

Best Practices
in Game Design for
the Ultra-Mobile PC

by Matt Gillespie, Michael Finkel
and Victoria Bailey

The Ultra-Mobile PC (UMPC) will expand the market for PC games that run
on Microsoft Windows* XP, as long as developers consider certain design
requirements to ensure a good user experience. In most cases, a single
version of games can span both the UMPC and traditional PC platforms.

1 Introduction

The Ultra-Mobile PC (UMPC) platform is of increasing importance as a target

system for game developers. Because these systems run on Microsoft Windows*

XP Tablet PC Edition, they don't require a full operating system port for existing

games, but the UMPC form factor does introduce a number of unique

considerations in game design. For example, UMPCs typically have a touch

screen with 800x480 or 1024x600 resolutions, which are small pixel sizes and

unusual aspect ratios. Developers must also accommodate alternatives to

conventional keyboard and mouse user interaction, and a CD-ROM drive is

typically not available.

The best practices in this document for enabling PC games to run successfully on

the UMPC platform are based on an analysis of a large number of PC games

currently on the market. Those games were executed on a UMPC to identify

common strengths and weaknesses associated with the platform, as well as

specific game-design factors that contribute to the best user experience. The

analysis includes design considerations for providing high-quality games on the

UMPC, as well as common issues associated with providing UMPC support,

providing best practices to resolve each of those issues.

2 Screen-Size Considerations

Because the UMPC screen is much smaller than a traditional screen, the size of

graphical elements must be handled with some care. Developers must avoid

making scaled-down graphical elements too small, as well as allowing elements

that are left the same physical size to consume too much screen space.

Specifically, text and icons are often hard to see clearly, some buttons or units

are difficult to click reliably, and some game windows do not fit entirely onto

the screen.

2.1 Text and Icon Sizes

Issue: In the interfaces of games that are ported to the UMPC, text or icons

may shrink to a size where it becomes difficult to see them clearly. This

prevalent issue is important to avoid, because text and icons become useless if

they cannot be read or differentiated. Text that appears reasonably sized on a

15” screen can easily become too small when shrunk to a five- to seven-inch

screen that you might find on a UMPC. Aside from the actual font size of text,

chat and other text windows may become too small. Accommodating smaller

window sizes by decreasing the font size can make the text difficult to read.

Best Practice: Ideally, games designed with the UMPC in mind should use text

sparingly and consider the UMPC screen size when choosing a font. Likewise,

icons should not rely heavily on fine details, so different objects are different

enough to be easily distinguished from one another, even on the smaller UMPC

screen. In places where increasing text size enough would compromise other

elements of the game, allowing text size to be adjustable may be a good

solution, allowing individual players to decide for themselves the ideal size for

the text.

2.2 Clickability of Buttons and Other Elements

Issue: Similar to the issue of small text, buttons and other clickable game

elements add complexity to porting games to the UMPC. That is, while the

overall interface on the UMPC must be smaller than the corresponding standard

PC version, the actual buttons in the UMPC interface must be larger, in order to

accommodate being accurately cl icked by a stylus or finger, rather than the

more precise mouse that is used in the standard PC version. As shown in Figure

1, this issue is particularly acute when multiple buttons or other elements are

clustered together, which makes it more likely that the user will select a

different element than the one they intend. Even when it is possible to select

the correct element with some care, this issue can significantly detract from the

user experience.

Figure 1. On a 20-inch PC monitor (left), the user can easily identify and select a domino
using the arrow cursor. When the domino images are scaled to fit on a five-inch UMPC
screen (right), however, it becomes very diff icult for users to select individual dominoes, or
even to identify how many dots are on each domino.

Best Practice: As with the size of text and icons, game developers should avoid

this problem by using large, distinct buttons and other elements. These

elements should also have enough space between them, making it less likely

that the user will inadvertently select the wrong one. In those cases where a

text label appears adjacent to a button or other element, that label should be

part of the clickable area associated with the element, making it easier to click

without having to devote any additional space.

2.3 Game Window Size

Issue: If game windows use a fixed size, rather than automatically resizing

themselves to fi l l the full UMPC screen, parts of the game may not be visible all

at once, and, in some cases, certain parts may not be reachable at all, as shown

in Figure 2. This situation is made more complex by the potential for players to

use the 800x480 or 1024x600 resolution enabled by the UMPC's wide screen,

since those aspect ratios must be matched to the standard 4:3 aspect ratio

employed by most PC games.

Figure 2. On a standard PC (left), the user is able to see the entire play area, including
informational parts of the player interface. If the game window is cropped to fit the UMPC’s
smaller size and different aspect ratio (center), part of the game will be hidden, represented
here by the translucent parts of the screen at the edges. If the game window is scaled to fit
the UMPC screen (right), all parts of the game can readily be made visible, with a level of
visual distortion that may be acceptable.

Best Practice: The key to resolving this issue is for game developers to

consider the 800x480 and 1024x600 resolutions as they develop game interfaces

for the UMPC, scaling the entire game window to fit on the screen or rearranging

the interface to take full advantage of the wide screen area. Certain simple

accommodations can make games more playable, even in a truncated state. For

example, providing scrollbars and allowing the window to be resized (manually

or automatically) may be sufficient in some cases to allow the user access to all

parts of the screen and to provide an acceptable user experience, particularly

for browser-based games.

3 Touch Screen Considerations

The use of a touch screen instead of a mouse on the UMPC adds another layer of

complexity to porting games. For most software purposes, the touch screen

behaves like a mouse, except that instead of registering a linear track of

movement as the user drags the cursor, it generates a series of button-down

events with a location each time the user touches the screen. The inability to

move the cursor without clicking and the relationship between left-clicking and

right-clicking also causes issues.

3.1 Accurate Interpretation of Tap-Only Touch Screen Input

Issue: UMPC games must be able to interpret cursor input provided by the user

as a series of points (corresponding to a series of touch-screen taps), rather

than requiring a linear pattern of movement (like that provided by mouse

movement controlling the cursor). This issue tends to arise particularly often,

for example, in games that shift the user's perspective so that the cursor is

always at the center of the screen (which is common in first-person shooters).

In such a scenario, when the player touches the screen, the cursor may jump

around the screen erratically, instead of moving to where the user touched.

Best Practice: If the game tracks movement of the cursor from point A to point

B, it must be able to interpret a click at point A, followed by a click at point B,

without the cursor first moving between point A and point B. Requiring an

external mouse to be plugged into the UMPC will typically correct this problem

as well, although that solution is clearly sub-optimal from a user-experience

point of view.

3.2 Accurate Touch-Screen Mapping

The touch screen can be mapped incorrectly to the game when the game runs in

full-screen mode but does not take up exactly the full screen (either not fi l l ing

the entire screen or taking up more than the full screen).

Issue (Game Resolution Smaller than Physical Screen): When the game

believes it is operating in full screen mode at a lower resolution than the

physical screen, the game display may appear centered with space on either

side (as in the case of a 640x480 window being centered on a 800x480 screen

or an 800x600 window being centered on a 1024x600 screen, with black bars on

each side), mismapping may occur between the two, with the entire touch-

screen surface being mapped to the relatively small display area. That

mismapping, as shown in Figure 3, results in inappropriate response of the

interface to user interaction, such as a button's clickable screen area being

located away from the visual representation of the button.

Figure 3. If the game window is centered with black
bars on each side, the game logic that interprets
screen taps must avoid mapping the entire physical
screen area to the smaller game window. Such
incorrect mapping can cause a screen tap at one
position (represented by the yellow arrow) to be
interpreted by the game as occurring at a different
position (represented by the red burst).

Best Practice: Games can be centered with black bars at the sides without

causing the touch screen to be mismapped, as long as the mapping logic

considers the black bars as part of the screen (even though they are not used as

a part of the game). With this adjustment, touches on the screen map to exactly

the location touched.

Issue (Game Resolution Larger than Screen): In those cases where the

game window takes up more than the full vertical space of the screen, the touch

screen may be incorrectly mapped vertically instead of horizontally, as shown in

Figure 4. This scenario typically causes the touch screen to be mapped to the

whole game window, rather than just to the visible section. Again, clicks do not

correspond to the area of the game window that the user intends.

Figure 4. Having part of the game window
(represented by the translucent area) cropped from
the physical screen may also result in a screen tap at
one position (represented by the yellow arrow) being
interpreted by the game as occurring at a different
position (represented by the red burst), due to
mismapping between the different shapes of the game
window and the physical display.

Best Practice: Developers should ensure that the operating system maps the

touch screen exactly to the entire visible portion of the screen (including

portions not being used by the game), and not including portions of the game

window that are not visible. Another solution is for developers to natively

support the 800x480 and 1024x600 screen resolutions as a user-configurable

option. In some cases, it might be possible for the game to automatically stretch

the window to fit the full screen, if the resulting dimensional distortion of game

elements is acceptable.

3.3 Alternatives to Hover-Over Effects

Issue: Many games use a hover-over feature that enables the user to position

the mouse over an object or location in the game (without clicking on it) to

trigger an informative animation or tooltip. This feature, which is often used to

provide instructions for novice players, is incompatible with touch screens, since

a touch screen cannot move the cursor without clicking.

Best Practice: Since the hover-over feature is not compatible with current

UMPC hardware, developers should choose alternative events to trigger the

animation or tooltip. For example, it could be triggered when the player reaches

the part of game play when the subject of the animation or tooltip becomes

relevant. Another possibil ity is to design the interface with a means of

temporarily interpreting click events as mouse over events, such as a button

that can be held down to allow touches on the touch screen to move the cursor

without registering a click.

3.4 Accommodating Right-Click Functionality

Issue: On a typical UMPC touch-screen, users perform right-clicks by holding

down the cl ick on the screen for a longer time than for a left-click, which can

cause users to inadvertently left-click when they mean to right-click. Moreover,

it is impossible to perform a left-click and right-click simultaneously.

Best Practice: Developers should provide alternative user interactions to

replace right-click functionality, such as using double-clicks or clickable controls

on the screen that take place of right-clicking. Alternatively, game developers

can simply require the use of an external mouse or other pointing device,

although that requirement may detract from the user experience.

4 Form Factor Considerations

A number of issues relate directly to hardware differences in the UMPC form

factor, relative to standard PCs. For example, unlike a PC, a UMPC may have a

touch screen, joystick, user-programmable buttons, and dedicated buttons such

as a menu button, but it will typically not have a keyboard or CD-ROM drive.

Although it may be possible to add a keyboard, CD-ROM drive, or other

peripheral devices, doing so reduces the portability of the UMPC. Moreover,

different models of UMPCs may have different elements included in their

designs, which causes the limitations associated with the form factor to vary by

device. That variability typically requires developers to focus on the lowest

common denominator of hardware features when designing games, in terms of

core requirements.

4.1 CD-ROM Drive

Issue: CDs are currently the most popular method for distributing games. In

addition to being installed from a CD, the disk is often required as a means of

verifying ownership of the game, as an anti-theft measure, or to dynamically

load content from the CD as it is needed, such as video sequence. Because

UMPCs typically do not have integrated CD-ROM drives, this modality requires

the use of an external drive, which hampers the portability of the UMPC.

Further, users may not even own an external CD drive. Notably, this issue has

no impact on web-hosted, browser-based games.

Best Practice: Making games able to be downloaded and installed via the

Internet is an ideal alternative to CDs for UMPC games. This distribution model

is already in widespread use, and developers should consider the emergence of

UMPCs as a further impetus to expand upon it. They should also consider using

certificates or other software-based means to verify ownership, rather than

requiring the physical presence of the CD. Rather than dynamically loading video

and other content from the CD as it is needed during game play, developers

should consider providing the option for that content to be hosted on the UMPC's

hard drive.

4.2 Limiting the Need for Diverse Command Inputs

Issue: The UMPC form factor provides for a limited number of inputs, relative to

the full keyboard and mouse available from a standard PC. Even those games

that are designed to be run on a PC using a joystick may require the use of

multiple buttons that are included on a typical joystick controller, which may not

be available from the UMPC. UMPCs also have issues with games that

incorporate keyboard shortcuts as a key game play component. Notably, games

that are primarily mouse-driven are not affected by form-factor limitations in

this area.

Best Practice: Developers can address limited input options on the UMPC by

decreasing the number of commands that are actually required to play the

game, as opposed to being optional conveniences such as shortcuts for menu

options. A somewhat more flexible solution, however, is to create buttons on the

screen. Particularly if the buttons are context-sensitive, appearing only when

they are relevant, this can provide an open-ended solution for input

requirements.

4.3 Addressing Keyboard Requirements

Issue: In addition to issuing commands, many games also use the keyboard for

input such as naming characters, creating profiles, saving games, or supporting

a chat feature for online games. It is common for games to require a keyboard,

for example, to enter a profile name at the beginning of a gaming session but

not to require the use of a keyboard at any other time during the session. Some

games also require players to use the keyboard to name their saved games. In

many cases, the on-screen keyboard will not run on top of the game interface,

so it cannot resolve these issues.

Best Practice: Developers should either design games explicitly not to conflict

with the onscreen keyboard (e.g., by not defaulting to full-screen mode) or

provide an on-screen keyboard within the interface itself that appears only when

needed. One simple means of minimizing the need for keyboard input is to

provide default values for text strings such as profile names, saved game

names, etc. and to allow them to be selected using screen-tap input. Additional

values for these text strings can also be provided by adding an interface button

that randomly selects a new value from a list of character names created by the

developer. Saved games can also be identified using a screen capture of where

the player left off, together with a date and time stamp. Since chat features are

very rarely a core aspect of game play, they can generally be disabled on the

UMPC without negatively impacting the user experience.

5 Conclusion

Game developers and architects providing support for the UMPC platform in

mainstream game offerings can develop a discrete set of design considerations

that address common issues that arise during the development process. The

best practices described in this document provide a foundation for that effort.

Because Windows-based UMPCs run a full version of the operating system, it

typically requires less effort to provide this support than a full port to a

separate operating environment. Thus, an incremental effort may expand a

game's market to include the expanding deployment of the UMPC platform,

providing a competitive advantage to the game software provider.

6 Additional Resources

Game developers and architects who are considering how best to integrate the

needs of the UMPC platform into their offerings will benefit from the following

resources:

• Intel® Software Network Mobile Developer Community is a hub for

developer information related to all things mobile, including technical

documentation, SDKs, forums, knowledgebases, and blogs.

http://www.intel.com/software/mobile

• Intel's UMPC Platform site introduces the platform and the possibil ities it

engenders for the developer and user communities.

http://www.intel.com/design/mobile/platform/umpc.htm

• UMPC Community provides information on devices, applications, and

usage models, as well as hosting discussion forums for users and

developers. http://www.umpc.com/

• UMPC Buzz links to news items, blogs, forums, and software downloads

for the UMPC. http://www.umpcbuzz.com/

http://www.intel.com/cd/ids/developer/asmo-na/eng/294678.htm
http://www.intel.com/software/mobile
http://www.intel.com/design/mobile/platform/umpc.htm
http://www.intel.com/design/mobile/platform/umpc.htm
http://www.umpc.com/
http://www.umpc.com/
http://www.umpcbuzz.com/
http://www.umpcbuzz.com/

Copyright © 2006 Intel Corporation. All rights reserved. BunnyPeople,
Celeron, Celeron Inside, Centrino, Centrino logo, Chips, Core Inside,
Dialogic, EtherExpress, ETOX, FlashFile, i386, i486, i960, iCOMP,
InstantIP, Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2,
IntelDX4, IntelSX2, Intel Core, Intel Inside, Intel Inside logo, Intel. Leap
ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel NetMerge, Intel
NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel
Viiv, Intel XScale, IPLink, Itanium, Itanium Inside, MCS, MMX, MMX logo,

Optimizer logo, OverDrive, Paragon, PDCharm, Pentium, Pentium II Xeon,
Pentium III Xeon, Performance at Your Command, Pentium Inside, skoool,
Sound Mark, The Computer Inside., The Journey Inside, VTune, Xeon,
Xeon Inside and Xircom are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

* Other names and brands may be claimed as the property of others.

