
JWIG User Manual

Aske Simon Christensen & Anders Møller

June 2002 (revised January 2004)

Copyright c© 2002-2004
BRICS, Department of Computer Science, University of Aarhus
All rights reserved.

Reproduction of all or part of this document is permitted
on condition that it is unmodified, includes this copyright
notice, and is distributed for free.

The JWIG tool is available under the GNU General Public License.



Contents

1 Introduction 3

2 Installation of the JWIG System 3

3 Compilation and Installation of JWIG Services 5

4 Constructing XHTML Documents 7

5 Services and Sessions 10

6 Static Analysis of JWIG Programs 15

7 The JWIG Runtime System 17

8 Serialization of Shared Data 21

9 Updating a Running Service 25

10 PowerForms - Declarative Form Input Validation 26

11 SSL Encryption and HTTP Authentication 28

12 Sending Emails 31

13 API - Overview of Classes, Methods, and Fields 32

References 35

2



1 Introduction

The JWIG programming language is a Java-based high-level language for development of
interactive Web services. It contains an advanced session model, a flexible mechanism for
dynamic construction of XML documents, in particular XHTML, and a powerful API for
simplifying use of the HTTP protocol and many other aspects of Web service programming.
To support program development, JWIG provides a unique suite of highly specialized program
analyses that at compile time verify for a given program that no runtime errors can occur while
building documents or receiving form input, and that all documents being shown are valid
according to the document type definition for XHTML 1.0 [7]. The main goal of the JWIG
project is to simplify development of complex Web services, compared to alternatives, such
as, Servlets, JSP, ASP, and PHP. JWIG is a descendant of the<bigwig> research language.

JWIG is an extension of the Java programming language [1] with specialized syntactic con-
structs for building and showing XHTML documents and receiving form input. JWIG pro-
grammers are therefore assumed to be familiar with Java and XHTML.

The JWIG 1.2 development system consists of a runtime system based on the Apache Web
server, a compiler, and a program analyzer. The full source code and documentation is freely
available from the project home page athttp://www.brics.dk/JWIG/. JWIG is being de-
veloped at the BRICS research center at University of Aarhus.

This manual describes JWIG 1.2. In the first sections, we explain how to install and run the
JWIG system. We then go through the JWIG language and API. Finally, the special JWIG
program analyses are described. In the research paperExtending Java for High-Level Web
Service Development[4], the motivation and goals for the JWIG project are more thoroughly
described, and, in particular, the program analysis are explained in full detail. The online
tutorial Interactive Web Services with Java[6] contains a section that briefly summarizes the
highlights of JWIG. This present manual aims to provide a concise but complete reference to
the JWIG language and development system.

2 Installation of the JWIG System

The installation procedure described here typically requires root permissions on your system.
After the JWIG system has been installed, installation of Web services can be done by all users
without any special permissions.

Prerequisites

To install the JWIG system, you need:

• a Linux, Solaris, or IRIX machine (it may run on other Unix variants, but Windows is
currently not supported)

3



• the Java 2 Platform, Standard Edition1, version 1.3.1 or later (or compliant tools)

• the Apache Web server2 with DSO (dynamic shared objects) enabled

How to install the JWIG system

The JWIG runtime system uses therunwig package, which contains a module for the Apache
server and a garbage collection daemon.

Download the JWIG and therunwig source packages, and unpack them with

gunzip -c runwig-2.1-1.tar.gz | tar xvf -

gunzip -c jwig-1.2-1.tar.gz | tar xvf -

If your system supports RPM package management, we recommend that you build and install
binary RPM packages tailor-made for your system configuration:

cd runwig-2.1

config/rpm-config

make rpm

cd ../jwig-1.2

config/rpm-config

make rpm

cd ‘rpm --eval %{ rpmdir}/%{ arch}‘

rpm -U runwig-2.1-1.*.rpm jwig-1.2-1.*.rpm

If your system does not support RPM package management or you encounter any configuration
problems, read theINSTALL files in therunwig-2.0 andjwig-1.2 directories for further
instructions. The packages use the familiar Autoconf system for easy configuration.

JWIG mode for Emacs

The JWIG distribution contains a JWIG mode for Emacs. To activate it, insert the following
into your~/.emacs file:

(global-font-lock-mode t)

(load "JWIGDIR /xml-mode")

(load "JWIGDIR /jwig-mode")

(setq auto-mode-alist

(append ’(("\\.jwig$" . jwig-mode)) auto-mode-alist))

whereJWIGDIR is replaced by the result of runningjwig jwigdir.

1http://java.sun.com/j2se/
2http://httpd.apache.org/

4



More information

More detailed information about compilation, installation, and configuration can be found in
the INSTALL files in the distribution and in the manual page forjwig. If there are other
problems not covered by the documentation, feel free to send an email to amoeller@brics.dk.

For information about compilation and installation of JWIG services, see the next section.

3 Compilation and Installation of JWIG Services

Thejwig tool makes it easy to compile and install JWIG services. As an example, copy the
Hello.jwig service shown below to a directory namedtest and follow the steps described
below. This tool can also be used to update an installed service and to analyze a service to
check for errors related to construction of XHTML and receiving of form input. See also the
manual page (man jwig) for more documentation.

TheHello.jwig example program:

package test;

import dk.brics.jwig.runtime.*;

public class Hello extends Service {

public class Test extends Session {

public void main() {

exit [[ <html><head><title>JWIG</title></head><body>

<h1>Hello World!</h1>

</body></html> ]];

}

}

}

Compiling a Service

To compile a JWIG program, run

jwig compile files

wherefiles is the list of.jwig and.java files constituting the program source. This will
translate the JWIG files into Java code and then compile all the Java code to class files. The
command must be executed from the root of the directory structure containing the source
files, and the source files must appear in subdirectories matching the package names. The
CLASSPATH environment variable can be used to specify the classpath.

For theHello.jwig example, run

jwig compile test/Hello.jwig

5



This will generate the filestest/Hello.class andtest/Hello$Test.class.

Installing a Compiled Service

To install a compiled service, run

jwig install dir files

wheredir is a subdirectory of~/jwig-bin andfiles is the list of class files and extra files
used by the service. For each file in the list, the relative path is preserved in the installation.
The path to each class file in the list must match the package name of the class. Alljar files
placed in the install directory are automatically included in the classpath when the service is
started.

(The directory~/jwig-bin is determined by the configuration of the Apache module. It can
be changed in/etc/httpd/conf/bigwig.conf, assuming a typical JWIG install configua-
tion.)

For theHello.jwig example, run

jwig install ~/jwig-bin/demo test/Hello.class test/Hello$Test.class

This will install the service in theservice directory~/jwig-bin/demo. The class files are
placed in~/jwig-bin/demo/test to match the package name.

Running an Installed Service

To run an installed service from a browser, open the following URL:

http://host /jwig-user /subdir /class

wherehost is your server host name,user is your user name,subdir is the directory where
the service is installed relative to~/jwig-bin, andclass is the name of a class defining a
service thread. The class name must be fully qualified with package name.

For theHello.jwig example, view

http://host /jwig-user /demo/test.Hello*Test

Note that ”.” is used in the package name of the class, and that ”*” is used instead of$ (because
$ should not appear unescaped in URLs).

(The mapping from URLs to files on the file system is determined by the configuration of
the Apache module mentioned above. Normally, the URL part/jwig-user/* is mapped to
~user/jwig-bin/* on the file system. More details of what is happening when services are
running are described in the runtime system section.)

6



Uninstalling a Service

To uninstall a service, run

jwig uninstall dir

wheredir is the directory containing the installed service.

For theHello.jwig example, run

jwig uninstall ~/jwig-bin/demo

This will uninstall the service and remove~/jwig-bin/demo entirely.

4 Constructing XHTML Documents

All output from a JWIG service has the form of XHTML documents, which are sent to the
client to be shown in a browser window. These XHTML documents are constructed in the
JWIG program by means ofXML templates. An XML template is a fragment of XML syntax
that may contain unspecified pieces calledgaps. These gaps can be filled with strings or other
templates to construct larger templates.

XML templates are represented in the JWIG program by values of theXML type. XML values
are immutable. All operations that manipulate XML templates create new values.

XML template constants are written as plain XML text enclosed in double square brackets,[[
... ]]. For example, the following piece of code declares a variable to contain XML template
values and initializes it toHello <i>World</i>!:

XML hello = [[Hello <i>World</i>!]];

XML template constants must be well-formed, that is, the tags must be balanced and nest
properly. Implicitly, the default namespace is set tohttp://www.w3.org/1999/xhtml (the
XHTML 1.0 namespace).

Gaps and Plugs

XML template constants can contain named gaps, using the syntax<[name]>. The gap name
must be a legal Java identifier. These gaps can be placed within text and tags, as if they were
themselves tags. Gaps placed like this are calledtemplate gaps.

Gaps can also be placed inside tags, as the values of attributes. The syntax for this is to write
the name of the gap enclosed in square brackets where you would normally write an attribute
value enclosed in single or double quotes. For example,<a href=[link]> is an anchor start
tag whosehref attribute is a gap namedlink. Gaps placed like this are calledattribute gaps.

7



Gaps are filled using theplug operator. This is an expression of type XML with the syntax
exp1 <[name = exp2 ], whereexp1 is an expression of typeXML, name is an identifier
indicating a gap name, andexp2 is an expression of typeXML or String. The result of this
expression is a copy ofexp1 where all occurrences of gaps namedname are replaced by a
copy ofexp2 . All gaps inexp1 with names different fromname will still be present in the
result, and all gaps inexp2 are copied into the result as well, regardless of their name. Note
that neitherexp1 norexp2 are modified in the operation.

Example:

XML hello1 = [[<p align=[alignment]>Hello <[what]>!</p>]];

XML hello2 = hello1 <[what = [[<i><[thing]></i>]]];

XML hello3 = hello2 <[thing = "World"] <[alignment = "left"];

After executing this code, the values of the variables will be:

hello1: <p align=[alignment]>Hello <[what]>!</p>
hello2: <p align=[alignment]>Hello <i><[thing]></i>!</p>
hello3: <p align="left">Hello <i>World</i>!</p>

As can be seen from the example, both strings and XML templates can be plugged into tem-
plate gaps. Attribute gaps, however, can only contain strings, since plugging an XML template
into an attribute gap would result in malformed XML. Attempting this will result in an excep-
tion being thrown at runtime, as described later.

As a shorthand, the plug operator allows the plugging of any object or simple value. This will
plug the corresponding string representation into the gap, as if the plugged value was passed
throughString.valueOf(). An exception to this is when the plugged object is aClass
object representing a session class (described in the next section). This will plug the URL of
the session (as described in the previous section) into the gap as a string. This is convenient
for making links that start new sessions.

When a document isshown, as explained in the next section, all remaining template gaps in
the shown document are replaced by empty strings. For all remaining attribute gaps, the whole
attribute is removed. This can be used to control, dynamically, which attributes will be present
in a given tag.

Code Gaps

In addition to template gaps and attribute gaps, which are filled using the plug operator, XML
templates can contain inlined pieces of code, calledcode gaps. The syntax for a code gap
is <{code}>, wherecode is Java code as it would appear in a normal Java method body.
This code will be executed when the document is shown, and its result (indicated byreturn
statements) is inserted at the point in the document where the code gap was.

Example:

8



XML date = [[The current date is now <i><{ return new Date(); }></i>]];

When a document containing the value given to thedate variable above is shown, the current
date and time (as returned bynew Date().toString()) will appear in place of the code
gap. Note that any value can be returned by a code gap. It is treated as if it was plugged into a
template gap.

Code gaps are executed in the order they appear in the document. If a code gap returns an
XML template which itself contains code gaps, these will be executed as they appear, before
processing subsequent code gaps in the original document.

External XML Templates

Instead of being written inlined in the JWIG program, an XML template constant can be placed
in an external file and loaded into the program at runtime using the constructget url , where
url is a string constant indicating the location of the template constant. This file should be a
plain XML fragment (without the double square brackets).

Example:

XML doc = get "http://www.brics.dk/JWIG/test.xml";

When this code is executed, the designated file will be fetched and parsed, and the resulting
XML template will be pointed to bydoc.

The retrieval of the document will happen every time theget url expression is evaluated.
This makes it possible to change the appearance of a running service simply by changing the
external templates. (If this behavior is not needed or not desired, theget url expression
should be used in such a way that the template is not fetched every time its value is needed,
since this could drastically impair the performance of the service.)

An external XML template can contain template gaps and attribute gaps just like an inlined
one. However, it cannot contain code gaps, since this would require runtime compilation of
code into the running service.

Exceptions

A number of exceptions can be thrown as a result of XML template manipulation. These are:

PlugException: Thrown when an attempt is made to plug into a gap that does not occur in
the given document or when an XML template is plugged into an attribute gap.

XMLException: Thrown when a syntax error is encountered in an XML template constant.
For inline template constants, the exception is thrown when the constant expression is
evaluated. For external templates, it is thrown when theget url expression is evalu-
ated, during parsing of the loaded file. A code gap in an external XML template will
also cause this exception to be thrown.

9



IOException: Thrown by theget url expression if the specified file could not be found, or
if some other I/O error occurred during the fetching.

The JWIG static analysis is able to verify statically for a given JWIG program, that none of the
two first of these exceptions can occur at runtime, provided that no external XML templates
have been changed since the time of the analysis. In addition, the analysis also checks that all
documents being constructed are valid XHTML 1.0, which is the XML variant of HTML 4.01.

5 Services and Sessions

JWIG is a session-centered language, in contrast to most other Web service programming
languages. Asessionconsists of a sequence of interactions between a server and a client.
Sessions are initiated by the clients but are controlled by the service code, conceptually by
threads running on the server. An interaction is performed by sending a Web page with a form
to the client. The session thread waits for the client to fill out and submit the form, and then
continues execution. Aserviceconsists of a number of session types, which are entry points
for the session threads.

The Structure of a JWIG Program

A JWIG program consists of aservice class, which is a subclass ofService. It will be
instantiated upon the first client request to the service, and only a single instance will exist
over the entire lifetime of the service.

The service class contains a number ofsession classes. These are non-static inner classes
of the service class, and are subclasses ofService.Session. Each client request to start a
session will instantiate the corresponding session class and run itsmain method in a freshly
created thread. The session object will exist until the session terminates, either explicitly by
executing anexit statement (described below), or implicitly due to a timeout caused by a
nonresponding client.

Client interaction is performed through theshow andexit statements. The statementshow
exp , whereexp is an expression of typeXML, sends the given document to the client, waits
for the client’s response, and then resumes execution of the session thread. The statement
exit exp , whereexp again is of typeXML, sends the given document to the client and then
terminates the session thread. If the session thread falls off the end of themain method, it will
implicitly executeexit with a standard ”Session terminated” document.

A document shown to the client, using eithershow or exit, must consist of a single<html>
... </html> element. The XHTML 1.0 document type declaration and a character encoding
are automatically inserted. Any document given as argument to theshow statement should
contain at least oneform element with noaction attribute. This will instruct the JWIG
runtime system to insert a specialaction attribute that will resume execution of the session
thread. The client requests continuation of the session by submitting such a form. Otherform

10



elements with explicitaction attributes may be present in the document, for submitting to
other kinds of services. These are ignored by JWIG.

The values of the input fields in the submitted form can be read using thereceive name

expression. Here,name is the name of the field to read, and the result of the expression is a
String containing the value submitted for the field. If no such field was submitted, or if more
than one value was submitted for it, aReceiveException is thrown. To read the values of
an input field for which more than one value (or a varying number of values) is submitted, the
expressionreceive[] name is used. This returns aString array containing all the values of
the field, in the order in which they were submitted. This expression never fails. If no values
were submitted for the given field, an empty array is returned.

Example:

import dk.brics.jwig.runtime.*;

public class Hello extends Service {

private static final XML wrap = [[

<html>

<head>

<title>A JWIG example</title>

</head>

<body>

<[body]>

</body>

</html>

]];

private static final XML question = [[

<form>

What is your name?

<input type="text" name="person" />

<br/>

<input type="submit" name="answer" value="Answer" />

</form>

]];

private static final XML greeting = [[

<h1>Hello <[who]>!</h1>

]];

public class Test extends Session {

public void main() {

show wrap <[body = question];

exit wrap <[body = greeting <[who = receive person]];

}

}

}

This JWIG program defines a service calledHello with a single session calledTest. The

11



session shows to the client a document containing a text input field namedperson and a
submit button entitled ”Answer”. The session then waits for the client to press this button. The
name entered in the text field is read using thereceive person expression. This value is
plugged into thewho gap of thegreeting template, and the resulting document is shown as
the final output of the session. After sending this document to the client, the session terminates,
without waiting for the client to respond. Notice the use of a wrapper template (the template
assigned to thewrap variable) to supply the outer structure at everyshow andexit statement.
This is a standard technique used in most JWIG programs.

Input Fields

Input fields in the submitted form result in name/value pairs being sent back to the server.
These pairs are accessible from the JWIG program through thereceive name andreceive[]
name constructs. To make it easier to handle the received information, some input fields be-
have somewhat differently than normal, as seen by the JWIG program. For this reason, the
exact behavior of the different kinds of input fields are described in the following:

• A text input (aninputelement withtype="text"ortype="password", or atextarea
element) returns its contents as a single value under the name given in itsname attribute.

• A group ofradio buttons (input elements withtype="radio" having the same value
in theirname attribute) return the value of thevalue attribute of the selected button as a
single value under the name given in thename attribute of the radio buttons. If no button
was selected (which can happen in some browsers if no button is initially selected using
thechecked attribute),null is returned.

• A group of checkboxes(input elements withtype="checkbox" having the same
value in theirname attribute) return the values of thevalue attributes of all the checked
checkboxes. Since the number of values vary, they must be received using thereceive[]
name construct.

• A single-select menu(a select element without themultiple attribute) returns the
value of thevalue attribute of the selected entry (option element) as a single value
under the name given in thename attribute of theselect element. If no entry was
selected (which can happen in some browsers if no entry is initially selected using the
selected attribute of theoption element),null is returned.

• A multi-select menu(aselect element with themultiple attribute) returns the values
of thevalue attributes of all the selected entries. Since the number of values vary, they
must be received using thereceive[] name construct.

• A file select control(aninput element withtype="file") returns several values de-
scribing the file. If the name of the control isname , then receivingname will give the ac-
tual contents of the file,name.filenamewill give the name of the file,name.contenttype
will give the content type of the file, andname.charset will give the character encod-
ing used to encode the file into a string. All these values are strings, since areceive

12



expression always returns a string. The original byte sequence of the file data can be
retrieved by decoding the file content string according to the given character encoding.
This will either be the one specified by the browser or, if this is empty or not recognised
as a valid character encoding, some other valid encoding chosen by the JWIG runtime
system. Thecontenttype might specify a content type or be an empty string, depend-
ing on the behavior of the browser. Note that theform containing the file select control
must have the attributeenctype="multipart/form-data" for file upload to work as
described here.

• A submit button (aninput orbutton element withtype="submit") returns the value
of its name attribute under the name ”submit”.

• A graphical submit button (aninput element withtype="image") returns the value
of its name attribute under the name ”submit”, just like a normal submit button. Fur-
thermore, receiving the names ”submit.x” and ”submit.y” will give the coordinates
inside the image at which the client clicked.

If the form was submitted but no submit button was pressed (which can happen in some
browsers), receiving the name ”submit” will give an empty string. If a non-graphical sub-
mit button was pressed, receiving the names ”submit.x” and ”submit.y” will both give -1.

The special behavior of submit buttons makes it easy to decide which submit button was
pressed, since its name always appears under the name ”submit”. The value attribute of
submit buttons can then be used to specify the textual label on the button, independent of the
internal handling of the button.

In addition to the normal and graphical submit buttons, JWIG includes a special kind of submit
button - thesubmit anchor. If an a element has asubmit attribute but nohref attribute, the
whole anchor will act as a submit button with the given name. This way, anything that can be
an anchor can also be a submit button. This is implemented by JavaScript code in thehref
attribute. If thea element in question furthermore contains astatus attribute, this will be the
text shown in the status line of the browser when the mouse is over the anchor.

Document Post-Processing

The XHTML specification require that lists, tables, menus, and some other constructs must
contain at least one element. Requirements like this are very inconvenient when the output
is generated dynamically, since any code that generates, for instance, a list with a dynamic
number of elements must handle zero elements as a special case. For this reason, JWIG does
some preprocessing of the generated XHTML to allow such constructs to be generated by the
program and still show only valid XHTML to the client. Specifically, the post-processing does
the following:

• The following elements are removed:ul, ol, menu anddir elements containing no
li elements,dl elements containing nodt or dd elements,map elements containing
no area elements,tr elements containing noth or td elements,thead, tbody and

13



tfoot elements containing notr elements,table elements containing notbody or tr
elements, andoptgroup elements containing nooption or optgroup elements.

• select elements containing nooption or optgroup elements are given a single, ini-
tially selected option with an empty string as itsvalue attribute.

Furthermore, forform elements without amethod attribute,method="POST" is inserted by
default.

Pages and seslets

Service.Session is not the only inner class of the Service class that can be subclassed to cre-
ate client-instantiable server threads. Two more such classes exist - Service.Page and Ser-
vice.Seslet.

If a session always proceeds directly to anexit statement without ever executing ashow
statement, it can be a page instead of a session. A page is just like a session, except thatshows
andreceives are not allowed. Itsmain method is invoked in exactly the same manner. For
this single-page purpose, pages are usually more efficient than sessions.

A seslet is used for arbitrary communication with a non-browser client, such as, an applet
or another Web service. As seslet’smain method takes as arguments anInputStream and
anOutputStream for the communication. A seslet produces no XHTML output. It should
simply terminate when the communication is over. On the client side, anURLConnection
should be opened to the seslet URL. The streams obtained by callinggetInputStream()and
getOutputStream()will then be connected to the seslet streams.

Exceptions

A number of exceptions can be thrown by theshow, exit andreceive constructs:

ShowException: Thrown by theshow andexit statements if some error, e.g. an I/O error,
occurs while showing the document.

ValidateException: If runtime validation is enabled (by thevalidate xhtml field), this
exception is thrown by theshow andexit statements if the shown document does not
validate according to the XHTML 1.0 specification.

TimeoutException: Thrown by theshow statement if the client does not respond within the
show timeout set for the session.

CodeGapException: Thrown by theshow andexit statements if some error occurs while
executing the code gaps in the document, or if an exception is thrown from within a
code gap.

ReceiveException: Thrown by thereceive expression if no field of the given name was
submitted by the client, or if more than one value was submitted for it.

14



The JWIG static analysis is able to verify statically for a given JWIG program, that neither
the ValidateException nor the ReceiveException can occur at runtime, provided that the client
behaves according to the specification with respect to the submitted field values, and that no
external XML templates have been changed since the time of the analysis.

6 Static Analysis of JWIG Programs

The unique design of JWIG allows some specialized program analyses to be performed, such
that the programmer can check at compile time that certain kinds of errors related to the dy-
namic document construction cannot occur at runtime. The JWIG analyzer considers the fol-
lowing properties for a given program:

plug consistency: that gaps are always present when subjected to the plug operation and XML
templates are never plugged into attribute gaps

receive consistency:that input fields occur the right number of times in the shown documents
soreceive andreceive[] operations always succeed

show validity: that all documents being shown are valid XHTML 1.0 [7]

If any of these correctness properties is not satisfied at runtime, an exception will be thrown,
as described earlier. The analyses try to verify at compile time that these exceptions cannot
occur, and if then can occur, an explanatory warning message is automatically produced.

To analyze a JWIG program, run

jwig analyze files

wherefiles is a collection of class files from the compiled program. This collection is called
the application classes. For efficiency reasons, the application classes can be just the few
classes that actually constitute the JWIG service, not including all the standard Java classes
that the program uses. Exactly one of the application classes must be a subclass ofService.

As an example, if we try analyzing a buggy version of the guessing game example from the
JWIG distribution, the following errors are reported (abbreviated with ”...”):

15



Gap ‘holder’ does not exist on line 67

Field ‘name’ is not always available exactly once on line 70

*** Invalid XHTML at line 69

--- element ’html’ in XML template at line 10: illegal content:

<sequence>

<element xmlns:h="http://www.w3.org/1999/xhtml" name="h:head" />

<element xmlns:h="http://www.w3.org/1999/xhtml" name="h:body" />

</sequence>

’body’ <- XML template at line 14 in class BuggyGuess in template plug

into ‘body’ at line 49 in class BuggyGuess$Play

...

The first line explains that a plug operation on line 67 in the source program may fail because
the specified gap does not exist. Similarly, the next line means that a receive operation may
fail. The remaining lines mean that theshow operation on line 69 may send invalid XHTML to
the client. The XML fragment in the error message is the part of the DSD2 schema constraint
that is violated. In this example, the validity requirement thathtml elements always must
contain ahead element followed by abody element is not satisfied. The last line shows the
relevant plug operations.

The soundness of the analyses is based on a set of well-formedness assumptions:

• all invocation sites in the application classes must either always invoke methods in the
application classes or always invoke methods in the non-application classes

• no fields or methods of application classes are accessed by a non-application class

• no XML operations are performed in non-application classes

• XML casts are always valid, according to the definition in the previous section

These assumptions usually do not limit expressibility in practice. In some cases, the second
assumption can be relaxed slightly, for instance if some method called from a non-application
class does not modify anyString or XML value that will ever reach other application class
methods. This makes it possible to safely use callback mechanisms such as theComparator
interface.

The current prototype implementation may require large amounts of memory when analyz-
ing complex JWIG programs. The running times for the analysis typically range from a few
seconds to a number of minutes, depending on the program size and complexity. Analyzing
a JWIG program is recommended, not after every single compilation, but periodically as a
supplement to extensive testing before the deployment.

The technical details of the JWIG program analyses are explained in the research paperEx-
tending Java for High-Level Web Service Development[4]. The JWIG development team is
working on improving the analysis implementation to produce more precise error messages
and decrease the time and space requirements.

16



News in JWIG 1.1: The program analysis now uses the Java String Analyzer, which is de-
scribed in the paperPrecise Analysis of String Expressions[5]. This analyzer is able to track
the values of string expressions more precisely than previously possible.

7 The JWIG Runtime System

The JWIG runtime system is based on thejwig.jar package running on a standard Java
virtual machine, such as J2SE, together with therunwig package for the Apache Web server.

Therunwig3 package consists of

• mod bigwig - an Apache server module, handles communication between the client’s
browsers and the JVM running the service code, and

• bigwigd - a garbage collection daemon,

This package is also used in the<bigwig> system (hence the naming). The structure of the
runtime system in its initial design is described in the research paperA Runtime System for
Interactive Web Services[3].

Configuration

Themod bigwigmodule is configured by a filebigwig.conf, which is included byhttpd.conf.
This configuration file defines

1. how URLs defining JWIG requests are mapped to file system paths, and

2. how the JVM is started when the first service thread is initiated.

The default configuration is sufficient for typical use. A URL of the form

PROTOCOL://HOST/jwig-USER/PATH

is mapped to

~USER /jwig-bin/PATH

on the file system.

3http://www.brics.dk/bigwig/runwig/

17



The Service JVM and Thread Directories

Requesting a URL that denotes a class file defining a JWIG service thread will result in a
thread to be created. If a JVM is not already running in that service directory, one is started.
Each service directory may contain multiple services located in different class files, although
typically, services are installed in distinct directories. One JVM is associated with each service
directory. Each service thread owns one subdirectory of the service directory. This subdirec-
tory contains files that are local to the individual thread. The various directories and their
corresponding URLs are available in the service code as the following fields:

servicedir - the service directory where the JVM resides

sessiondir - the local directory for the current session thread

serviceurl - the URL (excluding protocol and host) corresponding toservicedir

sessionurl - the URL (excluding protocol and host) corresponding tosessiondir

serverurl - the server root URL (protocol and host)

As an example, these fields could contain the following values:

servicedir = /home/amoeller/jwig-bin/demo/

sessiondir = /home/amoeller/jwig-bin/demo/03296hulktnnc1/

serviceurl = /jwig-amoeller/demo/

sessionurl =/home/amoeller/jwig-bin/demo/03296hulktnnc1/

serverurl = http://freewig.brics.dk

If a file namedjvm.lock is present in the service directory, new service threads cannot be
created. Instead, the clients receive a ”503 Service Unavailable” message. This is, for instance,
used by thejwig update command.

Everyjar file occurring in the service directory is automatically included in the JVM class-
path. This makes it easy to use extra packages in the service code. (Being used in the JWIG
runtime system,jar files for Xerces, JDOM, and dk.brics.automaton are implicitly included
in the classpath.)

In each thread directory, a file namedstatus describes the current state of the thread as either
running (currently executing), showing (waiting for client response), or terminated, which is
used by the garbage collector.

Sessions and Reply Indirection

Other Web service systems that support some variant of session management commonly have
some problematic shortcomings: Clicking the ”back” button in the browser may lead to an
obsolete page, which can confuse or annoy the client; bookmarks cannot be used to temporarily
suspend and later resume a session (because selecting such a bookmarked URL would cause a

18



re-submission); and sessions cannot easily be migrated to another browser (if the session ID is
encoded in a cookie, for instance).

The JWIG runtime system provides a unique solution to these problems. Instead of relying
on cookies, URL rewriting, or hidden form fields, we associate a uniquesession URLto each
session thread. Thesessionurl field implicitly refers to a file namedindex.html, called
the reply file, located in the session directory. (The name ”index.html” depends on the
DirectoryIndex directive inhttpd.conf.) This URL functions as the ID of the session.
At all times, the reply file contains the newest document produced in that particular session.
When proceeding through a session, the client sees the same file again and again, but with
different contents. This is implemented using themoved temporarilyfeature of HTTP. When
a Web page has been produced for the client and written to theindex.html file, the server
sends a code ”302 Moved Temporarily” message to the browser, which then retrieves the file.
The overhead of this indirection is negligible, compared to the benefits: The history buffer in
the browser is not filled with obsolete URLs, bookmarks can be used without problems, and a
session can be moved to another browser just by copying the session URL - and the technique
works transparently to the JWIG programmer.

This approach also makes it possible to producetemporary replies. If the server is able to
predict that it will take a while to produce a response to a request, a message, such as, ”please
wait, we’re working hard to serve your request”, is written to the reply file. The file con-
tains arefresh instruction (<meta http-equiv="refresh" content="5" />), causing
the browser to reload the file every 5 seconds until the actual reply is ready. By receiving such
temporary replies, the clients less likely become impatient and abandon the service. JWIG pro-
duces by default a generic temporary reply if it takes more than 5 seconds to produce the actual
reply; thesetTemporaryReplymethod allows more specialized messages to be produced.

File Naming Conventions

Extra files can be placed in the service directories, both in the thread directories and in the main
service directories. To allow both private and public files to reside side-by-side and prevent
clashes with special runtime system files, the following guidelines should be followed:

1. the names of files that are installed together with the service or created by the running
service must contain a dot (.) or an underscore () but cannot end in ”.http” or ” .fifo”
- this prevents name clashes, and

2. files whose names start with a dot or end with ”.class”, ” .jar”, ” .http”, or ”.lock”
and all files in directories whose names start with a dot are private, that is, they cannot
be downloaded.

For example, a file namedstyle.css or help.html is visible from the Web (unless other
access restrictions are applicable), but requesting a file named.htpasswd will always result
in a ”404 Not Found” error.

19



Specifying HTTP Response for Files

JWIG services may associate special HTTP headers with public files. Using the method
setFileAttributes, the Content-Type and Content-Encoding of a file can be set. Also,
browser caching of a file can be disabled. (Browser caching is automatically disabled for the
reply fileindex.html.)

Furthermore, cookies can be associated with a file, such that whenever it is downloaded, one or
more cookies are sent along. As described above, cookies arenotused for session management
in JWIG, but they may still be used for other purposes. The methodaddCookie can be used to
construct a cookie. Usually, cookies are associated with theindex.html reply file, such that
the client receives the cookies together with the normal server reply.

Environment Variables

The mapenv contains environment variables for the latest client interaction. The following
variables are typically set:

REMOTE ADDR - IP number of client

REMOTE PORT - port number of client

HTTP USER AGENT - browser type

HTTP REFERER - referring page

HTTPS - set only if the request was made through SSL

Log Files

Themod bigwigmodule writes information about its behavior to the Apache Web server error
log file (specified by theErrorLog directive inhttpd.conf).

Additionally, each service directory contains a file namedlog with log information from the
Java part of the JWIG runtime system and from the service code. This log is available through
theservicelog field.

TheLogLevel set inhttpd.conf is used both bymod bigwig andbigwigd and also as the
initial log level ofservicelog in the running JWIG services. If the log level is set toDEBUG,
very detailed information is produced.

Suspending a JVM

If a JVM is running in a service directory where there have been no active threads for a certain
period of time (by default 10 minutes), the JVM will store its state to disk and terminate
itself. When a request is received again, a new JVM will start, restore the state, and handle the

20



request. This is convenient for servers that host many different services that run simultaneously
but perhaps only being active a few times an hour each.

The suspension is transparent to the clients, except that there can be a small delay when restart-
ing the JVM. The JWIG service programmer must ensure that all shared service state is serial-
izable - the next section describes this in more detail.

This suspension feature can be disabled by changing theBigwigJava parameter600 to 0 in
bigwig.conf.

The Security Manager

In each service directory, the JVM runs in a sandbox to protect the rest of the server. This
means that, unless thejwig.policy file is modified at installation, JWIG services are re-
stricted in the following ways:

• files outside the service directory cannot be accessed (except the Java and JWIG system
files)

• native code cannot be used (again, except the JWIG runtime system)

• the security manager cannot be modified

The JWIG security manager can be globally disabled using the--disable-secure configu-
ration option during installation.

Garbage Collection

When the Apache Web server is running with themod bigwig module, thebigwigd daemon
is automatically started. This daemon periodically looks in all directories where JWIG ser-
vices have been installed and removes the thread directories that are no longer in use, either
because the threads are finished or because they have been abandoned by the clients. A thread
directory is kept for at least the number of seconds specified by theterminated timeout and
show timeout fields (default: 600 seconds).

More information aboutrunwig can be found in the manual pages formod bigwig and
bigwigd.

8 Serialization of Shared Data

All fields in the service class are automaticallysharedbetween all running threads in the ser-
vice. This provides a simple alternative to full-scale databases for non-critical data. Shared
data fields are read and written just as any other variable, and synchronization and other concur-
rency control issues can be handled by the standard Java mechanisms, such assynchronized
methods and statement blocks.

21



Example:

public class Game extends Service {

protected int visitors = 0;

synchronized int hit() {

return ++visitors;

}

...

}

In this example, a shared fieldvisitors is declared. Only one instance of this field exists for
the entire service. The methodhit, which writes to the field, issynchronized to avoid race
conditions with other concurrently executing threads.

For critical data, external databases can be used, for instance via JDBC4, as in any other Java
program. However, much data in typical Web services does not require the high performance
and stability of a large database, and the extra complexity of the service code for building
database requests can be significant.

Transactions and Serialization

To increase robustness of the services, JWIG contains a primitive transaction system, which
allows the shared state to be stored to disk at well-defined places during the execution. The
default mechanism is based on Java’s built-in serialization mechanism.

Using thecheckpoint androllback methods, the programmer can decide when to take a
snapshot of the shared state and store it on disk and also to restore the state as it was at the last
snapshot:

classdk.brics.jwig.runwig.Service

public static void checkpoint ()

throws java.io.IOException

Serializes all shared service data and stores it in jvm.state.

Throws:
java.io.IOException - if an I/O error occurred

4http://java.sun.com/products/jdbc/

22



classdk.brics.jwig.runwig.Service

public static void rollback ()

throws java.io.IOException,

java.lang.ClassNotFoundException

Restores all shared service data from jvm.state.

Throws:
java.io.IOException - if an I/O error occurred
java.lang.ClassNotFoundException - if the class of a serialized object cannot be

found

This approach requires all shared state to be declared asSerializable. All data that is
transitively reachable from the service object is stored, except for transient and static fields.

Thecheckpoint method should be invoked only at times when the shared state is consistent.
The runtime system ensures that the checkpoint is performed atomically. If the JVM is sus-
pended, as described in the previous section, acheckpoint is automatically performed, and
when it resumes, arollback is performed. Also, if the server or the JVM should crash, a
rollback is automatically performed when the server is up again and a new thread is started
by a client.

Serialization using XML

As an alternative to the standard serialization mechanism described above, JWIG also allows
the shared state to be stored using an XML representation. Using such a representation has the
benefit that other tools straightforwardly can read and modify the data, if the need should arise.
A service class which implements the XMLSerializable interface is serialized and unserialized
using the methodstoXML andfromXML, which the programmer must implement. The XML
documents are represented using JDOM5 in the program code:

classdk.brics.jwig.runwig.XMLSerializable

public org.jdom.Element toXML()

Creates XML representation of this object. References to objects must be followed man-
ually.

Returns:
JDOM XML tree

5http://www.jdom.org/

23



classdk.brics.jwig.runwig.XMLSerializable

public void fromXML (org.jdom.Element e)

Restores the state of this object according to the given XML representation.

Parameters:
e - JDOM XML tree

Example:

public class MyService extends Service implements XMLSerializable {

class Person {

String login;

String password;

String name;

Person(String login, String password, String name) {

this.login = login;

this.password = password;

this.name = name;

}

}

HashMap people = new HashMap();

public Element toXML() {

Element e = new Element("people");

Iterator i = people.values().iterator();

while (i.hasNext()) {

Person p = (Person) i.next();

Element f = new Element("person").

addContent(new Element("login").addContent(p.login)).

addContent(new Element("password").addContent(p.password)).

addContent(new Element("name").addContent(p.name));

e.addContent(f);

}

return e;

}

public void fromXML(Element e) {

people = new HashMap();

Iterator i = e.getChildren().iterator();

while (i.hasNext()) {

Element f = (Element) i.next();

Person p = new Person(f.getChildText("login"),

f.getChildText("password"),

f.getChildText("name"));

24



people.put(p.login, p);

}

}

synchronized void addPerson(String login, String password, String name) {

people.put(login, new Person(login, password, name));

log(Log.INFO, "added user: "+login);

try {

checkpoint();

} catch (IOException e) {

log(Log.ERR, "unable to checkpoint");

}

}

...

}

In this example, thepeople field contains a set ofPerson objects, which are shared between
all service threads. ThetoXML methods constructs an XML tree containing all the information
from thepeople set, andfromXML replaces the current shared state by the data in the given
XML tree. Also note that theaddPerson method issynchronized to avoid concurrency
problems.

At runtime, the serialized state is stored in a file namedjvm.state.CLASS located in the
service directory, whereCLASS is an ASCII encoding of the service class name.

9 Updating a Running Service

Thejwig tool has special support for updating running services. This is a nontrivial task for
several reasons:

• The state defined by the class files may have changed. Classes and fields may have
been added, modified, or removed by the update, and the existing state should not be
corrupted.

• Threads may be running at the same time as the update is performed, either executing
service code or showing documents and waiting for client response. Again, to avoid
corruption of shared state, old and new code should never be run simultaneously.

The command

jwig update dir files

ensures that the service files are updated atomically and only at well-defined places in the
thread execution. The arguments are as for thejwig install command.

25



Before the update is performed, the tool checks the serialVersionUID for each Serializable
class in the service. If this number have changed for one or more files, the update is aborted to
avoid unserialization errors and corruption of the service state. See Sun’s serialization guide6

for a description of using serialization with evolution.

The update is performed as follows: First, the service directory is locked (usingjvm.lock)
such that new requests to start service threads are blocked (”503 Service Unavailable”) Then,
the tool waits until there are no running threads, that is, they are all either terminated or waiting
for client response. All waiting threads are then terminated. (This should give a well-defined
behavior since clients may never respond anyway; the clients that run these threads are met
with a ”session has terminated” error). The files are then copied to the service directory,
overwriting the existing files. Finally, the service lock is removed to accept new requests.

10 PowerForms - Declarative Form Input Validation

JWIG incorporates the PowerForms language for making validation of form input easier. Often
with traditional programming languages, substantial amounts of the service source code is used
for checking that the users have filled out the forms correctly, but those languages provide no
particular support for this aspect of Web service development. To provide immediate and
user friendly feedback to the user, client-side JavaScript is typically applied. However, since
JavaScript execution can be bypassed, a server-side double check is always necessary. This
means that, in addition to being required to master JavaScript - which can be surprisingly
difficult because of the many different variants that the browsers understand - the Web service
programmers must essentially write the same code twice, first in JavaScript for the user friendly
client-side validation, and then in a different language for the double check on the server.

PowerForms is a small domain-specific language for declarative specification of form input
validity requirements. Using an XML notation,formatsand help messages can be specified
for individual fields. A format is essentially a regular expression defining a set of valid values
for the field. Additionally, complex interdependencies between different fields can be speci-
fied, such that the format of one field may depend on the values of other fields. APowerForms
documentconcisely specifies validity requirements for one or more whole forms that appear in
an XHTML document that is shown to the user. Given such an XHTML document and a Pow-
erForms document, JWIG automatically inserts JavaScript code into the XHTML document
before being shown, such that form input validation is performed incrementally as the user fills
out the form. Furthermore, code for performing the server side double check is also automat-
ically generated. With PowerForms, JWIG programmers can easily add advanced form input
validation to a Web service - without writing a single line of JavaScript code.

A PowerForms document is anXML object. As for XHTML documents, it can be built using
gaps and plug operations. A variant of theshow operation takes a PowerForms document as
an extra argument P:

show D powerforms P;

6http://java.sun.com/j2se/1.4/docs/guide/serialization/

26



JWIG guarantees that execution will not continue after this operation unless all specified form
input requirements are satisfied.

Example:

import dk.brics.jwig.runtime.*;

public class PowerFreebie extends Service {

public class HowMany extends Session {

static final int MAX = 5;

XML templateAsk = [[

<html><head><title>PowerFreebie</title></head><body><form>

How many free T-shirts do you want?

<input name="amount" type="text"/>

<input name="continue" type="submit"/>

</form></body></html>

]];

XML templateReply = [[

<html><head><title>PowerFreebie</title></head><body>

You will receive <[amount]> k00l T-shirts any day now...

</body></html>

]];

XML format = [[

<powerforms xmlns="http://www.brics.dk/powerforms/2.0">

<constraint field="amount">

<match>

<interval low="1" high=[high]/>

</match>

</constraint>

</powerforms>

]];

public void main() {

show templateAsk powerforms format<[high=MAX];

int amount = Integer.parseInt(receive amount);

exit templateReply<[amount=amount];

}

}

}

With this Web service, users can order a number of T-shirts, but the PowerForms document
specifies that at mostMAX can be requested. If the user’s browser supports JavaScript, an error
window will pop up if the user attempts to order too many. Such violations are caught on the
server if the JavaScript code is somehow bypassed. Note that the construction of the XHTML

27



documents is not affected by the introduction of form input validation. Thus, PowerForms can
easily be added gradually to a JWIG service.

The JWIG program analyzer can be used to check that the PowerForms documents are always
valid - even though they are dynamically generated as in the example above.

See the PowerForms section of the online tutorialInteractive Web Services with Java[6] for
further description of PowerForms. The full grammar for the PowerForms language is avail-
able from the PowerForms home page7. The PowerForms language was introduced in the
research paperPowerForms: Declarative Client-side Form Field Validation[2] in the context
of the<bigwig> language.

11 SSL Encryption and HTTP Authentication

To ensure authentication and confidentiality of the communication between the server and the
clients, JWIG supports HTTP Authentication and SSL8 (Secure Sockets Layer).

The JWIG distribution contains a simple example serviceAuthentication.jwig,which uses
both SSL and HTTP Authentication.

HTTP Authentication

The methods listed below define security requirements, eitherlocally for the current thread or
globally for the entire service.

ThemakeUserFilemethod can be used to create a file containing usernames and passwords:

7http://www.brics.dk/~ricky/powerforms/
8http://www.netscape.com/eng/ssl3/

28



classdk.brics.jwig.runwig.Service.Session

public void makeUserFile (boolean local,

java.lang.String userfile,

java.util.List usernames,

java.util.List passwords,

boolean encrypt)

throws java.io.IOException

Writes a ”.htpasswd” file.

Parameters:
local - if true, write to local thread directory - if false, write to shared service directory

(ignore if userfile is non-null)
userfile - file name for authorized names/passwords - must be absolute (non-relative)

path (if null, use .htpasswd)
usernames - list of user names
passwords - list of passwords
encrypt - if true, passwords are encrypted

Throws:
java.io.IOException - if I/O error occurs

ThesetAccessControlmethod can be used to write the ”.htaccess” file for enabling client
authentication and also for requiring SSL encryption (the name ”.htaccess” depends on the
AccessFileName directive inhttpd.conf):

classdk.brics.jwig.runwig.Service.Session

public void setAccessControl (boolean local,

java.lang.String userfile,

java.lang.String realm,

boolean require ssl)

throws java.io.IOException

Writes a ”.htaccess” file. This file defines authentication requirements for client access.

Parameters:
local - if true, write to local thread directory - if false, write to shared service directory
userfile - file name for authorized names/passwords - must be created before, and

must be absolute (non-relative) path (if null, use .htpasswd)
realm - realm name (if null, no authentication check)
require ssl - if true, set SSLRequireSSL

Throws:
java.io.IOException - if I/O error occurs

29



TheremoveAccessControlmethod removes the ”.htaccess” file to disable authentication
and SSL requirements:

classdk.brics.jwig.runwig.Service.Session

public boolean removeAccessControl (boolean local)

Removes ”.htaccess” file.

Parameters:
local - if true, remove from local thread directory - if false, remove from shared service

directory
Returns:
true if file successfully deleted.

SSL Encryption

To use SSL, modssl9 must be installed in your Apache Web server, together with a server
certificate. The configuration of modssl is managed through Apache - independently of the
JWIG system.

TheHTTPS environment variable (available in theenv map) is set if the last interaction was
made through SSL.

TheenableAccessControlmethod described above should always be used to set theSSLRequireSSL
flag such that SSL cannot be bypassed.

TheenableSSL method can be used to change the HTTP protocol tohttps in subsequently
generated URLs:

classdk.brics.jwig.runwig.Service.ServerThread

public void enableSSL ()

Enables SSL. The protocol part of serverurl is set to https. This assumes that the standard
ports are used (80 for http and 443 for https).

ThedisableSSL method can be used to change the HTTP protocol tohttp in subsequently
generated URLs:

classdk.brics.jwig.runwig.Service.ServerThread

public void disableSSL ()

Disables SSL. The protocol part of serverurl is set to http. This assumes that the standard
ports are used (80 for http and 443 for https).

9http://www.modssl.org/

30



If more advanced control over SSL or HTTP Authentication is required, the Apache Web
server configuration files, in particular.htaccess, should be written manually.

12 Sending Emails

The JWIG API contains a simple technique for sending emails from the server:

classdk.brics.jwig.runwig.Service

public boolean sendMail (java.lang.String to,

java.util.Map header,

java.lang.String body,

java.lang.String enc)

Sends email.

Parameters:
to - receiver email address
header - map from String to String containing header fields
body - email contents
enc - encoding (e.g. iso-8859-1)

Returns:
false if an error occured

Example:

HashMap header = new HashMap();

header.put("MIME-Version", "1.0");

header.put("Content-Transfer-Encoding", "8bit");

header.put("Content-Type", "text/plain; charset=iso-8859-1");

header.put("To", p.email);

header.put("Subject", "JWIG password");

header.put("From", root.email);

header.put("Reply-To", root.email);

header.put("Errors-To", root.email);

String body =

"Your login for the JWIG meta-service is: "+p.login+"\n"+

"and the password is: "+p.password+"\n\n"+

"Go to "+getURL(Run.class)+" to log in.";

boolean ok = sendMail(p.email, header, body, "iso-8859-1");

With the default installation configuration, thesendmail program with the options-n -i -t
is used to send the email. This can be changed during installation of the JWIG system using
the--with-sendmail and--with-sendmail-args configuration options.

31



13 API - Overview of Classes, Methods, and Fields

The JWIG Application Programming Interface provides functionality for defining Web ser-
vices.

In addition to this API, JWIG adds a set of language constructs to the Java language for con-
structing and showing XML documents and receiving form input.

A brief overview of the central parts of the API:

• abstract class dk.brics.jwig.runtime.Service
- base class for JWIG services

– void setOutputEncoding
- sets output encoding (default: ISO-8859-1)

– Log servicelog
- service log file

– void log(int level, String msg)
- writes message to service log

– String formatHTTPTime(Date d)
- formats Date according to RFC 822/1123

– String urlEncode(String s)
- URL encodes string using UTF-8

– String urlDecode(String s)
- URL decodes string in UTF-8

– String getURL(Class c)
- returns URL for creating a thread in the current service

– void checkpoint()
- writes shared service data to disk

– void rollback()
- restores shared service data from disk

– boolean setExcludeLock()
- locks service for new requests

– void releaseExcludeLock()
- removes service lock

– boolean sendMail(String to, Map header, String body, String enc)
- sends an email

– abstract class ServerThread
- base class for all server threads

– List arglist
- interaction field arguments (list ofArg) in order of occurence

– Map argmap
- interaction field arguments (map fromString to list of Arg)

32



– Map env
- interaction environment (map fromString to String)

– Map cookies
- incoming cookies (map fromString to String)

– String out cookies
- raw string containing outgoing cookies

– int reply timeout
- time-out (seconds) for waiting for service reply and refresh interval

– int show timeout
- time-out at ’show’

– int terminated timeout
- time-out for garbage collecting completed sessions

– String serverdir
- Apache/modbigwig server home directory

– String servicedir
- service home directory

– String sessiondir
- session home directory

– String serverurl
- server URL (protocol and host)

– String serviceurl
- URL to service home directory (excluding protocol and host)

– String sessionurl
- URL to session home directory (excluding protocol and host)

– String intkey
- interaction access key

– boolean validate xhtml
- perform runtime XHTML validation if true (default: false)

– void addCookie(String name, String value, String expires, String
path, String domain, boolean secure)
- adds cookie toout cookies

– void enableSSL()
- sets protocol to HTTPS

– void disableSSL()
- sets protocol to HTTP

– void setFileAttributes(boolean local, boolean remove, String
path, String mime, String encoding, boolean nocache, boolean
sendcookies)
- writes ”.http” attribute file

– abstract class Session
- base class for session threads, extendsServerThread

– abstract void main()
- main method

33



– String continueURL()
- returns URL for continuing the current session

– void setTemporaryReply(XML doc)
- writes temporary reply page

– void makeUserFile(boolean local, String userfile, List usernames)
- writes.htpasswd file for HTTP Authentication

– void setAccessControl(boolean local, String userfile, String
realm, boolean require ssl)
- writes.htaccess file for HTTP Authentication

– boolean removeAccessControl(boolean local)
- removes.htaccess file

– abstract class Page
- base class for page threads, extendsServerThread

– abstract void main()
- main method

– abstract class Seslet
- base class for seslet threads, extendsServerThread

– abstract void main(InputStream in, OutputStream out)
- main method

• class dk.brics.jwig.runwig.Log
- logging facility

– void setLogLevel(int level)
- sets logging verbosity level

– void setStream(PrintStream s)
- changes print stream

– void write(int level, String msg)
- writes message to log

– void write(String msg, Throwable e)
- writesThrowable message to log

• class dk.brics.jwig.runwig.Arg
- HTTP input field, used for file uploads

– String name
- field name

– String value
- field value

– String filename
- filename attribute, if file upload

– String contenttype
- contenttype attribute, if file upload

34



– String charset
- charset attribute, if file upload

• interface dk.brics.jwig.runwig.XMLSerializable
- for XML serialization of shared data

– Element toXML()
- creates JDOM XML representation of the shared state

– void fromXML(Element e)
- restores shared state from JDOM XML representation

The full javadoc API specification for the BRICS JWIG implementation is available online10.
(Note, however, that the javadoc currently exposes many low-level methods and fields that
should not be exploited directly - in a future version, we will hide those parts.)

References

[1] K. A RNOLD, J. GOSLING, AND D. HOLMES, The Java Programming Language,
Addison-Wesley, 3rd ed., June 2000.

[2] C. BRABRAND, A. MØLLER, M. RICKY, AND M. I. SCHWARTZBACH, PowerForms:
Declarative client-side form field validation, World Wide Web Journal, 3 (2000), pp. 205–
314. Kluwer.

[3] C. BRABRAND, A. MØLLER, A. SANDHOLM , AND M. I. SCHWARTZBACH, A runtime
system for interactive Web services, Computer Networks, 31 (1999), pp. 1391–1401. El-
sevier. Also in Proc. 8th International World Wide Web Conference, WWW8.

[4] A. S. CHRISTENSEN, A. MØLLER, AND M. I. SCHWARTZBACH, Extending Java for
high-level Web service construction, ACM Transactions on Programming Languages and
Systems, 25 (2003), pp. 814–875.

[5] A. S. CHRISTENSEN, A. MØLLER, AND M. I. SCHWARTZBACH, Precise analysis of
string expressions, in Proc. 10th International Static Analysis Symposium, SAS ’03,
vol. 2694 of LNCS, Springer-Verlag, June 2003, pp. 1–18.

[6] A. M ØLLER AND M. I. SCHWARTZBACH, Interactive Web services with Java, April 2002.
BRICS, Department of Computer Science, University of Aarhus, Notes Series NS-02-1.
Available fromhttp://www.brics.dk/~amoeller/WWW/.

[7] S. PEMBERTON ET AL., XHTML 1.0: The extensible hypertext markup language, January
2000. W3C Recommendation.http://www.w3.org/TR/xhtml1.

10http://www.brics.dk/JWIG/doc/

35


	Introduction
	Installation of the JWIG System
	Compilation and Installation of JWIG Services
	Constructing XHTML Documents
	Services and Sessions
	Static Analysis of JWIG Programs
	The JWIG Runtime System
	Serialization of Shared Data
	Updating a Running Service
	PowerForms - Declarative Form Input Validation
	SSL Encryption and HTTP Authentication
	Sending Emails
	API - Overview of Classes, Methods, and Fields
	References

