ESKORT Designer for Clearance

User Guide, Section IV - Formalization
Language

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24

Copyright O 2010 Intracom IT Services Denmark A/S — All rights reserved
Commercial in Confidence

Title:
Document:
Date:

Version:

Author:

Contributions by:

Classification:

Distribution:

Versions:

Printed:

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

DOCUMENT

User Guide, Section IV - Formalization Language

icdk/Application/Designer/UserGuide/4
2011.01.24

111

Marco Dijkstra, Jgrgen Rune Mortensen

Commercial in Confidence

1.0 Initial Version
1.1 Footer changed to Intracom
1.2 Added Parameter TableUsage functions
1.3 Aligned to Intracom Standard
Updated function Reference
1.4 Updated Function Reference
1.5 Updated Function Reference
Minor editorials corrected
1.6 Updated Function Reference
1.7 Updated MDC Language Definition
1.8 Fixed syntax error in example using case
1.9 Removed functions from Clearance which are notedl#o Clearance
1.10 Added section describing ADM.
1.11 Updated Function List according to documentatio@li@arance Workbench
16.05.12
icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 i (V)

Copyright 0 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

Table of Contents

1. L@ YT = PSSP 1
1.1 1070] 01171 o1 1To] o 1< PP EURPTUPRRR 1
2. Understanding GrammMarS........ccccccvviiiiiiiiins aeeeeeeeeeee e 2
2.1 BNF Notation BY EXAMPIE.........uuuiiiieeeees e eitiveiieseeeeeeereeaaaeeeeeessssssssansnssseseeeseeeses 2
A N R b (=] (o1~ PP PP T PRRP 3
N O W | o] o = oY 4
2.2 [N o] =1 1o o I PP PRRP TP 4
2.3 AdItIONAl RESOUITESeiiiiiiiiiiiie ettt e e e e et e e e e e e nneee 4
3. Rule FOrmalization..............uuuiiiiiiiiiiiiiis e 5
3.1.1 Sample environment and formalizationeeeeeeeeeeieiiie e e 5
3.1.2 Terminal SYMBDOIS.......cccciiieiiieieeeee st e e e e e e e e e e e e e e e e e s e s s e s s rrrreraeaaaaeaaaaaas 5
0 I T Y- T o] [= L | O 6
3.2 SPECIHYING RANGES ..evtiiiiiiiiiiiiee ettt eeaeae e s e e s ae s snennreees 6
3.2.1 EXAMPIE Of RANGES ..evviiiiiiiiiiieie e e e e e e e et e et e s sttt aeeeeeeeeaeaeeesassnnnnnnnnnes 7
3.2.2 Using a ‘dummy’ Member in RANGEScccccceemeeeee et e e e e e e e 8
3.3 Defining Derived MEMDEISttt e e e e e e e aeeas 9
3.3.1 Scope Of Derived MEMDEISooiiiiiiiii e e e e e e e e 10
3.3.2 Type of Derived MEMDEISt 11
3.3.3 Derived members in the RANGES eteereeeeeeeeeeetaaaaaaaaaaaaesaaaaaannseeeeees 12
3.3.4 Anonymous Derived Members
3.4 D= T oL gV T 11 =T £
3.5 = T gV T U] O
3.5.1 Using Measures from more than one Cube........cccccvvviiiiieeiiee e 18
3.5.2 USING TUPIES IN RUIESccevieeeee et e e e e 19
3.6 Creating ODSEIVALIONS........uuuuueeiieeeee s s eeteeeereeeeeaaeaaeaeasessssasssssraarrrrreeraaaaaaeases 20
3.7 ACHIVALE Areas OF RUIEScoiiiiiiiiii s ettt e e e ee e e e s eeeeeeane 22
3.8 Choice Constructs
3.9 USING FUNCHONS ...ttt ettt et e e e e e e e e e e e e e e aaaannns
3.10 Including External DefinitioNS.........cooiiiiiiee e 25
3.11 Example of Tuple EVAlUAtIONS.uuuuimmeitietieeie et e e e e e e e e e e eee e 26
3.11.1 Understanding Derived MemDers..........ooii it 27
4. Troubleshooting Formalization Problems............ .o, 30
4.1 Correcting SYNtAX EFTOrS....cuiiiiiiiii et e e e e e e e e ennnenes 30
4.2 Reread the ErrOr MESSAQE ... uuuu e ittt e e e e e e e e e e 30
4.3 Compare With WOorking RUIESuuiiiiiiiiieiiiei et 30
4.4 Examining Error ANNOTAtiONSoooi oo 30
4.5 BUIIA 8 HISTOTY ..ttt eee e 31
4.6 VErify YOUr TESE DALA ...ttt e ettt e e e e e e e e 31
4.7 Look at Intermediate RESUILSoooiiiiieiiiiiie e 31
4.8 TroUDBIESNOOLING ... e e e e e e e ———————————————————— 32
4.9 (0] g1 ¢= Tox 11970 IS U1 o] oo o A O SPP 33
icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 i (v)

Copyright 0 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

Appendix A: MDC Language Definitioncccccc. vooeeiiiiiiiiiee e 34
INOTALION ...ttt et 34
SYMDBOIS ... 34
Terminal SYMDBOIS.......cooo i e e e e e e e e e ee e e a b r e e e araaaaaaaaaan 38

Appendix B: Operator Precedence and Associatively. ... 39
What iS Operator PreCEUBNCE? ..ottt e e e e e e eeee e e e aaaaaaaaens 39
What is operator aSSOCIALIVILY?cooii i it e e e e e e e e e s e e s e e ereeeaaaaeeas 39
Order Of EVAIUALIONccooiiiiiiiiie ettt e e e s st ee e e e st e e e e s snbeneeaeenns 40

Appendix C: Rule EXamPIEScccoiiiiiiiiiiis i 41

Appendix D: Function Referenceccccccoces i 45
ADSVAIUE (AOUDIE X) .ttt ceereet e e e e e e e e e e e s e s e e are e e e e e e e aaeaaeaeeseeaanannnnne 45
ActivateArea (StriNg Ar€aNAIME)........ciiiiiiceeee e e et r e et e e e e e e e ee e aenr e raarneeeeeees 45
Add (TUPLE Measurel, TUPLE Measure2, ..., TUPLE Mea@®N)ccccvvvveeeeeeeiiiiiniiinnns 46
AlIEmpty (TUPLE Measure, string DImensionName)cccccccviiiiiiiiiieeneeceeee e eeeeenns 46
AllZeroOrNOtKNOWN (TUPLE MEASUIE)uueeeiimmmeeeieeeieeeeeeeaeaae e e e e e e e e s aeaessbeeeeeeeaaaaaaa s a7
AnyZeroOrNotKnown (TUPLE MEASUIE)uuiiiceeeeaeee ittt e ee e e e e e e e e e e e e e esennnneees 47
Assign (TUPLE Tuple, ANY_TYPE VAIUE)utiieeeeeei ettt 48
Average (TUPLE Measure, string DIMensioNName)oooiiiieriiiiiiiiiiiiiiiiiieeeeeee e 48
BindMacro (string parameter, UNKNOWN_TYPE MACI0)......cccccttiiiaaariaiiaiiiiiiiiiiiirieeeeead 49
BuildDate (ANY_TYPE date, string modifiCation) w........ccooiiiiiiiiiiiiiiiiiricceece e eeeeesiiens 49
BuildDate2 (ANY_TYPE date, string modification, dble format)ccccociiiiiiieee oo 50
Cardinality (UNKNOWN X)oooiiiuunreninesmmmmesesreeseeseeeereesesseeeessssssssnssnssssssssssssseereeseeeeeeaannn 51
CoNCALSr (SIHING § SLNG) .vvvveeeriiiiiiieeee e ie s e et e e e aeaaaaease s s e s annsnsrrerrenreees 51
(O 10 1 0 o XN (141 4=Te [= 0 o) SR 51
CountToWithKey (integer N, StNQG KEY)......uummmmreeererieeeeeeaiieiie s eesiivnee e reeee e e e s e e s e e s enennns 52
CubeEmpty (StriNg CUDENAME)uuuiiiiiiit ittt e e e e e e e e e e eeeeeeeeeas 52
DateHalfAYearBack (String date)..........oo oo 53
DateToLong (StrNG ate)ceiiii et e e e e et e e e e e e e aaaaeaaa e as 53
DateXYearBack (string date, double NYEArS)...coco...uuiiiiiiiiiiiiiiiieie e 54
DaysBetween (string startDate, String €NADAte)..ccc..coieiiiiieiiiiiiiii e 54
DaysPasSed (StrNG SINCE)uuuuuiiiieii e e e ettt e e et e e e e e e e e e e e e e e anbas e eeeeeeeeas 55
DeActivateArea (String Ar€aNAIME)ccccuueieiiiiie i et e e e e e re e e e e e e e e e e e e s s aaanns 55
() o] I o I q T I (o [0 181 1110 SRS UURRR 55
D] o] oS (g (o (o101 o] 1= 15 PR 56
Difference (double X1, dOUDIE X2)........cciiieeeeeiiiiiiie e e 56
ST aTo | 2= (3 (S (T T o 1= o o | OO 56
ExecuteArea (String Ar€aNAIME)..........uuiiiiieeiae ettt et et e e e e e e e e e e e e s ananb e e eeeeeeeeeeas 57
FilterString (string S, StriNg tHIMCRNAIS) ... oei e 57
FormatNumber (double value, string format)...........cccociiiiiiiiiiee e 57
GetCubeName (CURRENT_CUBE)cuiiiiiiimteae e iteee ettt ettt ibeessnne e sneee e 58
GetNoOfMembers (CURRENT_CUBE, string dimensionNName)...........ccevveeieeaanaaniniiiiiinns 58
GetParamDoubleValue(string USAgeNEaIME)cccuuuiiiiiiiiiiiiiieieee e 59
GetParamintValue (string USageNaIME)uuueeeeeeeiiiiies ittt e e e e e e e e e e e esssnnennenees 59
GetParamsStrValue (String USAgENGAIME)uuueeeeeeereiieeiiiiinnirniieereeeeeeeeeeeeeseessnssnnsnnnnnes 59
GetRandomNo (double min, double MaX)cccceuiiiiiiiiie e 60
INString (string candidate, StrNG S)......cciccccviiiiie e a e e e 60
ISEMPLY (TUPLE MEASUIE)vvvveeeeeeeeeeeees o e eeeeeeeeaeeaeasssssssssssssssssssssssssseseeseseesssssnsannnnssnnes 61

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 iii (v)

Copyright 0 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

ISKNOWN (TUPLE MEASUIE)uttiitieieeeeee et ettt et e et e e aaeaaeaeaaaannsbnsbesbeeeeeeeeeeas 61
ISKNOWNANANOLZEro (TUPLE MEASUIE) ...cccviiiiiieeeeeiiieieeee et e e 62
ISNOtKNOWN (TUPLE MEASUIE) ...ceeeiiieiieeee ettt e e e e e e e e e 62
IsStandardContainerCode (StriNG COUR)imcuuiiiiiiiiiie it e e 63
ISSUDSEL (Set SELA, SEE SEIB)uuiiiiiiieceeeeeiitiie it e e e e e e e e e e s rr e raeaaaaaaaeeaeaaanan 64
ISZEI0 (TUPLE IMEASUIE) ...ttt s e s sttt e e aeeeaaaaeaaeaaessssannnnssnssnnseeeeeaaaaaaaeens 65
ISZeroOrNOotKNOWN (TUPLE MEASUIE)uuuriiiiiiierieeeeeeeeeessessessssantsssneseeeeeeeeaaaaeessesannnnnns 65
LeftStr (string s, double [eNgth)oieee e 66
[aTo o1 o] I (o] g e TRV 11U T SO 66
[To o 3S3 i g (o] o IR = 110 1=) SRR 66
LOWEICASE (SN S).eeeieeeeieiiii ittt e+ o4 e e ettt et ettt e eeeeeaeaaaeaaaaannnsbebbesbneneeeeeaaaaaaaaans 67
Maximum (double X, AOUDIE %)uueeiiiiiiiiee e 1.6
MaXiMUMEIEMENT (SELE S) ...ttt e e e e e e e e e e e e be e e eees 67
MaximumValue (TUPLE Measure, string DimensionName)...........cccccvviiiiiiiieiiiinieeneeeead 68
Minimum (double X, dOUDIE %)oooii e 68.
MINIMUMEIEMENT (SEE S) . eeeeiiiiiiiii e e e e 68
MinimumValue (TUPLE Measure, string DimensionName)...........cceeeeeeeiiiiieeicccinnnnnnnnnnens) 69
NN (o (o T o] 1= 15 S 69
Observation (string Name, Rule Rule, double Likedibd, double Value)ccccvvvvvveeee 69
(@] s [0 g F=T oo [=To I €5 1] o T 2= ISR 70
p (string ParameterTablENGIME)uuuiiimmmerreeeeeeee e e e e e e e see s r e e eaae e e s e s e e s s annnnnnees 70
PeriodValue (TUPLE Tuple, string StartDate, striBgdDate)............cccccuvvviiiiiiieiiiiiiiaaaeeeenn, 71
PeriodValueSet (TUPLE Tuple, string StartDate ngrEndDate)..............ooooeiiiiiiiiiiiiiinnneee. 71
Partition (SET Set, string Operator, UNKNOWN Value)...........cccccciiiiiaiiiiiiiiiiiiiieeee 72
pa (string ParameterTabIENGAIME) e oottt e e e e e e e e e e e e e e s eerabb e eeeeeeeeeeeeas 73
py (string ParameterTableName, StriNg YEAI) ..cccee.uuiiiiiiiiiiiiiiiiiiiaeeee e 73
QualifiedAverage (TUPLE Measure, double Threshoktring DimensionName) 74
QualifiedCount (TUPLE Measure, double Threshold ristg DimensionName)ccccceee..... 74
randomsample (AOUDIE FALE)ueuuiiircccec e e e e e e e e e e e s e s s e aeeees 75
Ratio (double argl, double arg2, double arg3, dogiBlrg4)cvveveviiiieeeeeeeeiiiie i ceeeeeee s 75
RatioChange(TUPLE numerator, TUPLE denom, [oNg Y@ar...........ccccccvvvvriiiiereieeeieneeeeennn, 76
RatioDrop (TUPLE numerator, TUPLE denom, loNg Year)..........cccccuvvviriireeeerieeeneeeeeeeeen 76
Ratiolncrease(TUPLE numerator, TUPLE denom, IoNga..........cuvvveviiiiiiieeeeieeiiiiiiiceens 77
RightStr (string s, double [€Nngth)........... e 77
Roundsum (dOUDIE VAIUE)eeiiiiiiiii ittt 78
SetDIiff (SET SEtA, SET SEtB) ...ciiiiiiiiiitiiimeee ettt ettt be et a e sebe e e bbe e e 78
Slope (double Min, double Max, double Step, dotihteshold, double Per, double Valuey9
SoUNdSLIKE (StHNG § SLNG S) -ttt e e e e e e e aaaaaaeee e 30.
StartDate (string period)
YL o1 o1 () 1 o =) SRR
S o] M g To I €51 1 o TR I SESRUURRRRR
SubsStr (string s, double pos, double 1ENGLN) ceeeeeeeeeeeee e 82
10T -V () SO 82
TotalDeVviation (TUPLE MEASUIE)cvviiiiieeieeeeeiiiiieiieeteeeeeeeraeaaeaaaaaasessssssnnsnnsssesseraasaeaaees 82
TotalDeviationPCt (TUPLE MEASUIE)ccoiiii ettt a e e e 83
THMSEIING (SENQG S) . eeeeeeieeiie it ettt ettt e et e e e e e e e e e e e e s e nnnnbesban s e e e eeeeeaaaaanns

UpperCase (string s)
ValidAirWaybillNumber(string awbn)
ValOrZero (double x)

Y1 C S 1] Lo PP PP PP TUPOPPRP
Appendix E: Grammar EXamplesScccoiiiiiiis oo 87
SIMPlEe BNF EXGMPIES ...ttt ettt et e e e e e e e e e et s s e e eeeaeeaaas 87
[0 LT o [ToF= 1A o] o TSP UPUPUTPPPRPT 87
icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 iv (V)

Copyright 0 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

English [anguage SUD-SEL........coooiiiii ettt 87
SIMPIE SHNG EXAMPIE ..ottt e e e e e e aaaaaeens 88
Formalization Language EXAMPIEiuaeieiiieiiiiieiie et e e e e e e e e e e 88
ANSWETS 10 EXEITISES ...eiiiiiiiiieee ettt e e e e e e e e e et e e e bttt e e et e e aaaaaaeeaaeeaaaaaannnes 90
Appendix F: Numeric Display FOrmat.........cccccc. ooviiiiiiiieiciii e 92
e = To (o] o I = Vo PP PRURTRPPTT 93
D] To 1A €100] o] 1T PP UEPURTRPPT 93
Decimal POINt CRArBCIEY ittt e e e e e e et e e e e e e e e e e aaaaaaaaeaaaaaan 93
SCIENLITIC NOTALION ...t e e e et eeeeeaeas 94
FOICE OF MOV SIGN ...ttt ee ettt ettt e e e e e e e e e e e e e s e e anbenbbebbe e e e e eeeaeaaaaaaaaaans 94
I UL To =T (o F TP 94
=T Vo 10T =1 o 1SS 95
YT o] [T =i) o S 95
o T g 1S Y] - SRR 95
FOIMAL <. e e e s e e 96
[0 0= L = o PSP 96
I LT =) = LU LT o T PSR 96
=Y g1 o] 1= PUPRUPURPTRR 96

° LastinfoPage

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 Vv (V)

Copyright 0 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

1. Overview

This document is aimed at establishing a basicngtaleding of the rule formalization language.

1.1 Conventions

Definitions —The first time a specific term or concept is memtid in a relevant subsection it is
printed in italic. If required, further definitionill follow shortly after the first time it is

mentioned and is preceded by an i,

Exercise —Exercises are printed in bold and are precedeah bigoen. =

[Menu] — Menu options, buttons, window and fieldnes are printed within square brackets.
The word option, button, field, dialog/window bethithe word will specify the type.

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 1(98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

2. Understanding Grammars

In the following sections, the syntax of the forigalion language is presented in the so-called
Backus-Naur Form (BNR)otation. Before looking at the formalization laage itself, this
section explains how to read this notation.

2.1 BNF Notation by Example

The BNF notation was developed to specify the syata programming language in a precise,
unambiguous and exhaustive form, callegt@mmarfor the language. This is a pre-requisite
for verification of a program to be done by a cobtapuand can help a user understand the
possibilities provided by a language — in this daserule formalization language.

TBNFis a style of specification used for formaltayxrdescriptions

Although you may not be aware of it, you are prdp&dimiliar with the concept of a grammar
from things you work with naturally on a daily basi

To illustrate, as a user of a spreadsheet prodsath as Microsoft Excel — you must comply
with a specific grammar when specifying formulasdalculated cells.

You may think of it in terms such as:

In a formula | can add, subtract, multiply and dieiusing constants or values from other
cells.

This informal "specification", can be presented enprecisely in BNF notations as follows:

Start Symbol

<expression>

Terminal Symbols
integer denotes a positive integer, e.g. 5 or 10000

cell-address denotes any character between 'AZgrfdllowed by a
positive integer, e.g. Al or B10.

Production Rules

<expression> = <expression> <operator> <expressio
| integer
| cell-address
<operator> =
|/
+

In addition to thestart symbolvhich specifies what is defined by the grammatlfia case an
expression), the specification comprises the dejimof a set oferminal symbolgor just

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 2 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

terminals), and a list gfroduction rulesdr just productions specifying how a valid formula
(expression) can be produced

Each production rule comprisesan-terminal symbd{to the left of "::="), and a specification
(to the right of "::=") of how the symbol can bemmosed. The production rule for <expression>
shows three alternative ways of composing an exmmesNote, that alternative productions are
separated by '[', and typically written on sepdiatss.

The first of these alternatives could be read éftlowing manner:

One way to compose an expression is by concatgnatirexpression, an operator, and
another expression.

The other two alternatives could be read as follows
One way to compose an expression is to write agert
One way to compose an expression is to write aacklress.

Naturally, you will ask: how then do | compose gre@tor? To find the answer to this question
all you need to do is to find the production rdiattdefines <operator>.

This is the second production rule in the gramrAaryou can see, this production rule lists four
alternatives, the first of which could be readta following manner:

One way to compose an operator is to write the kegw.
The remaining alternatives indicate that you cao abke the keywords /, + and — as operators.

Similarly, you can ask: how do | compose a cetlrads? As you can see, the word cell-address
is underlined, indicating that it is a terminal syoh Looking under terminal symbols, you can
find that_cell-address is defined to be any chardo¢tween 'A" and 'Z', followed by a positive
integer.

Using the production rules of the grammar, we cam produce expressions like:
« 5

e 242

« Al

« Al+3

e« 2*Al1+3

Note that in this simple grammar example, the foilg examples areot valid:
e 5

« al

e 3*(2+1)

2.1.1 Exercise

¥ Consider why the last three examples are not yalithis grammar

! Note: to keep the example simple, we have assuhaeall values are integers, and that columns are
referenced by a single character.

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 3 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

¥ Consider what changes would be required in thengrar to make the expressions valid.

2.1.2 Summary

To summarize, when describing a grammar in BNFtiastathe following elements are
involved:

1) A start symbobesignating the non-terminal symbol defined thiotige grammar.
2) A list of terminal symbolslefining how of the grammar.

3) Alist of production ruledefining how eaclhon-terminal symbatan be composed from
keywordsterminal symbols and non-terminal symbols.

2.2 Notation
In the above example, and the remainder of thisichent, the following notation is used:

e Terminal symbols are written underlined (e.g. cbmaor integer).

« Keywords are written in bold (e.githin orif)2.
« Non-terminal symbols are written enclosed in 'd & (e.g. <rulebody> or <action>).
e Alternatives in a production are separated by |'.

* In some instances it is possible to compose a sybbariting nothing. To avoid
confusion, the special notation 'empty' is usetth@se instances.

The definition of <formalization> illustrates this:
<formalization> ::= ‘empty’
| <area_head_members> <areamembers>
The availability of the first alternative allowd@malization list to be empty.

* Inthe BNF fragments, presented in the followingtiems, the notation '..." is used to
indicate that other alternatives than the one piteseare available, as illustrated in the
example below.

<area_head member> =
| let <letbody>

Generally, when fragments are presented, therebwiion-terminals for which the reader is
expected to consult the grammar overview in Appeddifor a detailed definition.

2.3 Additional Resources

Please refer to 'Appendix E — Grammar Examplesdalitional examples explaining BNF both
in terms of simple general examples, and in terheelected constructs of the formalization
language.

2 You can find answers to these exercises in 'Appehd Grammar Resources'.
% Terminal symbols are optionally quoted so that @mgracter, including one used in BNF, can be dfine
as a terminal symbol.

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 4 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

3. Rule Formalization

Rules need to be formalized using the formalizaémmgyuage to be evaluated by the risk
analysis server.

Formalizing rules is a specialized task, which nezguknowledge of the following aspects (in
addition to general knowledge about the relevarK@&ST applications):

« The (internal) multi dimensional representatioieofpayer data (once it has been extracted
from the data warehouse)

* Formalization language (especially regarding hota éebeing accessed)

* The context (environment) in which the knowledgeebis being developed (cubes and their
dimensions).

The following sections focus on the formalizatianduage.

Note that it is important to have read (and undedt the main concepts (such as environment,
knowledge base, cube, member, measure and tugelilaed in [Introduction to Environment]
and [Introduction to Knowledge Engineering], befagading these sections.

Please refer to Appendix A: MDC Language Definitiona complete overview of the grammar
in BNF notation.

3.1.1 Sample environment and formalization

In the following section all examples will be bassdthe generic cubes FormX and FormyY.

Accounts and Years are shared dimensions.

3.1.2 Terminal Symbols

=@ Formis =@ Formiy
o Code o Code
gm0 100
L e & 200 - g 200
...... ﬁ“ duramy ﬁﬂ 300
]ﬁ“ Accounts g 400
]ﬁ“ “Years e B dummy
- Fomi & Accounts
o ItemB B YWears
...... & ltem3 =g Form'
...... ¥ Sales o Item2

The MDC grammar is based on the following spe&ahinal symbols:

identifier

Any sequence of alpha-numeric characters startirtly & non-numeric character (e.g.

MyName, First_Name).
string

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24

5 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

Any sequence of alpha-numeric characters delimitighdl "' characters (e.g. "This is a
string", or "This is \"a string\"").

unsigned-integer

An unsigned integer number constant (e.g. MyNarnst, Name).
real

A decimal number constant (e.g. 1000000 or 0.5).

3.1.3 Sample Rule

The following rule will be used throughout this 8ex to illustrate various aspects of the
formalization language:

within (FormX) for (Accounts, Years)

filter Buss {23, 45, 67, 88}

let dMyMember = Item3 + FormY:ltem2

let dSignificance = (dMyMember - 10000) * py("CITTaxRate", MEMBER_NAME(Years. CURRENTMEMBER))
let dLikelihood = Slope(0.1,0.5,0.05,10000,1000,(dMyMember-10000))

rule R_001
if

(dMyMember > 10000) and Item5=1
then

Call Observation(CURRENT_PROFILE,CURRENT_AREA,dLikelihood,dSignificance).

3.2 Specifying Ranges

The default cube, and the ranges applicable forules within an area, may be specified in the
beginning of an area block using the following syt

<area_head_member> ::=within <withinbody>

<withinbody>

(<cubenamesy for <forbody>

<forbody> = (<sets>)
| FOR_ALL_KNOWN CELLS
icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 6 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

within (FormX) for (Accounts, Years)

filter Buss {23, 45, 67, 88}

let dMyMember = ltem3 + FormY:ltem2

let dSignificance = (dMyMember - 10000) * py("CITTaxRate",MEMBER_NAME(Years. CURRENTMEMBER))
let dLikelihood = Slope(0.1,0.5,0.05,10000,1000,(dMyMember-10000))

rule R_001
if

(dMyMember > 10000) and Item5=1
then

Call Observation(CURRENT_PROFILE,CURRENT_AREA,dLikelihood,dSignificance).

The<cubenamesspecified in the within clause is used asdb&ault cubenamen all
unqualified measures (all measures for which a ralye is not explicitly stated).

The partfor (<sets> specifies theangesfor the evaluation of the rule. The ranges are
specified as a comma-separated sequence of tupbes-salue expressions.

Alternatively, the keywordFOR_ALL KNOWN_CELLS can be specified to indicate that the
rule should be evaluated for all cells in the cdbewhich a value is known. This construct can
be especially useful in very sparsely populatedesub

Ranges specify the tuples that will form the eviiduracontexts for the rule within the area.

Note: All dimensions except the measure dimensionoim the default cube must be in the
ranges

3.2.1 Example of Ranges

To illustrate, if a taxpayer had one account (AJ hree years of data (1999, 2000 and 2001),
then the set of tuples would be:

{A',1999}
{A’,’2000%}
{A',2001%}
within (FormX) for (Account, Years)

The rule will be evaluated for each tuple, whickagd to be the evaluation context for the
evaluation in question. l.e. the rule is evaludtedall Accounts and all Years.

within (FormX) for (Account, {Years.’2000'})

The rule will be evaluated only for the tuple {{&2000}. I.e. the rule is evaluated for all
Accounts but only the specific member ‘2000’ frdme tYears dimension.

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 7 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

within (FormX) for (Account, {Years.LASTMEMBER})

The rule will be evaluated only for the tuple {{&2001'}. l.e. the rule is evaluated for all
Accounts and the last member of the Years dimension

3.2.2 Using a ‘dummy’ Member in Ranges

Sometimes we would like not to evaluate a ruleefbmembers in a given dimension, but on
the other hand, we do not want to explicitly bihd tlimension to a given member either.
Rather we would like to bind the dimension to aatled ‘dummy’ member and then refer to
the correct member(s) in the rule body.

As an example consider the cube with the dimensions
Account, Years, Code and a measure dimension.

In a rule we would like to test that the measum@eS' for the code ‘100’ is the same as code
‘200’. We would like to test the rule for all aceds and all years.

In this case it is not correct to write:

within (FormX) for (Account, Years, Code)

since the rule then will be evaluated for all codes

We could implement the rule as follows:

within (FormX) for (Account, Years, {Code.’100'})
rule
if
Sales = {Code.’200’, Sales}
then
Call Observation(...).

Here the unqualified Sales measure refers to thebonnd in the Ranges (i.e. where Account is
bound to the account currently evaluated, Yea®isd to the year currently evaluated and
Code is bound to code ‘100’). When we want to compawith the value of Sales from code
‘200’ we need to bind the Code dimension to ‘20®téad of the value (‘100") bound in the
range. Therefore we need the tuple:

{Code.’200’, Sales}

The above implementation of the rule is valid anllde the job. Some people however find it

a bit confusing that the Sales measure at one plagequalified and not at other places. In such
cases one can consider to create a ‘dummy’ memhbeiCode dimension and then use this in
the ranges. All references to measures in thebady will then be tuples stating the exact code.

within (FormX) for (Account, Years, {Code.dummy})
rule
if
{Code.’100’, Sales} = {Code.’200’, Sales}

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 8 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

then
call Observation(...).

The various codes together with the dummy membest imel defined in the environment:

=@ Fomi
& Account
S Years

For more information about environments refer tsKORT Designer, Section Il —
Introduction to Environments].

3.3 Defining Derived Members

3 A derived member is a member for which data haseen 'measured’ but for which a
value can be determined through calculation.

Derived members are defined using the let consinutte formalization language.

<area_head_member> ::=
| let <letbody>

<letbody> = <new_member> = <value_expression>
| member <new_member> = <value_expression>
| double <new_member> = <value_expression>
| integer <new_member> = <value_expression>
| string <new_member> = <value_ expression>
|
|

boolean <new_member> = <search_condition>
set <new_member> = <set>

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 9 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

within (FormX) for (Accounts, Years)

filter Buss {23, 45, 67, 88}

let dMyMember = Item3 + FormY:ltem2
let dSignificance = (dMyMember - 10000) * py("CITTaxRate",MEMBER_NAME(Years. CURRENTMEMBER)

let dLikelihood = Slope(0.1,0.5,0.05,10000,1000,(dMyMember-10000))

rule R_001
if

(dMyMember > 10000) and Item5=1

then

Call Observation(CURRENT_PROFILE,CURRENT_AREA,dLikelihood,dSignificance).

The rules in the BNF grammar show us that we can(ay] subtract (-), multiply (*) and divide
(/). Itis also correct to use functions when defignderived members.

3.3.1 Scope of Derived Members

Derived members can be defined in both area aedounalization. If derived members are
defined in an area, all child areas and child ruldisbe able to access them.

See the following example:

dMyMember scope
(Top Area \

let dMyMember = 100

|
/_Iﬁ dAnotherMember scope
Area B Area A
let dAnotherMember = 200
\ dMyMember (100) / \ dMyMember (100) /
(Area C) (Area D)

dMyMember (100) dMyMember (100)
\ dAnotherMember (200) / \ dAnotherMember (200))

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 10 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

BecauselMyMembethas been defined in the top area, it is accesilak child areas. This
does not count falAnotherMembemnyvhich is only accessible in the child areas ‘&, and
‘D’

3.3.2 Type of Derived Members

Just like the members corresponding to data thddusloaded, derived members constructed
via the let construct can have different types. Wiau use the plain let clause — with no type
or with themember type indication — the member is assumed to beubldo

You can specify which type of member you want, dmtuding one of the type keywords
(double, integer, string, boolean), see the follm@xamples:

let string start = SubStr(MEMBER_NAME(CalendarYears. CURRENTMEMBER), 1, 8)

let string end = SubStr(MEMBER_NAME(CalendarYears. CURRENTMEMBER), 10, 8)

let boolean PPDecrease = (PP < ValPrevPeriod(PP,1))

The types double, integer and string — corresptmtise member data types described in
[ESKORT Designer, Section Il — Introduction to Enaviment] section Creating Members.

3.3.2.1 Boolean Members

The type boolean can be used for members thataesio true or false. This allows you to
define part of a condition as a boolean member.

To illustrate, you could define a member:
let boolean IsLarge = (Turnover > 1000000) and (NumberOfEmployees > 50)

and then refer to it in the rule condition

if
IsLarge = true
and ...

3.3.2.2 Sets

The type set allows you to define a set of memtibed,can be used in places where you are
required to provide a set, e.g. in the for clausz mle.

To illustrate, you could define a set:

let set LastCalendarYears =
{{CalendarYears.'20010101-20011231"}, { CalendarYears.'’20020101-20021231'}}

and then use it in the for clause of a rule:

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 11 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

within (BasicInfoYear) for (Accounts, LastCalendarYears)

The let set construct is often used in conjunciuith the Kbinclude mechanism. See [ESKORT
Designer, Section V — Defining and Releasing Tagksinore information about Kbincludes.

3.3.3 Derived members in the Ranges

Derived members can also be used in the rangé® otite:

within (FormX) for (Accounts, { Years.YearsTotal })

The derived member YearsTotal of the dimension ¥ eaust therefore be defined in a parent
area to the rule.

E.g. In the top area of the knowledge base it inéé as:

let Years.YearsTotal = SUM(Years)

3.3.4 Anonymous Derived Members

By using Anonymous Derived Members (ADM) it is pib$s to use derived members directly
in coordinates without first specifying any letistaent. An example of this is shown below.

if ({ IsPackages::SUM(IsPackages), SadlsPackages:gross_weight } > 1000) then
The syntax used in the coordinate above is a mgi@ithe statements below:

let x = SUM(IsPackages)
let total_gross_weight = { x, SadlsPackages:gross_weight }

if(total_gross_weight > 1000) then

The difference between the two examples is thttérlast example a temporary namgi$
used to define a derived member which is the SUlheflsPackages anotal_gross_weight
is used to define a derived member which is the Sl gross weights; whereas the first
example defines the SUM on the gross weights inliaeevhich omits the temporary hames,
hence it is defined using anonymous derived members

It is also possible to specify ADM without usinggaggation functions such as SUM. An
example of this is shown below.

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 12 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

if ({ IsPackages::SUM(IsPackages), iif(SadlsPackages:gross_weight > 1000, 1,0) } > 5) then

In the example above the rule evaluates to trtheeife are more than 5 IsPackages with a gross
weight more than 1000kg. The coordinate in the gtarabove is composed by two ADMs —
one defining the SUM and another defining the comdifor the IsPackages which shall be
counted.

3.3.4.1 Syntax

The syntax when using ADM introduces double colevtsch is used to specify the contexts on
which the ADM is defined.

The figure below shows the basic syntax of ADM.

| SadlsPackages ‘::‘ SadlsPackages || SadlsPackages H '(31) Gross Weight' |

Target Cube Source Cube Source Dimension Source Measure

When making a derived member the part before thibldacolon (::) defines the target cube.
The target cube is the cube which will be extertgethe new, derived member.

The subsequent parts are used for specifying tlzsune which is included in the calculations.

The part before the single colon (:) defines theaaf the source cube, the part before the dot
(.) specifies the dimension in the source cube¢ally the measure dimension) and finally the
part after the dot (.) specifies the name of thasuee.

In most situations you do need to specify the cetepfjualified source, e.g. the name of the
measure dimension shall always the same name aslbike The system recognizes this; hence
the specification can be reduced to the form shio@aw.

| SadlsPackages ‘::‘ SadlsPackages || '(31) Gross Weight' ‘

Target Cube Source Cube Source Measure

As seen in at the figure the target cube can bendubm of an equation rather than directly in
front of a measure. This is used to indicate thatdoordinate value that it represents is in the
specific cube. This is shown in the figure below.

| SadGsAttachments |:: {‘ iif(| SadGsAttachments:'(44) Certificate Type'="ABC" | E)‘)

Target Cube Source Equation

3.4 Defining Filters

Filters applicable to an area may be specifiethéntteginning of an area block. A filter clause
ensures that the rules within the area are onljuated when the taxpayer data fulfils the filter
expression (e.g. that the taxpayer is registerdthaisig one of the stated business types or
industry codes).

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 13 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

Filters are specified using the following syntax:

<area_head _member> ;= ...
| filter <filterbody>

<filterbody> = <filter_id>{ <filter_set>}

within (FormX) for (Accounts, Years)

filter Buss {23, 45, 67, 88}

let dMyMember = Item3 + FormY:ltem2
let dSignificance = (dMyMember - 10000) * py("CITTaxRate",MEMBER_NAME(Years. CURRENTMEMBER))
let dLikelihood = Slope(0.1,0.5,0.05,10000,1000,(dMyMember-10000))

rule R_001
if

(dMyMember > 10000) and Item5=1

then

Call Observation(CURRENT_PROFILE,CURRENT_AREA,dLikelihood,dSignificance).

The filter used in the rule above implies thatthle will only be evaluated for the business
types 23, 45, 67 and 88.

Note that filters must be defined in the environtrteefore they can be used. Filter values can
either be stated explicitly or be available in pasate database. Refer to [ESKORT Designer,
Section Il — Introduction to Environments] for mangéormation.

EI%‘ Tag Types
B Sic
=% Buss

3.5 Defining Rules

Rules are defined using the rule definition corwf the formalization language.

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 14 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

<areamember> ::=rule <rulescope>

<rulescope> == <rulebody> <end_rule>
| <start_named_rule> <rulebody> <end_rule>

<start named_rule> := <rule identifier>

<rule_identifier> = _identifier

<end_rule> =

<rulebody> .= If <search_conditionthen <action_list>

within (FormX) for (Accounts, Years)

filter Buss {23, 45, 67, 88}

let dMyMember = ltem3 + FormY:ltem2

let dSignificance = (dMyMember - 10000) * py("CITTaxRate", MEMBER_NAME(Years. CURRENTMEMBER))

let dLikelihood = Slope(0.1,0.5,0.05,10000,1000,(dMyMember-10000))

rule R_001
if

(dMyMember > 10000) and Item5=1

then

Call Observation(CURRENT_PROFILE,CURRENT_AREA,dLikelihood,dSignificance).

Note that according to the BNF grammar it is vaédidhave an unnamed rule (i.e. the rule name
is not stated after theile keyword):

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 15 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

(dMyMember > 10000) and Item5=1
then

Call Observation(CURRENT_PROFILE,CURRENT_AREA,dLikelihood,dSignificance).

Consider the following rules from the BNF grammar:

<action_list> = 'empty’

| <action>

| <action_list>; <action>
<action> := call <oleidentifier>(<param_list>)

The production rules tell us that the followingerwvould be valid as well (as far as the syntax is
concerned):

rule R_001
if

(dMyMember > 10000) and Item5=1
then

Call Observation(CURRENT_PROFILE,CURRENT_AREA,dLikelihood,dSignificance);
Call Observation(CURRENT_PROFILE,CURRENT_AREA,dLikelihood,dSignificance).

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 16 (98)

Copyright 0 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

In this case, two observations are created if ttimglition in the rule is met. However, this is an
odd example since it would create two identicalenastions. In a typical situation, each
observation would apply to a different profile, lilifferent measures.

The following rules explain the non-terminal symkekarch_condition>which for example
reflects the syntax of the (important) conditiortlod rule:

<search_condition> := <boolean_term>
| <search_condition®r <boolean_term>

<boolean_term> ::= <boolean_factor>
| <boolean_term>and <boolean_factor>

<boolean_factor> ::= <boolean_primary>
| not <boolean_primary>

<boolean_primary> := <value expression> <comp_ealue expression>
| (<search_conditiony
| <function_identifier>(<param_list>) <function_end>

<comp_op> = <>

The rules allow complex conditions. The grammasvadl use of operators including =, <>, >, <,
>=, <= as well as ‘and’, ‘or’ and ‘notlt also allowsuse of functions.

See the following example:

within (FormX) for (Accounts, Years)

filter Buss {23, 45, 67, 88}

let dMyMember = ltem3 + FormY:ltem2

let dSignificance = (dMyMember - 10000) * py("CITTaxRate", MEMBER_NAME(Years. CURRENTMEMBER))
let dLikelihood = Slope(0.1,0.5,0.05,10000,1000,(dMyMember-10000))

rule R_001
if

|(dMyMember > 10000) and Item5=1

then

Call Observation(CURRENT_PROFILE,CURRENT_AREA,dLikelihood,dSignificance).

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 17 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

In this example the rule creates an observatidivifMember (as defined as a derived member)
is greater than 10000 and if Item5 (of cube ForimeGause this is the default cube of the rule)
is equal to 1.

3.5.1 Using Measures from more than one Cube

All unqualified measures (all measures for whidubename is not explicitly stated) in a rule
refer to measures in the default cubename.

It is possible to refer to measures from other suban the default cube. If this is the case the
cubename must be stated:

<cubename> : <identifier>

within (FormX) for (Accounts, Years)

filter Buss {23, 45, 67, 88}

let dMyMember = ltem3 + FormY:ltem2

let dSignificance = (dMyMember - 10000) * py("CITTaxRate",MEMBER_NAME(Years. CURRENTMEMBER))
let dLikelihood = Slope(0.1,0.5,0.05,10000,1000,(dMyMember-10000))

rule R_001
i

(dMyMember > 10000) and ltem5=1
then

Call Observation(CURRENT_PROFILE,CURRENT_AREA,dLikelihood,dSignificance).

As seen in the example dMyMember is the sum of 3ténmm default cube (i.e. FormX) and
Item2 from FormY. References to other cubes catoofse also be done in the condition part
of the rule.

When referring to measures from another cube dimple way one must ensure that the cube
has dimensions that match the default cube. THidbwithe case if the cubes have the same
dimensions except the measure dimension, of i€tes have dimensions that can be extended
into each other.

If the cube that is not the default cube has atlieension that is not covered of the above,
these dimensions must be bound in a tuple, se®e:b.2.

Example:

Dimension of default cube 'Dimensions of other cube |Use Cube:Measure?

Accounts, Years Accounts, Years Yes
Yes, if dimension Months has attribute

Accounts, Years Accounts, Months BuildExtender = ‘yes’ and measure
dimensions has attribute ExtendControl

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 18 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

other than *no_control’.

Typically one would set the ExtendControl
to ‘aggregate’ and the monthly values from
the second dimension are then added
together.

Yes, if dimension Months has attribute
BuildExtender = ‘yes’ and measure
dimensions has attribute ExtendControl
other than *no_control’.

Typically one would set the ExtendControl
to ‘aggregate’ and the yearly value from
the second dimension are then split into
monthly values.

Accounts, Months Account, Years

Yes.

Even though the other cube does not have
the Years dimension, the dimensions of the
other cube still match the default cube

No

The dimension Years is not bound in the
Accounts Account, Years other cube, and this must be done before

referring to a measure from that cube, see

section 3.5.2

Accounts, Years Accounts

For information about the various ExtendControktyand how they work refer to [ESKORT
Designer, Section Il — Introduction to Environménts

3.5.2 Using Tuples in Rules
Writing a measure in the rule, e.g. Itemb5, is apdifired notation for writing a tuple {'ltem5}.

In some cases it is hot enough just to write thepkfied notation. This will be the case if the
measure we want to refer to is from another culoetlae dimension of that cube does not match
or extend to the dimension of the default cubéhis case we need to write a tuple where we
bind the dimensions that are already bound indhge.

Say that the cube FormY in our example has themhinas: Account, Years, and Code. Then it
is not possible to just write FormY:ltem2 in outere- the Code dimension is not bound to a
value when evaluating the rule. So we must binldl is. however not necessary to bind the
Account and Years dimension of cube FormY, sineg #re already bound in the range.

The member of the Code dimension we bind to coald bderived member, but it could also be
a specific member of the Code dimension.

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 19 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

{FormY:Code.'200', FormY:ltem2}

Say the code dimension has the codes: 100, 2004800and we are interested in the value of
Item2 for code 200, then the tuple would be:

In the case where we want the sum of Item2 foc@dles then we need to define a derived
member on the Code dimension:

(this can be done in the rule formalization or esadormalization on a higher level).
The tuple will then be as:

Another example of using tuples in rules is giveséction 3.11.1.

3.6 Creating Observations
Observations are created using the observation€}ifin in the action part of the rule body.

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 20 (98)

Copyright 0 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

within (FormX) for (Accounts, Years)

filter Buss {23, 45, 67, 88}

let dMyMember = ltem3 + FormY:ltem2

let dSignificance = (dMyMember - 10000) * py("CITTaxRate",MEMBER_NAME(Years. CURRENTMEMBER))
let dLikelihood = Slope(0.1,0.5,0.05,10000,1000,(dMyMember-10000))

rule R_001
if

(dMyMember > 10000) and Item5=1

then

‘Call Observation(CURRENT_PROFILE,CURRENT_AREA dLikelihood,dSignificance). ‘

call Observation(name-of-profile, name-of-area, name-of-measure, name-of-measure)

Note that the number of arguments depends ongherbdel.

Instead of having to write the name of the area GWRRENT_AREA keyword may be used.
call Observation(name-of-profile, CURRENT_AREA, name-of-measure, name-of-measure)

By adding the following line somewhere in the knetlde base formalization (e.g. in the top
area):

profile = “ Non-Compliance”*

You can also use the CURRENT_PROFILE keyword inftilewing manner:

call Observation(CURRENT_PROFILE, CURRENT_AREA, name-of-measure, name-of-measure)

When the Profile is placed in an area formalizgtadhareas and rules below have this Profile at
the CURRENT_PROFILE, unless it has been sat to #ongeelse.

! Note that this is just an example. You can useptbéles available in your system; see [ESKORT
Designer User Guide Section Il — Introduction todvledge Engineering, section 2.3] for information.

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 21 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

— Profile = “Deficiency”

CURRENT_PROFILE =

“Deficiency”
CURRENT_PROFILE =

“Deficiency”

Profile = RiskPoints
CURRENT_PROFILE = CURRENT_PROFILE =
“RiskPoints” “Deficiency”

In the example above, the Profile is sat to “Deficiy” at the top area, and all areas and rules
below will therefore have CURRENT_PROFILE = “Deéiocy” if they do not explicitly set it.
Area C sets the Profile to “RiskPoints” and therel@URRENT_PROFILE = “RiskPoints” for
this area (and any areas and rules below that).

Instead of using CURRENT_PROFILE you may also eup/i state the name of the profile:

call Observation(“ Non-Compliance”, CURRENT_AREA, name-of-measure, name-of-measure)

3.7 Activate Areas or Rules

An action of a rule can also be to activate (oadevate) another area or another rule, i.e. this
area or rule will be evaluated if the rule fireidlis achieved through the functions
ActivateArea and DeActivateArea respectively.

These functions should not be confused with thedstial activation or deactivation of areas as
described in [ESKORT Designer Guide Section llhtrdduction to Knowledge Engineering,
section 2.2.9].

3.8 Choice Constructs

Two choice constructs, the ‘iif’ and the ‘case ...whe then’, are allowed according to the
following rules from the BNF grammar:

<numeric_primary> = ...
| iif (<search_condition> <value_expressionz
<value_expression>

| case<when_list>else <value_expressionend

<when_list> == <when_then>
| <when_list> <when_then>

<when_then> ::= when <search_conditionthen <value_expression>

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 22 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection
User Guide, Section IV - Formalization Language

The following examples show how the constructstzansed to determine the value of the
derived member dLikelihood.

let dLikelihood = iif ((dMyMember - 10000) <= 1000, 0.1, 0.5)

The example above shows the 'iif’ construct (imnageliif).

This construct should be interpreted as followstNfyMember — 10000 is less than or equal to
1000, the dLikelihood is set to 0.1 otherwise dlifk@od is set to 0.5.

The ‘iif’ construct can be used if a value shoudvér one out of two values depending on a
condition.

let dLikelihood = case
when (dMyMember - 10000) <= 1000 then
0.1

when ((dMyMember - 10000) > 1000) and ((dMyMember - 10000) < 3000) then
0.3

when (dMyMember - 10000) >= 3000 then
0.5

else

0

The example above shows the ‘case ...when ... therstaat.

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 23 (98)

Copyright 0 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

This construct should be interpreted as followstNfyMember — 10000 is less than or equal to
1000, the dLikelihood is set to 0.1, otherwiseNfydMember — 10000 is greater than 1000 and
less than 3000 then dLikelihood is set to 0.3, mtise if dAMyMember — 10000 is greater than

3000 then dLikelihood is set to 0.5 otherwise dlifi@od is set to O (but this will actually never

be the case since all possibilities is coverethéndther three cases).

The ‘case ...when ... then’ construct can be usedi#lae should have one out of two or more
values depending on a condition (in the above el@ihphould have one out of three values).

3.9 Using Functions

The grammar of the formalization language alsonadlas to use functions, both to calculate

numeric values and to calculate Boolean values.

<value_expression_primary> ::=
| <numeric_value_function>

<numeric_value_function> ::=
SUM (<set>)
| AVG (<set>) |
| <function_identifier>(<param_list>)

<function_identifier> ::= _identifier

<boolean_primary> = ...
$ <function_identifier>(<param_list>)

See the example below:

within (FormX) for (Accounts, Years)
filter Buss {23, 45, 67, 88}

let dMyMember = Item3 + FormY:ltem2

let dSignificance = (dMyMember - 10000) ’+ py("CITTaxRate“,MEMBER_NAME(Years.CURRENTMEMBER)j

let dLikelihood =‘Slope(0.1,0.5,0.05,10000,1000,(dMyMember-1000O)) \

rule R_001
if

(dMyMember > 10000) and Item5=1
then

Call Observation(CURRENT_PROFILE,CURRENT_AREA,dLikelihood,dSignificance).

The rule uses the 'slope()’ and ‘py()’ functiongrian extensive list of available functions, see

Appendix D.

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 24 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

Functions are useful when more complex calculatesesneeded. The ‘slope’ function is an
example of that (the ‘slope’ function determinestue (e.g. a points score) determined by a
slope).

Function can also be used for parameter lookup frenparameters database. The ‘py’ function
is an example of that.

Some functions are part of the standard systenotrads are local to each project. It is possible
to define local functions on your own (howevessisirongly recommended that only personnel
with programming skills do this).

Functions can be used in both definitions of detimembers (as shown in the above example)
and in the rule formalization.

within (FormX) for (Accounts, Years)

filter Buss {23, 45, 67, 88}

let dMyMember = Item3 + FormY:ltem2

let dSignificance = (dMyMember - 10000) * py("CITTaxRate",MEMBER_NAME(Years. CURRENTMEMBER))
let dLikelihood = Slope(0.1,0.5,0.05,10000,1000,(dMyMember-10000))

rule R_001
i

(dMyMember % p("ROOlVaIue“))‘ and‘ $IsKnown(ltem5)

then

Call Observation(CURRENT_PROFILE,CURRENT_AREA,dLikelihood,dSignificance).

When the result of a function is used as a loggaression (i.erue orfalse) a $-sign needs to
be put in front of the function name, as in $Iskmaw the above example. Not putting the $-
sign in front of the function name would requirecanparison of the return value of the
functions, e.g. IsKknown(...) = 1. Note that this onlgrks for functions returning a Boolean
value, ietrue orfalse

3.10 Including External Definitions

It is possible to include definitions, which haweeh specified in a Kbinclude element specified
for the task being evaluated. Please refer to [EBKOesigner User Guide Section V -
Defining and Releasing Tasks] for information ableoiy to include such an element.

The include clause has the following form:

<area_head _member> ::=
| include <identifier>

Where <identifier> corresponds to the name givethiéoKbinclude element in the task.

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 25 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

3.11 Example of Tuple Evaluations

This section will explain the mechanics of a simpike. It is assumed that the rule operates
within the cube VAT, defined by the cell set:

Coordinate Value
{'341001', '01-1999', 'Sales'} 100,00
{'341001', '02-1999', 'Sales'} 110,00
{'341001', '03-1999', 'Sales'} 130,00
{'341002', '01-1999', 'Sales'} 20,00
{'341002', '02-1999', 'Sales'} 18,00
{'341002', '03-1999', 'Sales'} 25,00
{'341003', '01-1999', 'Sales'} 500,00
{'341003', '02-1999', 'Sales'} 550,00
{'341003', '03-1999', 'Sales'} 540,00
{'341001', '01-1999', 'Purchases'} 40,00
{'341001', '02-1999', 'Purchases'} 45,00
{'341001', '03-1999', 'Purchases'} 50,00
{'341002', '01-1999', 'Purchases'} 10,00
{'341002', '02-1999', 'Purchases'} 10,00
{'341002', '03-1999', 'Purchases'} 15,00
{'341003', '01-1999', 'Purchases'} 200,00
{'341003', '02-1999', 'Purchases'} 250,00
{'341003', '03-1999', 'Purchases'} 270,00

A simple rule using this cube could be:

within VAT for (Accounts, Month)
rule
if
Purchases < 0,5 * Sales
then
call Observation(...).

The first step in evaluating this rule is determinthe set of tuples identified by the range (the
within clause). In this example, the range woulehiify the following tuples:

{341001', '01-19991,
{341001', '02-19991,
{'341001', '03-19991,
{341002', '01-19991,
(341002, '02-19991,
{341002, '03-19991,
{'341003', '01-19991,
{341003, '02-19991,
(341003, '03-1999'}

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 26 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

After this, each of these tuples are processedichatlly.
For each tuple, the condition part of the rulevaleated using the tuple as evaluatimmtext
The following illustrates the processing for theffituple, {'341001', '01-1999%:

In evaluating the condition, the first step will thetermine the value of Purchases. Writing
Purchases as in the rule, is a simplified notatonvriting the tuple {'Purchases'}.

While {'Purchases'} in itself refers to a cell-séth 9 different cells, when combined with the

evaluation context {'341001', '01-1999%, a tugl@41001', '01-1999', 'Purchases'}, emerges,

which identifies exactly one cell. The value of €hases is the value that can be looked up in
this cell: 40,00.

3.11.1 Understanding Derived Members

Consider the following variation of the example a0

within VAT for (Accounts, Months)
let Accounts.AccountsTotal = SUM(Accounts)
rule
if
{Accounts.AccountsTotal, Purchases} < 0,1 * Sales
then
call Observation(...).

Like in the original example, we consider the fiehtext tuple. We have to establish the value
of {'Accounts.AccountsTotal', 'Purchases'}.

Combining with members from the context tuple, & g

{'Accounts.AccountsTotal', '01-1999', 'Purchases'}

Note that this coordinate does not corresponddiayaical cell in the cube. In processing the
tuple, the analysis engine notes that one of thmalmes in the tuple is a derived (or calculated)
member. The engine continues processing this mebybeplacing the member with the
underlying expression.

{SUM(Accounts), '01-1999', 'Purchases'},

which is equivalent to

{SUM('341001', '341002', '341003’), '01-1999', tharses'},

since SUM(Accounts) is equivalent to writing SUMI(I®01', '341002', '341003"). Using the
dimension name is just a simplified notation fetihg all physical members in the dimension.

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 27 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

The derived member is equivalent to

SUM({'341001", '01-1999', 'Purchases’}, {'3410021,-1999', 'Purchases'}, {'341003', '01-
1999, 'Purchases’})

By looking up each of the physical cells, this bareduced to
SUM(40,00, 10,00, 200,00)

Completing the SUM operation yields the value for tuple:
250,00.

To take the example one step further, considevahation:

within VAT for (Accounts, Months)
let Accounts.AccountsTotal = SUM(Accounts)
let VAT.Profit = Sales — Purchases
rule
if
{Accounts.AccountsTotal, VAT.Profit} < 0,1 * VAT.Profit
then
call Observation(...).

Here we have to establish the value of {{AccountsduntsTotal', 'VAT.Profit’}.

Combining with members from the context tuple, eé& g

{'Accounts.AccountsTotal', '01-1999', 'VAT.Profit'}

This coordinate has several derived members.Th@aegntinues processing by choosing one
of the derived members and proceeding as above.

{SUM(Accounts), '01-1999', 'VAT.Profit},

which is equivalent to

{SUM('341001", '341002", '341003'), '01-1999', 'V.RTofit},

The derived member is equivalent to

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 28 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

SUM({'341001', '01-1999', 'VAT.Profit}, {:34100201-1999', 'VAT.Profit}, {341003',
'01-1999', 'VAT.Profit})

Unlike in the above example, the individual tuptas not be looked up directly, since they
contain a derived member ("VAT.Profit'). Instede engine proceeds to reduce these one by
one.

{'341001', '01-1999', 'VAT.Profit'}
Becomes
{'341001', '01-1999', 'Sales - Purchases'}
Which becomes
{'341001", '01-1999', 'Sales'} - {'341001", '01-999Purchase'}

By looking up each of the physical cells, this bareduced to
100,00 - 40,00

Yielding
60,00.

Completing equivalent steps for the remaining tugds, results in
SUM(60,00, 10,00, 300,00)

Completing the SUM operation yields the value fa tuple:
370,00.

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 29 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

4. Troubleshooting Formalization Problems

The following sections are intended as inspiratinrhow to address problems that may occur
during work with the knowledge engineering. Troghieoting by its nature is a creative
process. This section tries to provide inspirabarsteps to take to resolve the problem you
experience.

Errors typically fall into one of the following tee categories:
e Syntax errors

Syntax errors occur when the formalization doesaaibiere to the MDC language
definition.

In Designer you can verify the syntax before reélepa knowledge base.
* Semantic errors

Semantic errors occur when the formalization isdvialit does not correspond to the intent.
Usually this is detected when the observations naael@ot what you expected for a given
taxpayer. This type of error is by far the most own error.

* Execution errors

Execution errors are characterized by the generafian error message during evaluation
of the rule.

4.1 Correcting Syntax Errors

Sometimes you will get a syntax error that is natiediately visible. One approach in this
situation is to start reducing the complexity af thile — e.g. removing one clause at time, or
replacing a complex expression with a simpler.

When the rule is syntactically correct again, yan then reintroduce the complexity again.
Instead of writing the new expressions from scraighintroducing equivalent clauses from a
working rule, and then modify (e.g. changing themher name referenced).

4.2 Reread the Error Message

Read the error message carefully, often is dodgdea hint as to what is wrong, although it
can be cluttered by other information.

4.3 Compare with Working Rules

Find a similar rule that works, or is semanticaiyrect, and look for differences — e.g. a set of
parentheses missing. Consider whether the diffeseaould explain the problem you are
experiencing.

4.4 Examining Error Annotations

Generally the error messages provided by the Desi@n during analysis) include an error
number, and a textual description of the problem.

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 30 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

In the online Help, you will find an entry Errors the Contents. This entry holds links to Error
Annotations and Custom Error Annotations. Generare@nnotations provide annotations for
selected errors of a general nature, while Custmar Bnnotations can provide annotations for
errors specific to you configuration. The contarft€ustom Error Annotations are primarily the
responsibility of you as knowledge engineer.

4.5 Build a History

In general it is recommended that you built a mistf the errors that you have encountered,
and document the way you fixed them. This will hgdp when you encounter the same error at
a later point in time.

4.6 Verify your Test Data

If a taxpayer is selected as test subject basedreporting tool, make sure that the data
available in the report is the same as the datd lng¢he Analysis Server.

If you are not sure you can review data by downlugadbr the taxpayer in Designer or you can
review data by using standard database query tools.

Investigation of a possible error should alwayslbee with the intent of the formalization in
mind and the key data for the taxpayer selectddsasubject at hand.

4.7 Look at Intermediate Results

In some situations, you have a rule that doesireas you expect when you are using [Test in
Testbed]. To find the explanation why the rule @r4s not — firing as expected, you can
temporarily add observation clauses that provifterination on intermediate results.

Consider the following example:

within VAT for (Accounts, Years)
if
Purchases < 0,5 * Sales
then
Call Observation(CURRENT_PROFILE,CURRENT_AREA)1,1

Since the Observation function can be called witlhumeric value, which is displayed on the
observation tab, you can use it to see intermedh&temation. Since the Boolean valuese
andfalseare considered equvalent to 1 and O respectiited/also possible to set intermediate
results of a Boolean nature.

To illustrate, in the above example we could terapty modify the definition to the following:

let booleantl = (0,5 * Sales)
let booleant2 = (Purchases < 0,5 * Sales)

within VAT for (Accounts, Years)
if
1=1or
Purchases < 0,5 * Sales
then
Call Observation(CURRENT_PROFILE,CURRENT_AREA,®drchases);
Call Observation(CURRENT_PROFILE,CURRENT_AREA,1®4les);

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 31 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

Call Observation(CURRENT_PROFILE,CURRENT AREA, 103
Call Observation(CURRENT_PROFILE,CURRENT AREA, 12}
Call Observation(CURRENT_PROFILE,CURRENT _AREA)1,1

Note: the following changes have been made:
The condition has been modified to ensure thatuteealways fires.

Two Boolean derived members have been added: pnesenting the right hand side of the
relational expression in the condition (t1), ané oepresenting the entire relational expression

(t2).

Four new observations have been — using as riskgpdturchases, Sales, t1 and t2. Note that
each have been given a distinct value for likelthoo

You can now use [Test in Testbed] on the modifiexsion of the rule, and go to the
Observation tab. In the observations you can n@ittse intermediate values. Hopefully these
can help you understand why the rule is firing atrfiring.

Before proceeding, remember to remove all the aksngou added.

4.8 Troubleshooting

The following table may help you to troubleshoahaatic errors and execution errors:

Symptom Possible cause Suggested action
No observations were | The status of the rule may| Check the status of the rule in
made be “Under construction” or| the knowledge base.

“Ready-for-Test”
There is an error in the Check the error log on the
formalization syntax. server.

There is a semantic error inTest the rule using the testbed|in

the formalization. Designer and check the
calculation log to trace the
evaluation.
Observations are made| Periodic data is being Review intent of rule, change
for every period. compared to non-periodic | formalization or change
data. environment.

The observations made| There is a semantic error inVerify the evaluation order of
are not what you the formalization. conditions separated by “AND”
expected and “OR”".

Test the rule using the test-beg
in Designer and check the
calculation log to trace the

evaluation.
One of the extract Review extract definitions.
definitions used may not be
correct.
Intent of rule is not Change formalization.
matched by formalization
icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 32 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

The data used were not A change was made to the Change extract definition.
as expected data warehouse structure.
Information is not available Review intent of rule.
in the data warehouse
before a given date. Change formalization to work
after the given date.

4.9 Contacting Support
In case you have an operational support agreely@mi;an contact you support contact.

You should include as much information about trebfgm as needed to understand it. This
could be a description of how you discovered tlubjam, what actions you have taken to
pinpoint the cause and error logs from the analfsiseded. Screenshots, text pasted from the
Designer and attached configuration files might &le relevant.

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 33 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

Appendix A: MDC Language Definition
Revision: 1.49

The following provides a complete overview of the MDC Language Grammar.

Contents:

» Notation

« Symbols
e Terminal Symbols

Notation

The grammar is presented in EBNF, using the following conventions:

Style Meaning

<symbol> Indicates a non-terminal symbol of the grammer (e.g. <area> or <rule>).
keyword Indicates a keyword, syntactical symbol or operator (e.g. within or ;).
string Indicates a terminal symbol (e.g. identifier, string, real or unsigned-integer).
XY Indicates that X and Y are alternatives.

[X] Indicates that X is optional.

X* Indicates zero or more repetitions of X.

X+ Indicates one or more repetitions of X

(XY) Indicates grouping for use with other operaters.

Symbols

area ::=

"area" "{" <areamember> * "}"
| "area”™ <identifier> "{" <areamember> * "}"

derived_area ::=

"area" "{" <areamember> * "}"
| "area”™ <identifier> "{" <areamember> * "}"

area_head_member ::=

"within" <withinbody>
| "let" <letbody>

| "filter" <filterbody>

| "profile" "=" <str>

| "include" <identifier>

areamember ::=

<area head member>

| "rule" <rulescope>
| <derived area>

withinbody ::=
"(" <cubename> ("," <cubename>)* ")" <forbody>

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24

34 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

forbody ::=

empty
I llforll ll(ll <Set> (lI’ll <Set>)* ll)ll
| "FOR_ALL_KNOWN_CELLS"

identifier ::=

<regular_identifier>

regular_identifier ::=
identifierl

uint ::=

uintl

real ::=

reall

str ::=

strl

cubename

<identifier>

dimension
<identifier>
qualified_dimension ::=
<cubename> ":" <dimension>
member ::=

<identifier>

| <dimension> "." <identifier>

| <dimension> "." "FIRSTMEMBER"
| <qualified dimension> "." "FIRSTMEMBER"
| <dimension> "." "LASTMEMBER"

| <qualified dimension> "." "LASTMEMBER"
| <dimension> "." "PREVMEMBER"

| <qualified dimension> "." "PREVMEMBER"
I

I

I

I

I

I

<dimension> "." "NEXTMEMBER"

<qualified dimension> "." "NEXTMEMBER"

<qualified _dimension> "." <identifier>

<cubename> ":" <identifier>

<member value expression>

<dimension> "." "member"|"MEMBER" <member index>

member_index ::=
index_strl
new_member ::=
<member>
tuple ::=

"{" <member> ("," <member>)* "}"
| <member>

set ::=

<set value expression>
| "{" <tuple> ("," <tuple>)* "}"

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 35 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

letbody ::=
<new_member> "=" <value expression>
r w r = valu xpressi
"member"|"MEMBER" <new member> "=" <value expression>
| "double" <new member> "=" <value expression>
| "integer" <new member> "=" <value expression>
| "string" <new member> "=" <value expression>
| "boolean" <new member> "=" <search condition>
| "SET"|"set" <identifier> "=" <set>
filterbody ::=

<identifier> "{" <filter element> ("," <filter element>)* "3}"

filter_element ::=

<uint>
| <str>
| <uint> "-" <uint>

value_expression ::=

<numeric value expression>

numeric_value_expression ::=
<value>
value ::=

<term>

| <value> "+" <term>

| <value> "-" <term>

| "ADD" "(" <value expression> ("," <value expression>)* ")"

term ::=

<factor>
| <term> "*" <factor>
| <term> "/" <factor>

factor ::=

<numeric_primary>
| "+" <numeric primary>
| "=" <numeric primary>

numeric_primary ::=

<value expression primary>

| <numeric value function>

| "iif" "(" <search condition> "," <value expression> "," <value expression> ")"
| "case" <when then> + "else" <value expression> "end"

when_then ::=

"when" <search condition> "then" <value expression>

value_expression_primary ::=

<unsigned numeric literal>

| <character string literal>

"null" |"NULL"

"(" <value expression> ")"

<tuple>

"MEMBER_NAME" "(" <member> ")"
"CURRENT_PROFILE"
"CURRENT_AREA"

"CURRENT_CUBE"

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 36 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

| "CUBE_SET"
| "TRUE"|"true" |"sand"
| "FALSE" |"false"|"falsk"

unsigned_numeric_literal ::=

<exact numeric literal>

character_string_literal ::=
<str>
exact_numeric_literal ::=

<real>
| <uint>

rulescope ::=

<rulebody> "."
| <identifier> <rulebody>

rulebody ::=

"if" <search condition> "then" <action> (";"

search_condition ::=

<boolean_term>

| <search condition> "||"|"or"|"eller" <boolean term>

boolean_term ::=

<boolean factor>

| <boolean term> "&&"|"and"|"og" <boolean factor>

boolean_factor ::=

<boolean primary opt tagged>

| "1"|"not"|"ikke" <boolean primary opt tagged>

boolean_primary_opt_tagged

tagl "(" <boolean primary> ")"

| <boolean primary>
| tagl

boolean_primary ::=

<value expression> =" <value expression>

<value expression> "<>"

<value expression> ">"
<value expression> "<"
<value expression> "@"

<value expression> "l@"

<value expression> "<="

<value expression>
<value expression>

<value expression>

<value expression>

<value expression>
<value expression>
<value expression>

<value expression> "like" <value expression>

<value expression> "in"|"i" <value expression>
ll)ll
"$" <identifier> "(" [<parameter>

"(" <search condition>

numeric_value_function ::=

"SUM"|"AGGREGATE" "("
I II_SUMII ll(ll <Set> ll)ll
I IIAVGII II(II <Set> II)II
I
I

IIMINII II(II <Set> II)II
IIMAxlI ll(ll <Set> ll)ll

I
I
I
I
I
| <value expression> ">="
I
I
I
I
I

<Set> II)II

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24

("," <parameter>

37 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

| llsETllIllsetll ll(ll <Set> ll)ll
| <identifier> "(" [<parameter> ("," <parameter>)*] ")"

set_value_expression ::=

<identifier>

| <dimension> "." "MEMBERS"
| <dimension> "(" <member index> "-" <member index> ")"
| <dimension> "." "EXCEPT" "(" <member> ")"

member_value_expression ::=

<dimension> "."
| <dimension> "." "CURRENTMEMBER"

action ::=
"call" <identifier> "(" [<parameter> ("," <parameter>)*] ")"
parameter ::=

<value>

Terminal Symbols

identifierl

Any sequence of alpha-numeric characters starting with a non-numeric character;
(e.g. MyName, First_Name).

uintl

An unsigned integer number constant;
(e.g. 5 or 3000).

reall

A decimal number constant;
(e.g. 1000000 or 0.5).

strl

Any sequence of alpha-numeric characters delimited with " characters;
A "character in the string is achieved via the escape sequence \".

A \ character in the string is achieved via the escape sequence \\.
(e.g. "This is a string", or "This is \"a string\"").

index_strl

Any sequence of alpha-numeric characters enclosed in square parenthesis [and];
(e.g. [This is an index], or [123]).

index_str2
Not in use!
tagl

A sequence of the form: % <uintl> optionally used to tag simple relational expressions.
(e.g. %1 or %5).

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 38 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

Appendix B: Operator Precedence and Associatively

If no parentheses are used to separate operandththprecedence and associatively of
operators in expression are given in the followaige:

Precedence (1) Operator(s) Associativity Description

1 + - (unary) Left Unary sign operators, like in —3

2 not Right Logical negation.

3 */ Left Multiplicative operators. \ is integer

division.

4 + - (binary) Left Additive operator.

5 <><=>== Left Relative/comparison operators -
<> equality and inequality.

6 and Left Logical and.

7 or Left Logical or.

(1) 1 is highest precedence.

What is operator precedence?

Operator precedence determines which parts of pression are evaluated before the other
parts. For example, the expression

2+2*7

evaluates to 16, not 28, because the * operatoa lhiggher precedence than the + operator.
Thus the 2 * 7 part of the expression is evaluaegdre the 2 + 2 part. If you wish, you can use
parentheses in expressions to clarify evaluatideroor to override precedence. For example, if
you really wanted the result of the expression aliowe 28, you could write the expression
like this:

(2+2)*7

What is operator associativity?

Operator associativity is why the expression 8 23s calculated as (8 - 3) - 2, giving 3, and
not as 8 - (3 - 2), giving 7.

When multiple operators of the same precedenceaagime by side in an expression, the
associativity of the operators determines the ooflevaluation. In EBC based applications, all
operators except the logical negation operatot)(are left-associative.

Examples:

2*5/7isevaluatedas (2*5) /7.

$Isknown(x) and $Isknown(y) and $Isknown(z) is awatked as
($Isknown(x) and $lsknown(y)) and $IsKknown(z) .

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 39 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

Order of Evaluation

After taking into account precedence and parenthése guaranteed that expressions will be
evaluated left to right.

A simple example:
8+3*6—2/4 will be evaluated as (8 + (3 6§2/4)

An example of evaluating a Boolean condition:

dRatio / dindustryAverage < 0.75 and not (“2” = SRBilculationTypeCode) and not (“6” =
SBTCalculationTypeCode)

will be evaluated as
((((dRatio / dindustryAverage) < 0.75) and (i@ = SBTCalculationTypeCode)))
and (not (“6” = SBTCalculationTypeCode)))

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 40 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

Appendix C: Rule Examples

In the following some example rules using varioagpof the formalization language are
explained.

In the examples we assume that we have three cubes:
* IncomeTax with dimensions Accounts, Years and Irebax (measure).
e VAT with dimensions Accounts, Months, VATCode and'V(measure).

» SalesTax with dimensions Accounts, Years, Sales@odeSalesTax (measure).

Example 1
within (IncomeTax¥or (Accounts, Years)
let deviance = (Item6 - Item7) * 100/ltem6

rule Examplel
if
deviance < 10
then
call Observation(CURRENT_PROFILE,CURRENT_AREA,1,2).

The rule used cube IncomeTax as default cube. Tdrerere need to bind the Accounts and
Years dimensions in the ranges. This rule is evetufor all accounts and all years.

This rule defines a derived member called ‘deviarites calculated from the members Item6
and Item7 in the IncomeTax measure dimension. ifhgrates how complex calculations can
be defined as derived members to make the ruleittmmgimpler.

The rule could also be implemented as follows:
within (IncomeTax)or (Accounts, Years)

rule Examplel
if
(Item6 - Item7) * 100/ltem6 < 10
then
call Observation(CURRENT_PROFILE,CURRENT_AREA,1,2).

Example 2

within (IncomeTax¥or (Accounts, Years)

rule Example2

! MEMBER_NAME(Years. CURRENTMEMBER) >= "20000100a01231" and

$lsZeroOrNotKnown (Item4) and
{VAT:VATCode.'220', VAT:Amount1} > 10000

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 41 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

then
call Observation(CURRENT_PROFILE,CURRENT_AREA,1,5).

The rule used cube IncomeTax as default cube. Tdrerere need to bind the Accounts and
Years dimensions in the ranges. This rule is evatligor all accounts and all years.

However the rule will only fire year 2000 and latgince it is put as a condition,
MEMBER_NAME(Years. CURRENTMEMBER) >= "20000101-20®&=IL". This illustrates
how we can get name of the members from the rathgégre currently evaluated.

The rule uses a function, IsZeroOrNotKnown. Sideereturn value is used as a logical
expression it has a $-sign in front — otherwiseneeded to write IsZeroOrNotKnown(...) = 1.

In the rule we use a member from the VAT cube. &ihés cube has other dimensions than the
IncomeTax cube, we need to bind these. Howevekttrghs dimension is automatically
extended into the Year dimension by adding valoeslf months within the year currently
evaluated (The environment has been defined sh#iipens). We then just need to bind the
VATCode dimension which is done by the tuple:

{VAT:VATCode.’220’, VAT:Amount1}

Example 3
within (VAT) for (Accounts, Months, {VATCode.'2007)
filter LoB { 20, 21, 22, 23, 24, 25, 26, 27, 28 }

rule Example3
if
$lsknownAndNotZero(Amount2) and
IncomeTax:ltem7 > 1000
then
call Observation(CURRENT_PROFILE,CURRENT_AREA,1,4).

The rule used cube VAT as default cube. Theref@@@ed to bind the Accounts, Months and
VATCode dimensions in the ranges. This rule is @at&d for all accounts and all months but
only for VATCode = 200.

The rule uses the filter mechanism, so it is onigleated for the taxpayers that fulfill the filter
condition — in this case has a LoB (Line-of-Busg)ecode that is either 20, 21, 22, 23, 24, 25,
26, 27 or 28.

In the rule we use a member from the IncomeTax.cvhedo not need to bind any of the

IncomeTax dimensions, since it has Accounts whidiready bound in the ranges, and Years
which is automatically extended into the Months@nsion (normally by distributing the yearly
value into monthly values). So we can just write theasure from IncomeTax we want to use:

IncomeTax:ltem7

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 42 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

Example 4
within (IncomeTaxYor (Accounts, Years)

let Rate = Item3/ltem9 * 100

let standardRate = py("Rate", MEMBER_NAME(Years. CURRBNEMBER))
let difference = standardRate - Rate

let rp = Slope(1,5,1,0,3,difference)

rule Example4
if
Rate < standardRate
then
call Observation(CURRENT_PROFILE,CURRENT_AREA,1,rp).

The rule used cube IncomeTax as default cube. Tdrereie need to bind the Accounts and
Years dimensions in the ranges. This rule is evetlfor all accounts and all years.

This rule defines four different derived membersider to keep the rule condition very simple.

One of the derived members is a parameter looktipeiparameter database. It is a yearly
parameter lookup (using function ‘py’) and it finte standard rate for the year currently
evaluated.

This rule also uses the slope function to genahateisk points. This illustrates risk points can
vary dependent on e.g. how big a difference betwwervalues is.

Example 5

within (SalesTaxjor (Accounts, Years, {SalesCode.dummy})

let Vall =
case
when MEMBER_NAME(Years. CURRENTMEMBER) < "20000101-20®&=1L" then
{SalesCode.'42', Amount1}
else
{SalesCode.'43', Amount1}
end

let Val2 =
case
when MEMBER_NAME(Years. CURRENTMEMBER) < "20000101-20®&=1L" then
{SalesCode.'63', Amount1}
else
{SalesCode.'66', Amount1}
end

rule Example5
if

Vall > 0.8 * Val2
then

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 43 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

call Observation(CURRENT_PROFILE,CURRENT_AREA,1,2).

The rule used cube SalesTax as default cube. Tdreree need to bind the Accounts, Years
and SalesCode dimensions in the ranges. Thisg@ealuated for all accounts and all years. As
the SalesCode in the ranges we use a “dummy” merinee we explicitly state the
SalesCodes we are interested in in the rule.

The rule defines two different derived members gisive ‘case ...when ... then’ construct. In
our case the SalesCodes has changed in year 200@, rseed to get our values from different
codes dependent on the year, i.e. if the year atedus 1999 or earlier we have:

Vall = {SalesCode.'42', Amount1}
Val2 = {SalesCode.'63', Amount1}
and if the year evaluated is 2000 or later
Vall = {SalesCode.'43', Amount1}
Val2 = {SalesCode.'66', Amount1}

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 44 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

Appendix D: Function Reference

AbsValue (double x)

Description: Returns the absolute value of the paramedeiFor positive values and zero
the result will be the same as the paramedeiHor negative values the result
will be the positive value (the minus sign will moved), i.e. x

Syntax: double AbsValue(double x)
Parameters:

X The double value which absolute value is returned.
Example:

AbsVal ue(-1000)

Returns 1000

AbsVal ue(3.14)
Returns 3.14

ActivateArea (string AreaName)
Description: Activates the area (or rule) specified by the pai@m
Syntax: void ActivateArea(string Arddame
Parameters:

AreaName The name of the area (or rule) which are activated.
Example:

Act i vat eAr ea("MyArea”)

Activates the area (or rule) named “MyArea”.

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 45 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

Add (TUPLE Measurel, TUPLE Measure?2, ..., TUPLE MeasureN)

Description: Adds the specified measures together, ignoring ureaghat ar&lULL .

Syntax: double Add(MeasureMeasure, ..., Measurg)
Parameters:

Measure The i'th measure that added to the total.
Example:

Add(MyMemberl, MyMember2, MyMember3)
Adds together the values kept by the specified nezmb

AllEmpty (TUPLE Measure, string DimensionName)

Description: ReturnsTRUE if all cells identified by the measur®éasurg are empty for
the dimension@imensionNamye

Syntax: boolean AlIEmpty(TUPLBVieasure stringDimensionName
Parameters:
Measure The measure member which are investigated for cifegub

dimension DimensionName

DimensionName The name of the dimension in which the member’sterce is
investigated.

Example:
Al | Enpt y(Taxablelncome, "Years”)

ReturnsTRUE if no measures in the years-dimension exist. § onmore exists the
function returnd=ALSE.

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 46 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

AllZeroOrNotKnown (TUPLE Measure)

Description: ReturnsTRUE when all cells built with the measutdéasurg and all the
ordinary members of the period dimension are NUIMFE'Y or zero.

Syntax: boolean AllZeroOrNotKnown(TUPPLE Measure)
Parameters:

Measure The measure that the function determines whethédreameasures are not
known or is zero.

Example:
Al | Zer oO Not Known(Taxablelncome)

ReturnedlTRUE if no declared taxable incomes are not known bysystem or if all the
declared incomes are zero; otherwkgd SE is returned.

See also:
ISEmpty
IsKknown
IsKknownAndNotZero
IsNotKnown

AnyZeroOrNotKnown (TUPLE Measure)

Description: ReturnsTRUE when any cells built with the measuMdasurg and all the
ordinary members of the period dimension are NUIMFE'Y or zero.

Syntax: boolean AnyZeroOrNotKnown(TUPPLE Measure)
Parameters:

Measure The measure that the function determines whethgofithe measures are
not known or are zero.

Example:
AnyZer oOr Not Known(Taxablelncome)

ReturnedTRUE if any declared taxable incomes are known as zgtbdsystem or if
any the declared incomes are unknown; other®iSeSE is returned.

See also:
ISEmpty
IsKknown
IsKknownAndNotZero
IsNotKnown

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 47 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

Assign (TUPLE Tuple, ANY_TYPE Value)
Description: Sets the valueMalug in the cell identified by the tupl&dgple.
Syntax: void Assign(TUPLETuple ANY_TYPE Valug
Parameters:
Tuple The coordinate of the cell into which the valuassigned.
Value The value that is assigned into the cube.
Example:
Assi gn(StatusCode, "1")

Sets theStatusCodenember in the current context to the value “1”.

Average (TUPLE Measure, string DimensionName)

Description: Returns the average value of measdeasurefor the dimension
DimensionName.

Syntax: double Average(TUPLEeasure stringDimensionNampe
Parameters:
Measure The measure member which average will be calculaxtedthe

specified dimensiorldimensionName
DimensionName The name of the dimension over which the averagel@ilated.

Example:
Aver age(Taxablelncome, "Years”)

Returns the average taxable income over the years.

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 48 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

BindMacro (string parameter, UNKNOWN_TYPE macro)

Description: Binds the name of a parameter to a macro so theoncao be expanded inside

a text.
Syntax: BindMacro(stringParametey UNKNOWN_TYPEMacro)
Parameters:
Parameter The name of the parameter which will be bound éortfacro.
Macro The macro which will be identified by the specifiggrameter name.
Example:
Bi ndMacr o("Volume”, For mat Nunber (volume,

"%G3','%D"."%P2%TZ"))

Formats the value represented by the variablemeand binds it to the parameter name
volume Subsequent the tagp/ol une%can be used in a text — e.g.;

High risk due to a volume of %Volume%
If e.g. the volume is calculated and formatted b4 4he produced text will be:

High risk due to a volume of 41.4

BuildDate (ANY_TYPE date, string modification)

Description: Builds a date by applying one or more modificatsteps (separated by
semicolons) to the base datiai{g passed. The passed base date and the
returned date will be in the formggyymmddr yyyy-mm-dddetermined by
the length of the string).

The following step types are supported:

* [ylgim|/d]<count will add countyears ¥), quartersd), months) or
days €l) respectively.

- fd[[ylgjm] will change date to the first day of ye&dy), quarter {dq)
and monthf@dm) respectively.

Id[[ylgim] will change date to the last dag) of year, quartedd) and month
(Im) respectively.

Syntax: string BuildDate(ANY_TYPE date, string modificatjon
Parameters:

date The base date that is modified.

modification Patterns describing the maodification applied.
Example:

Bui | dDat e(LatestVATReturnDate, "m:-5;fdm”)

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 49 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

BuildDate2 (ANY_TYPE date, string modification, double format)

Description: Builds a date by applying one or more modificasteps (separated by
semicolons) to the base datiaig passed. The passed base date and the
returned date will be in the formggyymmddr yyyy-mm-dddetermined by
the length of the string).

TheBuildDate2function is a copy of thBuildDatefunction — only the
options for the formatting of the result has beeédeal.
The following step types are supported:
* [ylgim|/d]<count will add countyears ¥), quartersd), months) or
days €l) respectively.
- fd[[y|lgjm] will change date to the first day of ye&dy), quarter {dq)
and monthf@dm) respectively.
Id[[ylgim] will change date to the last dag) of year, quartedd) and month
(Im) respectively.
The following formats (specified prmaf) are supported for the resulting
date:
1 yyyymmdd
2 yyyy-mm-dd
3 dd-mm-yyyy
Otherwise | yyyymmdd
Syntax: string BuildDate2(ANY_TYPE date, string modificatiodouble format)
Parameters:
date The base date that is modified.
modification Patterns describing the modification applied.
format A number indicating which format in which the buddte should be
returned.
Example:

Bui | dDat e2(LatestVATReturnDate, "'m:-5;fdm”, 2)

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 50 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

Cardinality (UNKNOWN Xx)

Description: Returns the cardinality of the specified set,the.number of members
contained in the set. If the specified argumentaggnts another type than a set
1 is returned. If the specified argumenNigLL then O is returned.

Syntax: long Cardinality(UNKNOWN x)
Parameters:

X The set which cardinality is determined by the fiorc

ConcatStr (string sq, string S,)

Description: Returns a string which contents is the concatenatighe two argument
strings 6, ands,)

Syntax: string ConcatStr(string s1, string s2)
Parameters:
sl The string which will form the left part of the catenated string
s2 The string which will form the right part of therozatenated string
Example:
Concat eSt r ("The first string”, "The second string”)

Returns the text “The first stringThe second string

CountTo (integer n)

Description: Increases a general counter. If the counter redbleespecified thresholah)
then the counter is reset and the function rettiRIJE. If the threshold is not
reached then the function retuff&LSE.

Hereby it is possible to make a rule which “firegth a fixed specified
interval.

Syntax: boolean CountTo(integer n)
Parameters:
n The threshold at which the counter reset and thetifon returnsSTRUE.

Example:
Count To(36)

Returns th& RUE one out of 36 calls. The other 35 calls retl¥rA& SE.

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 51 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

CountToWithKey (integer n, string key)

Description: Increases the counter identified by the specifiey key). If the counter
reaches the specified threshatjl then the counter is reset and the function
returnsTRUE. If the threshold is not reached then the functetarns
FALSE.

Hereby it is possible to make a rule which “firegth a fixed specified
interval.

By giving the counter a key it is possible to hawdtiple counters configured
each having a current count and threshold.

Syntax: boolean CountToWithKey(integer n, string key)

Parameters:
n The threshold at which the counter reset and thetiion returnsTRUE.
key The name by which the counter is identified.

Example:
Count ToW t hKey (36, "MyCounter”)

Returns th& RUE one out of 36 calls by the key “MyCounter”. Théert 35 calls returns
FALSE.

CubeEmpty (string CubeName)
Description: ReturnsTRUE if the entire cubeGubeNamgis empty.
Syntax: boolean CubeEmpty(strifgubeNamg
Parameters:
CubeName The name of the cube which is investigated.
Example:
CubeEnpt y("MyCube”)
ReturnsTRUE if the cube named MyCube is empty; othervige SE is returned.

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 52 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

DateHalfAYearBack (string date)

Description:

Syntax:
Parameters:
date

Example:

Returns the date that is half a year earlier tharspecified datedte).
Both the specified date and the returned datetgftmatYYYYMMDD

The specified date is a string which is assumdibtd a date in the leftmost 8
positions. This means that valid arguments arefofra YYYYMMDDor
YYYYMMDDBYYYYMMDD

If the specified date is an empty string, thendleent date is used.
string DateHalfAYearBack(“19660714")

The date which is used as offset for determinimgdite a half year back.

Dat eAHal f Year Back(MEMBER_NAME(CalendarYears. CURRENTMEMBER))

DateTolLong (string date)

Description:

Syntax:
Parameters:
date

Example:

Converts the specified datgate from a string to an integer value) (
calculated as:

n=10000YYYY+100(MM + DD
If datespecifies an invalid date then O is returned.
long DateToLong(“19660714")

The date which is converted into an integer valledatemust be a string
of either the length 8 or 10.

If the string is 8 characters long the date mustpgeeified at the following
format:

YYYYMMDD

If the string is 10 character long the date mustgeified at the following
format:

YYYYMMLDD, wherel] can be any character.

Dat eToLong("2010x05x04")
Returns the integer value 20100504

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 53 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

DateXYearBack (string date, double nYears)

Description: Returns the date that is the specified number afsy@Year$ earlier than the
specified datedate.

The returned date has the formarYYMMID.

If dateis an empty string, then current date is useeaust

Syntax: long DateXYearBack(string date, double nYears)
Parameters:
date The date from which the number of years are witldrbefore the final

date is returned.

Thedateargument is a string which is assumed to holdte itethe
leftmost 8 positions. This means that valid argutsi@ne of a form
YYYYMMDDor YYYYMMDDBYYYYMMDD

Example:
Dat eXYear Back("20100504", 3)

Returns the integer value 20100504

DaysBetween (string startDate, string endDate)

Description: Returns the number of days between the two spddifi¢es. If the two dates
are equal O is returned.
Syntax: double DaysBetween(string startDate, string endDate

Parameters:

startDate The date from which the number of days are courited.argument is a
string which is assumed to hold a date in the le#tn® positions. This
means that valid arguments are of a fof¥fYYMMDDor YYYYMMDD
YYYYMMDD

endDate The date until which the number of days are counfteé argument is a
string which is assumed to hold a date in the lefin8 positions. This
means that valid arguments are of a fof¥fyYMMDDor YYYYMMDD
YYYYMMDD

Example:
DaysBet ween(’20100504", "20100501")

returns the value 3.

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 54 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

DaysPassed (string since)

Description: Returns the number of days that has passed siasp#tified dates{ncg. If
the specified date is the current day then O igmed.

Syntax: double DaysPassed(string since)
Parameters:
since The date from which until now the number of days @unted. The

argument is a string which is assumed to hold a itathe leftmost 8
positions. This means that valid arguments arefofra YYYYMMDDor
YYYYMMDDBYYYYMMDD

Example:
DaysPassed("19660714")

Returns the number of days since July 14 1966.

DeActivateArea (string AreaName)
Description: Deactivates the area (or rule) specified by tharpater.
Syntax: void DeActivateArea(string Arédame
Parameters:
AreaName The name of the area (or rule) which are deaciilvate

Example:
DeAct i vat eAr ea("MyArea”)

Deactivates the area (or rule) named “MyArea”.

DblToLng (double x)

Description: Converts a decimal valug)(into an integer value by truncating (flooringgth
decimal value.

Syntax: long DbIToLng(double x)
Parameters:
X The decimal value that is converted into an integéue.

Example:
Dbl ToLng(turnover/nEmployee)

Returns the turnover per employee truncated iniot@ger value.

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 55 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

DblToStr (double x)
Description: Converts a decimal valug)(into a string (a text).
Syntax: string DbIToStr(double x)
Parameters:
X The decimal value that is converted into a string.

Example:
Dbl ToStr (3.14)

Returns the number 3.14 as the text “3.14”"

Difference (double x1, double x2)
Description: Returns the difference betwernandxs, i.e. the value calculated as— x;.
Syntax: double Difference(double xdouble x)
Parameters:
X; The value to which the differencexgis calculated.
X, The value to which the difference fromis calculated.

Example:
Difference(5.5,7)

Returns the number 7 -5.5.=1.5
D fference(13, 11.3)

Returns the number 11.3 -13=-1.7

EndDate (string period)

Description: Returns the end date of the specified perpeti¢d) as an integer value.

Syntax: long EndDate(string period)
Parameters:
period A period that complies to the specified pattern:
YYYYMMDDBYYYYMMDD
Example:

EndDat e("19660714-20100504")
Returns the integer value 20100504

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 56 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

ExecuteArea (string AreaName)

Description: Executes the area (or rule) specified by the pat@mé/hen the specified area
(or rule) has been executed the evaluation wiltiooe from the calling point.
The area can be located anywhere inside the kngelbdse.

Syntax: void ExecuteArea(string Ar&ame
Parameters:

AreaName The name of the area (or rule) which are executed.
Example:

Execut eAr ea("MyArea”)

Executes the area (or rule) named “MyArea”.

FilterString (string s, string trimChars)

Description: Returns the contents of the specified strs)d(t where all the occurrences of
the characters in the specified stritrgniCharg have been removed.

Syntax: string FilterString(string s, string trimChars)
Parameters:
S The string which are filtered.

trimChars A string specifying the characters which shall G@oved frons.

Example:
Fi | terString(’Intracom IT-Services”, " IT”)

Returns the text “ntracom-Services”

FormatNumber (double value, string format)

Description: Formats the specified valuealug into a string using the specified format.

Syntax: string FormatNumber(double value, string format)
Parameters:

value The value that is formatted into a string

format A string specifying the format according to AppenHi
Example:

For mat Nurber (7/3, "Amount=%N")

Returns the text “Amount=2"

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 57 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

GetCubeName (CURRENT_CUBE)

Description: Returns a string containing the name of the sptifube ¢ubg.
Hereby it is possible to get the name of a cubeanstring which
then can be used rules.

Syntax: string GetCubeName(OBJECT cube)
Parameters:

CURRENT_CUBE The keyword CURRENT_CUBE. Note that this is a kegavof the
language and must be spelled exactly like thats Thihe only valid
input to this argument and specifies the currebeonhich name
should be returned.

Example:
Get CubeNanme(CURRENT_CUBHE

Returns a string containing the text: “IncomeT&¢lrrent cube is IncomeTax.

GetNoOfMembers (CURRENT_CUBE, string dimensionName)

Description: Returns the number of members in the dimensionfspgby the second
parametedimensionName

Syntax: double getNoOfMembers(CURRENT_CUBE, string Dimenslame)

Parameters:

CURRENT_CUBE The keyword CURRENT_CUBE. Note that this is a keydvof
the language and must be spelled exactly like Tias is the only
valid input to this argument!

This argument has no effect on the result butteamed for
backward compatibility and must be supplied.

dimensionName The name of the dimension which members are counted

Example:
Get NoOFf Menber s(CURRENT_CUBE, "Years”)

Returns the number of members in Yearsdimension in the current cube.

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 58 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

GetParamDoubleValue(string UsageName)
Description: Returns the result from the specified Parameteleldbage as a double value.
Syntax: double GetParamDoubleValue(string Uddgme
Parameters:
UsageName The name of the usage which are called.
Example:
CGet Par anDoubl eVal ue("MyDoubleUsage”)

Calls the usage named “MyDoubleUsage” and retir@sibuble value returned by the
usage.

GetParamintValue (string UsageName)

Description: Returns the result from the specified Parametelelldbage as an integer
value.

Syntax: integer GetParamintValue(string Usaigeng
Parameters:

UsageName The name of the usage which are called.
Example:

Get Par am nt Val ue("NumberOfTickets”)

Calls the usage namebltimberOfTickets " and returns the integer value returned by
the usage.

GetParamsStrValue (string UsageName)
Description: Returns the result from the specified Parameteleldbage as a string.
Syntax: string GetParamStrValue(string Usalgang
Parameters:
UsageName The name of the usage which are called.
Example:
Get Par anfst r Val ue("StandardTaxOfficeName”)

Calls the usage name8tandardTaxOfficeName " and returns the string returned
by the usage.

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 59 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

GetRandomNo (double min, double max)

Description: Returns a pseudo random number within the rangeelinby the specified
values (nin as the lower limit anchaxthe upper limit).

Syntax: double GetRandomNo(double min, double max)
Parameters:

min The lower limit of the range within in which thegquglo random number will be
given.

max The upper limit of the range within in which theepglo random number will be
given.

Example:
CGet RandomNo(20, 30)

Returns a number between 20 and 30.

InString (string candidate, string s)

Description: ReturnsTRUE if the specified stringdandidat@ is contained in the
specified stringg); OtherwiseFALSE is returned.

Syntax: boolean InString(string candidate, string s)

Parameters:

candidate The string for whictsis searched
S The string which is searched for the occurrenceaatiidate

Example:
I nSt ri ng("Abe”, "Abe Lincoln™)

Returns true because “Abe” is contained in “Abecbin”

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 60 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

ISsEmpty (TUPLE Measure)

Description: Determines if the specified measukde@surg is empty. If it is empty then
TRUE is returned; otherwiSEALSE.

Syntax: boolean ISsEmpty(TUPPLE Measure)
Parameters:

Measure The measure that the function determines whethgeinpty.
Example:

| sEnpt y(Taxablelncome)

ReturnedlTRUE if no taxable income is declared; otherwk3&_SE is returned.
See also:

AllZeroOrNotKnown
IsKknow
IsknownAndNotZero
IsNotKnown
IsZeroOrNotKnown

Isknown (TUPLE Measure)

Description: Determines if the specified measukde@sure is known (a.k.a.
NULL/EMPTY - l.e. has been assigned a value dudiata extraction or
assignment). If it is known theFRUE is returned; otherwisEALSE.

Syntax: boolean Isknown(TUPPLE Measure)
Parameters:

Measure The measure that the function determines whethekitown.
Example:

I sknown(Taxablelncome)

ReturnedTRUE if no taxable income is known by the system; otlieg FALSE is
returned.

See also:

AllZeroOrNotKnown
ISEmpty
IsKknownAndNotZero
IsNotKnown
IsZeroOrNotKnown

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 61 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

IsknownAndNotZero (TUPLE Measure)

Description: Determines if the specified measukde@surg is known (a.k.a. not
NULL/EMPTY — l.e. has been assigned a value dudiaiz extraction or
assignment). If it is not known th&RALSE is returned; otherwise the function
returnsTRUE if the value is not zero; otherwise it returriédl SE.

Syntax: boolean IsNotkKnown(TUPPLE Measure)
Parameters:

Measure The measure that the function determines whethekitown and not zero.
Example:

I sknownAndNot Zer o(Taxablelncome)

Returned~ALSE if no taxable income is known by the system; otlige TRUE is
returned if the taxable income is different fromnaze

See also:

AllZeroOrNotKnown
ISEmpty

IsKknown
IsNotKnown
IsZeroOrNotKnown

IsNotKnown (TUPLE Measure)

Description: Determines if the specified measukde@surg is not known (a.k.a.
NULL/EMPTY - l.e. has not been assigned a valuéndutlata extraction or
assignment). If it is not known thdiRUE is returned; otherwiseALSE.

Syntax: boolean IsNotkKnown(TUPPLE Measure)
Parameters:

Measure The measure that the function determines whethemnibt known.
Example:

I sknown(Taxablelncome)

Returned~ALSE if no taxable income is known by the system; otlige TRUE is
returned.

See also:

AllZeroOrNotKnown
ISEmpty

IsKknown
IsknownAndNotZero
IsZeroOrNotKnown

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 62 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

IsStandardContainerCode (string code)

Description: Interprets the format of the specified containetec@odg. If the container
code represents what is considered to be a standatdiner code then the
function returnsTRUE; otherwiseFALSE is returned.

As shown in the table below, all prefix numberséntheir own values. The
value of a number in the container code is equéiémumber itself.

Prefix Value Prefix Value Prefix Value
number number number

A 10 J 20 S 30
B 12 K 21 T 31
C 13 L 23 u 32
D 14 M 24 \% 34
E 15 N 25 w 35
F 16 O 26 X 36
G 17 P 27 Y 37
H 18 Q 28 z 38
I 19 R 29

Values of Prefix Number

The last, seventh number (placed on the contamnarsimall square) is not
included, but is the last digit of the calculatemd by this the control digit. For
example, take the container number:

MWCU 605978-4.
The pre-fix MWCU has the following value:

M= 24
W= 35
C =13
U= 32

With this the following calculation is made, by whievery value is multiplied
with twice the number of which the previous valugswnultiplied (starting
with the digit 1).

M 24 x 1 = 24
W 35 X 2 = 70
C 13 x 4 = 52
U 32 x 8 = 256
6 x 16 = 96
0 x 32 = 0
5 X 64 = 320
icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 63 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

9 9 x 128 = 1152
7 7 x 256 = 1792
8 8 x 512 = 4096

7858

The result of the calculation is then divided bgveln and the remainder of the
division is the last digit.

7858 : 11 =714

\l
AN OO -

With shipper owned containers completely differdigit combinations are
being used, such that this calculation will oftévega false outcome.

Syntax: boolean IsStandardContainerCode(string code)
Parameters:

code The code that is interpreted.
Example:

| sSt andar dCont ai ner Code("MWCU 605978-4")

Returns th@RUE because the specified container code is a stacdateiner code.

IsSubSet (Set SetA, Set SetB)

Description: Determines whethe$etBis a sub set dbetA If SetBis a sub set dbetATRUE
is returned; otherwiseALSE is returned.

Syntax: boolean IsSuBSet(Set SetA, Set SetB)
Parameters:

SetA The set to whiclsetBis compared.

SetB The set which is compared as a sub sSet#
icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 64 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

IsZero (TUPLE Measure)

Description: Determines if the specified measukde@surg is zero — l.e. has been assigned
a value that is zero during data extraction orgassent). If the value is zero
thenTRUE is returned; OtherwisEALSE is returned.

Syntax: boolean IsZero (TUPPLE Measure)
Parameters:

Measure The measure that the function determines whetherzgro.
Example:

| sZer o (Taxablelncome)

ReturnedlTRUE if the declared income is zero; otherwiS&LSE is returned.

IsZeroOrNotKnown (TUPLE Measure)

Description: Determines if the specified measukée@surg is not known (a.k.a.
NULL/EMPTY — l.e. has not been assigned a valuenduilata extraction or
assignment). If it is not known thdiRUE is returned; otherwise it returns
TRUE if the known value is zero; OtherwiSALSE is returned.

Syntax: boolean IsZeroOrNotKnown(TUPPLE Measure)
Parameters:

Measure The measure that the function determines wheth&mnibt known or is zero.
Example:

| sZer oOr Not Known(Taxablelncome)

ReturnedTRUE if no taxable income is known by the system ohd tleclared income is
zero; otherwis&ALSE is returned.

See also:

AllZeroOrNotKnown
ISEmpty

IsKknown
IsknownAndNotZero
IsNotKnown

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 65 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

LeftStr (string s, double length)

Description: Returns the firskiengthcharacters from the string)(If sis shorter thatength
then the whole is returned.

Syntax: string LeftStr(string s, double length)
Parameters:
S The string from which the first (left) charactesgeturned.

length The maximum number of characters returned.

Example:
Lef t St r (“Intracom IT-Services”, 8)

Returns the text “Intracom”

LngToDbl (long value)
Description: Converts an integer valuealug into a decimal value.
Syntax: double LngToDbl (long value)
Parameters:

value The integer value that is converted into a decivahle.
Example:

LngToDbl (36)

Returns the decimal value 36.0

LngToStr (long value)
Description: Converts an integer valueglue into a string.
Syntax: string LngToStr (long value)
Parameters:
value The integer value that is converted into a string.

Example:
LngToStr (36)

Returns the string value “36”

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 66 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

LowerCase (string s)

Description: Returns the contents of the supplied string but aik cases converted into
lower case.

The character sets supported depends on the dettup actual server platform.

Syntax: string LowerCase(string s)
Parameters:

S The string which is converted into lower cases.
Example:

Lower Case("This is a text”)

Returns the text “this is a text”

Maximum (double x;, double x,)

Description: Returns the maximum value of the two specified @slf, andx,)

Syntax: double Maximum(double;xdouble %,
Parameters:

X1 The value returned if it is greater than

Xo The value returned if it is greater than
Example:

Maxi murm(3, 6)

Returns the value 6.

MaximumElement (Set s)

Description: Returns the maximum value contained in thessétsis the empty seflULL

is returned.
Syntax: double MaximumElement(Set s)
Parameters:
[The set from which the maximum value is returned.
icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 67 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

MaximumValue (TUPLE Measure, string DimensionName)

Description: Returns the maximum value of meashteasurefor the dimension
DimensionName.

Syntax: double MaximumValue(TUPLMBMeasure stringDimensionNamye
Parameters:
Measure The measure member from which maximum value willleeved

from the specified dimensio{mensionNamye

DimensionName The name of the dimension from which the maximutoedés
derived.

Example:
Maxi munVal ue(Taxablelncome, "Years”)

Returns the maximum taxable income found in thesyea

Minimum (double x;, double x,)

Description: Returns the minimum value of the two specified gal;, andx,)

Syntax: double Minimum(double x double
Parameters:
X1 The value returned if it is less than
Xo The value returned if it is less than
Example:

M ni num(11, 3.14)

Returns the value 3.14.

MinimumElement (Set s)

Description: Returns the minimum value contained in thessétsis the empty seflULL is

returned.
Syntax: double MinimumElement(Set s)
Parameters:
S The set from which the minimum value is returned.
icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 68 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

MinimumValue (TUPLE Measure, string DimensionName)

Description: Returns the minimum value of measteasurefor the dimension
DimensionName.

Syntax: double MinimumValue(TUPLBeasure stringDimensionNamye
Parameters:
Measure The measure member from which minimum value wiltbaved

from the specified dimensio{mensionNamye

DimensionName The name of the dimension from which the minimuriueas
derived.

Example:
M ni munVal ue(Taxablelncome, "Years”)

Returns the minimum taxable income found in theyea

Nz (double x)

Description: See ValOrZero(double x)

Observation (string Name, Rule Rule, double Likelihood, double
Value)

Description: Makes an observation for the current rule withlih@od and a value.
Syntax: Observation(string Name, Rule Rule, double Likedithodouble Value)
Parameters:

Name The name of the observation that is made.

Rule The rule which makes this observation. Typicallg thill be

CURRENT_AREA.
Likelihood The likelihood for the risk identified by the obgation
Value THe risk value identified by the observation

Example:
call Cbservation("Generic’, CURRENT_AREA, 1, volumn)

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 69 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

OnChanged (string key)

Description: ReturnsTRUE if the specified keykey) is different from the key specified last
time the function was called; otherwise the functieturnd=ALSE. If it is the
first time the function is calleiRUE is also returned.

Syntax: boolean OnChanged(string key)
Parameters:

key The key that is compared to the key used in prevoall.
Example:

OnChanged("MyKey”)

ReturnsFALSE if the last call to OnChanged also was done withkey “MyKey”;
Otherwise it return§RUE.

p (string ParameterTableName)

Description: Returns a parameter value from the specified paerteble
(ParameterTableNaméfor the taxpayers industry code).

Syntax: double p(string?arameterTableNanme
Parameters:

ParameterTableName The name of the parameter table from which theevedu
returned.

Example:
p("SalesTolncomeRatio”)

Returns the value stored in “SalesTolncomeRatiodipeter table for the tax payers
industry code.

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 70 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

PeriodValue (TUPLE Tuple, string StartDate, string EndDate)
Description: Returns a value determine by the following steps:
1. The tuple corresponding to cell specifiedThypleis retrieved.

2. The period member is replaced with an extendeg@eanember
covering the period indicated ByartDateandendDate

3. The value of the resulting cell is returned.

Syntax: PeriodValue(TUPLE Tuple, string StartDate, stringiBate)
Parameters:
Tuple The tuple identifying to the cell that is retrieved

StartDate The first date of the period from which the valaeletermined.
EndDate The end date of the period from which the valugeiermined.

PeriodValueSet (TUPLE Tuple, string StartDate, string EndDate)
Description: Returns a value determine by the following steps:
1. The tuple corresponding to cell specifiedThypleis retrieved.

2. The period member is replaced with an extendesg@enember
covering the period indicated ByartDateandendDate

3. Arequest is made that the value should be cakdilas a set, regardless
of the dimension aggregation setting

4. The value set of the resulting cell is returned.

Syntax: PeriodValueSet(TUPLE Tuple, string StartDate, gtiimdDate)
Parameters:
Tuple The coordinate to the cell that is retrieved.

StartDate The first date of the period from which the valseletermined.
EndDate The end date of the period from which the valugeitermined.

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 71 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

Partition (SET Set, string Operator, UNKNOWN Value)

Description: Returns the set of elements that fulfill some aatspecified by the operator
and value argument.

For each value contained in the specified Se} the value is compared to the
specified value\{alue)by using the specified operat@eratol) — only
elements which together with the operator and vptogides a true equation is
add to the returned set.

Syntax: Partition(SET Set, string Operator, UNKNOWN Value)
Parameters:
Set The set of values which are being filtered by thec#fied operator and
value.

Operator The operator@peratol) which is used to compare the value in the spetifi
set with the provided valu&/élue).

The following operators are supported:

> Greater than
< Less than
>= Greater than
or equal to
<= Less than or
equal to
Value The value to which each value in the provided Se} (s compared.

Example:
Parti ti on(MySet, ">", 13)

Returns a sub set of MySet containing only valukgEkvare greater than 13.

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 72 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

pa (string ParameterTableName)

Description: Parameter lookup function. Returns the averagheo§pecified
parameter valu@ParameterTableNamaevithin the years in
CalendarYears dimension.

Syntax: double p(string?arameterTableNanme
Parameters:

ParameterTableName The name of the parameter table from which theevedu
returned.

Example:
pa(’SalesTolncomeRatio”)

Returns the average value stored in “SalesTolncati@Rparameter table for the tax
payers industry code.

py (string ParameterTableName, string Year)

Description: Returns a parameter value from the specified paerteble
(ParameterTableNamegfor the year Year.

Syntax: double py(string?arameterTableNanme
Parameters:

ParameterTableName The name of the parameter table from which theevau
returned.

Example:
py ('IncomeTaxRate”, "2010")

Returns the income tax rate for the year 2010.

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 73 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

QualifiedAverage (TUPLE Measure, double Threshold, string
DimensionName)

Description: Returns the average for values of measM@aSurg, exceeding the threshold
value Threshold, for the dimensionQfimensionName

Syntax: double QualifiedAverage(TUPLE Measure, double Thoéd, string
DimensionName)

Parameters:
Measure The measure member from which the total deviatidhbe derived
Threshold The threshold of the measures which are qualifiedHe average.

Measures below this threshold will not be takep mtcount.

DimensionName The name of the dimension from which the qualibedrage is
derived.

Example:
Qual i fi edAver age(TaxableIncome,0,”Years”)

Returns the qualified average of the positive téxaicome over the years.

QualifiedCount (TUPLE Measure, double Threshold, string
DimensionName)

Description: Returns the number of values for measiegsuré that exceed the threshold
value {Threshold, for the dimensionQ@fimensionName

Syntax: double QualifiedCount(TUPLE Measure, double Thréshstring
DimensionName)

Parameters:
Measure The measure member from which number is counted
Threshold The threshold of the measures which are qualifiedhfe qualified

count. Measures below this threshold will not berted.
DimensionName The name of the dimension from which the valuescatmted.
Example:
Qual i fi edCount (Taxablelncome,0,"Years")

Returns the count of measures of positive taxatzleme over the years.

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 74 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

randomsample (double rate)

Description:

Syntax:
Parameters:

ReturnsTRUE by the likelihood specified brate; andFALSE by the
likelihood specified by 1 +ate. The function is based on a stochastic pseudo
random function.

boolean randomsample(double rate)

rate The probability by whiclfFRUE is returned.

Example:

randonsanpl e(0.2) == true

Ratio (double argl, double arg2, double arg3, double arg4)

Description:

Syntax:

Parameters:

— r
Implements a safe division e?i .
arg,

The result is calculated as follows:
If arg; is zero therargs is returned.

If arg, or arg, (or both) are undefined (null) thang, is returned.

9

. arg, .
Otherwise the value calculated-as= is returned.

arg,
If any errors occur thearg, is returned.

double Ratio(arg arg, arg, arg,)

arg; The nominator of the division

arg, The denominator of the division

argz The value returned if division by zero

args The value returned in case of errors or in cage@for arg, (or both) is
undefined.

Example:

Rati 0(3, 61, 2)

Returns the value 0.5.

Rati 0(3, 0, 1, 2)

Returns the value 1.

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 75 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

RatioChange(TUPLE numerator, TUPLE denom, long year)

Description: Same as Ratiolncrease.

RatioDrop (TUPLE numerator, TUPLE denom, long year)
Description: This function returns the negated valudRatiolncrease

Returns the decrease (drop) in the ratio betweepdlksed entries between a
year and the following year.

The two passed coordinates must each have exatlynember from a
period dimension. This function finds the next pdron the same level for
both coordinates, and calculates the ratio incraagellows:

numerator {numeratornextperiod

denom {denomnextperiod

The functions test for NULL or EMPTY conditions,careturns NULL or
EMPTY if the ratio cannot be calculated withouta€rvision.

Note: an increase in the ratio will result in a aiee result.
Syntax: double RatioDrop(TUPLE numerator, TUPLE denom, lgagr)
Parameters:

numerator The measure used as numerator.

denom The measure used as denominator.
year The number of years over which the ratio is derived
Example:

Rat i oDr op(GrossReceipts, YearDebtSales, 0)

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 76 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

Ratiolncrease(TUPLE numerator, TUPLE denom, long year)

Description: Returns the Increase in the ratio between the gasgees between a year
and the following year.

The two passed coordinates must each have exarlynember from a
period dimension. This function finds the next pdron the same level for
both coordinates, and calculates the ratio incraagellows:

{numeratornextperiod —numerator
{denomnextperiod denom

The functions test for NULL or EMPTY conditions,dareturns NULL or
EMPTY if the ratio can not be calculated withoutazdivision.

Note: a decrease in the ratio will result in a rizgaresult.
Syntax: double Ratiolncrease(TUPLE numerator, TUPLE derong year)
Parameters:
numerator The measure used as numerator.
denom The measure used as denominator.
year The number of years over which the ratio is derived

Example:
Rat i ol ncr ease(GrossReceipts, YearDebtSales, 0)

RightStr (string s, double length)

Description: Returns the lagengthcharacters from the string) (If sis shorter thatength
then the wholsis returned.

Syntax: string RightStr(string s, double length)
Parameters:
S The string from which the last (right) charactersdturned.

length The maximum number of characters returned.

Example:
Ri ght St r (“Intracom IT-Services”, 8)

Returns the text “Services”

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 77 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

Roundsum (double value)

Description: Returns the number of continuous zeros in the Bpdaialue Yalue) taken
from the right.

Syntax: double Roundsum(VARIENT value)
Parameters:

value The value which trailing zeros are counted.
Example:

Roundsumn(9000)

Returns the value 3.0

SetDiff (SET SetA, SET SetB)

Description: Returns the differences between two sets as a eewWlse difference is
defined as the elements which are exclusive mendi&stAor SetB— not
both sets.

Syntax: SET SetDiff(SET SetA, SET SetB)

Parameters:

SetA The first of the two sets which difference is betteggermined. If a single value

is provided it will be treated as a set contairtimg single value.

SetB The second of the two sets which difference isdpdigtermined. If a single
value is provided it will be treated as a set cmntg the single value.

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 78 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

Slope (double Min, double Max, double Step, double Threshold,
double Per, double Value)

Description: Determines a value (e.g. a points score) deternfnoedValue Slope will
calculate a value, always within the ramddgmimumto Maximum based on the
following principles:

e Step is positive anBeris positive:
The result is determined starting wifinimum and addingstep
for everyPer thatValueexceedd hreshold until Maximumis
reached.
lllustration for positive Step and Per:
Slope(Value)

Maximum --1------------ % ———————————————————————
% Step
Minimum e== : ———
| Value
Threshold

* Stepis positive andPeris negative:
The result is determined starting wihinimum and addindgstep
for every Per| thatValueis lower thanThreshold until Maximum
is reached.

« Stepis negative an®eris positive:
The result is determined starting witaximum and subtracting
|Step for everyPer thatValueis exceed3 hreshold until
Minimumis reached.

e Stepis negative an®eris negative:
The result is determined starting witaximum and subtracting
|Step for everyPer| thatValueis lower thanThreshold until
Minimumis reached.

Syntax: double Slope(double Minimum, double Maximum, doublep, double
Threshold, double Per, double Value)

Parameters:

Min The minimum return value from the function.
Max The maximum return value from the function.
icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 79 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

Step The rate at which values aboVhresholdare amplified until they are cut by
Maximum

Threshold The threshold above which the values are amplified.

Per The denominator which together with tBeepvalue forms the slope.
Value The input value which is mapped by the function.
Example:

Sl ope(0.1,0.5,0.05,10000,1000,myMember)

Returns a value which is the valoyMembetimited into the range 0.1- 0.5 for values
above 10000. The values above 10000 are amplifi€tdd5 for each 1000 until the value
0.5.

SoundsLike (string s;, string s,)

Description: Compares two strings,(ands,) using SOUNDEX (see
http://en.wikipedia.org/wiki/Soundéxl.e. by converting each of the strings by
using SOUNDEX and then string comparing the twalltesHereby a simple
pattern comparison can be made.

Syntax: boolean SoundsLike(string s1, string s2)

Parameters:
s The string which SOUNDEX value is compared to tEIBIDEX value ofs,.
s, The string which SOUNDEX value is compared to tREJBIDEX value ofs;.

Example:
SoundsLi ke("Intracom”, "Intrekom”)

ReturnsTRUE because the two words “Intracom” and “Intrekomtisds a lot like each
other.

SoundsLi ke("Intracom”, "Entrecote”)

ReturnsFALSE because the two words “Intracom” and “Entrecotafrgbtoo different.

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 80 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

StartDate (string period)

Description: Gets the start date from a period string (forthdY’ YMMDDBYYYYMMDD
and return it as an integer in the forrivadY YMMDD

Syntax: long StartDate(string period)
Parameters:

period The string that is interpreted as a period and whktar date is returned as an
integer.

Example:
St ar t Dat e("19660714-20100505")

Returns the integer value 19660714

StrToDbl (string s)

Description: Converts (if possible) the specified string intdeximal number.

Syntax: double StrToDbl(string s)
Parameters:

S The string is converted into a decimal number.
Example:

St r ToDbl ("7.913")
Returns the double value 7.913

StrToLng (string s)

Description: Converts (if possible) the specified string intoieger.

Syntax: long StrToLng(string s)
Parameters:

S The string is converted into an integer.
Example:

St r ToLng("7.913")

Returns the integer number 7

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 81 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

SubStr (string s, double pos, double length)

Description: Returns a substring as tlemgthcharacters from the string) (starting at

positionpos
Syntax: string SubStr(string s, double pos, double length)
Parameters:
S The string from which the substring is returned.
pos The position of the first characters in the retdraabstring, where 1 is the first

character in the string)(
length The maximum number of characters returned.
Example:
SubSt r ("Intracom IT-Services”, 10, 2)

Returns the text “IT”

Today ()
Description: Returns the current date as a string in the foiYatYMMDD
Syntax: string Today()
Example:
Today()

TotalDeviation (TUPLE Measure)

Description: Returns the total deviation for the measMedsurd, based on the members
on the period dimension

Syntax: DOUBLE TotalDeviation(TUPLE Measure)
Parameters:

Measure The measure member from which the total deviatidihbe derived
Example:

Tot al Devi at i on(Taxablelncome)

Returns the total deviation of the taxable incomer dhe period dimension.

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 82 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

TotalDeviationPct (TUPLE Measure)

Description: Returns the total deviation percentage for the orea@easure, based on the
members on the period dimension

Syntax: double TotalDeviation(TUPLE Measure)
Parameters:

Measure The measure member from which the total deviatencgntage will be
derived

Example:
Tot al Devi at i onPct (Taxablelncome)

Returns the total deviation percentage of the t@xaicome over the period dimension.

TrimString (string s)

Description: Returns a copy of the specified strisyjlfut where all trailing spaces, tabs and
other whitespace characters have been removed.

Syntax: string TrimString(string s)
Parameters:

S The string which is trimmed.
Example:

TrinSt ri ng("Intracom ")

Returns the text “Intracom”

UpperCase (string s)

Description: Returns the contents of the supplied string but aik cases converted into
upper case.

The character sets supported depends on the dethup actual server platform.

Syntax: string UpperCase(string s)
Parameters:

S The string which is converted into upper cases.
Example:

Upper Case("This is a text”)
Returns the text “THIS IS A TEXT”

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 83 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

ValidAirWaybillNumber(string awbn)

Description: Validates the Air Waybill Number specified baybn If awbnspecifies a valid
airway bill number then the function returiRUE; otherwise the function
returnsFALSE.

As shown in the figure below the Air Waybill Numbensists of the
following parts:

[(-2 e 2« 2] 5[]
L 1 1 | L 1 1 1 1 1 1 1 |

Serial Number

Separating Hyphen

Airline Code Number

The Air Waybill Number

1) Airline Code Number
2) Separating Hyphen
3) Serial Number

The validation is made on the Serial Number orlg; function however is
implemented to handle both complete Air Waybill Nners and the Serial
Number part only. This is done by letting the fumctiook at the last 8 digits
of the filteredawbnparameter only — (Filtered means that if sepagatthite
spaces exists they will be ignored) — hereby theviing awbrs will be
treated equally as the Serial Number 23242951

[2[3] 2] +[2[¢[5["]

[2[3[2[4][2[¢[5] [1]

L[] 7]-[2[3[2[4[2[e[5]1]

L[] 7]-[2[3[2[<[2[e[5] [1]

D7) [-] [2[3[2]4]2[¢]5[1]

Lf7] [-] [2[3[2[4]2[e[5] [1]

A Serial Number is validated by dividing the fiistigits by 7 (in the example
this will be 2324295). For a valid Serial Numbeg temainder is the same
number as the last digit (in the example this idrikuch case the Serial
Number and thereby the whole Air Waybill Numbecassidered valid and the
function returnsTRUE; otherwise it is considered invalid and the fumati
returnsFALSE.

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 84 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

2324295 17 =332042
2111
22011
PARERE
14|
1400
02
0
29 |
28!
15
14
A

Syntax: boolean ValidAirWaybillNumber(string awbn)

Parameters:

awbn The string representing the Air Waybill Number tlsavalidated.
Example:

Val i dAi r Vaybi | | Nunber ("117-2324295 1")

Returns th&RUE because 117-2324295 1 is a valid Air Waybill Numbe

ValOrZero (double x)

Description: Returns 0 (zero) if the specified valueNBLL, otherwise value is returned.

Syntax: double ValOrZero(double x)
Parameters:

X The value that returned unless iNEJLL.
Example:

Val Or Zer 0(3.14)

Returns the value 3.14 because the value is né\tbet..
Val O Zer o(x)

ReturnsNULL if x is unknown NULL); otherwise the double value represented sy
returned.

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 85 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

WriteString

Description: Writes the text contents of a given node to th@wiumnade by a subsequent
observation (se®bservatiol. The available nodes depend on the
configuration of the system.

During the write of the node contents the assogiatacros will be expanded
in the written text (seBindMacrg.

Syntax: WriteString (string NodeName)

Example:

cal | Bi ndvacr o("Volume", FormatNumber(volume,
"%G3','%D".'%P2%TZ"));

call WiteString("ReasonOutput");

call Cbservation("Generic", CURRENT_AREA, 1, volume).

Formats the contents of the volume variables argsvihe contents of the node named
ReasonOutpub the associated observation. If the text costehtheReasonOutput
node contains the text %Volume% it will be subsgitlby the formatted volume value.

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 86 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

Appendix E: Grammar Examples

This appendix presents additional examples, airhedilling an understanding of the BNF
notation, as well as answers to the small exergisesented in section 2.1.1.

Simple BNF Examples

The following examples illustrate the use of prdducrules in grammars described via BNF
grammars. Please note, that the example grammedshese has no relation to the
formalization language.

Multiplication

The following example illustrates the process imedl in producing an expression in
accordance with a simple multiplication grammarotigh a process of repeated substitution. A
similar process can be followed to build valid esq®ions in any grammar.

Consider the following simple grammar:

<multiplication> = <term> <term>
<term> ::= <number> | <variable>
<number> =213

<variable> = a|b

We start with the non-terminal <multiplication>y f@hich there is only one alternative, leaving
us with:

<term>* <term>

To make a valid multiplication expression using ginemmar we must then substitute the
occurrences of <term>. Since the production rute<term> contains two alternatives one of
them must be chosen for each <term>. For thedukstitution we choose <number> and for
the second we choose <variable>. This leaves us wit

<number>* <variable>

Next we substitute the occurrences of <number>amdgiable> with one of the alternatives, e.g
leaving us with:

2*Db

The set of possible combinations of substitutionthis grammaris2*2,2*3,3*2,3*3,a*
a,a*b,b*b,b*a,2*a,2*b,3*a,3*8*2,a*3,b*2and b * 3.

English language sub-set
Consider a grammar for a very small part of English

The set of productions rules, the following:

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 87 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

<A> = <C> <D>
 ::: “ IH | HYOUH | ‘lWeH
<C> = ‘“read” |“wrote”

<D> “this”

Using this grammar you can construct six diffeigntple sentences: “I read this”, “You read
this”, “We read this”, “I wrote this”, “You wrotehis” and “We wrote this”. The set of possible
sentences that can be described by the grammaltésl the language described by the
grammar.

Simple String Example
Consider a simple grammar for generating a strirajsoand b’s:

The set of productions rules are the following:

<T>

<R> | xan<T>n an

<R>

‘D" | “b” <R>

The grammar denotes the set of strings that stdirtamy number of a’s followed by non-zero
number of b’s and then the same number of a’s witich it started.

For example are “aaaabaaaa” and “abba” stringsrgesteby the above grammar.

Formalization Language Example

The following example illustrates the process imedl in producing a clause from the
formalization language through the process of reggesubstitution. Lets assume that we want
to produce a valid within clause. The starting p@rihe following production:

<area_head_member> ::=within <withinbody>
| ...

giving us the following clause as starting point:

within <withinbody>

We now need to substitute <withinbody>, and finel tibilowing relevant production rules:

<withinbody>

(<cubenamesy for <forbody>

<forbody> (<sets>)

| FOR_ALL_KNOWN CELLS

These two production rules tell us that the witloiefp construct called contains two non-
terminal characters: <cubenames> and <forbody>.

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 88 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

The non-terminal symbol <forbody> is further expkd by the rule <forbody> ::= (<sets>),
which in turn contains the non-terminal symbol ssetWe now have the following clause:

within (<cubenames>) for (<sets>)
From this example it is clear that more rules arpiired to fully explain the syntax of the
<withinbody> construct.

In general, one could say that if non-terminal sgtalexist, further definition (more production
rules) will be required.

To further explain the <forbody> symbol, we mustisider the production rules for <sets>:

<sets> = <set>
| <sets>, <set>

<set>::= := <set value_ expression>
| { <tuples>}

This first production rule (for <sets>) implies tithe non-terminal symbol <sets> either
consists of the non-terminal symbol <set> or ofrtha-terminal symbols <sets> and <set>.

This rule effectively means that <sets> can beaegad with one or more non-terminal <set>
symbols, separated by commas.

within (<cubenames>) for (<set>, <set>)

Using the second production rule (<set>), we cdsttute further (e.g. using
<set_value_expression>).

within (<cubenames>) for (<set_value_expression>, <set_value_expression>)

More production rules further explain the syntax:

<set value_expression> ::= <dimension>
| <dimension>. MEMBERS
| <dimension>. EXCEPT (<member>)

<dimension> = <identifier>

<members> = <member>
| <members> <member>

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 89 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

<member> = <identifier>

|
| <dimension>. <identifier>

| <dimension>. FIRSTMEMBER

| <dimension>. LASTMEMBER

| <dimension>. PREVMEMBER

| <dimension>. NEXTMEMBER

| <qualified _dimension> <identifier>
| <cubename> <identifier>

| <member_value_expression>

<identifier> ;= <regular_identifier>
<regular_identifier> ::= _identifier
<cubenames> ::= <cubename>

| <cubenames> <cubename>
<cubename> = <identifier>

Combined with the definition of the terminal symliéntifier:
identifier

Any sequence of aplha-numeric characters startiitliy & non-numeric character (e.g.
MyName, First_Name).

We are able to build valid within clauses like:

within (FormX) for (Accounts, CalendarYears)

or

within (FormX) for (‘Accounts, CalendarYears.FIRSTMEMBER)

or

within (FormX) for ((Accounts, CalendarYears.EXCEPT(CalendarYears.FIRSTMEMBER))

Answers to Exercises

¥ Consider why the last three examples are not valithis grammar
Answer:

The first example presumes that availability ohany minus operator. To get a negative
value you would have to write something like 0 — 5.

The second example uses a lowercase column reéenng is not allowed according to the
definition of the_cell-address terminal.

The third example uses parantheses, which are eatiomed anywhere in the grammar.

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 90 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

¥ Consider what changes would be required in thengrar to make the expressions valid.

Answer:

Unary minus could be made valid by adding the feilg alternative to the <expression>
production:

<expression> =
| - <expression>

Lowercase column identifiers could be made validduefining the definition of the cell-
address terminal.

The use of paranthesis could be made valid by gdtim following alternative to the
<expression> production:

<expression> =
| (<expression}

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 91 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

Appendix F: Numeric Display Format

This appendix describes how the numeric value$oaneatted into strings.

The display format for numbers provides a way ofrdeq different settings
of how numbers such as amounts, decimals and mstepeuld be displayed.
The format can have one to four sections with selomnso(;) as the list
separator. Each section contains the display fofonat different type of
number conditions:

Section Description

First The format for positive numbers.

Second The format for negative numbers.

Third The format for zero value numbers.

Fourth The format for Unknown value. *Note that the usehi$ format is not
currently implemented!

If you use multiple sections but don't specify arfat for each section, entries
for which there is no format will default to therfieatting of the first section.

Within a formatting section the amount placehol@eN) may be present. The
placeholder specifies where in the format the numblébe displayed. Any
literal characters before the placeholder will Bplhyed as prefix to the
number and any literal characters after the plddenaovill be displayed after
the number. If the amount placeholder is not presgenre is no suffix. The
amount placeholder is generally only needed if lyave literal characters in
the suffix.

Just before the number placeholder you may speaéyor more formatting
flags, that each specifies a special display gptfhee "Formal Format
Display Syntax" section below for a more formalidiibn of the format.

If an invalid display format is specified the diapéd text will be "###"
indicating an error.

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 92 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

Precision Flag

Flag Syntax

Description

Default
setting

"%P" <Digit>
* Note: The current implementation pads with trailizeros accordingly to
precision - see %TZ flag.

Specifies the precision of the amount. This comess to the maximum
number of significant digits after the decimal gaiharacter. If precision is
set to 0 the decimal point character will not becus

The amount will be rounded if necessary thus a atnofi1.238 with a
specified precision of 2 will be rounded to 1.24.

Note that an amount of 1.2 with a specified precisf 2 is 1.2. To print
trailing zeros use %TZ flag, e.g. 1.20.

The default precision is taken from regional sgtinsee below.

Digit Grouping

Flag Syntax

Description

Default
setting

"%G" [<Digit>* [" <Char>""]]
* Note: Currently only one digit for group sizegamplemented.

Specifies the digit grouping and the digit groupsegarator character. This
flag will be ignored if scientific notation is spéed.

The digit grouping is specified by a series of gigEach digit specifies the
number of digits in a grouping starting from righteft (from the decimal
point character). The last digit specifies the ging for subsequent groups.

The 0 digit may only be used as the last digit.

Example: Thus a specification of 324 will grougsfiwith 3 digits and then
with 2 digits followed by subsequent groups of gitdi Example "111 22
3333 4444"

The default grouping units and the default grougegarator character is
taken from the regional settings - see below. Grays not used unless %G
is specified.

Decimal Point Character

Flag Syntax II%DII mm <Char> mm

Description Specifies the decimal point character. The decpoait character will not be
displayed if precision is set to 0.

Default The default decimal point character is taken fromregional settings - see

setting below.

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 93 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

Scientific notation

Flag Syntax "%E" [<Sign>]
Note: Currently implementation ignores <Sign> amités the sign on.

Description Specifies that the number should be displayed sdgténtific notation. The
sign specifies whether + or - after the 'E' shdaddorced/removed. The
exponent will always be displayed with 3 digits gad if necessary with
zeros.

Note: The exponent is always prefixed with a cafita Currently it's not
possible to control whether the exponent is prefiwéh an 'E' or 'e".

Default Do not display with forced sign. Scientific notatis not used unless %E is
setting specified.

Force or remove sign

Flag Syntax "%-+" or "%-"

Description In positive number format specification this for¢lke sign to be presented. In
negative number format specifications it removesdign to be presented.

Note: Be careful with only specifying a positivemmiper format using this
flag. When using this flag you should always sumplyegative number
format, unless you're sure that the sign have poitance in negative
numbers.

Defgult No forced sign in positive format and no removensignegative format.
setting
Trailing zeros
Flag Syntax "%TZ"
*Note: Current implementation assumes this flalyvags.
Description Specifies that trailing zeros should be paddedraaogly to the precision.

Thus an amount of 1.2 with precision 2 and trailiegos will be padded with
an extra zero, thus becoming "1.20".

Default No trailing zeros.
setting
icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 94 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

Leading zeros
Flag Syntax "%LZ" <Digit>
*Note: Currently not implemented.

Description Specifies that leading zeros should be paddedit of the first digit in the
amount. The digit specifies the maximum numberepbg to pad with.

Thus an amount of 1.2 with a leading zero spetitioaof 3 will be displayed

as "001.2".
Default No leading zeros.
setting
Multiplication

Flag Syntax "%M" <Integer>

Description Specifies that the value should be multiplied veithinteger value as
specified. The integer value should be differeafrfrzero.

This can be used in e.g. percent values to show<3® (if integer value is
specified as 100).

Default Does not multiply (integer equals zero).
setting

Formal Syntax

<Display format string> ::=
<Positive number format>
["" <Negative number format> [";" <Zer 0 number format>
["" <Unknown number format>]]]
<Positive number format> ::=
<Format>
<Negative number format> ::=
<Format>
<Zero number format> ::=
<Format>
<Unknown number format> ::=
<Format>

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 95 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

Format

<Format> ::=
<Prefix> <Flag>* [<Number placeholder> <
<Prefix> ::=

<Characters>

<Suffix> ::=

<Characters>

<Number placeholder> ::=

Format Flags

"oHN"

<Flag> ::=

<Precision> | <Decimal point

char> | <Grouping> | <Scientific notation> |

<Force sign>

<Precision> ::=

"%P" <Digit>

<Decimal point char> ::=
"%D" <Single quote> <Char> <Single quote>
<Grouping> ::=
"%G" [<Digit> [<Single quote> <Char> <S
<Scientific notation> ::=

"%E" [<Sign>]

<Force sign> ::=

"ot | "%-"

The Default Settings

Suffix>]

ingle quote>]]

The default values used in some of the flags ardgfault taken from the
Numbers-tab from the 'Control Panel | Regional @i dialog within your
Windows operating system. This does not apply toXUiNktallations.

Examples

This section describes some Number display fornYais.should note that
some of the examples below the result may depertdeoaurrent settings
within the regional options dialog, since theselws®ed per default. Also in the
examples below it is assumed that the "Englisht@dnStates)” user locale is
selected. Thus the default precision is 2, the diefleimal point character is
"', the default grouping character is '," anddéfault grouping is "

Display Format

Sample amount

Will be displayed as
(excl. quotes)

Comments

" or "%N"

123456.789

"123457"

The most simple
display format. No
prefix, suffix or
formatting flags
specified.

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24

96 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

Display Format

Sample amount

Will be displayed as
(excl. quotes)

Comments

" or "%N" -123456.789 "-123457"

"Amt= %N." 123456.789 "Amt=123457." Use of literal
characters in prefix
and suffix. Prefix
equals "Amt="and
suffix equals ".".

":-:Null;Unknown" 123456.789 "123457"

";-:Null;Unknown" -123456.789 "-123457" Need minus
character as prefix.

":-;Null;Unknown" 0 "Null" Null is displayed
literally.

"~:Null;Unknown" Unknown "Unknown" Unknown is
displayed literally.

"%+;%-" 123456.789 "+123457" Use of force sign. It
doesn't matter
whether %+ or %-
are used.

"%+;(%-)" -123456.789 "(123457)" Use of force sign. It
doesn't matter
whether %+ or %-
are used.

"%P2%TZ" 123456.789 "123456.79"

"%P2%TZ" 123456.7 "123456.70"

"%G" 123456.789 "123 457" Use of default
grouping of 3 digits
and default grouping
separator character
"" (space).

"%G32".'%D','%P2" 123456.789 "1.23.456,79"

"%G32".'%D','%P2" 123456.7 "1.23.456,7"

"%G32".'"%D'",'%P2%TZ"| 123456.7 "1.23.456,70"

"%G3','%D".'%P2%TZ; | 123456.7 "123,456.70"

(%-G3','%D".'%P2%TZ);
%P2%TZ"

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24

97 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

ESKORT Designer for Selection

User Guide, Section IV - Formalization Language

Display Format Sample amount Will be displayed as| Comments
(excl. quotes)

"%G3','%D".'%P2%TZ, | -123456.7 "(123,456.70)"

(%-

%G3','%D'.'%P2%TZ);

%P2%TZ"

"%G3','%D".'%P2%TZ; | 0 "0.00"

(%-

%G3','%D'.'%P2%TZ);

%P2%TZ"

"OoE" 123456.789 "1E005" If precision is 0
with_in regional
settings.

"%E%P3" 123456.789 "1.235E005"

"0E+%P3" 123456.789 "1.234E+005"

"0E+%P3" -123456.789 "-1.234E+005"

"%E%P3" 0.123456789 "1.235E-001"

"%E%P3%+" 0.123456789 "+1.235E-001"

"O%E%P3%+" -0.123456789 "-1.235E-001"

"%LZz2" -0.123456789 "-00"

"OpLZ2" 1.23456789 "01"

"%P2%LZ22" 1.23456789 "01.23"

"%P2%LZ2" 1.2 "01.2"

"%P2%LZ2%TZ" 1.2 "01.20"

"%P2%LZ2%TZ" 1.234 "01.23"

"%%X" 1.234 " Error in display
format.

"%M100 %%" 0.25 "25 %"

icdk/Application/Designer/UserGuide/4/v1.11/2011.01.24 98 (98)

Copyright 00 2010 Intracom IT Services Danmark A/S — All rights reserved
Commercial in Confidence

