The IST Programme
Key Action 3
Action Line IST-2000-3.1.4
Contract number IST-2000-26074
Deliverable D3.2.1

The RQL v1.5 User Manual

Version:
Date:
Authors:

Contributors:

Distribution:

vl.5

14 Feb 2002

Grigoris Karvounarakis, Vassilis Christophides (ICS-FORTH)
Dimitris Plexousakis, Sofia Alexaki (ICS-FORTH)

PUBLIC

The RQL v1.5 User Manual

Grigoris Karvounarakis, Vassilis Christophides

Institute of Computer Science, FORTH,
Vassilika Vouton, P.O.Box 1385, GR 711 10,
Heraklion, Greece

{gregkar, christop}@ics.forth.gr

February 14, 2002

Abstract

This document is a tutorial for the RDF Query Language (RQL). RQL is a typed
language, following a functional approach, that is defined by a set of basic queries and
iterators. This tutorial presents examples of basic meta-schema, schema and data queries,
as well as select-from-where filters (iterators) containing generalized path expressions

and shows how such queries can be nested to form more complex queries.

1 Introduction

This document is a tutorial for the RDF Query Language (RQL). RQL is a typed language,
following a functional approach (a la OQL [2]). It is defined by a set of basic queries and
iterators. These basic queries are the building blocks of the query language, and will be the
first to be presented. Then, such queries and iterators can be used to build more complex
queries through functional composition, by preserving type integrity constraints which are
specific for each operation, allowing arbitrary nesting in a query. RQL supports generalized
path expressions [3, 4, 1] featuring variables on labels for both nodes (i.e., classes) and edges
(i.e., properties), which will also be illustrated through examples and provide the basis for

more complex queries.

Thesaus nurmeralior

rifsC lass

i,
BealordOtiec>: WehHesnire >

<_Schemanropety >

ns 1w, icorm, Com; fschamamdf ns2: \..L.'_._.'\\...'_g:|cljr|_:|.-"5c"|ema_rdf
farme iregtes exbibiled wearking”hours
String —_—:}—ﬂm
0 ey A CCatign
m [z ! . ; .)
E [sting | 5 siUpts [locafionThesaurs last_rnndifizd DAlETIMe
g < Etdgtar e
5 : .
pairts - teckinique -
< Fainter = _Farring ——
z T “integer
Cuhist Flami_sﬂ_;,
ECinle "oil on canvas”
paints —— VE
-'__,—_:——'-'-5-2- o
B w{Toi o canvas']
=il last fnodifisd g J000-06-09T1 230347 |
g 5 ek by e ___,.___——r——‘_"#
E] tifte = "Reina Sofia Musaun”|
2 Flichelangelo ... frame %—m N —
= e
L
] ErS sculpts .
g Fane s S arg™_ocat{ TRATCE]
a TrrnUE | "0il on carvas” maLking_nous
L Er10 'l 3-8
C nair pR .
E gr1 T file_szize "El
"Eranar and lsaact| S0 GUADELOUP=
ciggles p gy hibiEd last modifed o PR 201702 A8 0+ 12.00)]
| 2 & iitle o ,
narne Ll "Rodin Museumn® |
1k cuture aetipicasse 132 I:CI’LIEIEI}{IDﬂ R ST TR
2 hibips e e gL msAvoman .o e cubture netRembrand
tl,pEC'FI:InftEHOE:I 3-httpefum museUm. esiuemicajeg ri0 Http: . artchive. comdrembrendizrtist_2_his_easel jpg
=} subSlass o i=) dehtp . muzeum. 25 r11 hittp:dwww. artchive. comdrambrendtizbraham. jpg
=;=}su3l-'n:pem,lurllsﬁjrﬁ:wttw.cmurenet.f.ﬁucneiangﬂo gl W euteurelr ditadingd
o htipadon photojeumal.comilassicatAalmastezdnichelangelo’culptar’de scent jpg r13 hittp: s artchive. comacifision.ipg
£ htipcfuem photojcumal.comizlassicat A almastersdnickelangelofzzulptarthesizre jpg i<ttt rodir fr
ris: htpdomg cgiT 1 comdmuseesfecomuses)

Figure 1: An example of RDF schemas and resource descriptions for a Cultural Portal

In this manual we are going to illustrate the use of RQL through queries of increasing
complexity, also separating them according to different use cases that they satisfy. As a
running example for the RQL queries we will use a Cultural Portal, containing descriptions
about resources such as Museum Web sites or Web pages with exhibited artifacts, both from
a Portal administrator and a museum specialist perspective (i.e. described according to the

corresponding RDF schemas). Figure 1 depicts both the employed schemas (upper part) and

the RDF descriptions (lower part) contained in this example description base.

The upper part of this figure consists of the default RDFS meta-schema classes, i.e.,

Class and Property, as well as user-defined metaclasses, specializing them (i.e., RealWorldOb-
ject, WebResource and SchemaProperty. Moreover, it contains two meta-schema properties,
namely related, whihc connects classes, and maxCardinality, which is defined on properties
and has an integer value. The middle part consists of two schemas, intended for museum
specialists and Portal administrators, respectively. Class definitions in the former respre-
sent RealWorldObjects while the latter instantiates the metaclass WebResource. The lower
part depicts superimposed resource descriptions created for several Museum Web sites and

artifacts available on the Web, according to these schemas.

2 Schema Querying

2.1 Basic Schema Queries

In order to traverse class/property hierarchies defined in a schema, RQL provides functions
such as subClass0f (for transitive subclasses) and subClass0f~ (for direct subclasses). For
example, we can issue the queries:

Q2.1.1

subClassOf (Artist)

subClass0f~ (Artist)

to find all transitive (direct) subclasses of class Artist. Similarly, functions superClass0f,
superClass0f " return transitive (direct) superclasses.

Similar functions exist for schema properties (i.e., subProperty0f and subProperty0f~).
For example, we can ask for all transitive (direct) subproperties of creates:

Q2.1.2

subProperty0f (creates)

subProperty0f~ (creates)

Similarly, functions superProperty0f, superProperty0f~ return superproperties. All
these functions may also be used with a second integer parameter, in order to return, e.g.,
subclasses of Artist up to depth 2:

Q2.1.3

subClassOf (Artist, 2)

Then, for a specific property we can find its definition by applying the functions domain
and range:

Q2.1.4

domain(creates)

range (creates)

Moreover, RQ L provides the function namespace, in order to retrieve the namespace prefix
(i.e. the URL of the schema where it is defined) of any schema name (i.e. class, property,
metaclass etc). Note that this function returns only one namespace (and works only if it’s
parameter corresponds to a uniquely identified name). For example, the query:

Q2.1.5
namespace (Artist)

works only if there is only one class with name Artist in all schemas that have been loaded.
For cases when same names are used in different schemas one can use the using namespace
clause, in order to resolve such naming conflicts explicitly, e.g.:

Q2.1.6

namespace(ns:Artist)

USING NAMESPACE ns = &http://139.91.183.30:9090/RDF/VRP/Examples/demo/culture.rdf#
In Section 8 we are also going to depict how one can find all namespaces in which, e.g.,

Artist has been defined.

2.2 Querying the Meta-schema

More generally, the whole schema can be queried as normal data using appropriately defined
meta-classes. This is the case of the default RDF classes Class and Property. Using these
names as basic RQL queries, we will obtain in our example, the names of all the classes and
properties illustrated in the middle part of Figure 1:

Q2.2.1

Class

Property

Moreover, we can use other meta-schema names as collection names, to get their contents,

e.g.:

Q2.2.2

Literal

Thesaurus

Enumeration

In order to also accomodate user-defined metaschemas (e.g., DAML+OIL [5]), we have
overloaded functions such as subClass0f, subClass0f ", so that they can also be applied on
Metaclasses, e.g.:

Q2.2.3

subClass0f (Class)

subClassO0f (Property)

while domain, range may return metaclasses (that may contain classes, properties, thesauri
etc for properties defined between such metaclasses):

Q2.2.4

domain(related)

range (related)

In order to be able to retrieve only data properties, that are defined at schema level, illustrated
at the middle part of Figure 1, (i.e. relations between resources or attributes of resources),
one can use the ”special”, built-in metaclass DProperty:

Q2.2.5
DProperty

Finally, user-defined metaclasses (see upper part of Figure 1) can also be used as basic

queries to retrieve the schema classes or properties which are their instances, e.g:

RealWorldObject

SchemaProperty

2.3 Class & Property Querying

RQL also provides a select-from-where filter in order to iterate over these collections by
introducing variables. Given that the whole description base or related schemas can be viewed
as a collection of nodes/edges, path expressions can be used in RQL filters for the traversal
of RDF graphs at arbitrary depths.

A first use case of such queries is schema browsing or filtering; this is especially useful for
real-scale applications, which employ large description schemas.

For example, we can get both the direct domain and range of a schema property, using
the query:
Q2.3.1

seq(domain(creates), range(creates))

In this query we use the sequence constructor operator (seq) to construct a sequence value
explicitly. Then, consider, for instance the following query, where given a specific schema

property we want to find all related schema classes:

Q2.3.2: Which classes can appear as domain and range of the property creates?

SELECT $C1, $C2
FROM {$Cil}creates{$C2}

In this query we use the prefix $ for variable names to denote variables ranging on schema
classes (i.e. node labels). The result of this query is shown in Figure 2.

A similar query, not including the direct domain and range of property creates is the
following:

Q2.3.2.1

SELECT X, Y

FROM subclassof (domain(creates)){X}, subclassof (range(creates)){Y}

A more explicit (but also less efficient) query that is equivalent to Q3.2 is the following:
Q2.3.2.2

SELECT X, Y
FROM Class{X}, Class{Y}, {;X}creates{;Y}

Since $X denotes class variables, it is equivalent with a scan on Classes (ClassX). Then,
we can re-use already defined variables (X, Y), instead of defining new schema, variables in the

extremeties of creates. This way, we implicitly apply a condition on X and Y: X (Y) should be

class || class class class
Artist [Artfact Painter |Painting
class class class class
Artist [Sculpture Flemish [Artifact
class || class class class
Artizt [Painting Flemish [Sculpture
class class class class
Sculptor |Artifact Flemish [Painting
class class class || class
Sculptor |Sculpture Cubist [Artifact
class class class class
Sculptor |Painting Cubist (Sculpture
class class class || class
Painter |Artifact Cubist ([Painting
class class
Painter |Sculpture

Figure 2: The result of query Q2.3.2

a subclass of the domain (range) of property creates. Moreover, in order to disambiguate such
cases (where we don’t use schema variables but we refer to schema operations on the domain
and range of properties) from data paths (where we want from- and to-values of a property),
we use the symbol ’;” as a position indicator. This will be more obvious in examples of mixed

paths in Section 4, where ’;’

is used to separate data and schema variables, when they both
appear at the same end of the path.

Similarly, a constant class name can be used instead of an already bound variable, in order
to find only properties that can applied on class Painter:
Q2.3.3: Find all properties defined on class Painter and its superclasses (i.e. all properties

that can be applied on class Painter)

SELECT @P, range (@P)
FROM {;Painter}@P

In this query, QP denotes a property variable, that is implicitly range-restricted on the
set of all data properties (i.e. DProperty). Then, the result of Q2.3.3 contains all properties

that may be applied on Painters, either because they are directly defined on class Painter or

property | class
exhibited |Muozeur

praperty | class
creates |Artifact

praperty claaz
criatesy | Sculptune

praperty | clama
creates |Painting

praperty | clama
painta |Painting

prapeerty clacaz
ABculptas |Sculpture

Figure 3: The result of query Q2.3.4

because they are inherited from a superclass of Painter. Thus, an equivalent RQL query is
the following:
Q2.3.3.1

SELECT P, range(P)
FROM DProperty{P}
WHERE domain(P) >= Painter

In this query, the >= predicate in the WHERE clause denotes class ordering using the sub-
classof relation, as we will explain later. In order to retrieve only properties that are directly
defined on Painter, we simply have to replace the ’>=’ with =’ in the WHERE clause of
Q2.3.3.1.

Suppose now that we only want to find relationships that can be applied on Painter, i.e.
only properties with class range, and iterate on their subclasses (i.e., get all possible range
classes). For this we can use the following query:

Q2.3.4

SELECT @P, $Y
FROM {;Painter}@P{$Y}

The use of a schema variable (with the § prefix) restricts the result to the properties with
class range. More specifically, it implies the condition: range(OP) in Class. The result of

this query is shown in figure 3.

property literal
firat_rarme | [atring

property || literal
lect_rarme | | atring

property || class
o reart ey Artifact

prapérty ez
o résint ey Sculpture

prapérty lamx
 rézit ey Painting

prapérty lamx
paints Painting

Figure 4: The result of query Q2.3.5

In order to also include properties with literal, thesauri, enumeration or metaclass range,
we use the prefix $$, as in the following query:

Q2.3.5

SELECT @P, $$Y
FROM {;Painter}@P{$$Y}

The result of this query is depicted in Figure 4.
Similar to the use of class names in path extremeties, as in the above queries, we can also
use literal type names, where applicable, e.g., to find all string-valued properties:

Q2.3.6

SELECT @P

FROM @P{;string}

2.4 Schema Navigation

Simple path expressions, as the ones presented in previous queries, can be composed - using

the operator ’.” - in order to traverse paths in schema graphs. Consider, for example, the

10

following query:
Q2.4.1: Find the ranges of the property exhibited that can be reached from a class in the

range of property creates

SELECT $X, $Z
FROM creates{$X}.{$Y}exhibited{$Z}

In this query, $X, §Y and $Z iterate over the subclass tree of the range or domain and
range of the properties creates and exhibited, respectively. Then, the composition of the two

' is a shortcut notation, implying the condition $X = §Y. Thus, an equivalent

paths using .
to the above query (without ’.”) is the following:

Q2.4.1.1

SELECT $X, $Z
FROM creates{$X}, {$Y}exhibited{$Z}
WHERE $X = $Y

Since we do not want to retrieve classes at the domain of exhibited, we can omit the $Y
from the above query:

Q2.4.2

SELECT $X, $Z
FROM creates{$X}.exhibited{$Z}

The implied condition for this query is slightly different; instead of computing the subclass
tree of the domain of exhibited, we merely require that $X is a subclass of the domain of
exhibited:

Q2.4.2.1

SELECT $X, $Z
FROM creates{$X}, exhibited{$Z}
WHERE $X <= domain(exhibited)

A similar path expression, returning all properties that can be applied on range classes of
property creates is the following:

Q2.4.3

SELECT $X, @P, range(QP)
FROM creates{$X}.@P

Figure 5 summarizes different combinations of the composition of two schema path com-

ponents, having properties or property variables as their elements.

11

Path Expression Variable bindings

P1{$X}. P2 X —+T1
P1{$X}. P3 $X—=T3
Pi{:C3}{$X} P> $X—=T3
Pi{$X}.{:C3 P X —=>T3

P..@P C @P—=P2,Ps

PL{$X}. @P : ($X, @P) —(T1,P2), (Ts, Ps)
Pi{:C3}.@P . @P— P3

@P.@Q . (@P, @Q)— (P1P2), (P1. P3)

Figure 5: Summary of RQL Schema Path Expressions
3 Querying Resource Descriptions

The core RQL data queries essentially provide the means to access RDF description bases

with minimal knowledge of the employed schemay(s).

3.1 Basic Data Queries

We can access any RDF collection (class or property extents, container values with RDF
data or schema information, etc.) by just writing its name. This is the case of RDF classes
considered as unary relations:

Q3.1.1
Artist

An equivalent RQ)L query, employing a select-from-where filter is the following:
Q3.1.1.1

SELECT X
FROM Artist{X}

It should be stressed that, by default, we consider an extended class (or property) in-
terpretation, that is the union of the set of proper instances of a class with those of all its
subclasses. In order to obtain only the proper instances of a class (i.e., only the nodes labeled
with the class URI), RQL provides the special operator (“~”). Then to find only proper

instances of class Artist, we can issue the following query:

12

Q3.1.2
“Artist

In our example, the result is the empty bag, since no resource has been directly classified
as instance of Artist.

Additionally, RQL uses as entry-points to an RDF description base not only the names of
classes but also the names of properties, as for example, creates. By considering properties
as binary relations, this basic query will return the bag of ordered pairs of resources belonging

to the extended interpretation of creates: Q3.1.3
creates

An equivalent RQL query, employing a select-from-where filter is the following:
Q3.1.3.1

SELECT X, Y
FROM {X}creates{Y}

Similarly with the example of classes, we can omit pairs of resources that are connected
through subproperties of creates, i.e. find only proper ”instances” of creates:

Q3.1.4

“creates

3.2 Filtering Resource Descriptions

For data filtering RQL relies on standard Boolean predicates as =, <, > and like (for string
pattern matching). All operators can be applied on literal values (i.e., strings, integers, reals,
dates) or resource URIs and class/property/metaclass names. For example:

Q3.2.1

are conditions between integers. It should be stressed that this also covers comparisons
between class or property names, e.g.:

Q3.2.2
Painter < Artist

13

This is equivalent to the basic boolean query:

Q3.2.2.1
Painter in subclassof (Artist)

Disambiguation is performed in each case by examining the type of operands (e.g., literal
value vs. URI equality, lexicographical vs. class ordering, etc.).

Finally, the second parameter of the operator like is always a wildcard expressions (i.e.
a character string that may also contain the special characters *, +, 7, "~ etc).! The first
parameter may be either a string, thesaurus term or enumeration value or a schema name
(class, property etc). For example:

Q3.2.3

"foobar" like "foox"

Artist like "Artx"

The following are a few example queries illustrating filtering conditions on various data

types:
Q3.2.4: Find the file_size of the resource with URL http://www.artchive.com/rembrandt/-
abraham.jpg

SELECT Y
FROM {X}file_size{Y}
WHERE X = &http://www.artchive.com/rembrandt/abraham. jpg

Q3.2.5: Find the titles of resources whose URL matches ”*www.artchive.com™” (i.e. contains

the sub-string "www.artchive.com”)

SELECT X
FROM {X}title{Y}

WHERE X like "*www.artchive.com*"
Q3.2.6: Find resources that where modified after year 2000, and their modification date

SELECT X, Y
FROM {X}last_modified{Y}
WHERE Y >= 2000-01-01

14

résid U rce date

Bttp: £ P oo e | 2000-06-089T15: 30 ; 3d+00:00

it
2000-01-31T16:55,00+00:00

reSd U rees
kttp: f e radinfr

Figure 6: The result of query Q3.3.1

Q3.2.7: Find resources whose working hours are at least one of ”9-1, 5-8”, ”9-4”, ”9-9”

(values of enumerated types are treated as strings)

SELECT X, Y

FROM {X}working_hours{Y}

WHERE Y in bag("9-1, 5-8", "9-4", "9-9")

Q3.2.8: Find the resources whose location is equal or a narrower term than "FRANCE” in

the localization thesaurus (range of property location)

SELECT X, Y
FROM {X}location{Y}
WHERE Y <= "FRANCE"

3.3 Navigating in Description Graphs

In a way similar to schema navigation, as presented in Section 2.4, we can compose data path
expressions, in order to navigate in description graphs. Consider, e.g., the following query:

Q3.3.1: Find the Museum resources and their modification date

SELECT X, Y
FROM Museum{X}.{Z}last_modified{Y}

The result of this query is shown in Figure 6. Note that in this path expression we compose
a path component with a class element (Museum) with another with a property element
(last_modified). Composition of data path expressions is equivalent with a join between the
collections of the corresponding path elements (i.e., the extent of Museum and last_modified).
This join is made explicitly in the following query (equivalent to Q3.3.1):
Q3.3.1.1
SELECT X, Y
FROM Museum{X}, {Z}last_modified{Y}
WHERE X = Z

'see fnmatch man page at http://www.europe.redhat.com/documentation/man-pages/man3/famatch.3.-
php3

15

atring

e LInC &
http: £ fwnaw rodin fr

Crucifixitan

Figure 7: The result of query Q3.3.3

As should become more clear with this query, the implied join condition does not involve
at all any schema relationship between the two paths. Indeed, in this example, last_modified
is defined on class ExtResource and not on Museum. Still, since there are several resources
that are multiply classified under both classes and several of them have a modification date
defined, this query returns meaningful results. In Section 4 we are going to illustrate how one
can also filter resource desciptions according to schema restrictions.

Note that, when using constant class or property names as the path’s elements, (e.g.,
Museum last_modified) path components are automatically considered as data paths, if no
variables are defined on their extremeties. On the other hand, paths containing property
(@QP) or class ($X) variables as their elements, are treated as schema paths (i.e. their domain
or range is used to infer the implied condition). As a result, the following is a "pure” data
path:

Q3.3.2: Find the titles of the resources where are exhibited the resources that have been
created by a Sculptor
SELECT Z

FROM Sculptor.creates.exhibited.title{Z}

This is equivalent with the following:

Q3.3.2.1

SELECT Z

FROM Sculptor{A}.{B}creates{C}.{D}exhibited{E}.{F}title{Z}
WHERE A =B and C =D and E = F

However, this shortcut notation for path compositions does not accomodate tree-like path
expressions. In this case, composition conditions have to be expressed explicitly, as in the
following query:

Q3.3.3: Find the titles of exhibited resources that have been created by a Sculptor, as well
as the resources where they are exhibited

SELECT Z, W

FROM Sculptor.creates{Y}.exhibited{Z}, {V}title{W}

WHERE Y =1V

The result of this query is shown in Figure 7.

16

rEy U e M4 L ne e
e ulture et S rembrandt (Bttps S Sanewarkc Biveco i rermibrandt fartiat_at_ bia_essel gpg

rEy U e rEy I U re e
wn e Ut o res it F et randt |Bttp S Swwon et e Bive oo mf rerib randt Sab rabacm jpg

Figure 8: The result of query Q4.1

For such cases, one can use the facility of re-using already defined variables, as described
in Q2.3.2.2, to imply again a join condition:

Q3.3.3.1

SELECT Z, W
FROM Sculptor.creates{Y}.exhibited{Z}, {Y}title{W}

4 Using Schema to Filter Resource Descriptions

Up to now we have seen how we can query and navigate in schemas, as well as how we can
query and navigate in description graphs regardless of the underlying schema(s). Still, RQL
allows to combine schema and data filtering and navigation, through the use of mixed path
expressions.

Consider, for example, the following query (in contrast to Q2.3.2 and Q3.1.3.1):

Q4.1: Find the Flemish resources that have created Painting resources

SELECT X, Y
FROM {X;Flemish}creates{Y;Painting}

In this query we are using node labels (i.e., class names) in order to restrict the source and
target values of a property. More precisely, the implied conditions in this path expression are:
(i) Flemish should be a subclass of the domain of creates, (ii) Painting should be a subclass of
the range of creates, (iii) X should belong to the extent of Flemish and (iv) Y should belong
in the extent of Painting. The result of this query is illustrated in Figure 8.

The difference between mixed paths and, e.g., data paths should be more obvious in
the next example. Consider that we want to find all the Painting resources that have been
exhibited as well as the related target resources of type ExtResource. Note that the class
ExtResource does not appear in the range of property exhibited. The appropriate query is

the following:

17

e L e = LulT L]
Wi e ulture fet £ ric helangela [http: f fwww phatojournal camfclamaicart Fital rmmters S michelangela faculpturfdescent. jpg

rEa U rce resS U rce
Wi e ulture fet £ ric helangela |http: f fwww phatojournal camfclaaicart ital s ters S michelangela faculptorfthes lanne, jpg

[=-Teli] g (g =lefi]y -]
wiww culture fet frodind2d [kitp: S S artchive.camforucifixian . jpg

Figure 9: The result of query Q5.2

Q4.2
SELECT X, Y

FROM {X;Painting}texhibited{Y}.ExtResource{Z}

The join condition between the two paths is obviously inferred as that of a data path
composition (i.e. Y = Z). This means that - using the above expression - we do not enforce
the range of exhibited to be related with the class ExtResource. If we wanted to pose such a
restriction, the query would be similar to Q4.1:

Q4.2.1

SELECT X, Y
FROM {X;Painting}texhibited{Y;ExtResource}

Since, ExtResource is not a subclass of the range of property exhibited, this query would

produce a warning and return an empty result.

5 Set-based Queries

Common set operators (union, intersect, minus) applied to collections of the same type are

also supported. For example, the query:

Q5.1

Sculpture intersect ExtResource

will return a bag with the URIs of all resources which are classified under both Sculpture
and ExtResource.

Moreover, we can mix collections denoted by schema names with others created by queries:

Q5.2
creates minus (SELECT X, Y FROM {X}paints{Y})

The result of this query is illustrated in Figure 9.

18

However, the following query will return a type error since the function range is defined
on names of properties and not on names of classes.

Q5.3

bag(range (Artist)) union subclassof (Artifact)

6 Other Container Queries

RQL also allows the manipulation of RDF container values. More precisely, we can explicitly
construct Bags and Sequences using the basic RQ)L queries bag and seq, as we did in Q3.1.
To access a member of a Sequence we can use as usual the operator “[1”7 with an appropriate
position index. If the specified member element does not exist, the query will return a runtime
error. Alternatively, the Boolean operator in can be used for membership test in Bags. For

example:
Q6.1

seq(domain(creates), range(creates)) [0]
returns the first element of the sequence, while Q6.2

{\tt 1 in bag(l, 2)}

{\tt \&www.culture.net/picassol32 in Painter}

are true, since the first bag contains 1 while the resource www.culture.net/picassol132 belongs

to the extent of Painting.

7 Aggregate Functions

Last but not least, RQL is equipped with a complete set of aggregate functions (min, max,
avg, sum and count). For instance, we can inspect the cardinality of class extents (or of bags)

using the count function:
Q7.1

count(Painting)

Note that the parameter of aggregate functions may be any query returning a collection of

a proper type, as in the following query: 7.2: Find the maximum number of direct subclasses
max (SELECT count (subclassof”(C)) FROM Class{C} WHERE C != Resource)

19

8 Namespace Queries

For cases when several different schemas are used at the same time, RQL provides the op-
eration namespace, returning the namespace prefix of its operand, as well as an extra USING
NAMESPACE clause, allowing the definition of namespace prefix variables, which can then be
used inside queries in order to disambiguate cases when the same, e.g., class name appears in
several schemas. The following queries depict this kind of functionality:

Q8.1: Find all namespaces where class Artist has been defined
SELECT namespace (C)

FROM Class{C}
WHERE C like "Artist"

Q8.2: Find the description of resources, excluding desciptions related to classes and properties

of namespace nsl

SELECT X, (SELECT $C, (SELECT @P, Y
FROM {W ; $C} eP {Y}
WHERE namespace($C) !'= nsl and namespace(@P) != nsl)
FROM $C {X})
FROM Resource {X}
USING NAMESPACE nsl=&http://139.91.183.30:9090/RDF/VRP/Examples/demo/admin.rdf#

9 Nested Queries

As we mentioned in the beginning of this tutorial, RQL - being a functional language - allows
arbitrary composition of simple queries and iterators, in order to form more complex queries.
For example we can nest any RQ)L functions:
Q9.1: Find the subclasses of the range of the property creates
subclass(range(creates))

Moreover, RQ L allows the introduction of nested queries in any of the select-from-where
clauses. The following examples depict this functionality:
Q9.2: Find the description of the resource with URI ”http://www.museum.es” (i.e., group

properties by the class under which the resource is classified) — nesting in the SELECT clause

SELECT $C, (SELECT @P, Y
FROM {Z ; $D} @P {Y}
WHERE Z = X and $D = $C)
FROM $C {X}
WHERE X = &http://www.museum.es

20

clamg | irbesger
Sculptar dq

clams || integer
Painter |

cliass | integer
Flermi= b d
clams || integer
Cubiat L

Figure 10: The result of query Q9.5

Q9.3: Find the subclasses of Artist except subclasses of Sculptor as well as their corre-

sponding direct instances — nesting in the FROM clause

SELECT Y, (SELECT Z FROM Y{Z})
FROM ((SELECT $X FROM Artist{$X}) minus (SELECT $X FROM Sculptor{$x})){Y}

Q9.4: Find the most recently modified resource — nesting in the WHERE clause

SELECT X, Y
FROM {X}last_modified{Y}
WHERE Y max(SELECT Z FROM {W}last_modified{Z})

Finally, the following query involves several nested queries and aggregate functions.

Q9.5: Find the classes with the maximun number of properties

SELECT C, count(SELECT @P FROM {;C}@P)
FROM Class{C}
WHERE C !'= Resource and count (SELECT @P FROM {;C}QP) =
max(SELECT count (SELECT @Q FROM {;D}@Q)
FROM Class{D}

WHERE D != Resource)

The result of this query is depicted in Figure 10.

21

References

[1]

[4]

[5]

S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener. The Lorel Query Language
for Semistructured Data. International Journal on Digital Libraries, 1(1):68-88, April
1997.

R.G.G. Cattell, D. Barry, Berler M, J. Eastman, D. Jordan, C. Russell, O Schadow,
T. Stanienda, and F. Velez. The Object Database Standard ODMG 3.0. Morgan Kaufmann,
January 2000.

V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl. From Structured Documents to
Novel Query Facilities. In Proc. of ACM SIGMOD Conf. on Management of Data, pages
313-324, Minneapolis, Minnesota, May 1994.

V. Christophides, S. Cluet, and G. Moerkotte. Evaluating Queries with Generalized Path
Expressions. In Proc. of ACM SIGMOD, pages 413-422, 1996.

F. van Harmelen, P. Patel-Schneider, and I. Horrocks. Reference description of the
DAML+OIL ontology markup language. http://www.daml.org/2001/03/reference.html,
March 2001.

22

