Tuba Digital Servo Drive Installation Guide

April 2008 (Ver. 1.3)

Notice

This guide is delivered subject to the following conditions and restrictions:

- This guide contains proprietary information belonging to Elmo Motion Control Ltd. Such information is supplied solely for the purpose of assisting users of the Tuba servo drive in its installation.
- The text and graphics included in this manual are for the purpose of illustration and reference only. The specifications on which they are based are subject to change without notice.
- Elmo Motion Control and the Elmo Motion Control logo are trademarks of Elmo Motion Control Ltd.
- Information in this document is subject to change without notice.

Document No. MAN-TUBIG Copyright © 2008 Elmo Motion Control Ltd. All rights reserved.

Revision History:

Ver 1.3	April 2008	Updated Power Ratings Table in Appendix
Ver. 1.2	Mar. 2007	Added Absolute Encoder information
Ver. 1.12	Oct. 2006	Correction to Interpolated Analog Encoder
Ver. 1.11	Sept. 2006	Correction to Encoder Outputs in Appendix
Ver. 1.1	Sept. 2005	BR1, BR2 \rightarrow DC Link (MAN-TUBIG.PDF)
Ver. 1.0	April 2005	First Edition (MAN-TUBIG.PDF)

Elmo Motion Control Ltd. 64 Gisin St., P.O. Box 463 Petach Tikva 49103	Elmo Motion Control Inc. 1 Park Drive, Suite 12 Westford, MA 01886	Elmo Motion Control GmbH Steinkirchring 1 D-78056, Villingen-Schwenningen	Elmo	
Israel Tel: +972 (3) 929-2300 Fax: +972 (3) 929-2322 info-il@elmomc.com	USA Tel: +1 (978) 399-0034 Fax: +1 (978) 399-0035 info-us@elmomc.com	Germany Tel: +49 (0) 7720-85 77 60 Fax: +49 (0) 7720-85 77 70 info-de@elmomc.com	Mation Cantrol www.elmomc.com	

Contents

Chapter	r 1: Safe	ty Information	1-1
1.1	Warnir	- Igs	1-2
1.2		ns	
1.3		ves and Standards	
1.4		rk Conformance	
1.5		nty Information	
Chapter	r 2: Intro	duction	2-1
2.1	Drive I	Description	2-1
2.2		t Features	
	2.2.1	Current Control	
	2.2.2	Velocity Control	2-1
	2.2.3	Position Control	2-2
	2.2.4	Advanced Position Control (Advanced model only)	2-2
	2.2.5	Communication Options	2-2
	2.2.6	Feedback Options	
	2.2.7	Fault Protection	
2.3	0	Architecture	
2.4	How to) Use this Guide	2-4
Chapter		Ilation	
3.1	Before	You Begin	
	3.1.1	Site Requirements	
	3.1.2	Hardware Requirements	3-1
	3.1.2	.1 AC Input Requirements	3-1
	3.1.2	.2 Recommended Wire Cross-sections (All Models)	3-1
	3.1.2	.3 Power Connectors	3-2
	3.1.2	.4 Communication Connectors	3-2
	3.1.2	.5 Feedback and I/O Connectors	3-3
	3.1.2	.6 Other Items Needed	3-4
3.2	Unpacl	king the Drive Components	3-4
3.3	Mount	ing the Tuba	3-5
	3.3.1	Mounting Directly onto Wall	3-5
	3.3.2	Mounting on a DIN Rail	3-6
3.4	Connee	cting the Cables	
	3.4.1	Wiring the Tuba	
	3.4.2	Connecting the Power Cables	
	3.4.2	0	
	3.4.2	.2 Connecting the Main Power Cable	3-12
	3.4.2	0	
	3.4.3	Connecting the Auxiliary Supply Cable (24v)	
	3.4.4	Feedback and Control Cable Assemblies	
	3.4.5	Main Feedback Cable (Feedback A)	
	3.4.6	Main and Auxiliary Feedback Combinations	
	3.4.7	Auxiliary Feedback (FEEDBACK B)	
	3.4.7	1 1 1	
	on F 3.4.7	EEDBACK B (YA[4]=4) 2 Differential Auxiliary Encoder Input Option on FEEDBACK B (YA)	
	3.4.7		
	3.4.7		

	3.4.7.4 Pulse-and-Direction Input Option on FEEDBACK B (YA[4]=0)	
	3.4.8 I/O Cables	
	3.4.8.1 Analog Inputs	
	3.4.8.2 Digital Inputs (on GENERAL I/O Port)	3-34
	3.4.8.3 Digital Outputs (on COMMITTED I/O Port)	3-36
	3.4.9 Communication Cables	
	3.4.9.1 RS-232 Communication (on the COMM.1 Port)	3-38
	3.4.9.2 CANopen Communication (on the COMM.2 Ports)	3-39
3.5	Powering Up	
3.6	Initializing the System	
Append	ix: Technical Specifications	A-1
A.1	Features	
	A.1.1 Motion Control Modes	
	A.1.2 Advanced Positioning Motion Control Modes	
	A.1.3 Advanced Filters and Gain Scheduling	
	A.1.4 Fully Programmable	
	A.1.5 Feedback Options	
	A.1.6 Input/Output	A-2
	A.1.7 Built-In Protection	
A.2	Tuba Dimensions	A-3
A.3	Mounting Dimensions	A-4
A.4	Mechanical Specifications	A-4
A.5	Power Ratings	A-5
A.6	Environmental Conditions	A-5
A.7	Tuba Connections	A-6
	A.7.1 Auxiliary Supply	
A.8	Control Specifications	
	A.8.1 Current Loop	
	A.8.2 Velocity Loop	A-8
	A.8.3 Position Loop	A-8
A.9	Feedbacks	A-9
	A.9.1 Feedback Supply Voltage	A-9
	A.9.2 Incremental Encoder Input	A-9
	A.9.3 Digital Halls	
	A.9.4 Interpolated Analog Encoder (Sine/Cosine)	
	A.9.5 Resolver	
	A.9.6 Tachometer*	
	A.9.7 Potentiometer	
	A.9.8 Encoder Outputs	A-12
A.10	I/Os A-13	
	A.10.1 Digital Input Interfaces (on GENERAL I/O port)	
	A.10.2 Digital Output Interface (on COMMITTED I/O port)	
A 11	A.10.3 Analog Input	
	Communications	
	Pulse Width Modulation (PWM)	
	Single-phase Operation	
A.14	Standards Compliance	
	A.14.1 Quality Assurance	
	A.14.2 Design	
	A.14.3 Safety	
	A.14.4 EMC	
	A.14.5 Workmanship	
	A.14.0 I CD	A-10

ii

iii

A.14.7	Packing	A-18
A.14.8	Environmental	A-18

Index I-1

Chapter 1: Safety Information

In order to achieve the optimum, safe operation of the Tuba servo drive, it is imperative that you implement the safety procedures included in this installation guide. This information is provided to protect you and to keep your work area safe when operating the Tuba and accompanying equipment.

Please read this chapter carefully before you begin the installation process.

Before you start, ensure that all system components are connected to earth ground. Electrical safety is provided through a low-resistance earth connection.

Only qualified personnel may install, adjust, maintain and repair the servo drive. A "qualified person" has the knowledge and authorization to perform tasks such as transporting, assembling, installing, commissioning and operating motors.

The Tuba servo drive contains electrostatic-sensitive components that can be damaged if handled incorrectly. To prevent any electrostatic damage, avoid contact with highly insulating materials, such as plastic film and synthetic fabrics. Place the product on a conductive surface and ground yourself in order to discharge any possible static electricity build-up.

To avoid any potential hazards that may cause severe personal injury or damage to the product during operation, keep all covers and cabinet doors shut.

The following safety symbols are used in this manual:

4	Warning: This information is needed to avoid a safety hazard, which might cause bodily injury.
	Caution: This information is necessary for preventing damage to the product or to other equipment.
E.	Note: This is auxiliary information that ensures the correct operation of the equipment.

1-2

1.1 Warnings

4	To avoid electric arcing and hazards to personnel and electrical contacts, never connect/disconnect the servo drive while the power source is on.
4	Power cables can carry a high voltage, even when the motor is not in motion. Disconnect the Tuba from all voltage sources before it is opened for servicing.
4	The Tuba servo drive contains grounding conduits for electric current protection. Any disruption to these conduits may cause the instrument to become hot (live) and dangerous.
4	After shutting off the power and removing the power source from your equipment, wait at least 1 minute before touching or disconnecting parts of the equipment that are normally loaded with electrical charges (such as capacitors or contacts). Measuring the electrical contact points with a meter, before touching the equipment, is recommended.

1.2 Cautions

The Tuba servo drive contains hot surfaces and electrically-charged components during operation.
The maximum AC/DC power supply connected to the instrument must comply with the parameters outlined in this guide.
The TUB-x/230 series is designed to operate from a single phase 115 VAC source or from a 1- or 3-phase 230 VAC source. The TUB-x/460 series is designed to operate from a 3-phase 400 or 460 VAC source. The Tuba can be connected directly to the line voltage. An isolation transformer is not needed.
The Tuba drive must be connected to an approved 24 VDC auxiliary power supply through a line that is separated from hazardous live voltages using reinforced or double insulation in accordance with approved safety standards.
Before switching on the Tuba, verify that all safety precautions have been observed and that the installation procedures in this manual have been followed.

1.3 Directives and Standards

The Tuba conforms to the following industry safety standards:

Safety Standard	Item	
Recognized UL508c	Power Conversion Equipment	
In compliance with UL840	Insulation Coordination, Including Clearance and Creepage Distances of Electrical Equipment	
In compliance with UL60950-1 (formerly UL1950)	Safety of Information Technology Equipment, Including Electrical Business Equipment	
In compliance with EN60204-1	Low Voltage Directive, 73/23/EEC	

The Tuba servo drive has been developed, produced, tested and documented in accordance with the relevant standards. Elmo Motion Control is not responsible for any deviation from the configuration and installation described in this documentation. Furthermore, Elmo is not responsible for the performance of new measurements or ensuring that regulatory requirements are met.

1.4 CE Mark Conformance

The Tuba servo drive is intended for incorporation in a machine or end product. The actual end product must comply with all safety aspects of the relevant requirements of the European Safety of Machinery Directive 98/37/EC as amended, and with those of the most recent versions of standards EN60204-1 and EN292-2 at the least.

According to Annex III of Article 13 of Council Directive 93/68/EEC, amending Council Directive 73/23/EEC concerning electrical equipment designed for use within certain voltage limits, the Tuba meets the provisions outlined in Council Directive 73/23/EEC. The party responsible for ensuring that the equipment meet the limits required by EMC regulations is the manufacturer of the end product.

1.5 Warranty Information

The products covered in this manual are warranted to be free of defects in material and workmanship and conform to the specifications stated either within this document or in the product catalog description. All Elmo drives are warranted for a period of 12 months from the time of installation, or 18 months from time of shipment, whichever comes first. No other warranties, expressed or implied — and including a warranty of merchantability and fitness for a particular purpose — extend beyond this warranty.

Chapter 2: Introduction

This installation guide describes the Tuba servo drive and the steps for its wiring, installation and powering up. Following these guidelines ensures maximum functionality of the drive and the system to which it is connected.

2.1 Drive Description

The Tuba is a powerful servo drive that operates in digital current, velocity, position and advanced position modes, in conjunction with a permanent-magnet synchronous brushless motor or DC brush motor. The Tuba features flexible sinusoidal and trapezoidal commutation, with vector control. The Tuba can operate as a stand-alone device or as part of a multi-axis network in a distributed configuration.

The Tuba drive is set up and tuned using Elmo's Composer software. This Windowsbased application enables users to quickly and simply configure the servo drive for optimal use with their motor.

Power to the various models of Tuba is provided by a 115, 230, 3 x 230, 3 x 400 or 3x 460 VAC source. A separate 24 VDC power supply serves as both the auxiliary supply *and* the backup supply. This enables a safe and economical "power backup" feature that is essential for positioning systems. An auxiliary 24 VDC power supply is required as the Tuba does not operate without one.

Two variations of the Tuba are available: the *Standard* version and the *Advanced* version, which features advanced positioning capabilities. Both versions operate with RS-232 and/or CANopen communication.

2.2 Product Features

2.2.1 Current Control

- Fully digital
- Sinusoidal commutation with vector control or trapezoidal commutation with encoder and/or digital Hall sensors
- 12-bit current loop resolution
- Automatic gain scheduling, to compensate for variations in the DC bus power supply

2.2.2 Velocity Control

- Fully digital
- Programmable PI and FFW (feed forward) control filters
- Sample rate two times current loop sample time
- "On-the-fly" gain scheduling
- Automatic, manual and advanced manual tuning and determination of optimal gain and phase margins

2.2.3 Position Control

- Programmable PIP control filter
- Programmable notch and low-pass filters
- Position follower mode for monitoring the motion of the slave axis relative to a master axis, via an auxiliary encoder input
- Pulse-and-direction inputs
- Sample time: four times that of current loop
- Fast event capturing inputs

2.2.4 Advanced Position Control (Advanced model only)

- Position-based and time-based ECAM mode that supports a non-linear follower mode, in which the motor tracks the master motion using an ECAM table stored in flash memory
- PT and PVT motion modes
- Dual (position/velocity) loop
- Fast output compare (OC)

2.2.5 Communication Options

Depending on the application, Tuba users can select from two communication options:

- RS-232 serial communication
- CANopen for fast communication in a multi-axis distributed environment

2.2.6 Feedback Options

- Incremental Encoder up to 20 Mega-Counts (5 Mega-Pulse) per second
- Digital Halls up to 2 kHz
- Incremental Encoder with Digital Halls for commutation up to 20 Mega-Counts per second for encoder
- Absolute Encoder
- Interpolated Analog Sine/Cosine Encoder up to 250 kHz (analog signal)
 - Internal Interpolation programmable up to x4096
 - Automatic Correction of:
 - amplitude mismatch
 - phase mismatch
 - signals offset
 - Encoder outputs, buffered, differential.
- Resolver
 - Programmable 10~15 bit resolution
 - Up to 512 revolutions per second (RPS)
 - Encoder outputs, buffered, differential
- Tachometer and Potentiometer

Two inputs for Tachometer Feedback:

- Up to ±50 VDC
- Up to ±20 VDC

Potentiometer Feedback:

- 0 ~ 5 V voltage range
- Resistance: 100Ω to 1000Ω

2-3

Elmo drives provide supply voltage for all the feedback options

2.2.7 Fault Protection

The Tuba includes built-in protection against possible fault conditions, including:

- Software error handling
- Status reporting for a large number of possible fault conditions
- Protection against conditions such as excessive temperature, under/over voltage, loss of commutation signal, short circuits between the motor power outputs and between each output and power input/return
- Recovery from loss of commutation signals and from communication errors

2.3 System Architecture

Figure 2-1: Tuba System Block Diagram

2.4 How to Use this Guide

In order to install and operate your Elmo Tuba servo drive, you will use this manual in conjunction with a set of Elmo documentation. Installation is your first step; after carefully reading the safety instructions in the first chapter, the following chapters provide you with installation instructions as follows:

Chapter 3, *Installation*, provides step-by-step instructions for unpacking, mounting, connecting and powering up the Tuba.

The Appendix, *Technical Specifications*, lists all the drive ratings and specifications.

Upon completing the instructions in this guide, your Tuba servo drive should be successfully mounted and installed. From this stage, you need to consult higher-level Elmo documentation in order to set up and fine-tune the system for optimal operation. The following figure describes the accompanying documentation that you will require.

Figure 2-2: Elmo Documentation Hierarchy

As depicted in the previous figure, this installation guide is an integral part of the Tuba documentation set, comprising:

- The Composer *Software Manual*, which includes explanations of all the software tools that are part of Elmo's Composer software environment.
- The *SimplIQ Command Reference Manual*, which describes, in detail, each software command used to manipulate the Tuba motion controller.
- The *SimplIQ Software Manual*, which describes the comprehensive software used with the Tuba.

Chapter 3: Installation

3.1 Before You Begin

3.1.1 Site Requirements

You can guarantee the safe operation of the Tuba by ensuring that it is installed in an appropriate environment.

Feature	Value	
Ambient operating temperature	0 °C - 40 °C (32 °F - 104 °F)	
Maximum relative humidity	90% non-condensing	
Operating area atmosphere	No flammable gases or vapors permitted in area	
Models for extended environmental conditions are available.		

The Tuba dissipates its heat by forced ventilation (fan). The maximum operating ambient temperature of 0 °C – 40 °C (32 °F – 104 °F) must not be exceeded.

3.1.2 Hardware Requirements

3.1.2.1 AC Input Requirements

Circuit Breakers & Contacts	Three-phase Supply Voltage	Single-phase Supply Voltage
Circuit breaker current rating	150% - 200% of drive current	200% ~ 300% of drive current
Circuit breaker voltage rating	250VAC / 480 VAC depending upon operating AC voltage	
Contactor	Up to 150% of drive current	Up to 200% of drive current

3.1.2.2 Recommended Wire Cross-sections (All Models)

Feature	Connection	Details
AC input	AC1, AC2, AC3	$4 \sim 5 \text{ mm}^2$, $10 \sim 12 \text{ AWG}$
Motor	M1, M2, M3	$4 \sim 5 \text{ mm}^2$, $10 \sim 12 \text{ AWG}$
Protective earth	PE, PE	$4 \sim 5 \text{ mm}^2$, $10 \sim 12 \text{ AWG}$
Auxiliary power	24v +, -	$0.5 \sim 1 \text{ mm}^2$, $18 \sim 20 \text{ AWG}$

3.1.2.3 Power Connectors

Component	Connector	Described in Section	Photo
External DC Link Cable	B1, B2 on External DC Link Cable	3.4.2.3	
Main Power Cable	PE, AC1, AC2, and AC3 on Power Connector	3.4.2.2	
Motor Cable	M1, M2, M3, PE on Power Connector	3.4.2.1	
Auxiliary Power Cable	24v +,-	0	

3.1.2.4 Communication Connectors

Component	Port on Tuba	Described in Section	Diagram
RS232 Communication Cable	COMM. 1	3.4.9.1	HAROBEA 1
CANopen Communication cable(s)	COMM. 2	3.4.9.2	

Component	Port on Tuba	Described in Section	Diagram
Analog Inputs (if needed)	ANALOG I/O	3.4.8.1	CELOSIAA DVIG CORTIGA
Digital Outputs Cable (if needed)	COMMITTED I/O	3.4.8.2	CO FUBOIAA
Digital Inputs Cable (if needed)	GENERAL I/O	3.4.8.3	TURCOGA
Main Feedback Cable	FEEDBACK A	3.4.5	
Auxiliary Feedback Cable (if needed)	FEEDBACK B	3.4.7	CORMA

3.1.2.5 Feedback and I/O Connectors

3.1.2.6 Other I tems Needed

Component Described in Section		Diagram	
PC for drive setup and tuning			
Motor data sheet or manual			

3.2 Unpacking the Drive Components

Before you begin working with the Tuba system, verify that you have all of its components, as follows:

- The Tuba servo drive
- The Composer software and software manual

The Tuba is shipped in a cardboard box with styrofoam protection.

To unpack the Tuba:

- 1. Carefully remove the servo drive from the box and the Styrofoam.
- 2. Check the drive to ensure that there is no visible damage to the instrument. If any damage has occurred, report it immediately to the carrier that delivered your drive.
- 3. To ensure that the Tuba you have unpacked is the appropriate type for your requirements, locate the part number sticker on the side of the Tuba. It looks like this:

The P/N number at the top gives the type designation as follows:

4. Verify that the Tuba type is the one that you ordered, and ensure that the voltage meets your specific requirements.

3.3 Mounting the Tuba

The Tuba has been designed for two standard mounting options:

- Attaching directly to the wall with screws
- Mounting on a DIN rail

With either type of mounting, be sure to leave about 10 cm (4 in) above and below the instrument for heat dissipation.

3.3.1 Mounting Directly onto Wall

The vertical mounting strip at the back of the Tuba enables you to screw the drive directly into a wall.

To mount the Tuba with the mounting strip:

1. On the back of the drive, push the mounting strip up until it clicks and locks. The top lip (with the hole) should be exposed.

Figure 3-1: Extending the Mounting Strip

Mount the Tuba vertically onto the wall with two screws, one through the top hole of the mounting strip and one at the bottom.

3.3.2 Mounting on a DIN Rail

At the top rear of the Tuba, a horizontal groove lets you quickly and easily snap the drive onto a DIN rail in your work area.

To mount the Tuba on a DIN rail:

2. Be sure that the vertical mounting strip (with the hole at the top) is pressed down fully and does not protrude from the top of the instrument.

Figure 3-2: Mounting Strip Pressed Down

Tilt the Tuba back towards the top part of the DIN rail.

Figure 3-3: Attaching Top Part of Mounting Groove to DIN Rail

Press the Tuba down to a vertical position until it clicks onto the DIN rail.

Figure 3-4: Tuba Mounted on DIN Rail

3.4 Connecting the Cables

3.4.1 Wiring the Tuba

Once the Tuba is mounted, you are ready to wire the device. Proper wiring, grounding and shielding are essential for ensuring safe, immune and optimal servo performance of the Tuba.

Follow these instructions to ensure safe and proper wiring:

Use twisted pair shielded cables for control, feedback and communication connections.
 For best results, the cable should have an aluminum foil shield covered by copper braid, and should contain a drain wire.

The drain wire is a non-insulated wire that is in contact with parts of the cable, usually the shield. It is used to terminate the shield and as a grounding connection.

- The impedance of the wire must be as low as possible. The size of the wire must be thicker than actually required by the carrying current. A 24, 26 or 28 AWG wire for control and feedback cables is satisfactory although 24 AWG is recommended.
- Use shielded wires for motor connections as well. If the wires are long, ensure that the capacitance between the wires is not too high: C < 30 nF is satisfactory for most applications.
- Keep all wires and cables as short as possible.

3-8

- Keep the motor wires as far away as possible from the feedback, control and communication cables.
- Ensure that in normal operating conditions, the shielded wires and drain *carry no current*. The only time these conductors carry current is under abnormal conditions, when electrical equipment has become a potential shock or fire hazard while conducting external EMI interferences directly to ground, in order to prevent them from affecting the drive. Failing to meet this requirement can result in drive/controller/host failure.
- After completing the wiring, carefully inspect all wires to ensure tightness, good solder joints and general safety.

Туре	Function	Port on Tuba	Connector Location
8-pin RJ-45 x 2	RS-232	COMM. 1	
9 pin D-sub socket	Analog Input	ANALOG I/O	Elmo 🔘
8-pin RJ-45 x 2	CANopen (In/Out)	COMM. 2	
15-pin high-density D-sub socket	Digital Outputs	COMMITTED I/O	
25-pin D-sub plug	Digital Inputs	GENERAL I/O	
15-pin D-sub socket	Main Feedback	FEEDBACK A	COMMITTED VO COMM. 2
15-pin D-sub plug	Auxiliary Feedback	FEEDBACK B	GENERAL I/O
2-pin terminal strip Molex	Auxiliary Power Supply	24v +, -	FEEDBACK A
10-pin terminal block Molex	Mains, Motor Power & DC Link	B1, B2, M1, M2, M3, PE, PE, AC1, AC2, AC3	
			M1 M2 M3 PE PE AC1 AC2 AC3 B1 B2 MOTOR POWER Ext. TUB003B.CDR

The Tuba has the following connectors:

Table 3-1: Connectors on the Tuba

Figure 3-5: Tuba Detailed Connection Diagram

3.4.2 Connecting the Power Cables

Access the power terminal connections on the Tuba servo drive by removing the front safety cover located at the bottom of the front panel of the unit, as shown below:

Figure 3-6: Removable Bottom Panel

After removing the safety cover, the power terminal connections are visible, as follows:

Figure 3-7: Tuba Power Connectors

The main power connector located at the bottom of the Tuba, as follows:

Pin	Function	Ca	able	Pin Positions	
B1	DC Link (+)	DC	Link		
B2	DC Link (-)	DC	Link		
AC3	Phase 3	Ро	wer		
AC2	Phase 2	Ро	wer		
AC1	Phase 1	Ро	wer		
PE	Protective earth	Ро	wer		
		AC Motor Cable	DC Motor Cable	Pow	
PE	Protective earth	Motor	Motor		
M3	Motor phase	Motor	N/C*	Motor Cable	
M2	Motor phase	Motor	Motor	TUBOOIGA	
M1	Motor phase	Motor	Motor*		
È	When connecting several motors, all must be wired in an identical manner.				
*	On prototype versions of the Tuba, M3 was connected to the Motor and M1 was not.				

Table 3-2: Connector for Main Power and Motor Cables

3.4.2.1 Connecting the Motor Cable

Connect the motor power cable to the M1, M2, M3 and PE terminals of the main power connector. The phase connection order is arbitrary because the Composer will establish the proper commutation automatically during setup. However, if you plan to copy the set-up to other drives, then the phase order on all copy drives must be the same.

Notes for connecting the motor cables:

- For best noise immunity, it is highly recommended to use a shielded (not twisted) cable for the motor connection. A 4-wire shielded cable should be used. The gauge is determined by the actual current consumption of the motor.
- The fourth wire should be used for the ground connection between the motor and the PE terminal of the Tuba.
- Connect the shield of the cable to the closest ground connection at the motor end.
- Connect the shield of the cable to the PE terminal on the Tuba.
- Be sure that the motor chassis is properly grounded.

Figure 3-8: AC Motor Power Connection Diagram

3.4.2.2 Connecting the Main Power Cable

Connect the main power supply cable to the AC1, AC2 and AC3 terminals of the main power connector. Connect the Protective Earth wire to the nearest PE terminal on the terminal block.

Notes for connecting the AC power cable:

- For best noise immunity, a shielded (not twisted) cable is recommended (not mandatory) for the AC power supply cable. A 4-wire shielded cable should be used. The gauge is determined by the actual current consumption of the motor.
- Connect the four wires to the AC power leads of the source.
- For safety requirements, the fourth wire must be used for the protective earth connection (connected to the PE terminal).

Figure 3-9: Main Power Supply Connection Diagram

3.4.2.3 Connecting the DC Link Cable

Each Tuba contains a shunt. Its purpose is to "absorb" regenerated energy created by the motor during braking and convert that energy into heat. If the energy regenerated by the motor exceeds the capacity of the shunt, the drive is switched off and an over-voltage error message is sent.

To prevent this from happening, the capacity of the shunt system can be extended by connecting the shunts of several Tubas in parallel. When two or more Tubas are connected, by DC Link cables, the regenerated energy is distributed equally among the drives. This spreads the energy spikes over several shunts and enables the specific Tuba to continue normal operation.

Figure 3-10: The Tuba's External DC Link Option (Note: Tuba 1 and 2 must have an identical voltage rating.)

3.4.3 Connecting the Auxiliary Supply Cable (24v)

Connect the auxiliary supply to the 24VDC terminal block on the bottom of the Tuba. Remember, you are working with DC power; so be sure to exercise caution.

Notes for 24 VDC auxiliary supply connections:

- Use a 24 AWG twisted pair shielded cable. For best results the shield should have aluminum foil covered by copper braid.
- The 24 VDC auxiliary power supply must meet all safety standards and must be separated from hazardous live voltages using reinforced or double insulation in accordance with approved safety standards.
- For safety reasons, connect the return of the 24 VDC source to the closest ground.
- Connect the cable shield to the closest ground near the 24 VDC source.
- Before applying power, first verify the polarity of the connection.

Pin	Signal	Function	Pin Position
[+]	+24VDC	+24 VDC auxiliary supply	
[-]	RET24VDC	Return (common) of the 24 VDC auxiliary supply	

Table 3-3: Auxiliary Power Supply

Figure 3-11: Auxiliary Supply (24v) Connection Diagram

3.4.4 Feedback and Control Cable Assemblies

The Tuba features easy-to-use D-sub type connections for all Control and Feedback cables. Below are instructions and diagrams describing how to assemble those cables.

- Use 24, 26 or 28 AWG twisted-pair shielded cables (24 AWG cable is recommended). For best results, the shield should have aluminum foil covered by copper braid.
- Use only a D-sub connector with a **metal housing**.
- Attach the braid shield tightly to the metal housing of the D-type connector.
- On the motor side connections, ground the shield to the motor chassis.
- On controller side connections, follow the controller manufacturer's recommendations concerning the shield.

Figure 3-12: Feedback and Control Cable Assemblies

3.4.5 Main Feedback Cable (Feedback A)

The main feedback cable is used to transfer feedback data from the motor to the drive.

The Tuba accepts the following as a main feedback mechanism:

- Incremental encoder only
- Incremental encoder with digital Hall sensors
- Digital Hall sensors only
- Interpolated Analog (Sine/Cosine) encoder (option)
- Resolver (option)
- Tachometer and Potentiometer
- Absolute encoder

FEEDBACK A on the front of the Tuba has a 15-pin D-sub socket. Connect the Main Feedback cable from the motor to FEEDBACK A using a 15-pin, D-Sub plug with a metal housing. When assembling the Main Feedback cable, follow the instructions in Section 3.4.4 (Feedback and Control Cable Assemblies).

	Incremental Encoder		Ē	ated Analog ncoder	Resolver		Tachometer and Potentiometer	
Pin	TUB Signal	XX/YYY_ Function	TUB	XX/YYYI Function	TUB Signal	XX/YYYR Function	TUE	SXX/YYYT Function
1	HC	Hall sensor C	HC	Hall sensor C	NC	-	HC	Hall sensor C
2	HA	Hall sensor A input	HA	Hall sensor A input	NC	-	HA	Hall sensor A input
3	SUPRET	Supply return	SUPRET	Supply return	SUPRET	Supply return	SUPRET	Supply return
4	+5V	Encoder/Hall +5V supply	+5V	Encoder/Hall +5V supply	+5V	Encoder/Hall +5V supply	+5V	Encoder/Hall +5V supply
5	CHA-	Channel A complement	A-	Sine A complement	S3	Sine A complement	Tac 1-	Tacho Input 1 Neg. (20V max)
6	СНА	Channel A	A+	Sine A	S1	Sine A	Tac 1+	Tacho Input 1 Pos. (20V max)
7	INDEX-	Index complement	R-	Reference complement	R2	Vref complmnt f= 1/TS, 50mA Maximum	NC	-
8	INDEX	Index	R+	Reference	R1	Vref f=1/TS, 50mA Max.	РОТ	Potentiometer Input
9	SUPRET	Supply return	SUPRET	Supply return	SUPRET	Supply return	SUPRET	Supply return
10	НВ	Hall sensor B input	НВ	Hall sensor B input	NC	-	НВ	Hall sensor B input
11	SUPRET	Supply return	SUPRET	Supply return	SUPRET	Supply return	SUPRET	Supply return
12	+5V	Encoder/Hall +5V supply	+5V	Encoder/Hall +5V supply	+5V	Encoder/Hall +5V supply	+5V	Encoder/Hall +5V supply
13	SUPRET	Supply return	SUPRET	Supply return	SUPRET	Supply return	SUPRET	Supply return
14	CHB-	Channel B complement	В-	Cosine B complement	S4	Cosine B complement	Tac 2-	Tacho Input 2 Neg. (50V max)
15	СНВ	Channel B	B+	Cosine B	S2	Cosine B	Tac 2+	Tacho Input 2 Pos. (50V max)

Table 3-4A: Main Feedback Cable Pin Assignments

	Absolute Encoders							
	TUB XX/YYYQ							
Pin	Signal Heidenhain		Stegmann					
1	HC	Hall C	Hall C					
2	HA	Hall A	Hall A					
3	SUPRET	Supply return	Supply return					
4	+5V	EnDat (Heidenhain) Encoder +5 supply	Halls supply +5V					
5	A-	Sine A complement	Sine A					
6	A+	Sine A	Sine A complement					
7	DATA-	Data complement	Data complement					
8	DATA+	DATA	DATA					
9	SUPRET	Supply return	Supply return					
10	HB	Hall B	Hall B					
11	CLK-	CLOCK complement	-					
12	+8V	-	Stegmann Encoder +8V supply					
			8 V @90mA maximum					
13	CLK+	CLOCK	-					
14	B-	Cosine B complement	Cosine B complement					
15	B+	Cosine B	Cosine B					

Table 3-4B: Main Feedback Cable Pin Assignments

TUB0004A

Figure 3-13: Main Feedback- Incremental Encoder with Digital Hall Sensor - Connection Diagram

11

_ 13

Figure 3-14: Main Feedback – Interpolated Analog Encoder Connection Diagram

Figure 3-15: Main Feedback – Resolver Connection Diagram

Installation

Figure 3-16: Main Feedback – Tachometer Feedback with Digital Hall Sensor Connection Diagram for Brushless Motors

Figure 3-17: Main Feedback – Tachometer Feedback Connection Diagram

Figure 3-18: Main Feedback – Potentiometer Feedback with Digital Hall Sensor Connection Diagram for Brushless Motors

Figure 3-19: Main Feedback – Potentiometer Feedback Connection Diagram

Installation 3-20

MAN-TUBIG (Ver. 1.3)

Figure 3-20: Main Feedback – Stegmann Feedback Connection Diagram

Figure 3-21: Main Feedback – Heidenhain Feedback Connection Diagram

3.4.6 Main and Auxiliary Feedback Combinations

The Main Feedback is always used in motion control devices whereas Auxiliary Feedback is often, but not always used. The Auxiliary Feedback connector on the Tuba, "FEEDBACK B" has two ports, Port B1 and Port B2. When used in combination with the Main Feedback port, "FEEDBACK A", the ports can be set, by software, as follows:

Stursetting FEED-Setting BACK A	FEEDBACK B Ports B1 and B2					
FEED- BACK A	YA[4] = 4	YA[4] = 2	YA[4] = 0			
Incremental Encoder Input	A - input Analog Encoder Buffered Main Encoder Signal B2 - output Same as B1		1 and B2 are not to be e DC Link connectors ninal block.			
Interpolated Analog (Sin/Cos) Encoder Input	A - input Analog Encoder Bil - output Analog Encoder Position Data Emulated in Incremental Encoder Format (signals are quadrature, differential & buffered) B2 - output	A - input Incremental Encoder or Analog Encoder	A - input Incremental Encoder or Analog Encoder or Commands			
Resolver Input	A - input Resolver Resolver Resolver Resolver Resolver Resolver Resolver Resolver Resolver Resolver Resolver Resolver Resolver Position Data Emulated in Incremental Encoder Format (signals are quadrature, differential & buffered) B2 - output	or Resolver or Tachometer Potentiometer Potentiometer	Resolver or Tachometer Potentiometer			
Tachometer Input	A - input Tachometer Position Data Emulated in Incremental Encoder Format (signals are quadrature, differential & buffered) B2 - output Same as B1					

Sty Setting FEED- BACK A	F	FEEDBACK B Ports B1 and B2					
FEED-	YA[4] = 4	YA[4] = 2	$\mathbf{YA[4]} = 0$				
Potentiometer Input	A - input Potentiometer Potentiometer Potentiometer B1 - output Potentiometer Position Data Emulated in Incremental Encoder Format (signals are quadrature, differential & buffered) B2 - output same as B1	A - input Incremental Encoder or Analog Encoder or Resolver or Tachometer Potentiometer	A - input Incremental Encoder or Analog Encoder or Resolver or Tachometer Potentiometer				
Typical Applications	 ★ Any application where the main encoder is used, not only for the drive, but also for other purposes such as position controllers and/or other drives. ★ Analog Encoder applications where position data is required in the Encoder's quadrature format. ★ Resolver applications where position data is required in the Encoder's quadrature format. ★ Tachometer Applications where position data is required in the Encoder's quadrature format. ◆ Tachometer Applications where position data is required in the Encoder's quadrature format. ♦ Potentiometer applications where position data is required in the Encoder's quadrature format. 	Any application where two feedbacks are used by the drive. Port B1 serves as an input for the auxiliary incremental encoder (differential or single- ended). Port B2 is used to output differential buffered Auxiliary Incremental Encoder signals. For applications such as Follower, ECAM, or Dual Loop.	Port B1 serves as an input for Pulse & Direction commands (differential or single-ended). Port B2 is used to output differential buffered Pulse & Direction signals.				
3-25

3.4.7 Auxiliary Feedback (FEEDBACK B)

When using one of the auxiliary feedback options, the relevant functionality of FEEDBACK B ports are software selected for that option. Refer to the Tuba *Command Reference Manual* for detailed information about FEEDBACK B setup.

3.4.7.1 Main Encoder Buffered Outputs or Emulated Encoder Outputs Option on FEEDBACK B (YA[4]=4)

Through FEEDBACK B (Ports B1 and B2) the Tuba can provide **two simultaneous buffered main, or emulated, encoder signals** to other controllers or drives. This option can be used when:

- The Tuba is used as a current amplifier to provide position data to the position controller.
- The Tuba is used in velocity mode, to provide position data to the position controller.
- The Tuba is used as a master in Follower or ECAM mode.

Below are the signals on the Auxiliary Feedback ports when set up to run as a buffered outputs or emulated outputs of the main feedback (on FEEDBACK A):

Port	Pin	Signal	Function	Pin Position
B1	1	INDEX	Auxiliary index high <i>output</i>	
B1	2	СНВ	Auxiliary Channel B high output	
B1	3	СНА	Auxiliary Channel A high <i>output</i>	
PWR	4	+5V	Encoder supply voltage	
PWR	5	SUPRET	Encoder supply voltage return	
B2	6	CHAO	Buffered Channel A output	CORDIEA
B2	7	СНВО	Buffered Channel B output	15 Pin D-Sub Socket
B2	8	INDEXO	Buffered Index output	
B1	9	INDEX-	Auxiliary Index low <i>output</i>	OPort B1 ⊗Power
B1	10	CHB-	Auxiliary Channel B low output	Port B2
B1	11	CHA-	Auxiliary Channel A low output	
PWR	12	SUPRET	Supply return	9 000⊗☆ ☆ ☆ ¹⁵
B2	13	CHAO-	Buffered Channel A complement output	15 Pin D-sub Plug
B2	14	CHBO-	Buffered Channel B complement output	on Tuba
B2	15	INDEXO-	Buffered Index complement output	011 I UDa

 Table 3-5: Main Encoder Buffered Outputs or Emulated Encoder Outputs on FEEDBACK B

 Pin Assignments

FEEDBACK B, on the front of the Tuba, has a 15-pin D-sub plug. Connect the Auxiliary Feedback cable, from the controller or other device, to FEEDBACK B using a 15-pin D-Sub socket with a metal housing. When assembling the Auxiliary Feedback cable, follow the instructions in Section 3.4.4 (Feedback and Control Cable Assemblies).

Figure 3-22: Main Encoder Buffered Output or Emulated Encoder Output on FEEDBACK B -Connection Diagram

3.4.7.2 Differential Auxiliary Encoder Input Option on FEEDBACK B (YA[4]=2)

The Tuba can be used as a slave by receiving the position of the master encoder data (on Port B1) in Follower or ECAM mode. In this mode Port B2 provides **differential buffered auxiliary outputs** for the next slave axis in follower or ECAM mode.

Below are the signals on the Auxiliary Feedback port when set up to run as a differential auxiliary encoder input:

Port	Pin	Signal	Function	Pin Position
B1	1	INDEX	Auxiliary Index high <i>input</i>	\bigcirc
B1	2	СНВ	Auxiliary Channel B high <i>input</i>	
B1	3	CHA	Auxiliary Channel A high <i>input</i>	
PWR	4	+5V	Encoder supply voltage	
PWR	5	SUPRET	Encoder Supply return	
B2	6	CHAO	Buffered Channel A output	CORDIGA
B2	7	СНВО	Buffered Channel B output	15 Pin D-Sub Socket
B2	8	INDEXO	Buffered Index output	
B1	9	INDEX-	Auxiliary Index low <i>input</i>	OPort B1 ⊗Power
B1	10	CHB-	Auxiliary Channel B low input	Port B2
B1	11	CHA-	Auxiliary Channel A low input	
PWR	12	SUPRET	Supply return	9 0 0 0 ⊗☆ ☆ ☆ ¹⁵
B2	13	CHAO-	Buffered Channel A complement output	15 Pin D-Sub Plug
B2	14	CHBO-	Buffered Channel B complement output	on Tuba
B2	15	INDEXO-	Buffered Index complement output	

Table 3-6: Differential Auxiliary Encoder Input Option on FEEDBACK BPin Assignments

FEEDBACK B on the front of the Tuba has a 15-pin D-sub plug. Connect the Auxiliary Feedback cable from the feedback device to FEEDBACK B using a 15-pin D-Sub socket with a metal housing. When assembling the Auxiliary Feedback cable, follow the instructions in Section 3.4.4 (Feedback and Control Cable Assemblies). MAN-TUBIG (Ver. 1.3)

Figure 3-23: Differential Auxiliary Encoder Input Option on FEEDBACK B -Connection Diagram

3.4.7.3 Single-ended Auxiliary Input Option on FEEDBACK B (YA[4]=2)

The Tuba can be used as a slave by receiving the position data of the master encoder (on Port B1) in Follower or ECAM mode. In this mode Port B2 provides **differential buffered auxiliary outputs** for the next slave axis in Follower or ECAM mode.

Below are the signals on the Auxiliary Feedback ports when set up to run as a single-ended auxiliary encoder input:

Port	Pin	Signal	Function	Pin Position
B1	1	INDEX	Auxiliary Index <i>input</i>	
B1	2	СНВ	Auxiliary Channel B <i>input</i>	
B1	3	CHA	Auxiliary Channel A input	
PWR	4	+5V	Encoder Supply Voltage	
PWR	5	SUPRET	Encoder Supply return	
B2	6	CHAO	Buffered Channel A output	CORDIGA
B2	7	CHBO	Buffered Channel B output	15 Pin D-Sub Socket
B2	8	INDEXO	Buffered Index output	
-	9	-	Do not connect this pin	OPort B1 ⊗Power
-	10	-	Do not connect this pin	Port B2 ON.C.
-	11	-	Do not connect this pin	
PWR	12	SUPRET	Supply return	9 ○○○⊗✿ ✿ ✿ ¹⁵ //
B2	13	CHAO-	Buffered Channel A complement output	15 Din D. Sub Dlug
B2	14	CHBO-	Buffered Channel B complement output	15 Pin D-Sub Plug on Tuba
B2	15	INDEXO-	Buffered Index complement output	

Table 3-7: Single-ended Auxiliary Encoder Option on FEEDBACK B - Pin Assignments

FEEDBACK B on the front of the Tuba has a 15-pin D-sub plug. Connect the Auxiliary Feedback cable from the feedback device to FEEDBACK B using a 15-pin D-Sub socket with a metal housing. When assembling the Auxiliary Feedback cable, follow the instructions in Section 3.4.4 (Feedback and Control Cable Assemblies). Tuba Installation Guide MAN-TUBIG (Ver. 1.3)

Figure 3-24: Single-ended Auxiliary Input Option on FEEDBACK B - Connection Diagram

3.4.7.4 Pulse-and-Direction Input Option on FEEDBACK B (YA[4]=0)

This mode is used for input of differential or single-ended pulse-and-direction position commands on Port B1. In this mode Port B2 provides **differential buffered pulse-and-direction outputs** for another axis.

Below are the signals on the Auxiliary Feedback ports when set up to run as a single-ended pulse-and-direction input:

Port	Pin	Signal	Function	Pin Position
-	1	N.C.	do not connect this pin	
B1	2	DIR/CHB	Direction/Auxiliary Channel B high input	
B1	3	PULS/CHA	Pulse/Auxiliary Channel A high <i>input</i>	
PWR	4	+5V	Encoder supply voltage	
PWR	5	SUPRET	Encoder supply return	
B2	6	CHAO	Buffered Channel A output	
B2	7	СНВО	Buffered Channel B output	CORDIEA
-	8	N.C.	do not connect this pin	15 Pin D-Sub Socket
-	9	N.C.	do not connect this pin	15 Pin D-Sub Plug
-	10	N.C.	do not connect this pin	OPort B1 ⊗Power
-	11	N.C.	do not connect this pin	Port B2 ON.C.
PWR	12	SUPRET	Supply Return	
B2	13	CHAO-	Buffered Channel A complement output	9000⊗ ₽ ₽0 ¹⁵ //
B2	14	CHBO-	Buffered Channel B complement output	
-	15	N.C.	do not connect this pin	

Table 3-8: Single-Ended Pulse-and-Direction Auxiliary Encoder Pin Assignment on FEEDBACK B

Port	Pin	Signal	Function	Pin Position
	1~9		same as table above	15 Pin D-Sub Plug
B1	10	DIR-/CHB-	Direction/Auxiliary Channel B low <i>input</i>	O Port B1 ⊗ Power S Port B2 ON.C.
B1	11	PULS-/CHA-	Pulse/Auxiliary Channel A low <i>input</i>	(1) O O⊗⊗ C C C ⁸ / 9) O O⊗C C C ¹⁵ /
	12~15		same as table above	

Table 3-9: Differential Pulse-and-Direction Auxiliary Encoder Pin Assignment on FEEDBACK B

FEEDBACK B on the front of the Tuba has a 15-pin D-sub plug. Connect the Auxiliary Feedback cable from the Pulse and Direction Controller to FEEDBACK B using a 15-pin D-Sub socket with a metal housing. When assembling the Auxiliary Feedback cable, follow the instructions in Section 3.4.4 (Feedback and Control Cable Assemblies).

Figure 3-25: Single-Ended Pulse-and-Direction Input Option on FEEDBACK B - Connection Diagram

Figure 3-26: Differential Pulse-and-Direction Input Option on FEEDBACK B - Connection Diagram

3.4.8 I/O Cables

The Tuba has three I/O ports (*ANALOG INPUTS, DIGITAL INPUTS AND DIGITAL OUTPUTS*) which can be used to connect 2 analog inputs, 10 separate digital inputs and 6 separate digital outputs:

LABEL I/O	ANALOG INPUTS	GENERAL I/O	COMMITTED I/O	Total
Analog Input	2	-	-	2
Digital Input	-	10	-	10
Digital Output	_	-	6	6

3.4.8.1 Analog Inputs

The Tuba servo drive is equipped with two differential, freely-programmable analog inputs. The ANALOG INPUTS port has a 9-pin D-sub socket. When assembling an I/O cable for analog input follow the instructions in Section 3.4.4 (Feedback and Control Cable Assemblies) using a 9-pin D-sub plug with a metal case. The pins are described below.

Pin #	Signal	Function	Pin Positions
1	ANLIN1+	Analog input 1 - positive	
2	ANLIN1-	Analog input 1 - negative	
3	SUPRET	Supply return	
4	ANLIN2+	Analog input 2 - positive	
5	ANLIN2-	Analog input 2 - negative	
6	ANLRET	Analog return	
7	_	_	
8	_	_	CEL0040A-DWG COR016A
9	ANLRET	Analog return	

Table 3-10: Analog Input Pin Assignments

Figure 3-27: Analog Inputs Connection Diagram

The Tuba servo drive is equipped with a 25-pin D-sub plug for digital inputs. When assembling an I/O cable for digital input follow the instructions in Section 3.4.4 (Feedback and Control Cable Assemblies) using a 25-pin D-sub socket with a metal case. The pins are described below.

Pin	Signal	Function	Pin Position
1	N.C.	Not Connected	
2	IN10	Programmable input 10	
3	IN9	Programmable input 9	
4	IN8	Programmable input 8	
5	IN7	Programmable input 7	
6	N.C.	Not Connected	
7	IN6	Programmable input 6	
8	N.C.	Not Connected	
9	IN5	Programmable input 5	
10	IN4	Programmable input 4	
11	IN3	Programmable input 3	
12	IN2	Programmable input 2	
13	IN1	Programmable input 1	
14	INRET10	Programmable inputs return 10	
15	INRET9	Programmable inputs return 9	
16	INRET8	Programmable inputs return 8	
17	INRET7	Programmable inputs return 7	
18	N.C.	Not Connected	
19	INRET6	Programmable inputs return 6	
20	N.C.	Not Connected	
21	INRET5	Programmable inputs return 5	
22	INRET4	Programmable inputs return 4	
23	INRET3	Programmable inputs return 3	
24	INRET2	Programmable inputs return2	
25	INRET1	Programmable inputs return 1	

Table 3-11: Digital Inputs (on Committed I/O port) Pin Assignments

Figure 3-28: Digital Inputs (on General I/O port) Connection Diagram

The Tuba servo drive is equipped with a 15-pin, high-density, D-sub socket for digital outputs. When assembling an I/O cable for digital outputs follow the instructions in Section 3.4.4 (Feedback and Control Cable Assemblies) using a 15-pin high density D-sub plug with a metal case. The pins are described below.

Pin	Signal	Function	Pin Position
1	OUT1	Programmable output 1	
2	OUT2	Programmable output 2	
3	OUT3	Programmable output 3	
4	OUT4	Programmable output 4	
5	OUT5	Programmable output 5	
6	OUTRET1	Programmable output return 1	
7	OUTRET2	Programmable output return 2	
8	OUTRET3	Programmable output return 3	
9	OUTRET4	Programmable output return 4	
10	OUTRET5	Programmable output return 5	
11	OUT6	Programmable output 6	TUB018A
12	OUTRET6	Programmable output return 6	
13	-	-	
14	-	-	
15	-	-	

Table 3-12: Digital Outputs (on Committed I/O port) Cable - Pin Assignments

*

***** (

Controller Tuba Digital Outputs Rout = 20Ω OUT1 ∑ 33∨ 6 OUTRET1 Rout = 20Ω 2 OUT2 7 ∑ 33v OUTRET2 3

Figure 3-29: Digital Outputs (on COMMITTED I/O port) Connection Diagram

3.4.9 Communication Cables

The communication cables use an 8-pin RJ-45 plug that connect to the RS-232 and CANopen ports on the front of the Tuba.

The communication interface may differ according to the user's hardware. The Tuba can communicate using the following options:

- a. RS-232, full duplex
- b. CANopen

RS-232 communication requires a standard, commercial 3-core null-modem cable connected from the Tuba to a serial interface on the PC. The interface is selected and set up in the Composer software.

In order to benefit from **CANopen** communication, the user must have an understanding of the basic programming and timing issues of a CANopen network. The interface is electrically isolated by optocouplers.

For ease of setup and diagnostics of CAN communication, RS-232 and CANopen can be used simultaneously.

3.4.9.1 RS-232 Communication (on the COMM.1 Port)

Notes for connecting the RS-232 communication cable:

- Use a 26 or 28 AWG twisted pair shielded cable. The shield should have aluminum foil covered by copper braid with a drain wire.
- Connect the shield to the ground of the host (PC). Usually, this connection is soldered internally inside the connector at the PC end. You can use the drain wire to facilitate connection.
- The male RJ plug must have a shield cover.
- Ensure that the shield of the cable is connected to the shield of the RJ plug. The drain wire can be used to facilitate the connection.

RS-232 (L) Pin	RS-232 (R) Pin	Signal	Function	Pin Location
1	1	_	_	\bigwedge
2	2	_		
3	3	Tx	RS-232 transmit	HAR0085A
4	4	—	_	
5	5	COMRET	Communication return	
6	6	Rx	RS-232 receive	1—1
7	7	_		
8	8	_		

Table 3-13: RS-232 Cable - Pin Assignments

Figure 3-30: RS-232 Connection Diagram

3.4.9.2 CANopen Communication (on the COMM.2 Ports)

Notes for connecting the CANopen communication cable:

- Use 26 or 28 AWG twisted pair shielded cables. For best results, the shield should have aluminum foil and covered by copper braid with a drain wire
- Connect the shield to the ground of the host (PC). Usually, this connection is soldered internally inside the connector at the PC end. You can use the drain wire to facilitate connection.
- The male RJ plug must have a shield cover.
- Ensure that the shield of the cable is connected to the shield of the RJ plug. The drain wire can be used to facilitate the connection.

Pin	Signal	Function	Pin Position
1	CAN_H	CAN_H busline (dominant high)	
2	CAN_L	CAN_L busline (dominant low)	
3	CAN_GND	CAN ground	HAROOBSA
4, 5, 8	—	—	
6	CAN_SHLD	Shield, connected to the RJ plug cover	
7	CAN_GND	CAN Ground	1—

• Connect a termination 120-ohm resistor at each of the two ends of the network cable.

Table 3-14: CANopen Cable - Pin Assignments

MAN-TUBIG (Ver. 1.3)

Figure 3-31: CANopen Connection Diagram

3.5 Powering Up

After the Tuba has been mounted, check that the cables are intact. The Tuba servo drive is then ready to be powered up.

<u>.</u>

Caution:

Before applying power, ensure that the AC supply is within the range specified for your specific type of Tuba.

3.6 Initializing the System

After the Tuba has been connected and mounted, the system must be set up and initialized. This is accomplished using the *Composer*, Elmo's Windows-based software application. Install the application and then perform setup and initialization according to the directions in the *Composer Software Manual*.

Appendix: Technical Specifications

A.1 Features

A.1.1 Motion Control Modes

- Current/Torque up to 14 kHz sampling rate
- Velocity up to 7 kHz sampling rate
- Position up to 3.5 kHz sampling rate

A.1.2 Advanced Positioning Motion Control Modes

- PTP, PT, PVT, ECAM, Follower, Pulse and Direction, Dual Loop
- Fast event capturing inputs
- Fast output compare (OC)

A.1.3 Advanced Filters and Gain Scheduling

- "On-the-Fly" gain scheduling of current and velocity
- Velocity and position with "1-2-4" PIP controllers
- Automatic commutation alignment
- Automatic motor phase sequencing

A.1.4 Fully Programmable

- Third generation programming structure with motion commands
- Event capturing interrupts
- Event triggered programming

A.1.5 Feedback Options

- Incremental Encoder up to 20 Mega-Counts (5 Mega-Pulse) per second
- Digital Halls up to 2 kHz
- Incremental Encoder with Digital Halls for commutation up to 20 Mega-Counts per second for encoder
- Absolute Encoder
- Interpolated Analog Sine/Cosine Encoder up to 250 kHz (analog signal)
 - Internal Interpolation up to x4096
 - Automatic Correction of amplitude mismatch, phase mismatch, signals offset
 - Encoder outputs, buffered, differential.
- Resolver
 - Programmable 10~15 bit resolution
 - Up to 512 revolutions per second (RPS)
 - Encoder outputs, buffered, differential
- Tachometer (inputs for ±20 V max. voltage and for ±20 V max. voltage)
- Potentiometer (0 ~ 5 V input voltage provided by the Tuba)
- Elmo drives provide supply voltage for all the feedback options

A-2

A.1.6 Input/Output

- Analog Inputs up to 14-bit resolution
- Programmable digital inputs, optically isolated
 - Inhibit \ Enable motion
 - Software and analog reference stop
 - Motion limit switches
 - Begin on input
 - Abort motion
 - General-purpose
 - Homing
- Fast event capture inputs, optically isolated
- Programmable digital outputs
 - Brake Control
 - Amplifier fault indication
 - General-purpose
 - Servo enable indication
- Buffered and differential outputs of the main encoder with up to 5 MHz pulses
- Buffered and differential outputs of the auxiliary encoder
- Emulated output of the resolver, interpolated analog encoder, Tachometer or Potentiometer
- Fast output compare (OC), optically isolated

A.1.7 Built-In Protection

- Software error handling
- Abort (hard stops and soft stops)
- Status reporting
- Protection against
 - Shorts between motor power outputs
 - Shorts between motor power output and power input/return
 - Failure of internal power supplies
 - Overheating
 - Over/Under voltage
 - Loss of feedback
 - Following error
 - Current limits
- Protection against regenerated over-voltage (when using external DC Link)
- DC-Linkage extends the limits of the built-in shunt and provides over voltage protection.

A.2 Tuba Dimensions

Front View

Side View

A.3 Mounting Dimensions

Rear View

A.4 Mechanical Specifications

Feature	Details
Mounting Method	Wall Mount ("Bookshelf")DIN Rail
Overall Dimensions	247 x 190 x 92 mm (9.7" x 7.5" x 3.6")
Weight	2.7 kg (5.9 lbs)

A.5 Power Ratings

Feature	Units	12/230	15/230	20/230	12/460	15/460	20/460
Minimum supply voltage	VAC	60		140			
Nominal supply voltage	VAC	1 x 115	1 x 115, 1 x 230, 3 x 230 3 x 400, 3 x 460				
Maximum supply voltage	VAC	1 x	270 or 3 x	x 27 0		3 x 505	
Maximum continuous power output	W	3600	4500	6000	6800	8500	11300
Efficiency at rated power (at nominal conditions)	%	> 93					
Auxiliary supply voltage	VDC		24 ± 15%				
Auxiliary power supply	VA	20					
Amplitude sinusoidal/DC continuous current	А	12	15	20	12	15	20
Sinusoidal continuous RMS current limit (Ic)	А	8.5	10.6	14.1	8.5	10.6	14.1
Peak current limit	А	2 x Ic					
Built-in shunt (peak power)	kW	6 11					
Weight	kg (lbs)	2.7 kg (5.9 lbs)					
Dimensions	mm (in)	247 x 190 x 92 (9.7" x 7.5" x 3.6")					
Digital in/Digital out/Analog in		10/6/2					
Mounting method		Wall mount ("Bookshelf") or DIN rail					

A.6 Environmental Conditions

Feature	Details
Ambient operating temperature	0 °C - 40 °C (32 °F - 104 °F)
Storage temperature	-20° ~ +85° C (-4° ~ +185° F)
Maximum humidity	90% non-condensing
Protection level	IP20

A-6

A.7 Tuba Connections

Pins	Туре	Maker & Part No.		Port
5	Motor	10 pole 8 mm pitch Molex terminal block		M1, M2, M3
2	Ground			PE, PE
3	Power		i wolex terminal block	AC1, AC2, AC3
2	DC Link			B1, B2
2	Auxiliary Power	2 pole 0.325" (8 mm) pitch Molex terminal strip		+,- (24V)
	Auxiliary Por		Connector Loc Motor Ground Power	Ext. DC Link

The following connectors are used for wiring the Tuba.

Table A-1: Connectors on the Bottom of the Tuba

Pins	Туре	Port	Connector Location
8	RJ-45 x 2	COMM. 1	
9	D-Sub Socket	ANALOG INPUTS	Elmo 🔘
8	RJ-45 x 2	COMM. 2	RS-232
15	D-Sub Socket High Density	COMMITTED I/O	ANALOG INPUTS
25	D-Sub Plug	GENERAL I/O	DIGITAL COMMITTED I/O COMM.2
15	D-Sub Socket	FEEDBACK A	DIGITAL GENERAL IO
15	D-Sub Plug	FEEDBACK B	FEEDBACK A FEEDBACK B FEEDBACK B

Table A-2: Connectors on the Tuba

A.7.1 Auxiliary Supply

Feature	Details
Auxiliary power supply	DC source only
Auxiliary supply input voltage	24 V <u>+</u> 15%
Auxiliary supply input power	20 W

The Tuba CANNOT operate without a 24 Volt Auxiliary Power Supply

 \checkmark Be sure to maintain power within the 24 V <u>+</u>15% range as higher voltages will damage the fan.

A.8 Control Specifications

A.8.1 Current Loop

Feature	Details	
Controller type	Vector, digital	
Compensation for bus voltage variations	"On-the-fly" gain scheduling	
Motor types	 AC brushless (sinusoidal) DC brushless (trapezoidal) DC brush Linear motors Moving coils 	
Current control	 Fully digital Sinusoidal with vector control Programmable PI control filter based on a pair of PI controls of AC current signals and constant power at high speed 	
Current loop bandwidth	< 2.5 kHz	
Current sampling time	Programmable 70 - 100 μsec	
Current sampling rate	Up to 16 kHz; default 11 kHz	

A.8.2 Velocity Loop

Feature	Details	
Controller type	PI	
Velocity control	 Fully digital Programmable PI and FFW control filters On-the-fly gain scheduling Automatic, manual and advanced manual tuning 	
Velocity and position feedback options	 Incremental Encoder Digital Halls Interpolated Analog (sin/cos) Encoder (optional) Resolver (optional) Tachometer and Potentiometer (optional) Note: With all feedback options, 1/T with automatic mode switching is activated (gap, frequency and derivative). 	
Velocity loop bandwidth	< 350 Hz	
Velocity sampling time	140 - 200 μsec (x2 current loop sample time)	
Velocity sampling rate	Up to 8 kHz; default 5.5 kHz	
Velocity command options	 Analog Internally calculated by either jogging or step Note: All software-calculated profiles support on-the-fly changes. 	

A.8.3 Position Loop

Feature	Details
Controller type	"1-2-4" PIP
Position command options	SoftwarePulse and Direction
Position loop bandwidth	< 80 Hz
Position sampling time	280 - 400 μsec (x 4 current loop sample time)
Position sampling rate	Up to 4 kHz; default 2.75 kHz

A.9 Feedbacks

A.9.1 Feedback Supply Voltage

Feature	Details
Main encoder supply voltage	5 V <u>+</u> 5% @ 200 mA maximum
Auxiliary encoder supply voltage	5 V <u>+</u> 5% @ 200 mA maximum

A.9.2 Incremental Encoder Input

Feature	Details
Encoder format	• A, B and Index
	 Differential
	Quadrature
Interface:	RS-422
Input resistance	Differential: 120 Ω
Maximum incremental encoder frequency	Maximum: 5 MHz pulses
Minimum quadrature input period (PIN)	112 nsec
Minimum quadrature input high/low period (PHL)	56 nsec
Minimum quadrature phase period (PPH)	28 nsec
Maximum encoder input voltage range	Common mode: ±7 V Differential mode: ±7 V

Figure A-1: Encoder Phase Diagram

A.9.3 Digital Halls

Feature	Details
Halls inputs	 H_A, H_B, H_C. Single ended inputs Built in hysteresis for noise immunity.
Input voltage	$\begin{array}{ll} \mbox{Nominal operating range:} & 0 \ V < V_{In_Hall} < 5 \ V \\ \mbox{Maximum absolute:} & -1 \ V < V_{In_Hall} < 15 \ V \\ \mbox{High level input voltage:} & V_{InHigh} > 2.5 \ V \\ \mbox{Low level input voltage:} & V_{InLow} < 1 \ V \\ \end{array}$
Input current	Sink current (when input pulled to the common): 3mA Source current: 1.5 mA (designed to also support open collector Halls)
Maximum frequency	f _{MAX} : 2 kHz

A.9.4 Interpolated Analog Encoder (Sine/Cosine)

Feature	Details
Analog encoder format	Sine and Cosine signals
Analog input signal level	 Offset voltage: 2.2 V – 2.8 V Differential, 1 V peak to peak
Input resistance	Differential 120 Ω
Maximum analog signal frequency	f _{MAX} : 250 kHz
Interpolation multipliers	Programmable: x4 to x4096
Maximum "counts" frequency	80 mega-counts/sec "internally"
Automatic errors correction	Signal amplitudes mismatch
	Signal phase shift
	Signal offsets

A.9.5 Resolver

Feature	Details
Resolver format	Sine/CosineDifferential
Input resistance	Differential 2.49 k Ω
Resolution	Programmable: 10 ~ 15 bits
Maximum electrical frequency (RPS)	512 revolutions/sec
Resolver transfer ratio	0.5
Reference frequency	1/Ts (Ts = sample time in seconds)
Reference voltage	Supplied by the Tuba
Reference current	Up to ±50 mA

A.9.6 Tachometer*

Feature	Details
Tachometer format	Differential
Maximum operating differential voltage for TAC1+, TAC1-	±20 V
Maximum absolute differential input voltage for TAC1+, TAC1-	±25 V
Maximum operating differential voltage for TAC2+, TAC2-	±50 V
Maximum absolute differential input voltage for TAC2+, TAC2-	±60 V
Input resistance for TAC1+, TAC1-	46 kΩ
Input resistance for TAC2+, TAC2-	100 kΩ
Resolution	14 bit

* Only one Tachometer port can be used at a time (either TAC1+/TAC1- or TAC2+/TAC2-). TAC1+/TAC1- is used in applications with having a Tachometer of less than 20V. TAC2+/TAC2- is used in applications with having a Tachometer of between 20V and 50V.

A.9.7 Potentiometer

Feature	Details
Potentiometer Format	Single-ended
Operating Voltage Range	$0 \sim 5$ V supplied by the Tuba
Potentiometer Resistance	$100 \ \Omega \sim 1 \ k\Omega$ above this range, linearity may be affected detrimentally
Input Resistance	100 kΩ
Resolution	14 Bit

A.9.8 Encoder Outputs

Feature	Details
Encoder output format	A, B, IndexDifferential outputsQuadrature
Interface	RS-422
Port B1 output current capability	 Driving differential loads of 200 Ω on INDEX/INDEX-, CHB/CHB- and CHA/CHA- pairs
Port B2 output current capability	 INDEXO/INDEXO-, CHBO/CHBO- and CHAO/CHAO- pairs are not loaded
Available as options	 Two simultaneous buffered outputs of main- incremental encoder input Two simultaneous emulated encoder outputs of the analog encoder input Two simultaneous emulated encoder outputs of the resolver input Two simultaneous emulated encoder outputs of the Tachometer Input Two simultaneous emulated encoder outputs of the Potentiometer Input Buffered output of auxiliary input
Maximum frequency	f _{MAX} : 5 MHz pulses/output
Index (marker)	Length of pulse is one quadrature (one quarter of an encoder cycle) and synchronized to A&B

A.10 I/Os

The Tuba has:

10 Digital Inputs

6 Digital Outputs 2 An

2 Analog Inputs

A-13

A.10.1 Digital Input Interfaces (on GENERAL I/O port)

Feature	Details	Connector Location
Type of input	Optically isolatedSingle endedPLC level	DIGITAL INPUTS
Input current	$Iin = \frac{Vin - 6.5V}{2500\Omega}$	Elmo 🔘
	* Iin = 2.2 mA @ Vin = 12 V	
Input current for high speed	$Iin = \frac{Vin - 6.5V}{1250\Omega}$	
inputs 5 & 6	* Iin = 4.4 mA @ Vin = 12 V	COMMITTED I/O COMM. 2
High-level input voltage	12 V < Vin < 30 V, 24 V typical	GENERAL JO
Low-level input voltage	0 V < Vin < 6.5 V	FEEDBACK A
Minimum pulse width	> 4 x TS, where TS is sampling time	
Execution time (all inputs): the time from application of voltage on input until execution is complete	If input is set to one of the built-in functions – Home, Inhibit, Hard Stop, Soft Stop, Hard and Soft Stop, Forward Limit, Reverse Limit or Begin – execution is immediate upon detection: $0 < T < 4 \times TS$ If input is set to General input, execution depends on program. Typical execution time: $\cong 0.5$ msec.	DIGINPUT
High-speed inputs 5 & 6 - minimum pulse width, in high- speed mode	 T < 5 μsec Notes: Home mode is high-speed mode and can be used for fast capture and precise homing. High speed input has a digital filter set to same value as digital filter (EF) of main encoder. Highest speed is achieved when turning on optocouplers. 	=2.5K Vz = 5.1v → → → o Input (i)
		Digital Input Schematic

A-14

A.10.2 Digital Output Interface (on COMMITTED I/O port)

Feature	Details	Connector Location
Type of output	 Optically isolated Open collector and open emitter	DIGITAL OUTPUTS
Maximum supply output (Vcc)	30 V	Elmo
Max. output current Iout (max) (Vout = Low)	Iout (max) ≤ 15 mA	
VOL at maximum output voltage (low level)	Vout (on) ≤ 0.3 V + 0.02 * Iout (mA)	
RL	External resistor RL must be selected to limit output current to no more than 15 mA. $R_L = \frac{Vcc - VOL}{Io(\text{max})}$	
Executable time	If output is set to one of the built- in functions – Home flag, Brake or AOK – execution is immediate upon detection: $0 < T < 4 \times TS$ If output is set to General output and is executed from a program, the typical time is approximately 0.5 msec.	COROOSIA
		Digital Output Schematic

A-15

A.10.3 Analog Input

Feature	Details	
Maximum operating differential voltage	± 10 V	Analog Input
Maximum absolute differential input voltage	± 16 V	Elmo
Differential input resistance	3 kΩ	
Analog input command resolution	14-bit	COMMITTED JO COMM. 2 GENERAL IO
		FEEDBACK A
		FEEDBACK B J2-AUX, POWER J1-POWER J1-POWER H1 W2 VA PE RE ACT AC2 AC3 B1 02 MOTOR POWER Res. TUB003B.CDR
		COR0024A

A.11 Communications

Specification	Details	Connector Location
RS-232	Signals:	RS-232
(Only one	 RxD , TxD , Gnd 	ports
RS-232 Port can be used	 Full duplex, serial communication for setup and control. 	Elmo 🔘
at a time)	 Baud Rate of 9,600 ~ 57,600 bit/sec. 	
CANopen	 CANbus Signals: CAN_H, CAN_L, CAN_GND Maximum Baud Rate of 1 Mbit/sec. Version: 	
	 DS 301 V4.01 Device Profile (drive and motion control): DS 402 	COMMITTEE NO COMM 2 CANopen ports

A.12 Pulse Width Modulation (PWM)

Feature	Details
PWM resolution	12-bit
PWM switching frequency on the load	2/Ts (factory default 22 kHz on the motor)

A.13 Single-phase Operation

When operating with a single-phase supply (TUB-x/230 only), the voltage drop must be considered. Voltage drop can be calculated using the following equation:

Vout (Max Phase to phase) = 0.85*[Vsupply (AC) - Vdrop]

A.14 Standards Compliance

A.14.1 Quality Assurance

Specification	Details
ISO 9001:2000	Quality Management

A.14.2 Design

Specification	Details
MIL-HDBK- 217F	Reliability prediction of electronic equipment (rating, de-rating, stress, etc.)
 IPC-D-275 IPC-SM-782 IPC-CM-770 UL508c 	Printed wiring for electronic equipment (clearance, creepage, spacing, conductors sizing, etc.)
UL840 In compliance with VDE0160-7 (IEC68)	Type testing

A.14.3 Safety

Specification	Details
Recognized UL508c	Power conversion equipment
In compliance with UL840	Insulation coordination, including clearance and creepage distances of electrical equipment
In compliance with UL60950	Safety of information technology equipment, including electrical business equipment
In compliance with EN60204-1	Low voltage directive, 72/23/EEC

A.14.4 EMC

Specification	Details
In compliance with EN55011 and EN61000	Limits and methods of measurement of radio disturbance characteristics of industrial, scientific and medical (ISM) radio frequency equipment. Electromagnetic compatibility (EMC)

A.14.5 Workmanship

Specification	Details
In compliance with IPC-A-610 , level 3	Acceptability of electronic assemblies

A-17

A.14.6 PCB

Specification	Details
In compliance with IPC-A-600 , level 2	Acceptability of printed circuit boards

A.14.7 Packing

Specification	Details
In compliance with EN100015	Protection of electrostatic sensitive devices

A.14.8 Environmental

Specification	Details
In compliance with WEEE 2002/96/EC	Waste electrical and electronic equipment regulations*
In compliance with RoHS 2002/95/EC (effective July 2006)	Restrictions on application of hazardous substances in electric and electronic equipment

* Please send out-of-service Elmo devices to the nearest Elmo sales office for proper disposal.

Index

2

24v Auxiliary Power Connector · 3-8

A

AC Motor Power Connection Diagram · 3-11 Advanced position control · 2-2 Advanced Positioning Motion Control Modes · A-1 Ambient operating temperature · 3-1 ANALOG I/O · 3-8 ANALOG I/O port · 3-3 Analog input Specifications · A-15 Analog Input · 3-8 Analog inputs cable · 3-33 Auxiliary Feedback cable · 3-23 Power cable · 3-13 Power supply · A-7 Auxiliary feedback · 3-25 Auxiliary Feedback · 3-8 Auxiliary Power Supply · 3-8 Auxiliary Supply (24v) Connection Diagram · 3-13

B

Built-In Protection · A-2

С

Cables Auxiliary feedback · 3-23 Auxiliary power · 3-13 Communication · 3-38 I/O · 3-33 Main Power · 3-12 Motor · 3-10, 3-11 Power · 3-10 CANopen · 3-8 CANopen · 3-38, 3-39 COMM. 1 · 3-8 COMM. 1 port · 3-2 COMM. 2 · 3-8 COMM. 2 port · 3-2 COMM.1 Port · 3-38 COMM.2 Ports · 3-39 COMMITTED I/O port · 3-3 COMMITTED I/O · 3-8 COMMITTED I/O Port · 3-36 Communication · 2-2 Communication cables · 3-38 Compliance standards · 1-3, A-17 Composer · 2-1, 3-41 Conformance · 1-3, A-17 Connecting Auxiliary power cable \cdot 3-13 Control cables · 3-14 Feedback cables · 3-14 Main power cable \cdot 3-12 Motor cables · 3-11 Power cables \cdot 3-10 Regeneration Cable · 3-12 Connection diagram · 3-9 Connectors Analog Input · 3-8 Auxiliary Feedback · 3-8 Auxiliary Power Supply · 3-8 CANopen · 3-8 Digital Inputs · 3-8 Digital Outputs · 3-8 Main Feedback · 3-8 Mains, Motor Power & External Regeneration · 3-8 Connectors · 3-8 RS-232 · 3-8 Control specifications · A-7, A-8 Current control \cdot 2-1

D

Differential auxiliary input · 3-27, 3-29, 3-31 Digital Inputs · 3-8, 3-34 Digital output interface · A-14 Digital Outputs · 3-8 Digital Outputs · 3-36 Dimensions · A-3 DIN rail mounting · 3-6 Documentation Hierarchy · 2-4

E

Environmental conditions · A-5 External Resistor (BR1) Regeneration Option · 3-12

F

Fault protection · 2-3 Feedback Connector · 3-14 Options · 2-2, A-8 Supply voltage · A-9 Feedback A · 3-15 FEEDBACK A · 3-8 FEEDBACK A port · 3-3 Feedback and Control Cable Assemblies · 3-14 Feedback B Single-ended Auxiliary Input Option · 3-29 Feedback B · 3-25 Differential Auxiliary Encoder Input Option \cdot 3-27 Emulated Encoder Outputs · 3-25 Main Encoder Buffered Outputs · 3-25 Pulse-and-Direction Input Option · 3-31 FEEDBACK B · 3-8 FEEDBACK B port · 3-3 Feedback options · A-9, A-10, A-12, A-13 Feedback Options · A-1

G

GENERAL I/O · 3-8 GENERAL I/O port · 3-3 GENERAL I/O Port · 3-34 Grounding · 1-1 Auxiliary power cable · 3-13 CANopen cables · 3-39 Main feedback cables · 3-14 Motor cables · 3-11 RS-232 cable \cdot 3-38

H

Hardware requirements · 3-1

Ι

I/O cables · 3-33
I/O Cables Analog inputs cable · 3-33
Incremental Encoder · 3-15, 3-17
Initializing the Tuba · 3-41
Input/Output · A-2
Installation · 3-1
Interpolated Analog Encoder · 3-15, 3-18

М

Main Feedback · 3-8 Main feedback cable · 3-15 Main Feedback Cable · 3-15 Main Feedback Cable Pin Assignments · 3-15, 3-16 Main power cable \cdot 3-12 Main Power Supply Connection Diagram · 3-12 Mains, Motor Power & External Regeneration · 3-8 Maximum Relative humidity · 3-1 Mechanical Specifications · A-4 Mini-Saxophone Connectors · 3-8 Motion Control Modes · A-1 Motor cables · 3-11 Mounting Dimensions · A-4 Mounting the Tuba \cdot 3-5 Directly on wall \cdot 3-5 On DIN rail · 3-6

P

Ports ANALOG I/O · 3-8 COMM. 1 · 3-8 COMM. 2 · 3-8

1-3

COMMITTED I/O · 3-8 FEEDBACK A · 3-8 FEEDBACK B · 3-8 GENERAL I/O · 3-8 Position control · 2-2 Potentiometer · 3-15, **3-20** Power cables · 3-10 Power Ratings · A-5 Powering up the Tuba · 3-41 Pulse-and-Direction Input Option · 3-31

R

Regeneration Cable \cdot 3-12 Regeneration Option External Resistor \cdot 3-12 Relative humidity \cdot 3-1 Resolver \cdot 3-15, **3-18** RS-232 \cdot 3-8, 3-38

S

Safety · 1-1 Cautions · 1-2 Compliance standards · A-17 Standards · 1-3 Warnings · 1-2 Single-phase operation · A-16 Site requirements · 3-1 Specifications Analog input · A-15 Auxiliary power supply · A-7 Control · A-7, A-8 Digital output interface · A-14 Dimensions · A-3 Environment · A-5 Feedback options · A-8, A-9, A-10, A-12, A-13 Feedback supply voltage · A-9 Mechanical · A-4 Power Ratings · A-5 Single-phase operation · A-16 Standards · 1-3

System architecture · 2-3

T

Tachometer · 3-15 Tachometer Feedback · 3-19 Technical specifications · A-1 Temperature · 3-1 Terminal Block · 3-8 Terminal Strip · 3-8 Tuba Cables \cdot 3-14 Connectors · 3-8 Dimensions · A-3 Initializing · 3-41 Installation \cdot 3-1 Mounting Directly on wall · 3-5 On DIN rail · 3-6 Powering up · 3-41 Technical specifications · A-1 Type designation number \cdot 3-4 Unpacking · 3-4 Wiring · 3-7 Tubat Connection diagram · 3-9 Type designation number \cdot 3-4

U

Unpacking · 3-4

V

Velocity control · 2-1

W

Warranty \cdot 1-4 Wire cross-sections \cdot 3-1, 3-2, **3-3** Wiring the Tuba \cdot 3-7