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1 Introduction

GROK is a library for processing DNA regions, or intervals, obtained from high-

throughput sequencing and other genomic applications. DNA regions represent se-

quencing shorts reads, gene locations, single nucleotide polymorphisms, ChIP-seq

peaks and other chromosomal intervals. In addition to core attributes such as chromo-

somal coordinates, regions may contain arbitrary numeric or string annotations. Thus,

DNA region processing covers many applications of high-throughput sequencing. Re-

gions may be read from files such as BED, Wiggle, GFF, SAM and BAM, or they

may be produced using custom algorithms written in C++ or other languages. Region

operations supported by GROK include file format conversions, set operations (union,

intersection and difference), overlap queries and filtering and transformation opera-

tions. GROK supports both in-memory and on-disk processing to enable operating on

region sets that do not fit into memory.

GROK provides R, Python and Lua APIs for scripting and a C++ API for implementing

custom algorithms on top of data structures and functions provided by GROK. GROK

core is implemented in C++ with a focus on performance. The C++ layer has a modular

structure and provides extension points for implementing support for new file formats

and data structures.

2 Core concepts: region and region store

GROK architecture is based on two core abstractions: a DNA region model and a

region store interface. Regions represent the sequencing data for processing, and region

stores provide access to collections of regions. Complex operations are implemented

using these abstractions.

2.1 DNA region model

A region is an annotated DNA interval that corresponds to one record in files such

as BED, GFF and BAM. The region model is not specific to any single file format,

but rather abstracts features found in commonly used genomic formats. Regions can

be read from files but also created from custom analysis algorithms. Regardless of

their origin, regions use the same data model and and be compared to each other and

processed in similar manner. File format parser transforms regions into a standard
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format. However, regions from different origins (such as BED and BAM files) may

support different sets of annotations.

Regions are represented as sets of attribute values, i.e., key-value pairs. Attributes are

divided into core attributes, which are available for all regions regardless of their origin,

and arbitrary number of optional annotations.

Core attributes These attributes encode the genomic coordinates and define region

identity:

• seqid: Identifier that specifies the reference sequence for the region. Usually,

this is a chromosome, such as chr1.

• strand: Strand of the genomic interval: forward (1), reverse (-1) or none (0).

The none pseudo-strand is used when strand is not known or is not relevant.

• left: The leftmost position of the genomic interval, starting from zero.

• length: Length of the genomic interval. Length must not be negative, but zero

is a valid length.

• tag: Numeric 64-bit value that has no semantic meaning but defines identity

relationship between regions. Automatically generated.

The left and length attributes specify a half-open interval [left, left+length). Al-

ternatively, we can define a pseudo-attribute right as left+length and the interval

is then [left, right). The sequence ID defines the chromosome which this interval

is part of, and strand defines whether the interval belongs to forward or reverse strand.

The ”none” pseudo-strand is considered as a separate strand from forward and reverse

strands.

The core attributes are a tuple (seqid, strand, left, length, tag) which defines

region identity. Two regions with the same identity tuple are considered equal. This

identity is used in set operations on regions.

Annotations In addition to core attributes, regions may have optional annotations,

which are key-value pairs with numeric or string data as values. Examples of anno-

tations include numeric scores (e.g., column 5 in BED format), string identifiers (e.g.,

column 4 in BED format) and nucleotide sequences for short reads. Each annotation is

identified using its unique key. There may be any number of such annotations, as long

as their names are unique. Regions from the same origin (e.g., same file format) share

the same set of supported annotations. Annotation values do not affect region identity,
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since they are not part of the identity tuple. That is, two regions with the same core

attributes but different annotations are still considered to be identical.

Example The following example shows three regions expressed with tuple notation.

The tuples have values for sequence ID, strand, left coordinate, length, tag and annota-

tions, in order.

reg1 = ("chr1", FORWARD, 0, 15, 0x1234, Score=5.3)

reg2 = ("chr1", FORWARD, 0, 15, 0x1234, Score=147, Label="region")

reg3 = ("chr2", NONE, 800, 32, 0x1234)

Regions reg1 and reg2 represent the interval [0, 15) in the forward strand of chromo-

some 1: these are the 15 first nucleotides of this chromosome. The regions are equal

to each other because their identity tuples, including the hexadecimal tags, are equal.

Region reg1 supports one numeric annotation, Score, and reg2 additionally supports a

string annotation, Label. Regions reg1 and reg2 have different values for their annota-

tions but this does not affect region identity: they are still equal to each other.

Region reg3 represents the non-stranded interval [800, 832) in chromosome 2. This

region is not equal to reg1 or reg2 (even though its tag is incidentally the same) and does

not define any annotations. Region reg3 would be non-equal to a region overlapping

the same coordinates but having forward or reverse strand.

2.2 Region interpretations: relation or interval

DNA regions, represented by core attributes and annotations, can be semantically inter-

preted in two ways. The relation interpretation considers regions as relations (attribute

tuples) in a database. Two regions are distinct if their identity tuples (see 2.1) are dis-

tinct, even if the regions have the same chromosomal coordinates (but their tags are

different).

The alternative interval interpretation considers regions as intervals (sets of consec-

utive locations) located in a specific strand of a chromosome. Two regions sharing

some chromosomal locations are said to be overlapping and hence have an implicit re-

lationship between each other. GROK provides functionality to compute overlapping

regions. In the interval interpretation, regions often have a score metric that associates

a numeric value to the interval. The score can represent short read coverage, copy

number, DNA methylation or other metric.
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Both interpretations use the same attribute model but emphasize different aspects. In-

terval interpretation ignores the uniqueness tag used to distinguish regions with identi-

cal coordinates in the relation interpretation. Interval interpretation also places special

emphasis on the score annotation.

2.3 Region store interface

GROK provides access to region collections through a region store interface. This in-

terface defines methods for iterating over regions, writing new regions and, for some

implementations, removing regions and querying regions that overlap specific genomic

coordinates. There are multiple implementations of this interface, each supporting

some subset of the methods. Region stores cover file I/O, intermediate storage for

multi-pass algorithms and filtering and transformation operations. In combination

with the DNA region model, the interface provides uniform access to these diverse

use cases. Implementation details, such as the actual file formats or data structures

used, are largely hidden from the user. Regions accessed using the same region store

generally have the same set of annotations.

The methods defined by the region store interface are the following:

• add: Add a region to the database, or write (append) a region to a file.

• iterator: Provide access to each region in the collection one at a time. Order

depends on the region store: regions may be sorted or unsorted.

• get: Fetch a specific region from the collection using region identity. Produce

an empty result if the region is not present.

• remove: Remove a region from the database using region identity.

• overlap: Iterate over those regions that overlap with a given query region.

• set annotation: Replace annotation values of a region present in the collec-

tion.

• set score: Set numeric score values for a region store that represents a real-

valued function over the genome.

A region store implementation may support one, several or (in principle) all of the

possible interface methods. In general, only methods that can be implemented effi-

ciently are supported. For example, file readers such as the BED parser do not support

random-access queries onto files, but indexed structures such as the SQL database sup-

port this method. Region store implementations are divided into categories based on

which methods they support:
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• File readers support only the iteration method. They iterate over each region

defined in an input file.

• File writers support only the writing (i.e., adding or appending) method. A region

added to the region collection is written to an output file.

• Region databases are in-memory or on-disk stores that support several or all

methods. They are used for multi-pass algorithms that need to keep intermediate

results in storage, and they provide index structures for efficient processing.

• Region filters transform region streams provided by other region stores by omit-

ting selected regions or modifying region attributes. They support the iteration

method.

Workflows Region stores can be flexibly combined into ad hoc workflows that com-

pute composite operations on several region collections. A simple workflow would

consist of a BAM reader combined to a BED writer, i.e., regions produced by the BAM

iterator are written (added) to the BED region store. This implements BAM to BED file

conversion. As a more complex example, the set difference operation A \B is imple-

mented by (1) constructing region readers for A and B, (2) initializing an empty region

database for temporary storage, (3) adding all regions from A to database, (4) removing

all regions from B from database and (5) writing database contents into output file. For

convenience, this composite operation and other similar operations are available in the

scripting language APIs.

2.4 Region scores and aggregate functions

When regions are interpreted as genomic intervals with numeric score annotations, we

can define a real-valued function over the whole genome that we call a score function.

A set of regions in a data set gives the numeric value of this function at each genomic

location. GROK provides functionality to access and manipulate these score functions.

Score manipulation (method set score) is done using aggregate functions, which

define how an updated score is computed from an existing value and an update value.

Aggregate functions are listed in Table 1 and their use is illustrated in Section 5.10.

Example The following example illustrates a score function over an interval span-

ning genomic locations 100 to 160 and its modification using the product aggregate

function. For simplicity, chromosomes and strands are omitted. Before modification,
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Function Formula Initial Description
count f (x,y) = x+1 0 Count the number of score updates.
first f (x,y) = x – Use the first defined value.
last f (x,y) = y 0 Replace existing value with new one.
min f (x,y) = min(x,y) – Use minimum of values.
max f (x,y) = max(x,y) – Use maximum of values.
product f (x,y) = xy 1 Use product of values.
sum f (x,y) = x+ y 0 Use sum of values.
zero f (x,y) = 0 0 Set score to zero.

Table 1: Aggregate functions descriptions. Formulas describe how an updated score
value is computed from the existing value x and a novel value y. Scores are initialized
to a value that depends on the aggregate function; the initial value is undefined (–) for
some functions. The last function defines simple assignment semantics and is the
default.

the score function is composed piecewise by three neighboring regions whose score

annotation values are 8, 13 and 5. The modification affects the interval from 110 to

150 – denoted as half-open interval [110,150) – and multiplies all scores with 2. The

modified score function is composed of five regions.

set_score([110, 150), 2, product)

Before: After:

[100, 120): 8 [100, 110): 8

[120, 135): 13 [110, 120): 2*8 = 16

[135, 160): 5 [120, 135): 2*13 = 26

[135, 150): 2*5 = 10

[150, 160): 5
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3 Region store implementations

GROK provides several implementations of the region store interface for different pur-

poses. Available implementations are described in this section and instructions for

using them are in Section 5. Table 2 provides a summary on the methods supported by

each region store implementation.

3.1 File I/O

GROK supports reading and writing sequencing and genomic data files in multiple

formats. All formats are accessed through a similar API that provides a parameter

for the format. Format auto-detection is also supported. File formats use the same

region model and thus modular format conversion routines can be implemented using

GROK as long as the converted formats have similar data content. Format support is

as follows:

• BAM, SAM: read & write (also conversion between these formats)

• BAM indexed (BAM+BAI): read (overlap queries supported)

• BED: read & write

• BedGraph: read

• CSV (tab-delimited): read & write

• FASTQ: read & write

• GFF & GTF: read

• VCF: read

• Wiggle: read & write (fixed and variable step)

Store add get iter overlap remove set_annotation set_score

Hash store y y y – y y –
SQLite store y y y y y y –
Redblack store y y y – y y –
Partition store – – y y – – y
IO: readers – – y – – – –
IO: BAM reader – – y y – – –
IO: writers y – – – – – –

Table 2: Method support for region store implementations. Partition store refers to a
specialized configuration of a red black tree for handling numeric scores for chromo-
somal intervals.
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CIGAR & PHRED: BAM, SAM and FASTQ formats contain CIGAR and PHRED

quality strings that encapsulate information in individual characters of their content.

GROK does not interpret these strings but rather considers them as atomic units. Users

wishing to access invidual tokens of information can use libraries such as Biopython to

parse these strings.

CSV: CSV (tab-delimited) files must have a header row containing column names.

GROK autodetects column names for core attributes. Detected names include: chro-

mosome, chr, chrom, seqid, seqname, refseq, start, chromstart, end, chromend, length,

strand, id, name. Other columns are considered annotations; an arbitrary number of

annotations are supported.

3.2 In-memory indexed databases

In-memory databases are indexed collections of regions and their annotations. Regions

and annotations are packed into memory in an efficient manner. Any number of region

annotations are supported. There are three stores of this kind:

• Hash store: regions are stored in a hash table that allows efficient membership

queries but order of regions is random (i.e., not genomic order). Supported meth-

ods: add, iter, get, remove and set annotation.

• Red-black store: like hash store, but regions are sorted in genomic order in a

balanced tree. Supports the same methods as hash store. Iteration is in genomic

coordinate order.

• Partition store: specially configured red-black structure for region score manip-

ulation. See Section 5.10 for details.

The hash and red-black stores are suitable for general purpose in-memory processing.

Selection between these two depends on the preferred order of iteration of result re-

gions: the red-black store is a good default choice. These stores do not support overlap

queries (the overlap method); the SQLite store should be used for them.

3.3 SQLite backend

The SQLite store uses an on-disk or in-memory SQLite database that supports all oper-

ations except set score. Use of disk storage allows scaling to large data sets that do

not fit into memory. Regions together with their annotations are stored in the database,
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and SQL indices provide efficient implemention of get, remove and overlap meth-

ods. When using the in-memory option or a temporary database file, database contents

are deleted when the region store is closed. The SQL interface may add some gen-

eral overhead compared to pure memory operations, so for small data sets, hash and

red-black databases may be more efficient.

3.4 Filtering and transforming store

GROK provides a filter store for processing regions provided by other region stores.

The filter store takes another region store as a parameter and provides and iterator over

the regions in this parent store. The region filter store can be configured to act as a filter,

i.e., to selectively output only regions satisfying certain criteria, or as a transformer, i.e.,

to modify attributes of regions, or both.

The following filtering options are available for core attributes and optional annota-

tions:

• Select regions whose strand matches given value (e.g., only forward strand).

• Select regions whose numeric attribute is between low bound L and high bound

H. The attribute can be left coordinate, length or any numeric annotation.

The following transformations are available:

• Flip (switch) the strand between forward and reverse. The ”none” pseudo-strand

is not affected by flipping.

• Strand flip with a fixed strand: all regions are assigned the same given strand.

• Shift the region along the chromosome, modifying left and right positions but

keeping length constant.

• Expand or shrink the region interval. Left and right positions as well as length

can be modified.

3.5 Merging store

The merging store is similar to the filtering store but provides a specialized merge

transformation that combines adjacent regions into one. Region adjacency is defined

by the parent region store iterator: regions are adjacent if the iterator outputs them one

after another. Only regions in the same chromosome and strand are merged. For non-

stranded merging, first transform the strands to having the same value with the filtering

store.
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The merging store has a parameter for the maximum gap between adjacent regions.

The gap is defined as the number of nucleotides between two regions that would be

needed to connect the regions. If the gap is larger than this, the regions are not merged

and are provided as separate regions in the iterator. For regions having a numeric score

annotation, the store also has a parameter for maximum score difference.
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4 Installation and requirements

Choosing the GROK distribution and installation method depends on the intended use

of the library, in particular the scripting language bindings the user plans to use. All

GROK distributions include bundled versions of SQLite 3 and SAMtools so these de-

pendencies do not need to be explicitly installed. Currently, only Unix-based operating

systems are supported.

4.1 Unix

All Unix installation methods require a C++ compiler (e.g., gcc 4.1 or later), make and

zlib.

4.1.1 Source package

Compiling:

1. Download the source package grok-x.y.z.tar.gz

2. Unpack with tar zxvf grok-x.y.z.tar.gz

3. Run ./configure

4. Compile C++ sources and a static GROK library with make. The library src/libgrok.a

includes SQLite and SAMtools.

5. (Optional) Build C++ API documentation (Doxygen) with make doxygen

6. (Optional) Execute unit test cases with make unittest

4.1.2 R bindings

Requirements: R 2.12+, R development files (Debian/Ubuntu package r-base-dev)

Installation:

1. Download the R package grok x.y.z.tar.gz

2. Install by running R CMD INSTALL grok x.y.z.tar.gz (may need admin-

istrator privileges)

4.1.3 Python bindings

Requirements: Python 2.x, Python development files (Debian/Ubuntu package python-dev)

Installation:
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1. Download the source package grok-x.y.z.tar.gz

2. Unpack with tar zxvf grok-x.y.z.tar.gz

3. Run ./configure

4. Build bindings with make python

5. Install to Python repository with make python-install (may need adminis-

trator privileges)

6. (Optional) Execute test cases with make python-test

The locate tool must be able to find the Python include files, so if you recently in-

stalled python-dev, you may need to run updatedb before configure.

4.1.4 Lua bindings

Requirements: Lua 5.1, Lua development files (Debian/Ubuntu package liblua5.1-0-dev)

Installation:

1. Download the source package grok-x.y.z.tar.gz

2. Unpack with tar zxvf grok-x.y.z.tar.gz

3. Run ./configure

4. Build bindings with make lua

5. Install to Lua repository by manually copying lua/grok.so to your Lua C

search path (e.g., /usr/local/lib/lua/5.1/); may need administrator privi-

leges. Lua C search path can be shown with lua -e ’print(package.cpath)’

6. (Optional) Execute test cases with make lua-test

The pkg-config tool must be able to find the library definition file for Lua. This

should be provided by the Lua-dev package.
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5 Using the R, Python and Lua APIs

GROK provides language bindings for the scripting languages R, Python and Lua.

The scripting interface enables implementing complex sequencing operations using a

high level language. All core GROK operations can be accessed from scripting lan-

guages. The APIs for all supported scripting languages are similar to each other, with

only minor differences to accommodate for differences in the languages. The code

for language bindings is generated with SWIG (http://swig.org/), which ensures

a consistent API. This section mostly uses R as the illustration language. See section

5.11 for a detailed API reference and calling conventions for Python and Lua.

5.1 Basic usage

In R, the GROK library is imported with:

require(grok)

# GROK methods are named grok.METHOD

In Python, the corresponding statement is:

import grok

# GROK methods are accessed as grok.METHOD

In Lua:

require("grok")

-- GROK methods are accessed as grok.METHOD

5.2 Data types

The scripting API is object oriented and closely follows the concepts in Sections 2

and 3. Two central classes in the API are RegionStore, which corresponds to a col-

lection of DNA regions, and Region, which represents a single region. Objects of

Region provide access to region attributes, including core attributes and annotations.

They are represented as key–value data structures using the facilities of the scripting

language. In R, Region objects are R lists; in Python, they are Python dictionaries; and

in Lua, they are Lua tables. Objects of other classes are opaque types that are accessed

using their methods. A supplementary class in the API is RegionIterator, which is

used for iterating over a region store.

http://swig.org/
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5.3 Reading and writing regions in R, Python and Lua

The following example illustrates basic region I/O using R. The code instantiates a

BAM file reader using grok.reader and a BED writer using the grok.writermethod,

and writes all regions using the grok.add method. This implements a BAM-to-BED

file converter.

require(grok)

input <- grok.reader("input.bam")

output <- grok.writer(input, "output.bed")# Inherit annotations from input

grok.add(output, input)

The grok.reader and grok.writer functions return RegionStore objects that pro-

vide methods for accessing the regions. Both functions have an optional parameter for

file format, which is by default auto-detected.

The region writer function takes optional RegionStore objects as argument that deter-

mine which region annotation are supported. A writer supports the region annotations

of the region stores given as argument to the constructing function.

In Python, the corresponding code is as follows. Notice the use of method calls for the

input and output objects.

import grok

input = grok.reader("input.bam")

output = input.writer("output.bed")

output.add(input)

Finally, the Lua code is similar to Python, the main difference being the use of the Lua

syntax for method calls:

require("grok")

input = grok.reader("input.bam")

output = input:writer("output.bed")

output:add(input)

5.4 Iterating over regions

Region stores provide iterators that are used to access individual regions in the store.

Iterators are supported by all region store implementations with the exception of writ-

ers. Multiple iterators can be instantiated for a single region store, except for filtering,
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transforming and merging stores that only provide a single iterator. The following

example iterates over all records of a BAM file.

require(grok)

input <- grok.reader("input.bam")

iter <- grok.iter(input)

region <- grok.next(iter)

while (is.list(region)) {

cat(sprintf("Region: chromosome %s, strand %d, left %d, length %d\n",

region$seqid, region$strand, region$left, region$length))

region = grok.next(iter)

}

An iterator is created with the grok.iter method. The iterator is advanced with

grok.next, which returns the next region or FALSE if all regions have been iterated

over.

5.5 Using region databases

Region databases are in-memory or on-disk structures that hold regions. They en-

able writing multi-pass processing algorithms and provide index structures for efficient

queries. This section considers regions as identity tuple (see 2.2) and the operations are

traditional database operations (appending and removing). For operations correspond-

ing to chromosomal interval interpretation, see section 5.10.

Region databases are instantiated with global constructor functions that take zero or

more existing region stores as argument. These define which annotations are supported

by the database. If no arguments are given, the database does not store optional anno-

tations. Otherwise, the set of annotations is the union of annotations in given stores.

The following example creates a union collection that contains all regions and anno-

tations present in two input BED files. The union is stored in an SQLite database.

Notice that the add method returns the original region store so multiple add calls can

be chained.

require(grok)

input1 <- grok.reader("input1.bed")

input2 <- grok.reader("input2.bed")

db <- grok.sqlite.store(input1, input2) # Create database

grok.add(grok.add(db, input1), input2)

writer <- grok.writer(db, "union.bed")

grok.add(writer, db) # Write result
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Other database constructors are grok.hash.store, and grok.reblack.store. Their

constructors have a similar interface.

The grok.add method also accepts region iterators and individual regions in addition

to region store objects. The following example uses the hash store:

require(grok)

input <- grok.reader("input.bed")

db <- grok.hash.store(input)

grok.add(db, grok.iter(input)) # Add regions using iterator

region <- list(seqid="chr1", left=100, length=50, strand=1)

grok.add(db, region) # Add single region

The remove method removes regions from a database based on region identity tu-

ples. The following example keeps regions that are present in input1.bed but not in

input2.bed (set difference). Like add, remove also accepts iterators and individual

regions in addition to region stores.

require(grok)

input1 <- grok.reader("input1.bed")

input2 <- grok.reader("input2.bed")

db <- grok.sqlite.store(input1, input2)

grok.add(db, input1)

grok.remove(db, input2)

5.5.1 Sorting regions in genomic order

The redblack store can be used to sort regions in genomic order. This occurs automat-

ically when regions are added to the redblack data structure, since the store is struc-

turally always sorted. The following example places all regions from a BED file into a

redblack store and creates an iterator that produces regions in genomic order.

require(grok)

input <- grok.reader("input.bed")

db <- grok.redblack.store(input)

grok.add(db, input)

iter <- grok.iter(db) # iter now provides sorted regions
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5.6 Overlap queries

An overlap query provides those regions in a region store that share one or more nu-

cleotide positions with a query region. This functionality can be used to fetch sequenc-

ing reads that overlap with a gene, for example. The overlap operation is a filter that

produces a subset of a region collection: the overlapping regions are not modified by

the filter. In order for two regions to overlap, they must be in the same chromosome and

strand. If non-stranded operation is required, the strands should first be transformed us-

ing grok.flip (see Section 5.8).

Overlap queries require explicit support from the underlying region store for efficiency

reasons. The SQLite database provides this support for regions from any origin (e.g.,

BED files). In addition, BAM reader has direct support for overlap queries if BAM

index files (BAI) are used.

The following example filters those regions from a BED file that overlap with the ge-

nomic coordinates [1000,1500) in the reverse strand of chromosome 1 and writes these

regions to an output file. The query region is represented as an R list. The object re-

turned by grok.overlap is a regular region iterator that can also be iterated over in a

normal manner (see Section 5.4).

require(grok)

input <- grok.reader("input.bed")

db <- grok.sqlite.store(input)

grok.add(db, input)

query <- list(seqid="chr1", left=1000, length=500, strand=-1)

iter <- grok.overlap(db, query)

output <- grok.writer(db, "output.bed")

grok.add(output, iter)

The following example shows a similar filtering operation for a BAM+BAI file. In

this case, an extra region database is not necessary as the file format supports overlap

queries directly.

require(grok)

input <- grok.reader("input.bam") # input.bam.bai must exist

query <- list(seqid="chr20", left=1000, length=500, strand=-1)

iter <- grok.overlap(input, query)

output <- grok.writer(input, "output.bam")

grok.add(output, iter)
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A common need is to execute an overlap query in a loop, producing those regions in

store A that overlap with any region in store B. This can be implemented using a variant

of grok.overlap that takes a store as argument. There are two modes, termed forward

and backward, of such queries with different performance charasteristics. See Section

5.11.5 for details. Below is an example of a reverse overlap query that returns those

regions in input1.bed that overlap with regions in input2.bed. We first create a

partition store and fill it with regions from input2.bed. Then we execute a reverse

overlap query using input1 and the partition store.

require(grok)

input1 <- grok.reader("input1.bed")

input2 <- grok.reader("input2.bed")

db <- grok.partition.store()

grok.set.score(db, input2)

result <- grok.overlap(input1, db, FALSE)

output <- grok.writer(db, "output.bed")

grok.add(output, result)

5.7 Set operations: union, intersection and difference

Set operations are used to compare and combine several sequencing data sets (region

stores) together. Union A∪B includes all regions or genomic locations that are present

in at least one store, while intersection A∩B requires presence in all stores. Set dif-

ference A \B is an asymmetric operation that removes regions or locations in B and

A. In addition, GROK provides a generalization of union and intersection, freq, that

takes low and high frequency bounds as parameter and filters regions based on their

occurrence frequency. This implements a k-out-of-n operation. Union corresponds to

freq(1, n) and intersection to freq(n, n).

All set operations can be computed using standard region store methods grok.add,

grok.remove and grok.set.score, so the operations discussed here are conve-

nience wrappers over these methods. For example, a union can be computed manually

with the grok.add method.

There are two variants of all set operations that correspond to relation and interval inter-

pretations of regions (see Section 2.2). Relation methods are grok.union, grok.intersection,

grok.diff and grok.freq. Interval methods are grok.unionL, grok.intersectionL,

grok.diffL and grok.freqL; the postfix L stands for location.
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Relation set operations (with no L) consider two regions equal if their identity tuples

are equal, so it’s possible to have two regions covering the same genomic location in

a union result. In contrast, interval set operations (with L) have each genomic location

only once in a union. The L variants use grok.set.score for computing results,

while the relation variants use grok.add and grok.remove.

The following example illustrates the use of chained union and difference operations

with three BED files. The result of the computation is the unique regions (grok.unique)

or unique genomic locations (grok.uniqueL). The grok.unique result region store

contains regions from input1.bed whose identity tuple does not match any regions from

input2.bed or input3.bed. In contrast, grok.uniqueL contains regions corresponding

to genomic intervals that are present in input1.bed but not in input2.bed or input3.bed.

require(grok)

input1 <- grok.reader("input1.bed")

input2 <- grok.reader("input2.bed")

input3 <- grok.reader("input3.bed")

unique <- grok.diff(input1, grok.union(input2, input3))

uniqueL <- grok.diffL(input1, grok.unionL(input2, input3))

5.8 Transforming regions

Most attributes of regions can be modified using transformation operations. Core at-

tributes such as strand and genomic position can be modified by iteration for all region

stores that support the iteration operation, i.e., all region collections except writers.

This does not modify region stores in place. Optional annotations can be modified for

region databases (see Section 5.9). Naturally, it is also possible to iterate over regions

and manually manipulate the region objects (lists).

The strand of regions is modified with the grok.flip operation. There are two variants

of this function: one flips strands from forward to reverse and vice versa, and the other

sets all strands to a constant value. These operations produce a region store that can

be iterated over only once. In the following example, flipped is a region store that

contains the regions of the BED files with their strands flipped. In contrast, reverse

contains the regions whose strands are all reverse (-1).

require(grok)

input <- grok.reader("input.bed")

flipped <- grok.flip(input)

reverse <- grok.flip(input, -1)



5.9 Modifying region annotations 20

The length and position of regions are modified with expand and shift. The for-

mer modifies both the location and length of regions, while the latter keeps the length

constant but modified the location. These operations are strand aware: they define a

”positive direction” that is towards the end of sequence for forward strand and start

of sequence for the reverse strand. Like grok.flip, these operations also produce a

one-time iterable store.

In the following example, all regions are first expanded 100 nucleotides from their start

position and shrunk 20 nucleotides from their end position. Then, these transformed

regions are shifted 10 nucleotides in the positive direction. Start position is the leftmost

position for forward strand and the rightmost position for reverse strand. For example,

a reverse strand interval covering bases from 500 to 700 – denoted [500, 700) – is first

expanded/shrunk into [520, 800) and then shifted into [510, 790).

require(grok)

input <- grok.reader("input.bed")

transformed <- grok.expand(input, 100, -20)

transformed <- grok.shift(transformed, 10)

5.9 Modifying region annotations

Database stores support modifying region annotations. Annotations are modified using

set annotation. This modifies the region store in place. In the example below, BED

regions are loaded into an in-memory database with a hash index. The numeric score

annotation of all regions is multiplied by 2 and the result is saved in the database.

In addition to modifying numeric annotations, string-valued annotations can also be

assigned using set annotation.

require(grok)

input <- grok.reader("input.bed")

db <- grok.hash.store(input)

grok.add(db, input)

grok.set.annotation(db, db, "score", 2, "product")

The set annotation method receives five arguments, of which the last is optional.

The first is the region store to be modified. The second specifies the region collection

that is affected by the operation. In the example, all regions in the database are updated,

but it is also possible to update only a subset. The third argument specifies the anno-

tation name, Score, which corresponds to the numeric scores in BED files. The fourth
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gives the value that replaces existing score annotations. How this value is interpreted

depends on the last argument, which specifies an aggregate function. This function that

computes a new annotation value from the existing and new value. In this example, the

product function is used to compute new scores with the formula f (x) = 2x. The

default aggregate function, last, simply assigns the given value and discards the old

value. Aggregate functions are listed in Section 2.4.

An important difference between set annotation and set score (Section 5.10) is

that the former considers regions as relations and only modifies their attributes but

does not split regions. In contrast, set score considers the region store as a set of non-

overlapping intervals and may split regions when modifying scores. Another difference

is that set score works only with numeric annotations while set annotation also

supports strings.

5.10 Working with numeric region scores

Region score functions (see Section 2.4) are transformed with algebraic operations

using the set score method. This method is only supported by the red black stored

configured as a partition, which implies that the store does not contain any overlapping

regions. A partition is constructed with the grok.reblack.partition constructor.

In the following example, the maximum scores of two Wiggle files are computed using

a red black partition. The red black store is first constructed empty, with a zero score in

all genomic locations. The first set score call sets scores on those locations present

in the first Wiggle file to the value given in the file. The second call sets scores to the

maximum of the scores in input files using the aggregate function max. In the result

score function, the value at position i is f (i) = max(W1(i),W2(i),0), where W1 and W2

are the two Wiggle files. Result scores are written to an output Wiggle file.

require(grok)

input1 <- grok.reader("input1.wig")

input2 <- grok.reader("input2.wig")

partition <- grok.partition.store()

grok.set.score(partition, input1) # default aggregate function "last"

grok.set.score(partition, input2, "max")

writer <- grok.writer(partition, "output.wig")

grok.add(writer, partition)
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5.10.1 Counting short reads along genome

The following example computes short read counts for each genomic location based

on a BAM file. This is done using the max aggregate function that sets scores to the

number of regions matching each location.

require(grok)

input <- grok.reader("input.bam")

partition <- grok.partition.store()

grok.set.score(partition, input, "count")

writer <- grok.writer(partition, "output.wig")

grok.add(writer, partition)

5.11 Method reference

This section provides a reference of all methods and functions supported by GROK.

Method and class names are similar in supported scripting languages, with some mi-

nor modifications to accomodate language differences. Methods are documented in a

programming language independent format. Method signatures are formatted as:

ReturnType Class::method name(Type1 name1, Type2 name2=default)

Variable number of arguments are formatted as Type... name. Functions without a

class are global non-method functions.

For documentation purposes we define RegionSource as a base class of RegionIterators

and RegionStores and where it is used both types are accepted. In the variable case any

combination of these types is accepted. However the variable argument amount is

limited to 10 for technical reasons.

In R, all methods are accessed using globally defined functions that take the ”self”

object as first parameter. All R function names are prefixed with grok. (for region

store). To accommodate for R conventions, function names use dots (.) instead of

underscores ( ). For example. the method with signature

RegionStore RegionStore::remove_annotation(string annotation)

is defined in R as:

grok.remove.annotation <- function(self, annotation) { ... }
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In Python, regular method call syntax obj.method(args) is used and function names

have underscores. In Lua, the method call syntax is obj:method(arg) and under-

scores are used in names.

5.11.1 Region store constructors

RegionStore reader(string filename, string format="auto")

Create a region reader over a file. The format parameter gives the file format and is

one of auto (use autodetection), bam, bed, bedgraph, csv, fastq, gff, gtf, sam,

vcf, wiggle. The regions can be iterated over multiple times.

RegionStore RegionSource::writer(string filename, string format="auto")

Create a region file writer from the current region source. File name and format are

specified in a similar manner as for region readers. For the Wiggle format, an additional

format wigglevariable is supported that produces variable step output. The writer

uses region annotation definitions from the current region store, although most file

formats support only a limited set of annotations.

RegionStore RegionStore::hash store(RegionSource. . . sources)

RegionStore RegionStore::redblack store(RegionSource. . . sources)

RegionStore RegionStore::sqlite store(RegionSource. . . sources)

RegionStore hash store(RegionSource. . . sources)

RegionStore redblack store(RegionSource. . . sources)

RegionStore sqlite store(RegionSource. . . sources)

RegionStore partition store()

Instantiate a new empty region database. There are constructors for all four supported

database implementations; they can be accessed using a method or a static function.

The only difference is that in the method form, the current region store is implicitly

added to the list of sources arguments. These variable length arguments are used

to define the set of supported region annotations in the new store. The union of all

annotation definitions is used. Constructors do not add any regions to the new store.

The partition store does not take arguments and thus has only a static constructor. Note:

RegionIterator objects can also be given as argument for all constructors in addition to

RegionStore objects.
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5.11.2 Region store accessors

RegionStore RegionStore::add(RegionSource source)

RegionStore RegionStore::add(Region source)

These methods insert (or write) regions from given source to current region store. The

source can either be another region set and all its regions, or an iterator over a region

collection, or a single region. The methods return the store itself to enable method

chaining. Insertion semantics depend on the region store. For I/O writers, the method

writes the regions to the output file. For databases, the regions are added to the collec-

tion using region relation semantics. Databases ensure that no duplicates are present:

if a duplicate region is added, the existing one is replaced with the new one.

RegionStore RegionStore::remove(RegionSource source)

RegionStore RegionStore::remove(Region source)

Remove regions present in given source from the current store. These methods are only

supported for region databases. Removal is done using region identity, i.e., a region is

removed from the current region if a region with an equal identity tuple is present in

the source. Like add methods, the source can be a store, iterator or single region. The

methods return self.

RegionStore RegionStore::get(Region reg)

Fetch a specific region from current region store. The region is searched using identity

tuples. If a corresponding region is found, it is returned; otherwise, a null value is

returned.

RegionStore RegionStore::set annotation(RegionSource source,

string annotation, object value, strint aggregate="last")

RegionStore RegionStore::set annotation(Region source,

string annotation, object value, strint aggregate="last")

Assign region annotations in the current region store. Source regions define the affected

set of regions, which is a subset of all regions in the current store. Assignment can

affect all, some or none of the regions in the current store, depending on the regions

present in source. Source regions are associated to regions in the current store using

region identity tuples. Annotation name and the new value are given with annotation

and value. Value can be a string, integer and float depending on the annotation type.

For numeric annotations, an aggregate function (aggregate) can be given that defines



5.11 Method reference 25

how a new annotation value is derived from the existing and new ones (see Section

2.4). The SQLite store only supports the last and counter aggregate functions.

RegionStore RegionStore::remove annotation(string annotation)

RegionStore RegionIterator::remove annotation(string annotation)

Remove the given annotation definition from the current store. The annotation is given

by name. Return self.

5.11.3 Set operations

RegionStore union(RegionSource... sources)

RegionStore unionL(RegionSource... sources, String aggregate="last")

Compute union by returning a newly created store that contains all regions (union)

or all genomic locations (unionL) present in any argument sources without duplicates.

Equal to freq(1, n, sources) or freqL(1, n, sources), where n is the number

of arguments. Note: the aggregate argument must be given with a keyword syntax

(aggregate="X") and it is not available in Lua.

RegionStore intersection(RegionSource... sources)

RegionStore intersectionL(RegionSource... sources, String aggregate="last")

Compute intersection by returning a newly created store that contains regions (intersection)

or genomic locations (intersectionL) present in all argument sources. Equal to

freq(n, n, sources) or freqL(n, n, sources), where n is the number of argu-

ments. Note: the aggregate argument must be given with a keyword syntax (aggregate="X")

and it is not available in Lua.

RegionStore diff(RegionSource source1, RegionSource source2)

RegionStore diffL(RegionSource source1, RegionSource source2)

Compute asymmetric set difference by returning a newly created store that contains

regions (diff) or genomic locations (diffL) that are present in sources1 but not in

sources2.

RegionStore freq(int low, int high, RegionSource... sources)

RegionStore freqL(int low, int high, RegionSource... sources, String aggregate="last")

Return a newly created store that contains regions (freq) or genomic locations (freqL)

that are present in at least low and at most high argument sources. The count of each
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region (freq) or genomic location (freqL) is computed by iterating over all given

region sources. If a store contains duplicate regions, those regions are counted several

times for the store. Duplicates can be removed by first wrapping the region collection

is a hash store or red black partition. Note: the aggregate argument must be given

with a keyword syntax (aggregate="X") and it is not available in Lua.

5.11.4 Region transformers

RegionStore RegionSource::expand(int start, int end)

RegionStore RegionSource::shift(int length)

Modify the genomic coordinates of each region in the current store. The expand

method modifies both start and end locations independently. Positive arguments ex-

pand regions and negative arguments shrink them. The method is strand aware so that

the start position is the rightmost position for the negative strand. The shift method

moves regions in left or right directions and keeps their length constant. For positive

length, forward strand regions are moved to the right and reverse strand regions to the

left; negative length behaves in the opposite direction. The methods return a new region

store that can be iterated over at most once.

RegionStore RegionSource::flip()

RegionStore RegionSource::flip(int fixed)

Change the strand of each region in the current store. In the first variant, the strand is

flipped from forward to reverse (1→−1) and vice versa (−1→ 1); the none pseudo-

strand (0) is not affected. In the second variant, all regions are assigned a fixed strand

given as parameter (-1, 0 or 1).

RegionStore RegionSource::merge(int max gap, int max score diff)

Merge adjacent regions in the current region store. Regions are adjacent when they

are produces after each other in iteration. Merging combines two or more regions into

one region that spans all coordinates of the merged regions. The max gap parameter

specifies the maximum allowed gap in nucleotides between regions for merging. The

max score diff argument specifies the maximum allowed absolute difference in the

scores between regions for merging. It is only used if the regions have a score annota-

tion.
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RegionStore RegionSource::filter(String attribute, double low,

double high=DBL MAX)

Filter regions by values of a numeric attribute. The resulting store produces regions

whose attribute value is at least low and at most high. The attribute may be one of

the special values strand, tag (identity tag) or length (region length); or the name

of a numeric annotation. For strand, the high parameter is not used and low is used

for equality comparison against the strand (-1, 0 or 1). If high is omitted, a maximum

value (no upper bound) is used.

5.11.5 Region iterators and overlap queries

RegionIterator RegionStore::iter()

Create a new iterator over all regions in the current region store.

RegionIterator RegionStore::overlap(Region query)

Create a new iterator over those regions in the current region store that overlap with the

query region. Regions overlap if they are in the same chromosome and strand and have

at least one nucleotide coordinate in common. The overlap iterator is accessed like a

regular iterator. See Section 5.6 on how to define a query region representation in the

scripting language.

RegionIterator RegionStore::overlap(RegionStore query, boolean forward=true)

Create a new iterator over regions that overlap with any region in the query store. There

are two modes in the method, forward and backward, controlled by the forward flag.

In the forward mode, we iterate over each region in the query and return every region

in the current store that overlaps with the query region. This calls overlap(Region)

repeatedly.

In the reverse mode, we iterate over regions in the current store and check for each

whether it overlaps with any region in the query store. In this case, the query store

must support the overlap(Region) method.

Both modes produce regions in the current store as result; the forward mode may return

the same region multiple times, whereas the reverse mode returns each region at most

once.
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Region RegionIterator::next()

Produce the next region in the iterator, or return a ”null” value if iteration has finished.

If R, FALSE is returned after iteration. In Python, None is returned. In Lua, nil is

returned.

void RegionStore::close()

void RegionIterator::close()

Explicitly close the store or iterator. Closing is also done automatically during garbage

collection. For writer stores this also includes flushing the file.

void RegionIterator::remove()

Remove the currently active region from the region set over which iteration is done.

The currently active region is the latest region produced by next(). Not all iterators

support removing.

5.11.6 Region score manipulation

RegionStore RegionStore::set score(RegionStore source,

string aggregate="last", string annotation="")

RegionStore RegionStore::set score(RegionIterator source,

string aggregate="last", string annotation="")

RegionStore RegionStore::set score(Region source,

string aggregate="last", string annotation="")

Manipulate numeric scores of genomic intervals. In the context of these methods,

regions are interpreted as non-overlapping intervals that do not have intrisic identity.

New scores are assigned as follows. For each region in the source, the corresponding

interval from the current region store is queried and the scores of these two regions

are combined using an aggregate function (given by aggregate; see Section 2.4). A

source region may correspond to multiple regions in the current store. The name of

the score annotation is given with annotation: if the string is given, the default score

annotation is used. The methods return self.
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6 Using the command line interface

The CLI offers easy access to common operations including file conversion, set op-

eration and overlap queries in a single utility called grok, implemented in Python.

Thus many conventions are the same as in the scripting APIs. The utility is located in

cli/grok is the distribution: copy this file to your executable path to install it system-

wide. The CLI requires the installation of Python bindings for GROK first.

This manual describes first the general usage and then documents each command indi-

vidually.

6.1 General usage

Simply typing grok on the command line will show a synopsis for each command and

list what the flags do. Otherwise the grok utility always needs a subcommand to do

something useful. Option flags may be specified at any location on the command line

and will not affect parsing of positional parameters.

A specific operation is chosen with the first positional parameter and further positional

parameters are directed to it. Option flags may affect all commands or only apply to

specific commands. The globally applicable flags are described in this section and

others are explained in the applicable subsections.

The general synopsis is

grok [options] <command> <extra parameters> [input file] ... [output file]

The mandatory extra parameters depend on the command and for most commands there

are no extra parameters. The amount of accepted input files also varies. However there

is always only one output file, the result set.

File types are deduced automatically from filenames for both input and output files but

may be stated explicitly with the -t and -T flags respectively.

6.2 File conversion

To perform file conversion the command to use is ”convert”. It needs one input file and

writes the regions in that file to an output file.
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Example The following example shows how to convert a BAM file to a SAM file.

grok convert input.bam output.sam

6.3 Set operations

Set operations take multiple input files in any of the available formats and produce an

output file in the specified format. The commands are ”union”, ”intersection”, ”freq”

and ”difference”. There are two variants of these commands corresponding to “rela-

tion” or “interval” (location) interpretations of genomic regions. The reglation variant

is the default and the location variants are selected with the -l flag. For the location

variants, the aggregate function for specifying score annotation computation can be

assigned with the -a flag.

They commands do not take extra parameters and allow an arbitrary amount of in-

put files except for the following exceptions: The ”freq” command needs two extra

parameters i.e. the minimum and maximum counts for inclusion in the result. The

”difference” command takes exactly two input stores.

Example The following example shows some set operations.

# Compute short read coverage

grok union -l -a count input.bam output.bed

# Remove genesB from genesA by identity

grok difference genesA.gff genesB.bed output.bed
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7 Using the C++ API

The C++ API provides low level access to GROK internals. It can be utilized in two

ways: as a library in a user application to write custom analysis algorithms in C++,

or to extend GROK itself with new region store implementations. The C++ API is

accompanied with a SWIG interface that binds GROK to scripting languages. This

interface is used to generate bindings for languages supported by SWIG.

Full details of the object oriented C++ API are in Doxygen generated documentation;

this section provides an overview of available classes and functions. Key classes are

shown in Figure 1. The two most relevant data structures are Region, which represents

a single region, and RegionStore, which defines the interface for region stores. Con-

crete region store implementations extend the latter by providing implementations of

virtual methods.

Auxiliary classes include SequenceSet and Registry that provide mappings between

numeric and string chromosome and annotation names. For efficiency reasons, chro-

mosomes and annotations are referred to using integers in Region; these two classes

provide interpretation for the integer values.

Figure 1: UML class diagram showing an overview of the C++ API.
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7.1 Accessing region attributes

Individual regions are represented by the Region class. This class has accessors for

core attributes and annotation values. Core attributes are accessed with {get,set}_A

methods, where A is one of seqid, strand, left, length, right or tag. Coordinates

are 0-based. Tags can be created by hashing string identifiers with set tag(string).

Regions are compared using cmp that takes into account the four core fields to define re-

lationships between regions. The method overlaps tells whether two regions overlap

with each other.

The sequence ID links the region to a corresponding sequence such as a chromosome.

The ID is an integer that is mapped to a sequence name by an instance of Sequence-

Set. For example, the sequence name corresponding to ID 4 may be chr5. For mem-

ory efficiency, Region does not store a reference to a SequenceSet; this reference is

available in the region store that houses the region.

Additional annotations are stored in an array-like structure containing integers, floating

points and strings. Annotations are accessed using get_annotationX and set_annotationX

where X denotes annotation type (I = integer, R = real, S = string). Properties of an-

notations, such as name, are defined in an annotation registry (Registry). A pointer

to the registry is stored in Region objects. Related regions belonging to the same re-

gion store share the same registry, so registering new annotations must be done before

the Region objects are created. Adding annotations renders existing Region objects

invalid unless done through Region::add_annotation.

Example The following example creates a region object and auxiliary objects (se-

quence set and registry). The region supports one real-value annotation Score, whose

value is assigned a (rough) approximation of π .
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#include <iostream>

#include "Region.hpp"

#include "Registry.hpp"

#include "SequenceSet.hpp"

int main() {

SequenceSet &seqset = global_seqset;

Registry registry;

int seqid = seqset.add("chr1");

int annotation_id = registry.add("Score", ANN_REAL);

Region region(seqid, STRAND_FORWARD, 100, 10, 0xDEADBEEF, &registry);

region.set_annotationR(annotation_id, 3.14159);

std::cout << seqset << registry << region;

return 0;

}

When executed, the program prints the following:

Sequence set:

ID: 0, name: , length: 0

ID: 1, name: chr1, length: 0

Registry:

ID: 0, name: Score, type: real

Region:

Sequence ID: 1

Strand: FORWARD

Span: [100, 110)

Length: 10

Tag: 0xdeadbeef

Score: 3.14159

7.2 Using region stores

Region stores are collections of regions represented by RegionStore instances. Avail-

able region store implementations are show in Table 3. Region stores have meth-

ods for iterating, adding and removing regions and other functionality. Region store

implementations generally do not support all methods: unsupported methods throw

not_supported exception. Region stores are stored as shared pointers that free mem-

ory automatically; a typedef RegionStoreP is defined for convenience. As a conven-

tion, region store classes have a static create method to construct the region store

wrapped in shared_ptr.
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Store Class
Generic reader FileReader

BAM/SAM reader BAMReader

BAM/SAM writer BAMWriter

BED reader BEDReader

BED writer BEDWriter

BedGraph reader BEDGraphReader

CSV reader CSVRegionReader

CSV writer CSVRegionWriter

FASTQ reader FASTQReader

GFF reader GFFReader

VCF reader VCFReader

Wiggle reader WiggleReader

Wiggle writer WiggleWriter

Merge MergeStore

Filter TransformStore

Redblack store RedblackStore

Redblack partition RedblackPartition

Hash store HashStore

SQLite store SQLiteStore

Table 3: Region store implementations. File readers can be accessed using the general
purpose FileReader, although using classes for individual formats is also possible.

7.2.1 Iterating over regions and I/O

Iteration over regions is done with the iter and overlap iter methods. This method

returns a pointer to an iterator (RegionIterator) that provides methods for advancing

(next) and closing the iterator (close). The close method must be called to dispose

the iterator; the iterator should not be manually delete’d.

The following example iterates over all entries of a BAM file and writes them to a

BED file. The BAM reader is accessed through FileReader which also provides file

format autodetection. A BED writer is created with an explicit call to the corresponding

constructor. The BAM reader object is provides as a ”model” for the BED writer in

order to transfer sequence set and annotation registry contents.
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#include <iostream>

#include "io/bed.hpp"

#include "io/FileReader.hpp"

int main() {

RegionStoreP reader(FileReader::create("input.bam"));

RegionStoreP writer(BEDWriter::create("output.bed", &*reader));

RegionIterator *iter = reader->iter();

const Region* region;

while ((region = iter->next()) != NULL) {

writer->add(*region);

}

iter->close();

return 0;

}

7.2.2 Using region databases

Region databases are initialized as empty with one of the constructors in Table 3 and are

accessed and modified using add, remove, get and set annotation methods. The

following example constructs an in-memory SQLite store and populates it with the

contents of a file. The SQLite store supports the same annotations as the file reader;

annotation definitions are passed to the database in the constructor.

#include <iostream>

#include "io/FileReader.hpp"

#include "db/SQLiteStore.hpp"

int main() {

RegionStoreP reader(FileReader::create("input.bam"));

RegionStoreP db(SQLiteStore::create(":memory:", &*reader));

RegionIterator *iter = reader->iter();

const Region* region;

while ((region = iter->next()) != NULL) {

db->add(*region);

}

iter->close();

return 0;

}

7.3 Implementing new region stores

New implementations for region stores are implemented by deriving a subclass of

RegionStore and implementing some subset of virtual methods. File readers can al-

ternatively be derived from StreamReader or CSVStreamReader. If the region store
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supports iteration, it may need to derive an internal subclass of RegionIterator as

well, although this is not necessary for file readers derived from StreamReader.

Figure 2 shows a region store implementation that reads regions from a simple text

based format. The format contains a chromosome name, start and end locations and a

unique name:

chr1 100 200 region1

chr1 300 450 region2

The reader is derived from StreamReader for demonstration, although CSVStreamReader

could also be used due to additional convenience. The constructor sets up the annota-

tion registry, which in this case contains one string-typed annotation. It is registered as

a special kind of annotation, ANNOTATION ID, to inform the framework that the values

are unique identifiers. The method read next reads one entry at a time, modifies an

output object and returns true if a region was read. The file format uses 1-based co-

ordinates: as Region uses 0-based coordinates, they must be converted in the reader.

Region names are used to generate uniqueness tags for regions using a hash function.

The static method create sets up a weak shared pointer for the newly created object.
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#include <fstream>

#include <iostream>

#include <string>

#include "Region.hpp"

#include "RegionIterator.hpp"

#include "io/StreamReader.hpp"

class MyReader: public StreamReader {

public:

static RegionStoreP create(const char *filename) {

RegionStoreP store(new MyReader(filename));

store->set_weak(store);

return store;

}

protected:

MyReader(const char *filename) : input(filename) {

this->name_id = add_annotation("Name",

ANN_STRING, -1, ANNOTATION_ID);

}

bool read_next(Region& output, bool first) {

std::string chr, name;

int start, end;

this->input >> chr >> start >> end >> name;

if (this->input.eof()) return false;

output.set_seqid(get_seqset().add(chr));

output.set_left(start - 1);

output.set_right(end - 1);

output.set_annotationS(this->name_id, name);

output.set_tag(name);

return true;

}

private:

std::ifstream input;

int name_id;

};

int main() {

RegionStoreP reader(MyReader::create("custom-format.txt"));

RegionIterator *iter = reader->iter();

const Region *region;

while ((region = iter->next()) != NULL) {

std::cout << *region;

}

iter->close();

return 0;

}

Figure 2: Region store that reads a simple text based format.
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