JWIG User Manual

Anders Mgller & Mathias Schwarz
{amoeller,schwarz} @Qcs.au.dk

October 4 2012

JWIG User Manual

Contents
MI_What is JWIG7
2_Hello Worldl

[3 Web apps, web methods, and web sites|

[4 Generating responses|
4.1 Returning XML generated using XACT|.
4.2 Redirecting the client|
4.3 Returning plain text| 0oL
[4.4 Returning binary data using low-level servlet input/output

[5 Requests and parameters|
b.1 Mapping from URLstocode]
5.2 Generating links to web methods|
.3 Web app parameters|
b4 XHTML formsl

b.6 XML web service programming|

6 Caching
6.1 Invalidating cached pages|,
[6.2 Disabling the cachel.o 00000
6.3 Handler regeneration| L.

[T Session state]

[8 Client side programming]|
8.1 Automatic view updates|

10
11
13
13
14
15

15
16
16
16

17

mailto:amoeller@cs.au.dk,schwarz@cs.au.dk?Subject=JWIG

[9 Configuration|

0 Parsi T I |

[10.1 Setting up your database

connection and dialect|

[10.2 Setting up username and

password|

10.3 Querier]
110.4 Persistable objects] . . .

[10.5 Persistable parameters| .

1 Miscell . F |

[11.3 Sending emails|
[11.4 Debugging applications|

(12 The JWIG program analysis suite]

13 Examples|
[13.1 Example: QuickPolll . .
[13.2 Example: MicroChat| . .
[13.3 Example: GuessingGame)

19

20
20
20
21
21
21

22
22
23
23
24

24

1 What is JWIG?

JWIG is a Java-based web application programming system. JWIG is being
developed to explore high-level language design and program analysis support
for web programming.

Highlights of JWIG 2.0:

e The main part of a JWIG application runs on the server, although JWIG
also uses a basic JavaScript library for generic client-side functionality.

e JWIG uses the XACT, system for flexible and safe dynamic construction
of XML (typically XHTML) data.

e The JWIG runtime system provides a simple REST /HTTP-friendly map-
ping from requests to code and tight coupling between code that generates
forms and code that receives form field values.

e JWIG helps managing session state, caching, XHTML events, push-based
page updates, and post-redirect-get.

e The JWIG program analyzer checks a range of correctness properties at
compile time, for example ensuring that all XML data being generated is
valid XHTML 1.0.

This document describes the design and capabilities of JWIG and is intended to
make it possible for others to play with the system. JWIG has many interesting
connections to other web programming frameworks; however those connections
are not the focus of this document. The JWIG 2.0 implementation builds upon
Tomcat and other widely used Java tools, such as |Ant, Hibernate, log4j, and
JavaMail. The version of JWIG described here supersedes all previous releases
of JWIG and is not designed to be directly backward compatible (although
the main ideas from previous releases are still present). For more information
about the design of JWIG, see the paper JWIG: Yet Another Framework for
Maintainable and Secure Web Applications!

The javadoc JWIG API documentation supplements this user manual by
describing more details of all the classes and method in the JWIG API.

2 Hello World!

For instructions on how to install JWIG, go to the JWIG web page at
http://www.brics.dk/JWIG/

and download either the kickstart file (which contains a basic JWIG appli-
cation) or the full JWIG source package (open source, LGPL license), and then
read the INSTALL file.

http://www.brics.dk/Xact/
http://tomcat.apache.org/
http://ant.apache.org/
http://www.hibernate.org/
http://logging.apache.org/log4j/1.2/
http://java.sun.com/products/javamail/
http://cs.au.dk/~amoeller/papers/jwig2/
http://cs.au.dk/~amoeller/papers/jwig2/
http://www.brics.dk/JWIG/doc/
http://www.brics.dk/JWIG/
http://www.brics.dk/JWIG/INSTALL

We naturally begin with the JWIG variant of the ubiquitous Hello World pro-
gram:

Main.zxact - a tiny JWIG program

import dk. brics.jwig.x;
import dk.brics.xact.*;

public class Main extends WebApp {

public XML hello () {
return [
<html>
<head><title >JWIG</title ></head>
<body>Hello World</body>
</html>
115
}
}

(In the following examples, we omit the import declarations.) Compile and
deploy, for example with ant compile and ant deploy using the Ant build file
from kickstart.zip. Note that this source file contains XACT syntax, so it
must be compiled with the XACT compiler (see Section . Then direct your
browser to

http://HOST : PORT / TOMCAT-APP /hello

where HOST, PORT, and TOMCAT-APP should be be replaced by the name and
port of your web server and the Tomcat application name, according to the
configuration in jwig.properties and build.xml. You should now see the
Hello World message. This tiny example application demonstrates a number
of basic features in JWIG, as explained in the following sections.

3 Web apps, web methods, and web sites

Any program written in JWIG has a class named Main (default package). In
the example above, Main extends WebApp and is called a web app. When the
JWIG runtime system starts, a single instance of the web app is created.

Each public method in the web app class is a web method that can be accessed
via a HTTP GET request, as in the Hello World example above. Since web
methods are associated to GET requests, they should be safe and idempotent,
as required by the HTTP specification. Web methods generate values that are
returned to the client. Depending on the return type of the web method, the
behavior of the web method may be to send an XHTML page (Section |4.1)) to
the client, to redirect a client to another page (Section or to send plain

text (Section [4.3).

The Main class can alternatively extend WebSite, which is used for a web site
that consists of multiple web apps. Example:

http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/WebApp.html
http://en.wikipedia.org/wiki/HTTP#Safe_methods
http://en.wikipedia.org/wiki/HTTP#Idempotent_Methods_and_Web_Applications
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/WebSite.html

Main. java - a web site consisting of two web apps

public class Main extends WebSite {

public void init () {
add (new examples. GuessingGame ());
add (new examples. QuickPoll ());
}
}

When a web site is started, its init| method is invoked. In this method, each
web app is created and added to the web site using the |add method. Web
methods are, using the default configuration, invoked as

http://HOST : PORT / TOMCAT-APP / WEBAPP-CLASS / WEBMETHOD

where HOST, PORT, and TOMCAT-APP are as before. WEBAPP-CLASS is the web
app class name with ’/’ instead of dots (e.g. examples/GuessingGame in the
example above), and WEBMETHOD is the web method name. The mapping from
URLSs to web methods can be configured as explained in Section

4 Generating responses

Web methods can return values of various types, which affects the behavior
of the clients. We now describe the basic return types and the corresponding
client behavior.

4.1 Returning XML generated using Xact

Web methods typically produce XHTML output, which is sent to the client to
be shown in a browser window. A key constituent of JWIG is the XacT XML
transformation language. This section provides a short introduction to XACT.

XACT is a general tool for transforming XML data. We here focus on its
capabilities for constructing XHTML documents dynamically.

For more information about Xact, see http://www.brics.dk/Xact/.

An XML template is a fragment of an XML document that may contain
unspecified pieces called gaps. These gaps can be filled with strings or other
templates to construct larger templates and complete XML (typically XHTML)
documents. XML templates are represented in the JWIG program by values of
the XML type. XML values are immutable, that is, all operations that manipu-
late XML templates create new values without modifying the input values.

XML template constants are written as plain XML text enclosed in double
square brackets. For example, the following line declares a variable to contain
XML template values and initializes it to a simple constant value:

http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/WebSite.html#init()
http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/WebSite.html#add(dk.brics.jwig.WebApp)
http://www.brics.dk/Xact/
http://www.brics.dk/Xact/doc/dk/brics/xact/XML.html

An XML variable and a simple template constant

XML hello = [[Hello <i>World</i >!]];

XML template constants must be well-formed, that is, the tags must be bal-
anced and nest properly. Implicitly, JWIG sets the default namespace to
http://www.w3.0org/1999/xhtml (the XHTML 1.0 namespace). This can be
changed with ordinary XML namespace declarations.

A code gap in an XML template is written using the syntax <{code } > where
the content is a Java expression:

XML template with code gaps

String title = ?JWIG” ;

XML getMessage () {
return [[Hello World]];

XML hello = [[
<html>
<head><title ><{title}></title ></head>
<body>
<{getMessage ()} >
</body>
</html>

}]7

These gaps can be placed within text and tags, as if they were themselves tags.
Gaps placed like this are called template gaps. When executed, the code in
the code gaps is evaluated, and the resulting values are inserted in place of the

gaps.

Code gaps can also be placed as the values of attributes. For example, is an anchor start tag whose href attribute has a value ob-
tained by invoking the method foo. Gaps placed like this are called attribute
gaps.

A named gap is written using the syntax <[name]>. The gap name must be

a legal Java identifier. Named gaps can also be placed inside tags, as the values
of attributes.

For example, is an anchor start tag whose href attribute
is a gap named LINK.

Named gaps are filled using the plug operator:

Building XML templates using plug

XML hellol = [[<p align=[ALIGNMENT]|>Hello <[WHAT|>!</p>]];
XML hello2 = hellol.plug ("WHAT" , [[<i><[THING]></i >]]);
XML hello3 = hello2.plug(”THING” , ”World”). plug ("ALIGNMENT” , " left”);

After executing this code, the values of the variables will be:

hellol: <p align=[ALIGNMENT]>Hello < [WHAT]>!</p>

http://www.brics.dk/Xact/doc/dk/brics/xact/XML.html#plug(java.lang.String, java.lang.Object)

hello2: <p align=[ALIGNMENT]>Hello <i>< [THING]></i>!</p>
hello3: <p align="left">Hello <i>World</i>!</p>

As can be seen from the example, both strings and XML templates can be
plugged into template gaps. However, only strings may be plugged into at-
tribute gaps. When a string is plugged into a gap, characters that have a
special meaning in XML (e.g. < and &) are automatically escaped.

The plug method allows any object to be plugged into a gap. XACT will convert
the value into an XML fragment in the following way:

e If the object implements the ToXMLable|interface then, the toXML () method
on the object is invoked and the return value is plugged into the gap.

e Otherwise, the toString() method on the object is called and the value
is treated as a text string without markup.

When a web method returns an XML template, all remaining template gaps
are plugged with empty strings, and all remaining attribute gaps are removed.

The JWIG program analyzer (see Section can check - at compile time -
that the XML documents being generated dynamically using XACT are always
valid XHTML 1.0.

A common use of named gaps in XML templates is for avoiding redundancy
in dynamic XML construction, for example when many XHTML pages use the
same overall structure:

XHTML wrapper

XML my-xhtml_wrapper = []
<html>
<head><title ><[TITLE|></title ></head>
<body>
<h1><[TITLE]></h1>
<[BODY] >
</body>
</html>
115
XML pagel = my_xhtml_wrapper.plug(”TITLE”, ”one”)
.plug ("BODY”, [[This is one page]]);
XML page2 = my._xhtml wrapper.plug(”?TITLE” , "two”)
.plug ("BODY”, [[This is another page]]);

Instead of inlining a template in a JWIG program, an XML template constant
can be placed in an external file and loaded into the program at runtime us-
ing, for example, XML .parseTemplateResource(class,name) where class is
a java class object used to locate the resource and name is a resource name.
See the documentation of [Class| for more information on how class resources
are located.

http://www.brics.dk/Xact/doc/dk/brics/xact/ToXMLable.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Class.html#getResourceAsStream(java.lang.String)

4.1.1 Compiling Xact programs

Because of the non-Java syntax, files containing XML template constants [[...]]
must be desugared using the XACT compiler. Note that such files typically have
extension .xact instead of . java. The compiler can be invoked from the com-
mand line using the following command:

java -classpath xact.jar dk.brics.xact.compiler.Main *.xact

See also the Ant build file build.xml in the JWIG kickstart file.

4.2 Redirecting the client

One alternative to returning XML data is to redirect to another web resource
by returning a URL. As an example, when invoking the following web method,
the response is a redirection to the given URL:

Response redirection

public URL redirect () {
return new URL(” http://www. brics.dk/JWIG/”);
}

4.3 Returning plain text

Web methods can return plain text (media type text/plain) instead of XML or
redirecting, simply by returning a string instead of an XML value or a URL:

HelloWorld2. java - returning plain text

public class HelloWorld2 extends WebApp {

public String hello () {
return ”Hello_.World” ;

}
}

4.4 Returning binary data using low-level servlet input/output

Raw binary data can be sent via the low-level Servlets API. JWIG gives ac-
cess to the underlying HttpServletRequest or HttpServletResponse object
using the |getServletRequest| and getServletResponse methods. A web
method that uses the low-level framework should be defined as a high pri-
ority filter (see Section to avoid interfering with the JWIG system. The
HttpServletResponse object provides further access to an OutputStream ob-
ject, which makes it possible to write raw data directly to the client. As an
example, the following (very insecure!) web method allows the client to read a
file from the server:

http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/WebContext.html#getServletRequest()
http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/WebContext.html#getServletResponse()

ReadFile. java - writing binary data

public class ReadFile extends WebApp {

QPriority (PRE.CACHE)

public void read(String fileName) throws IOException {
getResponse ().setContentType (” audio/mid”);
FileInputStream in = new FilelnputStream (fileName);
HttpServletResponse res = getServletResponse ();
OutputStream out = res.getOutputStream ();
byte[] buffer = new byte[1024];
int length;
while ((length = in.read(buf)) != —1) {

out.write (buf,length);

in.close ();
out.close ();

The output stream must be closed when the web method has finished writing
the data, as in the example, to prevent JWIG from writing additional data to
the client.

5 Requests and parameters

Web methods can receive parameters, such as form data fields, that arrive us-
ing the most common encodings (application/x-www-form-urlencoded and
multipart/form-data). Parameters often occur in connection with form sub-
mission, as explained in Section

The following example shows a web method with a single parameter named x:

HelloWorld3. java - web method parameters

public class HelloWorld3 extends WebApp {

public XML hello (String x) {
return [|
<html>
<head><title >JWIG</title ></head>
<body>
The value of the parameter <tt>x</tt> is: <{ x }>
</body>
</html>
115
}
}

We can invoke this web method by e.g.

http://HOST : PORT / TOMCAT-APP /HelloWorld3/hello?x=John+Doe
Other data types than strings can also easily be received:

Any class that implements a static value0f (String) method

(this includes wrapper classes such as Integer and Boolean) - where
valueOf is then used for creating a value from its string representation.
An absent field results in the value null.

Primitive types (int, boolean, etc.)
- parsed by invoking the standard Java functions, e.g. Integer.parselnt.

FileField
- for file uploads (which requires method="post" and enctype="multipart/form-data"
in the form tag), see Section

XML
- XACT values, parsed via XML.parseDocument!

Persistable

- see Section

Arrays (of the above kinds)
- for receiving multiple parameters of the same name (the array may be
empty but is never null).

Collection<E>, or subclasses, where E is of the above kinds.
- for receiving multiple parameters of the same name

Parameters
- matching any collection of parameters. If a web method declares an
argument of type Parameters all request parameters that are not matched
by the preceding arguments on the list of formal method parameters are
represented using the Parameters object.

To make the parameter names of web methods accessible by the JWIG runtime
system, either the code must be compiled with debug information, i.e. with
option -g, or the |@ParamName annotation must be used on each parameter of
the method.

5.1 Mapping from URLs to code

The mapping from URLSs to web apps, web methods and parameters can be con-
figured using the @URLPattern annotation, which allows ”REST-style” URLs:

Configuring URL to code mapping

QURLPattern(” app4”)
public class HelloWorld4 extends WebApp {

QURLPattern("h/$x”)
public XML hello (String x) {
return [
<html>
<head><title >JWIG</title ></head>
<body>
The value of the parameter <tt>x</tt> is: <{ x }>
</body>
</html>

115

10

http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/FileField.html
http://www.brics.dk/Xact/doc/dk/brics/xact/XML.html#parseDocument(java.io.InputStream)
http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/persistence/Persistable.html
http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/Parameters.html
http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/ParamName.html
http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/URLPattern.html
http://en.wikipedia.org/wiki/Representational_State_Transfer

The hello method can now be invoked by e.g.
http://HOST : PORT / TOMCAT-APP /app4/h/117
whereas the default mapping described in Section |3| would require

http://HOST : PORT / TOMCAT-APP /HelloWorld4/hello?x=117

A URL pattern is generally a set of choices, separated by ’|’. Each choice is a
sequence of steps, separated by /. A step can be:

a string (not containing a separator)
- matching that string.

*
- matching any string not containing ’/’.
*ok
- matching any string (which may contain ’/7).
$foo

9

- matching any string not containing ’/’ and binding the string to the

request parameter named foo.

Request parameters specified using $foo are merged with those supplied using
the ordinary query string and request body mechanisms.

The URL patterns on WebApp classes must begin with a constant string, and
they cannot overlap within the same WebSite.

5.1.1 @Priority

Multiple web methods may match a request URL. In this case, the value of the
@Priority| annotation determines the order. A default priority is assigned to
web methods that have no @Priority annotation.

5.2 Generating links to web methods

Often, redirection is to another web method within the same web site. The
family of makeURL methods makes it easy to construct such URLs:

Response redirection to another web method

public URL redirect2 () {
return makeURL(” hello”);

}

public XML hello () {
return [

11

http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/Priority.html
http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/WebContext.html#makeURL(java.lang.String, java.lang.Object...)

<html>
<head><title >JWIG</title ></head>
<body>Hello World</body>
</html>
115
}

The string parameter to makeURL is the name of the web method in the URL.
The makeURL method will inspect the web method and generate a URL with
the format given in the @URLPattern (or the default pattern if no annotation is
given for the web method). This makes it straightforward to change the URL
of a web method without changing all the places that link to the web method.

Parameters (see Section can be added simply as extra arguments to the
makeURL method. JWIG will then automatically serialize the parameters de-
pending on the type of the object. See Section [5| for more information about
which types are supported.

The following example modifies the Hello World example to take an additional
parameter who, which is plugged into the greeting returned. The hello web
method declares this parameter to be of type String. The redirect3 web
method generates a URL to hello with the who argument simply by passing
the value as a parameter to makeURL:

Response redirection to another web method including a parameter

public URL redirect3 () {

return makeURL(” hello” , "World”);
}
public XML hello (String who) {
return ||
<html>
<head><title >JWIG</title ></head>
<body>Hello <{who}></body>
</html>
115
}

See Section [7] for another example where makeURL is used in combination with
parameters of other types.

The makeURL method takes an optional Class parameter identifying the web
app containing the target web method. If no such argument is given, makeURL
assumes that the web method is located within the same web app as the method
that generates the URL.

Finally, makeURL takes an optional boolean parameter determining whether the
generated link will point to a secure (HTTPS) or insecure (HTTP) URL. If
no boolean value is given, makeURL will generate a secure URL if the current
request is to a secure URL.

12

http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/URLPatern.html

5.3 Web app parameters

Parameters can also be given to web apps, not only to the individual web
methods. This is controlled using QURLPattern annotations (see Section
on the web app classes. A web app parameter is passed as part of any link
created by makeURL from one web method to another within the same web app.
This gives a convenient way to manage a context that needs to be available to
multiple web methods in a web app.

In the following example, the who parameter has been changed to a web app pa-
rameter. If the user sends a request to myapp/World/redirect4, the redirect
method will redirect the client to myapp/World/hello.

Response redirection to another web method including a parameter

@QURLPattern (" myapp/$who”)
public class HelloApp extends WebApp {
public URL redirect4 () {
return makeURL(” hello”);

}

public XML hello () {
String who = getWebAppParameter (”who”);
return ||
<html>
<head><title >JWIG</title ></head>
<body>Hello <{who}></body>
</html>
115
}
}

A special version of the makeURL/ method takes a map from parameter names to
values, which makes it easy to pass web app parameters between web methods.

5.4 XHTML forms

Ordinary web methods respond to HTTP GET requests, as explained ear-
lier. The response can be an XHTML page containing a form. The JWIG
SubmitHandler| class allows the application to receive values from form sub-
missions. This promotes a programming style where the program code that
produces the form becomes tightly coupled with the code that receives the field
values, which makes it easy for readers of the code to follow the application
flow.

Here is an example of a web method that produces a form and receives a text
field and an uploaded file:

Upload.xact - a file upload form

public class Upload extends WebApp {

XML wrapper = [[
<html>
<head><title >Upload</title ></head>
<body>
<[BODY] >

13

http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/WebContext.html#makeURL(java.util.Map, java.lang.String, java.lang.Object...)
http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/SubmitHandler.html

</body>
</html>

115

public XML upload () {
return wrapper.plug (”BODY” , [[
<form method="post” enctype="multipart/form—data” action=[ACTION]>
Enter some text: <input type="text” name="t"/>

Upload a file: <input type="file” name="{"/>

<input type="submit” value="Go!” />
</form>
1]. plug (”ACTION” ,
new SubmitHandler () {
public XML run(String t, FileField f) {
return wrapper.plug (”BODY” , []
Your text: <{ t }>

Size of your file: <{ f.getSize() }>
115
}
})s

This SubmitHandler class contains a run method that processes the form field
values. Similarly to web methods, the response of this method can have various

types:

XML
- (as in the example above) an XML value that is sent directly back to
the client.

URL
- resulting in a redirection to the given location using the [POST-redirect-
GET) pattern.

void
- resulting in a redirection to the URL of the web method that led to the
SubmitHandler class.

The latter case is useful in combination with the ability of modifying an existing
web page, as shown in the example application GuessingGame.

SubmitHandler objects are subject to regeneration; see Section [6.3

5.5 Filters and user authentication

A filter is a web method with return type void, that is, a web method that may
do something on the server but generates no value to return to the client. The
default priority of a filter is higher than that of the cache method, which means
that filters are processed before the caching mechanism explained in Section [6]
is applied. By default, filters match GET and POST requests, but they may
be annotated to match to any request type.

Filters return no value and therefore they must pass control on to another
web method, which can then in turn generate the response. The next method
matches the request URL with the next web method on the prioritized list of
matching web methods.

While filters do not return values, they may still interrupt the request process-
ing using exceptions. This is convenient for authentication and other security

14

http://en.wikipedia.org/wiki/Post/Redirect/Get
http://en.wikipedia.org/wiki/Post/Redirect/Get
http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/WebContext.html#next()

checks. Section [11]describes the use of exceptions (and also cookies, which may
be used for another kind of user authentication). The following filter matches
all request URLs (using @URLPattern) and returns an error if an insecure con-
nection is used (that is, without SSL/TLS) and a HTTP Basic authentication
”authorization required” message if the right user credentials are not provided:

HTTP Basic authentication

@QURLPattern (7 %")
public void accessBasic () {
if (!isSecure)
throw new AccessDeniedException(” Connection._is_insecure!”)
User u = getUser ();
if (u = null || !u.getUsername ().equals(”smith”) ||
lu.getPassword (). equals (742”))
throw new AuthorizationRequiredException (?JWIG_examples”);
next ();

5.6 XML web service programming

JWIG support all HT'TP methods for JWIG web methods, and XACT can easily
be used to generate any kind of XML. This allows web methods to implement
REST-style web services in a straightforward manner. Web methods are simply
annotated with |@GET, @POST, @PUT, |@DELETE etc. to indicate which request kinds
the web method should respond to. More than one HT'TP method annotation
may be set on a single web method. The default is @GET. Consider the following
example:

Web service example

@pPUT
public URL store(String s) {
// implementation omitted

JWIG will invoke this web method only if a matching PUT request is sent from
the client.

6 Caching

JWIG defines a web method that automatically caches all responses generated
by web methods with lower priority than the CACHE_PRIORITY. HTTP ETag
and Last-Modified headers are automatically inserted to support client-side
caching. Additionally, a built-in web method (cache) handles server caching
and conditional GET requests.

15

http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/GET.html
http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/POST.html
http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/PUT.html
http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/DELETE.html
http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/WebContext.html#CACHE_PRIORITY
http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/WebContext.html#cache(dk.brics.jwig.Parameters)

6.1 Invalidating cached pages

Occasionally, the programmer needs to invalidate cached pages because some
data has been changed. JWIG uses an explicit representation of the relationship
between data objects and cached pages to enable such invalidation.

JWIG maintains a dependency map from data objects to pages that depend
on them. To add a dependency for the current page on an object, use the
addResponseInvalidator method. When the data object is changed, the
update| method must be called for JWIG to invalidate all cached pages that
depend on the object.

The database system (Section[10] integrates with this mechanism. When a data
object is used as a parameter to a web method, addResponseInvalidator is
automatically called with this object. Also, when an object is updated in the
database, the update| update method is called automatically.

The example applications in Section[I3|show how to use addResponseInvalidator.

6.2 Disabling the cache

The cache can be disabled for a web method by assigning a priority to the web
method that is higher than the priority of the cache filter. The WebContext
class defines such a constant value PRE_CACHE.

See also Section[5.5]about filters. Filters always have a priority above the cache.

6.3 Handler regeneration

Handlers (that is, SubmitHandler objects, see Section XMLProducer ob-
jects, see Section and EventHandler objects, see Section may be re-
moved from the server as a result of cache eviction or restart of the web server.
Therefore, JWIG may need to regenerate a handler in order to process a request.

A handler can be regenerated in two different ways: recreation or rediscovery.

Recreation:

JWIG recreates a handler by sending a new GET request to the URL
that originally created the evicted handler. Consequently, the appli-
cation programmer must make sure that such a GET request results a
valid recreation of the handler. A handler a is a valid recreation of an
evicted handler b if a.equals(b) is true. The implementation of all
subclasses of |AbstractHandler| satisfies this property, provided that the
property also holds for each of the objects in its list of dependencies (see
AbstractHandler).

16

http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/WebContext.html#addResponseInvalidator(java.lang.Object)
http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/WebContext.html#update(java.lang.Object)
http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/WebContext.html#addResponseInvalidator(java.lang.Object)
http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/WebContext.html#update(java.lang.Object)
http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/WebContext.html#cache(dk.brics.jwig.Parameters)
http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/WebContext.html
http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/WebContext.html#PRE_CACHE
http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/AbstractHandler.html
http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/AbstractHandler.html#AbstractHandler(java.lang.Object...)

Rediscovery:

Handlers can be rediscovered if they are constructed in a web method
that creates a Session object or takes one as a parameter (see Section
. Such handlers are called session bound handlers. See Section for
an example of a session bound handler.

Unless session bound, a handler can only be regenerated if:
e it is recreated as a result of sending a request to the original URL, and

e it is not returned as part of an XML document created by another handler
(since such a recreation would require a POST request with possible side
effects).

7 Session state

The class Session makes it easy to encapsulate session state and transparently
pass the data to web methods that are later invoked by the client.

A subclass of Session contains the session data. Session objects can be passed
to other web methods through parameter passing. JWIG automatically pro-
vides a session ID to each session object. The following example illustrates a
typical use:

Sessions

class UserState extends Session {
List<Item> shopping_cart; // contains user state

}

public URL entry () {
UserState s = new UserState ();
... // initialize the new session
return makeURL(”shopping”, s);

}

public XML shopping (UserState s) {
. // s contains the session state

This mechanism avoids the pitfalls of traditional String-to-Object session maps
that can be difficult to maintain by the application programmer.

A session management thread keeps track of the mapping from session IDs to
session objects (via toString and valueOf; see Section [5) and automatically
garbage collects session objects that have not been accessed in some time (as
configured in the Session constructor). If jwig.auto_refresh sessions is
set (see Section @, session objects are automatically being refreshed regularly
(using some JavaScript code) as long as some user is viewing a page holding
the session object. This means that it is in most cases unnecessary to write

17

http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/Session.html

things like ”this session will timeout after N minutes, so make sure to submit
your form data in time”.

The GuessingGame example demonstrates the use of session state.

8 Client side programming

While the JWIG framework is server-based and all computation of the web
apps takes place on the server side, it is possible to create dynamic applications
in JWIG by using two primitives: the ability to automatically push updates
of data to the clients, and the ability to capture XHTML events. This model
often makes it unnecessary for the programmer to write any JavaScript code.

8.1 Automatic view updates

JWIG makes it possible to update the XML contents of a page while it is being
shown at the client side. These updates are automatically propagated to the
clients using a built-in Comet/AJAX system.

An XMLProducer|is responsible for generating a fragment of the XML data that
may be updated and propagated to the client at any time. The XMLProducer
must implement a run method that is used to generate its content. Data objects
that the XMLProducer depend on are given as arguments to the constructor.
When those data objects are changed (see the update method in Section @,
the run method is invoked, and the resulting XML data is sent to all clients
viewing the data.

The following example mimics a page with a highscore for a game. Whenever
the highscore is changed, the database system notifies the XMLProducer to
invalidate its current value. The XMLProducer is then executed again and the
new value is sent to the client.

XMLProducer example

public void ajaxy () {
XML page = ...;
page = page.plug(”’NAME’ , new XMLProducer () {
public XML run () {
HighScore highscore = Game. getCurrentGame (). getHighScore ();
addResponselnvalidator (highscore);
return highscore.getName ();

})s
}

For XMLProducer to work in Tomcat, the NIO connector must be used. In
server.xml make sure that the 'protocol’ is set to org.apache.coyote.httpll.HttpliNioProtocol

Connector configuration example for Tomcat

<Connector port="8080" connectionTimeout="20000" redirectPort="8443"
protocol="org.apache.coyote.httpll.Httpl1NioProtocol” />

18

http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/XMLProducer.html

8.2 XHTML events

The EventHandler| class is used to respond to client side XHTML events. It
can be plugged into any XHTML attribute where an XHTML event handler is
expected. The EventHandler must contain a run method that is responsible for
handling the event on the server side. This run method is able to take parame-
ters just like a SubmitHandler. The following example shows an EventHandler
that responds to onClick events:

EventHandler example

XML x = [[... <input type="button” value="Click.me” onClick=[HANDLER] >.|.

.plug ("HANDLER” , new EventHandler () {
public void run() {
log.info (" User.clicked .the_.button”);

1)

EventHandler objects are subject to regeneration; see Section

9 Configuration

JWIG uses a common configuration system that allows properties to be specified
declaratively in a separate file and operationally at runtime. First, properties
can be written in the file jwig.properties, as this example:

jwig.base_url = http://services.brics.dk/java
jwig.base_url_secure = https://services.brics.dk/java
jwig.hibernate = true

hibernate.connection.username = jdoe
hibernate.connection.password = ToPsEcReT
hibernate.connection.url = jdbc:mysql://mysql.cs.au.dk/jdoe
mail.transport.protocol = smtp

mail.host = smtp.nfit.au.dk

Second, properties can be set (typically during initialization of the WebSite
or WebApp) using setProperty. Properties for the WebSite are shared for all
web apps and can be overridden locally in each WebApp. To read a property,
use getProperty. The names of JWIG specific properties all begin with jwig.
Note that reasonable defaults have been selected for all properties, so simple
JWIG applications can be created without explicitly setting any configuration.

The jwig.properties file must be placed in the base folder of the class loader
at runtime (i.e. in the folder containing the class files that belong to the default
package).

A complete list of JWIG configuration properties is available in the API
documentation of the WebSite class.

19

http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/EventHandler.html
http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/WebSite.html#setProperty(java.lang.String,%20java.lang.Object)
http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/WebSite.html#getProperty(java.lang.String)
../doc/index.html?dk/brics/jwig/WebSite.html
../doc/index.html?dk/brics/jwig/WebSite.html

10 Persistence with Hibernate

This section is by no means a complete guide to the Hibernate framework, but
merely as a description of how to enable Hibernate for use in JWIG programs.

While Hibernate is a powerful framework that requires some work to master,
the basics can be learned quickly. See the Hibernate Getting Started document
at http://hibernate.org/quick-start.html

Most web apps need to store data externally. For this purpose JWIG integrates
closely with the Java ORM]|framework [Hibernate. To enable Hibernate you will
need a database server and a JDBC driver|for the database. Furthermore, map-
pings between objects and database tables must be specified. Based on these
mappings, Hibernate generates SQL for updating and querying the database.
All popular databases have their own SQL dialect so Hibernate needs to be set
up to use the right one. Make sure that your database in on the list of list of
supported databases.

10.1 Setting up your database connection and dialect

JWIG defaults to MySQL, so if you use MySQL as your database, you will not
need to set the dialect. The dialect classes for the most popular databases can
be found on this list:

Database Dialect

PostgreSQL org.hibernate.dialect.PostgreSQLDialect
Microsoft SQL Server org.hibernate.dialect.SQLServerDialect
Oracle 9i/10g org.hibernate.dialect.Oracle9iDialect

For the full list, please the refer to the Hibernate documentation

To set the database dialect, use the JWIG configuration property hibernate.dialect’.
Please refer to Section [J for details on configuration.

Second you will have to set the class name for your JDBC driver. Again
this is done for MySQL. If you use another database, please set the prop-
erty ’hibernate.connection.driver_class’ in the same way as above to the
qualified name of you driver class. This class name can be found on the web
site of the JDBC driver.

10.2 Setting up username and password

Finally you will need to set the following properties in the JWIG configuration
(see Section [9):

20

http://hibernate.org/quick-start.html
http://en.wikipedia.org/wiki/Object-relational_mapping
http://www.hibernate.org/
http://java.sun.com/javase/technologies/database/
http://www.hibernate.org/80.html
http://www.hibernate.org/80.html
http://www.hibernate.org/hib_docs/reference/en/html/session-configuration.html#sql-dialects

Property Contents

hibernate.connection.username Your database username

hibernate.connection.password Your database password

hibernate.connection.url Connection URL for you database, for example jdbc:mysql://mysql
jwig.hibernate Set this to 'true’ to enable Hibernate support

10.3 Querier

The Querier|is central to the Hibernate bridge as it allows JWIG to query ob-
jects from the database. The Querier can be obtained through WebSite.getQuerier().
It can be used directly by the web app code to query objects from the database:

Object querying

User u = getWebSite (). getQuerier (). getObject (User.class, 1);

This will return the User from the database with ID 1 or null if no such user
exists. In principle, any ORM framework could be supported by implementing
appripriate Querier classes. JWIG provides a single implementation of the
interface called HibernateQuerier. This class allows access to objects mapped
in the Hibernate framework and it is enabled if the jwig.hibernate property
is set.

10.4 Persistable objects

The Persistable interface allows JWIG to serialize and query persisted ob-
jects. This interface requires the object to have an ID property of type Integer.
An implementation is provided as AbstractPersistable. The ID must be
unique for the given object within the database. JWIG refers to persistable
objects by their IDs in e.g. URLs.

In Hibernate the class must be mapped and added to the Hibernate framework
by accessing the the Configuration object through the HibernateQuerier
during initialization of the web site:

Loading a mapping

HibernateQuerier . getConfig ().addClass(User.class);

More advanced queries can be made using the standard Hibernate framework.

The session factory can be obtained using the static method HibernateQuerier.getSessionFactory()
and Hibernate sessions can be obtained through the getCurrentSession()

method of this object.

10.5 Persistable parameters
Persistable objects can be used as parameters to web methods. Persistable

objects are serialized through their getId() method, and JWIG deserializes
the objects using the Querier interface described above.

21

http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/persistence/Querier.html
http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/persistence/HibernateQuerier.html
http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/persistence/Persistable.html
http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/persistence/AbstractPersistable.html
http://www.hibernate.org/hib_docs/reference/en/html/mapping.html
http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/persistence/HibernateQuerier.html

Example of persistable parameter passing

public XML viewUser (User user) {
// User (as mapped above) is automatically queried
// from the database and passed as parameter

//Furthermore, makeURL can create URLs to such methods
public URL gotoUser(User user) {

return makeURL(” viewUser” , user);
}

11 Miscellaneous convenience features

11.1 Error reporting and logging

A built in web method takes care of catching all exceptions thrown by the ordi-
nary web methods and reporting errors to the clients. The following exceptions
are particularly relevant:

JWIGException
- base class for all JWIG runtime exceptions (results in ”500 Internal
Server Error”)

AccessDeniedException
- thrown when the client is denied access to a requested resource (”403
Forbidden”)

AuthorizationRequiredException
- thrown when the client should resend the request with HTTP Basic
authentication information (401 Unauthorized”), see Section

BadRequestException
- thrown when the HTTP request contains errors (400 Bad Request”)

ServerBusyException
- thrown when the server is overloaded (7503 Service Unavailable”)

PersistenceException
- thrown if the persistence system is misconfigured (”500 Internal Server
Error”), see Section

SessionDefunctException
- thrown when trying to fetch a non-existing session from the session state
manager (7410 Gone”)

JWIG uses [log4j for logging, and the JWIG runtime system automatically logs
many internal events. A Logger| object for logging application specific events
can be obtained by using the factory method on Logger like this:

Obtaining a logger

Logger log = Logger.getLogger (WEBAPP .class);

22

http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/JWIGException.html
http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/AccessDeniedException.html
http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/AuthorizationRequiredException.html
http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/BadRequestException.html
http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/ServerBusyException.html
http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/persistence/PersistenceException.html
http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/SessionDefunctException.html
http://logging.apache.org/log4j/
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/Logger.html

where WEBAPP is the name of your web app class. See also the configuration
properties (Section @ whose name start with log4j. The following example
writes a message to the log with level INFO:

Writing to the log

log.info (”10—4_Rubber_Duck”);

In some cases it can be expensive to create the string that is printed to the log.
In that case, test if the log is enabled for the relevant level before generating
the string:

Testing log level

if (log.isInfoEnabled ())
log.info (getComplicatedStringThatTakesALongTimeToCompute ());

Log4j can give fine-grained control of what loggers print. It can be configured
at class or package (including sub-package) level so that different log levels are
used for different program parts. The standard JWIG configuration is to set
the log level to print all log statements of at least level INFO to System.out.
Log4j can be initialized as part of the init method of the WebSite for more
fine-grained control of the loggin behavior. See this | Log4j tutorial for more
information.

11.2 Cookies

The method getCookies returns a (non-null) array of cookies occurring in the
request, and addCookie|adds a cookie to the response.

The following example shows how to use cookies for authentication:

Cookie authentication

QURLPattern(” restricted /+x”)
public void accessCookie () {
String key = null;
for (Cookie ¢ : getCookies())
if (c.getName ().equals(”key”))
key = c.getValue ();

if (key = null || !key.equals(”87”))
throw new AccessDeniedException(”You_shall_not_pass!”)
next ();

}

Here, accessCookie is a filter web method that checks in every request match-
ing restricted/** whether a cookie named key with value 87 is provided.

11.3 Sending emails

JWIG uses JavaMail for sending emails:

23

http://www.laliluna.de/log4j-tutorial.html
http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/WebContext.html#getCookies()
http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/WebContext.html#addCookie(javax.servlet.http.Cookie)
http://java.sun.com/products/javamail/

Emails

import javax.mail.x;
import javax.mail.internet .x;
import dk. brics.jwig.*;

public class EmailTest extends WebApp {

public String send () throws MessagingException {
Email e = new Email ();
e.setText (” This~is_a_test!”);
e.setSubject ("JWIG_email_test”);
e.setSender (new InternetAddress(”amoeller@cs.au.dk”));
e.addRecipients (Message. RecipientType.TO, ”amoeller@cs.au.dk”);
SendFailedException ex = sendEmail(e);
if (ex == null)
return ”Email_sent!”;
else
return ex.toString ();

Configuration properties (see Section @) whose name start with "mail.” are
used by JavaMail. In jwig.properties set e.g.:

mail.transport.protocol = smtp
mail.host = smtp.nfit.au.dk

11.4 Debugging applications

You can attach a remote debugger to your JWIG program by starting Tomcat
with the following options:

-Xdebug
-Xnoagent -Xrunjdwp:transport=dt_socket,address=127.0.0.1:8000,server=y,suspend=n

(On Windows, edit the Java Options in ’configure Tomcat’.) You may want
to use a different value of address. Set your IDE to use the same address for
remote debugging (in Eclipse start the debugger with a Remote Java Applica-
tion), and you can now use the debugger while Tomcat is running.

12 The JWIG program analysis suite

FiXme Fatal: TO

. A DO: update this
The design of JWIG allows some specialized program analyses to be performed, = = 0 1

such that the programmer can check - at compile time - that certain kinds of pewest
errors cannot occur at runtime. The JWIG analyzer considers the following Xact/JWIG
properties for a given program: analyses

e show validity: that all pages being shown are valid XHTML 1.0,

e plug comnsistency: that gaps are present when subjected to the plug
operation and XML templates are never plugged into attribute gaps,

e form field consistency: that the parameters of form submit handlers
and event handlers match the form names that occur in the generated
XHTML pages,

24

e URL construction: that values of @URLPattern and makeURL are mean-
ingful, and

e method safety: that web methods and XML producers do not have side
effects that may influence behavior of the web app.

e regeneration correctness: that the referer page can be reconstructed
correctly after system reboot and emptying of the cache.

Additionally, the program analysis can produce a global control-flow graph of
a web app to visualize its structure.

13 Examples

13.1 Example: QuickPoll

The QuickPoll example illustrates a small application where it is possible for
a client to ask a question to which other clients can answer either ’yes’ or
'no’. The web app has four web methods, index, init, vote and results,
and a single filter, authenticate, that filters requests to the init method and
requires the client to authenticate using a username and a password. An inner
class State holds the question and the votes. Finally, the field wrapper holds

an XML fragment which is used by all the web methods.

The web methods follow a straightforward pattern returning an XHTML page to
the client upon request. The init and vote methods allow changes to the state
of the web app. Both methods define a SubmitHandler to receive parameters
from the client on form submission and update the question and the votes
accordingly. Finally, the results method illustrates how XML generation can
be wrapped in an XMLProducer to allow server push of values as they change.

Example: QuickPoll

package quickpoll;

import dk. brics.jwig.*;
import dk. brics.xact.x*;

@QURLPattern(” quickpoll”)
public class QuickPoll extends WebApp {

XML wrapper = []
<html>
<head><title >QuickPoll</title ></head>
<body>
<h1>QuickPoll </h1>
< [BODY] >
</body>
</html>
5

class State {
String question;
int yes;
int no;

State state = new State ();
QURLPattern(””)
public XML index () {

return wrapper.plug (”BODY”, [[

25

Initialize (access control)
Vote
View results

11)5

QURLPattern(” init”)
public void authenticate () {
User u = getUser ();

if (u != null && u.getUsername (). equals(”jdoe”) &&
u.getPassword (). equals (742”))
next ();
else

throw new AuthorizationRequiredException (” QuickPoll”);

}

public XML init () {
return wrapper.plug (”BODY” , [[
<form method="post” action=[INIT]>
What is your question?

<input name=”" question” type="text” size="407/>7

<input type="submit” value="Register_my_question”/>
</form>
11) . plug (?INIT” , new SubmitHandler () {
XML run(String question)
synchronized (state) {
state.question = question;
state.yes = state.no = 0;

update (state);

return wrapper.plug (”BODY” , [[
Your question has been registered.
Let the vote begin!

1)

}
})s
}
public XML vote () {
if (state.question == null)

throw new AccessDeniedException(” QuickPoll_not_yet_initialized”);
addResponselnvalidator (state);
return wrapper.plug (”’BODY”, [[
<{state.question}>?<p/>
<form method="post” action=[VOTE]>
<input name="vote” type="radio” value="yes”/> yes

<input name="vote” type="radio” value="no”/> no<p/>
<input type="submit” value="Vote”/>
</form>
11) . plug ("VOTE” , new SubmitHandler () {
XML run(String vote) {
synchronized (state) {
if (”yes”.equals(vote))
state.yes+4+4;
else if (”no”.equals(vote))
state . no+4+;

update (state);
return wrapper.plug (”BODY” , [[
Thank you for your vote!

1)
}
s
}

public XML results () {
return wrapper.plug (”BODY” , new XMLProducer(state) {

XML run ()
synchronized (state) {
int total = state.yes 4+ state.no;
if (total == 0)
return [[No votes yet...]];
else
return []

<{state.question}>?<p/>
<table border="0">
<tr>
<td>Yes:</td><td><{drawBar (300*state.yes/total)}></td>
<td><{state.yes}></td>
</tr>
<tr>
<td>No:</td><td><{drawBar (300xstate .no/total)}></td>
<td><{state.no}></td>
</tr>
</table>

115

}
1)

26

}

private XML drawBar(int length) {
return [[<table><tr>
<td bgcolor="black” height="20" width={length}></td>
</tr></table >]];

13.2 Example: MicroChat

The MicroChat example is an application where clients are able to communicate
with each other through a simple interface containing an input box and a list
of messages. The list of messages is stored in the messages field using the
Messages class which simply contains a list of strings.

A single web method run presents the list of messages. The generated XHTML
list is wrapped in an XMLProducer to allow the view to be updated at all clients
as the list changes. The XMLProducer listens for updates at the messages ob-
ject and updates the view if the list is updated. Furthermore, the run method
contains a SubmitHandler that receives messages written by clients. The han-
dler adds the new message to the list of messages, and the add method on
Messages calls update|to notify the XMLProducer. Finally, the example uses an
EventHandler to allow clients to clear the list of messages. The EventHandler
is executed when the reset button is clicked and the change is pushed to all
clients as a consequence of the call to updatel

Note that the use of the XACT syntax means that values from the clients are
escaped by construction. This means that it is not possible for a malicious client
to inject HTML or JavaScript into another client’s browser in this example.

Example: MicroChat

package microchat;

import java.util.=x;
import dk. brics.jwig.*;
import dk. brics.xact.*;

@QURLPattern(” microchat”)
public class MicroChat extends WebApp {

class Messages {
List<String> ms = new ArrayList<String >();

void add(String msg) {
ms. add (msg);
update (this);

void reset () {
ms. clear ();
update (this);
}
}

Messages messages = new Messages ();

@QURLPattern(””)
public XML run () {

return [
<html>

<head>

<title >MicroChat</title >

</head>

<body>
<{

new XMLProducer(messages) {

27

http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/WebContext.html#update(java.lang.Object)
http://www.brics.dk/JWIG/doc-public/index.html?dk/brics/jwig/WebContext.html#update(java.lang.Object)

XML run () {
if (!messages.ms.isEmpty ())
return [|

<{ [[<1li><MSG]></1i >]]
.plugWrap ("MSG” , messages.ms) }>

115
else
return [[]];
}
¥
>
<form method=" post” action=[SEND]>
<input type="text” name="msg”/>
<input type="submit” value="Send!”/>
<p/>
<input type="button” value="Reset” onclick=[RESET]/>
</form>
</body>
</html>

]

.plug (”SEND” , new SubmitHandler () {
void run(String msg) {
messages .add (msg);

}
3
.plug ("RESET” , new EventHandler () {

void run() {
messages.reset ();

}
)

13.3 Example: GuessingGame

The GuessingGame example is a small game that requires the client to guess
a number between 0 and 100. If the client makes an incorrect guess, he is
informed whether the number to guess is higher or lower than the number he
provided. The application keeps track of the number of guesses he has made so
far as well as the global record held by the client who has guessed the number
in the least number of guesses.

The GuessingGame example illustrates the use of a Session class to control the
web app control flow. The web method start creates a new Session object
and redirects the user to the play method, which simply returns the value of
the page field of the session.

The flow of the application is controlled by the GameSession class. When a
GameSession instance is created, an initial page is stored in its page field. This
page contains a SubmitHandler that receives the guess from the client. The
SubmitHandler updates the page value to contain either a message that the
number should be higher or lower or a confirmation that the number has been
guess as well as possibly a form with a new SubmitHandler allowing the client
to type his name if he has broken the record.

Notice that the number is never made available on the client side and that
the client cannot progress to entering his name for the highscore unless he has
broken the record.

Example: GuessingGame

package guessinggame;

28

import java.net.URL;

import java.util.x;

import dk. brics.jwig.*;

import dk. brics.xact.*;

import dk.brics.jwig.persistence.HibernateQuerier;

@QURLPattern(” guessinggame”)
public class GuessingGame extends WebApp {

public GuessingGame () {
HibernateQuerier. getConfig (). addClass(GameState. class);

}
XML wrapper = [[
<html>
<head><title >The Guessing Game</title ></head>
<body bgcolor="aqua”><[BODY]></body>
</html>
115
Random rnd = new Random ();

class UserState extends Session {

int number;
int guesses;
XML page;

UserState () {
number = rnd.nextInt (100)+1;
guesses = 0;
page = wrapper.plug (”BODY”, []
<div>Please guess a number between 1 and 100:</div>
<form method="post” action=[GUESS]>
<input name="guess” type="text” size="3" maxlength="3"/>
<input type="submit” value="continue”/>
</form>
11) - plug (?”GUESS” , new SubmitHandler () {
void run(int guess) {

guesses+-+;
if (guess != number)
page = page.setContent (” /xhtml: html/xhtml:body/xhtml:div”, [[

That is not correct. Try a
<{(guess>number)?”lower” :” higher” }> number:
11);5
} else {
page = page.setContent (” /xhtml: html/xhtml:body”, []
You got it , using <{guesses}> guesses.<p/>

11);5
final XML thanks = [[Thank you for playing this exciting game!]];
GameState game = GameState.load ();

if (game.getRecord() > 0 && guesses >gt;= game.getRecord ())
page = page.appendContent(”/xhtml:html/xhtml:body” , thanks);
else
page = page.appendContent (”/xhtml: html/xhtml:body”, []
That makes you the new record holder!<p/>gt;
Please enter your name for the hi—score list:
<form method="post” action=[RECORD]>
<input name="name” type="text” size="20"/>
<input type="submit” value="continue”/>
</form>
11) . plug ("RECORD” , new SubmitHandler () {
void run(String name) {
synchronized (GuessingGame.class) {
GameState game = GameState.load ();
if (guesses < game.getRecord())
game.setRecord (guesses , name);
}
page = page.setContent (”/xhtml: html/xhtml:body”, thanks);
update (UserState . this);

¥
1)
update (UserState.this);
}
1)
}
}
public URL start () {

GameState.load ().incrementPlays ();
return makeURL(” play”, new UserState ());

public XML play (UserState s) {
return s.page;

}

public XML record () {
final GameState game = GameState.load ();

29

return wrapper.plug (”"BODY” , new XMLProducer(game) {
XML run () {
synchronized (game) {
if (game.getHolder () != null)
return [
In <{game.getPlays()}> plays of this game,
the record holder is <{game.getHolder()}> with
<{game.getRecord()}> guesses.
else
return [[<{game.getPlays()}> plays started.
No players finished yet.]];

}
1)

30

	What is JWIG?
	Hello World!
	Web apps, web methods, and web sites
	Generating responses
	Returning XML generated using Xact
	Redirecting the client
	Returning plain text
	Returning binary data using low-level servlet input/output

	Requests and parameters
	Mapping from URLs to code
	Generating links to web methods
	Web app parameters
	XHTML forms
	Filters and user authentication
	XML web service programming

	Caching
	Invalidating cached pages
	Disabling the cache
	Handler regeneration

	Session state
	Client side programming
	Automatic view updates
	XHTML events

	Configuration
	Persistence with Hibernate
	Setting up your database connection and dialect
	Setting up username and password
	Querier
	Persistable objects
	Persistable parameters

	Miscellaneous convenience features
	Error reporting and logging
	Cookies
	Sending emails
	Debugging applications

	The JWIG program analysis suite
	Examples
	Example: QuickPoll
	Example: MicroChat
	Example: GuessingGame

