

 2008 Visual Data ApS. All Rights Reserved

Visual Data ApS

UUsseerr GGuuiiddee

for

VVIISSUUAALL TTRRAACCEE
AAnndd

VVIISSUUAALL PPEERRFFOORRMMAANNCCEE
AANNAALLYYSSIISS

VVeerrssiioonn 55..00

 2008 Visual Data ApS. All Rights Reserved

Visual Data ApS

TTo receive further information about Visual Data products please contact:

Visual Data ApS
Attn: Lars Kruse Bøggild
Hvidtjørnen 36
DK-2791 Dragør / CPH
Denmark

Tel: +45 32 94 31 94

e-mail: support@visualdata.info
Internet: www.visualdata.info

Visual Data ApS
Attn: Gary J. Sowada
12181 Highway 27
Little Falls, MN USA 56345

Tel: +1 320.632.6200
Fax: +1 320.632.6240

e-mail: Sales@visualdata.info
Internet: www.visualdata.info

Page 3

Visual Data ApS

User Guide for Visual Trace and
Visual Performance Analysis
 2008 Visual Data ApS. All Rights Reserved

Enhanced USAS Tracing
One of the primary ways for tracing USAS programs involves the use of the USAS TST: trace facilities.
Although effective in tracing USAS programs, reading these low-level trace files with all references to calls
shown as an X11 address and a BDI value can be difficult to interpret. Visual Trace will analyze these
standard USAS trace files and display their contents by replacing all low-level address information with
symbolic program names and source line numbers. To request this translation, enter:

TRCE: [qualifier*]filename. [trace-file-line-number][/format]

If omitted, the qualifier will be the default qualifier for the TIP system, typically TIP$.

If the trace-file-line-number is not included in the input, the display will begin with the first line of the USAS
trace file. Otherwise, the display will begin at the specified line number. Specifying a line number is
especially useful when you know the lines you wish to view or when the output exceeds the capacity of the
paging file.

All the output generated by Visual Trace has the trace-file-line-number in the left-most column enabling
you to redisplay the trace file starting at a specific point.

The default TRACE output format
In the default trace format, Visual Trace analyzes and displays the USAS trace file by converting call lines
containing low level address information into lines containing the symbolic program names and FTN line
numbers of the call. Further, it will filter away all calls deemed to be of low interest like XBCA and XBCF calls
origination from FTN stack allocation/deallocation. Internal calls made by ACBs are also removed to give a
more concise overview of the transaction flow.

When SNAPS are produced that result in trace lines exceeding 80 characters, the lines are broken in two and
the snapped data is shown as 2 lines of 4 octal words rather then 1 line by 8 words. This ensures the entire
snap can be seen at any time and no left/right adjustment is needed.

Additional TRACE output formats
The format keywords alter the default output format in various ways making its analysis more effective.
These keywords, which can be supplied anywhere in the input string, are RAW, ALL or CALLS.

By specifying the RAW output format, Visual Trace displays the USAS trace file in its raw format – the data
as produced by USAS without any alteration or suppression of lines.

The ALL output format ensures that all lines in the trace file are shown – including lines otherwise filtered
away in the default display.

The CALLS output format forces Visual Trace to suppress all lines from the trace file that are not a call line.
This allows for a quick overview of the transaction flow, which is especially useful with trace files that contain
record I/O traces and other large data SNAPS. You can use this format to follow the general program flow,
and then more carefully analyze a portion of the trace by redisplaying it from a specified trace-file-line-
number allowing for all lines to be shown.

You can combine the ALL and CALLS keywords to receive all call lines - even stack allocation/deallocation
calls and internal ACB calls – but not receive lines containing SNAPS and record I/O traces.

Page 4

Visual Data ApS

Trace file usage
By default the TRCE: transaction will show you all traces captured to your trace file with this often including
traces for more transactions. This can lead to a very long tracing process as every absolute present in the
trace will need to be found and read before each line in the raw trace file can be converted from an absolute
address line into a symbolic trace line. To avoid these long traces it is recommended that you qualify the
data you are interested in and thereby reduces the trace display.

Qualifying your display requests will make it easier to find and view the area of interest and it will dramatically
decrease the time spent producing the trace displays.

You can qualify your input by filtering on either a program name, a function-code or by specifying the
HVTIP keyword when requesting an overview display.

Trace file overview
As trace files can normally be very long and contain traces from many different transactions it is usually a
good idea to get an overview of what is in the trace file before requesting trace displays. The HVTIP keyword
will limit the trace display to all HVTIP calls/returns and thus give you a quick and easy overview of what
functions have been traced and what programs these transactions passed though during execution.

TRCE: [qualifier*]filename. HVTIP

Once the HVTIP display has been output, it is easy to request a new trace display with the appropriate
filtering options set to enable a quick and accurate trace display showing all the data of interest.

Program filtering
Visual Trace allows you to filter your trace file symbolically by entering the program filter, thus suppressing
all trace lines that do not belong to the specified program. To do this, enter:

TRCE: [qualifier*]filename. program[/format]

HVTIP library calls are still shown with the above request in order to give an overview of when the specified
program was called. This program filter allows you to quickly view trace lines from the specific absolute.
Especially on large trace files it is recommended that you use program filtering whenever possible as it will
speed the trace process dramatically as only one absolute will need to be found and processed to produce
the entire trace display.

Function code filtering
In the same way, Visual Trace allows you to filter your trace file on a function-code, thus suppressing all
trace lines that do not belong to the specified function. To do this, enter:

TRCE: [qualifier*]filename. function-code[/HVTIP] [/format]
TRCE: [qualifier*]filename. function-code[/program] [/format]

If your trace file contains more traces of the same specified function-code they will all be processed and be
included in the trace display. Alternatively, you can combine the function-code filter with the HVTIP or
program filter to further reduce the trace display.

Page 5

Visual Data ApS

Absolutes or Zooms read during Trace Analysis
In order for Visual Trace to perform the correct analysis on a trace file, it is important that Visual Trace is
able to find all the actual absolutes/zooms that were used to create the trace file. Without the correct
absolutes/zooms, the analysis can easily be flawed resulting in misleading and incorrect conversion of the
low-level address information into symbolic names and source line numbers.

Therefore, it is always a good idea for you to verify that the absolutes/zooms used to analyze the trace file
are the correct ones. At the end of each trace display, Visual Trace automatically informs you of which
absolutes/zooms were used in the analysis by displaying the files they were retrieved from and the
date/timestamp they were created.

The system and personal search paths
Visual Trace uses the same search path for absolutes as The Visual Dump Analyzer. This search path is
made up of a personal search path and a system search path, with the personal search path being traversed
before the system search path when looking for an element.

There is a unique system search path and personal search path defined for each computer system. On
production systems, a personal search path is generally not required as all elements are stored within system
files. On development systems, however, you will need to add your own files to your personal search path on
each computer system so the correct absolute can be found.

To update your personal search path and display the system search path on a computer system, just enter:

 RDMP:PATH

Your personal search path is saved in the file SED$*nnnnn where nnnnn is your VDU number (i.e., USAS
PID number). Therefore, you will need to update your search path on all the PIDs you are using.

Combining TRACE with the Enhance Paging function (RPAG)
By combining the TRCE: function for analyzing and displaying the contents of a USAS trace file and the
RPAG: function for traversing within the paging output and searching for particular text, you can efficiently
view the trace file information without having to open a demand session.

Use the RDMP:SETUP to turn the RPAG Enhanced Paging ON or OFF.

Even when RPAG is turned OFF, you can activate it for the current paging file by using RPAG:TRCE and
then use it on this specific output.

Page 6

Visual Data ApS

Visual Breakpoint Traps
A trace is commonly used to determine the path taken by a transaction during its execution. Normal Usas
tracing, however, only provides a trace that includes calls to ACB and FLSS routines. The volume of code
that exists between ACB calls is not traced and therefore its form of execution is unknown. This problem is
solved by Visual Breakpoint Traps (TRAPS). Because TRAPS doesn’t rely on any special events such as
ACB calls for intercepting the execution, any piece of code can be analyzed in extensive detail.

Besides intercepting when a specific piece of code is executed, Visual Breakpoint Traps also allows you to
get control when a specific variable or address is referenced or updated. This is a very useful way of finding
code that alters or destroys specific data.

Among its many features, TRAPS can inform you whether you have executed a given line number or
subroutine, it can snap data in various ways, it can force an abort at the “right” spot, and it can cause an abort
when a particular variable acquires a specified value.

In order to use Visual Breakpoint Traps, just enter the following and a mask will be displayed for you to
enter your TRAPS and SNAPS request:

 TST:TRAP

Use the TRAP portion of this mask to define where you want to intercept your program and cause a
Breakpoint to occur. Setting Breakpoint Traps is very simple process even when the trap itself is very
complex in nature.

TRAPS are divided into two different types: I-Bank TRAPS and D-Bank TRAPS. I-Bank TRAPS are traps
that occur whenever a specific I-Bank instruction is executed and D-Bank TRAPS are traps that that occur
when a given D-Bank address is referenced or updated.

The TRAP and SNAP portions of the input mask can both be defined or either part can individually be
specified within a request. When SNAPS are used alone, it will produce snaps on all calls to and returns
from ACB and FLSS routines. When the SNAPS are used in combination with TRAPS, it will also produce
snaps every time a specified TRAP occurs.

Page 7

Visual Data ApS

Setting line number Traps
In order to set a TRAP on a specific line number, you only need to specify the program name and line
number. This is the simplest form of a TRAP that can be set as it identifies a specific location (instruction) in
the program and ensures the TRAP occurs every time this instruction is executed. The location of the TRAP
will remain the same during the execution of the program, which may result in the trap occurring many times
during the execution of the transaction.

Setting a TRAP on a line number in an ACB or FLSS routine is done in the same way as normal HVTIP
programs. You only need to enter the ACB or FLSS name (e.g., SYSWRT1 or SYSFLS3) along with the
name of the relocatable routine and FTN line number. See below example which sets a TRAP on line 561 in
the relocatable ACBROU within the SYSWRT1 absolute.

TST:TRAP/

 VISUAL BREAKPOINT TRAPS AND SNAPS

TRAP PROGRAM NAME]SYSWRT1 [
 IN RELOCATABLE NAME]ACBROU [
 AT LINE NO OR ADR OR INTERNAL SUBR.] 561[
 OR WHEN IT IS CALLED AND WHEN IT RETURNS]N[
 OR WHEN IT CALLS OTHER HVTIP PROGRAMS]N[
 OR WHEN BELOW SNAP IS REFERENCED]N[
 OR WHEN BELOW SNAP IS UPDATED]N[

SNAP VARIABLE/DBA/PDB/ADDRESS/VA] [
 IN INTERNAL SUBR./DBA OFFSET] [
 NUMBER OF WORDS - TRAP ON 1ST WORD ONLY] [
 SNAP ON BREAK POINT HITS ONLY]N[

WHEN THE TRAP HITS
 ABORT ON HIT NUMBER] [
 ABORT WHEN SNAP VALUE EQUALS] [
] [

When a line number TRAP is set, it is normally placed on the first assembler instruction generated by the
FTN line number. If the FTN line does not actually cause any assembler instructions to be generated (e.g.,
Comment lines, ENDIF and CONTINUE statements), the TRAP will be set on the first executable instruction
following the FTN line number.

Note that if the Z-option (optimization) is used with the FTN compiler, it can merge assembler code for
multiple FTN lines in order to generate more efficient code. This can cause a line number TRAP to be set on
instructions away from where it would appear to be set if compared to the source code. This, however, is
usually not a problem, but if you want to be in complete control of the exact location of your TRAP, use
RABS: to see the assembler code and set the TRAP by using an absolute address rather than a line number.
(See Setting Address Traps)

When setting TRAPS on IF-Statements, it can sometimes be difficult to predict if the instruction is actually
executing and therefore should often be avoided.

Page 8

Visual Data ApS

Setting HVTIP program Traps
You can specify a TRAP for an HVTIP program so the hit occurs every time the program is called or returned
from. See below example, which sets a TRAP on a call to and return from MYPROG.

TST:TRAP/

 VISUAL BREAKPOINT TRAPS AND SNAPS

TRAP PROGRAM NAME]MYPROG [
 IN RELOCATABLE NAME] [
 AT LINE NO OR ADR OR INTERNAL SUBR.] [
 OR WHEN IT IS CALLED AND WHEN IT RETURNS]Y[
 OR WHEN IT CALLS OTHER HVTIP PROGRAMS]N[
 OR WHEN BELOW SNAP IS REFERENCED]N[
 OR WHEN BELOW SNAP IS UPDATED]N[

SNAP VARIABLE/DBA/PDB/ADDRESS/VA] [
 IN INTERNAL SUBR./DBA OFFSET] [
 NUMBER OF WORDS - TRAP ON 1ST WORD ONLY] [
 SNAP ON BREAK POINT HITS ONLY]N[

WHEN THE TRAP HITS
 ABORT ON HIT NUMBER] [
 ABORT WHEN SNAP VALUE EQUALS] [
] [

This TRAP will occur when MYPROG is called and when MYPROG returns. Because this TRAP occurs in
two unique locations, this type of TRAP is considered complex. (See Defining Complex Traps)

Another type of HVTIP TRAP is WHEN IT CALLS OTHER HVTIP PROGRAMS. By selecting this type of
TRAP, you will get a hit every time MYPROG calls forward to another HVTIP program and you will also get a
hit every time the called program returns to MYPROG.

These HVTIP TRAPS are very useful for determining which programs have updated certain data by causing
hits on the boundaries between HVTIP programs where you can SNAP data or cause aborts at these
locations.

Page 9

Visual Data ApS

Setting subroutine Traps
Setting subroutine TRAPS is similar to setting HVTIP TRAPS except that you request the TRAP to occur on
a specified internal FTN/UFTN subroutine instead of the main HVTIP program. The example below sets a
TRAP on the calls and returns from the internal subroutine SENDIT located within the PXCRTO absolute.

TST:TRAP/

 VISUAL BREAKPOINT TRAPS AND SNAPS

TRAP PROGRAM NAME]PXCRTO [
 IN RELOCATABLE NAME] [
 AT LINE NO OR ADR OR INTERNAL SUBR.]SENDIT [
 OR WHEN IT IS CALLED AND WHEN IT RETURNS]Y[
 OR WHEN IT CALLS OTHER HVTIP PROGRAMS]N[
 OR WHEN BELOW SNAP IS REFERENCED]N[
 OR WHEN BELOW SNAP IS UPDATED]N[

SNAP VARIABLE/DBA/PDB/ADDRESS/VA] [
 IN INTERNAL SUBR./DBA OFFSET] [
 NUMBER OF WORDS - TRAP ON 1ST WORD ONLY] [
 SNAP ON BREAK POINT HITS ONLY]N[

WHEN THE TRAP HITS
 ABORT ON HIT NUMBER] [
 ABORT WHEN SNAP VALUE EQUALS] [
] [

Subroutines TRAPS are considered to be complex as they will occur on both calls to and returns from the
internal subroutine. (See Defining Complex Traps)

Setting Address Traps
All types of TRAPS are eventually set using an absolute address. For symbolic TRAPS, Visual Trace
calculates the address to set the TRAP on. You can, however, set the TRAPS on a specific address by
entering a program name in the TRAP portion of the mask and the absolute address in AT LINE NO OR
ADR OR INTERNAL SUBR. By entering the absolute address with a leading zero indicating octal, you have
informed Visual Trace that the value is an address instead of a line number.

You can use RABS: to find the address you want to set the TRAP. If the address is in an ACB or FLSS, you
don’t need to be concerned about the BDI as Visual Trace is aware of these values.

Setting Variable or D-bank Traps
You can set a Variable or D-Bank TRAP by defining information in the SNAP portion of the mask and then
selecting either:

WHEN BELOW SNAP IS REFERENCED
or

WHEN BELOW SNAP IS UPDATED.

This will cause a hit every time the SNAP data is referenced or updated. Combining D-Bank TRAPS along
with SNAPS results in a variable being snapped whenever the TRAP occurs.

The SNAP data may be defined to be several words, an entire table, or a DBA; but the TRAP will only be
effective on the first word of the snapped data.

Page 10

Visual Data ApS

If you don’t want the data to be snapped or displayed on every call to an ACB or FLSS routine, you can select
the SNAP ON BREAK POINT HITS ONLY and the data will only be displayed when a TRAP occurs. (See
Setting Snaps)

Note that if the Z-option (optimization) is used on the FTN compiler, it may generate more efficient assembler
code by using a register instead of your defined variable. In this case, if you set the TRAP on the variable,
the trap will never occur as the variable is not actually being used. By using RABS:, you can analyze the
generated assembler code about the line numbers in question and verify if compiler has actually used the
variable.

Setting Snaps
The SNAP portion of the mask is used to define the data you want snapped (displayed) when a TRAP
occurs. Besides snapping the data when the TRAP occurs, the snapped data will also be displayed
BEFORE and AFTER every call to an ACB or FLSS routine.

SNAPS that are displayed before and after an ACB or FLSS routine provides additional information for
analysing when a particular piece of data has changed. Be aware that ACB or FLSS calls can be nested in
that one ACB routine may call other ACB routines. When this happens, you will see both the BEFORE and
AFTER SNAP on the initial ACB routine call, but for technical reasons only BEFORE SNAPS will be
produced for the nested ACB calls. Snaps for XFSxx and XDFxx I/O routines will always be shown both
before and after the calls.

You can set SNAPS on Variables, DBAs, PDBs, Basic Mode Addresses and Extended Mode VAs. Due to
the nature of defines, however, you cannot set a SNAP directly on a define using its symbolic name. Instead,
you must calculate its address location and then set the SNAP on the DBA.

Setting Variable Snaps
The below example sets a SNAP on the local variable MYVAR in the internal subroutine MYSUB, which is
located in the relocatable MYREL within the MYPROG program.

TST:TRAP/

 VISUAL BREAKPOINT TRAPS AND SNAPS

TRAP PROGRAM NAME]MYPROG [
 IN RELOCATABLE NAME]MYREL [
 AT LINE NO OR ADR OR INTERNAL SUBR.] [
 OR WHEN IT IS CALLED AND WHEN IT RETURNS]N[
 OR WHEN IT CALLS OTHER HVTIP PROGRAMS]N[
 OR WHEN BELOW SNAP IS REFERENCED]N[
 OR WHEN BELOW SNAP IS UPDATED]N[

SNAP VARIABLE/DBA/PDB/ADDRESS/VA]MYVAR [
 IN INTERNAL SUBR./DBA OFFSET]MYSUB [
 NUMBER OF WORDS - TRAP ON 1ST WORD ONLY] 1[
 SNAP ON BREAK POINT HITS ONLY]N[

WHEN THE TRAP HITS
 ABORT ON HIT NUMBER] [
 ABORT WHEN SNAP VALUE EQUALS] [
] [

Note that even though the TRAP area of the mask is used to identify the program and relocatable where the
SNAP variable is found, this will not cause a trap to be set as a location has not been defined within the
TRAP portion of the mask.

Page 11

Visual Data ApS

Variables can be snapped by entering their symbolic name such as LINE, WORK or WORK(5). Also, if the
variable LINE is an 80 character variable, you can snap all of it by setting the number of words to 20.

If the size of the SNAP data is greater than one, then more SNAP lines are produced. The first line will give
the variable name, its absolute address, and the value of the first word. The following lines will show four
octal words each until all the requested SNAP data has been displayed.

Again note that if the Z-option (optimization) is used on the FTN compiler, more efficient code may have been
generated resulting in a register being used instead of your actual variable. This can easily cause confusion,
so when in doubt use RABS: to see the generated assembler code about the line numbers in question and
verify if the compiler has actually used the variable.

Setting DBA or PDB Snaps
You can set a SNAP on a DBA or PDB by entering its symbolic name. If the symbolic name entered is used
to define both a DBA and a PDB, you must qualify the name by entering, for example, FM$DBA or FM$PDB.

The example below sets a SNAP on the 25th word in the FM DBA and snaps a total of 100 words. When
setting SNAPS on DBAs and PDBs, you must enter an offset into the DBA or PDB. The offset is 1-relative so
if you want to set a SNAP on the first word, you need to enter 1.

TST:TRAP/

 VISUAL BREAKPOINT TRAPS AND SNAPS

TRAP PROGRAM NAME] [
 IN RELOCATABLE NAME] [
 AT LINE NO OR ADR OR INTERNAL SUBR.] [
 OR WHEN IT IS CALLED AND WHEN IT RETURNS]N[
 OR WHEN IT CALLS OTHER HVTIP PROGRAMS]N[
 OR WHEN BELOW SNAP IS REFERENCED]N[
 OR WHEN BELOW SNAP IS UPDATED]N[

SNAP VARIABLE/DBA/PDB/ADDRESS/VA]FM [
 IN INTERNAL SUBR./DBA OFFSET] 25[
 NUMBER OF WORDS - TRAP ON 1ST WORD ONLY] 100[
 SNAP ON BREAK POINT HITS ONLY]N[

WHEN THE TRAP HITS
 ABORT ON HIT NUMBER] [
 ABORT WHEN SNAP VALUE EQUALS] [
] [

Using the TRAP area of the mask is optional. If it is not used, the SNAPS will start as soon as the DBA or
PDB gets allocated and will stop if the DBA or PDB gets released. If the DBA or PDB is later re-allocated, the
snapping will again start even if the re-allocation caused the DBA or PDB to be allocated at a new location.

Snapping DBAs or PDBs can result in very large trace files. You can limit the number of SNAPS by entering
a program name in the TRAP portion of the mask. If this is done, the DBA or PDB will only be snapped while
in the specified program. You can further limit the SNAPS by specifying a program name, relocatable or
internal subroutine.

Page 12

Visual Data ApS

Setting Address or VA Snaps
To set a SNAP for a Basic Mode Address, just enter the absolute address in the SNAP part of the mask. The
address must be entered in octal with a leading zero (0) being recognized as an address rather then a line
number. This address must be in the D-bank or in the Main PDB. You cannot set address SNAPS for the I-
Bank or for PDBs besides the Main PDB. The snapping will start as soon as the Address becomes a valid
Basic Mode address.

A SNAP for an Extended Mode VA is done in the same way. You just enter the VA (bdi+adr) in the SNAP
part of the mask. The snapping will start as soon as the VA becomes a valid VA in the Extended Mode
environment.

You can limit the number of SNAPS by entering program information in the TRAP part of the mask, just as for
SNAPS set on DBAs or PDBs.

Forcing Aborts at the right spot at the right time
Having a dump from an abort taken at the right spot and at the right time is often the best way to solve
problems. This, however, can often be very difficult to accomplish. Visual Trace allows you to run a trace,
look at it and then decide when and where you would like the abort to occur.

Once you know where you want the abort to occur (the right spot), set a TRAP for the location using the
TRAP part of the mask, and then run the transaction again. The trace will now include a hit every time the
program passed the location you set the TRAP for. All of these hits are numbered sequentially in the trace
file and then with analysis you can decide which of these hits would be the best time to take an abort.

Next use the WHEN part of the mask to force an abort at the right spot and at the right time by entering the
hit number for the hit where you want the abort to occur in ABORT ON HIT NUMBER. Run the transaction
again and this time Visual Trace will force a Contingency 014 abort – Breakpoint – when it gets to the right
spot at the right time.

Forcing Aborts when a memory location gets destroyed
Some of the must complicated problems to solve are when data gets destroyed by a flawed process that has
corrupted memory that doesn’t belong to itself. This kind of memory destruction is normally very difficult to
find as they are likely to cause aborts very far from where the problem actually is. The memory destroyed in
this way can be related to common blocks, variables and defines in DBAs.

Visual Breakpoint Traps makes this kind of problem easy to solve. To do this, first set a Variable or DBA
SNAP for the memory location that is being destroyed. Then select WHEN BELOW SNAP IS UPDATED
and next run the transaction again. Even though you have not yet requested Visual Breakpoint Traps to
abort the transaction, the trace file will show a hit every time the memory location was updated. Often times
this is enough to solve the problem as the trace will show exactly where the memory location was updated,
what it was updated to and what code or process performed the update.

Some very complex problems, however, will be affected by the fact that traces are turned ON and thus stop
destroying the data you are monitoring as it – due to the trace itself – may now be located at a completely
different memory location. As a consequence, the trace will NOT show anything wrong and inform only on
legal updates to the snapped memory location.
(See Controlling the AP DBA)

This situation can occur when the process destroying the data does not own it but destroys data that belongs
to another process. This can happen because turning traces ON for a transaction caused the memory used
for DBAs to be changed. (See Memory Allocation and Tracing)

Page 13

Visual Data ApS

Visual Breakpoint Traps will aid you with this situation also as it enables you to run a trace without
producing a trace file, thereby not altering the memory layout for the transaction. Since you do not get a
trace file to look at, you will have to force the abort by using the WHEN part of the mask. To do this, keep
both the SNAP and TRAP of the destroyed memory location active and enter the “bad” value of the
destroyed memory location in the ABORT WHEN SNAP VALUE EQUALS. This informs Visual
Breakpoint Traps to cause a Contingency 014 abort – Breakpoint – when the “bad” value is stored in the
memory location.

Before running the transaction, you must inform Visual Breakpoint Traps to not produce a trace file. You do
this by selecting DROP AP DBA TO PRESERVE MEMORY LAYOUT in the TST:SNAP mask.
(See Visual Advanced Snaps)

Now run the transaction again, but ensure you have turned OFF all other TST trace flags except TST:TRAP
and TST:SNAP. This time you should get an abort informing you of the specific code that updated the
memory location to contain the “bad” value.

Dynamic PRTADP calls
To set a Dynamic PRTADP call, just set a TRAP on a line number and enter the SNAP data you want
displayed once the trap occurs. This logic is simple and effective and allows you to dynamically produce
SNAPS that work just like PRTADP calls without having to change and recompile your program.

Defining Complex Traps
When setting TRAPS, Visual Breakpoint Traps reads the absolute to calculate the actual address the
TRAP needs to be set on when the mask is updated. The address is then saved as part of the normal test
and training logic for the CLR.

To ensure the TRAP occurs when it is expected to, it is vital that the TRAP address is calculated correctly.
This will only be the case if the absolute used to calculate the TRAP address is the exact same absolute as
the one executing. Visual Trace will initially search for the absolute in the Library Load File used to load the
program into the HVTIP library/bank. If the HVTIP library/bank was loaded from a temporary file like TPF$,
the normal search path will be used. (See The system and personal search paths)

For simple TRAPS, using a wrong absolute to calculate the TRAP address may result in the TRAP hits being
a bit off. When working with complex TRAPS, however, the slightest miscalculation in the TRAP address will
likely prevent the TRAP logic from working correctly.

Once the TRAP address is calculated, you will be informed of the absolute that was used to calculate the
TRAP address. It is a good idea to ensure that this is the correct absolute.

You can use the below TST: function to see what trace flags (including TRAPS, SNAPS and PERF) are set
for your device.

TST:DISPLAY or TST:D

This display will also inform you of what absolute was used to calculate the TRAP address.

Page 14

Visual Data ApS

Memory Allocation and Tracing
Traces are typically used to inform of the path taken by a transaction throughout its execution. In doing this,
the standard Usas trace logic will use the AP DBA to hold the trace lines before they are written to the actual
trace file. As the trace DBA is always the first DBA to be allocated, it will be located right after the CB control
area at the top of the dynamic D-bank (CBAREA).

This will naturally cause every DBA allocated after the AP to be located at a different memory location
compared to when traces are OFF. This is normally not a problem, but could result in X525 aborts if the
AWA runs out of memory or it can make tracing difficult if you are analyzing a problem related to specific
memory locations.

If you are tracing to solve a memory-related problem and the memory shifts location when traces are ON so
that the error no longer occurs, you have two options that are both controlled by the TST:SNAP mask. (See
Visual Advanced Snaps)

First, try retaining the original memory layout as much as possible by requesting Visual Trace to move the
AP DBA down to the bottom of the AWA rather than having it at the top. This ensures that all other DBAs will
be allocated at the same address location as when traces were OFF.

Second, you can request Visual Breakpoint Traps to prevent the AP DBA from being allocated. In this case,
no trace will be written so you will have to work with TST:TRAP and forced aborts to solve the problem.

Visual Breakpoint Traps also needs a little memory to enable the TRAPS and SNAPS. This memory is not
allocated in a DBA and thus will not influence DBA allocation by causing x525 aborts or memory shifting.

The Visual Breakpoint Traps work area is about 100 words and is located at the bottom of the FSTACK$
area. It is preceded with a “VDA$” token in the first word. Visual Breakpoint Traps protects this work area
from being destroyed by normal stack allocation. However, it cannot protect a program transfer from taking
the entire FSTACK$ area and thereby destroying the Visual Breakpoint Traps work area. This is an
unlikely situation, but if the work area is compromised, the result of the trace will be unpredictable or it can
even cause Visual Breakpoint Traps or the transaction itself to error. Though not ideal, it is the only area
where Visual Breakpoint Traps can allocate a work area without affecting normal memory usage.

Visual Advanced Snaps
Advanced SNAPS allows you to snap special information. Visual Advanced Snaps can work alone or in
combination with Visual Breakpoint Traps.

By entering the input below, the Visual Advanced Snap mask will be displayed.

 TST:SNAP

The below mask allows you to enter the advanced snap information.

TST:SNAP/

 VISUAL ADVANCED SNAP INFORMATION

SNAP PFEDIT LINES]N[
SNAP FREE CHAIN INFORMATION WHEN DESTROYED]N[
MOVE AP DBA DOWN TO REDUCE MEMORY SHIFTING]N[
DROP AP DBA TO PRESERVE MEMORY LAYOUT]N[

] [

In this mask, you can also request PFEDIT output lines to be routed to the trace file. This provides a useful
way of seeing where you are in the processing when reading the trace file. Note that for practical reasons,
the width of each PFEDIT line is limited to 71 characters.

Page 15

Visual Data ApS

You can also request Visual Advanced Snaps to monitor the AWA Free Chain and report when it detects
the chain to be destroyed. Once the AWA Free Chain is destroyed, Visual Advanced Snaps will place a line
informing of this fact in the trace file. This will only be reported once in order to avoid filling the trace file with
this identical warning statement.

Controlling the AP DBA
The AP DBA is used by Usas Sys 11r2 to hold the trace lines before they are written to the trace file. When
traces are ON, Usas Sys 11r2 allocates the AP DBA as the first DBA in the AWA. This memory shifting
means that all other DBAs allocated in the AWA will be at different address locations than when traces are
OFF. (See Memory Allocation and Tracing)

Normally this is not a problem, but some complex problems tend to go away when traces are ON and re-
appear when traces are OFF. Naturally this makes finding this kind of problems very difficult. This nasty
behavior is most likely due to memory allocation and is therefore affected by the fact that the AP DBA is
causing all other DBAs to be shifted down in the AWA. By setting MOVE AP DBA DOWN TO REDUCE
MEMORY SHIFTING, Visual Advanced Snaps will force the AP DBA to be located at the very bottom of the
AWA rather than at the top. The memory locations of all other DBAs are thereby preserved and hopefully the
problem will then be traceable and keep occurring when traces are ON. Note that the AP DBA is still present
in the AWA and thus when moved to the bottom of the AWA is will start affecting the stack locations for
HVTIP programs.

If forcing the AP DBA to the bottom of the AWA does not make the problem traceable the only other solution
is to complete drop the AP DBA. If you select “DROP AP DBA TO PRESERVE MEMORY LAYOUT” Visual
Advanced Snaps will allow Visual Breakpoint Traps to be effective while preventing the AP DBA from
being allocated. Further, you must ensure that any TST: trace flag that will place information in the trace file
wild is turned OFF as they will otherwise re-allocate the AP DBA. When the AP DBA is not allocated at all
the memory usage is completely the same when traces are ON and OFF thus the problem will be traceable.

However, as the AP DBA is dropped no trace file information will be capture and produced by Usas Sys 11r2
and thus the trace will be empty. You will have to rely on Visual Breakpoint Traps to detect where and
when the data gets destroyed. (See Forcing Aborts when a memory location gets destroyed)

Visual Performance Traces
Performance Traces allow you to capture performance information for a later Performance Analysis of
your transaction. Once a Performance Trace has captured its data, it can be use in multiple Performance
Analysis. Each Performance Analysis will report on how much time (CPU) was used by the transaction
and where the time was spent within the transaction. (See Creating The Performance Reports)

To turn ON Performance Traces to capture performance data, enter the following:

TST:PERF

TST:CTR ICR TAC are prerequisites for the Performance Traces and must be turned ON along with
TST:PERF to enable the capture of all the information needed. You can set all of these flags using TST:VDA.

Once you have turned your Performance Trace ON, run the transaction and obtain the trace file be entering:

TST:PRINT NOPR

The trace file will now contain all the performance information needed to enable a Performance Analysis.

Note that when traces are turned on, the CPU usage by a transaction will always be much higher than normal
as the tracing itself takes time. You can request Visual Performance Trace to reduce the CPU times
displayed by reducing all CPU values by an estimated trace overhead. This will cause CPU values to be
closer to normal, but they should be considered estimates. (See Setting up Advanced Performance Traces).

Further note that TRAPS and Performance Traces are mutually exclusive and once one is turned ON the
other will automatically be turned OFF.

Page 16

Visual Data ApS

Setting up Advanced Performance Traces
Setting up a Performance Trace ensures the performance information needed for a Performance Analysis
is captured in the trace file. Analyzing the performance of a transaction should always start with a Normal
Performance Analysis based on basic performance information. The Normal Performance Analysis
reports what HVTIP programs and ACB or FLSS routines are called allowing you to determine the areas that
may need further analysis by using Advanced Performance Traces.

Once the normal Performance Analysis Report has revealed a specific program or routine to be using more
CPU than expected, you can use the Advance Performance Traces to capture a new performance trace
requesting an internal routine to be meticulously monitored. When monitored in this way, the Advanced
Performance Trace will capture performance information at the internal subroutine level for this specific
internal subroutine enabling the later Performance Analysis to further breakdown the analysis and inform on
the CPU usage of the internal subroutine separately.

While analyzing performance at internal subroutine level, one internal subroutine can be analyzed at a time.
This means that you may have to run the transaction multiple times while tracing a new internal subroutine
each time in order to have a complete analysis.

To analyze an internal subroutine, request that Visual Performance Trace monitor a specified internal
subroutine and capture its performance data so it can be analyzed separately when included in the
Performance Reports.

To display the mask for entering the performance information parameters, enter:

TST:PERF/program

The below example displays how the SHOW part of the mask is updated to request the internal subroutine
MYSUB to be analyzed individually. MYSUB is an internal subroutine in the MYREL source program, which
is mapped into the MYPROG absolute.

TST:PERF/

 VISUAL PERFORMANCE INFORMATION

THE VDA PERFORMANCE ANALYSIS WILL BREAK DOWN THE
QUANTUM TICS USED BY A TRANSACTION AND REPORT ON
THE CPU USAGE FOR EACH HVTIP PROGRAM.

FURTHER EACH BASIC MODE PROGRAM IS BROKEN DOWN
INTO THE MAIN PROGRAM AND MAPPED IN SUBROUTINES.

USING THIS MASK YOU CAN REQUEST AN INTERNAL FTN
SUBR. TO BE SEPARATELY SHOWN IN THE PERF REPORT.

SHOW THIS INTERNAL SUBR. SEPARATELY]Y[
THE INTERNAL SUBR. IS IN PROGRAM]MYPROG [
 AND IN RELOCATABLE/OBJECT MODULE]MYREL [
 AND THE INTERNAL SUBROUTINE NAME IS]MYSUB [
SHOW PERF WITHOUT ESTIMATED TRACE OVERHEAD]N[

] [

You need to be sure the SHOW THIS INTERNAL SUBR. SEPARATELY is selected. Every time a new
internal subroutine is updated in this mask, you must rerun the transaction to create a new trace file
containing information for the specified internal subroutine before you can create new Performance Reports
analyzing the CPU use for this internal subroutine. (See Creating the Performance Report)

Page 17

Visual Data ApS

When traces are turned ON, the CPU usage for a transaction will always be much higher than normal as the
tracing itself takes time. You can request Visual Performance Trace to lower the CPU times by reducing all
CPU values by an estimated trace overhead. This will cause CPU values to be closer to normal, but they still
need to be considered as estimates.

Normally there isn’t a need to reduce the CPU usage calculations by the estimated trace overhead as all
values are shown as percentages anyway. Thus, the relative usage of CPU by a transaction will not be
dramatically affected. Further, working on the CPU values that include the trace overhead only means the
calculations being used are somewhat larger numbers, but they are usually very helpful in determining areas
that are performing excessive processing.

To reduce the CPU values by the estimated overhead, select SHOW PERF WITHOUT ESTIMATED
TRACE OVERHEAD and run the transaction again to create a new trace file that will be ready for
Performance Analysis.

Creating the Performance Reports
Before you can create a Performance Report, you must first produce a trace file containing performance
information. Once you have this file, you can create as many Performance Reports as you like with each
one being based on the same information for accurate comparison purposes.

To create a Performance Report, enter.

TRCE: [qualifier*]filename. PERF/report

This creates a complete Performance Report for each transaction in the trace file. You can limit the
Performance Reports to be produced for a specific function code by using the below input.

TRCE: [qualifier*]filename. function-code /PERF/report

When a program name is specified on the input, only the specified program is analyzed and the
Performance Report will be limited to holding information for the specified program.

TRCE: [qualifier*]filename. program /PERF/report

You can also combine these inputs to select a specific program in a specific function.

TRCE: [qualifier*]filename. function-code/program /PERF/report

Report is used to inform which of the three (3) Performance Reports are to be created. When omitted, the
Performance Report will be the default or Normal Performance Report. When present, it can be one of
the two keywords - SUBS or CALLS - each representing a report type.

The Performance Report will report how much CPU time was used by the entire transaction. It will also
break up the transaction in different ways to give you various views of the transactions CPU usage. Further,
it will report on how often ACB and FLSS routines were called along with how much CPU time these calls
totaled for each program. Finally, it will report how much CPU was used by the main parts of the transaction
programs.

Once a Performance Analysis Report has been created, you should take a note of routines that process as
an unexpectedly large percentage of the entire transaction. This can indicate that the program or routine is
using more CPU than it should and analysis may show that this code could be more efficient.

Due to the nature of Mixed Mode, it should be noted that Extended Mode programs that call Basic Mode ACB
routines can create extra overhead when the call-parameter data needs to be moved in memory. The CPU
time for this overhead is measured and counted on the Extended Mode program and NOT on the Basic Mode
ACB routine.

Page 18

Visual Data ApS

The Normal Performance Report
This report lists the CPU usage that in incurred by each HVTIP program along with ACB and FLSS routines
within a transaction. It provides a quick overview of the overall performance of the transaction and helps you
decide whether further Performance Analysis is needed.

Below is an example of a RDMP: transaction:

TRCE: TIP$*T$VUELKB(5). PERF
............................ PERFORMANCE ANALYSIS
ROUTINE CALLS(NEST) QUANTUM TICS CPU.SUPS ICP % FUNC %
ICP 0 000000101174 0.00009383 82.80 1.39
XTFLWR 1 000000010663 0.00001272 11.23 0.18
PRGZOM 1 000000004547 0.00000676 5.96 0.10
TOTAL CALLS 2 000000015432 0.00001948 17.19 0.28

TOTAL ICP 000000116626 0.00011332 99.99 1.68

ROUTINE CALLS(NEST) QUANTUM TICS CPU.SUPS SEDDMP % FUNC %
SEDDMP 1 000001672752 0.00137342 58.61 20.43
XBCA(STACK) 26 000000307221 0.00028660 12.23 4.26
PFDM03 11 000000127045 0.00012522 5.34 1.86
XBCF(STACK) 25 000000301132 0.00027782 11.85 4.13
PFNBAS 12 000000135333 0.00013436 5.73 1.99
XBCA 4 000000037052 0.00004470 1.90 0.66
XBCF 4 000000035712 0.00004299 1.83 0.63
PFDTSD 1 000000010121 0.00001173 0.50 0.17
PVOCTA 3 000000030045 0.00003462 1.47 0.51
PFDM04 1 000000010034 0.00001158 0.49 0.17
TOTAL CALLS 87 000001242161 0.00096966 41.34 14.42

TOTAL SEDDMP 000003135133 0.00234308 99.95 34.85

ROUTINE CALLS(NEST) QUANTUM TICS CPU.SUPS SEDINP % FUNC %
SEDINP 1 000001152275 0.00088933 56.04 13.23
XBCA(STACK) 16 000000176502 0.00018211 11.47 2.70
XBCA 4 000000036703 0.00004441 2.79 0.66
XBCF(STACK) 16 000000174434 0.00017913 11.28 2.66
PFNBAS 1 000000007566 0.00001111 0.70 0.16
PFDM03 20 000000227273 0.00021769 13.71 3.23
PFMA13 1 000000011132 0.00001319 0.83 0.19
PFMA04 3 000000032354 0.00003805 2.39 0.56
PFMA01 1 000000010127 0.00001175 0.74 0.17
TOTAL CALLS 62 000000744757 0.00069748 43.91 10.37

TOTAL SEDINP 000002117254 0.00158682 99.95 23.60

ROUTINE CALLS(NEST) QUANTUM TICS CPU.SUPS SEDOUT % FUNC %
SEDOUT 8 000000252722 0.00024580 36.01 3.65
XBCA(STACK) 16(8) 000000076475 0.00009005 13.19 1.33
PFEDIT 8 000000262546 0.00025700 37.65 3.82
XBCA 1(1) 000000000000 0.00000000 0.00 0.00
XBCF(STACK) 16(8) 000000076217 0.00008957 13.12 1.33
TOTAL CALLS 41 000000457462 0.00043663 63.96 6.49

TOTAL SEDOUT 000000732404 0.00068243 99.97 10.15

Page 19

Visual Data ApS

ROUTINE CALLS(NEST) QUANTUM TICS CPU.SUPS SEDFND % FUNC %
SEDFND 1 000000061561 0.00007150 76.20 1.06
XBCA(STACK) 1 000000007403 0.00001079 11.50 0.16
PRTADP 1(1) 000000000000 0.00000000 0.00 0.00
XBCF 1(1) 000000000000 0.00000000 0.00 0.00
XBCF(STACK) 1 000000010013 0.00001153 12.29 0.17
TOTAL CALLS 4 000000017416 0.00002233 23.79 0.33

TOTAL SEDFND 000000101177 0.00009383 99.99 1.39

ROUTINE CALLS(NEST) QUANTUM TICS CPU.SUPS SEDSHW % FUNC %
SEDSHW 4 000000106327 0.00010127 53.36 1.50
XBCA(STACK) 4 000000036533 0.00004412 23.24 0.65
XBCF(STACK) 4 000000036667 0.00004437 23.38 0.66
TOTAL CALLS 8 000000075422 0.00008850 46.62 1.31

TOTAL SEDSHW 000000203751 0.00018977 99.98 2.82

ROUTINE CALLS(NEST) QUANTUM TICS CPU.SUPS SEDVAL % FUNC %
SEDVAL 1 000000211441 0.00019784 74.49 2.94
XBCA(STACK) 2 000000017452 0.00002241 8.43 0.33
PVASCB 2 000000017244 0.00002203 8.29 0.32
XBCF(STACK) 2 000000020146 0.00002329 8.77 0.34
TOTAL CALLS 6 000000057064 0.00006774 25.49 1.00

TOTAL SEDVAL 000000270525 0.00026558 99.98 3.95

ROUTINE CALLS(NEST) QUANTUM TICS CPU.SUPS SEDFNC % FUNC %
SEDFNC 1 000000136322 0.00013578 66.27 2.02
XBCA(STACK) 3 000000027566 0.00003412 16.65 0.50
XBCF(STACK) 3 000000030242 0.00003497 17.06 0.52
TOTAL CALLS 6 000000060030 0.00006910 33.71 1.02

TOTAL SEDFNC 000000216352 0.00020488 99.98 3.04

ROUTINE CALLS(NEST) QUANTUM TICS CPU.SUPS SEDCLS % FUNC %
SEDCLS 1 000000021315 0.00002502 24.16 0.37
XBCA(STACK) 2(1) 000000007405 0.00001080 10.42 0.16
PFEDIT 1 000000047754 0.00005747 55.48 0.85
XFSLK 1(1) 000000000000 0.00000000 0.00 0.00
XFSWU 1 000000007115 0.00001028 9.92 0.15
PROTOC 1(1) 000000000000 0.00000000 0.00 0.00
XBCF(STACK) 1(1) 000000000000 0.00000000 0.00 0.00
TOTAL CALLS 7 000000066476 0.00007855 75.82 1.16

TOTAL SEDCLS 000000110013 0.00010358 99.98 1.54

ROUTINE CALLS(NEST) QUANTUM TICS CPU.SUPS SEDPAG % FUNC %
SEDPAG 1 000000315347 0.00029548 29.90 4.39
XBCF(STACK) 13(10) 000000026767 0.00003305 3.34 0.49
XBCA(STACK) 12(10) 000000016712 0.00002142 2.16 0.31
PRTADP 4 000000035622 0.00004283 4.33 0.63
XBCA 1 000000010133 0.00001176 1.19 0.17
XFSRL 1 000000007560 0.00001110 1.12 0.16
PFDM04 9 000000104310 0.00009835 9.95 1.46
PFEDIT 10 000000502321 0.00046368 46.93 6.89
PROTOC 10(10) 000000000000 0.00000000 0.00 0.00
XDFWR 1 000000007063 0.00001021 1.03 0.15
TOTAL CALLS 61 000000741352 0.00069243 70.05 10.30

TOTAL SEDPAG 000001256721 0.00098791 99.95 14.69

Page 20

Visual Data ApS

ROUTINE CALLS(NEST) QUANTUM TICS CPU.SUPS PXCRTO % FUNC %
PXCRTO 1 000000027533 0.00003405 22.62 0.50
XBCA(STACK) 3(2) 000000010114 0.00001171 7.78 0.17
XTRANO 1 000000100640 0.00009321 61.92 1.38
MCBOUT 2(2) 000000000000 0.00000000 0.00 0.00
XTFLWF 1(1) 000000000000 0.00000000 0.00 0.00
XBCF(STACK) 3(2) 000000010015 0.00001154 7.66 0.17
TOTAL CALLS 10 000000120771 0.00011647 77.36 1.73

TOTAL PXCRTO 000000150524 0.00015052 99.98 2.23

TOTAL RDMP 000011101570 0.00672177 99.94

Nested ACB calls
ACB routine calls are often nested whereby one ACB routine calls another ACB routine before returning. To
avoid counting the CPU time as part of both of the nested ACB routines, the CPU time for the nested call is
set to zero. The number of nested calls made to a routine is shown within parentheses in the display.

ROUTINE CALLS(NEST) QUANTUM TICS CPU.SUPS MYPROG % FUNC %
PXCRTO 1 000000027533 0.00003405 22.62 0.50
XBCA(STACK) 3(2) 000000010114 0.00001171 7.78 0.17

In this example, XBCA(STACK) was called 3 times with 2 of them being nested calls. This indicates that the
total CPU time spent in XBCA (0.00001171) was the result of 1 direct call.

Page 21

Visual Data ApS

The SUBS Performance Report
The SUBS Performance Report provides more detail by breaking down all of the Basic Mode HVTIP
programs into their main and mapped-in subroutines. This will assist you in determining if Advanced
Performance Traces should be used to further breakdown the analysis on an internal subroutine level.

In the below report, the Performance Analysis has been limited to the HVTIP main program SEDINP with
Visual Performance being requested to display all mapped-in subroutines by using the SUBS option.

TRCE: TIP$*T$VUELKB(5). SEDINP/PERF/SUBS
............................ PERFORMANCE ANALYSIS
ROUTINE CALLS(NEST) QUANTUM TICS CPU.SUPS SEDINP % FUNC %
SEDINP 1 000000741322 0.00069236 43.63 10.30
XBCA(STACK) 1 000000010063 0.00001164 0.73 0.17
PFNBAS 1 000000007566 0.00001111 0.70 0.16
PFDM03 20 000000227273 0.00021769 13.71 3.23
PFMA13 1 000000011132 0.00001319 0.83 0.19
PFMA04 3 000000032354 0.00003805 2.39 0.56
PFMA01 1 000000010127 0.00001175 0.74 0.17
XBCF(STACK) 1 000000007351 0.00001072 0.67 0.15
TOTAL CALLS 28 000000332352 0.00031418 19.77 4.67

SEDINP(SEDXBC) 4 000000061067 0.00007062 4.45 1.05
XBCA(STACK) 4 000000037520 0.00004552 2.86 0.67
XBCA 4 000000036703 0.00004441 2.79 0.66
XBCF(STACK) 4 000000036526 0.00004410 2.77 0.65
TOTAL CALLS 12 000000135151 0.00013404 8.42 1.99
TOTAL SEDINP(SEDXBC) 000000216240 0.00020467 12.87 3.04

SEDINP(SEDFD) 11 000000127664 0.00012634 7.96 1.87
XBCA(STACK) 11 000000126677 0.00012494 7.87 1.85
XBCF(STACK) 11 000000126335 0.00012430 7.83 1.84
TOTAL CALLS 22 000000255234 0.00024924 15.70 3.70
TOTAL SEDINP(SEDFD) 000000405120 0.00037559 23.66 5.58

TOTAL SEDINP 000002117254 0.00158682 99.93 23.60

When an Advanced Performance Trace is analyzed, any separately monitored internal subroutine will be
shown in the SUBS report as if they were a mapped-in subroutine. This includes having separate counters
and CPU times for all of its ACB and FLSS calls.

Due to the nature of Extended Mode programs, they cannot be automatically broken down into the main
program and linked in Object Modes in the same way as Basic Mode programs can be analyzed. However,
you can select an entire Object Mode or any internal subroutine within an Object Mode to be separately
analyzed in the Performance Reports. (See Setting up Advanced performance Traces)

Page 22

Visual Data ApS

The CALLS Performance Report
The CALLS Report is used to report on the total number of ACB and FLSS calls that were made along with
their associated CPU usage. It should be used when you want to analyze the performance of an ACB or
FLSS routine rather than of a specific transaction.

TRCE: TIP$*T$VUELKB(5). PERF/CALLS
............................ PERFORMANCE ANALYSIS
ROUTINE CALLS(NEST) QUANTUM TICS CPU.SUPS HVTIP %
HVTIP 000004550077 0.00346336 51.52
XTFLWR 1 000000010663 0.00001272 0.18
PRGZOM 1 000000004547 0.00000676 0.10
XBCA(STACK) 85(21) 000000760451 0.00071418 10.62
XBCA 10(1) 000000106110 0.00010087 1.50
XBCF(STACK) 84(21) 000000752323 0.00070531 10.49
PFNBAS 13 000000145121 0.00014548 2.16
PFDM03 31 000000356340 0.00034292 5.10
PFMA13 1 000000011132 0.00001319 0.19
PFEDIT 19 000001035043 0.00077816 11.57
PFMA04 3 000000032354 0.00003805 0.56
PFMA01 1 000000010127 0.00001175 0.17
PRTADP 5(1) 000000035622 0.00004283 0.63
XBCF 5(1) 000000035712 0.00004299 0.63
PFDTSD 1 000000010121 0.00001173 0.17
PVASCB 2 000000017244 0.00002203 0.32
PVOCTA 3 000000030045 0.00003462 0.51
PFDM04 10 000000114344 0.00010994 1.63
XFSLK 1(1) 000000000000 0.00000000 0.00
XFSWU 1 000000007115 0.00001028 0.15
PROTOC 11(11) 000000000000 0.00000000 0.00
XFSRL 1 000000007560 0.00001110 0.16
XTRANO 1 000000100640 0.00009321 1.38
MCBOUT 2(2) 000000000000 0.00000000 0.00
XTFLWF 1(1) 000000000000 0.00000000 0.00
XDFWR 1 000000007063 0.00001021 0.15
TOTAL CALLS 294 000004331471 0.00325840 48.37
--
TOTAL RDMP 000011101570 0.00672177 99.89

Because all of the Performance Analysis Reports are produced from the same trace file, their data
completely relates to one another for comparison purposes. The various reports can assist by providing
statistics in many ways so that a transaction can be properly analyzed and areas for improving the code can
be identified.

Help Requests
You can request online help to assist you in formatting your requests for viewing the Usas trace file by
entering the following:

TRCE: [qualifier*]filename. HELP

This will display general input formats for the TRCE: functionality.

Page 23

Visual Data ApS

TTable of Contents

ENHANCED USAS TRACING ... 3
THE DEFAULT TRACE OUTPUT FORMAT .. 3
ADDITIONAL TRACE OUTPUT FORMATS .. 3
TRACE FILE USAGE .. 4
TRACE FILE OVERVIEW ... 4
PROGRAM FILTERING .. 4
FUNCTION CODE FILTERING .. 4
ABSOLUTES OR ZOOMS READ DURING TRACE ANALYSIS .. 5
THE SYSTEM AND PERSONAL SEARCH PATHS .. 5
COMBINING TRACE WITH THE ENHANCE PAGING FUNCTION (RPAG) .. 5
VISUAL BREAKPOINT TRAPS ... 6
SETTING LINE NUMBER TRAPS .. 7
SETTING HVTIP PROGRAM TRAPS .. 8
SETTING SUBROUTINE TRAPS .. 9
SETTING ADDRESS TRAPS ... 9
SETTING VARIABLE OR D-BANK TRAPS .. 9
SETTING SNAPS ... 10
SETTING VARIABLE SNAPS ... 10
SETTING DBA OR PDB SNAPS .. 11
SETTING ADDRESS OR VA SNAPS ... 12
FORCING ABORTS AT THE RIGHT SPOT AT THE RIGHT TIME ... 12
FORCING ABORTS WHEN A MEMORY LOCATION GETS DESTROYED ... 12
DYNAMIC PRTADP CALLS ... 13
DEFINING COMPLEX TRAPS .. 13
MEMORY ALLOCATION AND TRACING .. 14
VISUAL ADVANCED SNAPS ... 14
CONTROLLING THE AP DBA .. 15
VISUAL PERFORMANCE TRACES ... 15
SETTING UP ADVANCED PERFORMANCE TRACES .. 16
CREATING THE PERFORMANCE REPORTS .. 17
THE NORMAL PERFORMANCE REPORT ... 18
NESTED ACB CALLS ... 20
THE SUBS PERFORMANCE REPORT .. 21
THE CALLS PERFORMANCE REPORT ... 22
HELP REQUESTS.. 22

TTABLE OF CONTENTS ... 23

