifetime of the corresponding user session, i.e. 
entries are removed at the end of the session. Creating a cache entry can be very 
expensive. Typically all required information is in memory, but accessing the database, 
also many times, might be necessary if underlying information is also no longer cached. 
Furthermore the number of pages summarized in the model can be very large which 



 

7 2  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

also adds to the time it takes to rebuild a cache entry. Building the content model is done 
incrementally as required for the current request; the model is not built at once. 
Depending on the size of the model also the memory requirements vary. The more 
pages a user can access and has accessed already during the current session the larger 
the cache entry, ranging from medium to very large. A cache entry typically is composed 
of references to other cached and shared objects. Hence an entry size is not made up by 
the number of page and all subordinate objects but only contains references to these. 

com.ibm.wps.model.factory.ContentModelCache.isolate d 
Default size: 1000, default lifetime: infinite, usage pattern: regular. 

This cache contains the administrative content models. There is one entry for every user 
doing administrative work at a certain point in time. In so far the number of entries in this 
cache typically is much lower than in the other cache. But for this cache you should 
make sure that no cache entries of active users are evicted. Compare with the content 
model run-time cache for all other information. 

com.ibm.wps.model.factory.NavigationSelectionModelC ache.live 
Default size: 1000, default lifetime: infinite, usage pattern: regular. 

This run-time cache contains the navigation selection models used by portal users. 
There is one entry per user session. The cache should be large enough to hold all these 
models for the active users. An entry in the cache has the maximum lifetime of the 
corresponding user session, i.e. entries are removed at the end of the session. Creating 
a cache entry is less expensive than creating a content model cache entry. Typically all 
required information is in memory, but accessing the database might be necessary. In 
comparison to the content model cache creating an entry for the navigation selection 
model cache is much cheaper. In addition also the in-memory size of elements in this 
cache is much smaller since this type of model references fewer objects. 

com.ibm.wps.model.factory.NavigationSelectionModelC ache.isolated 
Default size: 1000, default lifetime: infinite, usage pattern: regular. 

This cache contains navigation selection models used by administrative users. The 
details given for the administrative content model cache also apply here. 

com.ibm.wps.model.factory.URLMappingCache.live 
Default size: 50, default lifetime: infinite, usage pattern: regular. 

This cache is the run-time model cache for the URL mappings defined in your portal 
installation. It should be large enough to hold all URL mappings defined in your system. 
Creating an entry to the cache involves reading one entry from the portal database. A 
cache entry is fairly small in size. 



 

7 3  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

com.ibm.wps.model.factory.URLMappingCache.isolated 
Default size: 50, default lifetime: infinite, usage pattern: regular. 

This cache is the administration cache for URL mappings. The details given for the other 
isolated caches also apply here. 

com.ibm.wps.model.factory.MultiModelCache.live 
Default size: 50, default lifetime: infinite, usage pattern: regular. 

This cache contains run-time models for several different resource types in WebSphere 
Portal, for example clients, supported markups and languages. One entry, for example, 
is a list containing all supported markups. Those resources typically remain stable for a 
long time, hence you should mostly experience read accesses to this cache. Creating a 
cache entry involves reading the corresponding data from the database. An entry can be 
fairly large, but the number is very low so that the total size of this cache is negligible. 

com.ibm.wps.model.factory.MultiModelCache.isolated 
Default size: 1000, default lifetime: infinite, usage pattern: regular. 

This cache contains the administrative models for several portal resource types. 
Typically this cache is empty and not used, because administration on those resource 
types is a rare event. There is one entry for every user doing administration on any of the 
resource types that are stored in the cache. The creation behavior and size are similar to 
the run-time cache. 

com.ibm.wps.model.factory.NavigationModelCache.live  
Default size: 2, default lifetime: infinite. 

This cache is not used in WebSphere Portal V6.0 and hence disabled. Changing any of 
its properties does not have any effect. 

com.ibm.wps.model.factory.NavigationModelCache.isol ated 
Default size: 2, default lifetime: infinite. 

This cache is not used WebSphere Portal V6.0 and hence disabled. Changing any of its 
properties does not have any effect. 

com.ibm.wps.model.content.impl.DynamicLoadCache 
Default size: 4, default lifetime: 600. 

This cache is not used WebSphere Portal V6.0 and hence disabled. Changing any of its 
properties does not have any effect. 



 

7 4  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

com.ibm.wps.model.impl.RuntimeClientMap.userAgent2c lient 
Default size: 1000, default lifetime: infinite, usage pattern: regular. 

This cache maps user agent strings, i.e. the identification strings sent by browsers in the 
HTTP header, to client profiles. These profiles basically correspond to CC/PP profiles. 
Hence the cache scales with the number of browser identification strings. Data from this 
cache is accessed during every request. Creating a cache entry is very cheap since the 
profile information is in memory already. An entry in the cache hence is fairly small since 
already existing data is referenced.  

U R L  M A P P I N G S  

The following caches contain data on portal URL mappings. Be sure to size the caches in a 
way such that these are large enough to hold all defined URL mappings in your system.  

wps.mappingurl.ContextsCache 
Default size: 500, default lifetime: infinite, usage pattern: regular. 

This cache contains URL mapping contexts. It scales with the number of mapping 
contexts defined in the system. This cache is used if a URL mapping cannot be resolved 
using the lookup cache. Creating an entry involves reading a mapping entry from the 
database. An entry in the cache is medium-sized. 

wps.mappingurl.LookupCache 
Default size: 600, default lifetime: infinite, usage pattern: regular. 

This cache is used as a final lookup cache for the computed mappings between (a 
hierarchy of) URL mappings and a WebSphere Portal resource. It is accessed during 
every request when analyzing the incoming URL for being a URL mapping. The size of 
this cache should be the number of all mappings. Creating a cache entry typically is 
cheap because the information often s in memory. An entry in the cache is rather small. 

V I R T U A L  P O R T A L S  

The following group of caches is only relevant if you have defined additional virtual portals in 
your system. In all other situations it is safe to set the size of these caches to one and the 
lifetime to infinite. 

com.ibm.wps.services.vpmapping.VirtualPortalIDToRea lmCache 
Default size: 120, default lifetime: 3600, usage pattern: regular. 

This cache stores the realm information for virtual portals. One realm can contain several 
virtual portals, but one virtual portal can only be part of a single realm. As a 
consequence, the optimum size of this cache is the number of virtual portals defined in 
your environment. You may increase the lifetime for better performance if your setup of 
virtual portals changes infrequently. If you only use the default portal and no additional 



 

7 5  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

virtual portal, you will see one entry in the cache and only little traffic on the cache. 
Creating a new cache entry requires one database query. An entry into the cache is 
fairly small. 

com.ibm.wps.services.vpmapping.VirtualPortalIDToURL Cache 
Default size: 120, default lifetime: 3600, usage pattern: regular. 

This cache maps virtual portal IDs to their respective LPID. The LPID usually is used to 
create URLs for a specific virtual portal. Since the number of LPIDs is equal to the 
number of virtual portal IDs, the optimum size of this cache is the number of Virtual 
Portals defined in your environment. You may increase the life time for better 
performance if your setup of virtual portals changes infrequently. If you only use the 
default portal and no additional virtual portal, you will see one entry in the cache and only 
little traffic on the cache. 

com.ibm.wps.services.vpmapping.URLToVirtualPortalID Cache 
Default size: 120, default lifetime: 3600, usage pattern: regular. 

This cache maps LPID values to virtual portal IDs. LPIDs are encoded in a URL that 
points to a certain virtual portal. Therefore the number of LPIDs is equal to the number of 
virtual portal IDs. Accordingly the optimum size of this cache is the number of virtual 
portals defined in your environment. You may increase the lifetime for better 
performance if your setup of virtual portals changes infrequently. If you only use the 
default portal and no additional virtual portal, you will see one entry in the cache and only 
little traffic on the cache. 

W S R P  

All WSRP caches are only accessed if the portal is used as either a WSRP consumer or 
producer. Each of the caches is used on either side of the WSRP communication, but not on 
both sides. Most of the WSRP caches are used and read during every WSRP request, 
either displaying a page with a provided portlet on it, or administering WSRP properties. 
Exceptions to this general rule are noted below. 

wsrp.cache.portletdescription 
Default size: 500, default lifetime: 3600, usage pattern: regular. 

This cache contains the portlet descriptions delivered by producers. These descriptions 
could be considered meta information on the provided portlets, like languages and 
descriptions. It is used on the producer side. The cache scales with the number of 
remote portlets provided by the producer. Increasing the default lifetime can improve 
performance if portlet descriptions of the provided portlets change infrequently. 
Rebuilding cache entries is rather expensive. It includes loading data from the database 
with several calls. The cached entries are rather expensive in terms of memory usage. 



 

7 6  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

wsrp.cache.servicedescription 
Default size: 150, default lifetime: infinite, usage pattern: regular 

This cache contains service descriptions of WSRP producers. It is used on the 
consumer side. It scales with the number of WSRP producers integrated into the 
consuming portals; there is exactly one description per producer. The service description 
is generated using all the portlet descriptions from the producer portal plus some 
additional data. Hence a service description can be large in terms of memory 
requirements. Rebuilding the description requires several roundtrips and is an expensive 
operation. Cache entries are rebuilt if a user clicks the ‘Browse’ button in the WSRP 
administration portlets. This leads to a refresh of all service descriptions of all producers. 
This cache is only used during WSRP administration. 

wsrp.cache.portlet.instance 
Default size: 2500, default lifetime: 3600, usage pattern: regular. 

This cache contains the proxy portlet instances on the WSRP consumer side and is only 
used there. It scales with the number of integrated remote portlets multiplied with the 
number of users having their own customizations of portlet preferences for these remote 
portlets (portlet settings for legacy portlets respectively). Creating an entry for the cache 
involves one multi-line database query. The size of a cached entry depends on the 
number of parameters associated with the portlet. Hence the size ranges from small to 
fairly large. 

wsrp.cache.producer.user 
Default size: 5000, default lifetime: 3600, usage pattern: multiple object types. 

This cache contains the descriptor of the producer and context information between 
users and producers. It is used on the consumer side. It scales with the total number of 
active users accessing remote portlets of these producers, i.e. as a maximum the 
number of producers multiplied with the number of active users accessing them plus the 
number of producers. Recreating cache entry is fairly expensive. It involves some DB 
queries and in-memory operations. Therefore the session timeout should not be higher 
than the lifetime of entries in the cache. Cache entries are explicitly invalidated during 
user session destruction.  

wsrp.cache.portlet.window 
Default size: 2500, default lifetime: infinite, usage pattern: regular. 

This cache contains a WSRP specific wrapper on a WebSphere Portal portlet entity 
object. It is used on the producer side. It scales with the number of provided portlets and 
the number of occurrences of these portlets on consumer pages. Recreating cache 
entries is rather cheap and typically only includes in-memory operations. An entry into 
this cache is fairly small. This cache is accessed very during a request. 



 

7 7  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

wsrp.producer.portletpool.pops 
Default size: 1000, default lifetime: infinite, usage pattern: cascading object types. 

This cache stores the Producer Offered Portlets and hence scales with their number. 
The number of entries in this cache is identical to the number of entries in the 
portletdescription cache. The WSRP object model data is stored in here, though. Offered 
portlets are first looked up in this cache and, if the lookup is not successful, the in the 
ccps cache (see below). Reloading cache entries involves one query against the 
database. Cached entries are rather small.    

wsrp.producer.portletpool.ccps 
Default size: 1000, default lifetime: infinite, usage pattern: regular. 

This cache stores the client configure portlets. It is used on the producer side. It scales 
with the number of provided portlets and the number of remote users having 
personalized those (Consumer Configured Portlets); hence the maximum would be the 
number of provided portlets multiplied by the number of remote users accessing the 
producer. Reloading cache entries involves one query against the database. Cached 
entries are rather small.   

D Y N A M I C  A S S E M B L Y  /  P R O C E S S  I N T E G R A T I O N  

The following caches are used when dynamic UI functionality, often together with 
WebSphere Process Server integration are used.  

processintegration.PendingTasksCache 
Default size: 2500, default lifetime: infinite, usage pattern: regular. 

This cache contains the pending process tasks in the scope of a user. The size of this 
cache scales with the number of users concurrently using process integration 
functionality. Each cache entry consists of a complete set of pending process tasks for a 
given user and therefore can be fairly large in memory. Reloading a cache entry involves 
accessing the Human Task Manager via an EJB call. The cache is always accessed 
when the PendingTasksTag is used in a portlet JSP. 

You should also configure the setting processintegration.pendingtasks.lifetime in 
ConfigServices.properties which defaults to a value of 30 seconds. This setting 
describes the interval at which a process engine is queried for pending tasks of a user 
and the cache entries are updated. 

wp.te.transformationAssociationCache 
Default size: 500, default lifetime: infinite, usage pattern: regular.  

This cache contains transformation extension nodes. So typically there are only few 
entries in the cache. There is typically one access to the cache per request. Building an 



 

7 8  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

entry to the cache involves one database query. One entry is fairly small. Typically there 
is no need to modify the settings for this cache. 

P O L I C Y  

The WebSphere Portal policy manager uses the following caches.  

com.ibm.wps.policy.services.PolicyCacheManager 
Default size: 1000, default lifetime: 7780, usage pattern: regular. 

This cache stores the policies. Out of the box portal comes with twelve theme policies 
and one mail policy, each of them being one entry into the cache. Hence the maximum 
number of cache entries depends on your system and the number of custom policies. 
This cache is accessed fairly often, if you use policies at all. The WebSphere Portal V6.0 
default theme uses policies and query this cache during every request, but it is possible 
to create themes that do not use policies at all. Furthermore when opening mails the 
cache is accessed. Creating a cache entry involves reading data from a database. An 
entry into the cache is fairly small. 

com.ibm.wps.policy.services.UserPolicyNodeCacheMana ger 
Default size: 2500, default lifetime: 600, usage pattern: regular. 

This cache stores connections between a policy and a policy target, for example a user 
distinguished name. Theme policies do not use targets, hence there is no cache entry 
based on these policies. The out-of-the-box mail policy uses the user as target. Hence 
there is at least one entry for every user accessing the CPP mail portlet. The size of a 
cache entry depends on the size of the target object. For a distinguished name a cache 
entry is fairly small.  

C O L L A B O R A T I O N  S E R V I C E S  

All of the following caches are used by the DEPP portlets and some services around these 
portlets. In so far the caches are not used if the DEPP portlets are not utilized in the portal 
system. These caches store credential information needed for the backend servers, server 
information for these servers and user information that would otherwise require LDAP 
lookups. 

com.lotus.cs.services.directory.ldap.BasicLDAPDirec toryService.server 
Default size: 50, default lifetime: infinite, usage pattern: regular. 

This cache stores mail server information. In so far it scales with the number of different 
mail servers used in the environment. It is accessed whenever a mail server is 
accessed. Creating a cache entry requires one LDAP search. An entry in the cache is 
fairly small.  



 

7 9  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

com.lotus.cs.services.directory.ldap.BasicLDAPDirec toryService.user 
Default size: 2000, default lifetime: 10780, usage pattern: regular. 

This cache stores user-specific information read from the LDAP.  It scales with the 
number of users working with DEPP portlets. The cache is accessed during rendering a 
DEPP portlet, whenever those need user information. This could be multiple times per 
page reload. In addition the cache is accessed whenever a mail server is accessed. 
Creating a cache entry is fairly expensive and can involve multiple LDAP lookups. An 
entry into the cache is medium-sized.  

com.lotus.cs.services.directory.wmm.WMMDirectorySer vice 
Default size: 4000, default lifetime: 10980, usage pattern: regular. 

This cache stores user-specific information read from the LDAP and WMM. Entries in 
this cache represent a more complete set of data stored in the LDAP than is available in 
other parts of WebSphere Portal. The cache scales with the number of users working 
with DEPP portlets. The cache is accessed during rendering a DEPP portlet, whenever 
those need user information. This could be multiple times per page reload. In addition 
the cache is accessed whenever a mail server is accessed. Creating a cache entry is 
fairly expensive and can involve multiple LDAP lookups. An entry into the cache is 
medium-sized. 

com.lotus.cs.services.UserEnvironment 
Default size: 2000, default lifetime: 10880, usage pattern: regular. 

This cache stores user-specific information. Entries represent a compilation of credential 
information for one user to different LDAP directories and details which data on the given 
user can be found in which directory. For example, the general info may be stored in one 
directory, but the mail server and file may be in another. The cache scales with the 
number of users working with DEPP portlets. The cache is accessed whenever a DEPP 
portlet is accessed. Creating a cache entry can be fairly expensive since multiple 
resources might be queried. An entry to the cache is medium-sized.  

com.lotus.cs.services.domino.DominoService 
Default size: 2000, default lifetime: 11080, usage pattern: regular. 

This cache stores user-specific Domino information. It is used for awareness functions. It 
scales with the number of users working with the corresponding function. The cache is 
accessed whenever awareness functions are requested during page rendering. Creating 
a cache entry is cheap and simply involves creating a new Domino session. An entry to 
the cache is medium-sized.  

M I S C E L L A N E O U S  

This group of caches does not fit in any of the other categories. 



 

8 0  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

com.ibm.wps.pe.portletentity 
Default size: 10000, default lifetime: 5800, usage pattern: regular.  

This cache contains configuration for portlets on pages (portlet instances, shared and 
per-user). It scales with the number of pages defined in your portal, the number of 
portlets on the pages and the number of portlet instances that have been personalized 
by users. The cache is accessed many times during portal page rendering. In so far it is 
important that the most relevant portlet entities are cached. Creating a cache entry 
involves a single database lookup. An entry into the cache is fairly small.  

Example: In a portal with 500 pages and on average three portlets per page, the optimal 
cache size would be 1500 to store all possible portlet entity data in the cache, if users 
are not allowed to personalize the portlets. If the portal has 100 users that are logged in 
concurrently and these users have personalized 50 portlets on average, the required 
cache size to cache all data would be 6500. These numbers give the maximum number 
of entries to the cache. Typically for this cache it is not required to have all portlet entities 
in memory, because most users will not view all pages so that not all personalized data 
must be loaded. The most frequently accessed un-personalized portlet entities should fit 
into the cache, though. 

com.ibm.wps.services.cache.cachedstate.CachedStateS erviceCache.cache 
Default size: 50000, default lifetime: 7200, usage pattern: typically regular. 

This cache stores session-scoped data in the portal context and is used by various 
portal components. This cache scales linearly with the number of active sessions in the 
system and the number of portal components using this cache for data retrieval. The 
usage pattern, access times, entry creation costs and entry memory sizes depend on 
the portal component using this cache and cannot be stated in general. 
 
wp.xml.configitems 

Default size: 1000, default lifetime: infinite, usage pattern: regular. 

This cache stores XML Access configuration items. It is used only during XML Access 
processing. The entries resemble references between nodes in the XML Access 
document. Especially when working with complex XML files, usually used for imports or 
Release Builder processes, it can be beneficial to increase the cache size. The cache 
will be cleared after XML processing is completed. Reloading a cache entry involves one 
database query. Entries in the cache are medium-sized. 

PortletMenuCache 
Default size: 200, default lifetime: infinite, usage pattern: regular.  

This cache contains portlet menu trees for all portlets that define their portal menu as 
global, meaning identical for all users. The portal functionality that utilizes this cache is 
deprecated with WebSphere Portal Version V6.0. 



 

8 1  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

RegistryService 
Default size: 32, default lifetime: infinite, usage pattern: regular. 

This cache is used in a cluster for portals to notify the other cluster members when one 
of the registries needs to be reloaded due to administrative action. It should never be 
disabled or set to shared=false . 

com.ibm.workplace.searchmenu.helper.SearchMenuCache Helper 
Default size: 2500, default lifetime: 3730, usage pattern: regular. 

This cache stores a variety of information having to do with the search scopes menu, 
located at the top of the theme, left to the search box. There are six rather small cache 
entries per user. Hence the cache scales directly with the number of users. There are no 
invalidations from the cache, but after login a user will always get fresh data from the 
cache via a coupling between the cache and the user session. The cache will be 
accessed on every subsequent user request for building the search bar. If the search bar 
is not used, the cache will not be used, either. Rebuilding the cache is fairly inexpensive, 
but it does require some calls to the search engine backend to get the required data. 



 

8 2  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

Example Scenarios 

This section describes some example usage scenarios along with descriptions of possible 
cache settings and suggested cache sizes. This discussion may be useful as starting point 
for the caches in your environment. 

G E N E R A L  C O M M E N T S  

Most portal caches fall into one of four groups: 

1. Caches where the number of entries scales with the number of active users. For 
example, the access control user context cache (com.ibm.wps.ac. 
AccessControlUserContextCache ) falls into this category. 

2. Caches where the number of entries scales with the number of users using a 
specific function. For example, the cache com.lotus.cs.services. 
directory.ldap.BasicLDAPDirectoryService.user falls into this 
category.  

3. Caches which scale with the number of pages being visited. The resource cache 
(com.ibm.wps.model.content.impl.ResourceCache ) is an example of 
this type. 

4. Caches which scale based on the growth of some other resource, such as URL 
mappings, which are stored in the cache com.ibm.wps.model.factory. 
URLMappingCache.live .  

Those that scale on portal resources should have lifetimes and sizes based on the number 
of portal resources in the system and how frequently users access these resources. The 
other caches depend upon usage scenarios such as those described in this section. 

Most caches have a lifetime associated with them because the cached content might 
change over time. For example, access control information could be changed via user 
administration in the administrative portlets, XML Access or the WebSphere Portal scripting 
interface. All code that uses caches within WebSphere Portal is implemented in a way such 
that cache entries that are no longer valid are removed from the cache if the corresponding 
information has been changed or deleted. The lifetime therefore is used for three reasons: 

� Expired cache entries can be removed to free up memory. 

� There are rare race conditions in cluster setups so that invalidation events are 
processed correctly but the cache still reflects wrong data. 

� Updates within external systems, like an external access control system, will never 
become visible. 



 

8 3  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

If there is no or very little administration on your system and you have free memory in the 
Java heap available, it is safe to increase the lifetime of cache content to save the additional 
workload for reloading cached data. 

Now we shall consider some recommendations for specific scenarios. 

S M A L L  N U M B E R  O F  P A G E S  A N D  S M A L L  N U M B E R  O F  U S E R S  

In this scenario a portal only has a limited number of pages and users accessing them. For 
example, there might be 200 pages in the system and up to a few hundred users working 
with the portal simultaneously. You will find portals of this kind often during development and 
testing or in smaller portal production systems.  

For portals of this size and usage the default cache values typically are good. Hence only 
small modifications to the defaults given above should be required. Nevertheless you should 
be careful not to translate those cache settings directly into production for larger user 
communities.  

S M A L L  N U M B E R  O F  P A G E S  A N D  L A R G E  N U M B E R  O F  U S E R S  

In this scenario a portal only offers a rather small number of pages to the user. Overall there 
might be again only a few hundred pages, maybe with different access rights on them so 
that users might see only subsets of the pages. But in this scenario there are thousands of 
users accessing the system at the same time. In other words, thousands of users have 
active sessions. 

Properties of caches that store information on pages typically do not need to be modified in 
this scenario. But all caches that store user-dependant information might be a problem. 
Assume you have 2000 active users in your system. Per-user caches being sized to only 
1000 entries will operate at their upper limit nearly all of the time and constant re-calculating 
or re-loading of data from the portal database will the consequence. You should size the 
user-dependent caches in a way such that enough entries for the number of currently active 
users can remain in memory. We define the number of ‘currently active users’ as those who 
have a session and still issue requests against WebSphere Portal. By contrast there are 
passive users who still have a session, but no longer issue requests and have forgotten to 
log out or simply went away from the screen and let the session time out.  

We increased the sizes of the following nine caches in our measurement environments in 
such a way that the data of all concurrent users fits into the caches.  

� com.ibm.wps.model.factory.ContentModelCache.live 

� com.ibm.wps.ac.ExplicitEntitlements Cache.USER_GROU P 

� com.ibm.wps.model.factory.NavigationSelectionModelC ache.live 

� com.ibm.wps.datastore.services.Identification. 
SerializedOidString.cache 



 

8 4  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

� com.ibm.wps.puma.OID_User_Cache 

� com.ibm.wps.puma.DN_User_Cache 

� com.ibm.wps.puma.OID_DN_Cache 

� com.ibm.wps.puma.DN_Group_Cache 

� com.ibm.wps.puma.OID_Group_Cache 

We increased the lifetimes of all caches to at least one hour.  

P O R T A L S  W I T H  L O N G  S E S S I O N  T I M E O U T S  

If the session timeout has a high value, it is likely that there will be a large number of users 
who still have sessions with the portal, but who have not interacted with the site for a 
significant period of time. These users are known as passive users, and they can cause 
some special performance challenges. 

In this situation the number of sessions can be much larger. But typically many of these 
sessions are ‘passive’. It is typically not necessary to have all information in memory for all 
these users when they leave their desk but not the portal, for example during lunch. To find 
proper sizes for the portal caches you need a good understanding on the behavior of your 
users. Users who have not worked with the portal for more than an hour typically will accept 
response times of two or three seconds for their first request after such a long break, 
whereas users who work with the portal rather constantly do not want to see their data being 
evicted from caches.  

For this scenario it is hard to give precise cache size recommendations. The values simply 
depend too much on your portal usage scenario. You have to monitor your system and 
users closely to determine good values. 

P O R T A L S  W I T H  M A N Y  P A G E S  

Portals in this group have several thousand pages that are available for larger groups of 
users and therefore are potentially accessed quite frequently. We do not count installations 
with many customized pages (sometimes known as ‘implicit derivations’) to this group 
because these are private resources and are loaded for the current user only. Private data is 
not added to the shared portal caches. 

For example, your portal could have 5000 pages in total. Half of those are available to all 
users; on the other half there are several user groups who have view rights, other have 
manage right on those pages. In this case you typically do not want to have all pages and all 
corresponding information in memory at all times. But you want to make sure that all 
frequently accessed data is in memory. Typically not all portal pages are accessed equally 
frequently. The better your page view statistics are, the easier it is for you to tune the portal 
caches. 



 

8 5  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

We increased the sizes of the following caches in our measurement environments so that all 
frequently-accessed pages, which depend on our scenario, can be cached.  

� com.ibm.wps.datastore.pageinstance.OIDCache 

� com.ibm.wps.datastore.pageinstance.DerivationCache 

� com.ibm.wps.model.factory.ContentModelCache 

� com.ibm.wps.model.factory.NavigationSelectionModelC ache 

� com.ibm.wps.ac.PermissionCollectionCache 

� com.ibm.wps.ac.ProtectedResourceCache 

� com.ibm.wps.ac.ExplicitEntitlementsCache.USER_GROUP  

� com.ibm.wps.datastore.services.Identification. 
SerializedOidString 

We increased the lifetimes of all caches to at least one hour.  

 



 

8 6  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

 

WEB CONTENT MANAGEMENT CACHES 

In the preceding chapter we described the specific values we modified for the Web Content 
Management (WCM) caches in our environments.  This chapter describes the Web Content 
Management caches and the general parameters for those caches. 

WCM Cache Instances 

With WebSphere Portal V6.1, the WCM caches are managed via the WebSphere 
Application Server administrative console under Resources > Cache instances > Object 
cache instances.   

W C M  I T E M  C A C H I N G  

services/cache/iwk/strategy – WCM Item caching 
Default size: 2000, default lifetime: infinite, usage pattern: regular. 

This cache stores internal WCM items. Any WCM item read from the database will first 
check this cache. WCM items cover Content, Workflow, Workflow Stages, Workflow 
actions, Taxonomies, Categories, Authoring Templates, Presentation Templates, Sites, 
Siteareas, and all Library Components. The cache entry will be updated or cleared when 
its corresponding WCM Item is updated or deleted. 

W C M  S U M M A R Y  

services/cache/iwk/objectsummary – WCM Summary 
Default size: 2000, default lifetime: infinite, usage pattern: regular. 

This cache stores summaries of WCM Items. The summaries are used to display in lists 
in the authoring portlet or used internally in the WCM API to calculate WCM Item 
Document IDs used for Iterators. The cache entry will be cleared when a WCM Item is 
updated that will affect this summary. 

10 

� 



 

8 7  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

W C M  B A S I C  C A C H I N G  

services/cache/iwk/module 
Default size: 2000, default lifetime: infinite, usage pattern: regular. 

This cache is used for WCM Basic caching. See the InfoCenter on setting up Basic 
caching. The Basic cache stores the entire response. The key is based only on the URL 
so all users will see the same response. 

A D V A N C E D  A N D  R E S O U R C E S  

services/cache/iwk/processing – Advanced and Resour ces 
Default size: 2000, default lifetime: 1 month (configurable), usage pattern: regular. 

This cache stores the binary MIME for file and image resources in WCM. The maximum 
size of resources to store is set in the WCMConfigService.properties file as the property 
resourceserver.maxCacheObjectSize (in kb). Resources over this size are not cached 
and are streamed directly to the response. The expiry is set in the same file as: 
resourceserver.cacheExpiryDate. The cache entry will be cleared when that resource is 
updated. 

This cache also stores page data if WCM Advanced caching is enabled. See the 
InfoCenter for enabling WCM Advanced caching. The processing cache stores 
advanced caches for the following types: 

• Site:  Similar to “Basic” Caching except that “Connect Tags” are processed each time. 

• User:  Stores a copy of an item in the cache for each user 

• Secured:  Users that belong to the same groups will access the same cached items 

• Personalized:  Users who have selected the same personalization categories and 
keywords, and who belong to the same Group, will access the same cached items 

NOTE that the ‘session’ option for Advanced caching is not stored in the processing 
cache, but the ‘session’ cache. 

S E S S I O N  C A C H E  

services/cache/iwk/session - Session 
Default size: 2000, default lifetime: infinite, usage pattern: regular. 

This cache stores the page data for when session advanced caching is enabled. See the 
InfoCenter for enabling WCM Advanced caching. 



 

8 8  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

M E N U  

services/cache/iwk/menu - Menu 
Default size: 2000, default lifetime: infinite, usage pattern: regular. 

This cache stores WCM Menu entries. An entry comprises of the Content IDs associated 
with a particular menu. The entries are retrieved and cached without applying security. 
Whenever a user needs that menu’s results, their specific security will then be applied to 
the cached results. A dynamic menu, which is one that is affected by the current user’s 
context (e.g. based on categories in a users profile) will store a separate cache entry for 
each different context. The cache entry will be cleared when a WCM Item is updated that 
will affect this menu. 

N A V I G A T O R  

services/cache/iwk/nav Navigator 
Default size: 2000, default lifetime: infinite, usage pattern: regular. 

This cache stores parent to child relationships that comprise a WCM navigator. A 
complex navigator might have multiple parent to child relationships (e.g. if siblings are 
included). The navigator entry is made up of the IDs of the parent and children. This 
cache will be cleared upon any WCM Item update in the system. 

A B S O L U T E  P A T H  

services/cache/iwk/abspath – Absolute path 
Default size: 5000, default lifetime: infinite, usage pattern: regular. 

This cache stores JCR path to id relationships. The cache entry will be cleared when a 
WCM Item is updated that will affect it. 

M I S S E D  I T E M S  

services/cache/iwk/missed – Missed Items 
Default size: 5000, default lifetime: infinite, usage pattern: regular. 

This cache stores JCR paths that does not exist. This is used primarily for multi locale 
solutions to determine if items of other locales exist or not. The cache entry will be 
cleared when a WCM Item is updated that will affect it. 

L I B R A R Y  

services/cache/iwk/global - Library 
Default size: 2000, default lifetime: infinite, usage pattern: regular. 

This cache contains a lookup for library id, name and path to the library object. This is 
pre-populated up to the cache size at Portal startup. 



 

8 9  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

L I B R A R Y  P A R E N T  

services/cache/iwk/libparent – Library Parent 
Default size: 2000, default lifetime: infinite, usage pattern: regular. 

This cache stores a list of all children library ids to a given parent id. Introduced for 
Quickr to group libraries within a teamspace together.  

D R A F T  S U M M A R Y  

Services/cache/iwk/draftSummary – Draft Summary 
Default size: 2000, default lifetime: infinite, usage pattern: regular. 

This cache stores the identity of the draft summary to the identity of the draft WCM Item. 

U S E R  C A C H E  

User cache 
Size is fixed to 2000. default is disabled. 

This cache operates using a Least Recently Used algorithm. It is not shared across 
nodes in the cluster and it does not use dynacache. It does not update when LDAP 
changes. It is disabled by default but can be enabled through setting:  

user.cache.enabled=true  

in WCMConfigService.properties. Need to run a module called MemberCacheManager 
or restart server. To enable the module, add to WCMConfigService.properties 

connect.businesslogic.module.template.class=com.pre sence.connect.wmmcomms 
connect.businesslogic.module.template.remoteaccess= true 
connect.businesslogic.module.template.autoload=fals e 

 



 

9 0  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

Appendix A.   References 

 

WebSphere Portal Information Center: 

http://publib.boulder.ibm.com/infocenter/wpdoc/v6r1m0/index.jsp 

The Tuning section of the WebSphere Application Server Information Center located at:  

http://www.ibm.com/software/webservers/appserv/was/library/  

Redbook “WebSphere Application Server V6.1 on the Solaris 10 Operation System” located at: 

http://www.redbooks.ibm.com/ 

WebSphere Portal Benchmark Results: 

           Contact WPLC Performance team. 

DB2 Information Center: 

http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp 

Oracle Information Center: 

http://www.oracle.com/technology/documentation/database10g.html  

The ROLTP factors for IBM pSeries Servers™ can be found at  

http://www.ibm.com/servers/eserver/pseries/hardware/system_perf.html  

For additional performance-related information, consult the following resources: 

� WebSphere Application Server Performance information: 

http://www.ibm.com/software/webservers/appserv/was/performance.html  

� Recommended reading list: J2EE and WebSphere Application Server 

http://www.ibm.com/developerworks/websphere/library/techarticles/0305_issw/recommendedreading.html  

� WebSphere Application Server Development Best Practices for Performance and 
Scalability: 

http://www.ibm.com/software/webservers/appserv/ws_bestpractices.pdf  

� Diagnosing Performance Problems for WebSphere Portal 5.1 (though this document 
was written for WebSphere Portal 5.1, the lessons apply to WebSphere Portal 6.1 as 
well): 

http://www.ibm.com/support/docview.wss?uid=swg27007059  



 

9 1  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

Appendix B.   Credits 
 
 

Thanks to the following team members of the WebSphere Portal Performance Team for 
contributing to this document.   

Mark Alkins, Manager 

Lee Backstrom, Document Coordinator  

Andrew Citron 

Nathan Cook 

Sabine Forkel 

Uwe Haller 

Shibi John 

Klaus Nossek 

Kyung Lee 

Denny Pichardo, Technical Lead 

Martin Presler-Marshall 

Terence Walker 

Laura Yen, Document Coordinator  

Sonja Zwissler 

Kenny Sabir 

Maria Sueli Almeida 

Alesio Pfeifer 

Joerg Huehne 

David De Vos 

Mike Coletta 

 



 

9 2  
 

WEBSPHERE PORT AL V6 .1  T UNING GUIDE 

        

®   

 
 
 
 

 
 Copyright IBM Corporation 2008 
 
IBM United States of America 
 
Produced in the United States of America  
 
All Rights Reserved 
 
The e-business logo, the eServer logo, IBM, the IBM logo, IBM Directory Server, DB2, Lotus, WebSphere, POWER4 and POWER5 are 
trademarks of International Business Machines Corporation in the United States, other countries or both. 
 
Lotus and Domino are trademarks of Lotus Development Corporation and/or IBM Corporation. 
 
The following are trademarks of other companies: 
 
Linux is a registered trademark of Linus Torvalds. 
 
Solaris, Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States, other countries or 
both. 
 
Windows and Windows 2003 Enterprise Server are trademarks of Microsoft Corporation in the United States and/or other countries 
 
Oracle 10 and all Oracle-based trademarks and logos are trademarks of the Oracle Corporation in the United States, other countries or 
both. 
 
LoadRunner is a trademark of Mercury in the United States and/or other countries. 
 
Other company, product and service names may be trademarks or service marks of others. 
 
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PAPER “AS IS” WITHOUT WARRANTY OF ANY KIND, 
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, 
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.  Some states do not allow disclaimer of express or implied 
warranties in certain transactions, therefore, this statement may not apply to you. 
 
Information in this paper as to the availability of products (including portlets) was believed accurate as of the time of publication.  IBM 
cannot guarantee that identified products (including portlets) will continue to be made available by their suppliers. 
 
This information could include technical inaccuracies or typographical errors.  Changes may be made periodically to the information herein; 
these changes may be incorporated in subsequent versions of the paper.  IBM may make improvements and/or changes in the product(s) 
and/or the program(s) described in this paper at any time without notice. 
 
Any references in this document to non-IBM web sites are provided for convenience only and do not in any manner serve as an 
endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web 
sites is at your own risk. 
 
IBM may have patents or pending patent applications covering subject matter described in this document.  The furnishing of this document 
does not give you any license to these patents. You can send license inquiries, in writing, to:  
 
IBM Director of Licensing 
IBM Corporation 
North Castle Drive 
Armonk, NY, USA 10504-1785 
 
 

 


