Alg User Manual

Ales Bizjak* Andrej Bauerf
June 22, 2014

Contents
1 Introduction 2
2 Copyright and License 2
3 Installation 3
3.1 Downloading alg e 3
3.2 Imstallation for Linux and MacOS 3
3.2.1 Prerequisites 3
3.2.2 Compilation and installation L o 3
3.2.3 Compiling the manual 4
3.2.4 Compiling to bytecode L e 4
3.2.5 Installation without menhir oo o 4
3.2.6 Imstallation without Makeo 4
3.3 Installation for Microsoft Windows 4
4 Input 5
4.1 Comments oL e e e e e e 5
4.2 General syntactic ruleso L 5
4.3 The Theory keyword L e 5
4.4 Declaration of operations and relationso 5
4.5 AXIOmMS . ..o 6
5 OQutput 7
5.1 Description of the output 7
5.2 Available output formats 7
5.3 Redirection of output toafileo 7
5.4 Output in JSON format for futher processing 8
6 Command-line Options 8
7 How to use alg efficiently 9
7.1 The default algorithm 9
7.2 The alternative algorithm L 10
8 Support and bug reports 10

*Ales.Bizjak0@gmail.com, Faculty of Mathematics and Physics, University of Ljubljana
TAndrej.Bauer@andrej.com, Faculty of Mathematics and Physics, University of Ljubljana

1 Introduction

Alg is a program for enumeration of finite models of single-sorted first-order theories. Such a theory is
given by a signature (a list of constants, operations and relations) and axioms expressed in first-order logic.
Examples of first-order theories include groups, lattices, rings, fields, posets, graphs, and many others. Alg
can do the following:

e list or count all non-isomorphic models of a given theory,

e list or count all non-isomorphic indecomposable! models of a given theory.
Currently alg has the following limitations:

e the theory must be single-sorted,

e only unary and binary operations are accepted,

e only (unary) predicates and binary relations are accepted,

e it is assumed that constants denote pairwise distinct elements.

This manual describes how to install and use alg. For a quick start you need Ocaml 3.11 or newer and the
menhir parser generator. Compile alg with

make
and run
./alg.native --size 8 theories/unital_commutative_ring.th

For usage information type ./alg.native -help and for examples of theories see the theories subdirectory.
Alg is released under the open source simplified BSD License, as detailed in the next section.

2 Copyright and License

Copyright (©) 2010, Ales Bizjak and Andrej Bauer
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

e Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

e Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

This software is provided by the copyright holders and contributors “as is” and any express or implied
warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular
purpose are disclaimed. In no event shall the copyright holder or contributors be liable for any direct, indirect,
incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of
substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on
any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising
in any way out of the use of this software, even if advised of the possibility of such damage.

1A model is indecomposable if it cannot be written as a non-trivial product of two smaller models.

3 Installation

3.1 Downloading alg
Alg is available at http://hg.andrej.com/alg/. You have three options:

1. download the ZIP file with source code from
http://hg.andrej.com/alg/archive/tip.zip

2. clone the repository with the Mercurial revision control system:

hg clone http://hg.andrej.com/alg/

3. download a precompiled executable for your architecture, as described at
http://math.andrej.com/alg/

if one is available.

3.2 Imstallation for Linux and MacOS
3.2.1 Prerequisites

To compile alg you need Ocaml 3.11 or newer. It is also highly desirable that you have the menhir parser
generator and the Make utility. See sections 3.2.6 and 3.2.5 on how to compile without these.
You can get Ocaml and menhir in several ways:

1. On Ubuntu, install the packages ocaml and menhir:
sudo apt-get install ocaml menhir
Similar solutions are available on other Linux distributions.

2. On MacOS the easiest way to install Ocaml and menhir is with the macports utility:

sudo port install ocaml
sudo port install caml-menhir

3. If you have GODI installed then you already have Ocaml. Install menhir with the godi_console
command, if you do not have it yet.
4. Ocaml is also available from
http://caml.inria.fr/

and menhir from

http://pauillac.inria.fr/~fpottier/menhir/

3.2.2 Compilation and installation

To compile alg, type make native at the command line. If all goes well ocamlbuild will generate a subdi-
rectory _build and in it the alg.native executable. It will also create a link to _build/alg.native from
the top directory. To test alg type

./alg.native --count --size 8 theories/group.th

It should tell you within seconds that there are 5 groups of size 8.
We provided only a very rudimentary installation procedure for alg. First edit the INSTALL_DIR setting
in Makefile to set the directory in which alg should be installed, then run

sudo make install
This will simply copy -build/alg.native to $(INSTALL_DIR)/alg. You may also wish to stash the theories
subdirectory somewhere for future reference.
3.2.3 Compiling the manual
You do not have to compile the manual because it is included in doc/manual.pdf. Nevertheless, you can
recompile it by typing make doc or directly by I#TEX-ing doc/manual. tex.
3.2.4 Compiling to bytecode
If your version of Ocaml does not compile to native code you can try compiling to bytecode with
make byte

This will generate a (significantly slower) alg.byte executable.

3.2.5 Installation without menhir
If you do not have menhir you can try the following trick:
e move the files lexer.mll and parser.mly out of the way into some other folder,

e copy the files nomenhir/lexer.ml and nomenhir/parser.ml to where lexer.mll and parser.mly
used to be,

e compile with make.

In other words:

$ mv lexer.mll parser.mly nomenhir
$ cp nomenhir/lexer.ml nomenhir/parserl.ml
$ make

3.2.6 Installation without Make
If you do not have the Make utility (how can that be?) you can compile alg directly with ocamlbuild:
ocamlbuild -use-menhir alg.native

To install alg just copy -build/alg.native to /usr/local/bin/alg or some other reasonable place.

3.3 Installation for Microsoft Windows

With Ocaml 3.11, menhir and the MinGW or cygwin suite installed compilation should be essentially the
same as for Linux and MacOS, as described in section 3.2. Also see sections 3.2.5 and 3.2.6 on how to compile
without menhir and Make.

Note that a Windows precompiled executable may be available at http://math.andrej.com/alg.

4 Input

An alg input file has extension .th and it describes an a first-order theory. The syntax vaguely follows the
syntax of the Coq proof assistant. A typical input file might look like this:

Theory Group.

Constant 1.

Unary inv.

Binary *.

Axiom unit_left: 1 *x x = x.

Axiom unit_right: x * 1 = x.

Axiom inverse_left: x * inv(x) = 1.

Axiom inverse_right: inv(x) * x = 1.

Axiom associativity: (x * y) * z = x *x (y * z).

The file starts with an optional Theory declaration which names the theory, then we have declarations of
constants, unary and binary operations, predicates and binary relations (none in the above example), and
after that there are the axioms. The precise syntax rules are as follows.

4.1 Comments

Comments are written as in Python, i.e., a comment begins with the # symbol and includes everything up
to the end of line.

4.2 General syntactic rules

An alg input file consists of a sequence of declarations (Theory, Constant, Unary, Binary, Predicate,
Relation) and axioms (Axiom, Theorem). Each declaration and axiom is terminated with a period.

4.3 The Theory keyword
You may give a name to your theory with the declaration
Theory theory_mname.

at the beginning of the input file, possibly preceded by comments and whitespace. The theory name consists
of letters, numbers, and the underscore. If you do not provide a theory name, alg will deduce one from the
file name.

4.4 Declaration of operations and relations

The declarations

Constant c¢1 c2 ... Cg.
Unary ui u2 ... Um.
Binary bi b2 ... by.
Predicate p; p2 ... pi.
Relation 71 12 ... 5.

are used to declare constants, unary and binary operations, predicates, and binary relations, respectively.
You may declare several constants or operations with a single declaration, or one at a time. You may mix
declarations and axioms, although it is probably a good idea to declare the constants and operations first.

The keywords Constants, Predicates and Relations are synonyms for their singular counterparts.

A constant may be any string of letters, digits and the underscore character. In particular, a constant
may consist just of digits, for example 0 or 1.

Predicates, relations, unary and binary operations may be strings of letters, digits and the underscore
character. For example, if we declare

Unary inv.
Binary mult.

then we can write expressions like mult(x, inv(y)). It is even possible to declare operations whose names
are strings of digits, for example:

Unary 3 ten.

Binary +.

Axiom: 3(3(x)) + x = ten(x).
Alternatively, we can use infiz and prefix operators. These follow the Ocaml rules for infix and prefix
notation. An operator is a string of symbols

l'$%&*x+-/\N:<=>72a\" |~
where:

e a prefiz operator is one that starts with 7, ! or ~. It can be used as a unary operation.

e infix operators can be used as binary operations and have four levels of precedence, listed from lowest
to highest:

— left-associative operators starting with =, <, >, |, &, $
— right-associative operators starting with @ and ~

— left-associative operators starting with +, -, and \

— left-associative operators starting with *, /, and %

— right-associative operators starting with *x*.

An operator o is left-associative if x oy o z is understood as (x o y) o z, and right-associative if xoyo z
is understood as z o (y o z). If you look at the above list again, you will notice that operators have the
expected precedence and associativity. However, if you are unsure about precedence, it is best to use
a couple of extra parentheses.

4.5 Axioms

An axiom has the form

Axiom [name]: <formula>.
or

Theorem [mname]: <formula>.

There is no difference between an axiom and a theorem as far as alg is concerned. A good convention is to
use Axiom for the actual axioms and Theorem for statements that are consequences of axioms and are worth
including in the theory because they make alg run faster, see Section 7.

The optional [name] is a string of of letters, digits and the underscore characters. Alg has no use for
names, they are there for the user. The <formula> is a first-order formula built from the following logical
operations, listed in order of increasing precedence:

Vr.¢ is written as forall z, ¢,
dr.¢ is written as exists z, o,

¢ <1 is written as ¢ <=> P or ¢ <=> 1,

¢ =1 iswrittenas ¢ -> Y or ¢ => P,
¢V iswrittenas ¢ \/ ¥ or ¢ or 1Y,
¢ AN is written as ¢ /\ Y or ¢ and 7,

-¢ is written as not ¢,
s=t is writtenas s = t,
s#t iswrittenas s <> tors !'=t,
T and 1 are written as True and False, respectively.

An iterated quantification Vx;.Vzs. - -V, . ¢ may be written as
forall 1 22 ... Ty , .

and similarly for 3.
Axioms may contain free variables. Thus we can write just

Axiom: x + y =y + x.
instead of

Axiom: forall x y, x +y =y + x.
5 Output

5.1 Description of the output

The output of alg is meant to be self-explanatory. Nevertheless, here is what the output consists of:
Title: the name of the theory.

Theory: the input file, which can be suppressed with ~—no-source command-line option.

Models: a list of the models found. This can be suppressed with the -—count command-line option. Each
model has a name theory_name_n_m where n is the model size and m is the model sequence number.
If a model can be decomposed, a decomposition into indecomposable factors is given.? Tables of all
the operations and relations are displayed.

Counts: a table showing how many models of each size were found. If more than three sizes were considered,
alg also provides a URL to query the counts at http://oeis.org/, the On-Line Encyclopedia of Integer
Sequences.

5.2 Available output formats

Alg supports several output formats. The default is plain text and it is sent to the screen. You can choose
one of the following formats with the ——format command-line option:

e text: the default format is plain text. Actually, it is not entirely plain, as it is also valid Markdown.?
e html: Hypertext Markup Language, used for web pages.

e latex: KTEX format, suitable for showing multiplication tables in published papers.

e json: the JSON format, suitable for futher processing, as explained in Section 5.4.

If you specify an output file with the -—output option but no --format, alg guesses the correct format

from the output filename extension.

5.3 Redirection of output to a file

By default alg prints results on the standard output. You may redirect the output to a file with the
—--output option. If you use --output without --format, alg tries to guess the output format from the
filename extension.

2Please note that in general such a decomposition is not unique.
3 According to Wikipedia, Markdown is a lightweight markup language, originally created by John Gruber and Aaron Swartz
to help maximum readability and ”publishability” of both its input and output forms.

5.4 Output in JSON format for futher processing

For further processing of output use the JSON output format by specifying -—-format json or output to a
file with the .json extension.

The JSON output has one of two forms, depending on whether the ——count option is used. Without it,
the output is a list

["theory_name", My, ..., My]

where My, ..., M, are the models found. Each model M; is given as a dictionary which maps constants,
unary operations and binary operations, predicates and relations to the corresponding integers, tables and
matrices. For example, the only commutative ring of size 6 with unit is presented as

{

"o" : 0,
vyv o 4,
wew . [0, 2, 1, 3, 5, 4],
l|+ll .
L
[0, 1, 2, 3, 4, 5],
[1, 2, 0, 4, 5, 31,
[2, 0, 1, 5, 3, 41,
[3, 4, 5, 0, 1, 2],
[4, 5, 3, 1, 2, 0],
[65, 3, 4, 2, 0, 1]
1,
ll*ll
L
[o, o, o, o, 0, o1,
[o, 1, 2, o, 1, 21,
[0, 2, 1, 0, 2, 11,
[o, o, o, 3, 3, 31,
[o, 1, 2, 3, 4, 5],
[0, 2, 1, 3, 5, 4]
]

}

The underlying set of the ring is {0, 1,2,3,4,5}, the neutral elements for addition and multiplication are 0
and 4, respectively, and the operations are given as lookup tables, for example, 1 =2 and 4 * 3 = 3.
The --count option gives JSON output

["theory_name", [[i1,k1], ..., [in,kn1]]

which is read as saying that there are k; models of size ;.
In Python you can import JSON data from a file mystuff. json like this:

import json
with open(’mystuff.json’,’r’) as f:
mystuff = json.load(f)

In Mathematica just use the Import ["mystuff. json"] command.

6 Command-line Options

Alg is used as
alg --size <sizes> [options] <theory.th>

where theory. th is the input file, and the options are:

--size <sizes> A comma-separated list of sizes that alg should consider. You can also specify a size
interval of the form m-n. For example, 1,2,5-8 would mean that we consider sizes 1, 2, 5, 6, 7, 8.

--count Do not print out the models, just report the counts.
--format <format> Output in the given format. Supported formats are text, html, latex, and json.
--indecomposable Output only indecomposable models, i.e., those that are not products of smaller models.

--axiom Add an extra axiom to the theory. Use the option several times to add several axioms. Note that
on a command-line the axiom should be enclosed in quotes.

—--no-products Do not try to generate models as products of smaller models. Use this option if you know
that a model cannot be a product of smaller ones. For example, a field can never be a product of two
fields. The option is assumed if the theory contains predicates or relations. If all of your axioms are
equations, then you should not use this option.

--no-source Do not include the theory in the output.
—-output <filename> Output to the given file rather than to screen.

--paranoid Perform additional checks to verify that the models really satisfy the axioms. Use this option
if you think there is a bug in alg.

--sat Use the alternative algorithm based on satisfying the axioms rather than intelligent filling-in of
multiplication tables. It works well with theories that have predicates and relations. For theories
with unary and binary operations the standard algorithm typically performs better.

--version Print out version information and exit.

—--help Print help.

7 How to use alg efficiently

You should always keep in mind the fact that alg performs a brute force search with a few optimizations. In
the worst case its running time is doubly exponential in the size of the models because there are n™ tables
for a binary operation on a set of size n.

Alg contains two diffrent algorithms, the default and the alternative one. As a rule of thumb you should
use the default algorithm, unless the signature of your theory consists mostly of predicates and relations. In
any case, since the performance is not easily predicted, you should try both algorithms and experiment by
rewriting the theory in various equivalent ways.

7.1 The default algorithm

The default alg algorithm is optimized for equational theories, i.e., those whose axioms are equations (semi-
groups, monoids, groups, rings, lattices, etc., but not integral domains and fields). Alg takes advantage of
commutativity, associativity and idempotent laws, and to a smaller extent of other kinds of equational laws,
such as absorption and distributivity.

Alg performs few optimizations based on non-equational axioms. Thus you should try to reduce their
number. Furthermore, in non-equational axioms the quantifiers should always be pushed inside as much as
possible. For example, instead of

Axiom: forall x, exists y, x <> 0 -> x *x y = 1.

you should write

]
-

Axiom: forall x, x <> 0 -> exists y, x * y

The best kind of axioms are those that allow alg to immediately fill in a whole column or row. Typically
these are axioms about neutral elements, such as 1-x = x and 0+ z = x. As a rule of thumb, every such
axiom will increase the maximum manageable size by one.

In general alg performs better if it is given more axioms and theorems, because each additional statement
cuts down the possibilities. Thus you should include theorems which already follow from other axioms. For
example:

e state both 1-x = x and x -1 = x, even if one of them follows from the other,
e more generally, state all versions of a symmetric equation, even if they all follow from one of them,
o state laws like 0- 2 = 0 (and also x - 0 =), even if they follow from other axioms.

You should declare as many constants and as few operations as possible. A typical example is the theory
of lattices. For finite structures the following are equivalent theories:

e a lattice with operations A, V,

e a bounded lattice with operations A, V and constants 0, 1,

e a V-semilattice with operation V and constant 0,

e a bounded V-semilattice with operation V and constants 0, 1.

The best choice is the last one because it has just fewest operation and most constants. Indeed, figuring out
that there are 53 lattices of size 7 takes 250 times longer with the theory of a lattice than with the theory
of a bounded V-semilattice.

Lastly, we should mention that alg generates tables in the order in which the operations are declared.
Sometimes it is much easier to generate tables for one operation than another, so you should experiment by
switching the order of declarations. For example, the theory of a ring works much faster if addition 4+ is
declared before multiplication X.

7.2 The alternative algorithm

The alternative algorithm transforms the given axioms into constraints that need to be satisfied. It then
solves the constraints in all possible ways by intelligent backtracking. The general rules for efficient use of
the alternative algorithm are the same as those for the default one.

It turns out that the alternative algorithm generally performs worse than the default one when the theory
consists mostly of operations. However, the alternative algorithm usually outperforms the default one for
theories which constist mostly of relations.

8 Support and bug reports

Please send bug reports and whishes to the authors: Andrej Bauer (Andrej.Bauer@andrej.com) and Ale
Bizjak (Ales.Bizjak0@gmail.com). If you report a bug, please send us the exact version number of alg, as
printed out with the —-version command-line option.

The Mathematics and Computation blog at http://math.andrej.com may contain further information
and discussion about alg.

10

