
The IST Programme

Key Action �

Action Line IST�����������

Contract number IST���������	�

Deliverable D�����

The RQL v��� User Manual

Version
 v���

Date
 �� Feb ����

Authors
 Grigoris Karvounarakis� Vassilis Christophides ICS�FORTH�

Contributors
 Dimitris Plexousakis� So�a Alexaki ICS�FORTH�

Distribution
 PUBLIC

�

The RQL v��� User Manual

Grigoris Karvounarakis� Vassilis Christophides

Institute of Computer Science� FORTH�

Vassilika Vouton� P�O�Box ����� GR 	�� ���

Heraklion� Greece

fgregkar� christopg�ics�forth�gr

February ��� ����

Abstract

This document is a tutorial for the RDF Query Language �RQL�� RQL is a typed

language� following a functional approach� that is de�ned by a set of basic queries and

iterators� This tutorial presents examples of basic meta�schema� schema and data queries�

as well as select�from�where �lters �iterators� containing generalized path expressions

and shows how such queries can be nested to form more complex queries�

� Introduction

This document is a tutorial for the RDF Query Language �RQL�� RQL is a typed language�

following a functional approach �a la OQL ����� It is de	ned by a set of basic queries and

iterators� These basic queries are the building blocks of the query language� and will be the

	rst to be presented� Then� such queries and iterators can be used to build more complex

queries through functional composition� by preserving type integrity constraints which are

speci	c for each operation� allowing arbitrary nesting in a query� RQL supports generalized

path expressions �
� �� �� featuring variables on labels for both nodes �i�e�� classes� and edges

�i�e�� properties�� which will also be illustrated through examples and provide the basis for

more complex queries�

�

Figure �� An example of RDF schemas and resource descriptions for a Cultural Portal

In this manual we are going to illustrate the use of RQL through queries of increasing

complexity� also separating them according to dierent use cases that they satisfy� As a

running example for the RQL queries we will use a Cultural Portal� containing descriptions

about resources such as Museum Web sites or Web pages with exhibited artifacts� both from

a Portal administrator and a museum specialist perspective �i�e� described according to the

corresponding RDF schemas�� Figure � depicts both the employed schemas �upper part� and

the RDF descriptions �lower part� contained in this example description base�

The upper part of this 	gure consists of the default RDFS meta�schema classes� i�e��

Class and Property� as well as user�de	ned metaclasses� specializing them �i�e�� RealWorldOb�

ject� WebResource and SchemaProperty� Moreover� it contains two meta�schema properties�

namely related� whihc connects classes� and maxCardinality� which is de	ned on properties

and has an integer value� The middle part consists of two schemas� intended for museum

specialists and Portal administrators� respectively� Class de	nitions in the former respre�

sent RealWorldObjects while the latter instantiates the metaclass WebResource� The lower

part depicts superimposed resource descriptions created for several Museum Web sites and

artifacts available on the Web� according to these schemas�

� Schema Querying

��� Basic Schema Queries

In order to traverse class�property hierarchies de	ned in a schema� RQL provides functions

such as subClassOf �for transitive subclasses� and subClassOf� �for direct subclasses�� For

example� we can issue the queries�

Q�����

subClassOf�Artist�

subClassOf��Artist�

to 	nd all transitive �direct� subclasses of class Artist� Similarly� functions superClassOf�

superClassOf� return transitive �direct� superclasses�

Similar functions exist for schema properties �i�e�� subPropertyOf and subPropertyOf���

For example� we can ask for all transitive �direct� subproperties of creates�

Q�����

subPropertyOf�creates�

subPropertyOf��creates�

Similarly� functions superPropertyOf� superPropertyOf� return superproperties� All

these functions may also be used with a second integer parameter� in order to return� e�g��

subclasses of Artist up to depth ��

Q�����

subClassOf�Artist� ��

�

Then� for a speci	c property we can 	nd its de	nition by applying the functions domain

and range�

Q�����

domain�creates�

range�creates�

Moreover� RQL provides the function namespace� in order to retrieve the namespace pre	x

�i�e� the URL of the schema where it is de	ned� of any schema name �i�e� class� property�

metaclass etc�� Note that this function returns only one namespace �and works only if it�s

parameter corresponds to a uniquely identi	ed name�� For example� the query�

Q�����

namespace�Artist�

works only if there is only one class with name Artist in all schemas that have been loaded�

For cases when same names are used in dierent schemas one can use the using namespace

clause� in order to resolve such naming con�icts explicitly� e�g��

Q�����

namespace�ns�Artist�

USING NAMESPACE ns � �http�		
���

���������	RDF	VRP	Examples	demo	culturerdf�

In Section � we are also going to depict how one can 	nd all namespaces in which� e�g��

Artist has been de	ned�

��� Querying the Meta�schema

More generally� the whole schema can be queried as normal data using appropriately de	ned

meta�classes� This is the case of the default RDF classes Class and Property� Using these

names as basic RQL queries� we will obtain in our example� the names of all the classes and

properties illustrated in the middle part of Figure ��

Q�����

Class

Property

Moreover� we can use other meta�schema names as collection names� to get their contents�

e�g��

�

Q�����

Literal

Thesaurus

Enumeration

In order to also accomodate user�de	ned metaschemas �e�g�� DAML�OIL ����� we have

overloaded functions such as subClassOf� subClassOf�� so that they can also be applied on

Metaclasses� e�g��

Q�����

subClassOf�Class�

subClassOf�Property�

while domain� range may return metaclasses �that may contain classes� properties� thesauri

etc for properties de	ned between such metaclasses��

Q�����

domain�related�

range�related�

In order to be able to retrieve only data properties� that are de	ned at schema level� illustrated

at the middle part of Figure �� �i�e� relations between resources or attributes of resources��

one can use the �special�� built�in metaclass DProperty�

Q�����

DProperty

Finally� user�de	ned metaclasses �see upper part of Figure �� can also be used as basic

queries to retrieve the schema classes or properties which are their instances� e�g�

RealWorldObject

SchemaProperty

�

��� Class � Property Querying

RQL also provides a select�from�where 	lter in order to iterate over these collections by

introducing variables� Given that the whole description base or related schemas can be viewed

as a collection of nodes�edges� path expressions can be used in RQL 	lters for the traversal

of RDF graphs at arbitrary depths�

A 	rst use case of such queries is schema browsing or 	ltering� this is especially useful for

real�scale applications� which employ large description schemas�

For example� we can get both the direct domain and range of a schema property� using

the query�

Q�����

seq� domain�creates�� range�creates� �

In this query we use the sequence constructor operator �seq� to construct a sequence value

explicitly� Then� consider� for instance the following query� where given a speci	c schema

property we want to 	nd all related schema classes�

Q������ Which classes can appear as domain and range of the property creates�

SELECT �C
� �C�

FROM ��C
�creates��C��

In this query we use the pre	x � for variable names to denote variables ranging on schema

classes �i�e� node labels�� The result of this query is shown in Figure ��

A similar query� not including the direct domain and range of property creates is the

following�

Q�������

SELECT X� Y

FROM subclassof�domain�creates���X�� subclassof�range�creates���Y�

A more explicit �but also less e�cient� query that is equivalent to Q��� is the following�

Q�������

SELECT X� Y

FROM Class�X�� Class�Y�� ��X�creates��Y�

Since �X denotes class variables� it is equivalent with a scan on Classes �ClassX�� Then�

we can re�use already de	ned variables �X� Y�� instead of de	ning new schema variables in the

extremeties of creates� This way� we implicitly apply a condition on X and Y� X �Y� should be

�

Figure �� The result of query Q�����

a subclass of the domain �range� of property creates� Moreover� in order to disambiguate such

cases �where we don�t use schema variables but we refer to schema operations on the domain

and range of properties� from data paths �where we want from� and to�values of a property��

we use the symbol ��� as a position indicator� This will be more obvious in examples of mixed

paths in Section �� where ��� is used to separate data and schema variables� when they both

appear at the same end of the path�

Similarly� a constant class name can be used instead of an already bound variable� in order

to 	nd only properties that can applied on class Painter�

Q������ Find all properties de�ned on class Painter and its superclasses �i�e� all properties

that can be applied on class Painter�

SELECT �P� range��P�

FROM ��Painter��P

In this query� �P denotes a property variable� that is implicitly range�restricted on the

set of all data properties �i�e� DProperty�� Then� the result of Q����� contains all properties

that may be applied on Painters� either because they are directly de	ned on class Painter or

�

Figure
� The result of query Q�����

because they are inherited from a superclass of Painter� Thus� an equivalent RQL query is

the following�

Q�������

SELECT P� range�P�

FROM DProperty�P�

WHERE domain�P� �� Painter

In this query� the �� predicate in the WHERE clause denotes class ordering using the sub�

classof relation� as we will explain later� In order to retrieve only properties that are directly

de	ned on Painter� we simply have to replace the ���� with ��� in the WHERE clause of

Q��������

Suppose now that we only want to 	nd relationships that can be applied on Painter� i�e�

only properties with class range� and iterate on their subclasses �i�e�� get all possible range

classes�� For this we can use the following query�

Q�����

SELECT �P� �Y

FROM ��Painter��P��Y�

The use of a schema variable �with the � pre	x� restricts the result to the properties with

class range� More speci	cally� it implies the condition� range��P� in Class� The result of

this query is shown in 	gure
�

�

Figure �� The result of query Q�����

In order to also include properties with literal� thesauri� enumeration or metaclass range�

we use the pre	x ��� as in the following query�

Q�����

SELECT �P� ��Y

FROM ��Painter��P���Y�

The result of this query is depicted in Figure ��

Similar to the use of class names in path extremeties� as in the above queries� we can also

use literal type names� where applicable� e�g�� to 	nd all string�valued properties�

Q�����

SELECT �P

FROM �P��string�

��� Schema Navigation

Simple path expressions� as the ones presented in previous queries� can be composed � using

the operator ��� � in order to traverse paths in schema graphs� Consider� for example� the

��

following query�

Q������ Find the ranges of the property exhibited that can be reached from a class in the

range of property creates

SELECT �X� �Z

FROM creates��X���Y�exhibited��Z�

In this query� �X� �Y and �Z iterate over the subclass tree of the range or domain and

range of the properties creates and exhibited� respectively� Then� the composition of the two

paths using ��� is a shortcut notation� implying the condition �X � �Y� Thus� an equivalent

to the above query �without ���� is the following�

Q�������

SELECT �X� �Z

FROM creates��X�� ��Y�exhibited��Z�

WHERE �X � �Y

Since we do not want to retrieve classes at the domain of exhibited� we can omit the �Y

from the above query�

Q�����

SELECT �X� �Z

FROM creates��X�exhibited��Z�

The implied condition for this query is slightly dierent� instead of computing the subclass

tree of the domain of exhibited� we merely require that �X is a subclass of the domain of

exhibited�

Q�������

SELECT �X� �Z

FROM creates��X�� exhibited��Z�

WHERE �X �� domain�exhibited�

A similar path expression� returning all properties that can be applied on range classes of

property creates is the following�

Q�����

SELECT �X� �P� range��P�

FROM creates��X��P

Figure � summarizes dierent combinations of the composition of two schema path com�

ponents� having properties or property variables as their elements�

��

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

{$X}.{: }

{: }.{$X}

1

C2

P3

P

: $X

: $X

Path Expression Variable bindingsP2

P1 P2

1C

P2P1 {$X}.

P1 P2

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

P1 .@P
P1 {$X}. @P
P1

P1

: (@P, @Q)@P.@Q
@P{: }.

{$X}. P3

T1
��������

1,

��������
: $X T3

��������
3T

��������
: $X 3T

P3
��������

: @P P2,

P3P

��������

2(T), (T3,)
��������

: ($X, @P)

P3: @P
P3P2)1, 1,(P), (P

3T

3

3C

3C

C

3C

T 1

Figure �� Summary of RQL Schema Path Expressions

� Querying Resource Descriptions

The core RQL data queries essentially provide the means to access RDF description bases

with minimal knowledge of the employed schema�s��

��� Basic Data Queries

We can access any RDF collection �class or property extents� container values with RDF

data or schema information� etc�� by just writing its name� This is the case of RDF classes

considered as unary relations�

Q�����

Artist

An equivalent RQL query� employing a select�from�where 	lter is the following�

Q�������

SELECT X

FROM Artist�X�

It should be stressed that� by default� we consider an extended class �or property� in�

terpretation� that is the union of the set of proper instances of a class with those of all its

subclasses� In order to obtain only the proper instances of a class �i�e�� only the nodes labeled

with the class URI�� RQL provides the special operator � ���� Then to 	nd only proper

instances of class Artist� we can issue the following query�

��

Q�����

�Artist

In our example� the result is the empty bag� since no resource has been directly classi	ed

as instance of Artist�

Additionally� RQL uses as entry�points to an RDF description base not only the names of

classes but also the names of properties� as for example� creates� By considering properties

as binary relations� this basic query will return the bag of ordered pairs of resources belonging

to the extended interpretation of creates� Q�����

creates

An equivalent RQL query� employing a select�from�where 	lter is the following�

Q�������

SELECT X� Y

FROM �X�creates�Y�

Similarly with the example of classes� we can omit pairs of resources that are connected

through subproperties of creates� i�e� 	nd only proper �instances� of creates�

Q�����

�creates

��� Filtering Resource Descriptions

For data 	ltering RQL relies on standard Boolean predicates as �� �� � and like �for string

pattern matching�� All operators can be applied on literal values �i�e�� strings� integers� reals�

dates� or resource URIs and class�property�metaclass names� For example�

Q�����

 �

 � �

are conditions between integers� It should be stressed that this also covers comparisons

between class or property names� e�g��

Q�����

Painter � Artist

�

This is equivalent to the basic boolean query�

Q�������

Painter in subclassof�Artist�

Disambiguation is performed in each case by examining the type of operands �e�g�� literal

value vs� URI equality� lexicographical vs� class ordering� etc���

Finally� the second parameter of the operator like is always a wildcard expressions �i�e�

a character string that may also contain the special characters !� �� �� " etc��� The 	rst

parameter may be either a string� thesaurus term or enumeration value or a schema name

�class� property etc�� For example�

Q�����

�foobar� like �foo��

Artist like �Art��

The following are a few example queries illustrating 	ltering conditions on various data

types�

Q������ Find the �le size of the resource with URL http���www�artchive�com�rembrandt��

abraham�jpg

SELECT Y

FROM �X�file�size�Y�

WHERE X � �http�		wwwartchivecom	rembrandt	abrahamjpg

Q������ Find the titles of resources whose URL matches �	www�artchive�com	� �i�e� contains

the sub�string �www�artchive�com��

SELECT X

FROM �X�title�Y�

WHERE X like ��wwwartchivecom��

Q������ Find resources that where modi�ed after year
���� and their modi�cation date

SELECT X� Y

FROM �X�last�modified�Y�

WHERE Y �� ������
��

��

Figure �� The result of query Q�����

Q������ Find resources whose working hours are at least one of ���� ����� ����� ���

�values of enumerated types are treated as strings�

SELECT X� Y

FROM �X�working�hours�Y�

WHERE Y in bag����
� ����� ������ ������

Q����	� Find the resources whose location is equal or a narrower term than �FRANCE� in

the localization thesaurus �range of property location�

SELECT X� Y

FROM �X�location�Y�

WHERE Y �� �FRANCE�

��� Navigating in Description Graphs

In a way similar to schema navigation� as presented in Section ���� we can compose data path

expressions� in order to navigate in description graphs� Consider� e�g�� the following query�

Q������ Find the Museum resources and their modi�cation date

SELECT X� Y

FROM Museum�X��Z�last�modified�Y�

The result of this query is shown in Figure �� Note that in this path expression we compose

a path component with a class element �Museum� with another with a property element

�last modi�ed�� Composition of data path expressions is equivalent with a join between the

collections of the corresponding path elements �i�e�� the extent of Museum and last modi�ed��

This join is made explicitly in the following query �equivalent to Q�������

Q�������

SELECT X� Y

FROM Museum�X�� �Z�last�modified�Y�

WHERE X � Z

�see fnmatch man page at http���www�europe�redhat�com�documentation�man�pages�man��fnmatch����
php�

��

Figure �� The result of query Q�����

As should become more clear with this query� the implied join condition does not involve

at all any schema relationship between the two paths� Indeed� in this example� last modi�ed

is de	ned on class ExtResource and not on Museum� Still� since there are several resources

that are multiply classi	ed under both classes and several of them have a modi	cation date

de	ned� this query returns meaningful results� In Section � we are going to illustrate how one

can also 	lter resource desciptions according to schema restrictions�

Note that� when using constant class or property names as the path�s elements� �e�g��

Museum last modi�ed� path components are automatically considered as data paths� if no

variables are de	ned on their extremeties� On the other hand� paths containing property

��P� or class ��X� variables as their elements� are treated as schema paths �i�e� their domain

or range is used to infer the implied condition�� As a result� the following is a �pure� data

path�

Q������ Find the titles of the resources where are exhibited the resources that have been

created by a Sculptor

SELECT Z

FROM Sculptorcreatesexhibitedtitle�Z�

This is equivalent with the following�

Q�������

SELECT Z

FROM Sculptor�A��B�creates�C��D�exhibited�E��F�title�Z�

WHERE A � B and C � D and E � F

However� this shortcut notation for path compositions does not accomodate tree�like path

expressions� In this case� composition conditions have to be expressed explicitly� as in the

following query�

Q������ Find the titles of exhibited resources that have been created by a Sculptor� as well

as the resources where they are exhibited

SELECT Z� W

FROM Sculptorcreates�Y�exhibited�Z�� �V�title�W�

WHERE Y � V

The result of this query is shown in Figure ��

��

Figure �� The result of query Q���

For such cases� one can use the facility of re�using already de	ned variables� as described

in Q�������� to imply again a join condition�

Q�������

SELECT Z� W

FROM Sculptorcreates�Y�exhibited�Z�� �Y�title�W�

� Using Schema to Filter Resource Descriptions

Up to now we have seen how we can query and navigate in schemas� as well as how we can

query and navigate in description graphs regardless of the underlying schema�s�� Still� RQL

allows to combine schema and data 	ltering and navigation� through the use of mixed path

expressions�

Consider� for example� the following query �in contrast to Q����� and Q���������

Q���� Find the Flemish resources that have created Painting resources

SELECT X� Y

FROM �X�Flemish�creates�Y�Painting�

In this query we are using node labels �i�e�� class names� in order to restrict the source and

target values of a property� More precisely� the implied conditions in this path expression are�

�i� Flemish should be a subclass of the domain of creates� �ii� Painting should be a subclass of

the range of creates� �iii� X should belong to the extent of Flemish and �iv� Y should belong

in the extent of Painting� The result of this query is illustrated in Figure ��

The dierence between mixed paths and� e�g�� data paths should be more obvious in

the next example� Consider that we want to 	nd all the Painting resources that have been

exhibited as well as the related target resources of type ExtResource� Note that the class

ExtResource does not appear in the range of property exhibited� The appropriate query is

the following�

��

Figure �� The result of query Q���

Q���

SELECT X� Y

FROM �X�Painting�exhibited�Y�ExtResource�Z�

The join condition between the two paths is obviously inferred as that of a data path

composition �i�e� Y � Z�� This means that � using the above expression � we do not enforce

the range of exhibited to be related with the class ExtResource� If we wanted to pose such a

restriction� the query would be similar to Q����

Q�����

SELECT X� Y

FROM �X�Painting�exhibited�Y�ExtResource�

Since� ExtResource is not a subclass of the range of property exhibited� this query would

produce a warning and return an empty result�

� Set�based Queries

Common set operators �union� intersect� minus� applied to collections of the same type are

also supported� For example� the query�

Q���

Sculpture intersect ExtResource

will return a bag with the URIs of all resources which are classi	ed under both Sculpture

and ExtResource�

Moreover� we can mix collections denoted by schema names with others created by queries�

Q���

creates minus �SELECT X� Y FROM �X�paints�Y��

The result of this query is illustrated in Figure ��

��

However� the following query will return a type error since the function range is de	ned

on names of properties and not on names of classes�

Q���

bag�range�Artist�� union subclassof�Artifact�

� Other Container Queries

RQL also allows the manipulation of RDF container values� More precisely� we can explicitly

construct Bags and Sequences using the basic RQL queries bag and seq� as we did in Q����

To access a member of a Sequence we can use as usual the operator � � with an appropriate

position index� If the speci	ed member element does not exist� the query will return a runtime

error� Alternatively� the Boolean operator in can be used for membership test in Bags� For

example�

Q���

seq�domain�creates�� range�creates����

returns the 	rst element of the sequence� while Q���

�!tt
 in bag�
� ���

�!tt !�wwwculturenet	picasso
�� in Painter�

are true� since the 	rst bag contains � while the resource www�culture�net�picasso�
� belongs

to the extent of Painting�

� Aggregate Functions

Last but not least� RQL is equipped with a complete set of aggregate functions �min� max�

avg� sum and count�� For instance� we can inspect the cardinality of class extents �or of bags�

using the count function�

Q���

count� Painting �

Note that the parameter of aggregate functions may be any query returning a collection of

a proper type� as in the following query� ���� Find the maximum number of direct subclasses

max�SELECT count�subclassof��C�� FROM Class�C� WHERE C "� Resource�

��

	 Namespace Queries

For cases when several dierent schemas are used at the same time� RQL provides the op�

eration namespace� returning the namespace pre	x of its operand� as well as an extra USING

NAMESPACE clause� allowing the de	nition of namespace pre	x variables� which can then be

used inside queries in order to disambiguate cases when the same� e�g�� class name appears in

several schemas� The following queries depict this kind of functionality�

Q	��� Find all namespaces where class Artist has been de�ned

SELECT namespace�C�

FROM Class�C�

WHERE C like �Artist�

Q	��� Find the description of resources� excluding desciptions related to classes and properties

of namespace ns�

SELECT X� �SELECT �C� �SELECT �P� Y

FROM �W � �C� �P �Y�

WHERE namespace��C� "� ns
 and namespace��P� "� ns
�

FROM �C �X��

FROM Resource �X�

USING NAMESPACE ns
��http�		
���

���������	RDF	VRP	Examples	demo	adminrdf�

 Nested Queries

As we mentioned in the beginning of this tutorial� RQL � being a functional language � allows

arbitrary composition of simple queries and iterators� in order to form more complex queries�

For example we can nest any RQL functions�

Q
��� Find the subclasses of the range of the property creates

subclass�range�creates��

Moreover� RQL allows the introduction of nested queries in any of the select�from�where

clauses� The following examples depict this functionality�

Q
��� Find the description of the resource with URI �http���www�museum�es� �i�e�� group

properties by the class under which the resource is classi�ed� � nesting in the SELECT clause

SELECT �C� �SELECT �P� Y

FROM �Z � �D� �P �Y�

WHERE Z � X and �D � �C�

FROM �C �X�

WHERE X � �http�		wwwmuseumes

��

Figure ��� The result of query Q
��

Q
��� Find the subclasses of Artist except subclasses of Sculptor as well as their corre�

sponding direct instances � nesting in the FROM clause

SELECT Y� �SELECT Z FROM Y�Z��

FROM ��SELECT �X FROM Artist��X�� minus �SELECT �X FROM Sculptor��X����Y�

Q
��� Find the most recently modi�ed resource � nesting in the WHERE clause

SELECT X� Y

FROM �X�last�modified�Y�

WHERE Y � max� SELECT Z FROM �W�last�modified�Z� �

Finally� the following query involves several nested queries and aggregate functions�

Q
��� Find the classes with the maximun number of properties

SELECT C� count�SELECT �P FROM ��C��P�

FROM Class�C�

WHERE C "� Resource and count�SELECT �P FROM ��C��P� �

max� SELECT count�SELECT �Q FROM ��D��Q�

FROM Class�D�

WHERE D "� Resource �

The result of this query is depicted in Figure ���

��

References

��� S� Abiteboul� D� Quass� J� McHugh� J� Widom� and J� Wiener� The Lorel Query Language

for Semistructured Data� International Journal on Digital Libraries� �������#��� April

�����

��� R�G�G� Cattell� D� Barry� Berler M� J� Eastman� D� Jordan� C� Russell� O Schadow�

T� Stanienda� and F� Velez� The Object Database Standard ODMG ���� Morgan Kaufmann�

January �����

�
� V� Christophides� S� Abiteboul� S� Cluet� and M� Scholl� From Structured Documents to

Novel Query Facilities� In Proc� of ACM SIGMOD Conf� on Management of Data� pages

�
#
��� Minneapolis� Minnesota� May �����

��� V� Christophides� S� Cluet� and G� Moerkotte� Evaluating Queries with Generalized Path

Expressions� In Proc� of ACM SIGMOD� pages ��
#���� �����

��� F� van Harmelen� P� Patel�Schneider� and I� Horrocks� Reference description of the

DAML�OIL ontology markup language� http���www�daml�org�������
�reference�html�

March �����

��

