
B
R

IC
S

N
S

-98-3
K

larlund
&

M
ø

ller:
M

O
N

A
Version

1.2
—

U
ser

M
anual

BRICS
Basic Research in Computer Science

MONA Version 1.2
User Manual

Nils Klarlund
Anders Møller

BRICS Notes Series NS-98-3

ISSN 0909-3206 June 1998

Copyright c© 1998, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Notes Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory NS/98/3/

MONA Version 1.2
User Manual

Nils Klarlund, klarlund@research.att.com
Anders Møller, amoeller@brics.dk

June 1998

mailto:klarlund@research.att.com
mailto:amoeller@brics.dk

Contents

1 Introduction 5

1.1 Introductory example . 5
1.2 MONA uses . 6
1.3 How to use this manual . 7
1.4 Acknowledgements . 7

2 Basic features 8
2.1 The syntax in a nutshell . 8
2.2 Semantics in a nutshell . 9
2.3 Analyzing formulas . 10
2.4 Outputting the program automaton . 11
2.5 What are MONA automata really? . 12
2.6 Predicates, macros, and variable indices . 13
2.7 Assertions . 14
2.8 Example: reasoning about queues . 15

3 Advanced features 18
3.1 Dumping translation information . 18
3.2 Visualization of automata . 20
3.3 Separate compilation . 20
3.4 Restriction . 21
3.5 Emulating Monadic Second-order Logic on Strings 22
3.6 Example: regular expressions over the ASCII alphabet 22
3.7 Exporting and importing automata . 24
3.8 Prefix-closing . 26
3.9 Controlling reuse of intermediate results . 26

4 The automaton–logic connection 28

4.1 The classical approach . 28
4.2 The MONA approach . 32

5 WS2S and Guided Tree Automata 36

5.1 Guided Tree Automata . 36
5.2 Specifying guides and universes . 37
5.3 Tree mode output format . 39
5.4 Emulating Monadic Second-order Logic on Trees 42
5.5 External GTAs . 43

6 Plans for future versions 45

6.1 Specifying BDD variable ordering . 45
6.2 Encoding of Boolean variables in tree mode 45
6.3 Symbolic reductions . 46

A Syntax 47

A.1 MONA grammar . 47
A.2 Precedence and associativity . 50

B Usage 51

C The MONA BDD package 52

References 58

5

1 Introduction

It has been known since 1960 that the class of regular languages1 is linked to decidability
questions in formal logics. In particular, WS1S (Weak Second-order Logic of One Successor)
is decidable2 through the automaton-logic connection, which can be simply stated: the set of
satisfying interpretations of a subformula is represented by a finite automaton [9, 12]. WS1S
thus acts as a notation for regular languages, just as regular expressions do.

The automaton for a formula can be calculated by a simple induction scheme, where logical
connectives correspond to classic automata-theoretic operations such as product and subset
constructions. Validity and unsatisfiability of the formula can be determined and satisfying
examples and counter-examples can be constructed by analyzing the associated automaton.

Despite its name, WS1S is a simple and natural notation. A variation of first-order logic,
WS1S is a formalism with quantifiers and Boolean connectives. Its interpretation, however,
is tied to arithmetic—somewhat weakened to keep the formalism decidable. In WS1S, first-
order variables denote natural numbers, which can be compared and subjected to addition
with constants. WS1S also allows second-order variables while remaining decidable; each such
variable is interpreted as a finite set of numbers.

WS1S and its generalization WS2S [35, 11], which is interpreted over the infinite binary
tree, can be used to express problems ranging from hardware verification to formal linguistics.
Unfortunately, the space and time requirements for translating formulas to automata have
been shown [29] to be non-elementary (i.e., bounded from below by a stack of exponentials
whose height is proportional to the length of the formula). Thus, the decidability property
has for many years been considered intractable for practical use.

The MONA tool is an efficient implementation of the decision procedures for WS1S and
WS2S. “Efficient” here means that the tool is fast enough to have been used in a variety
of non-trivial settings. MONA translates WS1S and WS2S formulas into minimum DFAs
(Deterministic Finite Automata) and GTAs (Guided Tree Automata [5]), respectively. The
automata are represented by shared, multi-terminal BDDs (Binary Decision Diagrams), see [7,
15].

1.1 Introductory example

We introduce MONA by a tiny example showing its basic functionality. MONA is run on a file
that defines a WS1S or WS2S formula. The result of the compilation is an automaton which
can be used in any way the MONA programmer might desire. Often, however, the interest in
the compilation is the analysis that MONA can carry out on the calculated automaton.

A MONA program consists of a number of declarations and formulas. The two-line WS1S
program below, contained in a file simple.mona, declares two free second-order variables, P
and Q, and postulates that the set difference of P and Q is the union of the sets {0,4} and
{1,2}:

var2 P,Q;

P\Q = {0,4} union {1,2};

1A regular language is a set of finite strings recognized by a finite-state automaton. We assume that the reader
is familiar with automata theory as taught in undergraduate computer science courses.

2A logic is decidable if an algorithm exists that determines for any formula its truth status: valid (formula
is always true) or not valid (sometimes formula is false); alternatively—and equivalently—the algorithm can
classify formulas according to whether they are satisfiable (sometimes true) or unsatisfiable (always false).

6 1 INTRODUCTION

Clearly, this formula is not always true, but there is an interpretation that makes it hold,
for example the one which assigns {0, 1, 2, 4} to P and {5} to Q. This interpretation, usually
written as [P 7→ {0, 1, 2, 4}, Q 7→ {5}], can also be represented by 0s and 1s in a string

P
(

1
0

)(
1
0

)(
1
0

)(
0
0

)(
1
0

)(
0
1

)
Q

0 1 2 3 4 5

where letters are bit-vectors. Each variable is described by a track along the string. Here, the
P-track is 111010 and the Q-track is 000001. The positions in the string correspond to natural
numbers: a “1” in a position means that the number is in the set, a “0” that it is not.

We can define the language associated to simple.mona as the set of such finite strings
that define satisfying interpretations. It is a fact (see Section 4) that for WS1S, this language
is regular, i.e. it can be recognized by a finite state automaton.

MONA is able to analyze simple.mona automatically by translating it into the minimum
automaton recognizing the set of satisfying interpretations. The command

mona -c simple.mona

produces the automaton, analyzes it, and generates the following output:

A counter-example (for assertion => main) of least length (0) is:

P X

Q X

P = {}
Q = {}

A satisfying example (for assertion & main) of least length (5) is:

P X 11101

Q X 000X0

P = {0,1,2,4}
Q = {}

Conjunctive automaton has 8 states, 19 BDD-nodes and 14 transitions

This analysis tells us that a counter-example to the formula is gotten by interpreting both
P and Q as the empty set. MONA has also calculated a satisfying interpretation, namely P

= {0, 1, 2, 4}, Q ={}. An X in a string means “either 0 or 1.” The columns with the two Xs
are used for Boolean variables, of which there are none in this example.

1.2 MONA uses

The automaton-centered approach to symbolic computations has proved useful in a broad
spectrum of applications:

• Text processing, where WS1S is a much more versatile notation for patterns than regular
expressions. Section 3.6 explains how regular expressions over the ASCII alphabet can
be effectively encoded in MONA.

• Hardware verification, where parameterized cases and time-dependent circuits are veri-
fied without induction [3].

1.3 How to use this manual 7

• Temporal property verification in various notations such as the duration calculus [32].

• Verification of distributed systems, where a program, consisting of several processes, is
compared to a specification, also consisting of several processes [23, 24].

• Assertional reasoning about programs that manipulate pointers, where comprehensive
analyses of data structure shapes and storage usage can be fully automated [18].

• Description of parse tree shapes, where simple logical expressions capture source code
constraints [22].

• Reasoning about queues, where the MONA representation of certain queue structures
specializes to those suggested elsewhere in the literature, see Section 2.8.

• Computational linguistics, where WS2S can be used to encode Principles-and-Parameters
based theories [31].

• Presburger arithmetic, where calculations expressing circuit properties can be effectively
carried out in MONA [33].

• Feature logics, where notations with term symbols of variable arity can be encoded in
WS2S [1].

1.3 How to use this manual

Read Section 2 to get started; then skim through Section 3 to see whether there are additional
features such as separate compilation or visualization that you will need. Read “Mona & Fido:
the logic-automaton connection in practice” [21] for a general introduction to the automaton-
logic connection, including BDDs and BDD-represented automata. Or, turn to Section 4. It
summarizes the classical automaton-logic connection and explains the three-valued automaton
concept used in the MONA implementation. To learn about the WS2S part of Mona, turn
to Section 5. If you want to extend MONA, you may consult Appendix C to find a detailed
description of the MONA BDD package. Also look in the Appendices for detailed accounts of
MONA syntax and command-line usage. To learn about our plans for MONA, see Section 6.

This manual describes MONA version 1.2 as released June 1998. The complete source
code for MONA version 1.2 is available for educational and research purposes. Please visit
the MONA home page at

http://www.brics.dk/mona

for further information.
All bug reports, ideas for future versions, and other comments are appreciated. Our email

address is mona@brics.dk.

1.4 Acknowledgements

The following people have contributed to the MONA project either by helping making it or by
providing us with useful feedback: Ayari Abdelwaheb, David Basin, Nikolaj Bjørner, Morten
Biehl Christiansen, Rowan Davies, Jacob Elgaard, Jesper Gulmann Henriksen, Jakob Jensen,
Michael Jørgensen, Doug McIllroy, Frank Morawietz, Mogens Nielsen, Robert Paige, Andreas
Potthoff, Theis Rauhe, Anders Sandholm, Michael I. Schwartzbach, and Kim Sunesen.

http://www.brics.dk/mona
mailto:mona@brics.dk

8 2 BASIC FEATURES

2 Basic features

MONA syntax is essentially that of WS1S or WS2S augmented with lots of syntactic sugar
and miscellaneous ways of defining the parameters of the compilation. In this Section, the
basic syntax and features concerning WS1S are introduced.

A MONA program consists of a number of declarations and formulas, which are all ter-
minated by semicolons. The MONA program itself is valid if the conjunction of all formulas
is valid. In Figure 1 below, an extension of the program simple.mona from the Introduc-
tion is shown. This program imposes additional constraints on P and Q; it also introduces
a first-order variable x, which denotes some natural number, and a Boolean variable A. We
write var0 A to declare A, since Boolean variables in MONA are regarded as “zero’th-order.”
Variables introduced by var declarations are the free variables of the program. They are also
called global variables. The existentially quantified formula ex2 Q: . . . is satisfied if and
only if x is an even number, since the formula reads: there is a finite set Q of numbers such
that (a) for all numbers q, where 0 < q ≤ x, the membership status of q in Q is the opposite
of that of q − 1 and (b) 0 is in Q. The variable Q declared by the existential quantifier is a
local variable whose scope is the formula that follows the colon character.

The formula A & x notin P states that A is true and that x is not in P. The whole
program is thus satisfied if P\Q = {0, 1, 2, 4}, A is true, and x is even and not in P.

2.1 The syntax in a nutshell

The even.mona example illustrates the main points about MONA syntax. Note how comments
are inserted using the # character. One important restriction is not obvious from the example:
on the right hand side of a + or a - sign only a term denoting a constant may occur. Thus the
term x + y is not allowed. Without this restriction, the logic would be undecidable. Other
conventional mathematical syntax is rendered in MONA according to Figure 2. Precedence
rules are the standard ones, see Appendix A.2.

var2 P,Q;

P\Q = {0,4} union {1,2}; # the formula from Section 1

var1 x;

var0 A;

ex2 Q: x in Q

& (all1 q:

(0 < q & q <= x) =>

(q in Q => q - 1 notin Q)

& (q notin Q => q - 1 in Q))

& 0 in Q;

A & x notin P;

Figure 1: even.mona

2.2 Semantics in a nutshell 9

Numbers
(1st order terms)

0 0

+ +

− -

Sets
(2nd order terms)

∅ empty

∪ union

∩ inter

\ \

Formulas
(0th order terms)

0th order arguments
¬ ~

∧ &

∨ |

⇒ =>

⇔ <=>

∃ ex0 ex1 ex2

∀ all0 all1 all2

Formulas
(0th order terms)

1st order arguments
< <

> >

≤ <=

≥ >=

= =

6= ~=

2nd order arguments
⊆ sub

= =

6= ~=

1st/2nd order arguments
∈ in

6∈ notin

Figure 2: MONA syntax in a nutshell

Other simple constructs

Integer constants can be introduced by const-declarations; for example,

const c = 1+2*3;

declares a constant c with value 7.

Local variables can also be declared without quantification by means of a let-expression.
For example,

let1 y = x+c

in y notin Q;

declares a first-order variable y with value x+c. The scope of y is the formula following
in. Local Boolean and second-order variables can similarly be declared with let0 and let2

constructs.

There are min and max terms as well; for example, the value of min {5,3,8} is 3. Certain
modulo calculations, but not all, can be expressed, e.g. 3 + 5 % 6, which is 2.

2.2 Semantics in a nutshell

Since WS1S is a logic closely related to arithmetic, most constructs have a straightforward
mathematical semantics, see Section 4.1. One important property of the semantics is that
only finite sets can be expressed. For instance, one could not have specified the set of even
numbers as EVEN in:

var2 EVEN;

0 in EVEN & all1 p: p in EVEN <=> p+1 notin EVEN;

10 2 BASIC FEATURES

A few constructs need further explanation:

• The value of t-I, where t is a first-order term and I is a constant integer expression, is
0 if the value of t is less than that of I.

• The value of t1+ I % t2 (and t1- I % t2), where t1 and t2 are first-order terms and I

is a constant integer expression, is not defined if t1 > t2. So in that case, the MONA
programmer should not assume anything about the value of the term; otherwise, the
result is the expected one. (Allowing arbitrary modulo calculation would make the logic
undecidable.)

• The value of min T and max T , where T is a second-order term, is 0 if T denotes the
empty set.

2.3 Analyzing formulas

When MONA is run on even.mona, the following analysis is printed:

A counter-example (for assertion => main) of least length (1) is:

P X 0

Q X X

x X 1

A 0 X

P = {}

Q = {}

x = 0

A = false

A satisfying example (for assertion & main) of least length (7) is:

P X 1110100

Q X 000X0XX

x X 0000001

A 1 XXXXXXX

P = {0,1,2,4}

Q = {}

x = 6

A = true

Conjunctive automaton has 11 states, 35 BDD-nodes and 29 transitions

Let us look deeper into the issue of example generation. MONA calculates a program automa-
ton, which is the minimum, deterministic automaton whose language is the set of strings that
interpret the global variables such that the conjunction of all formulas in the program holds.
These strings are like the ones in the introductory example, except that they begin with a
bit-vector that interprets the Boolean variables. We might regard this initial letter to be in
position −1. Therefore, the language associated with a formula consists of non-empty strings,
even if there are no global Boolean variables in the program. Additionally, if there is a global
first-order variable like x above, then a string must have length at least 2. For example, when
x is 0, the first letter interprets the Boolean variables, and the second letter, in position 0, is
a vector with a “1” in the x-track.

2.4 Outputting the program automaton 11

MONA analyzes the automaton to find a smallest counter-example by calculating a short-
est path from the initial state to a rejecting state, and it prints out a string that puts the
automaton in that rejecting state. In the case above, a shortest such string has length 2
(including the Boolean vector). Finding a satisfying example is done similarly, simply by
searching for an accepting state instead of a rejecting state.

The minimum automaton calculated is characterized in the output by its number of states,
its number of BDD nodes, and its number of transitions, which is here understood as the sum
over all states of the number of possible next states.

2.4 Outputting the program automaton

If MONA is executed with option -w, then the program automaton is printed. For example,

mona -w even.mona

generates the following output (somewhat abbreviated here):

DFA for formula with free variables: P Q x A

Initial state: 0

Accepting states: 9

Rejecting states: 0 1 2 3 4 5 6 7 8

Conjunctive automaton has 10 states, 33 BDD-nodes and 20 transitions

Transitions:

State 0: XXX0 -> state 1

State 0: XXX1 -> state 2

State 1: XXXX -> state 1

State 2: 0XXX -> state 1

State 2: 100X -> state 3

State 2: 101X -> state 1

State 2: 11XX -> state 1

State 3: 0XXX -> state 1

State 3: 100X -> state 4

State 3: 101X -> state 1

State 3: 11XX -> state 1

...

State 9: 0XXX -> state 9

State 9: 10XX -> state 1

State 9: 11XX -> state 9

The output is read as follows. First the free variables are printed in index-ordering (see 4.1).
Free variables do not include variables that are declared but not used. Next, the initial state,
the types of the various states, and the size of the automaton is shown. Finally, a list of
transitions is printed. The list of transitions is specified using a bit-vector notation (this time
horizontal). This notation is often exponential in the number of BDD nodes.

In Figure 3, the automaton is visualized as a drawing in the traditional DFA style. Note
that from the initial state 0, the first three components of the letter do not matter; only
the last component, corresponding to the A-track, has any importance. If A is false, the
initial transition brings the automaton to the universally rejecting state 1. Otherwise, the
automaton attempts to proceed from state 2 to 7, while taking checking that the set difference
of P and Q is {0, 1, 2, 4}. Then, it counts modolo 2 in the cycle of length 2, while checking

12 2 BASIC FEATURES

9

0 1
X 1
X X
X,X

1

1
0
X
X

0

X
X
X
0

2

X
X
X
1

X
X
X
X

0 1 1
X 0 1
X 1 X
X,X,X

3

1
0
0
X

0 1 1
X 0 1
X 1 X
X,X,X

4

1
0
0
X

0 1 1
X 0 1
X 1 X
X,X,X

5

1
0
0
X

0 1 1
X 0 1
1 X 1
X,X,X

6

0 1
X 1
0 0
X,X

0 1 1
X 0 1
X 1 X
X,X,X

7

1
0
0
X

0 1 1
X 0 1
1 X 1
X,X,X

8

0 1
X 1
0 0
X,X 0

X
1
X

1 1
0 1
X 1
X,X

0 1
X 1
0 0
X,X

Figure 3: The even.mona automaton

the set difference, until x occurs. Depending on the parity of x, the latter event brings the
automaton either into an accepting state or into the universally rejecting state.

Section 3.2 explains to how generate drawings of automata as graphs.

2.5 What are MONA automata really?

The automaton above has 16 (24) letters and 10 states. Therefore, its transition table has
160 entries. The MONA representation is a lot more concise than this number would indicate.
In fact, the actual data structure for this automaton, depicted in Figure 4, is an acyclic,
directed graph with only 35 nodes. The graph shown is essentially a multi-terminal, shared
BDD, where the leaves are the boxes at the bottom. The internal BDD nodes are round and
contain variable indices. Each node has a low successor denoted by a dashed arrow and a
high successor denoted by a solid arrow. In the internal representation automata have three
kinds of states: accepting (denoted with 1), rejecting (here denoted with -1), and don’t-care
(here denoted with 0), see Section 4.2. All states are described with their accept status in
the array shown at the top. The only states that are not don’t-care states are those that are
reached by strings containing at least one occurrence of a “1” in the x-track. Variables are
indexed from 0 (P in the first track) to 3 (A in the fourth track).

2.6 Predicates, macros, and variable indices 13

To see how the transition table is represented, consider state 2 and the letter


1
0
0
1

.

The next state is gotten as follows: follow the pointer out of the description of state 2 in
the array to the BDD node, which has index 0 corresponding to variable P. The value of the
P component is 1, so we go to the high successor, which in turn is marked 1, denoting the
Q-component. Then, since this bit is 0, we take the low successor to the next node. That
node corresponds to x, which is 0, so we end up at a leaf mark 4. That is the value of the
next state.

0
0

0
1

0
2

-1
3

0
4

0
5

0
6

0
7

0
8

0
9

1
10

3

2

0 0 0 0 0 0 0 0

31

2 1

2

4

1

2

5

1

2

6

2

1

7

1

2

8

2

1

9

21

10

1

Figure 4: The BDD-based representation of even.mona

The graph shown in Figure 4 was generated using the features described in Section 3.7.

2.6 Predicates, macros, and variable indices

MONA provides two methods for parameterizing and reusing formulas. Macros are instanti-
ated by syntactical expansion where actual parameters replace formal parameters. Predicates
are compiled into automata that may be reused. Both macros and predicates may refer to
global variables.

In Figure 5 below, even.mona has been rewritten such that the even property is expressed
as a predicate. MONA is sometimes able to reuse the automaton for a predicate. During com-
pilation MONA assigns unique indices to variables in ascending order as they are met. Also,
MONA simplifies predicate invocations so that each actual parameter always is represented
by a single variable. For example, even(x+1) is internally rewritten to ex1 t: t = x+1 &

even(t), where t is a fresh variable. If a predicate is used twice, where the actual parame-
ters are ordered similarly, then MONA is able to reuse the automaton—similarity of the two
parameter orderings means that the actual parameter variables are ordered relative to each
other and to the global variables used in the body in the same way. In even with pred.mona,
we could add more uses of the even predicate, while no recompilation of it would be necessary,
since the predicate has only one free variable, so the variable ordering is trivially unchanged.

14 2 BASIC FEATURES

Semantically, there is no difference between macros and predicates, but the automata-
theoretic calculations performed during their compilation may be very different. As a rule of
thumb: use a macro if the formula to be parameterized is small, use a predicate otherwise.

Related issues: Section 3.9 describes the general technique for automatic reuse of in-
termediate results. Section 3.3 shows how predicates can be used for managing automaton
libraries.

2.7 Assertions

It is often the case that the MONA programmer wants to analyze a formula under certain
assumptions. For instance, if a program consists of two formulas, φ1 and φ2, one might want
to assert that φ1 holds, so that any counter-example that is printed satisfies φ1 but not φ2.

MONA provides a method for specifying such assertions. In general MONA forms a formula
called φmain that is the conjunction of all formulas in the file that are not preceded by the
keyword assert. The latter kind of formulas are gathered in a conjunction called φassert.

A counter-example is an interpretation that does not satisfy the implication

φassert ⇒ φmain

and a satisfying example is an interpretation that satisfies the conjunction

φassert ∧ φmain

To find these interpretations, MONA must in fact calculate two program automata. The
automaton corresponding to the implication is called the implicative automaton, the one cor-
responding to the conjunction is called the conjunctive automaton. The automaton being
printed with the -w option is the conjunctive automaton, i.e. it accepts the set of strings
corresponding to satisfying examples.

var2 P,Q;

P\Q = {0,4} union {1,2};

pred even(var1 p) =

ex2 Q: p in Q

& (all1 q:

(0 < q & q <= p) =>

(q in Q => q - 1 notin Q)

& (q notin Q => q - 1 in Q))

& 0 in Q;

var1 x;

var0 A;

A & even(x) & x notin P;

Figure 5: even with pred.mona

2.8 Example: reasoning about queues 15

var2 P,Q;

assert P\Q = {0,4} union {1,2};

pred even(var1 p) =

ex2 Q: p in Q

& (all1 q:

(0 < q & q <= p) =>

(q in Q => q - 1 notin Q)

& (q notin Q => q - 1 in Q))

& 0 in Q;

var1 x;

var0 A;

assert A & x notin P;

even(x);

Figure 6: even with assert.mona

In Figure 6 below, the example from before has been rewritten using assertions, so that
any satisfying example along with any counter-example that might be generated is guaran-
teed to satisfy both P\Q = {0,4} union {1,2} and A & x notin P. If one runs MONA on
even with assert.mona as described in Section 2.3, the following satisfying example and
counter-example are reported:

P = {0,1,2,4}

Q = {}

x = 6

A = true

P = {0,1,2,4}

Q = {}

x = 5

A = true

Both examples satisfy the asserted formulas, but their truth value differ on even(x).

2.8 Example: reasoning about queues

In this example, we show how MONA can be used to carry out parameterized verification. The
example is inspired by [14], where a data structure that is a hybrid between an automaton and
a BDD was proposed. Essentially the same data structure arises in the MONA description
we now formulate.

We are modeling queues of arbitrary length that contain elements in {0, 1, 2, 3}. To do
so, we describe a queue Q with second-order variables Qe, and Q1, Q2:

• Qe denotes the used positions, so we assume it is an initial subset of the natural numbers.

• The four possible membership status combinations that a position p has relative to Q1

and Q2 encode the value stored at position p.

16 2 BASIC FEATURES

In Figure 7, we have described the encoding. The predicate Queue stipulates that the queue
has length l and that it is ordered. Another predicate, LooseOne, expresses the removal of
some element from a queue. The formulas of the program hold if there is a queue Q of length
4 and a queue Q’ such that Q’ contains the value 3 and is the same as Q with one element
removed. We can indeed recognize such a situation from the MONA output below, where the
bit-pattern notation comes in handy:

A satisfying example (for assertion & main) of least length (4) is:

Qe X 1111

Q1 X 0011

Q2 X 0101

Qe’ X 1110

Q1’ X 001X

Q2’ X 011X

Qe = {0,1,2,3}

Q1 = {2,3}

Q2 = {1,3}

Qe’ = {0,1,2}

Q1’ = {2}

Q2’ = {1,2}

For other practical examples, visit our Web site.

2.8 Example: reasoning about queues 17

Qe describes the valid indices of a queue

pred isWfQueue(var2 Qe) =

all1 p: (p in Qe & p > 0 => p - 1 in Qe);

isx holds if p contains an x

pred is0(var1 p, var2 Qe, Q1, Q2) = p in Qe & p notin Q1 & p notin Q2;

pred is1(var1 p, var2 Qe, Q1, Q2) = p in Qe & p notin Q1 & p in Q2;

pred is2(var1 p, var2 Qe, Q1, Q2) = p in Qe & p in Q1 & p notin Q2;

pred is3(var1 p, var2 Qe, Q1, Q2) = p in Qe & p in Q1 & p in Q2;

lt compares the elements at positions p and q of a queue

pred lt(var1 p, q, var2 Qe, Q1, Q2) =

(is0(p, Qe, Q1, Q2) & ~is0(q, Qe, Q1, Q2))

| (is1(p, Qe, Q1, Q2) & (is2(q, Qe, Q1, Q2) | is3(q, Qe, Q1, Q2)))

| (is2(p, Qe, Q1, Q2) & (is3(q, Qe, Q1, Q2)));

isLast holds if p is the last element in the queue

pred isLast(var1 p, var2 Qe) =

p in Qe & (all1 q’: q’ in Qe => q’ <= p);

an ordered queue of length l

pred Queue(var2 Qe, Q1, Q2, var1 l) =

isLast(l - 1, Qe)

& (all1 p, q: p < q & p in Qe & q in Qe => lt(p, q, Qe, Q1, Q2));

eqQueue2 compares elements in two queues

pred eqQueue2(var1 p, q, var2 Q1, Q2, Q1’, Q2’) =

(p in Q1 <=> q in Q1’) & (p in Q2 <=> q in Q2’);

LooseOne holds about a queue Q and a queue Q’ if

queue Q’ is the same as Q except that one

element (denoted by p below) is removed

pred LooseOne(var2 Qe, Q1, Q2, Qe’, Q1’, Q2’) =

ex1 p: p in Qe

& (all1 q: (~isLast(q, Qe) => (q in Qe <=> q in Qe’))

& (isLast(q, Qe) => (q notin Qe’)))

& (all1 q: q < p & q in Qe => eqQueue2(q, q, Q1, Q2, Q1’, Q2’))

& (all1 q: q > p & q in Qe => eqQueue2(q, q - 1, Q1, Q2, Q1’, Q2’));

var2 Qe, Q1, Q2; # the queue Q

var2 Qe’, Q1’, Q2’; # the queue Q’

assert isWfQueue(Qe);

the primed variables denote a queue of length 3 containing

three of the elements 0, 1, 2, 3 in that order and the element 3

Queue(Qe, Q1, Q2, 4); # the queue Q is a queue of length 3

containing the elements 0, 1, 2, 3

LooseOne(Qe, Q1, Q2, Qe’, Q1’, Q2’); # Q’ is Q except for one element

ex1 p: is3(p, Qe’, Q1’, Q2’); # Q’ does contain the element 3

Figure 7: lossy queue.mona

18 3 ADVANCED FEATURES

3 Advanced features

This section describes debugging features, import-export mechanisms, graphical output, and
techniques for producing finite-state automata that are not tied to WS1S semantics.

3.1 Dumping translation information

MONA provides a number of facilities for monitoring the translation process. These options
can be used for “debugging” MONA code in several ways. For instance, the -p, -s and -t

options can reveal if state explosions occur—something that likely happens if complicated
properties are expressed. The user can then attempt to rewrite that particular part of the
source code and rerun MONA.

Progress information

The -p option makes MONA print progress information. It prints the name of the current
translation phase, the time spent in each phase and while in the automaton-construction
phase a completion percentage. Also, information about the DAG representing the code (3.9)
is shown.

As an example,

mona -c -p lossy_queue.mona

yields the following output (where the counter-example and the satisfying example are omitted
for clarity):

MONA v1.2 for WS1S/WS2S

Copyright (C) 1997-1998 BRICS

PARSING

Time: 00:00:00.020

TYPE CHECKING

Time: 00:00:00.000

CODE GENERATION

DAG hits: 303, misses: 137, nodes: 137

Time: 00:00:00.020

AUTOMATON CONSTRUCTION

100% completed

Time: 00:00:00.090

ANALYSIS

A counter-example (for assertion => main) of least length (4) is:

...

A satisfying example (for assertion & main) of least length (1) is:

...

Conjunctive automaton has 11 states, 43 BDD-nodes and 28 transitions

3.1 Dumping translation information 19

Total time: 00:00:00.130

The completion percentage shows how many of the automaton operations are completed.

Dumps

The -d option causes the following information to be printed:

• The main formula, assertions (Section 2.7), macros and predicates.

• The contents of the symbol table (mainly used for debugging purposes).

• The contents of the DAG (Section 3.9) shown as a tree.

• In tree mode (Section 5), the guide is also printed.

Statistics

The -s option makes MONA print some statistics about each automaton operation. It prints

• the type of the current operation,

• the sizes of the input and the resulting automata, and

• the location in the source code where the operation originates.

The output looks like:

...

Product & ’even.mona’ line 11

& 0 in Q;

^

(7,14)x(4,4) -> (12,26)

Minimizing (12,26) -> (6,11)

Right-quotient

Projecting offset 3 ’even.mona’ line 6

ex2 Q: x in Q

^

(6,11) -> (6,7)

Minimizing (6,7) -> (5,6)

...

This can be read as follows: the conjunction in line 11 results in a product operation of two
automata, one with 7 states and 14 BDD nodes, the other with 4 states and 4 BDD nodes.
The product automaton with 12 states, 26 BDD nodes and its minimized version are also
reported on, and so forth. The ^ character points to the column in the source line where the
operation originates.

When the compilation is completed, a summary of the use of the various automata oper-
ations is printed. Also, the largest number of states and the largest number of BDD nodes of
any intermediate, minimized automata is shown.

20 3 ADVANCED FEATURES

Timing

Using the option -t cause MONA to print a summary of the total time spent in the main
automaton operations. If -t is used together with -s (statistics), the time spent in each
operation is also printed.

Intermediate automata

The -i option is intended for use together with -s (see above). It extends the informa-
tion being printed at each automaton operation with a verbose description of the resulting
automaton.

The following example illustrates the output:

...

Resulting DFA:

Initial state: 0

Accepting states: 1

Rejecting states: 2

Don’t-care states: 0

Transitions:

State 0: -> state 1

State 1: #8=0, #10=0, #11=0 -> state 1

State 1: #8=0, #10=0, #11=1 -> state 2

State 1: #8=0, #10=1, #11=0 -> state 2

State 1: #8=0, #10=1, #11=1 -> state 1

State 1: #8=1, #11=0 -> state 2

State 1: #8=1, #11=1 -> state 1

State 2: -> state 2

...

The format resembles the one from Section 2.4. The only differences are that “don’t-care”-
states can occur and that the transitions are written more explicitly. For example, #8=1

means that the variable with index 8 has the value 1.

3.2 Visualization of automata

In WS1S mode, a graph representation of the conjunctive automaton can be generated with
the -gw option. The format of the output is readable by the graphviz tool dot (property of
AT&T). Example:

mona -gw even.mona > even.dot

dot -Tps even.dot -o even.ps

generates the graph shown on page 12 to the file even.ps. (The graphviz tools can be found at
http://www.research.att.com/sw/tools/graphviz/.) Section 3.7 describes another kind
of automaton visualization.

3.3 Separate compilation

MONA supports efficient use of libraries of predicate definitions through the separate compila-
tion feature. The user can divide the input file into a number of smaller files and then use the
include-construct to combine them. If MONA is executed with the option -e, all automata

http://www.research.att.com/sw/tools/graphviz/

3.4 Restriction 21

example predicate library

pred foo(...) = ...;

pred bar(...) = ...;

Figure 8: library.mona

example application

include "library.mona";

...application...

Figure 9: application.mona

corresponding to predicate uses are stored in an automaton library, and automatically reused
in subsequent executions of MONA. The user can decide where to store the automaton library
by setting the environment variable MONALIB. When MONA finds out that a source file has
changed (using the file time-stamp), the part of the automaton library containing automata
for that specific source file is recomputed.

The automaton library is a directory containing a sub-directory for each source file.
Each sub-directory contains a number of automaton files (in the format also used by the
import/export mechanism, see 3.7) and a special contents-file.

In Figures 8 and 9, a template for separate compilation is shown.

Executing

mona -c -e application.mona

cause MONA to store the automata generated by applications of the predicates in the directory
$MONALIB/library/. In subsequent compilations of the application file (application.mona),
MONA will attempt to reuse the stored automata unless the library source file (library.mona)
has been altered.

3.4 Restriction

MONA allows restrictions to be associated with the use of variables. At every kind of decla-
ration of a first-order or second-order variable (e.g., var2, all1, etc.), it is possible to specify
where ρ, which makes ρ the user-defined restriction of that particular variable. See 4.2 for a
discussion of the semantics of restrictions. Note that restrictions must always be satisfiable
for MONA to calculate correctly, see 4.2. MONA does not check this requirement.

It is possible to specify default user-definable restrictions using the constructs

defaultwhere1(p) = φ

22 3 ADVANCED FEATURES

and

defaultwhere2(P) = φ

For instance,

defaultwhere1(x) = x <= 7;

is equivalent to specifying where p <= 7 for each first-order variable p that does not already
have an explicit where restriction.

3.5 Emulating Monadic Second-order Logic on Strings

Any automaton produced by the MONA in its pure WS1S mode recognizes a language that
is closed under certain string operations, see Section 4. For some applications, it is desirable
to have the ability to generate any possible automaton over a bit-vector alphabet.

A slight variation on WS1S is called Monadic Second-order Logic on Strings (M2L-Str).
In M2L-Str, all quantification is restricted to numbers less than the length of the string that
the formula is interpreted over. This restriction is not a WS1S concept, because of the closure
property just mentioned. We turn MONA into M2L-Str mode if we write

m2l-str;

in the top of a MONA program. This declaration is just an abbreviation for:

linear;

var1 $;

lastpos $;

defaultwhere1(p) = p <= $;

defaultwhere2(P) = P sub {0,...,$};

where the $ variable denotes the last position in the string. The defaultwhere-declarations
restrict all variables to 0, 1, . . . , $. The non-WS1S concept of the last position in the string is
enforced by the lastpos declaration. It works by conjoining a special basic automaton to the
implicative and the conjunctive automata (see Section 3.4) that ensures that $ is interpreted
as the last position; it also causes the $-variable to be projected away. Therefore, it will not
occur in the program automata or in the analysis.

3.6 Example: regular expressions over the ASCII alphabet

Regular expressions can be easily translated into MONA. Consider the problem of constructing
an automaton over the ASCII alphabet that recognizes the language a*(ab)*. This can be
done in a straightforward manner: we introduce a first-order variable $ to denote the end of
the string. We declare second-order variables bit0, . . . , bit7—restricted to {0, . . . , $}—for
the representation of a string of ASCII characters. We make the default restriction on first
and second-order variables that they involve numbers less than or equal to $ + 1. Then, we
recursively construct for each subexpression E of a*(ab)* a predicate is E(p, q) such that
is E(p, q) holds if and only if the substring from position p to position q− 1 belongs to the
language defined by E. Finally, we remember to declare $ as a lastpos variable. The details
can be found in Figure 10. It can been seen to be essential that restrictions are relative to

3.6 Example: regular expressions over the ASCII alphabet 23

var1 $;

lastpos $;

defaultwhere1(p) = p <= $+1;

defaultwhere2(P) = P sub {0,...,$+1};

we declare a string of 8-bit vectors

var2 bit0 where bit0 sub {0,...,$}; var2 bit1 where bit1 sub {0,...,$};

var2 bit2 where bit2 sub {0,...,$}; var2 bit3 where bit3 sub {0,...,$};

var2 bit4 where bit4 sub {0,...,$}; var2 bit5 where bit5 sub {0,...,$};

var2 bit6 where bit6 sub {0,...,$}; var2 bit7 where bit7 sub {0,...,$};

macro consecutive_in_set(var1 p, var1 q, var2 P) =

p < q & p in P & q in P & all1 r: p < r & r < q => r notin P;

ASCII ’a’ is 97, which is 1100001

macro is_a(var1 p, var1 q) =

q = p + 1 &

p in bit0 & p notin bit1 & p notin bit2 & p notin bit3 &

p notin bit4 & p in bit5 & p in bit6 & p notin bit7;

ASCII ’b’ is 98, which is 1100010

macro is_b(var1 p, var1 q) =

q = p + 1 &

p notin bit0 & p in bit1 & p notin bit2 & p notin bit3 &

p notin bit4 & p in bit5 & p in bit6 & p notin bit7;

we concatenate by guessing the intermediate position where

the string parsed according to the first regular expression

(in this case "a") ends and the string parsed according to

the second (in this case "b") starts

macro is_ab(var1 p, var1 q) =

ex1 r: is_a(p, r) & is_b(r, q);

a star expression is handled by guessing the set of

intermediate positions

macro is_ab_star(var1 p, var1 q) =

ex2 P: p in P & q in P &

all1 r, r’: consecutive_in_set(r, r’, P) => is_ab(r, r’);

macro is_a_star(var1 p, var1 q) =

ex2 P: p in P & q in P &

all1 r, r’: consecutive_in_set(r, r’, P) => is_a(r, r’);

macro is_a_star_ab_star(var1 p, var1 q) =

ex1 r: is_a_star(p, r) & is_ab_star(r, q);

is_a_star_ab_star(0, $+1);

Figure 10: Regular expression over ASCII alphabet

24 3 ADVANCED FEATURES

3

1
0
0
0
0
1
1
0

4

0
1
0
0
0
1
1
0

2

0 0 0 0 0 0 0 1 1 1 1 1 1 1
0 1 1 1 1 1 1 0 0 0 0 0 0 1
X 0 0 0 0 0 1 0 0 0 0 0 1 X
X 0 0 0 0 1 X 0 0 0 0 1 X X
X 0 0 0 1 X X 0 0 0 1 X X X
X 0 1 1 X X X 0 1 1 X X X X
X X 0 1 X X X X 0 1 X X X X
X,X,X,1,X,X,X,X,X,1,X,X,X,X

0 1 1 1 1 1 1 1
X 0 0 0 0 0 0 1
X 0 0 0 0 0 1 X
X 0 0 0 0 1 X X
X 0 0 0 1 X X X
X 0 1 1 X X X X
X X 0 1 X X X X
X,X,X,1,X,X,X,X

5

1
0
0
0
0
1
1
0

0 1

X
X
X
X
X
X
X
X

1
0
0
0
0
1
1
0 0 1 1 1 1 1 1 1

X 0 0 0 0 0 0 1
X 0 0 0 0 0 1 X
X 0 0 0 0 1 X X
X 0 0 0 1 X X X
X 0 1 1 X X X X
X X 0 1 X X X X
X,X,X,1,X,X,X,X

X
X
X
X
X
X
X
X

0
1
0
0
0
1
1
0

0 0 0 0 0 0 0 1
0 1 1 1 1 1 1 X
X 0 0 0 0 0 1 X
X 0 0 0 0 1 X X
X 0 0 0 1 X X X
X 0 1 1 X X X X
X X 0 1 X X X X
X,X,X,1,X,X,X,X

Figure 11: Regular expression over ASCII alphabet

$ + 1; otherwise, the induction would be much more cumbersome to express. The resulting
automaton is shown in Figure 11. It can be seen that the representation of intervals, like a-z

would be very efficient, by the approach just sketched. Thanks to the BDD representation,
any interval on which the transition relation remains constant for a given state introduces at
most sixteen nodes, but on average only eight nodes. Also, the regular expressions can easily
be extended with complementation and conjunction. Thus MONA should be a useful tool for
the construction of automata for pattern matching via more concise formalisms than regular
expressions.

3.7 Exporting and importing automata

If MONA is used as an automaton-generation tool, two features are available for exporting
automata. The first is using the -w option as described in Section 2.4. The other is the
formula-level construct

export("filename", φ)

which evaluates to the same (minimal) automaton as φ but has the side-effect of writing
the automaton to the designated file. If lastpos p (see 3.5) has been specified, for instance
by writing m2l-str, the variable p will be projected away from the automaton before the
exporting takes place.

The automaton is stored in “.dfa”-format which is BDD-representation plus some auxil-
iary information written in ASCII. For instance,

3.7 Exporting and importing automata 25

var2 P,Q;

export("test.dfa", P sub Q);

yields the following contents of test.dfa:

MONA DFA

number of variables: 2

variables: P Q

orders: 2 2

states: 3

initial: 0

bdd nodes: 4

final: 0 1 -1

behaviour: 0 1 3

bdd:

-1 1 0

0 0 2

1 3 0

-1 2 0

end

Automata in “.dfa”-format can be imported using the construct

import("filename", n1->n
′
1, n2->n

′
2, ... , nk->n

′
k)

which evaluates to the automaton stored in the designated file where the free variables
n1, n2, ..., nk (from the variables-list in the dfa-file) have been substituted by n′1, n

′
2, ..., n

′
k

respectivly.

It is checked that the type of each ni is the same as that of n′i. Also, the substitution
must be order preserving in terms of variable indices.

Using DFAs in other applications

A simple C application programming interface for external DFAs is available in the MONA
package (as Lib/dfalib.[ch]). It allows the user to load, manipulate, and store DFAs in
the external DFA formal and to “run” a given string on the DFAs completely independently
of MONA.

The interface file dfalib.h contains the following functions:

mdDfa *mdLoad(char *filename) - loads a DFA file into memory.

int mdStore(mdDfa *dfa, char *filename) - stores a DFA in a file. If the stored au-
tomaton is modified and used in MONA (using import), the user must ensure that the
content is consistent and that the BDD is properly reduced and ordered.

void mdFree(mdDfa *dfa) - deallocates the memory used by the DFA.

mdState mdDelta(mdDfa *dfa, mdState s, mA a) - represents the transition function
δ : Q × Σ → Q of the automaton. The parameter a refers to an array of 0/1 chars,
which denotes an alphabet symbol. The array has one entry per variable.

26 3 ADVANCED FEATURES

void mdDump(mdDfa *dfa, FILE *file) - dumps the automaton to the designated file in
graphviz format. The following graph is generated for the P sub Q example above:

0
0

1
1

-1
2

0

1 2

1

The complete structure of the BDD representation is shown. A larger example is shown
in Figure 4. See [21] for a description of the use of BDDs in MONA. The graphviz tool
is described in Section 3.2.

An example application

A simple application of dfalib is located in the Lib directory as dfa2dot.c. It takes two
command-line arguments: the name of a source dfa-file, and the name of a destination dot-
file. It simply reads the dfa-file using mdLoad and dumps it using mdDump to the dot-file.
This dot-file can then later be processed with the dot tool.

3.8 Prefix-closing

The predicate notation prefix(φ) stands for an operation that calculates the prefix-closure
of the automaton associated to φ. In other words, a string w satisfies a formula prefix(φ) if
and only if there is some string v so that w·v satisfies φ.

The prefix operation has no logical meaning, but it may be useful in the synthesis of
controllers for reactive systems.

3.9 Controlling reuse of intermediate results

Internally MONA is divided into a front-end and a back-end. The front-end parses the input
and reduces it to an internal code describing the automata-theoretic operations that will
calculate the resulting program automata. The back-end then carries out the automata
operations in a way similar to the simplified decision procedure explained in Section 4.

For efficiency reasons, the internal code is stored in a DAG (Directed Acyclic Graph), not
a tree. The atomic formulas are located in the leaves and the composite constructs are in the
internal nodes.

The DAG can be thought of as being constructed from the tree using a bottom-up col-
lapsing process. This process is based on two kinds of formula equivalence relations:

syntax equivalence Two formulas are syntax-equivalent if their code trees are identical. Ob-
viously, this notion of equivalence implies identical corresponding automata and hence
suggests a very simple kind of reuse of intermediate results.

3.9 Controlling reuse of intermediate results 27

signature equivalence Two formulas φ and φ′ are signature-equivalent if there is an order-
preserving renaming of the variables in φ (i.e., increasing w.r.t. the indices of the vari-
ables) such that φ and φ′ become syntax-equivalent. Signature equivalence is implied
by syntactic equivalence.

A property of the BDD representation is that the automata corresponding to signature-
equivalent trees are isomorphic in the sense that only the node indices differ. This property
is used by MONA for automatic reuse of intermediate results.

For example, consider the formula

ex1 q: p<q & q<r

where the variables p, q, r have the indices 1, 2, 3 respectively. The automata for the sub-
formulas p<q and q<r are isomorphic, so their tree nodes are collapsed. The edges of the
resulting DAG are labelled with the renaming information.

signature
DAGification

q<rp<q

&

p<q

[] [q/p, r/q]

&

Unfortunately, it takes linear time to calculate the signature-equivalence class of a single
subtree, so the total expense of the “DAGification”-process becomes quadratic. Therefore
the signature-equivalence collapsing is limited to subtrees for which the number of variable
occurences are less than the “DAGification degree”, which is set by the -rN option. The rest
of the subtrees are collapsed using syntax equivalence.

Experiments show that significant time improvements (at the expense of larger space
usage) using “DAGification” (-r100) are possible, up to a factor 10.

The contents of the DAG can be shown as a graph using the -gd option and the graphviz
dot tool. See 3.2 for more information about visualization using graphviz.

28 4 THE AUTOMATON–LOGIC CONNECTION

4 The automaton–logic connection

Since the MONA notation is a logic interpreted over natural numbers, it is not difficult to define
its formal semantics. But a programming notation also has a compilation semantics, which
details how the source code is transformed. Usually, an exact description of the compilation,
such as the source code for a compiler, is neither available nor useful to a programmer.
With MONA, however, we need to carefully explain the compilation, since the process may
involve heavy or even infeasible symbolic calculations. Our explanation is in two parts: first,
we explain the classical WS1S approach (Büchi [9] and Elgot [12]); next, we introduce a
version of WS1S where restrictions are syntactically manifest, and we explain the semantic
and automata-theoretic consequences.

4.1 The classical approach

The central idea in the classical approach is to recursively translate each subformula of a main
formula φ0 into a deterministic, finite-state automaton that represents the set of satisfying
interpretations. The approach can be presented as follows.

Simplifying the language

Before the actual translation takes place, some syntactic transformations of φ0 are performed:

• First-order terms are encoded as second-order terms, since a first-order value can be
seen as a singleton second-order value. Also, we may encode Booleans in a variety of
ways, but for simplicity, we assume here that strings start with position 0 (as opposed
to the actual encoding explained previously).

• All second-order terms are “flattened” by introducing variables that contain the values
of all subterms. Example: A = (B union C) inter D is reduced to ex2 V: A = V

inter D & V = B union C, where V is a fresh variable.

• The subformulas are rewritten to involve fewer kinds of operations. Example: all2 A: φ

is reduced to ~(ex2 A: ~φ).

Consequently, it can be shown that φ0 can be massaged into a form where atomic subformulas
(those without Boolean connectives or quantifiers) express either a subset, a set difference, or a
successor relation, and where each logical operator expresses either a negation, a conjunction,
or an existential quantification. The abstract syntax for simplified WS1S formulas can be
defined by the following grammar (where Pi ranges over a set of variables):

φ ::= ~φ′ | φ′ & φ′′ | ex2 Pi : φ
′

| Pi sub Pj | Pi =Pj \ Pk | Pi =Pj +1

Semantics of the simplified language

Given a fixed main formula φ0, we define its semantics inductively relative to a string w over
the alphabet Bk, where B = {0, 1} and k is the number of variables in φ0. Assume every
variable of φ0 is assigned a unique index in the range 1, 2, .., k. Let Pi denote the variable
with index i. As indicated in Section 1.1, the string w now determines an interpretation
w(Pi) of Pi defined as the finite set {j | the jth bit in the Pi-track is 1}. For example, the

4.1 The classical approach 29

formula φ0 ≡ ∃C : A = B\C has variables A, B, and C, which we can assign indices 1, 2, and
3, respectively. A typical string w over B3 looks like:

A
1

0
1

 0
0
1

 1
1
0

 0
0
0

B

C

0 1 2 3

This string interprets all three variables although C is not free in φ0. Thus, the language
associated with φ0 is independent of the C-track in the sense that changing the bits on the
track for a string w does not affect the membership status of w. Also note that suffixing w
with any string of the form


0
...
0


∗

defines the same interpretation as w. Therefore, we will say that w is minimum if there is no
such non-empty suffix.

The semantics of a formula φ can now be defined inductively relative to an interpretation
w. We use the notation w � φ (which is read: w satisfies φ) if the interpretation defined by
w makes φ true:

w � ~φ′ iff w 2 φ′
w � φ′ & φ′′ iff w � φ′ and w � φ′′
w � ex2 Pi : φ′ iff ∃ finite M ⊆ N : w[Pi 7→M] � φ′
w � Pi sub Pj iff w(Pi) ⊆ w(Pj)
w � Pi = Pj\Pk iff w(Pi) = w(Pj)\w(Pk)
w � Pi = Pj +1 iff w(Pi) = {j + 1 | j ∈ w(Pj)}

where we use the notation w[Pi 7→ M] for the shortest string w′ that interprets all variables
Pj , j 6= i, as w does, but interprets Pi as M . Note that if we assume that w is minimum,
then w′ decomposes into w′ = w · w′′, where w′′ is a string of letters of the form



0
...
0
X

0
...
0


(1)

where the ith component is the only one that may be different from 0.

The semantics allows quantification over only finite sets of naturals. Without this re-
striction, the logic is simply S1S (Second-order logic of One Successor), which is also non-
elementary decidable [10], although no efficient decision procedure is known.

30 4 THE AUTOMATON–LOGIC CONNECTION

Automaton construction

For a formula φ, define its language L(φ) as the set of satisfying strings:

L(φ) = {w | w � φ}

We now formulate the automata-theoretic calculations that allow us to conclude that any
L(φ) is a regular language. Thus, we will show by induction on the formula how to construct
deterministic automata A such that L(A) = L(φ), where L(A) is the language recognized by
A. The atomic formulas are hand-translated into what we call basic automata. Composite
formulas correspond to well-known automaton operations.

Translating atomic formulas

For simplicity, we only show basic automata for the case where i = 1, j = 2, k = 3. We also
only show the first two or three components of a letter.

φ = P1 sub P2: The automaton must recognize the language

L(P1 sub P2) = {w ∈ (Bk)∗ | for all letters in w: if the first com-
ponent is 1, then so is the second }

Thus, the automaton is:

X

1
0

X
1
X 0

0,

The other atomic formulas are treated similarly.

φ = P1=P2\P3:

X
0
1
1 0

,0
0
0

1 X
X
X

,

, ,0
1
0

0
0
1

1

1
X

φ = P1=P2+1:

X X
1 0

1
0

0
0

1
0

X

1
1

X

4.1 The classical approach 31

Translating composite formulas

φ = ~φ′: Negation of a formula corresponds to automaton complementation, so if we have
already calculated A′ such that L(φ′) = L(A′), then

L(~φ′) = {L(φ′) = {L(A′) = L({A′),

where { denotes both the language-theoretic operation of complementation and automata-
theoretic operation of complementation. Thus, A = {A′ is the desired automaton for φ.
Naturally, the automaton operation { in MONA is implemented as the linear-time com-
plementation algorithm that simply consists of flipping accepting and rejecting states.

φ = φ′ & φ′′: Conjunction corresponds to language intersection:

L(φ′ & φ′′) = L(φ′) ∩ L(φ′′).

So the desired automaton A is the automaton product A′ ×A′′ of the automata for the
subformulas. In MONA, only the reachable product states—pairs of the form (s′, s′′),
where s′ and s′′ are states of A′ and A′′—are calculated. Usually, this set is much
smaller than the product state space.

φ = ex2 Pi : φ′: Intuitively, the desired automaton A acts as the automaton A′ for φ′ except
that it is allowed to guess the bits on the Pi-track. Let A′′ be the result of such an
automaton-theoretic projection operation on A′, that is, A′′ is just a non-deterministic
version of A′, where there are up to two transitions possible out of each state on each
letter. In order to acquire a deterministic automaton A, we must further subject A′′

to a subset construction to get A. Unfortunately, already the A′′ automaton does not
quite do the job. The problem is that the witness w[Pi 7→ M] may be longer than w.
However, if this is the case, then it can be seen that there is a state s in A′′ reachable
on w from the initial state such that a final state can be reached from s on a string
consisting of letters of the form (1). Thus, it suffices to characterize such states s as
accepting before the projection and subset construction are carried out. This step can
be carried out in linear time by a breadth-first, backwards exploration of the automaton
from final states. The subset construction is carried out so that only reachable subset
states are calculated. In practice, this construction is often linear, not exponential as it
may be feared [3].

In language-theoretic terms, the operations above can be characterized as follows. Let
the right-quotient of a language L with a language L′ be defined as

L/L′ = {w | ∃u ∈ L′ : w·u ∈ L}.

Also, let the projection operation Ei be defined by

Ei(L) = {w | ∃w′ : w is identical to w′ except for the Pi-track}.

Choose the language Li to be

Li = {w ∈ (Bk)∗ | the Pj-track w is of the form 0∗ for j 6= i}

It can then be proven that

L(ex2 Pi : φ
′) = Ei(L(φ′)/Li),

which is a language-theoretic explanation of the automata calculations outlined above.

32 4 THE AUTOMATON–LOGIC CONNECTION

Issues in the classical approach

The elimination of first-order variables poses conceptual and practical problems. The concep-
tual problem is that viewing a first-order term t as a second-order term T relies on restricting
T s values to be singleton sets where the sole element denotes the value of t; therefore, the
semantics is not closed under complementation. For example, the formula φ = p=0, where p

is first-order is handled as φ′ = P={0}, where P is second-order. But the complement of φ′ is
~(P = {0}), something that is different from the representation of ~(p = 0), namely ~(P =

{0}) & singleton(P), where singleton(P) is a predicate denoting that P is a singleton set.
So the problem boils down to a simple fact: regarding formulas under conjunctive restrictions
is not robust under negation.

The practical problem is that if we try to keep automata in a normal form, where the
singleton restriction for all first-order variables is obeyed, then additional product and min-
imization calculations would be necessary: for each automaton A representing a subformula
φ and each free variable Pi, the automaton representing the singleton property for Pi must
be conjoined to A.

The singleton restriction is not the only one we need. For example, to emulate the seman-
tics of the Monadic Second-order Semantics on Strings in WS1S (see Section 3.5), we must
restrict all first and second-order terms to numbers less than or equal to a value $ denoting
the end of the string. A naive approach, where each occurrence of a first-order variable p

in an atomic formula is accompanied by conjoining the restriction p <= $ to the atomic for-
mula, may easily lead to doubly-exponential blow-ups [28]. Instead, we would like a general
semantic mechanism, and a simple syntactic means, of safely compiling formulas under such
constraints.

4.2 The MONA approach

MONA uses automata that extend the classical translation in three ways:

• To address the issues in the classical approach, MONA uses the ternary partitioning of
strings suggested in [28]. Thus, the states of MONA automata are partitioned into three
kinds: accepting, rejecting, and don’t-care.

• To handle Boolean variables efficiently, MONA automata read an initial letter that
encodes only Boolean variables before reading the letters that define first and second-
order variables. This was explained in Section 2.

• A larger number of basic automata and Boolean connectives are used in order to reduce
the overhead of simplifying the formulas.

WS1S with restrictions

We introduce WS1S-R, a version of the simplified WS1S above where restrictions are now
made explicit by the syntax. The basic notion is that a variable P can be associated with a
restriction ρ, which is a formula restraining the values of P . For example,

φ = ex2 X where X sub {0,...,$}︸ ︷︷ ︸
ρ

: φ

4.2 The MONA approach 33

restricts X so that the formula φ is compiled under the restriction ρ = X ⊆ {0, . . . , $}. Of
course, the automaton for φ is equivalent to the one calculated as

ex2 X : X sub {0,...,$} & φ′

However, our intention with a restriction is that it should be implicitly conjoined to any
subformula mentioning P .

To do this, we assume again that all formulas are subformulas of a main formula φ0. We
focus on the simplified syntax, but we change the rule for existential quantification to:

φ ::= ex2 Pi where ρ : φ′

Let ρ(Pi) = ρ be the restriction of variable Pi. We assume that Pi is free in ρ(Pi). Also,
we assume that each Pi is restricted, possibly to the formula Pi=Pi, i.e., true.

The ternary semantics

Under the binary semantics, a formula φ is either true (1) or false (0) for a given interpretation.
MONA semantics defines a third possibility: that the formula φ is don’t-care (⊥) if the
restriction of some free variable in φ is not fulfilled.

As an example, consider the following MONA program:

var1 $ where $ <= 5;

var1 p where p <= $;

p > 5;

The status of φ0 = p > 5 under the interpretation [p 7→ i] is ⊥ if i > 5 and 0 for i ≤ 5. In
particular, p > 5 is not satisfiable under the conjunction of the restrictions for p and $.

It is shown in [28] how this notion yields a robust semantics: variables can be constrained
where they occur, and the meaning of constraints is preserved under the connectives and
quantifiers. Here, we briefly explain the semantics along with its automata-theoretic implica-
tions.

Let X be an expression, that is X is either a formula or a variable. We define ρ∗(X) to
be the formula that is the conjunction of all ρ(Pi), where Pi is free in X, or free in ρ(Pj) for
some Pj free in X, etc.; that is,

ρ∗(X) = &
Pi∈P

ρ(Pi),

where P is the least set such that FV (X) ⊆ P and ∪P∈PFV (ρ(P)) ⊆ P. In particular,
ρ(Pi) is the natural closure of ρ(Pi): ρ(Pi) implies the direct restriction ρ(Pi) and all indirect
restrictions ρ(Pj), where Pj appears in the transitive closure of free variables in restrictions.
(We assume that this closure is finite.)

The semantics of the Boolean connectives in the three-valued interpretation is the usual
one augmented with the rule that any Boolean formula is ⊥ if and only if a subformula is ⊥.
In particular, we have the following truth tables:

~

⊥ ⊥
0 1
1 0

& ⊥ 0 1

⊥ ⊥ ⊥ ⊥
0 ⊥ 0 0
1 ⊥ 0 1

34 4 THE AUTOMATON–LOGIC CONNECTION

Now the three-valued semantics is defined as:

[[~φ′]]w = ~[[φ′]]w

[[φ′ & φ′′]]w = [[φ′]]w & [[φ′′]]w

[[ex2 Pi where ρ : φ′]]w =


1 if ∃M : [[φ′]]w[Pi 7→M] = 1

0 if ∀M : [[φ′]]w[Pi 7→M] 6= 1 and ∃M : [[φ′]]w[Pi 7→M] = 0

⊥ if ∀M : [[φ′]]w[Pi 7→M] = ⊥

[[Pi sub Pj]]w =


1 if w � Pi sub Pj and [[ρ∗(Pi) & ρ∗(Pj)]]w = 1

0 if w 2 Pi sub Pj and [[ρ∗(Pi) & ρ∗(Pj)]]w = 1

⊥ if [[ρ∗(Pi) & ρ∗(Pj)]]w 6= 1

where we have only shown one kind of atomic formula, since the other ones are treated
similarly: the meaning of an atomic formula is ⊥ if the meaning of the conjunction of all
restrictions of variables in the formula is not 1; otherwise the semantics is the standard one.

The automata-theoretic approach

As in the case of WS1S, we can show that the semantics can be represented by finite-state
automata. So, we need to demonstrate automata Aφ that calculate [[φ]]w. Naturally, the
states of these automata are characterized according to the three-valued domain, that is, as
accepting (1), rejecting (0), or don’t-care (⊥). We write A(w) to denote the value calculated
by A on word w; this value is the acceptance status of the state that A reaches when reading
w. A basic observation is that any automaton A, by a simple relabeling of acceptance status,
can be transformed into an automaton RA such that

RA(w) =

{
1 if A(w) = 1

⊥ if A(w) 6= 1

Then, it is not hard to see that an atomic formula like φ = Pi sub Pj can be represented by
the automaton

RAρ∗(Pi) × RAρ∗(Pj) ×A,

where A is the classical automaton for Pi sub Pj as already presented and × is the automata
product with product states characterized according to the three-value truth table for &. Note
the use of the recursion in arguments ρ∗(Pi) and ρ∗(Pj).

It can be shown that the automata-theoretic calculations of the three inductive cases in
the classical approach can be generalized to the three-valued semantics. In fact, only the case
of existential quantification requires careful consideration.

The automata being printed using the -w option (see 2.4) do not contain any “don’t-care”
states. At this final stage of the translation process, it is not relevant whether a state is
categorized as “rejecting” or “don’t-care”. Before the automaton is printed, all don’t-care
states are hence converted to reject states, and the resulting automaton is minimized so that
an absolute minimal-size automaton accepting the desired language is shown.

4.2 The MONA approach 35

An example

Consider the atomic formula p in P in the full MONA syntax. If there are no restrictions
introduced by where or defaultwhere clauses, then the automaton for p in P is formed as
the product of

• an automaton that calculates a value that is either 1 or ⊥ according to whether the
singleton property holds for the p-track, and

• the basic automaton for p sub P, where p is regarded as a second-order variable.

This automaton looks like:

1
0

1
1

X

X
X

0
X
X

where we assume that the index of p is 1 and that of P is 2.

Requirements on restrictions

The ternary semantics will not provide meaningful results unless the following requirement
holds for all formulas φ of the form ex2 Pi where ρ : φ′:

� ex2 Pi : ρ
∗(Pi)

That is: for any interpretation that defines the values of all free variables, except for Pi, in the
closure ρ∗(Pi) of Pi, there is an interpretation of Pi that makes the closure hold. For example,
φ = ex2 P where ~P=P: P=P does not satisfy this requirement, since the restriction is always
false. Indeed, there is a problem here: the formula evaluates to ⊥ under the semantics just
given, not to 0 as one would expect of a false formula that contains no restricted free variables.

Equivalence of the binary and ternary semantics

It can be proven [28], that the classical semantics is equivalent to the ternary semantics for
WS1S-R in the following sense

w 2 ρ∗(φ) ⇔ [[φ]]w = ⊥
w � φ & ρ∗(φ) ⇔ [[φ]]w = 1

w � ~φ & ρ∗(φ) ⇔ [[φ]]w = 0

36 5 WS2S AND GUIDED TREE AUTOMATA

5 WS2S and Guided Tree Automata

WS2S is the logic obtained by generalizing WS1S to be interpreted over the domain of elements
generated from two successors instead of one. So, in WS1S a string defines an interpretation,
whereas in WS2S a binary tree defines an interpretation. In WS1S, each first-order variable
is interpreted as a natural number, but in WS2S each first-order variable is interpreted as a
position in the infinite binary tree. WS2S is also decidable using automata.

MONA runs in either linear mode or tree mode corresponding to WS1S or WS2S respec-
tively. The mode is chosen with the keywords linear or tree in the header. Linear mode is
the default.

In WS2S, the +1 successor notation is replaced with .0 and .1 representing the left and
right successor, respectively. A string of 0s and 1s can be used as abbreviation for multiple
applications of the successor operators, e.g. p.011 means ((p.0).1).1. The predecessor
operator -1 in WS1S has an WS2S counterpart named ^ (“up”).

5.1 Guided Tree Automata

This section describes the automata used in the decision procedure for WS2S.

A tree t over the alphabet Σ, written t ∈ TΣ, can be defined by the grammar

t ::= ε | α<t1, t2>

where ε denotes the empty tree, α ∈ Σ and t1 and t2 are the left and right subtrees of t
respectively.

A guide G = (D,µ, d0) is a top-down, deterministic tree automaton that does not look at
the labeling. Its states will be used to designate state space names of bottom-up automata.
More formally, G consists of

– D, a finite set of state space names,
– µ : D → D ×D, the guide function, and
– d0 ∈ D, the initial state space name.

A guided tree automaton (GTA) MG with guide G is now a set of bottom-up tree automata:
MG = ({Qd}d∈D,Σ, {δd}d∈D, {qd}d∈D, F) where

– {Qd}d∈D is a family of disjoint finite sets, one set for each state space name,
– Σ is the alphabet,
– {δd}d∈D is a family of transition functions, one for each state space name, such that

if µ(d) = (d1, d2), then δd is of the form δd : (Qd1 ×Qd2)→ (Σ→ Qd),
– {qd}d∈D is the family of initial states, one for each state space name, such that

qd ∈ Qd for each d, and
– F ⊆ Qd0 is the set of final states.

Given a tree t and a GTA MG, we define whether MG accepts t by a two-step process:

1. First, a state space is assigned to each node in t. Let T(Σ,D) denote the set of trees
defined by the grammar

t̃ ::= d | (α, d)<t̃1, t̃2>

where α ∈ Σ and d ∈ D. The bottom-up tree automaton distinguishes between different
empty subtrees—thus the need for the leaf of the form d above. The tree t can now be

5.2 Specifying guides and universes 37

labeled with state spaces in a top-down style by applying the function µ̂ : TΣ ×D →
T(Σ,D) to (t, d0), where µ̂ is defined by:

µ̂(ε, d) = d

µ̂(α<t1, t2>, d) = (α, d) <µ̂(t1, d1), µ̂(t2, d2)>, where µ(d) = (d1, d2)

Notice that the state spaces are assigned independently of the labels in t.

2. Next, each subtree of the resulting tree µ̂(t, d0) is assigned a state in a bottom-up style
by the function δ̂ : T(Σ,D) →

⋃
d∈DQd defined by:

δ̂(d) = qd
δ̂((α, d)<t̃1, t̃2>) = δd(δ̂(t̃1), δ̂(t̃2))(α)

The language recognized by MG is the set of trees t ∈ TΣ such that δ̂ ◦ µ̂(t, d0) ∈ F .

A GTA can be seen as an ordinary tree automaton, where the state space has been factorized
according to the guide. A GTA with only one state space is thus just an ordinary tree
automaton.

The reason for performing the factorization is to provide a means for avoiding state explo-
sions. If one has certain knowledge or heuristics about locations of independent information
in the infinite binary tree, a guide can be constructed exploiting these features by providing
the positional knowledge. An example of this is shown in the following Section.

5.2 Specifying guides and universes

In MONA the guide is defined in the header with the guide construct. As an example

guide a->(b,c), b->(b,b), c->(c,c);

defines a guide with state-space names a, b, c, the guide function which maps a to (b, c) etc.
and with a (the first name in the list) as the initial state space name.

A universe u is a subtree of the infinite binary tree satisfying the property that if the
position p is in u then both the left and the right successors of p are also in u.
A universe can thus be identified by a string of 0s and 1s representing the sequence of left and
right successors respectively which constitute the path from the root of the infinite binary
tree to the root of the universe. A universe u has associated to it the set of state spaces
Du reachable from the root of u: a state space d is in Du if and only if there is some tree
containing a node in u that is assigned state space d.

We assume that the infinite binary tree is covered with disjoint universes in the following
sense: along every infinite path starting from the root, exactly one universe is eventually
reached. This scenario can be depicted by the following example illustrating a division of the
infinite binary tree into three universes, u1, u2 and u3 (identified by the strings 00, 01 and 1
respectively) and some nodes in the top that are not part of any universe.

38 5 WS2S AND GUIDED TREE AUTOMATA

0 1

0 1

u1 u2

u3

MONA allows the user to define the universes above by the declaration:

universe u1:00, u2:01, u3:1;

Boolean variables are assigned a special state space always located in the root of the infinite
binary tree. This state space may not belong to any universe.

The user can declare variables to range only over values in certain universes. For instance,

var1 [u1] x;

var2 [u2,u3] Y,Z;

declares that x is interpreted as a node in u1 and that Y and Z are interpreted as subsets of
the union of universes u2 and u3.

Guides and universes can be specified by one of three methods:

1. Neither a guide nor any universes are specified. MONA then generates two universes
(of which one is a “dummy”) and a trivial guide. (Two universes are needed because
the encoding of Boolean variables needs a special state space located in the root of the
infinite binary tree). The automata being constructed are essentially traditional tree
automata.

2. A number of universes without positions are specified but no guide. MONA then gen-
erates a guide as a balanced tree and places the universes at the leaves of this tree.

3. A guide and a number of universes with positions are specified completely by the user
as described above.

Other tree-mode specific constructs

The root of a universe u can be expressed using the first-order construct

root(u)

If the guide and universes are specified according to method 1, then the expression root can
be used to denote the root of the implicitly constructed (non-dummy) universe.

The root(u) term can be used to express first-order constants (i.e. position constants),
e.g. root(u2).01101.

Another way of accessing the roots of universes is using the formula

root(t, [u1, u2, . . . , un])

5.3 Tree mode output format 39

tree;

var2 A,B;

ex1 p1,p2,p3,p4,p5:

p1<p2 & p2<p3 & p3<p4 & p4<p5 &

A = {p1,p2,p3,p4,p5};

ex1 p1,p2,p3,p4,p5,p6,p7:

p1<p2 & p2<p3 & p3<p4 & p4<p5 & p5<p6 & p6<p7 &

B = {p1,p2,p3,p4,p5,p6,p7};

Figure 12: ab1.mona

where t is a first-order term and each ui is a universe name. It is true if and only if t is the
root of one of the universes u1, u2, . . . , un.

Where a universe name is required, a variable name can be used instead. The variable
name then denotes the set of universes over which the variable ranges.

Example

Assume we want a GTA to accept the set of trees which have a branch with exactly 5 a-labels
and a branch with exactly 7 b-labels. With ordinary tree automata (e.g. using method 1
for describing universes), the automaton could be encoded as shown in Figure 12. Since the
resulting automaton has to “remember” both how many as (0 to 5) and how many bs (0 to
7) it encounters, it has approximately 6 · 8 states.

Now assume that we happen to know that as occur only in the left part of the infinite
binary tree, that is, any node labeled a is below root.0. Similarly, any node labeled b is
below root.1. Utilizing this location independence, we can construct a guide (with three
state spaces) and two universes and restrict the various variables to the appropriate universes
as shown in Figure 13.

In effect, we now get one automaton counting as and one counting b’s, so the total
number of states is now around 6 + 8. In general, exploiting positional knowledge using
the guide/universe technique can give an exponential decrease in state-space size. Experience
shows that positional knowledge often arises naturally [26].

5.3 Tree mode output format

In the following, the format of output of automata, satisfying examples and counter-examples,
etc. for WS2S mode is described.

WS2S formula analysis

Executing

mona -c ab2.mona

40 5 WS2S AND GUIDED TREE AUTOMATA

tree;

guide d0->(a,b), a->(a,a), b->(b,b);

universe ua:0, ub:1;

var2 [ua] A;

var2 [ub] B;

ex1 [ua] p1,p2,p3,p4,p5:

p1<p2 & p2<p3 & p3<p4 & p4<p5 &

A = {p1,p2,p3,p4,p5};

ex1 [ub] p1,p2,p3,p4,p5,p6,p7:

p1<p2 & p2<p3 & p3<p4 & p4<p5 & p5<p6 & p6<p7 &

B = {p1,p2,p3,p4,p5,p6,p7};

Figure 13: ab2.mona

generates (amongst other output) the following satisfying example, which illustrates the WS2S
output format:

A satisfying example (for assertion & main) is:

Booleans:

XX

Universe ua:

(1X,(1X,(1X,(1X,(),(1X,(),())),()),()),())

Universe ub:

(X1,(X1,(X1,(X1,(X1,(X1,(X1,(),()),()),()),()),()),()),())

First, the values from the Boolean state space is written in a string. None of the free variables
in this example are Boolean, so the string just contains Xs. Next, for each universe, a tree is
printed. An empty subtree is written as (), and a node of the form α<t1, t2> (see p. 36) is
written as (α, t1, t2). As one can see, A is assigned a set with 5 elements and B is assigned a
set with 7 elements as requested by the MONA program.
It also prints the following summary about the conjunctive automaton (unless -w is also
specified):

Conjunctive automaton:

State space 0: 2 states, 2 BDD nodes

State space 1: 7 states, 18 BDD nodes

State space 2: 9 states, 22 BDD nodes

Total: 18 states, 42 BDD nodes

The satisfying examples and counter-examples can be shown graphically using the graphviz
tool dot (see 3.2). For instance, executing

mona -gs ab2.mona > ab2-sat_ex.dot

dot -Tps ab2-sat_ex.dot -o ab2-sat_ex.ps

generates the following output in the file ab2-sat ex.ps, which shows the satisfying example
from before:

5.3 Tree mode output format 41

SATISFYING EXAMPLE

Free variables are: A, B

Booleans: XX

ua ub

1X

1X -

1X -

1X -

- 1X

- -

X1

X1 -

X1 -

X1 -

X1 -

X1 -

X1 -

- -

Outputting minimal GTAs

Executing

mona -w ab2.mona

first prints

Guide:

0 -> (1,2)

1 -> (1,1)

2 -> (2,2)

which shows how numbers are assigned to the state spaces. The number 0 is always the
number of the Boolean state space, i.e. the state space in the root of the infinite binary tree.
It then prints:

42 5 WS2S AND GUIDED TREE AUTOMATA

GTA for formula with free variables: A B

Accepting states: 1

Rejecting states: 0

State space 0 (size 2):

Initial state: 0

Transitions:

(0,0,XX) -> 0

(0,1,XX) -> 0

(0,2,XX) -> 0

...

(6,7,XX) -> 0

(6,8,XX) -> 0

State space 1 (size 7):

Initial state: 6

Transitions:

(0,0,XX) -> 2

...

(6,6,0X) -> 6

(6,6,1X) -> 5

State space 2 (size 9):

Initial state: 0

Transitions:

(0,0,X0) -> 0

...

(8,7,XX) -> 4

(8,8,XX) -> 4

Number of transitions: 18

The format resembles the one described in Section 2.4. As an example: the very last transition
shown here defines that δ2(8, 8)(XX) = 4 in the notation used on p. 36.

Translation statistics

The format of statistics output (see 3.1) in tree mode is illustrated with the following piece
of output:

...

Product & ’ab2.mona’ line 16

p1<p2 & p2<p3 & p3<p4 & p4<p5 & p5<p6 & p6<p7;

^

(3,3; 1,1; 225,5425)x(3,3; 1,1; 6,16) -> (7,7; 1,1; 294,3702)

Minimizing (7,7; 1,1; 294,3702) -> (3,3; 1,1; 193,4202)

...

It shows a product operation which results in a GTA with 3 states and 3 BDD nodes in state
space 0, 1 state and 1 BDD node in state space 1, and 193 states and 4202 BDD nodes in
state space 2.

5.4 Emulating Monadic Second-order Logic on Trees

Just as WS2S is a generalization of WS1S, Monadic Second-order Logic on Trees (M2L-Tree)
is a generalisation of M2L-Str, which was briefly described in Section 3.5. M2L-Tree can be

5.5 External GTAs 43

emulated by writing

m2l-tree;

which is the same as writing

tree;

var2 $ where all1 p: (p in $) => ((p^ in $) | (p^=p));

lastpos $;

defaultwhere1(p) = p in $;

defaultwhere2(P) = P sub $;

The idea is the same as for M2L-Str: A special variable $ is used as a “skeleton” to which all
other variables are restricted.

5.5 External GTAs

Guided Tree Automata can be exported and imported just as ordinary DFAs can (see 3.7).

Format of external GTA files

Executing MONA on the following program

tree;

var2 P,Q;

export("test.gta", P sub Q);

generates the file test.gta which illustrates the format of a “.gta”-file:

MONA GTA

number of variables: 2

variables: P Q

orders: 2 2

state spaces: 3

state space sizes: 2 2 1

final: 1 -1

guide:

1 2

1 1

2 2

state space 0:

initial state: 0

bdd nodes: 2

behaviour:

0

1

bdd:

-1 0 0

-1 1 0

...

end

44 5 WS2S AND GUIDED TREE AUTOMATA

Using GTAs in other applications

Similar to the DFA library described in Section 3.7, a small GTA library is available in the
MONA package (as Lib/gtalib.[ch]) so that the GTAs generated by MONA can be used in
other applications. The following functions are in the library:

mgGta *mgLoad(char *filename) - loads a GTA from a file.

int mgStore(mgGta *gta, char *filename) - stores a GTA in a file.

void mgFree(mgGta *gta) - deallocates the memory used by a GTA.

mgState mgDelta(mgGta *gta, mgId ss, mgState left, mgState right, mA *a)

- represents the transition function of a GTA (see 5.1). The arguments are a GTA, a
state space identifier, a state from the left state space, a state from the right state space,
and an alphabet symbol.

void mgAssign(mgGta *gta, mgTreeNode *t, mgId id) - assigns state space identifiers
and states to the nodes of a labeled binary tree.

int mgCheck(mgGta *gta, mgTreeNode *t) - takes a GTA and a labeled binary tree as
arguments and checks whether the tree is accepted by the GTA or not.

See gtalib.h for further descriptions.

45

6 Plans for future versions

This section describes the major ideas and plans for future work on the MONA project. Users
of the MONA tool are encouraged to send other ideas to us.

6.1 Specifying BDD variable ordering

The indices assigned to the variables in a formula are used in the internal BDD representation
to define the ordering of the BDD nodes. It is a well-known fact (see [8]) that this ordering
has a strong influence on the number of BDD nodes required. When the number of nodes
increases, the time spent on automaton operations increases correspondingly.

As previously mentioned, in the current version of MONA, indices are assigned to variables
in order of occurrence. Consider the following MONA program:

var2 P1,Q1,P2,Q2,P3,Q3,P4,Q4,P5,Q5;

P1=Q1 & P2=Q2 & P3=Q3 & P4=Q4 & P5=Q5;

The corresponding automaton generated by MONA has 3 states and 17 BDD nodes are used
to represent the transition function. If we simply change the order of the declarations of
the variables as shown below, 95 BDD nodes are required to represent essentially the same
automaton.

var2 P1,P2,P3,P4,P5,Q1,Q2,Q3,Q4,Q5;

P1=Q1 & P2=Q2 & P3=Q3 & P4=Q4 & P5=Q5;

By adding more Pi-Qi pairs, the number of BDD nodes grows linearly in the first program,
and exponentially in the second. This is thus an example of an exponential difference caused
by the ordering of the indices.

Another well-known fact about BDDs is that deciding the optimal ordering is NP-complete,
so searching for optimal orderings is not feasible. Instead we want the MONA programmer
to have a more succinct and pragmatic method for choosing the orderings manually based on
heuristics about the problem being represented by the MONA program.

Preliminary experiments have shown that useful heuristics are of the form “P should have
a higher index than Q” or “the indices of P and Q should be close to each other”. Our plan
is to provide a syntactical means (called “pragmas”) for expressing such rules concisely and
make MONA generate an ordering satisfying as many of the rules as possible.

For the curious reader we have included the preliminary syntax for specifying “pragmas”
in the MONA syntax in appendix A.

6.2 Encoding of Boolean variables in tree mode

The Boolean variable encoding in trees often leads to exponential explosions, since the tree
automata can work under no assumptions about what the Boolean values are in the top. This
is in contrast to the situation for strings, where the first thing that the automaton encounters
is the assignment of values to the Booleans. In a future version of MONA, tree mode will use
the same idea.

46 6 PLANS FOR FUTURE VERSIONS

6.3 Symbolic reductions

Before the actual translation of formulas into automata takes place, experiments have shown
that it is useful to perform symbolic reductions on the formulas. The reductions on a formula
are based on an analysis, which attempts to deduce validity, unsatisfiability, implications and
equivalences of the subformulas. The formula is subsequently simplified using some rewriting
rules based on the information obtained by the analysis.

Since the logic is decidable it is possible to obtain precise answers from the analysis, but
as the decision procedure has a non-elementary lower bound, precise answers are not what the
analysis should aim for. Instead it should be an approximating, conservative analysis with a
low complexity based on heuristics.

As it is the case for optimizers in traditional compilers, the largest need for optimizations
is on machine-generated code. The FIDO tool (see [26]) is an example of a tool which auto-
matically generates MONA code. Due to the compositional design of FIDO, the processing by
MONA of the code generated by FIDO would benefit greatly by symbolic reductions.

Especially one kind of reductions (which resembles let-reduction) is useful: Assume a sub-
formula has the form ∃P : φ and the formula analysis has established that φ⇒ P = T where
T is some term satisfying FV (T) ⊆ FV (φ). Then it is sound to replace ∃P : φ by φ[T/P]
(which means: φ where each occurrence of P is substituted by T). The resulting formula has
one less quantifier, and since quantifiers are the main source of state-space explosions (due to
the automaton determinization, see 4.1), reductions like this can be very useful.

Preliminary experiments show drastic improvements in time and space consumption on
machine-generated MONA code (generated by the FIDO tool). A high-priority plan of ours is
to make and implement a system of analysis and rewriting rules.

47

A Syntax

The grammar below describes the full MONA syntax in a BNF-like notation with the follow-
ing meta-syntax:

X | Y either X or Y ,
[X]? an optional X,
[X]∗ zero or more occurrences of X,
[X]� zero or more occurrences of X separated by commas,
[X]+ one or more occurrences of X, and
[X]⊕ one or more occurrences of X separated by commas.

A.1 MONA grammar

MONA program

program ::= [header ;]∗ [declaration ;]+

Declarations

header ::= linear

| tree

| m2l-str

| m2l-tree

| guide [guidearg]⊕

| universe [univarg]⊕

| include "filename"

declaration ::= φ

| assert φ

| const c = I

| defaultwhere1 (p) = φ

| defaultwhere2 (P) = φ

| var0 [α]⊕ [pragmas]?

| var1 [univs]? [varwhere1]⊕ [pragmas]?

| var2 [univs]? [varwhere2]⊕ [pragmas]?

| macro name [params]? = φ

| pred name [params]? = φ

48 A SYNTAX

Formulas

φ ::= true | false

| α | name ([exp]�)

| name | t1 = t2
| t1 ~= t2 | t1 < t2
| t1 > t2 | t1 <= t2
| t1 >= t2 | T1 = T2

| T1 ~= T2 | T1 sub T2

| t in T | t notin T

| empty (T) | ~ φ

| φ1 & φ2 | φ1 | φ2

| φ1 => φ2 | φ1 <=> φ2

| (φ) | export ("filename" φ)

| import ("filename" [, v -> var]∗)
| ex0 [α]⊕ [pragmas]? : φ

| all0 [α]⊕ [pragmas]? : φ

| ex1 [univs]? [varwhere1]⊕ [pragmas]? [restr T]? : φ

| all1 [univs]? [varwhere1]⊕ [pragmas]? [restr T]? : φ

| ex2 [univs]? [varwhere2]⊕ [pragmas]? [restr T]? : φ

| all2 [univs]? [varwhere2]⊕ [pragmas]? [restr T]? : φ

| let0 [α = φ]⊕ [pragmas]? in φ

| let1 [p = t]⊕ [pragmas]? in φ

| let2 [P = T]⊕ [pragmas]? in φ

The following formula is allowed in linear mode:

φ ::= prefix (φ)

The following formula is allowed in tree mode:

φ ::= root (t , univs)

First-order terms in linear mode

t ::= p | (t) | I | t + I | t - I | t1 + I % t2 | t1 - I % t2
| max T | min T

Second-order terms in linear mode

T ::= { [elems]� } | (T) | P | empty

| T1 union T2 | T1 inter T2 | T1 \ T2 | T + I | T - I

First-order terms in tree mode

t ::= p | (t) | t.succ | tˆ | root [(u)]?

Second-order terms in tree mode

T ::= { [elems]� } | (T) | P

| T1 union T2 | T1 inter T2 | T1 \ T2 | T .succ | T ˆ

A.1 MONA grammar 49

Other

elems ::= t | t1 , ... , t2

univs ::= [[u]⊕]

succ ::= [0 | 1]+

exp ::= t | T | φ

params ::= ([par]⊕)

par ::= var0 [α]⊕

| var1 [varwhere1]⊕

| var2 [varwhere2]⊕

| universe u

var ::= α | p | P

pragmas ::= { [pragma]⊕ }
pragma ::= [i :]? var wop var

wop ::= op | op i

op ::= < | > | =

guidearg ::= σ1 -> (σ2 , σ3)

univarg ::= u [: succ]?

varwhere1 ::= p [where φ]?

varwhere2 ::= P [where φ]?

Restrictions and comments

• α is a name of a Boolean variable, which we also regard as a zeroth-order variable; p, P
are names of first and second-order variables, respectively. A name can be any string
of letters, digits, underscores, dollar symbols, and single quotes.

I is an constant integer expression, e.g. (2 + 4 ∗ k/(7− c)), where k and c are constants
declared by the const declaration.

i denotes an integer.

c, name, σ and u denote the name of a constant, a predicate or macro, a state space,
or a name of universe, respectively.

v denotes the name of a variable in an external file.

• Anything related to guides and universes only makes sense in tree mode. There can be
at most one guide header and one universe header.

• In general, all names must be defined before they are used, i.e., “forward references”
are not allowed.

50 A SYNTAX

• If defaultwhere declarations are used, they must be placed before all predicate and
macro declarations.

It is possible to insert comments in the formulas. This is done by putting a # in a line
whereby MONA treats the rest of the line as a comment.

A.2 Precedence and associativity

The table below shows the precedence and associativity of the MONA operators. If for instance
the operator op1 has higher precedence (lower precedence number) than the operator op2, then
the expression E1 op1 E2 op2 E3 is interpreted as (E1 op1 E2) op2 E3. If the precedences
are equal, then the interpretation is decided by the associativity, e.g. if op is right-associative
then E1 op E2 op E3 is interpreted as E1 op (E2 op E3). The default rules can be overridden
with parentheses.

Precedence Operator Associativity

1 . ^ non-associative
2 * / % left-associative
3 + - left-associative
4 \ left-associative
5 inter left-associative
6 union left-associative
7 max min non-associative
8 = ~= > >= < <= non-associative
9 in notin sub non-associative
10 ~ non-associative
11 & left-associative
12 | left-associative
13 => right-associative
14 <=> right-associative
15 : non-associative

51

B Usage

The usage of the MONA-tool is:

mona [options] <filename>

The options are:

-c Analyzes resulting automaton, prints “valid”, “unsatisfiable” or a satisfying exam-
ple and a counter-example. See Section 2.3.

-w Outputs a description of the resulting automaton. See Section 2.4.

-t Prints the time spent computing. See Section 3.1.

-s Prints statistics for each automaton operation. See Section 3.1.

-p Prints progress information. See Section 3.1.

-i After each automaton operation, the resulting automaton is printed. See Section 3.1.

-d Dumps the abstract-syntax tree, symbol-table contents, the guide (in tree mode), and
the code DAG. See Section 3.1.

-e Enables separate compilation. The directory designated by the environment variable
MONALIB is used as base for the automaton library. If MONALIB is not set, the current
working directory will be used instead. See Section 3.3.

-oN Enables optimizations of the formula. (Not implemented yet.) See Section 6.3.

-rN Sets the automaton reuse (“DAGification”) degree to N . Default value is 100. See
Section 3.9.

-f Forces tree-mode output style of satisfying examples and counter-examples.

-gw Outputs resulting automaton in graphviz format if in linear mode. See Section 3.2.

-gs Outputs satisfying example tree in graphviz format if in tree mode. See Section 5.3.

-gc Outputs counter-example tree in graphviz format if in tree mode. See Section 5.3.

-gd Outputs DAG in graphviz format. See Section 3.9.

The default options are: -c -p.

52 C THE MONA BDD PACKAGE

C The MONA BDD package

The MONA BDD package has been written for maximum speed of the BDD operations needed
for the BDD-represented automata in the MONA tool. The package achieves a factor 6 speed-
up over David Long’s BDD package for the specialized task of MONA calculations, but at the
expense of a storage model that may make it hard to use correctly.

In the MONA tool, an automaton with n states is represented by a shared BDD with n

roots and n leaves. It is assumed that when an automaton is calculated, there is not a large
proportion of it that can be retrieved as part of an already calculated automaton. This is
in contrast to usual BDD packages, which use facts such as 1 ∧ φ = φ to calculate certain,
specialized products in unit time by pointing to an already calculated subresult. This strategy
hinges on using a global, hashed node space. In the world of automata, it is computationally
expensive to identify isomorphic subgraphs, in contrast to the case of BDDs, where a node
can be hashed relative to its successors in a well-founded manner.

Thus in the MONA BDD package, the shared BDD of an automaton is represented in
a node space unique to the automaton. Such a node space is administered through a BDD
manager of type bdd_manager.

The bdd_manager

A BDD manager keeps the BDD nodes in an array node_table. Thus nodes are not individ-
ually allocated, in contrast to conventional BDD packages. A bdd_ptr is an offset into this
table. The first used offset is BDD_NUMBER_OF_BINS (2). The table consists of a hashed part,
whose size table_size is 2table log size, where table_log_size is a natural number. In addi-
tion, there is an overflow area following the hashed part. The overflow area is enlarged in incre-
ments of table_overflow_increment. The field table_total_size is the number of BDD
nodes in the allocated table. Initially, this number is BDD_NUMBER_OF_BINS + table_size

+ table_overflow_increment. The maximum allowed value of table_total_size is 224,
roughly 16 million.

The BDD manager also keeps a result cache, which is a table of previously computed
results used for binary apply and project operations. It is pointed to by cache. This pointer
is null if the cache has not been allocated. The cache is hashed with an overflow area
incremented in steps of cache_overflow_increment.

Various statistics about the number of lookups, insertions, and collisions in the node table
and the result cache are maintained by the BDD manager.

BDD nodes

A BDD node is described in a structure data type name bdd_record. The left and right
successors are each described as a bdd_ptr packed into three bytes. The node index (name
of variable) is a two byte unsigned integer. Thus the maximum allowed index is 254, since
the value 255 encodes a leaf. The successors and the index are packed into two words (each
word is four bytes) named lri[2]. The bdd_record also contains a next field, which holds
a bdd_ptr to an overflow list, and a mark field used by the unary apply routine and by other
routines. A BDD node occupies four words or 16 bytes. This small size should enable two
consecutive nodes to be loaded into a CPU cache line at a time. Consequently, the hashing
scheme uses two bins per bucket, that is, BDD_NUMBER_OF_BINS = 2. Note that a BDD table
consists of at most 228 bytes or 256Mb.

53

Since BDD nodes sit in the hashed node table, BDD pointers are volatile data: when the
node table is doubled, all BDD pointers in existence become invalid.

For this reason, a BDD manager provides an alternative way of describing the results of
BDD operations. The manager maintains a dynamic array of BDD pointers bdd_roots, which
are automatically updated when the node table is doubled. An offset into this array is called
a bdd_handle. The BDD package guarantees that the pointer described by a handle always
denotes the same BDD node. The apply operations augment automatically the bdd_roots

array to contain the result of the operation. Some of the basic operations do not use the
bdd_roots list, but can be given a user defined list whose pointers are updated in the case that
the table is doubled. Such lists are declared and manipulated using the SEQUENTIAL_LIST

macros, which enable lists with pop and push operations to be efficiently implemented as
dynamically allocated arrays.

Basic operations that allow updating of lists also can be given a pointer of type void

(*update_fn) (unsigned (*new_place) (unsigned node)). The denoted function takes
as argument a function new_place. The basic operation calls update_fn when the table is
doubled and it supplies the function new_place, which specifies the new pointer value of a
BDD node given the old value.

Manipulation of bdd_roots

The macro BDD_ADD_ROOT(bddm, p) adds a BDD pointer p to the bdd_roots list of the BDD
manager bddm . The macro BDD_LAST_HANDLE(bddm) can be used after a BDD_ADD_ROOT(bddm,
p) application to get the handle of the bdd_roots list where the BDD pointer to the node
currently designated as p is stored. For convenience, BDD_ADD_ROOT_SET_HANDLE(bddm, p,

h) combines the two preceding operations and assigns the variable h of type bdd_handle the
value of the last handle. The macro BDD_ROOT(bddm, handle) looks at the BDD pointer
corresponding to handle .

Sequential mode

It is possible to use the BDD manager in a sequential mode, where nodes are not hashed.
This is useful when it is known that any node inserted is a new one. Such a situation may
occur when a BDD is read from a file or when the apply (product) of two BDDs is performed
with a leaf function that form pairs. In these cases, BDD nodes can be inserted sequentially.
When table is doubled, nodes do not change position; thus for sequential insertions, bdd_ptr
is not volatile.

Sequential and hashed modes cannot be combined.

Basic operations

The find node operation locates a BDD node if it already is known to exist (hashed mode only)
or creates a new node. In hashed mode, there are two variations of the find node operation:
both add the current value of the BDD pointer to the bdd_roots list, and they differ only in
whether this pointer is returned as a result or the handle is returned. There is also a more
primitive version that as parameters take a list of bdd_ptrs and an update_fn as discussed
above.

54 C THE MONA BDD PACKAGE

The apply operations

The unary apply operation has the following declaration:

bdd_ptr bdd_apply1(bdd_manager *bddm, bdd_ptr p ,

bdd_manager *bbdm_r,

unsigned (*apply1_leaf_function)(unsigned value));

Here, *bddm is the manager that holds the BDD on which the apply operation is carried
out. We call this manager the source manager. The operation is initiated in the node p of
the source table. The result is written into the shared BDD administered by *bbdm_r , the
result manager, and a BDD pointer, denoting the resulting BDD, in *bbdm_r is returned; as
a side-effect, this node is added to bdd_roots of the result manager. Thus a handle to the
result can be obtained by using BDD_LAST_HANDLE(bddm_r) right after the apply operation.

A unary apply operation does not use a result cache. Instead, the value of the apply
operation on a node is stored in the node itself. The mark field holds this information.
Therefore all such fields must be initialized before the apply operation can be performed.
This initialization is carried out by a call of

void bdd_prepare_apply1(bdd_manager *bddm);

In a sequence of unary apply operations with the same leaf function, it is not necessary to
reinitialize the manager between operations.

The case that bddm ==bbdm_r is allowed. If, on the other hand, the managers are different,
then a doubling of the result table does not invalidate BDD pointers in the source table.

The binary apply operation, apply2, and the project operation, bdd_project, are similar
to apply1 with one important difference: a result cache is used to store the results of earlier
apply (or project) operations, and this cache is administered by the result manager. Therefore,
before any such operation is initiated, a cache must have been allocated for the result manager.
Also, it is important to kill and recreate the cache whenever a new apply or project operation
is carried out. Only if the new operation is identical (same leaf function or same index that
is projected on) may the cache be reused. When the node table is doubled, the result cache
is also doubled. The BDD package allows two cache doubling policies: either the new cache
can be erased, or the BDD pointers in the cache may be rehashed. Experiments indicate that
the former policy is the faster one.

A complicated example

In Figures 14 and 15, a simple application of the BDD package is shown, including the
gathering of very detailed statistics.

The example in Figure 16 shows how to use the hashed version of find-node in a setting
where the program stores BDD pointers in global and local variables.

55

/* Small dummy example of the use of the bdd-package */

#include "bdd.h"

#include <stdio.h>

#include <assert.h>

unsigned and(unsigned a, unsigned b) {

if (a && b)

return 1;

else

return 0;

};

unsigned not(unsigned a) {

if (a)

return 0;

else

return 1;

};

void print_bdd(bdd_manager *bddm, bdd_ptr b) {

unsigned index;

if (bdd_is_leaf(bddm, b)) {

printf("(leafvalue: %d)", bdd_leaf_value(bddm, b));

}

else {

index=bdd_ifindex(bddm,b);

printf("(var %d = 1: ", index);

print_bdd(bddm, bdd_then(bddm,b));

printf(")");

printf("(var %d = 0: ", index);

print_bdd(bddm, bdd_else(bddm,b));

printf(")");

};

}

void main() {

bdd_manager *bddm, *bddm1;

bdd_ptr zero, one, and_2_7, nand_2_7;

bdd_handle handle, var2, var7;

bdd_init(); /* needed since we’re using statistics */

bddm = bdd_new_manager(100,50);

/* get a BDD pointer to a node that is the leaf with value 0 */

zero = bdd_find_leaf_hashed_add_root(bddm, 0);

/* and a leaf with value 1 */

one = bdd_find_leaf_hashed_add_root(bddm, 1);

/* note already at this point "zero" could have been invalidated if

the table doubled, but we know that there is room for a 100

nodes---anyway, this is really very bad style, so we go on in

a more appropriate manner */

Figure 14: Simple use of package

56 C THE MONA BDD PACKAGE

/* "then" is "l" ("left"), "else" is "r" ("right") */

var2 = bdd_handle_find_node_hashed_add_root(bddm, one, zero, 2);

var7 = bdBDDd_handle_find_node_hashed_add_root(bddm, one, zero, 7);

/* check node pointers and handles */

assert(zero == BDD_ROOT(bddm, 0)); /* since table was not doubled */

assert(one == BDD_ROOT(bddm, 1)); assert(var2 == 2); assert(var7 == 3);

bddm1 = bdd_new_manager(100,50); /* make room for at least 100 nodes,

overflow increment is 50 */

bdd_make_cache(bddm1, 100, 50); /* apply2 needs a result cache, here the size

is a hundred with increment 50 */

/* apply operation on var2 and var7 in bddm; the result is

a completely fresh bdd in bddm1 and a BDD pointer, named "and_2_7" */

and_2_7 = bdd_apply2_hashed(bddm, BDD_ROOT(bddm, var2), /* BDD #1 */

bddm, BDD_ROOT(bddm, var7), /* BDD #2 */

bddm1, /* result BDD */

&and); /* leaf operation */

bdd_update_statistics(bddm, 0); /* update statics group "0" with data from bddm

before killing the manager */

printf("Size of bddm: %d\n\n", bdd_size(bddm)); /* let’s see the number of nodes created */

bdd_kill_manager(bddm);

printf("Size of bddm1: %d\n\n", bdd_size(bddm1));

handle = BDD_LAST_HANDLE(bddm1);

assert(handle == 0);

assert(BDD_ROOT(bddm1, handle) == and_2_7);

/* reset all mark fields in bddm1 before an apply1 operation */

bdd_prepare_apply1(bddm1);

/* a new bdd (which as an unlabeled graph is isomorphic to old one)

in bddm1 is the result of the following apply operation */

/* it’s safe here to use and_2_7 since no operations were performed

after it was calculated that could have entailed doubling of table */

nand_2_7 = bdd_apply1(bddm1, and_2_7, bddm1, ¬);

bdd_update_statistics(bddm1, 1);

printf("Size of bddm1: %d\n\n", bdd_size(bddm1));

bdd_kill_manager(bddm);

print_bdd(bddm1, and_2_7); printf("\n\n");

print_bdd(bddm1, nand_2_7); printf("\n\n");

bdd_print_statistics(0, "bddm"); /* print group 0 statistics with heading "bddm" */

bdd_print_statistics(1, "bddm1"); /* print group 1 statistics with heading "bddm1" */

};

Figure 15: Simple use of package (continued)

57

bdd_ptr bddpaths[10];

/* function that updates BDD pointers floating around in user’s code;

the remaining ones are kept in the sub_results list below */

void update_bddpaths(unsigned (*new_place) (unsigned node)) {

int j;

/* update the pointers in bddpaths */

for (j = 0; j < exp_count; j++)

bddpaths[j] = new_place(bddpaths[j]);

}

/* we can only update pointers that are not stored as local

variables, so values of local variables are thrown onto a stack */

DECLARE_SEQUENTIAL_LIST(sub_results, unsigned);

bdd_ptr makepath(bdd_manager *bddm, ...,

void (*update_bddpaths)

(unsigned (*new_place) (unsigned node))) {

...

bdd_ptr res, sub_res, default_state_ptr;

sub_res = makepath(bddm, n+1, leaf_value, update_bddpaths);

/* push BDD pointer sub_res on list sub_results */

PUSH_SEQUENTIAL_LIST(sub_results, unsigned, sub_res);

/* insert a new hashed node; thus potentially changing the pointer

to the node known as sub_res above, and also potentially changing

the pointers in bddpaths[10]. But bdd_find_leaf_hashed automatically

updates all pointers in the sub_results list, since it was provided

as an argument. Also, the function update_bddpaths is called when a

doubling of the table takes place and an appropriate renaming function

new_place is supplied by bdd_find_leaf_hashed */

default_state_ptr =

bdd_find_leaf_hashed(bddm,

default_state,

SEQUENTIAL_LIST(sub_results),

update_bddpaths);

/* restore the value of sub_res */

POP_SEQUENTIAL_LIST(sub_results, unsigned, sub_res);

...

}

Figure 16: Dealing with volatility of BDD pointers

58 REFERENCES

References

[1] Abdelwaheb Ayari, David Basin, and Andreas Podelski. Lisa: A specification language
based on ws2s. In CSL ’97 Proceedings, LNCS, 1998. to appear.

[2] D. Basin and N. Klarlund. Hardware verification using monadic second-order logic. In
Computer aided verification : 7th International Conference, CAV ’95, LNCS 939, 1995.

[3] D. Basin and N. Klarlund. Automata based symbolic reasoning in hardware verification.
To appear. Extended version of: “Hardware verification using monadic second-order
logic,” CAV ’95, LNCS 939, 1998.

[4] M. Biehl, N. Klarlund, and T. Rauhe. Mona: decidable arithmetic in practice (short
contribution). In Formal Techniques in Real-Time and Fault-Tolerant Systems, 4th In-
ternational Symposium, LNCS 1135. Springer Verlag, 1996.

[5] Morten Biehl, Nils Klarlund, and Theis Rauhe. Algorithms for guided tree automata.
In First International Workshop on Implementing Automata, WIA ’96, Lecture Notes in
Computer Science, 1260. Springer Verlag, 1996.

[6] A. Boudet and H. Comon. Diophantine equations, presburger arithmetic and finite
automata. In Trees and algebra in programming - CAAP, volume 1059 of LNCS.

[7] R. E. Bryant. Symbolic Boolean manipulation with ordered binary-decision diagrams.
ACM Computing surveys, 24(3):293–318, September 1992.

[8] R.E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans-
actions on Computers, C-35(8):677–691, Aug 1986.

[9] J.R. Büchi. Weak second-order arithmetic and finite automata. Z. Math. Logik Grundl.
Math., 6:66–92, 1960.

[10] J.R. Büchi. On a decision method in restricted second-order arithmetic. In Proc. Internat.
Cong. on Logic, Methodol., and Philos. of Sci. Stanford University Press, 1962.

[11] J. Doner. Tree acceptors and some of their applications. J. Comput. System Sci., 4:406–
451, 1970.

[12] C.C. Elgot. Decision problems of finite automata design and related arithmetics. Trans.
Amer. Math. Soc., 98:21–52, 1961.

[13] J. Glenn and W. Gasarch. Implementing WS1S via finite automata. In Automata Im-
plementation, WIA ’96, Proceedings, volume 1260 of LNCS, 1997.

[14] P. Godefroid and D.E. Long. Symbolic protocol verification with Queue BDDs. In Proc.
LICS’ 96, 1996.

[15] J.G. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund, B. Paige, T. Rauhe, and A. Sand-
holm. Mona: Monadic second-order logic in practice. In Tools and Algorithms for the
Construction and Analysis of Systems, First International Workshop, TACAS ’95, LNCS
1019, 1996.

REFERENCES 59

[16] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages and Computa-
tion. Addison-Wesley, 1979.

[17] J. Jensen, M. Jørgensen, and N. Klarlund. Monadic second-order logic for parameterized
verification. Technical report, BRICS Report Series RS-94-10, Department of Computer
Science, University of Aarhus, 1994.

[18] J.L. Jensen, M.E. Jørgensen, N. Klarlund, and M.I. Schwartzbach. Automatic verification
of pointer programs using monadic second-order logic. In SIGPLAN ’97 Conference on
Programming Language Design and Implementation,, pages 226–234. SIGPLAN, 1997.

[19] P. Kelb, T. Margaria, M. Mendler, and C. Gsottberger. Mosel: a flexible toolset for
Monadic Second-order Logic. In Computer Aided Verification, CAV ’97, Proceedings,
LNCS 1217, 1997.

[20] N. Klarlund. An n log n algorithm for online BDD refinement. In O. Grumberg, editor,
Computer Aided Verification, CAV ’97, volume 1254 of LNCS, 1997.

[21] N. Klarlund. Mona & Fido: the logic-automaton connection in practice. In CSL ’97
Proceedings, 1998. To appear in LNCS.

[22] N. Klarlund, J. Koistinen, and M. Schwartzbach. Formal design constraints. In Proc.
OOPSLA ’96, 1996.

[23] N. Klarlund, M. Nielsen, and K. Sunesen. Automated logical verification based on trace
abstraction. In Proceedings of PODC ’96, 1996.

[24] N. Klarlund, M. Nielsen, and K. Sunesen. A case study in automated verification based on
trace abstractions. In M. Broy, S. Merz, and K. Spies, editors, Formal System Specifica-
tion, The RPC-Memory Specification Case Study, volume 1169 of LNCS, pages 341–374.
Springer Verlag, 1996.

[25] N. Klarlund and T. Rauhe. Bdd algorithms and cache misses. Technical report, BRICS
Report Series RS-96-5, Department of Computer Science, University of Aarhus, 1996.

[26] N. Klarlund and M. Schwartzbach. A domain-specific language for regular sets of strings
and trees. In Proc. Conference on Domain Specific Languages, 1997.

[27] N. Klarlund and M. Schwartzbach. Regularity = logic + recursive data types. Technical
report, BRICS, 1997. To appear.

[28] Nils Klarlund. The restriction problem for logics with automata-theoretic semantics.
Technical report, AT&T Labs Research, 1998.

[29] A.R. Meyer. Weak monadic second-order theory of successor is not elementary recursive.
In R. Parikh, editor, Logic Colloquium, (Proc. Symposium on Logic, Boston, 1972),
volume 453 of LNCS, pages 132–154, 1975.

[30] F. Morawietz and T. Cornell. On the recognizability of relations over a tree definable in
a monadic second order tree description language. Technical Report SFB 340, Seminar
für Sprachwissenschaft Eberhard-Karls-Universität Tübingen, 1997.

60 REFERENCES

[31] Frank Morawietz and Tom Cornell. The logic-automaton connection in linguis-
tics. Technical report, Universität Tübingen Seminar für Sprachwissenschaft, 1998.
http://www.sfs.nphil.uni-tuebingen.de/~frank/papers.html.

[32] Paritosh K. Pandya. Dcvalid 1.2. Technical report, Theoretical Computer Science
Group, Tata Institute of Fundamental Research, 1997. Manual and system available
from: http://www.tcs.tifr.res.in/~pandya/dcvalid.html.

[33] Thomas R. Shiple, James H. Kukula, and Rajeev K. Ranjan. A comparison of Presburger
engines for EFSM reachability. In Computer Aided Verification, CAV ’98, Proceedings,
LNCS. Springer Verlag, 1998.

[34] L. Stockmeyer. The complexity of decision problems in automata theory and logic. PhD
thesis, Dept. of Electrical Eng., M.I.T., Cambridge, MA, 1974. Report TR-133.

[35] J.W. Thatcher and J.B. Wright. Generalized finite automata with an application to a
decision problem of second-order logic. Math. Systems Theory, 2:57–82, 1968.

[36] W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B, pages 133–191. MIT Press/Elsevier, 1990.

Several of the articles are available from http://www.brics.dk/mona/papers.html.

http://www.sfs.nphil.uni-tuebingen.de/~frank/papers.html
http://www.tcs.tifr.res.in/~pandya/dcvalid.html
http://www.brics.dk/mona/papers.html

Recent BRICS Notes Series Publications

NS-98-3 Nils Klarlund and Anders Møller. MONA Version 1.2 — User
Manual. June 1998. 60 pp.

NS-98-2 Peter D. Mosses and Uffe H. Engberg, editors.Proceedings
of the Workshop on Applicability of Formal Methods, AFM ’98,
(Aarhus, Denmark, June 2, 1998), June 1998. 94 pp.

NS-98-1 Olivier Danvy and Peter Dybjer, editors.Preliminary Proceed-
ings of the 1998 APPSEM Workshop on Normalization by Eval-
uation, NBE ’98, (Gothenburg, Sweden, May 8–9, 1998), May
1998.

NS-97-1 Mogens Nielsen and Wolfgang Thomas, editors.Preliminary
Proceedings of the Annual Conference of the European Associ-
ation for Computer Science Logic, CSL ’97(Aarhus, Denmark,
August 23–29, 1997), August 1997. vi+432 pp.

NS-96-15 CoFI. CASL – The CoFI Algebraic Specification Language;
Tentative Design: Language Summary. December 1996. 34 pp.

NS-96-14 Peter D. Mosses.A Tutorial on Action Semantics. December
1996. 46 pp. Tutorial notes for FME ’94 (Formal Methods Eu-
rope, Barcelona, 1994) and FME ’96 (Formal Methods Europe,
Oxford, 1996).

NS-96-13 Olivier Danvy, editor. Proceedings of the Second ACM
SIGPLAN Workshop on Continuations, CW ’97(ENS, Paris,
France, 14 January, 1997), December 1996. 166 pp.

NS-96-12 Mandayam K. Srivas.A Combined Approach to Hardware Ver-
ification: Proof-Checking, Rewriting with Decision Procedures
and Model-Checking; Part II: Articles. BRICS Autumn School
on Verification. October 1996. 56 pp.

NS-96-11 Mandayam K. Srivas.A Combined Approach to Hardware Ver-
ification: Proof-Checking, Rewriting with Decision Procedures
and Model-Checking; Part I: Slides. BRICS Autumn School on
Verification. October 1996. 29 pp.

NS-96-10 Robert Pollack. What we Learn from Formal Checking; Part
III: Formalization is Not Just Filling In Details. BRICS Autumn
School on Verification. October 1996. iv+42 pp.

	Introduction
	Introductory example
	{sf MONA} uses
	How to use this manual
	Acknowledgements

	Basic features
	The syntax in a nutshell
	Semantics in a nutshell
	Analyzing formulas
	Outputting the program automaton
	What are {sf MONA} automata really?
	Predicates, macros, and variable indices
	Assertions
	Example: reasoning about queues

	Advanced features
	Dumping translation information
	Visualization of automata
	Separate compilation
	Restriction
	Emulating Monadic Second-order Logic on Strings
	Example: regular expressions over the ASCII alphabet
	Exporting and importing automata
	Prefix-closing
	Controlling reuse of intermediate results

	The automaton--logic connection
	The classical approach
	The {{sf MONA}} approach

	WS2S and Guided Tree Automata
	Guided Tree Automata
	Specifying guides and universes
	Tree mode output format
	Emulating Monadic Second-order Logic on Trees
	External GTAs

	Plans for future versions
	Specifying BDD variable ordering
	Encoding of Boolean variables in tree mode
	Symbolic reductions

	Syntax
	{{sf MONA}} grammar
	Precedence and associativity

	Usage
	The {{sf MONA}} BDD package

