
A∗Wars: The Fight for Improving A∗ Search
for Troubleshooting with Dependent Actions

Thorsten J. Ottosen and Finn V. Jensen

Department of Computer Science

Aalborg University

9220 Aalborg, Denmark

Abstract

Decision theoretic troubleshooting combines Bayesian networks and cost estimates to ob-

tain optimal or near optimal decisions in domains with inherent uncertainty. We use the

well-known A∗ algorithm to �nd optimal solutions in troubleshooting models where dif-

ferent actions may �x the same fault. We prove that a heuristic function proposed by

Vomlelová and Vomlel is monotone in models without questions, and we report on recent

work on pruning. Furthermore, we experimentally investigate a hybrid approach where

A∗ is combined with a method that sometimes avoid branching. The method is based on

an analysis of the dependency between actions as suggested by Koca and Bilgiç.

1 Introduction

Imagine that you have a device which has been

running well up to now, but suddenly it is mal-

functioning. A set of faults F describes the pos-

sible causes to the problem. To �x the problem

you have a set A of actions, which may �x the

problem and a set Q of questions, which may

help identifying the problem. Each action or

question S has a positive cost CS(ε) possibly

depending on evidence ε. Your task is to �x the
problem as cheaply as possible. In this paper we

do not consider questions.

When actions in a model can remedy sets of

faults that overlap, we say that the model has

dependent actions. Finding an optimal solution

in models with dependent actions is of great

practical importance since dependent actions

can be expected to occur in many non-trivial do-

mains. However, all non-trivial troubleshooting

scenarios have been shown to be NP-hard�this

includes models with dependent actions (Vom-

lelová, 2003).

Two di�erent approaches have previously

been used for �nding optimal strategies: (Jensen

et al., 2001) describes a branch & bound algo-

rithm whereas (Vomlelová and Vomlel, 2003) de-

scribes an AO∗ algorithm. The AO∗ algorithm

can be used for models with questions, but since

a model without questions does not lead to

AND-nodes in the search tree, we only need to

consider the simpler A∗ algorithm (Hart et al.,

1968) (Dechter and Pearl, 1985) for models with

dependent actions.

We can summarize our troubleshooting as-

sumptions as follows:

Assumption 1. There are no questions.

Assumption 2. There is a single fault present

when troubleshooting begins. (This implies that

we can have a single fault-node F with states

fi ∈ F .)

Assumption 3. Actions are conditionally in-

dependent given evidence on the fault node.

Assumption 4. The cost of actions CA(ε) is

independent from evidence ε.

We use the following notation. The model

provides for all A ∈ A and f ∈ F probabili-

ties P(f |ε) ,P(A |ε) and P(A | f), where ε is evi-

dence. In Figure 1 is shown a simple model with

dependent actions. We have some initial evi-

dence ε0, and in the course of executing actions

we collect further evidence. We write εi to de-

note that the �rst i actions have failed (ε0 ⊆ εi),
and we have by assumption P

(
ε0
)

= 1 because

F

f1 f2 f3 f4

A1 A2 A3

f1 f2 f3 f4
P(a1 |F) 1 1 0 0

P(a2 |F) 0 1 1 0

P(a3 |F) 0 0 1 1

P(F) 0.20 0.25 0.40 0.15

CA1 = CA2 = CA3 = 1

Figure 1: Left: a simple model for a troubleshooting scenario with dependent actions. The dotted

lines indicate that the faults f1 to f4 are states in a single fault node F. A1, A2 and A3 represent

actions, and parents of an action node A are faults which may be �xed by A. Right: the quantitative

part of the model.

the device is faulty. When action A has failed,

we write A = ¬a whereas A = a means that it

has succeeded. We often abbreviate P(A = ¬a)
as P(¬a). The presence of the fault f is written
F = f, but we often abbreviate the event sim-

ply as f. Furthermore, we write P(ε ∪ f) when

we really had to write P(ε ∪ {f}). The set of

faults that can be repaired by an action A is

denoted fa (A). For example, in Figure 1 we

have fa(A2) = {f2, f3}. In models where actions

can have P(a |ε) = 1, fa (·) is a dynamic en-

tity which we indicate by writing fa(· |ε). The

set of remaining actions is denoted A(ε), and
A (f |ε) ⊆ A(ε) is the set of remaining actions

that can �x f.
When there are no questions, a trouble-

shooting strategy is a sequence of actions s =
〈A1, . . . ,An〉 prescribing the process of re-

peatedly performing the next action until the

problem is �xed or the last action has been per-

formed. To compare sequences we use the fol-

lowing de�nition:

De�nition 1. The expected cost of repair

(ECR) of a troubleshooting sequence s =
〈A1, . . . ,An〉 with costs CAi is the mean of the

costs until an action succeeds or all actions have

been performed:

ECR (s) =
n∑
i=1

CAi(ε
i−1) · P

(
εi−1

)
.

We then de�ne an optimal sequence as a se-

quence with minimal ECR. Also, ECR∗(ε) is

the ECR for an optimal sequence of the actions

A(ε) given ε.

Example 1. Consider a sequence for the model

in Figure 1:

ECR (〈A2,A3,A1〉) =
CA2 + P(¬a2) · CA3 + P(¬a2,¬a3) · CA1

= CA2 + P(¬a2) · CA3

+ P(¬a2) · P(¬a3 |¬a2) · CA1

= 1 +
7
20
· 1 +

7
20
· 4

7
· 1 = 1.55 .

A crucial de�nition is that of e�ciency:

De�nition 2. The e�ciency of an action A
given evidence ε is

ef(A |ε) =
P(A = a)

CA(ε)
.

2 Monotonicity of the heuristic

function ECR

A∗ (and AO∗) is a best-�rst search algorithm

that works by continuously expanding a fron-

tier node n for which the value of the evaluation

function

f(n) = g(n) + h(n), (1)

is minimal until �nally a goal node t is ex-

panded. The cost between two nodes n and m
(m reachable from n) is denoted c(n,m), and the
function g(n) is the cost from the start node s
to n whereas h(n) is the heuristic function that

guides (or misguides) the search by estimating

the cost from n to a goal node t.

If h(n) ≡ 0, A∗ degenerates to Dijkstra's algo-

rithm. The cost of the shortest path from s to
n is denoted g∗(n), and from n to t it is denoted
h∗(n). Finally, the evidence gathered about

actions from s to n is denoted εn (ε0 ⊆ εn).

De�nition 3. A heuristic function h(·) is ad-

missible if

h(n) ≤ h∗(n) ∀n .
When A∗ is guided by an admissible heuristic

function, it is guaranteed to �nd an optimal so-

lution (Hart et al., 1968).

(Vomlelová and Vomlel, 2003) have sug-

gested the following heuristic function for use

in troubleshooting:

De�nition 4. Let E denote the set containing

all possible evidence. The function ECR : E 7→
R+ is de�ned for each εn ∈ E as
ECR(εn) = P(εn) ·

∑
f∈F

P(f |εn) · ECR∗(εn ∪ f) .

Remark. In (Vomlelová and Vomlel, 2003) the

factor P(εn) is left out. However, the factor

ensures that the decomposition in Equation 1

takes the simple form

f(n) = ECR (εn)︸ ︷︷ ︸
g(n)

+ ECR(εn)︸ ︷︷ ︸
h(n)

,

where ECR (εn) is the ECR for the sequence

de�ned by the path up to n. We also de�ne

ECRh(ε) =
∑
f∈F

P(f |ε) · ECR∗(ε ∪ f) .

The optimal cost ECR∗(εn ∪ f) is easy to cal-

culate under Assumption 2-4: the optimal se-

quence is found by ordering the actions in

A (f |εn) with respect to descending e�ciency

(Kadane and Simon, 1977).

Example 2. Assume the fault f can be repaired
by two actions A1 and A2 and that P(a1 | f) =
0.9 and P(a2 | f) = 0.8. Furthermore, let both

actions have cost 1. Since instantiating the fault
node renders the actions conditionally indepen-

dent, P(a |ε ∪ f) = P(a | f) and the e�ciencies

of the two actions are 0.9 and 0.8, respectively.
We get

ECR∗(ε ∪ f) = ECR (〈A1,A2〉)
= CA1 + P(¬a1 | f) · CA2

= 1 + 0.1 · 1 = 1.1 .

Not only is ECR(·) easy to compute, it also

has the following property (Vomlelová and Vom-

lel, 2003):

Theorem 1. Under Assumption 2-4 the heuris-

tic function ECR(·) is admissible, that is,

ECR(εn) ≤ ECR∗(εn) ∀εn ∈ E .

For a class of heuristic functions, A∗ is guaran-
teed to have found the optimal path to a node

when the node is expanded (Hart et al., 1968):

De�nition 5. A heuristic function h(·) ismono-

tone if

h(n) ≤ c(n,m) + h(m),

whenever m is a successor node of n.

Remark. Monotonicity is equivalent to the often

used and seemingly stronger consistency prop-

erty: h(n) ≤ c∗(n,m) + h(m) ∀n,m.

Henceforth we let An denote the performed

action on the edge from a node n to a successor

node m in the search graph.

Proposition 1. For the heuristic function

ECR(·) under Assumption 1 and 4 monotonicity

is equivalent to

ECRh(εn) ≤ CAn + P(¬an |εn) · ECRh(εm) .

Proof. We have c(n,m) = P(εn) · CAn and

P(εm) = P(¬an |εn) ·P(εn) and so the common

factor P(εn) cancels out.

Theorem 2. Under Assumption 1-4 the heuris-

tic function ECR(·) is monotone.

Proof. The idea is to express ECRh(εm) in

terms of ECRh(εn). To do that we consider

the complement of the set fa(An) which is the

set of all faults that An cannot �x. For each

f ∈ F \ fa(An) Bayes' rule (conditioned) yields

P(f |εm) =
1 · P(f |εn)
P(¬an |εn)

,

because P(¬an |εn ∪ f) ≡ 1. If we restrict

ECRh(·) to a subset of faults X, we shall abuse

notation and write it

ECRh(ε |X) =
∑
f∈X

P(f |ε) · ECR∗(ε ∪ f) .

In particular, we must have

ECRh(εn) = (2)

ECRh(εn |F \ fa(An)) + ECRh(εn | fa(An)).

We can furthermore de�ne

∆F = ECRh(εm |F \ fa(An))
− ECRh(εn |F \ fa(An)) ,

which is an extra cost because all faults in F \
fa(An) are more likely. Similarly

∆fa(An) =
ECRh(εm | fa(An))− ECRh(εn | fa(An)) ,

is the cost lost or gained because An has been

performed and can no longer repair the faults

fa(An). We can then express ECRh(εm) by

ECRh(εm) = ECRh(εn) + ∆fa(An) + ∆F , (3)

The constant ECR∗(·) factors implies

∆F =
∑

f∈F\fa(An)

[P(f |εm)− P(f |εn)] · ECR∗(εn ∪ f).

Exploiting Bayes' rule (as explained above) and

Equation 2 we get

∆F =[
1

P(¬an |εn) − 1
]
· ECRh(εn |F \ fa(An)) =[

1
P(¬an |εn)−1

]
·
[
ECRh(εn)−ECRh(εn | fa(An))

]
.

Inserting into Equation 3 yields

ECRh(εm) = ECRh(εn) +
ECRh(εm | fa(An))− ECRh(εn | fa(An))

+
[1

P(¬an |εn)
−1
]
·[

ECRh(εn)−ECRh(εn | fa(An))
]

=
ECRh(εn)
P(¬an |εn)

+ ECRh(εm | fa(An))

− 1
P(¬an |εn)

· ECRh(εn | fa(An)),

and we rearrange the equation into

ECRh(εn) = P(¬an |εn) · ECR(εm) +
ECRh(εn|fa(An))−P(¬an|εn)·ECRh(εm|fa(An))︸ ︷︷ ︸

∆

.

By Proposition 1, we have to prove ∆ ≤ CAn .

Because of Bayes' rule and Assumption 3 we

have

P(¬an |εn) · P(f |εm) =

P(¬an |εn) · P(¬an | f) · P(f |εn)
P(¬an |εn)

= P(¬an | f) · P(f |εn) .

So we get

∆ =
∑

f∈fa(An)

P(f |εn) ·

[ECR∗(εn ∪ f)− P(¬an | f) · ECR∗(εm ∪ f)]︸ ︷︷ ︸
δ

.

Because of the single-fault assumption, we only

need to prove that δ ≤ CAn . We now index the

actions in A (f |εn) as follows:

P(Bi = bi | f)
CBi

≥ P(Bi+1 = bi+1 | f)
CBi+1

∀i.

In this ordering, we have An = Bx. The inequal-

ities generalizes to

CBi ≤
P(Bi = bi | f)
P(Bj = bj | f)

· CBj ∀j > i . (4)

In particular, this is true for j = x which we

shall exploit later.

Assume we have N dependent actions in

A (f |εn). The �rst term of δ is then

ECR∗(εn ∪ f) = ECR∗(〈B1, . . . ,BN 〉)

= CB1 +
N∑
i=2

CBi ·
i−1∏
j=1

P(¬bj | f) . (5)

Assume that x > 1 (we shall deal with x = 1
later), then the second term of δ is

P(¬an | f) · ECR∗(εm ∪ f) =
P(¬an | f) · ECR∗(〈. . . ,Bx−1,Bx+1, . . .〉)

= P(¬an | f) ·[
CB1 +

x−1∑
i=2

CBi ·
i−1∏
j=1

P(¬bj | f)

+

∑N
i=x+1 CBi ·

∏i−1
j=1 P(¬bj | f)

P(¬an | f)

]
.

We see that the last term is also represented in

Equation 5 and therefore cancels out. We get

δ = CB1 · [1− P(¬an | f)] +

[1− P(¬an | f)] ·
x−1∑
i=2

CBi ·
i−1∏
j=1

P(¬bj | f)

+ CAn ·
x−1∏
j=1

P(¬bj | f) ,

where the last term is a leftover from Equation

5. Using P(¬a |ε) = 1 − P(a |ε) and Equation

4 we get

δ = CB1 · P(an | f) +

P(an | f) ·
x−1∑
i=2

CBi ·
i−1∏
j=1

P(¬bj | f)

+ CAn ·
x−1∏
j=1

P(¬bj | f)

≤ P(b1 | f)
P(an | f)

· CAn · P(an | f) +

P(an | f) ·
x−1∑
i=2

P(bi | f)
P(an | f)

· CAn ·
i−1∏
j=1

P(¬bj | f)

+ CAn ·
x−1∏
j=1

P(¬bj | f)

= CAn ·
[
P(b1 | f) +

x−1∑
i=2

P(bi | f) ·
i−1∏
j=1

P(¬bj | f)

+
x−1∏
j=1

P(¬bj | f)
]

(6)

= CAn ·
[
1− P(¬b1 | f) +

(1− P(¬b2 | f)) · P(¬b1 | f)

+ · · ·+
x−1∏
j=1

P(¬bj | f)
]

= CAn ·
[
1− P(¬b2 | f) · P(¬b1 | f)

+ · · ·+
x−1∏
j=1

P(¬bj | f)
]

= CAn · 1,

as required. This is not surprising if we look at

the expression inside the parenthesis of Equa-

tion 6: the corresponding events are "B1 �xes f,
B2 �xes f if B1 did not �x f" etc. up to "none of

the actions �xed f". These events form a sample

space.

When x = 1, then δ = CAn −P(¬an | f) ·CAn ,

so in all cases δ ≤ CAn which completes the

proof.

Remark. It is quite straightforward to show that

ECR(·) is not monotone when the model in-

cludes questions.

3 Pruning based on e�ciency and

ECR

We recently investigated the e�ect of a prun-

ing method based on e�ciency (Ottosen and

Jensen, 2008). By considering two adjacent

actions in an optimal troubleshooting sequence,

the following has been proved about the e�-

ciency (Jensen et al., 2001):

Theorem 3. Let s = 〈A1, . . . ,An〉 be an opti-

mal sequence of actions with independent costs.

Then it must hold that

ef(Ai |εi−1) ≥ ef(Ai+1 |εi−1),

for all i ∈ {1, . . . , n− 1}.
In Figure 2 it is illustrated how the theorem

can be used for pruning. If we have the order

ef(A1) > ef(A2) > ef(A3) at the root, we know
that A3 should never be the �rst action. Fur-

thermore, after performing A2, we know that A1

should never be the second action. We call this

e�ciency-based pruning.

In summary, the theorem was very easy to ex-

ploit during the expansion of a node by keeping

the actions sorted with respect to e�ciency and

by passing that information in the parent node.

However, the results where a bit disappointing

since it only gave a speed-up of a factor of 2-4.

We have since then tried to extend the idea

by considering three adjacent actions instead of

two. We call this ECR-based pruning. Figure

2 shows an overview of the pruning process. If

we consider an arbitrary subset of three actions

A1, A2, and A3, we would normally need to com-

pare six di�erent sequences. However, if we have

calculated the e�ciencies of the three actions

at the local root node with evidence ε, Theo-
rem 3 leaves us with only three possible candi-

dates. After the three sequences are expanded,

the paths are coalesced into a single node in the

search graph.

Now imagine that A∗ is about to expand A3

in the sequence 〈A1,A2,A3〉. We determine

if the current node expansion is optimal by

comparing it with the ECR of the sequence

〈A2,A3,A1〉. (There is no need for comparing

〈A1,A2,A3〉 with 〈A1,A3,A2〉 since Theorem 3

has pruned the latter.) If we expand the se-

quence 〈A2,A3,A1〉 �rst, the analysis is similar
and we compare with the best of the two other

sequences (again, the best sequence is found by

applying Theorem 3).

There is no way to avoid calculating the full

ECR of both sequences, and we have to traverse

the search graph down to the root and up to

the �rst node of the second path. Furthermore,

this traversal means that we have to store child

pointers in all nodes, and we also need to keep

all expanded nodes in memory. This more than

doubles the memory requirement.

In conclusion the method turned out to slow

down A∗ . In a model with 19 action and 19

faults, Theorem 3 pruned 989k nodes whereas

the ECR-based pruning prevented a mere 3556

expansions out of about 41k possible.

Theorem 2 also explains why the e�ect of the

pruning is so small: if A∗ is guided by a mono-

tone heuristics and expands a node, then the op-

timal path to that node has been found (Hart et

al., 1968). This means that the sub-trees out-

lined with dotted edges in Figure 2 are never

explored unless we really need to explore them.

Should we discover a non-optimal sequence �rst,

that path is not explored further until coalescing

happens.

4 An A∗ hybrid approach

Troubleshooting with dependent actions was

proved NP-hard by reduction from the exact

cover by 3-sets problem (Vomlelová, 2003).

Therefore, troubleshooting in models where

each action can repair three or more faults is

ε

A1 A2 A3

A3 A1

A1

A2 A3

A3 A2

Figure 2: An overview of the pruning process for

any subset of three actions. At the root of the

subtree we have evidence ε and the actions are

sorted with respect to e�ciency, and we have

ef(A1 |ε) > ef(A2 |ε) > ef(A3 |ε). Theorem 3

implies that we can prune the nodes ending in a

square, and so we are left with only three pos-

sible sequences (〈A1,A2,A3〉, 〈A1,A3,A2〉, and
〈A2,A3,A1〉). After A∗ has discovered the last

node in these three sequences, the three paths

are subject to coalescing.

NP-hard. However, A∗ still has di�culties in

�nding a solution for models with much lower

average dependency (that is, the average size of

fa(·) over all actions). Remarkably enough, we

found that when the average dependency went

down from 3 towards 1, then the running time

increased many times. In the following we de-

scribe a hybrid method for models with an av-

erage dependency well below 3.

Figure 3 shows an example of the search tree

explored by A∗ in our hybrid approach. Near the
root node, A∗ is often forced to create a branch

for each successor node. However, as we get

closer to the goal nodes, branching is more likely

to be avoided. The branching can be avoided

Figure 3: An example of what the search tree looks like in our hybrid approach. For some nodes,

the normal A∗ branching is avoided, and near goal nodes this branching is almost avoided for all

nodes. We can see that it might happen that the algorithm has to investigate all successors of a

node even though the path down to that node was explored without branching.

because we are able to determine the optimal

next step of the remaining sequence (see below).

This leads us to the following de�nitions:

De�nition 6. A dependency graph for a trou-

bleshooting model given evidence ε is the undi-

rected graph with a vertex for each action A ∈
A(ε) and an edge between two vertices A1 and

A2 if fa(A1 |ε) ∩ fa(A2 |ε) 6= ∅.
De�nition 7. A dependency set for a trouble-

shooting model given evidence ε is a connectivi-

ty component in the dependency graph given ε.

De�nition 8. A dependency set leader for a

troubleshooting model given evidence ε is the

�rst action of an optimal sequence in a depen-

dency set given ε.

Dependency sets are important because the

order of actions in the same dependency set does

not change when actions outside the set are per-

formed. This property has been exploited in the

following theorem (Koca and Bilgiç, 2004):

Theorem 4. Suppose we are able to calculate

the dependency set leaders. Then the globally

optimal sequence is given by the following algo-

rithm:

1. Construct the dependency sets and retrieve

the set leaders.

2. Calculate ef(·) for all set leaders.

3. Select the set leader with the highest ef(·)
and perform it.

4. If it fails, update the probabilities, and con-

tinue in step (2).

Our hybrid approach then simply works by

�nding the optimal sequence in dependency sets

of a fairly small size. For this work we have re-

stricted us to sets of a size < 4. At any point

before expanding a node, if the most e�cient

action belongs to a dependency set of such a

small size, we �nd the �rst action in that de-

pendency set. If the dependency set consists of

one or two actions, this calculation is trivial. If

the dependency set has three actions, we �nd

the �rst by comparing the three candidate se-

quences as we discussed in Section 3. Otherwise

we simply expand the node as usual by inspect-

ing all successors.

Table 4 shows the results of three versions

of A∗ . We can see that the hybrid approach

is somewhat slower for models with an average

dependency between 2 and 3. This is because

the hybrid approach spends time investigating

the size of the dependency set of the most ef-

�cient action, but it rarely gets to exploit the

bene�ts of a small dependency set. For an aver-

age dependency between 2.1 and 1.6 the hybrid

approach becomes superior, and below 1.6 it be-

comes very fast.

Table 1: Results for the hybrid approach in

models with 20 actions and 20 faults. The aver-

age dependency ranges between 3 and 1, and

each action is usually associated with 1 to 3

faults. The time is measured in seconds. "A∗ " is
A∗with coalescing, "pruning-A∗ " is "A∗ " plus

e�ciency-based pruning and "hybrid-A∗ " is the
hybrid approach based on "pruning-A∗ ". Al-

ready at an average dependency around 2.1 we

see that the hybrid method wins.
Method A∗ pruning-A∗ hybrid-A∗

Dep. Time

3.0 33.56 11.48 12.27

2.9 42.11 12.42 21.97

2.8 62.14 15.08 27.52

2.7 45.03 14.38 21.61

2.6 29.86 10.20 12.39

2.5 86.52 22.20 29.61

2.4 31.55 12.39 12.00

2.3 65.19 19.11 21.28

2.2 80.56 21.28 29.38

2.1 50.28 18.72 9.78

2.0 83.75 27.70 20.05

1.9 62.88 16.77 10.64

1.8 127.59 35.09 18.72

1.7 102.17 25.36 14.42

1.6 133.17 39.14 25.41

1.5 122.08 27.59 0.92

1.4 164.84 41.16 4.25

1.3 139.89 39.44 0.13

1.2 168.42 38.13 0.00

1.1 160.42 39.42 0.00

1.0 159.95 38.08 0.00

5 Discussion

We originally investigated Theorem 2 because

monotonicity plays an important role in promis-

ing bidirectional A∗methods (Kaindl and Kainz,
1997). However, a bidirectional A∗ for trouble-
shooting is very di�cult because there is no ap-

parent way to start a search from the goal nodes

using ECR(·).
The hybrid A∗ approach seems very promis-

ing. We still need to determine how large a de-

pendency set that it pays o� to solve. We ex-

pect that it will be most bene�cial to solve small

dependency sets by brute-force whereas depen-

dency sets of medium size can be solved by a

recursive call to hybrid-A∗ .

Acknowledgements

We would like to thank the reviewers for their

valuable and detailed feedback.

References

Rina Dechter and Judea Pearl. 1985. Generalized
best-�rst search strategies and the optimality af
a*. J. ACM, 32(3):505�536.

P. E. Hart, N. J. Nilsson, and B. Raphael. 1968.
A formal basis for the heuristic determination of
minimum cost paths. IEEE Trans. Systems Sci-
ence and Cybernetics, SSC-4(2):100�7.

Finn V. Jensen, U�e Kjærul�, Brian Kristiansen,
Claus Skaanning, Jiri Vomlel, and Marta Vom-
lelová. 2001. The sacso methodology for trou-
bleshooting complex systems. Arti�cial Intelli-
gence for Engineering Design, Analysis and Man-
ufacturing, 15:321�333.

J. Kadane and H. Simon. 1977. Optimal strate-
gies for a class of constrained sequential problems.
The Annals of Statistics, 5:237�255.

Hermann Kaindl and Gerhard Kainz. 1997. Bidi-
rectional heuristic search reconsidered. Journal
of Arti�cial Intelligence Research, 7:283�317.

Eylem Koca and Taner Bilgiç. 2004. A trouble-
shooting approach with dependent actions. In
Ramon López de Mántaras and Lorenza Saitta,
editors, ECAI 2004: 16th European Conference
on Arti�cial Intelligence, pages 1043�1044. IOS
Press.

Thorsten J. Ottosen and Finn V. Jensen. 2008.
Better safe than sorry�optimal troubleshooting
through A* search with e�ciency-based pruning.
In Proceedings of the Tenth Scandinavian Confer-
ence on Arti�cial Intelligence, pages 92�97. IOS
Press.

M. Vomlelová and J. Vomlel. 2003. Troubleshoot-
ing: Np-hardness and solution methods. Soft
Computing Journal, Volume 7, Number 5, pages
357�368.

Marta Vomlelová. 2003. Complexity of decision-
theoretic troubleshooting. Int. J. Intell. Syst.,
18(2):267�277.

