
RAYMOND OGIENOYEVBEDE

EMBEDDED KIT FOR EMBEDDED SOFTWARE

SIMULATION AND TROUBLESHOOTING

THESIS

CENTRAL OSTROBOTHNIA UNIVERSITY OF APPLIED

SCIENCES

DEGREE PROGRAMME IN INFORMATION TECHNOLOGY

MAY 2012

CENTRAL OSTROBOTHNIA

UNIVERSITY OF APPLIED

SCIENCES

Date

[MAY 2012]

Author

RAYMOND

OGIENOYEVBEDE

Degree programme

BACHELORS DEGREE IN INFORMATION TECHNOLOGY

Name of thesis

EMBEDDED KIT FOR EMBEDDED SOFTWARE SIMULATION AND TROUBLESHOOTING

Instructor

JOHNNY VIDJESKOG

Pages

[54]

Supervisor

MÄNNISTÖ SAKARI

Arduino based kit (SADET) is a hardware toolkit for testing embedded

software of various designs. It includes multiple inputs and outputs

components that can be adapted for different test purposes. In this work, we

look at Arduino Nano as a design platform for embedded systems and

embedded software courses and explore the possibility of it being suitable for

teaching Information Technology students embedded courses. SADET is a

project based kit that not only introduces embedded systems and its

interaction with embedded software but also give easy access to the complex

nature of a micro-controller. It provides a flexible inexpensive interface with

its core component as the Arduino Nano that has the ability to accept multiple

inputs and indicates output through multiple outputs according to the

running loaded embedded software. SADET is built with eight input terminals

and five output terminals using three different prototype circuits for the

purpose of it to be used as a teaching aid for embedded systems and

embedded software lectures. Regardless of it being built from three prototype

circuits, its multiple inputs and outputs allows it to be used to test the

operation of limitless number of circuit prototypes by loading and running

prototype software of choice. This reduces the need to build different circuits

for lecture purposes.

Key words

MICROCONTROLLER, EMBEDDED KIT, EMBEDDED SOFTWARE

ABSTRACT

TABLE OF CONTENT

1 INTRODUCTION -- 1

2 BACKGROUND AND MOTIVATION -- 3

3 CURRENT EMBEDDED SOFTWARE COURSE -------------------------------------- 6

 3.1 Main Topics --- 7

 3.2 Examples and Exercises (Simulator) -- 8

4 ARDUINO BASED KIT FOR PRACTICALS --- 9

4.1 Embedded Systems Hardware Structure (Kit) -- 10

4.1.1 General Structure (SADET) -- 10

4.1.2 Operation --- 15

4.1.3 Car Alarm System -- 18

4.1.4 Operation --- 21

4.1.5 Garage Door System --- 23

4.1.6 Operation --- 26

4.1.7 Dice Rolling System --- 27

4.1.8 Operation --- 30

4.2 Embedded Software --- 32

4.2.1 Arduino Independent Development Environment (IDE) ------------------------ 32

4.2.2 Arduino Programming with C Language -- 38

4.2.3 Sample Code for Car Alarm System --- 41

4.2.4 Sample Code for Garage Door System -- 44

4.2.5 Sample Code for Dice Rolling System -- 46

5 Usage of Embedded Kit -- 50

5.1 From Connection to Code Simulation --- 51

6 CONCULSION --- 52

REFERENCES --- 54

GRAPHS

GRAPH 1. Front View of SADET (Embedded kit) -- 12

GRAPH 2. Inside View of SADET (Embedded kit) --------------------------------------- 14

GRAPH 3. SADET prototype on Bread Board --- 14

GRAPH 4. SADET -- 15

GRAPH 5. 7-Segment Display pins label -- 17

GRAPH 6. Schematics of SADET --- 18

GRAPH 7. Car Alarm System on front view --- 19

GRAPH 8. Car Alarm System Schematics -- 20

GRAPH 9. Car Alarm System Prototype of Bread Board ------------------------------- 21

GRAPH 10. Garage Door System on front view --- 24

GRAPH 11. Garage Door System Schematics -- 25

GRAPH 12. Garage Door System prototype on Bread Board -------------------------- 26

GRAPH 13. Dice Rolling System on front view --- 28

GRAPH 14. Dice Rolling System Schematics --- 29

GRAPH 15. Dice Rolling System prototype on Bread Board --------------------------- 30

GRAPH 16. 7-Segment Display pins label -- 31

GRAPH 17. Arduino IDE --- 33

GRAPH 18. Arduino IDE when load example sketch (code) -------------------------- 33

GRAPH 19. Arduino IDE when selecting microcontroller type ----------------------- 34

GRAPH 20. Arduino IDE when selecting Universal Serial Bus communication port

-- 35

GRAPH 21. Arduino IDE when compiling a sketch (code) ----------------------------- 36

GRAPH 22. Arduino IDE when uploading a sketch (code) ---------------------------- 37

TABLES

TABLE 1. Simulation Exercises -- 8

TABLE 2. Input Switches -- 10

TABLE 3. Outputs -- 11

TABLE 4. Component List -- 13

TABLE 5. Input Connections --- 16

TABLE 6. Output Connections -- 16

TABLE 7. Test combinations of Car Alarm System --------------------------------------- 23

1

1 INTRODUCTION

This thesis comprises of embedded hardware and embedded software

information. First it introduces the embedded system courses as presently taught

to students such as their main topics, examples and exercises, and afterwards it

describes how to design and implement an embedded kit using various electronic

components and its main component being an Arduino Nano. It also further

instructs on how to use the kit to demonstrate and test embedded software

example programs.

Knowing that the electronics and embedded system is not a major line of

concentration for the information technology degree program students, using an

easy understandable kit with the Arduino Nano will help capture the heart of

many non-electronics engineers. Using Arduino and related open source project as

a platform for teaching embedded courses, provides a room for continuous

exploration and innovation for students regardless of their choice of course-major.

Viewing what is expected by a student from the electronic and embedded system

courses at undergraduate level, using Arduino serves as good introduction to the

concept of embedded system and due to it being an open source project there is

the opportunity for every student to continue self exploration and show their

creativity as much as possible.

Arduino Nano simplicity gives an easy means for student to build devices that

would be harder to implement with other embedded platforms. The Arduino

community, which consists of not only engineers and scientists, but also a large

2

collection of hobbyists, gives student the opportunity to get design ideals, access

to large knowledge databases and encouragement to get something working even

after the courses are over.

This work also shows an embedded kit created using an Arduino Nano with

multiple inputs and outputs which can be adapted for various purposes. The

creation of the embedded kit known as “SADET” was made using three prototype

circuits and all needed inputs and outputs of the circuits where provided.

Implementing eight inputs and five outputs, SADET was created from the

prototypes; garage door system, dice rolling system and car alarm system, all

adapted from the embedded software lecture for which the embedded kit was

created for in order to ease the testing of embedded software written during the

lecture.

The inputs are switch acting as sensors, actuators and signal acceptors, which are

normally found on device hardware and the output, comprise of visual indicators

such as light emitting diodes (LEDs), sound indicators such as a buzzer and a 7-

segment display for numerical visual appeal. The functioning of SADET was

demonstrated using sample codes created individually for each system from

which it was combined. Each code was written, compiled and uploaded into the

microcontroller of SADET using the Arduino Integrated Development

Environment (IDE).

3

2 BACKGROUND AND MOTIVATION

In the generation of electronics and smart machines, embedded systems play a

very important role in the continuous growth and ideal actualization in the field.

Embedded system growth has been progressive and fast within the past two

decade, and with the implementation of semiconductors into electronics, the size

and availability of embedded systems both as study prototypes and final products

have become manageable and steady. In order to foster the rapid growth of

embedded system and software, there has been steady improvement of embedded

system, and software education and introduction of students into time-oriented

programming which is a key factor in the operation of embedded system and

software.

Embedded systems introduced to a student in the field of information technology

exist as a late add-on course which reduces the vast exposure needed for students

to grasp completely the concept required to further explore the field. A quick view

at the programming method that students are exposed to at the beginning of their

study time, reveals a data-oriented study method which is not the targeted time-

oriented programming needed for the programming of embedded systems and

software. To encourage students to explore more about embedded system and

software, early introduction of a structured time-oriented programming method

may help and with the early introduction of electronics and electronic

components, embracing the ideal of working with virtual microcontroller that

exposes and introduces low-level resources of embedded systems and alongside

higher-level abstraction of how hardware and software are intertwined.

4

Embedded systems and embedded software programming with a modified

version of C programming language commonly known as Embedded C, show a

modified version of a time-oriented programming method that implements

hardware configuration into basic programming. The configuration is made easy

with a set of easy to use tools that support the hardware being configured, C

captured, compiled, simulated, debugged and a programmable virtual

microcontroller. It should also enable the uploading through specific interface into

the physical hardware microcontroller.

An early introduction into the field of embedded systems and software and a

continuous steady growth in an environment where ideal exploration is the order

of the day, the development of an ideal oriented physical prototype of a device

implementing a programmable microcontroller is achievable. Students that are

predisposed to electronics and those that welcome new ideals and challenges to

test their imagination and creativity can be nurtured and encouraged by making

their impression of exploring the field embedded systems and software an

interesting and innovative one.

Students of information technology have less chance of embracing embedded

systems and software but with early introduction to time-oriented programming

and electronics, the desire to venture into embedded systems and software can be

stirred up. An opportunity to capture students and encourage their interest in

embedded systems and software is during the course of embedded systems and

software. The lecture time should expose the advantages of knowing embedded

systems and software and the freedom of being creative with one’s ideals when a

student understands the concept. A better way to show this is to conduct the

5

lecture with a prototype device showing the capability of embedded systems and

software.

This thesis shows how a prototype device is created and can be used in the

practical lecture of embedded systems and software and the possibility for every

student to become creative and expatiate on the ideal behind the creation.

6

3 CURRENT EMBEDDED SOFTWARE COURSE

The current embedded software course shows an encouraging introduction into

smart systems for students with previous knowledge of electronics, electronic

components and digital circuits. An Integrated Development Environment (IDE)

with microcontroller hardware simulated support is used on the course. The

complimentary course (Embedded System) introduces the general architecture

and internal structure of a microcontroller and its interactions with external

circuits. The practical aspect is conducted with the aid of a Keil uVision

compactable hardware.

The course structure presents itself as organized and educative. Reflecting on it

from the view of a degree program in information technology, students in this

program are focused on networking and programming, embedded systems and

software being a minor focus. Using the above course structure leaves no room for

self-expansion and creativity because the tools, especially the hardware

components with the implementation of the microcontroller cannot easily be

modified or improved upon. Knowledge gained from this course structure

requires more research for it to be useful in the pursuit of the implementation of

embedded systems and software for professional and leisure use.

Information technology students with embedded systems and software as a minor

focus tend to prefer to use the knowledge for leisure purpose. With the

introduction of a hardware and IDE (Integrated Development Environment)

structure that support such usage will add more value to the course. Research

7

made into the open source project in embedded system and software known as

ARDUINO project comprised of microcontroller boards, related IDE and support

website. This thesis implements Arduino Nano as a case study for student and

shows how it can be implemented in the embedded system and software courses

and generally stirs student interest in using it for leisure design due to its ease of

usage.

3.1 Main Topics

Presently the embedded software course introduces students to these topics.

(adapted from Central Ostrobothnia University of Applied Sciences 2012)

1. Introduction to Embedded Systems

2. HW related extensions to C

3. Port I/O

4. Program development and testing in simulator

5. Interrupts

6. Timer and Timer Interrupts

7. State Machines

8. Time Triggered Architecture

8

3.2 Examples and Exercises (Simulator)

Practically using the Keil uVision IDE (Integrated Development Environment),

students are taught the below examples:

TABLE 1. Simulation Exercises (adapted from Central Ostrobothnia University of

Applied Sciences 2012)

Example Learning Goals

Seat Belt Alarm One bit i/o. C-extensions to handle i/o. IDE and

simulator.

Seat Belt Alarm* Good software structuring

Dice Byte-level i/o. Software and test design.

Up/Down Dice Introduction to system states

Door Opener Modeling based on state charts. State chart

implementation. Timing

Door Opener with integrated

burglar alarm

Time Triggered Architecture

The above examples are taught in a virtual hardware testing environment and

students gets physical device for testing during the embedded system course.

Using a virtual testing environment may render desired solutions but exclude the

visual knowledge of how a physical device would respond to tests being

performed.

9

4 ARDUINO BASED KIT FOR PRACTICALS

Arduino may eliminate the low-level challenges of embedded system hardware

and software design which as a minor subject is not of great importance but the

student will still experience a large majority of the concepts from its shared

simplicity and with the added benefit of building working and interesting designs

with minimal difficulty. The student will be provided a multipurpose micro-

controller that can be incorporated into any electronic circuit as flexible as the

imagination of the student and each micro-controller can be programmed with c-

language. Part of the information technology degree program curriculum is c-

language course thereby further easing the embedded software programming.

Accompanying the hardware is a programming kit that provides an integrated

development environment (IDE) and with this creating and uploading a program

into the micro-controller is simplified.

Practicals for the embedded systems and software courses are mainly performed

in a virtual hardware platform which does not satisfy the curiosity of students on

how real physical devices would respond to the activities and codes created by

them. This chapter will illustrate how a physical device is created to be used in

place of the virtual hardware device for embedded software code testing.

10

4.1 Embedded Systems Hardware Structure (Kit)

The thesis involves the actual creation of an embedded kit (SADET) using

electronic components. SADET is an embedded system using the Arduino Nano

that was created to be used for embedded software testing. The device created has

enough inputs and outputs so that it can be used to demonstrate and test most

examples used in present COUAS embedded software course.

4.1.1 General Structure (SADET)

SADET was created and tested incrementally by combining three example circuits

used in the embedded software course, namely CAR ALARM, GARAGE DOOR

and DICE ROLLING SYSTEM. To be able to demonstrate and test each of these

systems SADET needed to have eight input switches;

TABLE 2. Input Switches

PUSH BUTTON (PB). For

partial contact in the

circuit.

GRAPH 1. Push Button (adapted from Digi-Key

Corporation 2012)

11

FLIP SWITCH 1 (S1)

FLIP SWITCH 2 (SW1) –

FLIP SWITCH 7 (SW6).

For continuous contact in

the circuit.

GRAPH 2. Flip Switch (adapted from Digi-Key

Corporation 2012)

These switches are connected to Arduino input pins and can be used through

proper configuration. Attached to SW1 to SW6 are six RED light emitting diodes

(LED) labeled LED1 through to LED6. The LEDs indicates when a corresponding

switch is turned OFF or ON.

Based on the three aforementioned examples there was need for three LED

outputs, one buzzer and a 7-segment display;

TABLE 3. Outputs

GREEN Light Emitting Diode (D1)

GREEN Light Emitting Diode (D2)

GREEN Light Emitting Diode (D3).

For visible green light display.

GRAPH 3. Light Emitting Diode (adapted

from Digi-Key Corporation 2012)

12

BUZZER (SPK). For audio output.

GRAPH 4. Buzzer (adapted from Rapid

Electronics Limited 2012)

7-SEGMENT Light Emitting Diode

(7-SEG). For numeric output

display.

GRAPH 5. 7-Segment Display (adapted

from Digi-Key Corporation 2012)

The combination of all input and output components are seen in the front view of

SADET with the input components in the lower half of the device and the output

components in the upper half.

GRAPH 1. Front View of SADET (Embedded kit)

13

The electronic circuitry derived from the above three circuitries from which the

final device (SADET) was created has a combination of the following components

for its final creation;

TABLE 4. Component List

PART QUANTITY DESCRIPTION

PUSH BUTTON 1 creates make-and-break contact

FLIP SWITCHES 8 creates continuous contact

GREEN LED

RED LED

3

6

creates green light

creates red light

BUZZER 1 gives out buzzing sound

7-SEGMENT LED 1 for number display with LED

300Ω RESISITORS

330KΩ RESISTORS

16

2

for voltage breakdown

 ARDUINO NANO 1 hardware holding the microcontroller

4X4 DIP SOCKET

15X15 DIP SOCKET

1

1

socket seats for 7-SEGMENT LED and

ARDUINO NANO

VERO BOARD 1 conducting board

CONNECTION WIRES for component connection

All the components were arranged using the schematics of SADET and soldered to

the Vero board using soldering flux and soldering iron found in the electronics

laboratory.

14

GRAPH 2. Inside View of SADET (Embedded kit)

A gradual process was taken to obtain the final workable circuit. Each step was

connected and tested using similar components mentioned above except that the

Vero board was replaced with a bread board.

GRAPH 3. SADET Prototype on bread board

15

Individual circuit was tested and a combination of them was also tested to obtain

the final working prototype from which SADET was made including the use of

vero board and manufacturing of the casing.

GRAPH 4. SADET

4.1.2 Operation

To ensure the project was in complete operating condition, a sample code was

created and uploaded into the microcontroller. Generally the mode of operation

requires taking input from the multiple input buttons, performing the instructed

operations and sending the output to any or all of the output channels.

Pushbutton PB serves as a contact and break switch which is used when the state

of the input pin should be temporarily high. Switch S1 and switches SW1 to SW6

are used when a constant high state is needed for the functioning of the device and

code. At high state for switches SW1 to SW6, LED1 to LED6 will be ON, indicating

the high state.

16

The input pins are connected as follows:

TABLE 5. Input Connections

COMPONENT CONNECTION

PUSH BUTTON (PB) connected to Arduino Nano Digital Pin 2

FLIP SWITCH 1 (S1) connected to Arduino Nano Digital Pin 3

FLIP SWITCH 2 (SW1) connected to Arduino Nano Digital Pin 4

FLIP SWITCH 3 (SW2) connected to Arduino Nano Digital Pin 5

FLIP SWITCH 4 (SW3) connected to Arduino Nano Digital Pin 6

FLIP SWITCH 5 (SW4) connected to Arduino Nano Digital Pin 7

FLIP SWITCH 6 (SW5) connected to Arduino Nano Digital Pin 8

FLIP SWITCH 7 (SW6) connected to Arduino Nano Digital Pin 9

 Outputs are also sent to either any or all of the three LED (D1, D2, and D3) or

buzzer or 7-SEG or any combinations. To use the output pins signals are sent to

the microcontroller pins to which they are connected. The output pins are

connected as follows:

TABLE 6. Output Connections

COMPONENT CONNECTION

GREEN Light Emitting Diode (D1) connected to Arduino Nano Digital Pin 10

GREEN Light Emitting Diode (D2) connected to Arduino Nano Digital Pin 11

GREEN Light Emitting Diode (D3) connected to Arduino Nano Digital Pin 12

BUZZER (SPK) connected to Arduino Nano Digital Pin 13

7-SEGMENT Light Emitting Diode

(7-SEG)

Connected to Arduino Nano Analog Pins

A0 to A5 and connected to Arduino Nano

Digital Pin 12.

7-SEGMENT Light Emitting Diode (7-SEG) is

17

divided into 10 pins: a, b, c, d, e, f, g, dp, +, +

7-SEG-a connected to Arduino Nano Digital Pin 12

7-SEG-b connected to Arduino Nano Analog Pin A0

7-SEG-c connected to Arduino Nano Analog Pin A1

7-SEG-d connected to Arduino Nano Analog Pin A2

7-SEG-e connected to Arduino Nano Analog Pin A3

7-SEG-f connected to Arduino Nano Analog Pin A4

7-SEG-g connected to Arduino Nano Analog Pin A5

7-SEG-dp not connected

7-SEG-+, + connected to 5volt supply (common

cathode)

GRAPH 5. 7-Segment Display pins label

It is observed that GREEN Light Emitting Diode (D3) and 7-SEG-A shares

Arduino Nano Digital Pin 12. This is due to the fact that there are not enough

microcontroller pins for all the connections. The selection of which component

uses the Arduino Nano Digital Pin 12 is done through FLIP BUTTON J1.

18

GRAPH 6. Schematics of SADET

Vcc 5volt is supplied to the circuit through Arduino Nano pin 5V and all ground /

earth connections are made to Arduino Nano pin GND. These connections are

supplied through the Universal Serial Bus (USB) port to the external computer /

5Volt power source.

4.1.3 Car Alarm System

Among the three combined circuits from which the final circuit was made is the

car alarm system circuit. Its main function is to simulate the workings of a car

alarm in case there is an unhandled event such as seat belt not fastened or car light

is left on. The circuit uses switches as inputs and light and sound as outputs. The

input switches are the following:

19

FLIP SWITCH 2 (SW1) - FLIP SWITCH 7 (SW6)

and the output indicators are the following:

GREEN Light Emitting Diode (D1)

GREEN Light Emitting Diode (D2)

GREEN Light Emitting Diode (D3)

BUZZER (SPK)

The front view of SADET shows more than the required components for the

testing of a car alarm system, but the required input and output components are

marked out as showed in the diagram.

GRAPH 7. Car Alarm System on front view

The functioning of the circuit was tested using:

6 -- FLIP SWITCHES

20

6 -- RED LED

3 -- GREEN LED

1 -- BUZZER

10 -- 300Ω RESISITORS

1 -- ARDUINO NANO MICROCONTROLLER

BREAD BOARD and CONNECTIONWIRE

GRAPH 8. Car Alarm System Schematics

To individually troubleshoot the car alarm system schematics, a copy using the

same components was made on a breadboard and a sample code was also loaded

into the Arduino Nano microcontroller. The switches served as inputs and the

LED served as output. The test was conducted and the circuit was approved for

combination in the design of SADET.

21

GRAPH 9. Car Alarm System Prototype of Bread Board

4.1.4 Operation

A sample of the car alarm system simulation code was uploaded into the Arduino

Nano microcontroller. With the Universal Serial Bus (USB) supplying the 5volts

needed by the circuit, a testing process was performed.

Flip switches SW1 to SW6 are used to place the necessary pin on the

microcontroller on a continuous high state. Switches at high state are indicated by

the corresponding powered on LED. The corresponding microcontroller pins are

mapped as follows:

FLIP SWITCH 2 (SW1) connected to Arduino Nano Digital Pin 4

FLIP SWITCH 3 (SW2) connected to Arduino Nano Digital Pin 5

FLIP SWITCH 4 (SW3) connected to Arduino Nano Digital Pin 6

FLIP SWITCH 5 (SW4) connected to Arduino Nano Digital Pin 7

22

FLIP SWITCH 6 (SW5) connected to Arduino Nano Digital Pin 8

FLIP SWITCH 7 (SW6) connected to Arduino Nano Digital Pin 9

Each flip switch indicates specific input:

FLIP SWITCH 2 (SW1) indicates DOOR OPEN

FLIP SWITCH 3 (SW2) indicates ENGINE RUNNING

FLIP SWITCH 4 (SW3) indicates KEY IN PLACE

FLIP SWITCH 5 (SW4) indicates LIGHTS ON

FLIP SWITCH 6 (SW5) indicates BELT OPEN

FLIP SWITCH 7 (SW6) indicates DRIVER SITTING

The output from the combinations of inputs is indicated by setting various pins in

the microcontroller to high state. The output pins are set to the output device as

follows:

GREEN Light Emitting Diode (D1) connected to Arduino Nano Digital Pin 10

GREEN Light Emitting Diode (D2) connected to Arduino Nano Digital Pin 11

GREEN Light Emitting Diode (D3) connected to Arduino Nano Digital Pin 12

BUZZER (SPK) connected to Arduino Nano Digital Pin 13

Each output indicates specific warning as follows:

GREEN Light Emitting Diode (D1) indicates LIGHT ALARM

GREEN Light Emitting Diode (D2) indicates KEY ALARM

GREEN Light Emitting Diode (D3) indicates BELT ALARM

BUZZER (SPK) indicates audio output for all alarms

23

TABLE 7. Test combinations of Car Alarm System

4.1.5 Garage Door System

Among the three combined circuits from which the final circuit was made is the

garage door system circuit. Its main function is to simulate the workings of a

garage door when it is needed to be opened or closed using an electronic system.

The circuit uses switches as inputs and light and sound as outputs. The input

switches are the following:

PUSH BUTTON (PB)

FLIP SWITCH 1 (S1)

The push button trigger a temporary high state in the microcontroller pin to which

it is connected and the flip switch state indicates the first state of the garage door

either OPEN or CLOSED when it is first powered on.

24

The output indicators are the following:

GREEN Light Emitting Diode (D1)

GREEN Light Emitting Diode (D2)

GREEN Light Emitting Diode (D3)

BUZZER (SPK)

The front view of SADET shows more than the required components for the

testing of a garage door system but the required input and output components are

marked out as shown in Graph 15.

GRAPH 10. Garage Door System on front view

25

The functioning of the circuit was tested using:

1 -- PUSH BUTTON

1 -- FLIP SWITCHES

3 -- GREEN LED

1 -- BUZZER

4 -- 300Ω RESISITORS

2 -- 330KΩ RESISTORS

1 -- ARDUINO NANO MICROCONTROLLER

BREAD BOARD and CONNECTIONWIRE

GRAPH 11. Garage Door System Schematics

To individually troubleshoot the garage door system schematics, a copy using the

same components was made on a breadboard, and a sample code was also loaded

into the Arduino Nano microcontroller. The switches served as inputs and the

LED and buzzer served as output. The test was conducted and the circuit was

approved for combination in the design of SADET.

26

GRAPH 12. Garage Door System prototype on Bread Board

4.1.6 Operation

A sample of the garage door system simulation code was uploaded into the

Arduino Nano microcontroller. With the Universal Serial Bus (USB) supplying the

5volts needed by the circuit, a testing process was performed.

Push button PB is used to place the necessary pin on the microcontroller on a

temporary high state. Flip switch S1 indicates the initial state of the door, high or

low for OPENED or CLOSED. The corresponding microcontroller pins are

mapped as follows:

PUSH BUTTON (PB) connected to Arduino Nano Digital Pin 2

FLIP SWITCH 1 (S1) connected to Arduino Nano Digital Pin 3

27

The output from the combinations of input is indicated by setting various pins in

the microcontroller to high state. The output pins are set to the output device as

follows:

GREEN Light Emitting Diode (D1) connected to Arduino Nano Digital Pin 10

GREEN Light Emitting Diode (D2) connected to Arduino Nano Digital Pin 11

GREEN Light Emitting Diode (D3) connected to Arduino Nano Digital Pin 12

BUZZER (SPK) connected to Arduino Nano Digital Pin 13

On powering on the circuit, the state of flip switch S1 is read and the initial state of

the circuit either OPENED or CLOSED is observed and the corresponding light

emitting diode (LED) is powered on. The push button is used to initiate a change

of state, if pushed the output diode (LED) presently on is powered off and an

intermediate diode (LED) are powered on simultaneously with the buzzer. The

intermediate diode (LED) and the buzzer are powered off and the third diode

(LED) is powered on. This stays on until the push button is pushed again and the

process repeats itself in the reverse direction. Each output indicates a specific

warning:

GREEN Light Emitting Diode (D1) indicates DOOR OPENED

GREEN Light Emitting Diode (D2) indicates DOOR OPENING / CLOSING

GREEN Light Emitting Diode (D3) indicates DOOR CLOSED

BUZZER (SPK) audio output for door opening or closing.

4.1.7 Dice Rolling System

Among the three combined circuits from which the final circuit was made is the

dice rolling system circuit. It main function is to simulate a dice rolling process

28

electronically. The circuit uses a switch as inputs and a 7-segment light emitting

diode as outputs. The input switch is:

PUSH BUTTON (PB)

The push button triggers a temporary high state in the microcontroller pin to

which it is connected. The output indicator is:

7-SEGMENT Light Emitting Diode (7-SEG)

The front view of SADET shows more than the required components for the

testing of a dice rolling system but the required input and output components are

marked out as shown in Graph 18.

GRAPH 13. Dice Rolling System on front view

29

The functioning of the circuit was tested using:

1 -- PUSH BUTTON

7 -- 300Ω RESISITORS

1 -- 330KΩ RESISTORS

1 -- ARDUINO NANO MICROCONTROLLER

BREAD BOARD and CONNECTIONWIRE

GRAPH 14. Dice Rolling System Schematics

To individually troubleshoot the dice rolling system schematics, a copy using the

same components was made on a breadboard and a sample code was also loaded

into the Arduino Nano microcontroller. The switches served as inputs, and the 7-

SEGMENT LED served as output. The test was conducted and the circuit was

approved for combination in the design of SADET.

30

GRAPH 15. Dice Rolling System prototype on Bread Board

4.1.8 Operation

A sample of the dice rolling system simulation code was uploaded into the

Arduino Nano microcontroller. With the Universal Serial Bus (USB) supplying the

5volts needed by the circuit, a testing process was performed.

Push button PB is used to place the necessary pin on the microcontroller on a

temporary high state. The corresponding microcontroller pins are mapped as

follows:

PUSH BUTTON (PB) connected to Arduino Nano Digital Pin 2

The output from the input is indicated by setting various pins in the

microcontroller to low state because the 7-SEG is a common cathode which means

all diodes (LEDs) are connected to a common pin (+) which in turn is connected to

31

5volts. Microcontroller pins are set to low to ensure a low potential difference with

respect to the 5volts high potential thus ensuring the flow of electricity through

the diode (LED). The output pins all combines to the functioning of the 7-SEG

diode (LED) and are set to the output device as follows:

7-SEG-a connected to Arduino Nano Digital Pin 12

7-SEG-b connected to Arduino Nano Analog Pins A0

7-SEG-c connected to Arduino Nano Analog Pins A1

7-SEG-d connected to Arduino Nano Analog Pins A2

7-SEG-e connected to Arduino Nano Analog Pins A3

7-SEG-f connected to Arduino Nano Analog Pins A4

7-SEG-g connected to Arduino Nano Analog Pins A5

7-SEG-dp not connected

7-SEG-+ connected to 5volt supply (common cathode)

On powering on the circuit, all the diodes (LEDs) are set to HIGH rendering them

off. The push button provides temporary contact for creating a high state in the

input pin to initiate the generation of a random number which is displayed in the

7-SEG. The corresponding pins needed to form the number are set to LOW state

and others set to HIGH. The pin to LED arrangement is shown in Graph 21:

GRAPH 16. 7-Segment Display pins label

32

4.2 Embedded Software

In addition to creating a physical device using electronic components, a

complimentary code in C Language (Embedded C) must be written and uploaded

into the microcontroller before it can function. The function of the device is

exclusively decided by the code uploaded into it as the physical device serves as a

means to send in input into the code and display output of the code. The device’s

multiple inputs and outputs serve to give options and flexibility when writing the

code. The device has the capability to test any embedded software capable of

using any or all of the inputs as its inputs and any or all of the device outputs as

its outputs.

4.2.1 Arduino Integrated Development Environment (IDE)

Embedded software for Arduino microcontrollers are written and compiled using

the Arduino IDE (Integrated Development Environment). Arduino IDE software is

Open Source, which means everyone has access to it freely, and it can be

downloaded from Arduino webpage (http://arduino.cc/en/Main/Software). After

downloading the software, which comes as a Zip file (Arduino 1.0 at the time of

this material), it should be unzipped, copied to a safe location on the hard drive

and the file structure of the download preserved. Open the folder and double click

on the file named Arduino.exe, this will launch the Arduino IDE.

33

GRAPH 17. Arduino IDE

To test the connectivity of the Arduino IDE, a sample project can be loaded from a

list of sample code that was downloaded along with the IDE.

GRAPH 18. Arduino IDE when load example sketch (code)

34

After loading the project sketch into the IDE, the Arduino microcontroller to

which the sketch is to be uploaded should be selected according to the steps

provided in the below Graph 24.

GRAPH 19. Arduino IDE when selecting microcontroller type

To access the port that will be used by the Arduino kit in communicating with the

Arduino IDE, a connection through the USB port to the Arduino microcontroller

should be established. This option can only be selected when the Arduino Nano

microcontroller is connected to the computer through the USB (Universal Serial

Bus) and the computer has detected and acknowledges the use of the interfaces.

Connection is made through the USB port but the option available comes in the

form of communication port (COM).

35

GRAPH 20. Arduino IDE when selecting Universal Serial Bus communication port

Successfully selecting all option, the compile button can be clicked to launch the

compiling process. This will instruct the computer to read through the selected

code or custom code if it was written by a student, and check for any errors in the

coding of creation of the coding upload able code. If there are errors in the code,

they will be displayed below the code window and guide on how to correct the

code will be provided. Corrections are made to code errors and compiled

repeatedly until a 100% success is obtained.

36

GRAPH 21. Arduino IDE when compiling a sketch (code)

Upon completing, the upload button can be clicked to launch the uploading

process. Uploading is the process whereby the written and successfully compiled

code is transferred into the memory of the microcontroller (in this case Arduino

Nano). Successfully uploaded code is indicated by a beep.

37

GRAPH 22. Arduino IDE when uploading a sketch (code)

After successful upload, the code will be active in the microcontroller. The same

process is followed for custom software created independently. Codes can be

tested using the inputs and outputs configured in the codes and the power supply

to the microcontroller from the computer. Thus the USB cable should not be

disconnected after the code is completely uploaded.

38

4.2.2 Programming Arduino with C Language

The magic happens when you press the button that upload the program to the

board; the code you have written is translated into C language, that is normally

quite hard to use for a beginner, and passed on to the avr-gcc compiler (an

important piece of open-source software) that makes the ultimate translation into

the language understood by the microcontroller. (Banzi 3rd release, 9.)

Arduino libraries for interface access:

The Arduino coding begins with defining the pins and attributing them to variable

names used in the code such as;

#define BUTTON 2 // Push button connected to digital pin 2

for digital pins, pin numbers are directly written,

#define LED A0 // LED connected to Analog pin A0

for analog pins, pin numbers are written are letter A

next is a two block structure enclosing several statements:

void setup() { preparing statements; }

preparation statements such as:

pinMode(pin, mode);

pinMode(LED, OUTPUT); // sets the analog pin as output

pinMode(BUTTON, INPUT); // sets the digital pin as input

and void loop() { execution Statements; }

39

execution Statements such as:

digitalRead(pin);

value = digitalRead(BUTTON); // read input value and store it by checking if state

is HIGH or LOW

digitalWrite(pin, value);

digitalWrite(LED, HIGH); // write to output LED by setting it to HIGH

analogRead(pin);

value = analogRead(A0); // read input value and store it

analogWrite(pin, value);

analogWrite(LED, HIGH); // write to output LED by setting it to HIGH

note: digital signal can be written to analog pins.

other useful library functions:

randomSeed(seed)

randomSeed(analogRead(7)); // to initial a new sequence of random value

random(max)

random(min, max)

random(1,7); // random value generation

delay(millisecond);

delay(10); // create delay in continuation

millis();

40

value = millis(); //return the number of milliseconds since Arduino board began

running the current program as an unsigned long value.

min(x,y);

value = min(value, 50);// calculate and return the minimum of two values.

max(x,y);

value = max(value, 50); // calculate and return the maximum of two values.

All C Language constructs e.g:

int val = 0; //variable declaration

if () {} // if statement

if () {} … else // if else statement

for(){}//for loop

switch (x){ case 1: statements;

default: }

while {} //while statement

do{} while() //do..while statement

char functions(){}//function statement

datatypes: byte, int, long, float.

41

4.2.3 Sample Code for Car Alarm System

// Example Turn on LED D1 on pin D10, LED D2 on pin D11 and LED D3 on pin

// D12 when the buttons SW1 – SW6 on pins D4 – D9 is pressed according to Table

// 6 on page 22. Also makes sound from BUZZER connected to pin D13 when

// LEDs D1, // D2, D3 are on

#define LIGHT_ALARM 10 // LIGHT_ALARM connected to digital pin 10

#define KEYS_ALARM 11 // KEYS_ALARM connected to digital pin 11

#define BELT_ALARM 12 // BELT_ALARM connected to digital pin 12

#define BUZZER 13 // Speaker connected to digital pin 13

#define DOOROPEN 4 // INPUT connected to digital pin 2

#define ENGINERUNNING 5 // INPUT connected to digital pin 3

#define KEYSINPLACE 6 // INPUT connected to digital pin 3

#define LIGHTSON 7 // INPUT connected to digital pin 3

#define BELTOPEN 8 // INPUT connected to digital pin 3

#define DRIVERSITTING 9 // INPUT connected to digital pin 3

void setup() {

 pinMode(LIGHT_ALARM, OUTPUT); // sets the digital pin as output

 pinMode(KEYS_ALARM, OUTPUT); // sets the digital pin as output

 pinMode(BELT_ALARM, OUTPUT); // sets the digital pin as output

 pinMode(BUZZER, OUTPUT); // sets the digital pin as output

42

 pinMode(DOOROPEN, INPUT); // sets the digital pin as input

 pinMode(ENGINERUNNING, INPUT); // sets the digital pin as input

 pinMode(KEYSINPLACE, INPUT); // sets the digital pin as input

 pinMode(LIGHTSON, INPUT); // sets the digital pin as input

 pinMode(BELTOPEN, INPUT); // sets the digital pin as input

 pinMode(DRIVERSITTING, INPUT); // sets the digital pin as input }

void loop() {

 /* lights reminder */

 if (isLightsOn() && (!isEngineRunning()) && isDriverDoorOpen())

 setLightsAlarmOn();

 else setLightsAlarmOff();

 /* key reminder */

 if (isKeyInPlace() && (!isEngineRunning()) && isDriverDoorOpen())

 setkeyALarmOn();

 else setkeyALarmOff();

 /*if seat belt is not fastend do alarm */

 if (isDriverSitting() && isBeltOpen() && isKeyInPlace()) setBeltAlarmOn();

 else setBeltAlarmOff(); }

///////////// FUNCTIONS //

unsigned char isLightsOn() { if (digitalRead(LIGHTSON) == HIGH) return HIGH;

43

 else return LOW; }

unsigned char isEngineRunning() { if (digitalRead(ENGINERUNNING) == HIGH)

return HIGH;

 else return LOW; }

unsigned char isDriverDoorOpen() { if (digitalRead(DOOROPEN) == HIGH)

return HIGH;

 else return LOW;}

unsigned char isKeyInPlace() { if (digitalRead(KEYSINPLACE) == HIGH)

return HIGH;

 else return LOW; }

unsigned char isDriverSitting() { if (digitalRead(DRIVERSITTING) == HIGH)

return HIGH;

 else return LOW; }

unsigned char isBeltOpen() { if (digitalRead(BELTOPEN) == HIGH) return HIGH;

 else return LOW; }

void setLightsAlarmOn() { digitalWrite(LIGHT_ALARM, HIGH);//set LED on

 digitalWrite(BUZZER, HIGH);//set buzzer on }

void setLightsAlarmOff() { digitalWrite(LIGHT_ALARM, LOW);//set LED OFF

 digitalWrite(BUZZER, LOW);//set buzzer OFF }

void setkeyALarmOn() { digitalWrite(KEYS_ALARM, HIGH); //set LED on

 digitalWrite(BUZZER, HIGH);//set buzzer on }

void setkeyALarmOff() { digitalWrite(KEYS_ALARM, LOW); //set LED on

44

 digitalWrite(BUZZER, LOW);//set buzzer on }

void setBeltAlarmOn() {digitalWrite(BELT_ALARM, HIGH); // led is Off now

 digitalWrite(BUZZER, HIGH);//set buzzer on }

void setBeltAlarmOff() { digitalWrite(BELT_ALARM, LOW);// 5volt led is on

 digitalWrite(BUZZER, LOW);//set buzzer on }

4.2.4 Sample Code for Garage Door System

// Example Turn on LED on pin D10, LED on pin D11 and LED on pin D12

// when the button on pin D2 is pressed. Also makes sound connect to pin D13

// when LED on pin D11 is on. Switch on pin D3 indicate initial state of circuit

// and keep it on after it is released. Including simple de-bouncing

#define OPENEDLIGHT 10 // OPENEDLIGHT connected to digital pin 10

#define O_C_LIGHT 11 // O_C_LIGHT connected to digital pin 11

#define CLOSEDLIGHT 12 // CLOSEDLIGHT connected to digital pin 12

#define BUZZER 13 // Speaker connected to digital pin 13

#define DOORSWITCH 2 // INPUT connected to digital pin 2

#define DOOR_STATE 3 // FIRST STATE INPUT connected to digital pin 3

int val = 0; // val will be used to store the state of the input pin

int state_init; // store the first state of the device

45

int state; // holds the changing state of the device

const int CLOSED = 1; // closed state

const int OPENING = 2; // opening state

const int CLOSING = 3;// closing state

const int OPENED = 4;// opened state

void setup() { pinMode(OPENEDLIGHT, OUTPUT);//sets the digital pin as output

 pinMode(O_C_LIGHT, OUTPUT); // sets the digital pin as output

 pinMode(CLOSEDLIGHT, OUTPUT); // sets the digital pin as output

 pinMode(BUZZER, OUTPUT); // sets the digital pin as output

 pinMode(DOORSWITCH, INPUT); // sets the digital pin as input

 pinMode(DOOR_STATE, INPUT); // sets the digital pin as input

 state_init = digitalRead(DOOR_STATE); //reads device first state

 if (state_init == HIGH)state = CLOSED; //determines device first state

 else state = OPENED; }

void loop() {

// check if there was a transition

if (state == CLOSED) { digitalWrite(O_C_LIGHT, LOW); // turn LED ON

 digitalWrite(BUZZER, LOW); //speaker off

 digitalWrite(CLOSEDLIGHT, HIGH); // turn LED ON

 for(;;) { val = digitalRead(DOORSWITCH); // read input value and store it

46

 if(val == HIGH){state = OPENING; digitalWrite(CLOSEDLIGHT, LOW);break;}}

 delay(1000); }

if (state == OPENING) { digitalWrite(O_C_LIGHT, HIGH); // turn LED ON

 digitalWrite(BUZZER, HIGH); state = OPENED; delay(1000); }

if (state == CLOSING) { digitalWrite(O_C_LIGHT, HIGH); // turn LED ON

 digitalWrite(BUZZER, HIGH); state = CLOSED; delay(1000); }

if (state == OPENED) { digitalWrite(O_C_LIGHT, LOW); // turn LED ON

 digitalWrite(BUZZER, LOW); digitalWrite(OPENEDLIGHT, HIGH);

 for(;;) { val = digitalRead(DOORSWITCH); // read input value and store it

 if(val == HIGH){state = CLOSING; digitalWrite(OPENEDLIGHT, LOW);break;}}

 delay(1000); } }

4.2.5 Sample Code for Dice Simulation System

// Example DICE ROLLING CODE that Turns on seven segment display

#define 7_SEGMENTa 12 // 7_SEGMENTa connected to digital pin 12

#define 7_SEGMENTb A0 // 7_SEGMENTb connected to Analog pin A0

#define 7_SEGMENTc A1 // 7_SEGMENTc connected to Analog pin A1

#define 7_SEGMENTd A2 // 7_SEGMENTd connected to Analog pin A2

#define 7_SEGMENTe A3 // 7_SEGMENTe connected to Analog pin A3

47

#define 7_SEGMENTf A4 // 7_SEGMENTf connected to Analog pin A4

#define 7_SEGMENTg A5 // 7_SEGMENTg connected to Analog pin A5

#define ROLLDICE 2 // INPUT connected to digital pin 2

int val = 0; // val will be used to store the state of the input pin

int old_val = 0; // this variable stores the previous value of "val"

int result = 0; // holds the random value generated

void setup() { pinMode(7_SEGMENTa, OUTPUT); // sets the digital pin as output

//sets the Analog pins as output//

 pinMode(7_SEGMENTb, OUTPUT); pinMode(7_SEGMENTc, OUTPUT);

 pinMode(7_SEGMENTd, OUTPUT); pinMode(7_SEGMENTe, OUTPUT);

 pinMode(7_SEGMENTf, OUTPUT); pinMode(7_SEGMENTg, OUTPUT);

 pinMode(ROLLDICE, INPUT); // sets the digital pin as input

 randomSeed(analogRead(7)); // to initial a new sequence of random value

 //initial state of display

 digitalWrite(7_SEGMENTa, HIGH); digitalWrite(7_SEGMENTb, HIGH);

 digitalWrite(7_SEGMENTc, HIGH); digitalWrite(7_SEGMENTd, HIGH);

 digitalWrite(7_SEGMENTe, HIGH); digitalWrite(7_SEGMENTf, HIGH);

 digitalWrite(7_SEGMENTg, HIGH); }

void loop() { val = digitalRead(ROLLDICE); // read input value and store it

 // check if ROLLDICE pressed

48

 if ((val == HIGH) && (old_val == LOW)) { result = random(1,7); // random value

 //OUTPUT TO 7_SEGMENT

 switch (result) { case 1:

 digitalWrite(7_SEGMENTa, HIGH); digitalWrite(7_SEGMENTb, LOW);

 digitalWrite(7_SEGMENTc, LOW); digitalWrite(7_SEGMENTd, HIGH);

 digitalWrite(7_SEGMENTe, HIGH); digitalWrite(7_SEGMENTf, HIGH);

 digitalWrite(7_SEGMENTg, HIGH); break;

 case 2:

 digitalWrite(7_SEGMENTa, LOW); digitalWrite(7_SEGMENTb, LOW);

 digitalWrite(7_SEGMENTc, HIGH); digitalWrite(7_SEGMENTd, LOW);

 digitalWrite(7_SEGMENTe, LOW); digitalWrite(7_SEGMENTf, HIGH);

 digitalWrite(7_SEGMENTg, LOW); break;

 case 3:

 digitalWrite(7_SEGMENTa, LOW); digitalWrite(7_SEGMENTb, LOW);

 digitalWrite(7_SEGMENTc, LOW); digitalWrite(7_SEGMENTd, LOW);

 digitalWrite(7_SEGMENTe, HIGH); digitalWrite(7_SEGMENTf, HIGH);

 digitalWrite(7_SEGMENTg, LOW); break;

 case 4:

 digitalWrite(7_SEGMENTa, HIGH); digitalWrite(7_SEGMENTb, LOW);

 digitalWrite(7_SEGMENTc, LOW); digitalWrite(7_SEGMENTd, HIGH);

49

 digitalWrite(7_SEGMENTe, HIGH); digitalWrite(7_SEGMENTf, LOW);

 digitalWrite(7_SEGMENTg, LOW); break;

 case 5:

 digitalWrite(7_SEGMENTa, LOW); digitalWrite(7_SEGMENTb, HIGH);

 digitalWrite(7_SEGMENTc, LOW); digitalWrite(7_SEGMENTd, LOW);

 digitalWrite(7_SEGMENTe, HIGH); digitalWrite(7_SEGMENTf, LOW);

 digitalWrite(7_SEGMENTg, LOW); break;

 case 6:

 digitalWrite(7_SEGMENTa, LOW); digitalWrite(7_SEGMENTb, HIGH);

 digitalWrite(7_SEGMENTc, LOW); digitalWrite(7_SEGMENTd, LOW);

 digitalWrite(7_SEGMENTe, LOW); digitalWrite(7_SEGMENTf, LOW);

 digitalWrite(7_SEGMENTg, LOW); break;

 default:

 digitalWrite(7_SEGMENTa, HIGH); digitalWrite(7_SEGMENTb, HIGH);

 digitalWrite(7_SEGMENTc, HIGH); digitalWrite(7_SEGMENTd, HIGH);

 digitalWrite(7_SEGMENTe, HIGH); digitalWrite(7_SEGMENTf, HIGH);

 digitalWrite(7_SEGMENTg, HIGH); break; } }

 old_val = val; delay(10); /*de-bouncing control*/ }

50

5 USAGE OF THE EMBEDDED KIT

The architecture of the embedded kit (SADET) is focused on its usage for testing

any embedded software. The device created has enough inputs and outputs so

that it can be used to demonstrate and test most examples used in present COUAS

embedded software course. The device has multiple inputs connected to specific

pins on the Arduino Nano and the outputs are also connected to specific pins on

the Arduino. These are fixed connections and the use of the input signals and the

output signals in the code must be mapped to these specific pins.

The hardware device (SADET) will be provided and the pins connection should be

studied from previous chapters. The knowledge of the pin connections is needed

when coding. With good understanding of the pin connections, the Arduino IDE

should be launched if downloaded already else download and configure it as

explained in previous chapter.

A new project is initiated with the start a new project (sketch) icon or from the

Arduino IDE menu and followed by a code that meets the function to be

demonstrated with SADET. The steps explained in the previous chapter on how to

create and load codes (sketches) into the Arduino microcontroller gives a detailed

description. Completely compiled and uploaded code can be tested with SADET

still connected to the USB port of the computer as it is the source of the 5volts

needed to power the circuit.

Testing a code with SADET involves sending input from the input component

defined in the code and observing the output from the output component defined

51

in the code either diode (LED), buzzer (sound) or 7-Segment display. If output

display is as expected, the code works perfectly else the code edited, compiled and

uploaded into SADET until the desired output is obtained.

5.1 From Connection to Code Simulation

The complete understanding of how the Arduino Nano working in line with other

circuit components (input and output) is relevant to using SADET. It is not a

complex process as it involves setting a pin to HIGH or LOW state. 5volts create a

HIGH state source point and GND (ground) creates a LOW state end point. The

basic law of electricity which states that electricity flow from a point of high

potential HIGH to a point of low potential LOW is applicable here. The USB cable

connected to the computer supplies the 5volts through one of its pins and a

ground connection (GND) through another thus making it very important and

should stay connected to the computer while operating SADET.

 A written and compiled code (sketch) should be uploaded into the Arduino Nano

microcontroller and a simulation of the code performed using SADET. This

involves sending described input signals in the code with the input component

and observing through audio or visual the output component according to the

code specification.

52

6 CONCLUSION

The aim of this thesis is to create a single embedded kit with an Arduino Nano

capable of simulating and troubleshooting any embedded software. An embedded

kit (SADET) was created from the combination of a car alarm, garage door and

dice rolling system. SADET is capable of simulating and troubleshooting any

embedded software that can adapt to its system’s eight input and five output

components.

SADET’s basic function is to test and demonstrate any embedded software whose

input and output requirement can be met by SADET. Projects (sketches) are

coded, compiled and uploaded to SADET using the Arduino IDE through a USB

cable connecting SADET to the computer. After uploading, the project is tested

using input components to send input signal and observing the output

components for proper functioning. If needed the coding errors are corrected in

IDE and the process is repeated until the functioning observed by testing in

SADET is what is wanted.

All projects (sketches) needed for the operational testing of the circuits from which

SADET was made were coded, compiled and uploaded individual into SADET.

The required input from the input components were sent in and used successfully

and the desired output from the output component where observed.

53

Arduino Nano is an embedded system that has pins to which any input or output

component can be connected. This leaves room for the improvement of SADET

with components like a potentiometer if a steady decrease in output voltage is

needed, a proximity sensor switch if a non-contact input is required, infra-red

sensor switch if a remote control mechanism is needed. The improvement of

SADET is vast and only limited by the imagination of the designer and also the

requirement for the circuit to be simulated.

The project (sketch) coding is almost the same but with a few more Arduino

libraries to be learnt and the whole of C Language libraries at the programmer´s

disposal.

54

REFERENCES

Banzi, M. 2010. Getting Started with Aduino. Third release. California, USA:

Makebooks.

Brian, E. 2007. Arduino programming notebook. First edition. California, USA:

Creative commons.

Component image 2012. 7segment display. Available:

http://www.mikrocontroller-rojekte.de/Mikrocontroller/7Segment/7Segment.html.

Accessed 1 April 2012.

Component image 2012. Light Emitting Diode. Available:

http://ca.digikey.com/1/3/indexb1598.html. Accessed 1 April 2012.

Component image 2012. Buzzer. Available:

http://www.rapidonline.com/Electrical-Power/Miniature-electronic-buzzer-83008.

Accessed 1 April 2012.

Component image 2012. 7segment circuit. Available:

http://parts.digikey.com/1/parts-kws/7-segment-displays. Accessed 1 April 2012.

Course material 2012. Embedded software. Available:

https://cou171.wikidot.com/embedded:embedded-software. Accessed 1 April

2012.

Jamieson, P. Arduino for Teaching Embedded Systems. Miami University, USA.

McRoberts, M. 2009. Arduino starter kit manual. A complete beginner’s guide to

the Arduino. First edition. Miami, USA: Earthshine electronics.

Vahid, F. and Givargis, T. Timing is Everything - Embedded Systems Demand

Early Teaching of Structured Time-Oriented Programming. Department of

Computer and Engineering, University of California, USA

http://www.mikrocontroller-rojekte.de/Mikrocontroller/7Segment/7Segment.html
http://ca.digikey.com/1/3/indexb1598.html
http://www.rapidonline.com/Electrical-Power/Miniature-electronic-buzzer-83008
http://parts.digikey.com/1/parts-kws/7-segment-displays.%20Accessed%201%20April%202012
https://cou171.wikidot.com/embedded:embedded-software

