
VerSÅA user manual?

Pontus Boström

Department of Information Technologies, Åbo Akademi University,
Joukahaisenkatu 3-5, 20520 Turku, Finland

pontus.bostrom@abo.fi

1 Introduction

This document gives an overview on how to use VerSAA, which is a tool for au-
tomatically verifying correctness of Simulink models with respect contract anno-
tations. The document starts with installation instruction. Then an overview of
the contract format and the capabilities of VerSAA are given. This is followed by
a few examples on how to verify different aspects of a number of small systems.
The last two sections give a reference of supported blocks and functions. as well
as advice on handling common issues.

2 Installing and running the program

VerSAA is a program written in Java that consists of collection of jar-files and
some additional scripts to conveniently run the tool. The tool is run from the
command line, but it can display results from the verification graphically.

Installation instructions:

1. Ensure that that a JVM (at least Java 1.6) is installed. One can be down-
loaded from http://java.com. Note that for a 64-bit version of VerSAA, a
64-bit version of Java is needed.

2. Unpack the downloaded VerSAA package in a desired folder. This will create
a folder VerSAA-xx where xx is the version with all the files. No further
installation steps are needed. The folder containing the program can also be
moved freely1.

3. Note that this version of VerSAA includes the SMT-solver Z3. This means
the tool cannot be used commercially unless the user already has a commer-
cial license for Z3. See VerSAA-xx/z3/LICENSE.txt for details.

4. Running the tool. Enter the folder <tool folder>/VerSAA/

– Windows: Run slverifier.bat <params> <simulink model file>

– Unix (Linux and Mac OS X):
Run ./slverifier.sh <params> <simulink model file>

? Work done in The DiHy project coordinated by Fimecc and funded by Tekes
1 VerSAA can be run independently of Matlab/Simulink or from within Matlab

– In Matlab: The tool can also be used from Matlab by calling the function
slverifier.m. This function takes two argument, the first is the model
name and the second is a cell array of strings giving the parameters. The
command help slverifier gives detailed information2.

As described above the program is a command line program that takes a
Simulink model as argument. There are a number of parameters that can be
given to the program. An overview all the different parameters are given here in
order to have a complete list in one place. In the examples shown later, more in
depth presentation of what the tool actual does will be given.

– log (all | off). This parameter enable control of how much information
the tool will print out. When -log all is used a lot of debugging information
will be printed. For users, most will be of little interest.

– gui. Shows the result of the verification in a graphical user interface. This
parameter is recommended when the tool is used to verify Simulink models.

– nowf. Do not do well-formedness checks. When this parameter is used the
tool will not check absence of divisions by zero, square root of negative
numbers, etc., underflows or overflows for integer arithmetic operation, as
well as index out of bounds matrix accesses.

– psdf. Print the sdf graphs that are generated in the verification generation
process. They are produced as pdf files in the working directory. Note that
the tool Dot, which is part of the Graphviz package, is used for generating
the pictures3. WARNING: Any file with matching name will be overwritten.
This is mostly useful for debugging of the verification process and it is not
useful for users.

– expand. This enables expansion of all matrix operators. This is the recom-
mended method for verifying models and programs that use matrix calcula-
tions on small matrices.

When VerSAA is used from Matlab, it will use variables in the Matlab workspace.
That is, if a variable in the workspace is used in the Simulink model the value
it has in the workspace is used in the verification.

VerSAA can also be used to verify Embedded Matlab code. In that case, the
argument to the verifier is an .m-file. Note that only a relatively small subset
of Embedded Matlab is supported. The support is aimed at providing a more
simple environment than Simulink to experiment with verification of Matrix-
code. Verification of code that use matrices and vectors is discussed in Section
5.2.

3 Simulink and contracts

The language used to create models in Simulink is based on hierarchical data flow
diagrams [6] (see e.g. Fig. 1). A Simulink diagram consists of functional blocks

2 In order for the built-in JVM in Matlab to find Z3, it is necessary to set
java.library.path to include the folder VerSAA/z3/bin. See the Matlab documen-
tation on how to do this.

3 Graphviz: http://www.graphviz.org/

TLC

timeout
light1

light2

(a) light2
2

light1
1

LS2

timeout light

LS1

timeout light
timeout

1

(b)

light
1

ls
z
1

Switch1 Logical
Operator

NOT
timeout

1

(c)

Fig. 1. (a) A subsystem that contains a simple traffic light controller, (b) its contents
consisting of two individual light controllers and (c) the individual light controllers

connected by signals (wires). The blocks represent transformations of data, while
the signals give the flow of data between blocks. Blocks can be parameterised
with parameters that are set before model execution and remain constant during
the execution. Blocks can also contain memory. Hence, their behaviour do not
only depend on the current values on the inputs and the parameter values, but
also on previous input values. The diagrams can be hierarchically structured
using the notion of subsystem blocks, which are blocks that themselves contain
diagrams. Here we use contracts [2] to give a high-level functional description of
these subsystems. Simulink can model continuous, discrete and hybrid systems.
The verification methods described here concern discrete periodic systems, which
is one of the most common forms of control software. Note that multi-rate models
are supported. However, they have to have the phase (also called offset) part of
the sampling time set to zero.

To illustrate the use of Simulink, a small example that consists of a controller
for a simplified traffic light system is given. The system consists of two lights that
can be either green (true) or red (false). However, both lights should not be green
at the same time. When a timeout signal has the value true, the lights change.
The subsystem block TLC in Fig. 1 (a) contains the traffic light controller. A
new light configuration is computed separately for each light by the subsystems
LS1 and LS2 (Fig. 1 (b)) at each sampling instant. Both lights are switched in
case timeout is true otherwise they retain their values (Fig. 1 (c)).

3.1 Verification based on contracts

Contracts describe valid behaviours of (atomic) subsystems in Simulink models,
i.e., what are valid outputs in response to valid inputs. VerSAA verifies that
a given Simulink subsystem annotated by a contract also satisfies it. To add a
contract to a subsystem, the contract is written down in the Description-field4

of that subsystem. The abstract syntax of contracts is shown in Fig 2 (a).

There c, u and y are identifiers and t is a type in the set {double, int32, int16,
int8, uint32, uint16, uint8, boolean} or matrices containing these types. E.g., a ma-
trix of type double and dimensions n×m is declared as matrix(double, n,m). Then

4 Right click on the subsystem, choose block properties

contract :
parameters : c1 : t1; . . . ; cn : tn
inports : u1 : t1; . . . ;un : tn
outports : y : t; . . . ; yn : tn
(paramcondition

′Description′ : Qparam)∗
(requires ′Description′ : Qpre)∗
(ensures ′Description′ : Qpost)∗
(invariant ′Description′ : Qinv)∗
end

contract :
inports :
timeout : boolean
outports :
light1 : boolean;
light2 : boolean

ensures ′Properties of the first light′ :
∼ timeout ⇒ light1 = delay(light1 , false)
timeout ⇒ light1 =∼ delay(light1 , false)
ensures ′One light is always red′ :
∼ light1 || ∼ light2

invariant :
delay(light1) == v(LS1/ls) &&
v(LS2/ls) ∼= v.(LS1/ls)
end

(a) (b)

Fig. 2. (a) The abstract syntax of contracts and (b) an example contract that describes
the traffic light controller subsystem

z∗ denotes zero or more occurrences of z and Q denotes a predicate. The con-
tract first declares the parameters, in- and out-ports of the subsystem. These
are all given as lists of identifier-type pairs. The behaviour of the subsystem is
described by a set of conditions. Each condition can have an optional descrip-
tion. Here Qparam describes the block parameters used in the subsystem, Qpre

is the precondition describing the valid inputs and Qpost is the postcondition
describing valid outputs. In the contract conditions it is also possible to refer to
old input and output values. The syntax delay(x, i) denotes the previous sample
of port x with the initial value i. To verify the subsystem, it is then necessary
to describe how these old port values are actually represented in the Simulink
implementation. The condition Qinv is used to describe how the delayed ports
relate to block memories in the subsystem diagram. This condition describes
a property that is invariant during system execution. This invariant property
is the only thing remembered between sampling instances, so it has to carry
enough information to enable the correctness proof. The contracts here have a
similar structure and can describe the same type of behaviour as the ones for
reactive components in [5].

To give an idea of how contracts can be used, a contract describing the
functionality of the traffic light system from Fig. 1 is given in Fig. 2 (b). We want
to prove that both lights are not green at the same time, that is: ∼ light1 || ∼
light2 . We also want to say that the lights are only changed when the input
timeout is true. The contract first declares the inputs and outputs together with
their type. To give an accurate description of the system, we cannot just describe
its input-output behaviour, since the output depends on the internal state given

by the Unit Delay-blocks. We use a delay of the first light light1 to say that
the light is unchanged if timeout is false and flipped if timeout is true. The
initialisation of this light is here assumed to be red (false). The postconditions
then encode the desired behaviour of the controller. The invariant in invariant
then describes how the memories in the Unit delay-blocks in the subsystems LS1
and LS2 relate to the delay delay(light1). The invariant also states that the lights
always have different color. Here a function v is used to map block memories to
variable identifiers. This mapping is discussed more in the examples in Section
6. The concrete syntax used in the contract conditions is inspired by the syntax
of Matlab expressions [2].

4 Principles for verification

The approach to verification is described in detail in [1, 8, 2]. Here only a brief
overview is given. Simulink is used to develop control systems, where the in-
teraction of programs with their environment rather than their input-output
behaviour is important. Hence, we are here interested in reactive systems where
the execution of the behaviour of the Simulink model is observed during exe-
cution. We can observe the value of a port or block memory only at the time
points when it is sampled. Note that Simulink is only guaranteed to behave in
this manner for discrete models with fixed step solver. In other cases this is an
abstraction. The abstraction is adequate for the discrete parts of models with
even continuous time behaviour.

When verifying Simulink models we are interested in showing that the ob-
servable behaviour does not violate some desirable property P , which is here
described by contracts. A Simulink model can be considered a labelled transition
system with state s built from the block memories, as well as transitions labelled
by port values p. Figure 3 illustrates the situation. Here si represents a value
on the internal state, while pij represents a value on the ports. Consider the
property P stating that the state s is either s1 or s3, P =̂ (s = s1 ∨ s = s3).
We can easily see that a state violating this property is not reachable from the
initial state. There are two approaches to verify that property P holds.

1. We can compute all states reachable from an initial state si and check that
we will never reach a state s where P does not hold.

2. We can prove this fact inductively. We show that any state s where P holds
then P will hold again after any transition from s. Then we also need to
show that the initial state satisfies P .

In VerSAA approach 2 is used. The advantages of this approach is that, given
a suitable P (a suitable invariant), we can check the property one transition
(model execution) at the time. This leads to potentially better scalability than
in approach 1. The disadvantage is that a suitable P that enables the proof is
needed, which might be stronger than the property of interest. This means that
this approach might require more (manual) work than approach 1.

s1	

s3	 s2	

s4	

p11	

p41	
p14	

p44	

p33	

p22	

p32	

p23	

Fig. 3. A state machine used for demonstrating the principle behind verification

Consider the simple Simulink subsystem modelling a traffic light controller
in Figure 1. The internal state of that model is given by the unit delay blocks
LS1/ls and LS2/ls. We model the state as the tuple (LS1/ls, LS2/ls). The states
in the model now correspond to the states in the transition system as follows
s1 = (true, false), s2 = (true, true), s3 = (false, true), s4 = (false, false). The
ports labels p are given by the tuple of inport and outport values (timeout, light1, light2).
Here we have that p11 = (false, true, false), p14 = (true, false, true), p44 =
(false, false, true), p41 = (true, true, false), p22 = (false, true, true), p23 =
(true, false, false), This shows how one can view the Simulink model as
a labelled transition system. As can be seen from the transition system rep-
resentation, a state where both lights are switched on at the same time can-
not be reached from the initial state. When using approach 2 for verification,
a suitable property (invariant) is P =̂ (s = s1 ∨ s = s3) or in other words
P =̂ ¬((LS1/ls) = (LS2/ls)) as also stated in the contract in Fig. 2(b). From
any such state we can then show that for any input on timeout the model will
end up in such a state again after execution. The rest of the contract conditions
are formed by combinations of states and port values. It is easy to check that
they hold for each transition (model execution).

As already mentioned, VerSAA checks that each time the model is executed,
it behaves according to the contract specification of the subsystems. The correct-
ness is verified one subsystem at the time. This will guarantee that the complete
model will be correct [1]. The verification is thus compositional. For each dia-
gram D in subsystem with a contract the tool checks that when the internal
diagram is executed in a state where the invariant on the internal state holds,
then for any input satisfying the precondition the diagram will establish the
postcondition and invariant again. For multi-rate models, we cannot only look
at one execution of a subsystems, but we have to check the property (at least)
for the shortest repeating behaviour. This means for a time period of the least

common multiple of the sampling periods, as offsets (phases) on sampling times
are not allowed. For multi-rate model the invariant should then hold for all time
instants when the subsystem behaviour repeats, i.e., for the period that is the
least common multiple of the periods of the inputs and outputs. The technical
details of the verification can be found in [2, 8, 1, 9].

The principle in VerSAA is that the verification should be completely auto-
matic. For each subsystem, a number of verification conditions are generated.
The verification conditions are such that they are only valid (hold for all vari-
able values) if the subsystem is correct. The SMT-solver Z3 is used to auto-
matically show validity. Z3 [3, 4] has background theories for many constructs
needed in embedded systems, such as linear and non-linear arithmetic, linear
integer arithmetic, arrays, bitvectors, etc. The properties that can be proved is
largely dependent on this tool. Z3 is only a semi-decision procedure for some
theories and thus it cannot always decide if a formula is valid or not. The result
of the verification in VerSAA can be:

– Correct - the verified subsystem is correct.

– Incorrect - the verified subsystem is incorrect. Then the failed conditions are
displayed. As a failed condition can be identified fairly precisely it should
give a good indication of where the problem is located.

– Unknown - Z3 cannot decide if the subsystem is correct or incorrect. This
often occurs if a subsystem is incorrect, but an undecidable theory (like
non-linear real arithmetic) is used.

5 Capabilities

VerSAA can do verification of multi-rate Simulink models and a relatively small
subset of Embedded Matlab. It can handle multi-dimensional data, which is
typically used in control and signal processing applications. This section gives
an overview of the capabilities and limitations of the tool.

5.1 General limitations

The subset of Simulink supported by VerSAA is not complete. However, there
is a sufficiently large library of supported blocks to make the tool useful for
verification of real systems. The limitations are currently:

– VerSAA supports verification of multi-rate subsystems where each rate has
zero phase. Furthermore, only the rate transition blocks can have inputs and
outputs of different rates. This is similar to Simulink Design Verifier.

– VerSAA only supports a subset of the Simulink blocks. The list of blocks
supported by VerSAA can be found in Section 7.

– VerSAA supports only a subset of the built in Matlab functions. The list of
built in Matlab functions supported by VerSAA can be found in Section 7.

5.2 Matrix and vector support

VerSAA has support for calculations using matrices and vectors (see [9] for
details). The goal is that the operators and functions should handle multi-
dimensional data in the same manner as Matlab/Simulink. Note that matrices
and vectors are not allowed to be dynamically resized, but this is not recom-
mended in embedded code anyway. The syntax is also simplified in order to al-
low more efficient automated verification and many of the more unusual ways to
index elements in matrices are not supported. Dimensions of signals are inferred
as in normal Simulink. Note that only up to 2 dimensional signals are supported.
Furthermore, VerSAA has only matrices (vectors are 1xN or Nx1 matrices) and
the special array type in Simulink is not used. An NxM matrix has N rows and
M columns. For example, a variable or port v can be declared to be a 3x2 ma-
trix using the notation v : matrix(double, 3, 2). The notation v : matrix(double, 3)
states that v is a 3x1 matrix (column vector). The first index gives the number of
rows and the second the number of columns. To do the dimension inference, the
dimensions must be numeric constants. Hence, writing v : matrix(double, N,N)
is not allowed, unless the parameter N is defined in the Matlab Workspace (the
value of N is then used in the inference) and VerSAA is used from Matlab. This
also means that matrix creation functions such as zeros, ones, etc. need to have
arguments that are numeric constants or the parameters can be directly found
in the Matlab workspace.

One significant difference from Simulink is that VerSAA does not do implicit
type conversions. In particular, the indices in matrices and vectors are integers
(int32). This means that all expressions used as matrix indices must be of type
integer and not double. Explicit type conversion blocks or functions must be
used otherwise.

Matrices are translated to (two dimensional) arrays in Z3. There are two
ways to verify programs that use matrices. The default approach is to use axioms
defining the properties of the supported functions. This works well in some cases.
However, if functions that have recursive definitions are used then performance
will be poor. This is fairly common, e.g., matrix multiplication, functions sum,
prod, min, etc. with one argument are all examples of this type of function.
The second approach is enabled with the parameter -expand to VerSAA. The
matrix operators are expanded in such a manner that Z3 only deals with scalar
operators and functions. This is possible, since the size of all data is static and
known. This also keeps the used subset of the array theory decidable. This will
work well for relatively small matrices and vectors. However, this does not scale
to very large matrices and vectors, since the expanded formulas become too
large.

VerSAA can handle the most common element-wise operators and functions.
It can also do matrix multiplication and knows the functions e.g. zeros, ones,
size, length and transpose. A more detailed list of supported functions and
blocks can be found at the end of the document.

5.3 Runtime errors

Aside from checking that subsystems fullfill their contracts, VerSAA will by
default also check that all operations are well-defined. VerSAA will check that
there are no over- or underflows in integer calculations (the standard signed and
unsigned integer types are supported). VerSAA will also check that all functions
are used correctly. That is, VerSAA will check that, e.g., there is no division
by zero, square root is not taken of a negative number and that exponentiation
returns a real number5. Integers are used to index matrices. VerSAA will also
check that all matrix accesses are within matrix bounds.

The software in control systems is often arithmetic intensive. Conceptually,
the calculations are usually then carried out using real arithmetic. However,
in Simulink these calculations are then often implemented using floating-point
arithmetic according to IEEE 754 standard. Verification involving floating-point
computation is hard [7]. For example, Simulink Design Verifier approximates
floating point arithmetic with rational number arithmetic [6]. We also approx-
imate floating-point numbers with real numbers. This approach helps to show
that the principles of the system are correct. However, many defects relating
to when the behaviour of floating-point and real arithmetic differ will go unde-
tected. This problem is not just theoretical, as rounding errors commonly cause
significant problems with accuracy of the results of calculations.

6 Examples

To get a better idea of how VerSAA can be used to verify different types of
properties about Simulink models, a few small examples are given.

6.1 A multi-rate Simulink model

The following multi-rate model computes decimal value of the four latest binary
inputs delayed by one. The output is updated on a rate four times slower than the
input. Hence, the sampling period of the input is one, while the sampling period
of the output is four time units. The diagram implementing the functionality is
shown in Figure 4. The contract is written in the Description field of the Block
properties of the subsystem. In order to remember the four last inputs, delay
expressions are used. Delay expressions can only be used to delay inports or
outports or delays of them. This restriction is to simplify handling of sampling
times. The contract is shown below:

contract:
inports:

Bool:boolean
outports:

Decimal:double
ensures ’Main condition’ :

5 This is handled in Simulink by returning mathematically incorrect (but useful) re-
sults.

Decimal

1

Switch

Rate Transition

Product3

Product2

Product1

Product

Factor3

8

Factor2

4

Factor1

2

Factor

1

Constant1

0.0

Constant

1.0

B3
z

1

B2
z

1

B1
z

1

B0
z

1

Add

Bool

1

Fig. 4. A Simulink diagram implementation of the binary to decimal converter

Decimal==
bool2real(delay(Bool,0))*1+
bool2real(delay(delay(Bool,0),0))*2+
bool2real(delay(delay(delay(Bool,0),0),0))*4+
bool2real(delay(delay(delay(delay(Bool,0),0),0),0))*8

ensures ’Output should be within limits’ :
Decimal<=4;
Decimal>=2

invariant ’First part’:
bool2real(delay(Bool,0))==B0$X &&
bool2real(delay(delay(Bool,0),0))==B1$X

invariant ’Second part’:
bool2real(delay(delay(delay(Bool,0),0),0))==B2$X &&
bool2real(delay(delay(delay(delay(Bool,0),0),0),0))==B3$X

end

A delay expression has the same sampling as the port that it delays. Using
delay expressions is recommended over explicitly declared memories6, since it
usually results in specifications that are shorter and easier to read. Note also

6 See [2, 1] for this way to specify memory of subsystems

Fig. 5. Result of verifying the BinToDec model, where some postconditions do not
hold

that initialisation (the zeros) can be omitted, as long as the delay is initialised
at least once. In the invariant we need to say how block memories relate to the
delays. We refer to the memory of e.g. the delay block B0 as B0$X. To refer to
a block B in a subsystem S, the syntax S$B is used.

The result from verifying the model with VerSAA can be seen in Figure 5.
The command used was here:

slverifier -gui <BinToDec model>

The entire model is verified when running VerSAA on a model. The user interface
is divided into two parts: a tree view to the left and a text box to the right. The
tree view shows an overview of the verification results of the Simulink model,
while the text box can show more detailed information for the chosen subsystem.
The subsystems with contracts are marked in different colors in the tree view
depending on the verification result:

– Green: The subsystem is correct.

r
1

r_old
z
1

For Iterator

For
IteratorN 1 : N

Add
n
1

Fig. 6. A Simulink diagram from a for-iterator subsystem to compute the sum of all
natural numbers up to n

– Red: The subsystem is incorrect. The properties that were not verified are
shown to the right. By writing properties separately with good descriptions,
it is easier to locate the problem precisely to some simple condition.

– Orange: The status of the subsystem is unknown. Also here the properties
that were not verified are shown to the right.

– Gray: The subsystem could not be verified. This is typically because the
subsystem contained some block (e.g. Stateflow) the tool did not understand.

By clicking on a desired subsystem in the tree view more information is provided
to the right. In Figure 5 the subsystem Bin2Dec has two failed assertion. The
postcondition ’Output should be within limits’ does not hold. The real lower limit
is 0 and the real upper limit is 15. The failed assertions are shown to the right.
Note that since VerSÅA handles multi-rate models the buffer index for the port
the problem occurred is also given. In this case it is the first sample directly,
which is denoted by the suffix 0 after the port name.

6.2 A for-iteration subsystem

This example involves a for-iterator subsystem that computes the sum of all
natural numbers up to a limit given as parameters. We have first defined the
function sum up. This function is defined recursively. We have the following
axioms:

∀x : int32.(x > 0⇒ sum up(x) = x + sum up(x− 1)) (1)

sum up(0) = 0 (2)

The verification of the subsystem will also proves the well-known formula sum up(n) =
n(n + 1)/2. Contents of the subsystem is shown in Figure 6. The inport n gives
the number to sum up to and the outport gives the result. The delay block stores
the intermediate values. The contract for this subsystem is given as:

contract:
inports:

n:int32
outports:

r:int32
requires:

n>0

ensures:
r==sum_up(n) &&
r==(n*(n-1))/to_int32(2)

invariant:
r_old$X==sum_up(k-1)&&
r_old$X==(k*(k-1))/to_int32(2)

end

The contracts for for-iterator subsystems are a bit different than for normal
subsystems. The idea here is that the for-iterator subsystem computes a function
where the inports are arguments and the outports provides the results (there is
no state remembered between invocations here). The contract cannot contain
delay expressions (or specification variables (memories) [1]). The memories of
the blocks in the diagram are used to store intermediate results. To verify the
for-loop we need a loop invariant that describes the intermediate results. The
loop invariant captures the situation between loop iterations. We construct the
loop invariant in such a manner that when the invariant holds and the loop has
finished (the loop guard does not hold anymore) then that implies the desired
postcondition. The idea in the verification is that if we assume that the loop
invariant holds before an arbitrary iteration and then check that it holds after,
then it will always hold between iterations. Then in the final step we prove that,
given that the invariant holds, when the loop has terminated the desired post-
condition has been reached. Note that a loop index variable k is automatically
defined and can be used in the invariant. Here we prove inductively that the
block memory r old$X contains the intermediate result during the execution of
the loop. Note also that the invariant in this case can refer to the inports. The
postcondition then only relates inputs and outputs. Based on the invariant we
can then prove the postcondition when we know we just exited the loop. We
have the following restrictions for for-iterator subsystems:

– Only one-based indexing is supported
– The iteration limit has to be given as an inport
– The increment is one and not given as a inport.
– Memories are reset at the start of every execution of the block.

6.3 Finding the minimum element in a vector

This example illustrates the use of multi-dimensional data. The example consists
of a for-iterator subsystem that returns the minimum value (v) and the index (i)
of the minimum value from a vector a. The diagram for the subsystem is shown
in Fig. 7. The contract is given as:

contract:

inports:
a:matrix(double,1,N)

outports:
i:int32;
v:double

ensures ’Index limits’:

i
2

v
1

ind
z
1

Width

0

Switch

 ~= 0

Relational
Operator

<=

Index Vector 2

1

Index
Vector1

1

Index
Vector

1
For Iterator

For
IteratorNext_i1 : N

a
1

Fig. 7. A Simulink diagram for a for-iterator subsystem to find the minimum element
of a vector a

1<=i && i<=length(a)

ensures ’Properties of min index’:
all(a(i)<=a)

ensures ’Properties of min value’:
a(i)==v

invariant:
1<=k &&k<=length(a);
1<=ind$X && ind$X<=length(a);
\forall j:int32 . ((1<=j && j< k) ==> a(ind$X)<=a(j))

end

The contract first gives the types of the inputs and outputs. Here N must be
given a value in the base workspace of Matlab, in order for the type inference to
infer dimensions. The type of indices in matrices is int32. The first postcondition
states that the index i is within matrix bounds, the second states that all the
elements in the vector a are greater or equal than the element at position i
and the third one states that v is equal to the smallest element. The <= works
elementwise on the vector a and the functions all and any are generalised AND
and OR respectively. Using the builtin Matlab functions it is possible to write
very compact specifications. The tool can also expand these definitions, and the
verification can therefore be very efficient. The invariant is then needed to prove
the postcondition. Recall that k is the automatically generated loop index. We
need to state explicitly that k is within matrix bounds. Then we also need to
state that the memory ind$X in the delay block ind in the diagram, which is
used to stored the minimum found so far is within matrix bounds. Finally, we
need to state that ind$X contains the minimum found in vector a up to k.

6.4 Examples involving embedded Matlab

VerSAA can also be used to verify programs written in a subset of Embedded
Matlab. This features is mostly aimed at giving a simple environment to try out
verification of matrix manipulations, but it can be used for real verification tasks
as well. An example of an Embedded Matlab program is given in Fig. 8 and more
examples can be found in [9]. The function of interest is max f that finds the

maximum element in the array a. Note that in order to infer numeric dimensions,
the program need to have dimensions on all parameters given. Hence, the small
function test max that calls the function max f is needed. Here max f is tested
for a 10× 1 vector. One can think of it as exhaustive testing of the function for
a vector of a specific size.

Specifications are given after %@, since then the specifications will be com-
ments in Matlab and the functions are valid Matlab code. The first specification
regards type parameters, as the functions are polymorphic. The function works
for any numeric type t (double, int32, int16,. . .) and for any dimension n. The
parameter a is then declared to be of type matrix(t, n, 1) meaning a matrix with
element of type t and dimension n× 1. The return value is then a scalar (a 1× 1
matrix) of type t. There is no precondition. The postcondition states that all
elements of a are smaller or equal to m and that there exists an element in a
equal to m.

The implementation is essentially a while loop where the minimum element
is searched for. Note that we initialise the loop index i to be of type int32. This
is necessary, since integers need to be used as indices into matrices. Here it is
easy to find the loop invariant. We say in the invariant that m is the minimum
element in vector a up to index i. We also need to state the bounds on i. When
the loop guard does not hold anymore, then i = n + 1 and then according to
the loop invariants m is the minimum of the whole vector a. Finding the loop
invariants can be very challenging for more complicated programs. However, in
more complex algorithms the same information is usually captured in diagrams
describing the situations between loops. Then it is just a matter of expressing
this information formally.

Note that VerSAA does not check that the loops actually terminate. Hence,
VerSAA checks partial correctness, which means that it only guarantees that if
all the functions terminate the result produced is correct. Termination checks
could be added to VerSAA, but at the moment they are not supported. In the
case of the for-iterator subsystem, termination is guaranteed by behaviour of the
subsystem under the restrictions used in VerSAA.

6.5 Comparision with Simulink Design Verifier

From a user point of view the biggest difference between the tools is proba-
bly that verification conditions and assumptions are given as special blocks in
Simulink Design Verifier (SLDV). The verification approach is quite similar in
VerSAA and Simulink Design Verifier. SLDV uses an approach based on k-
induction where it tries to infer some invariant over a number of steps and then
verify that the model satisfies the invariant. Bounded model checking can also
used to search for violations over only a finite time. In VerSAA, an inductive
invariant has to be given explicitly for the internal state (given in the invariants
clause of the contract). Given this invariant and inputs satisfying the precon-
ditions, then the postcondition and the invariant is established. Furthermore,
VerSAA supports refinement-based compositional verification for building cor-
rectness arguments for large systems.

1 function x = test max(a)
2 %@ types: x:double, a:matrix(double,10,1)
3 x = max f(a)
4 end
5 function m = max f(a)
6 %@ typeparameters: t<:numtype, n:int32
7 %@ types: m:t, a:matrix(t,n,1)
8 %@ ensures: all(a <= m)
9 %@ ensures: any(a == m)

10 m = a(1);
11 i = int32(2);
12 while (i<=length(a))
13 %@ invariant: 1 <= i && i <= n+1
14 %@ invariant: \forall j:int32 . (1 <= j && j < i ==> m >= a(j))
15 %@ invariant: \exists j:int32 . (1 <= j && j < i && m == a(j))
16 if (m < a(i))
17 m = a(i);
18 end;
19 i = i+1;
20 end
21 end

Fig. 8. A MATLAB function for finding the index of the minimum element in a column
vector, annotated with contracts.

VerSAA (via Z3) supports non-linear arithmetic better than SLDV. However,
currently VerSAA does not support common Simulink features such as Stateflow
and embedded MATLAB7, which SLDV supports. The support for matrix data
seems fairly weak in SLDV, where scalability is often poor [9]. Furthermore,
SLDV unrolls loops when checking iteration and fixed loop bounds need to be
provided. This is more restrictive than VerSAA, but it is still useful for embedded
software where the number of iterations should have a strict upper bound. Also
no loop invariants need to be provided when unrolling loops. Note that VerSAA
does not currently prove termination of loops (it proves partial correctness)

7 Supported blocks and functions

Supported blocks. A relatively large number of blocks are supported. The
supported structuring mechanisms are: Atomic subsystems, virtual (normal) sub-
systems, enabled subsystems and for-iterator subsystems. A list of the supported
builtin blocks is given in Table 1. Additionally, almost all sink blocks are also
supported. However, their behaviour is not modelled. The block definitions are

7 Embedded Matlab in Simulink models is actually a Stateflow chart with a Embedded
Matlab function embedded, hence it is not supported in verification of Simulink
models

Table 1. List of the supported blocks

Block Comment

Sum Supports arbitrary number of inputs, as well as
giving operators for ports

Product Supports arbitrary many ports as well as
giving operators for ports (see limitations for ∗ and / in Table 2)

Gain Supports both elementwise and matrix multiplication
Logic Supports AND, OR and NOT. Arbitrary many inputs

for AND and OR supported
Math See Table 2 for supported functions
MinMax Supports both one and two input version of min and max
Trigonometry See below for which functions are supported
Relational Operator All alternatives are supported, but only = and ∼= works for booleans
Signum
Abs
Unary Minus
Switch Comparing with ∼= 0 also works for booleans
Constant If a type of the output is given in the block it is respected
Unit Delay
Memory
Dead Zone
Saturate
Bias
Datatype conversion Support conversion between most types
Multiport Switch Supports arbitrary many inputs
Index Vector
Matrix Selector
Mux and Demux
Width
Rate transition This is the only block that tolerates different rates on the ports
Backlash
Enabled subsystems The enable port block is then also supported
Merge
For iterator
subsystems The limitations discussed earlier applies
InPort & OutPort

stored in an XML- file

<tool-folder>/config/functions.xml

The format of the XML-file is described in [2]. This file contains the list of all
blocks that are currently supported, as well as the behaviour they are assumed
to have. However, it is currently not possible to just add new block definitions to
this file. The reason is that the blocks also need to be known by the typechecker.
This is something that will be fixed in the future.

There is an option for handling blocks that have no definitions in VerSAA.
The verification of a subsystem relies on contract descriptions of subsystems
lower in the subsystem hierarchy. If an unknown block is encapsulated in a
subsystem with a contract describing its behaviour, VerSAA can use the contract
information to verify the rest of the model. However, as the content of that
subsystem (the unknown block) cannot be analysed, VerSAA cannot check that
the subsystem correctly satisfies its contract. The correctness has to be verified
e.g. by testing or with Simulink Design Verifier. As the correctness has to be
verified externally, the contract must be written carefully to not introduce false
assumptions. More generally VerSAA will not verify subsystems with contracts
that contain unknown blocks. However, it will use the contract descriptions when
verifying the rest of the model. This enables verification of large models where
some parts might contain unsupported constructs.

Supported functions. A number of functions from Matlab are also supported.
There are two classes of supported functions. The first class is completely sup-
ported functions, where VerSAA knows the function definition. The second class
is functions, where VerSAA will treat the function as an uninterpreted function
symbol. However, VerSAA might contain assumptions about the function. The
currently supported functions, as well as the assumptions known about them
are listed in Table 2. The table gives the function definitions for elementwise
functions when real scalar numbers are used. The definitions are straightforward
to extend to matrices.

All supported functions with corresponding assumptions known about them
is given in the file:

<tool-folder>/config/functions.def

The user can add functions definitions here. Note also the pattern declaration
: pat{. . .} for each condition in the file. This is used by Z3 as hints for how to
instantiate the quantifiers [4].

8 Common issues

VerSAA complains about syntax errors. The following problems are com-
mon: The arguments for the range operator : have to be constants, which is
checked already at the syntactic level. Also syntax such as a(2 :) for indexing

Table 2. List of the supported functions

Function Assumption

+,−, .∗, ∗, ./, / Arithmetic opertaors. / can only be applied to scalars.
<,<=,==, Relational operators. Only == and ∼= can be applied to booleans.
∼=, >=, >
&&, ||,∼ Logical operators. The arguments have to be booleans.
a : b : c The range operator : works as in Matlab, but the arguments a, b and c

must be numeric constants.
a(:, c) The range indexing operator : works as in Matlab, but it can only be

used to index a whole row or column. Here c must be a scalar.
min ∀x : t, y : t.(min(x, y) = if x ≤ y then x else y end)
max ∀x : t, y : t.(max(x, y) = if x ≥ y then x else y end)
abs ∀x : t.(abs(x) = if 0 < x then − x else x end)
sgn ∀x : t.(sgn(x) = if 0 = x then 0 else if x < 0 then− 1 else 1 end end)
square ∀x : t.(square(x) = x. ∗ x)
sqrt ∀x : t.(x >= 0⇒ sqrt(x). ∗ sqrt(x) = x)
sin ∀x : t.(−1 ≤ sin(x) ∧ sin(x) ≤ 1)
cos ∀x : t.(−1 ≤ cos(x) ∧ cos(x) ≤ 1)
tan Uninterpreted function
pow Supported by Z3
saturate ∀x : t, y : t, z : t.(saturate(x, y, z) = if x < y then y else

if z < x thenz else x end end)
to real Built into Z3 to convert integers to reals
to int Built into Z3 to convert reals to integers. There are

also functions to int32, etc for converting to particular integer types.
intXX Converts a double to the given integer type XX.
uintXX Converts a double to the given unsigned integer type XX.
isinteger ∀x : double.(isinteger(x)⇔ (x = to real(to int(x))))
bool2real bool2real(True) = 1.0 ∧ bool2real(False) == 0.0
real2bool ∀x : double.(real2bool(x) = (x 6= 0.0))
size Returns the size of the argument as a two element vector
length Returns the length of the argument
zeros Returns a matrix filled with zeros. The arguments must be constants.
ones Returns a matrix filled with ones. The arguments must be constants.
all Generalised AND that collapses a matrix
any Generalised OR that collapses a matrix
sum Sum of one argument that collapses a matrix
prod Product of one argument that collapses a matrix
min,max Min and Max of one argument that collapses a matrix
transpose Transpose of a matrix
factorial ∀x : t.(x > 0⇒ (factorial(x) = x ∗ factorial(x− 1)))

factorial(0) = 1
sum up ∀x : t.(x > 0⇒ (sum up(x) = x + sum up(x− 1)))

sum up(0) = 0

vectors is not supported. The transpose operator ′ cannot be used, since it is
used for other purposes. The function transpose has to be used instead. Note
also that that the equals operator is == and assignment operator is =.

VerSAA complains about unknown blocks. VerSAA can only handle a
subset of the Simulink blocks. See Table 1 for a list of supported blocks. See
also the previous section on how to deal with the situation. Note that even the
built in Simulink blocks are sometimes library blocks (included in models as
references). VerSAA cannot handle library blocks, so the best option is to inline
all reference blocks before attempting verification.

VerSAA complains about unknown identifiers. Check that all variables
are spelled correctly in the contract. Also check that all references to block mem-
ories in the invariant section are done correctly. VerSAA only obtains variable
values from the Matlab workspace when run from Matlab. Therefore all block
parameters (which are not numeric values) used in a diagram need to be declared
in the contract of a containing subsystem otherwise.

VerSAA complains that it cannot derive sampling rates. The inference
of sampling times in VerSAA is more strict than in Simulink. It also essentially
only works forward in the model. This means that typically all constant blocks
and inports on the highest level in the subsystem hierarchy need to have sampling
times given. Rate transition blocks also have to be used to connect parts of the
model with different sampling times.

VerSAA complains about type errors even though the Simulink ap-
proves of the typing. The type inference algorithm in VerSAA might not
produce exactly the same typing as the one in Simulink. The typing in VerSAA
is more strict in order to generate efficient verification conditions for the verifier.
There are a number of things to consider:

– Doubles and integers cannot be mixed in computation. Thus it is impossible
to e.g. add an integer with a real number. The reason is that real and integer
arithmetic are separate theories in Z3.

– A number written with a decimal point, e.g., 2.0 will always be treated as a
double. If a number is written as an integer, e.g., 2 its type can be either an
integer or double depending on where it is used. Additionally 1 and 0 can
also be booleans. If VerSAA complains about typing problems it might be
because it cannot determine the correct type of the numbers involved. This
can be a problem especially in functional blocks if parameters are given as
numeric values. One suggestion is to use the the type casting function e.g.
int32 to cast an expression to the desired type. However, this might affect
negatively on the performance of Z3 (but it seems to work well).

– Prefer to use parameters declared in contracts (or in the Matlab workspace)
as parameters to blocks instead of numeric values. Then the type and di-
mension is given explicitly, which makes the inference more accurate. Also,
if parameters are set in the Matlab workspace, they have to be given the cor-
rect type (not the default double if that is not the desired type, of course).

– Check that all ports in the contracts have correct names (corresponds to the
ones in the subsystems). Non-matching names can give strange type errors.

VerSAA complains about matrix dimensions even though the Simulink
approves of them. Also here VerSAA is more strict. There is no array type
in VerSAA and all vectors are either n × 1 or 1 × n vectors, so this has to be
handled carefully.

VerSAA returns the result Unknown even though the subsystem seems
to be correct. Z3 is only a semi-decision procedure in many cases. Thus some-
times it cannot verify that some property holds even though it does. One useful
trick is to assign concrete values to parameters to eliminate non-linear arithmetic
(or reduce the amount of it). In case the tool is called from Matlab, then param-
eter definitions from the Matlab root workspace will be used, which should help.
One can also give concrete values to the inports in the precondition in order to
verify the system for some specific input values. Note that for incorrect models
where matrices or non-linear arithmetic is used, unknown will often be reported.
Z3 will often also get stuck in an infinite loop then.

References

1. P. Boström. Contract-based verification of Simulink models. In ICFEM2011, volume
6991 of LNCS. Springer, 2011.

2. P. Boström, R. Grönblom, T. Huotari, and J. Wiik. An approach to contract-based
verification of Simulink models. Technical Report 985, Turku Centre for Computer
Science (TUCS), 2010.

3. L. de Moura and N. Bjørner. Z3: an efficient SMT solver. In Tools and Algorithms
for the Construction and Analysis of Systems (TACAS2008), volume 4963 of LNCS,
pages 337–340, Budapest, Hungary, 2008. Springer.

4. L de Moura and N. Bjørner. Z3 - a tutorial.
http://research.microsoft.com/en-us/um/redmond/projects/z3/.

5. F. Maraninchi and L. Morel. Logical-time contracts for reactive embedded compo-
nents. In 30th EUROMICRO Conference on Component-Based Software Engineer-
ing Track, ECBSE’04, Rennes, France, August 2004.

6. Mathworks Inc. Simulink. http://www.mathworks.com/products/simulink, 2010.
7. D. Monniaux. The pitfalls of verifying floating-point computations. ACM Transac-

tions on Programming Languages and Systems (TOPLAS), 30(3), 2008.
8. J. Wiik. Contract-based verification of multi-rate Simulink models. Master’s thesis,

Åbo Akademi University, 2012.
9. J. Wiik and P. Boström. Contract-based verification of MATLAB and Simulink

matrix-manipulating code. Technical Report 1107, TUCS, 2014.

