
Aistin™
Firmware User Guide

Version 0.9.8

2014-03-13

TABLE OF CONTENTS

1. INTRODUCTION 4

2. AISTIN PROTOCOL 5

DATA FIELDS AND CHARACTER ALLOCATION 5
MESSAGE STRUCTURE 6
PROTOCOL CONFIGURATION OPTIONS 6
MESSAGE TYPES 7
COMMENT CHARACTER 10

3. SOFTWARE DEVICES 11

REGISTER TYPES 11

MASTER REGISTER SET 12

EXAMPLE USE CASES 14
READING REAL-TIME CLOCK 14
SETTING REAL-TIME CLOCK 14
INCLUDE TIME STAMP TO DATA MESSAGES 14

ANALOG INPUTS REGISTER SET 15

EXAMPLE USE CASES 16
READING BATTERY VOLTAGE CHANNEL ONCE PER SECOND 16
READING ANALOG INPUT CHANNELS #0 AND #1 TEN TIMES PER SECOND 16

VIRTUAL MACHINE REGISTER SET 17

EXAMPLE USE CASES 18
START TO RUN USER’S VM PROGRAM 18
STOP RUNNING THE PROGRAM 18
START UPLOADING A NEW PROGRAM FOR THE VM 18

VIRTUAL MACHINE PROGRAM REGISTER SET 19

EXAMPLE USE CASES 19
START UPLOADING A NEW PROGRAM 19
UPLOAD AN EMPTY PROGRAM THAT HAS DEVICE ADDRESS ABH 20

Aistin Firmware 0.8.0 User Guide © 2013 iProtoXi – www.iprotoxi.fi 2

http://www.iprotoxi.fi/

VIRTUAL MACHINE "RAM" REGISTER SET 21

EXAMPLE USE CASES 21
WRITE A STRING INTO RAM AREA 21
CHANGE RAM AREA’S DEVICE ADDRESS 21

VIRTUAL MACHINE PROGRAM INSTRUCTION SET 22

SOME EXAMPLE PROGRAMS 25
HELLOWORLD . AIS 25
TRAFFICLIGHTS . AIS 25

Aistin Firmware 0.8.0 User Guide © 2013 iProtoXi – www.iprotoxi.fi 3

http://www.iprotoxi.fi/

1. INTRODUCTION

iProtoXi Aistin firmware is the software provided with the iProtoXi Micro controller board. It is
designed to support easy use of add-on boards, such as accelerometer sensor and gyro, as well as
temperature and humidity sensors, or the RGB-LED board. To achieve this, firmware has ability to
communicate with outer world using a specifically designed human-readable protocol, called Aistin
Protocol.

In more complicated configurations there may be several boards connected to a server – Aistin Server
– which in turn may be connected to some clients, such as specific Web pages. Furthermore, there
might be several servers connected together, to enable variety of networking configurations. This
makes possible to network sensors even over the internet. Below is an example picture of a possible
complex networked system configuration.

Aistin protocol makes it possible to access all the networked sensors and actuators from the clients,
with a single unified way. In current implementation, I2C-types of devices are supported, but other
common buses may be implemented later on.

Aistin Firmware 0.8.0 User Guide © 2013 iProtoXi – www.iprotoxi.fi 4

Personal Computer
#1

Aistin

Server #1

Aistin

Server #1

Personal Computer
#2

Aistin

Server #2

Aistin

Server #2

IP-link

Aistin
Controller

#1

Aistin
Controller

#1

Client #2

Web Page

Client #2

Web Page

Aistin
Controller

#2

Aistin
Controller

#2

Aistin
Controller

#4

Aistin
Controller

#4

Aistin
Controller

#3

Aistin
Controller

#3

Client #1

Plain Terminal

Client #1

Plain Terminal

Sensors

I2C-bus

USB-links

Aistin
Controller

#5

Aistin
Controller

#5

Bluetooth
links

I2C-bus

IP-link

USB-link

I2C-bus

Sensors/Actuators

I2C-bus

Actuator

Sensors

http://www.iprotoxi.fi/

2. AISTIN PROTOCOL

The Aistin protocol is designed to work using any 7- or 8-bit ascii bearer, and is based on ASCII
characters only. One of its main principles is to be both human- and machine-readable, so it can be
used with just a simple terminal program, such as Windows Hyper Terminal. However, the protocol
has a clear, fixed format to enable other software applications on top of it.

Another important aspect is a small memory footprint, thus instead of having large set of different
command words, there are only few one-letter commands. The needed command divergence is
achieved by using numerical codes, called "addresses". This thinking is derived from the world of
hardware I2C bus, and people familiar with such kind of things will feel the system very pleasing.

Third thing provided by the protocol is "node-addressing". It is possible to address an individual
iProtoXi controller board in a network, even though the board itself doesn't implement a TCP/IP stack.

DATA FIELDS AND CHARACTER ALLOCATION

The protocol is based on data fields that are preceded by a single special character. The characters are
allocated as follows:

>X Beginning of a message and a message code (X) when it is the first character in a
line, after a carriage return and/or a linefeed

LF Line feed (ascii code 10), end of a message

CR Carriage return (ascii code 13), alternative end of a message

@DaRa Target identifier (targetID): device address (Da), 8-bit register address (Ra)

@DaRaNb Target identifier: device address (Da), 8-bit register address (Ra), number of bytes
(Nb)

@DaRaraNb Target identifier: device address (Da), 16-bit register address (Rara), number of
bytes

&Df Data formatting code

:D0D1D2.. Data bytes in hexadecimal format, no spaces between bytes

$string Human readable data – a text string or e.g. a signed 16-bit integer

%time Time value in decimal, most often in microseconds

~senderID Identifier string (nodeID) of the sender of a message, maximum length is 12
characters

^receiverID Identifier string (nodeID) of the receiver of a message, maximum length is 12
characters

' Comment

In case of 16-bit register address, the byte order is lo-hi: low-order byte comes before the high-order
byte (so called big-endian).

Aistin Firmware 0.8.0 User Guide © 2013 iProtoXi – www.iprotoxi.fi 5

http://www.iprotoxi.fi/

The protocol aims to be stateless, two-way and symmetric. This means that both sides can send a
message at any time, and they must be prepared to receive a message at any time. Because of
symmetricy, both sides can behave as a "client" and as a "server" – all message types are available for
both sides. There are a few configurable protocol parameters described later.

The overall system is based on idea of "writing" and "reading" data to and from a connected iProtoXi
system. There is also a concept of device address that is used to route messages into the correct place
within the system. The iProtoXi Master Device has a fixed device address, namely hex 80, but there can
be several other "devices" within the same node, each having their unique address. Furher, each
device has one or more registers which are accessed using unique register address.

In case of real I2C devices connected to the main board, they can be accessed "transparently" as
specified in their data sheets. This is a very useful feature.

In outcoming messages receiverID field (^) is a copy of latest incoming message's senderID field (~).
This makes possible to track where an outcoming received message should be forwarded, in case of
multi-client configuration. However, these fields are both optional and may or may not exist. Existence
of senderID in outcoming messages can be configured via Master Register Set.

MESSAGE STRUCTURE

All messages have the following logical structure – the corresponding characters as described in the
previous chapter are shown. All fields may or may not be present. Also, the time field (%) may be
configured to appear before the data.

[begin-code | message-code | sender | receiver | location | data format | data | time | end-code]

 > X ~ ^ @ & :$ % (LF/CR)

Where X is one of the following message codes:

R - Read

W - Write

D - Data

S - Scan

A - Acknowledge

Some examples of valid messages could be:

>W@343603:5B23AF
>A@343603
>R@1D2901
>D@1D2901:8D

PROTOCOL CONFIGURATION OPTIONS

Protocol has three configuration bytes that are available through system registers (see Master Register
Set). Configuration options affect also to virtual machine output. Shortly, they are as follows:

Aistin Firmware 0.8.0 User Guide © 2013 iProtoXi – www.iprotoxi.fi 6

http://www.iprotoxi.fi/
mailto:D@1D2901
mailto:R@1D2901

"positiveAck" option controls whether or not acknowledge message is sent as a reply to all received
messages (except the acknowledge message itself, indeed). If it is set ON (value is one), then positive
acknowledge is sent always. The default value is OFF (zero). Note: negative acknowledge i.e. error is
sent always independent of this option.

"messageFields" option is for performance reasons to control if outcoming messages will have
optional targetID field (@) and/or senderID field (~).

"dataTimestamp" option is also for performance reasons to control whether or not outcoming data
messages will have timestamp field or not (%). Default value (zero) is OFF, whereas 01h corresponds
to ON, and the field is positioned before the data. Value 81h is ON, and the field is positioned after the
data. The timestamp precision is fixed to 10-digits, in microseconds.

MESSAGE TYPES

Write – "W"

Write message takes one of the following forms when writing binary data in hexadecimal format:

>W@DaRa:D0D1D2... 8-bit register address

>W@DaRaNb:D0D1D2... 8-bit register address, Nb given

>W@DaRaraNb:D0D1D2... 16-bit register address, Nb is always needed

Where Da is the device address, Ra is the register address, Nb is the number of bytes and D0, D1, D2 ..
are data bytes that will be send into the device Da and written into the register Ra. All numbers are in
two-character hexadecimal format, in other words, a value between 00...FF. Thus, a leading zero is
required if the number is less than hex 10. Spaces are not allowed. If the value of Nb is not zero but
does not match to the given data, an error is returned (negative acknowledge). If Nb is zero, then any
number of data bytes is allowed. Leaving Nb away (first form) equals to setting it to zero. Note that in
case of 16-bit register address, Nb must always be given. Alternative formats for text type of data are
as follows:

>W@DaRa$my text 8-bit register address, Nb is zero

>W@DaRaNb$my text 8-bit register address, Nb given

>W@DaRaraNb$my text 16-bit register address, Nb is always needed

In this case, the data to be written is given as a string and the number of bytes (Nb) is set to either zero
or to match the length of the string. In case of zero, end of string is indicated with linefeed. If protocol
specific characters, linefeed and single quote ('), are included into the string, Nb must be set to
indicate the total length of the string.

Read – "R"

Read message gets one of the following forms:

>R@DaRa 8-bit register address, Nb is zero

>R@DaRaNb 8-bit register address, Nb given

>R@DaRaraNb 16-bit register address, Nb is always needed

Aistin Firmware 0.8.0 User Guide © 2013 iProtoXi – www.iprotoxi.fi 7

http://www.iprotoxi.fi/
mailto:R@DaRaraNb
mailto:R@DaRaNb
mailto:R@DaRa
mailto:W@DaRaraNb
mailto:W@DaRaNb
mailto:W@DaRa
mailto:W@DaRaraNb
mailto:W@DaRaNb
mailto:W@DaRa

Again, Da and Ra are device and register addresses, whereas Nb is the number of bytes that we want
to read. If Nb is not given or is zero, it indicates that we want to get the Ra in "readable" format. Thus,
the result will be returned as a text instead of hexadecimal byte values. In case of e.g. 16-bit register
the string may be a decimal integer whereas in case of date/time it is a string containing year, month,
day and time. The actual number of bytes that will be read from the register Ra is register-dependent
and may or may not be shown in the responded data message (within the @-field as Nb value).

Read message can be put to repeat itself by giving a time field with a value that sets the period
between reads. For example, the following code reads a register 24h from a device 80h once a second.
Reading stops whenever a new message is send or started.

>R@8024%1000000

Characters ’m’ and ’s’ can be used to indicate milliseconds and seconds, correspondingly. This avoids
using long microsecond numbers. The previous command can thus be replaced with either of the
following forms:

>R@8024%1000m
>R@8024%1s

Read command accepts also data formatting code that is given with &-character. This makes possible
to select suitable format to enable easy importing of data into other applications, such as Microsoft
Excel. The following codes are used. Note that many of the formats are not currently supported.

00h = default formatting, currently always produces hexadecimal without spaces
01h = binary data, all bytes are sent out "as is", with no coding (not supported)
02h = text data, data is sent assuming it is printable text and ends with null-byte
03h = hexadecimal 8-bit, no separators, currently equals to 00-formatting code
04h = hexadecimal 8-bit with separator character in between the bytes (not supported)
05h = hexadecimal 16-bit with separator character in between the values (not supported)
06h = hexadecimal 32-bit with separator character in between the values (not supported)
07h = reserved for future use
08h = decimal 8-bit, unsigned (not supported)
09h = decimal 8-bit, signed (two's complement) (not supported)
0Ah = decimal 16-bit, unsigned
0Bh = decimal 16-bit, signed
0Ch = decimal 32-bit, unsigned (not supported)
0Dh = decimal 32-bit, signed (not supported)
12h = decimal, 32-bit Virtual Machine's floating point format, see ”Virtual Machine” section

In addition, three uppermost data encoding bits can be or'ed into above codes as follows:

20h = data is be handled as little endian instead of big endian (not supported)
40h = comma is used instead of space as a separator
80h = message frame is left away (off)

Also, if message frame is set off, new-line is added after the data only if comma separated mode is
selected. As an example, the following command reads and prints out analog input channels one and
two in decimal format, without message frame and separated by comma, ten times per second:

>R@810604&CA%100m

Data – "D"

Data message appears normally as a response to a read message as follows:

Aistin Firmware 0.8.0 User Guide © 2013 iProtoXi – www.iprotoxi.fi 8

http://www.iprotoxi.fi/
mailto:R@DaRa

>D@DaRaNb:D0D1D2.. or

>D@DaRaraNb:D0D1D2..
or

>D@DaRaNb$string or

>D@DaRaraNb$string

The target ID -field (@) may or may not be included depending on the related configuration option. In
the first case, Nb corresponds to the number of bytes, whereas in the latter case it will be either zero
or the length of the string. Further, if timestamp was requested, then there will be more information
as follows:

>D@DaRaNb%timestamp:D0D1D2.. or

>D@DaRaraNb%timestamp:D0D1D2..
or

>D@DaRaNb%timestamp$string or

>D@DaRaraNb%timestamp$string

Now, the additional %-character indicates that the following number is a timestamp for the data when
it was read. The value is always in microseconds.

Scan – "S"

This message is an alias to reading "scan" register from the device 80h. So, the following two messages
do the same thing:

>R@8038ff
or

>S

The 38h is the address of scan register, see register tables at the end of this document. Note that “ff” is
used to indicate we want to read as many bytes as there is available. After a scan command, a
sequence of hexadecimal numbers corresponding to the available device addresses is returned as a
data message, e.g. as follows:

>D@803808:1D203480818D9091

Acknowledge – "A"

If configuration option "positiveAcknowledges" is ON, then the positive acknowledge message takes a
form:

>A@DaRaNb or

>A@DaRaraNb

Where @DaRaNb has the same contents that was used in the message that caused the

Aistin Firmware 0.8.0 User Guide © 2013 iProtoXi – www.iprotoxi.fi 9

http://www.iprotoxi.fi/
mailto:A@DaRaNb
mailto:D@7FXX04
mailto:D@DaRaNb

acknowledgment. This field may or may not be present depending on the "includeAddress"
configuration option. Negative acknowledge is sent always and takes a form:

>A@DaRaNb:ER or

>A@DaRaraNb:ER

Where ER is a non-zero hexadecimal error code. Note that Nb will be the value that was used in the
message that caused this negative acknowledge. It does not tell the number of data bytes in this
message (which is always one, the error code).

Version – "V" or an empty message

A "V" message or an empty message can be used to see some system information, i.e. by giving only
">" character and hitting enter on terminal:

>

Version information is then shown and will be something like the following:

>D@80140C$ipxdevice-01 Node ID
>D@800805$0.8.0 Software version
>D@800C05$1.2.0 Hardware version
>D@800E0C$27EB142B0000 Board UID
>D@802413$2013-04-05 15.27.48 Real time clock
>D@803806:5D80818D9092 Scan result: available "devices"

COMMENT CHARACTER

Linefeed or carriage return character (ascii 10 or 13) is always used to detect end of message line.
Because messages may be taken from a script file, system also accepts human readable comment
string after the actual message. Comment is separated from the message with a single quote ('), ending
quote is not needed. For example:

>R@802400 'read real time clock as a text

There is a special exception related to this: a comment character can be used to start a message that
contains only a comment, as follows:

'This is a comment only

That kind of message is just ignored by the Aistin system. The lines that do not begin with > or single-
quote, will be handled as off-message data and forwarded to a possible connected "raw device", such
as a Bluetooth module.

Note: Because copy-pasting of single-quote from different kind of documents sometimes produces varying
ascii-code, the system interprets all character codes equal to or higher than 80h similar way as the single-
quote character.

Aistin Firmware 0.8.0 User Guide © 2013 iProtoXi – www.iprotoxi.fi 10

http://www.iprotoxi.fi/
mailto:D@803806
mailto:D@800C05$1.2.0
mailto:D@800805$0.8.0
mailto:A@DaRaNb
mailto:A@DaRaNb

SOFTWARE DEVICES

In addition to the real I2C devices, the system has a few "software devices" used to access software
features. Those devices have their own register sets described in the following sections. Register set is
a set of parameters that can be read or written by the protocol. There are different types of
parameters, such as bytes, words and strings. It must be noted that words (two bytes) and longs (four
bytes) are in big-endian format, i.e. low-order byte becomes always first.

Each device has its unique device address that is used to address the corresponding register set. In
addition, each register set has a version number to distinguish between possible different versions of
register sets. The version number and total size of the related register set can be read from the first
four bytes of each register set. These four bytes have always fixed, version-independent order, making
possible to deal with different versions.

If register set version byte has its most significant byte set (i.e. the value is equal to or greater than
80h), it means that the register set has additional four control bytes in the beginning. These bytes are
used to control software devices, that are continuously run by the CPU.

REGISTER TYPES

There are the following possible register types:

byte

word

long

string Null-terminating character array

byteff Hidden byte array – reading ”ff” bytes returns all available data.

One or more of the following operations are possible:

R Read

W Write

R$ Readable also as a formatted string, using Nb=00

W$ Writable also as a formatted string, using $ instead of colon (:)

Rff Arbitrary number of bytes available, can be read using Nb=ff, or maximum amount that is
needed

Reading and writing of several registers with a single command is possible only for the basic register
types: byte, word and long. Even in these cases it might be that all data is not updated, so the safest way is
always to access a single register at a time.

Aistin Firmware 0.8.0 User Guide © 2013 iProtoXi – www.iprotoxi.fi 11

http://www.iprotoxi.fi/

MASTER REGISTER SET
Software Device 80h, Version 81h

Master Register Set is used to control basic features of the iProtoXi Aistin firmware. Most important
things are board's ID, protocol options and access to on-board real time clock. Detailed descriptions
are listed in the table below.

Add-
ress

Type R/W Name Values / purpose

00h byte R deviceAddress 80h, identifies this device, "iProtoXi Master"

01h byte R regsVersion 81h, identifies this register set version

02h word R regsSize 0046h, total size of this register set

04h byte R deviceState State of this device: 0 = stopped, 1 = running

05h byte RW deviceControl Write to control this device: 01h = reset to
defaults, 02h = stop, 03h = run

06h byte RW debugLevel Debug messages: 00h = no, 01h = show all

07h byte - (reserved) Reserved for future purposes

08h word R softwareVersion Version of iProtoXi Aistin firmware, in
hexadecimal – e.g. 0080h equals to 0.8.0

0Ah word R arduinoVersion Version of used Arduino build environment, in
hexadecimal – e.g. 0104h equals to 1.0.4

0Ch word R hardwareVersion Version of iProtoXi Micro board we are running
on, in hexadecimal – e.g. 0120h means 1.2.0

0Eh 6 bytes RW boardUID Six-byte unique board identifier

14h 13 bytes RW nodeID Null-terminated board ("node") identifier string

21h byte - (reserved) Even-byte alignment

22h byte RW i2cBaseAddress 00h, offset for I2C addresses (not implemented)

23h byte RW virtualI2cBaseAddr 80h, offset for virtual I2C addresses (not impl.)

24h long RW datetime Real time clock, value is in seconds when read as
hexadecimal binary. For text-format date and
time, read zero bytes instead. For setting, send a
string as $YYYY-MM-DD HH.MM.SS

28h 2 bytes - (reserved) Reserved for different type of real time clock

2Ah long RW usCounter Free running microseconds counter

2Eh byte RW messageBeginChar ">", message begin character (not implemented)

2Fh byte RW positiveAck Protocol control:
00h = do not send positive acknowledgment
01h = always send acknowledgment

30h byte RW messageFields Protocol control
00h = do not include optional fields
01h = include location field (@)
02h = include senderID field (~)
03h = include both

Aistin Firmware 0.8.0 User Guide © 2013 iProtoXi – www.iprotoxi.fi 12

http://www.iprotoxi.fi/

31h byte RW includeTimestamp Protocol control:
00h = do not include timestamp
01h = include timestamp before data
81h = include timestamp after data

32h byte RW dataEncoding Protocol control:
00h = encode data as hex, no spaces
(other values are not currently supported)

33h byte RW commChannels Which channels are used for messaging:
00h = no messaging
02h = serial channel 0 (USB)
04h = serial channel 1 (e.g. Bluetooth)
06h = serial channels 0 and 1

34h byte RW outputChannels Where to output data messages, see
“commChannels” for accepted values

35h byte RW forwardChannels Where to forward messages, see "commChannels"
for accepted values. This can be used to monitor
message traffic from another channel.

36h byte RW nonipxChannels Where to forward off-message characters, see
“commChannels” for accepted values. This can be
used to communicate with e.g. a Bluetooth
module.

37h byte RW debugChannels Where to send debug printing – not currently
supported

38h byteff Rff scanForDevices Read to get list of available device addresses, both
real I2C devices and software devices will be
listed

39h byte - (reserved) Reserved, even-byte alignment

3Ah long - (reserved) -

3Eh long - (reserved) -

42h byte RW powerSaveMode Operating mode:
00h = no power save
01h = basic power saving
02h = advanced power saving (preliminary)

43h byte RW powerControl 00h = sensors and radio OFF
01h = sensors ON, radio OFF
02h = sensors OFF, radio ON
03h = sensors and radio ON (default)

44h byte R latestErrorCode Latest error code

45h byte R detectedConnections Detected connections:
00h = no connections
02h = USB-connection detected

Aistin Firmware 0.8.0 User Guide © 2013 iProtoXi – www.iprotoxi.fi 13

http://www.iprotoxi.fi/

EXAMPLE USE CASES

READING REAL-TIME CLOCK

>r@802400

SETTING REAL-TIME CLOCK

>w@8024$2013-07-17 11.20.00

INCLUDE TIME STAMP TO DATA MESSAGES

>w@803101:01

Aistin Firmware 0.8.0 User Guide © 2013 iProtoXi – www.iprotoxi.fi 14

http://www.iprotoxi.fi/

ANALOG INPUTS REGISTER SET
Software Device 81h, Version 01h

This register set is used to read the microcontroller's analog input channels. The index numbers refer
to the ADC-pin numbers shown in Atmega32u4 specification. Note that channels 2 and 3 do not really
exist and most other channels are configured for other purposes in default iProtoXi Micro
configuration. Only channels 0 and 1 are free for user purposes. Channel 5 corresponds to USB voltage
level, channel 6 to battery voltage level and channel 7 measures current consumed by add-on sensor
boards.

Add-
ress

Type R/W Name Values / purpose

00h byte R deviceAddress 81h, identifies this device, "Analog Inputs"

01h byte R regsVersion 01h, identifies this register set version

02h word R regsSize 0022h, total size of this register set

04h byte R numAdcChannels 14, number of analog input channels in this register
set. Note! All channels are not supported by the
hardware.

05h byte - (reserved) Reserved for future use, even-byte alignment

06h word R analogInputs[0] Analog input value for channel 0, free

08h word R analogInputs[1] Analog input value for channel 1, free

0Ah word R analogInputs[2] Analog input value for channel 2

0Ch word R analogInputs[3] Analog input value for channel 3

0Eh word R analogInputs[4] Analog input value for channel 4

10h word R analogInputs[5] Analog input value for channel 5, USB voltage

12h word R analogInputs[6] Analog input value for channel 6, battery voltage

14h word R analogInputs[7] Analog input value for channel 7, sensors’ current

16h word R analogInputs[8] Analog input value for channel 8

18h word R analogInputs[9] Analog input value for channel 9

1Ah word R analogInputs[10] Analog input value for channel 10

1Ch word R analogInputs[11] Analog input value for channel 11

1Eh word R analogInputs[12] Analog input value for channel 12

20h word R analogInputs[13] Analog input value for channel 13

Aistin Firmware 0.8.0 User Guide © 2013 iProtoXi – www.iprotoxi.fi 15

http://www.iprotoxi.fi/

EXAMPLE USE CASES

READING BATTERY VOLTAGE CHANNEL ONCE PER SECOND

>r@811202%1s

READING ANALOG INPUT CHANNELS #0 AND #1 TEN TIMES PER SECOND

>r@810602%100m

Aistin Firmware 0.8.0 User Guide © 2013 iProtoXi – www.iprotoxi.fi 16

http://www.iprotoxi.fi/

VIRTUAL MACHINE REGISTER SET
Software Device 8Dh, Version 82h

Virtual machine (VM) is a special device that can be used to run user's own program. This register set
is used to control the "virtual processor". In practice, the needed operations are normally stopping
and re-starting execution of a loaded program. See next section for information how to load a program
for the virtual machine.

Add-
ress

Type R/W Name Values / purpose

00h byte R deviceAddress 8Dh, identifies this device, "Virtual Machine"

01h byte R regsVersion 82h, identifies this register set version

02h word R regsSize 0031h, total size of this register set

04h byte R deviceState State of the VM: 0 = stopped, 1 = running

05h byte RW deviceControl Write to control VM: 01h = reset, 02h = stop, 03h =
continue, 04h = (re)start program, 10h = start
programming, 12h = set autostart off, 13h = set
autostart on

06h byte RW debugLevel Level of debug messages: 00h = no debug messages,
01h = show debug messages

07h byte R vmControl VM program autostart bits: 01h = auto-start after
reset, 00h = do not auto-start

08h word R programMemSize Size of available program memory for a VM program

0Ah word R ramSize Size of available "RAM" memory for a VM program

0Ch byte RW outputChannels Channels where VM sends messages, see "Master
Register Set" for more information

0Dh byte RW outputOptions 00h = output plain data
01h = output real time clock on VM start and stop

0Eh byte R condition VM condition code register

0Fh byte - (reserved) Reserved for future use, even-byte alignment

10h word R pc Program Counter, address of the instruction in
progress

12h word R firstTag Address of first TAG in the program

14h word R prevTag Address of previous TAG in the program

16h long R vmStartDatetime Real time when VM started to run program

1Ah long R vmStartTime Microseconds time when VM started to run program

1Eh long - (internal) Internal use

22h long - (reserved) Reserved for future

26h byte - (internal) Internal use

27h byte - (reserved) Reserved for future

28h byte - (internal) Internal use

Aistin Firmware 0.8.0 User Guide © 2013 iProtoXi – www.iprotoxi.fi 17

http://www.iprotoxi.fi/

29h byte - (reserved) Reserved for future

2Ah-
37h

byte RW ownerNodeID[13] Node's ID that currently controls VM (null-
terminating string). This is set automatically when
writing to deviceControl byte.

EXAMPLE USE CASES

START TO RUN USER’S VM PROGRAM

>w@8d05:04

STOP RUNNING THE PROGRAM

>w@8d05:02

START UPLOADING A NEW PROGRAM FOR THE VM

>w@8d05:10

Aistin Firmware 0.8.0 User Guide © 2013 iProtoXi – www.iprotoxi.fi 18

http://www.iprotoxi.fi/

VIRTUAL MACHINE PROGRAM REGISTER SET
Software Device 8Eh = unprogrammed, 90h = programmed; Version 04h

Program register set is used to store virtual machine's application program. All programs must have
specific eight bytes at the beginning, as documented below. Programming is controlled using virtual
machine register set (see Device 8Dh).

Add-
ress

Type R/W Name Values / purpose

00h byte R deviceAddress 8Eh when programming or 90h when already
programmed. Identifies this device, "Virtual Machine
Program"

01h byte R regsVersion 04h, identifies this register set version. This is also
used to check program's compatibility with VM.

02h word R regsSize 0100h, total size of this register set. This is maximum
size of VM application, including this header.

04h byte RW programUID[0] A0h-EFh, device number that the VM application is
implementing, will be copied to VM-RAM

05h byte RW programUID[1] Register set version that the VM application is
implementing, will be copied to VM-RAM

06h word RW programUID[2-3] Register set size that the VM application is
implementing, will be copied to VM-RAM

08h-
FFh

byte RW program The actual VM application's program code.

To send a program, you can use address 08h for each instruction line: the system automatically keeps
track where the next program instruction must be located. In most cases that eliminates the need to
calculate addresses by hand.

EXAMPLE USE CASES

START UPLOADING A NEW PROGRAM

>w@8d05:10

Aistin Firmware 0.8.0 User Guide © 2013 iProtoXi – www.iprotoxi.fi 19

http://www.iprotoxi.fi/

UPLOAD AN EMPTY PROGRAM THAT HAS DEVICE ADDRESS ABH

>w@8d05:10 're-program VM
>w@8e00:90040001 'VM type ID V04 with 0x0100 bytes of room
>w@8e04:ab010000 'program UID: dev. addr, version, reg. set size
>w@8e08:00 'actual program code (00 = no program)

Aistin Firmware 0.8.0 User Guide © 2013 iProtoXi – www.iprotoxi.fi 20

http://www.iprotoxi.fi/

VIRTUAL MACHINE "RAM" REGISTER SET
Software Device: 8Fh = unprogrammed, 91h = anonymous application,

92h-9Fh = iProtoXi application, A0h-EFh = user application;
Version 00h-FFh – set by application

"VM-RAM" register set is used to store your own application's data as you wish. However, first four
bytes should always be laid out as described below. They will be directly copied from the program
register set, from the bytes 4-7. The rest of "RAM" area can be used as needed. It is also possible to
store static data, such as constants and strings into this area, and they will resist over power-down,
since data is stored to EEPROM and re-loaded on boot-up.

Addr-
ess

Type R/W Name Values / purpose

00h byte R deviceAddress 8Fh, 91h-9Fh, A0h-EFh, identifies your device that the
VM application is implementing. The values below
A0h and over EFh are reserved for other purposes. At
the beginning of programming, address is set to 8Fh.
When program is started, default value 91h is used if
the program does not specify any other value
(“anonymous application”).

01h byte R regsVersion 00h-FFh, identifies your register set version

02h word R regsSize 00h-80h, total size of your register set, meaning the
bytes you are providing as an interface to be read and
written by the Aistin protocol

04h-
7Fh

byte RW ram "RAM" and static data area for free use by your VM
application

Note that bytes 00h-03h are read-only. To change them, you must provide the values via the Program
register set, using register programUID[] (bytes 4-7).

EXAMPLE USE CASES

WRITE A STRING INTO RAM AREA

>w@8d05:10 'begin programming
>w@8f04$My string

CHANGE RAM AREA’S DEVICE ADDRESS

The correct and only way to change ram area’s device address is to begin programming and then to
write the desired device address into program area’s register 04h. This is shown below.

>w@8d05:10 'begin programming
>w@8e04:ab 'set device address we want to provide to ABh

Aistin Firmware 0.8.0 User Guide © 2013 iProtoXi – www.iprotoxi.fi 21

http://www.iprotoxi.fi/

VIRTUAL MACHINE PROGRAM INSTRUCTION SET
For the Device 8Eh, version 04h

Virtual machine is based on assembly-alike instructions, laid out as byte stream with operation codes
and corresponding arguments. The operation code byte (opcode) is divided into following bits:

Bit 7 6 5 4 3 2 1 0
Purpose Op.

modifier
Operand
type

Operand
size

Operation code

Operation code -bits define the operation in case, for example addition or multiplication. In most cases,
Operand size is set zero for byte-sized operations and one for word-sized. The Operand type bit is
mostly set zero if one of the operands is included as an immediate value, and one, if that operand
should be taken from a RAM register, instead. Operation modifier is mostly used to select between
unsigned and signed oprations. The table below lists all available instructions. Note that arithmetic
instructions are currectly always producing saturated results in case of under/overflow.

The supported instructions are described in the table below. Following abreviations are used:

rd Byte value, destination ram address

rs Byte value, source ram address

Da Byte value, destination device address

Ra Byte value, destination device register address

Nb Byte value, used as a number of bytes

Df Byte value, message data formatting code – see Read command for a list of accepted values

b# Byte value, read as immediate value from code flow

w# Word value (two bytes), read as immediate value from code flow

jb Relative one byte jump address with special values 00h = first TAG, ffh= previous TAG

jw Absolute two byte jump address with special values 0000h = first TAG, ffffh = previous TAG

Mnemonic Code
[hex]

Operands Description

readdev8.b 01 rd, Ra Read a single byte from current device using 8-bit register
address

readdev8.w 21 rd, Ra Read a word (2 bytes) from current device using 8-bit
register address

readdev8.n 02 rd, Ra, Nb Read Nb bytes from current device using 8-bit register
address

writedev8.b 03 Ra, b# Write an immediate byte to current device using 8-bit
register address

writedev8.w 23 Ra, w# Write an immediate word to current device using 8-bit
register address

writedev8.b 43 Ra, rs Write a single byte to current device using 8-bit register
address

Aistin Firmware 0.8.0 User Guide © 2013 iProtoXi – www.iprotoxi.fi 22

http://www.iprotoxi.fi/

writedev8.w 63 Ra, rs Write a word to current device using 8-bit register address

writedev8.n 04 Ra, rs, Nb Write Nb bytes to current device using 8-bit register address

copy.b 05 rd, b# Copy an immediate byte to rd

copy.w 25 rd, w# Copy an immediate word to rd

copy.b 45 rd, rs Copy a byte from rs to rd

copy.w 65 rd, rs Copy a word from rs to rd

copy.n 06 rd, rs, Nb (*) Copy Nb bytes from rs to rd

add.b 07 rd, b# Add an immediate unsigned byte value

add.w 27 rd, w# Add an immediate unsigned word value

add.b 47 rd, rs Add unsigned bytes: rd = rd + rs

add.w 67 rd, rs Add unsigned words: rd = rd + rs

add.sb 87 rd, b# Add an immediate signed byte value

add.sw A7 rd, w# Add an immediate signed word value

add.sb C7 rd, rs Add signed bytes: rd = rd + rs

add.sw E7 rd, rs Add signed words: rd = rd + rs

sub.b 08 rd, b# Substract an immediate unsigned byte value

sub.w 28 rd, w# Substract an immediate unsigned word value

sub.b 48 rd, rs Substract unsigned bytes: rd = rd – rs

sub.w 68 rd, rs Substract unsigned words: rd = rd – rs

sub.sb 88 rd, b# Substract an immediate signed byte value

sub.sw A8 rd, w# Substract an immediate signed word value

sub.sb C8 rd, rs Substract signed bytes: rd = rd – rs

sub.sw E8 rd, rs Substract signed words: rd = rd – rs

send.n 0B rs, Nb, Df Send Nb bytes from rs to output channels as a D message,
using format specified by Df

sync.us 0C w# Synchronize to microseconds time interval [1]

sync.ms 2C w# Synchronize to milliseconds time interval [1]

sync.us 4C rs Synchronize to microseconds time interval [1]

sync.ms 6C rs Synchronize to milliseconds time interval [1]

syncmi.us 8C w# Synchronize to microseconds time interval, register memory
change or sensor interrupt [1,2]

syncmi.ms AC w# Synchronize to milliseconds time interval, register memory
change or sensor interrupt [1,2]

syncmi.us CC rs Synchronize to microseconds time interval, register memory
change or sensor interrupt [1,2]

Aistin Firmware 0.8.0 User Guide © 2013 iProtoXi – www.iprotoxi.fi 23

http://www.iprotoxi.fi/

syncmi.ms EC rs Synchronize to milliseconds time interval, register memory
change or sensor interrupt [1,2]

jmp.b 0D jb Signed one-byte relative jump

jmp.w 2D jw Absolute two-byte jump

cmp.b 0E rs, b# Compare unsigned bytes

cmp.w 2E rs, w# Compare unsigned words

cmp.sb 8E rs, b# Compare signed bytes

cmp.sw AE rs, w# Compare signed words

cmp.b 4E rd, rs Compare unsigned bytes

cmp.w 6E rd, rs Compare unsigned words

cmp.sb CE rd, rs Compare signed bytes

cmp.sw EE rd, rs Compare signed words

jmpneq 0F jb Jump if not equal

jmpeq 2F jb Jump if equal

jmpg 4F jb Jump if greater

jmpgeq 6F jb Jump if greater or equal

jmpl 8F jb Jump if less

jmpleq AF jb Jump if less or equal

satoff 10 - Set saturating mathematics off

saton 30 - Set saturating mathematics on (default)

abs.b 15 rd Take absolute value from a signed byte

abs.w 35 rd Take absolute value from a signed word

mul.b 17 rd, b# Multiply with immediate unsigned byte

mul.w 37 rd, w# Multiply with immediate unsigned word

mul.sb 97 rd, b# Multiply with immediate signed byte

mul.sw B7 rd, w# Multiply with immediate signed word

mul.b 57 rd, rs Multiply with immediate unsigned byte

mul.w 77 rd, rs Multiply with immediate unsigned word

mul.sb D7 rd, rs Multiply with immediate signed byte

mul.sw F7 rd, rs Multiply with immediate signed word

div.b 18 rd, b# Divide with immediate unsigned byte

div.w 38 rd, w# Divide with immediate unsigned word

div.sb 98 rd, b# Divide with immediate signed byte

div.sw B8 rd, w# Divide with immediate signed word

div.b 58 rd, rs Divide with immediate unsigned byte
Aistin Firmware 0.8.0 User Guide © 2013 iProtoXi – www.iprotoxi.fi 24

http://www.iprotoxi.fi/

div.w 78 rd, rs Divide with immediate unsigned word

div.sb D8 rd, rs Divide with immediate signed byte

div.sw F8 rd, rs Divide with immediate signed word

Tag 1D - Mark a loop TAG for a program to loop later on

setdev 1E b# Set current device address (Da)

setnode 9E rs Set target nodeID to a null-terminating string stored at rs.
Following special values can also be used:
00h = loopback, local reads/writes (default)
01h = allnodes, reads/writes to all nodes
02h = allclients, reads/writes to all clients
03h = vmowner, reads/writes to current VM owner

(*) This opcode may be replaced with other function in the future – use only if absolutely necessary.

[1] The value is interpreted as a signed word, maximum being 32767. Negative numbers are
reserved for future use (seconds and minutes).

[2] This instruction can be used to save battery but still enable immediate reaction to important
events. Detecting which condition triggered the syncmi instruction is as follows:

Timeout – Condition bits are set to zero, use e.g. jmpeq instruction to branch
Sensor interrupt – Condition bits are set to positive, use e.g. jmpg instruction to branch
Register memory changed – Condition bits are set to negative, use e.g. jmpl instruction to

branch

Register memory change happens when a write message arrives (“>W”) that changes one or
more of the VM program's registers.

Floating Point Format

Aistin Virtual Machine's floating point format is not quite the IEEE-754, but as follows:

M M M M M M M M M M M M M M M M S M M M M M M M S E E E E E E E

Where S's are sign bits, E's are exponent bits and M's mantissa bits, both coded using two's
complement. The last byte is 8-bit signed exponent whereas the preceding three bytes are the
mantissa in big-endian order (thus sign bit appears in the last byte). The only support for floating
point is in printout, when requesting a data message in floating point format. You cannot directly
compute with the floating points. Note also that currently only negative exponents are supported in
printout and mantissa must be positive.

Aistin Firmware 0.8.0 User Guide © 2013 iProtoXi – www.iprotoxi.fi 25

http://www.iprotoxi.fi/

SOME EXAMPLE PROGRAMS

The following codes can be uploaded as such into the iProtoXi Micro CPU board from a terminal
program, using either copy-paste or alternatively, save example in a file and then upload that file. It is
convenient to use file extension ".ais" in those files, to recognize them later on. After successful
uploading, start the virtual machine with a command:

>w@8d05:04 'restart VM
To stop, use command:

>w@8d05:02 'stop VM

If you want to auto-start the program after uploading, just add the start command as a last line into
the file before uploading. However, whether your program starts again automatically after power-
down, depends on a setting on device 8Dh (Master register set). To set auto-start, command:

>w@8d05:13 'set auto-start ON
To turn it off, command:

>w@8d05:12 'set auto-start OFF

HELLOWORLD . AIS

'HELLOWORLD – iProtoXi Aistin virtual machine program for VM V04
>w@8d05:10 'command: re-program VM
>w@8e00:90040001 'VM V04 program ID
>w@8e04:91001000 'provided device address, version, reg. set size
'actual code
>w@8e08:1d 'loop begins
>w@8e08:2ce803 'sync at 1000 ms = 3e8h ms
>w@8e08:0b040c02 'send "Hello world!" D-message (12 chars)
>w@8e08:0dff 'jump to beginning (loop)
'program's register set (data)
>w@9104$Hello world!

>w@8d05:04 'command: start the program

TRAFFICLIGHTS . AIS

'TRAFFICLIGHTS – iProtoXi Aistin virtual machine program for VM V04
'This example needs you to have the iProtoXi LED controller board
'installed.
'(c) iProtoXi, originally created 2013-04-19 JNi
>w@8d05:10 'command: re-program VM
>w@8e00:90040001 'VM 04 program ID
>w@8e04:91000600 'provided device address, version, reg. set size
'Code begins
>w@8e08:1e34 'select LEDs device
>w@8e08:030040 'init direct..
>w@8e08:03365b '..PWM
>w@8e08:1d 'loop begins
>w@8e08:6c04 'sync at r04 ms
'Set red light
>w@8e08:031c00 'LED0-R
>w@8e08:031600 'LED0-G
>w@8e08:031700 'LED0-B
>w@8e08:031d00 'LED1-R
>w@8e08:031800 'LED1-G
>w@8e08:031900 'LED1-B

Aistin Firmware 0.8.0 User Guide © 2013 iProtoXi – www.iprotoxi.fi 26

http://www.iprotoxi.fi/
mailto:w@8d07
mailto:w@8d07
mailto:w@8d05
mailto:w@8d05

>w@8e08:031e10 'LED2-R
>w@8e08:031a00 'LED2-G
>w@8e08:031b00 'LED2-B
>w@8e08:6c04 'sync at r04 ms
'Add yellow light
>w@8e08:031d10 'LED1-R
>w@8e08:031810 'LED1-G
>w@8e08:6c04 'sync at r04 ms
'Change to green
>w@8e08:031610 'LED0-G
>w@8e08:031d00 'LED1-R
>w@8e08:031800 'LED1-G
>w@8e08:031e00 'LED2-R
>w@8e08:6c04 'sync at r04 ms
'Change to yellow
>w@8e08:031600 'LED0-G
>w@8e08:031d10 'LED1-R
>w@8e08:031810 'LED1-G
>w@8e08:0dff 'loop to beginning
'program's register set (data)
>w@9104:0004 'default speed: 0400h ms = 1024 ms

>w@8d05:04 'command: start the program

Aistin Firmware 0.8.0 User Guide © 2013 iProtoXi – www.iprotoxi.fi 27

http://www.iprotoxi.fi/

	Table of Contents
	1. Introduction
	2. Aistin Protocol
	Data Fields and Character Allocation
	Message Structure
	Protocol Configuration Options
	Message Types
	Comment character

	Software devices
	Register Types

	Master Register Set
	example use cases
	Reading real-time clock
	Setting real-time clock
	include time stamp to data messages

	Analog Inputs Register Set
	example use cases
	reading battery voltage channel once per second
	READING analog input channels #0 and #1 TEN times per SECOND

	Virtual Machine Register Set
	example use cases
	start to run user’s VM program
	stop running the program
	start uploading a new program for the VM

	Virtual Machine Program Register Set
	example use cases
	Start uploading a new program
	upload an empty program that has device address ABh

	Virtual Machine "RAM" Register Set
	example use cases
	write a string into ram area
	change ram area’s device address

	Virtual Machine Program Instruction Set
	Some Example Programs
	HelloWorld . ais
	TrafficLights . ais

