Enabling Wireless LAN Troubleshooting

Ilias Syrigos, Stratos Keranidis, Thanasis Korakis and Constantine Dovrolis

Outline

- Introduction Motivation
- ► IEEE 802.11 Pathologies
- Detection Methodology
- Framework Evaluation
- Conclusion and Future Work

Introduction - Motivation

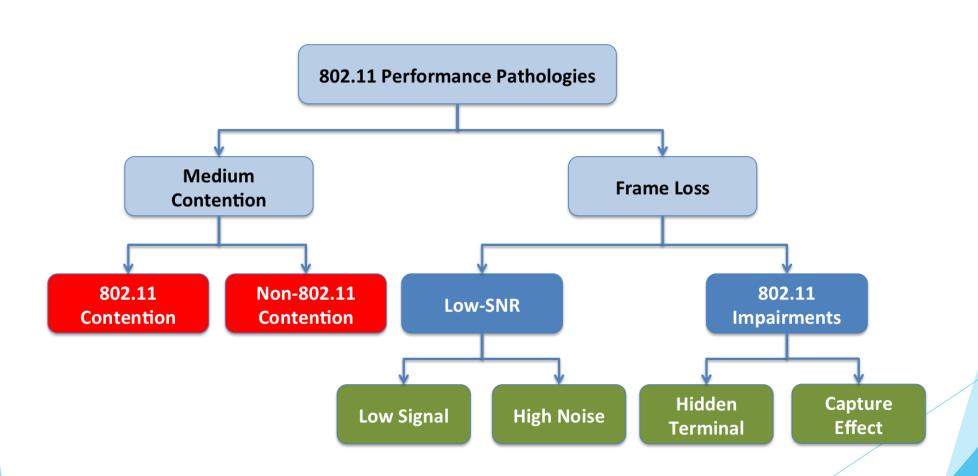
- Poor performance in home WLANs
 - An everyday phenomenon
 - Various causes often "unknown" to home administrators
 - Troubleshooting hard even to the experts

Introduction - Motivation

- Two approaches for diagnosing WLAN pathologies:
 - ► Application layer frameworks running over commercial WLAN devices
 - ► Lack of accuracy Better applicability
 - Driver modifications or even custom hardware for diagnosing in PHY/MAC
 - ▶ Better accuracy Lack of applicability

Introduction - Motivation

- Our proposal : Bridge the gap
 - ► Take advantage of default driver-level information
 - Rate control algorithm statistics exported to user-level for debugging
 - ▶ Define the metrics able to characterize each considered pathology
 - Extensive experimentation in controlled environments
 - Incorporate our findings in a user-level detection framework
 - ► Evaluate its performance by quantifying the detection accuracy


Outline

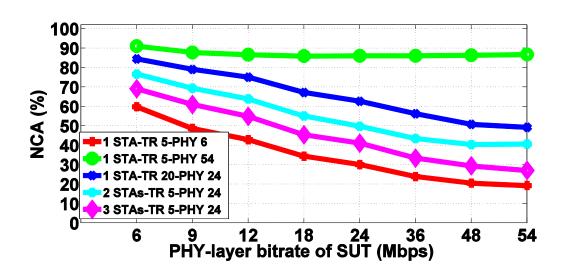
- Introduction Motivation
- ▶ IEEE 802.11 Pathologies
- Detection Methodology
- Framework Evaluation
- Conclusion and Future Work

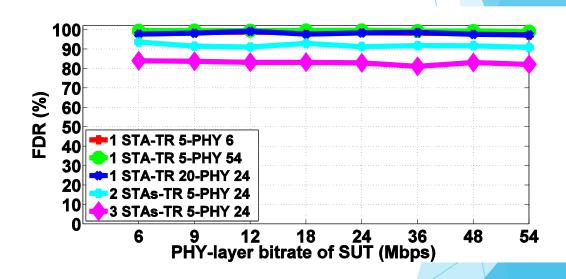
IEEE 802.11 Pathologies

- The pathologies categorization that we followed is based on the way 802.11 protocol functions
 - Carrier Sense (Backoff)
 - Retransmissions policy (CW)
- Medium Contention
 - ▶ Multiple 802.11 devices competing for channel access
 - Non 802.11 devices (Microwave ovens, Wireless Cameras, etc.) operating in 2.4 GHz band
- Frame Loss
 - ► Low-SNR conditions due to Low Signal Power or due to High Noise
 - Symmetric and Asymmetric (Capture Effect) Hidden Terminal

IEEE 802.11 Pathologies

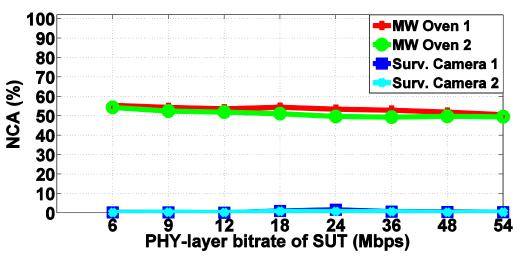
MAC-Layer Statistics

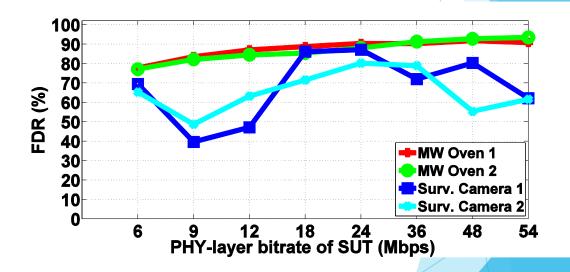

- Our approach is based on two key metrics evaluated across bitrates:
 - ► Normalized Channel Accesses (NCA): CA/MCA
 - ► CA: Channel Accesses per sec
 - ► MCA: Model-Based Channel Accesses per sec
 - Frame Delivery Ratio (FDR): ST/CA
 - ► ST: Successful Transmissions per sec


Outline

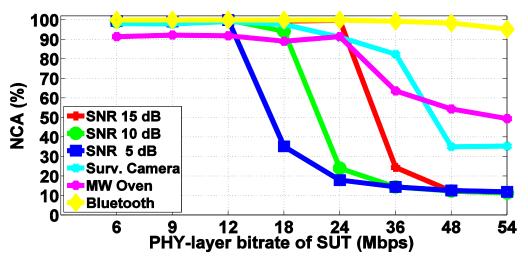
- Introduction Motivation
- ► IEEE 802.11 Pathologies
- Detection Methodology
- Framework Evaluation
- Conclusion and Future Work

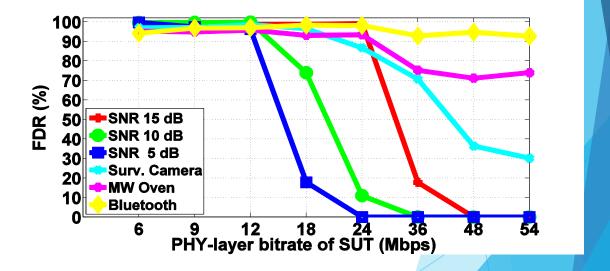
- Initial throughput test for performance estimation
 - Throughput under 80% of max -> Triggers detection mechanism
- Characterize evolution of key metrics across bitrates: NCA and FDR
- Identification of trends across bitrates (Theil-Sen Estimator)
 - Increasing, Decreasing, No Trend and Constant


Contention with 802.11 devices

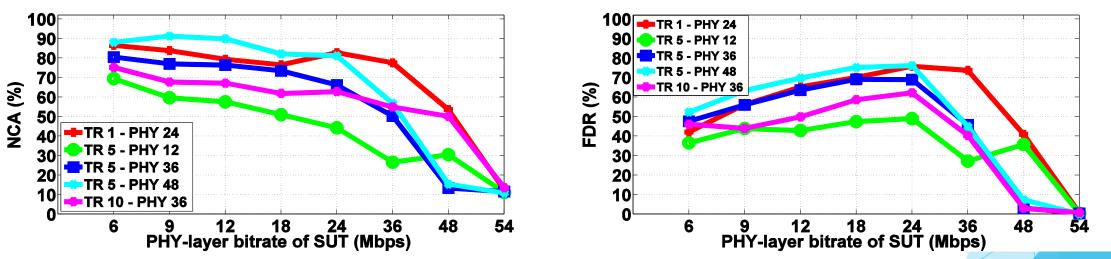


Bitrate diversity leads to decrease in NCAs while FDR remains constant

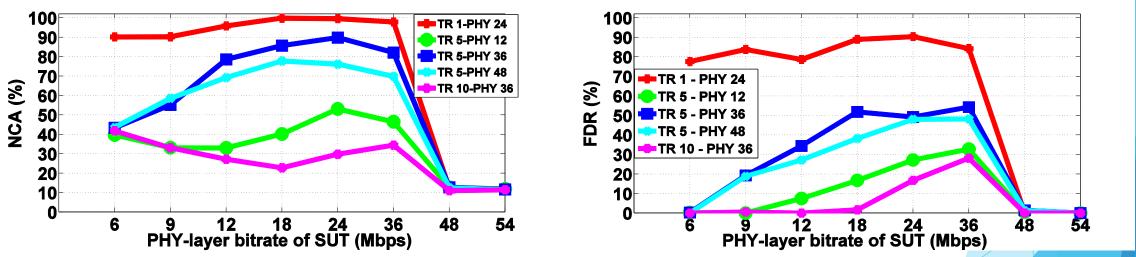

Contention with non-802.11 devices



- Constant performance of NCA metric
- Increasing FDR in case of MW Fluctuation in case of Camera due to almost zero transmission attempts


Low SNR (Low Signal and High Noise)

- Decrease in NCA caused of CW doubling
- Decrease in FDR in complex bitrates

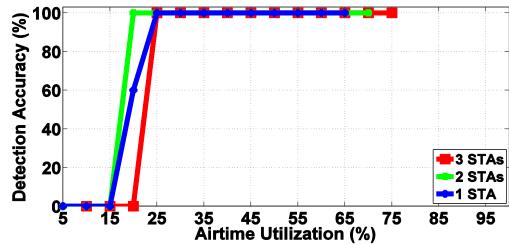


Hidden Terminal

- NCA decreases due to Low SNR coexistence
- ► A small increase due to shorter duration of frames followed by a decrease in FDR (No Trend)

Capture Effect

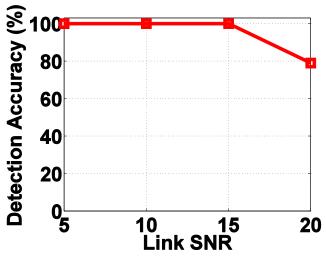
Similar to Hidden Terminal but heavier impact leads to no trend in both NCA and FDR


Summarizing

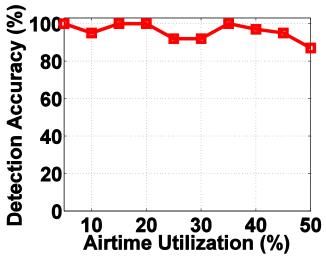
		Frame Delivery Rate (FDR)			
		Constant	No Trend	Increasing	Decreasing
Normalized Channel Accesses (NCA)	Decreasing	802.11 Contention	Hidden Terminal	Non-802.11 Contention DC < 1	Low SNR
	No Trend		Capture Effect		
	Constant		Non-802.11 Contention DC = 1		

Outline

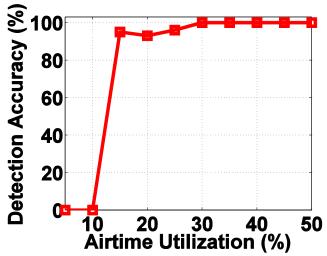
- Introduction Motivation
- ► IEEE 802.11 Pathologies
- Detection Methodology
- Framework Evaluation
- Conclusion and Future Work


- Contention
 - One, two and three contending stations
 - Varying PHY bitrates
 - Varying traffic loads

Detection accuracy of 100% in cases of performance degradation


- Frame Loss
 - Evaluation Link
 - ▶ 20 different locations
 - ▶ 4 different levels of transmission power
 - ► Resulting in 80 different scenarios
 - Interfering Link
 - ► Fixed location
 - Varying PHY rate
 - Varying traffic loads

- Low SNR
 - Evaluation when Interfering Link is off


▶ 100% accuracy until SNR is not considered Low

- Hidden Terminal
 - ▶ 4 locations exposed to Hidden Terminal

▶ Detection Accuracy > 85% for varying Airtime Utilization of Hidden Link

- Capture Effect
 - 9 locations exposed to Capture Effect

Low Airtime Utilization leads to similar impact as of Hidden Terminal Failure in detection

Outline

- Introduction Motivation
- ► IEEE 802.11 Pathologies
- Detection Methodology
- ► Framework Evaluation
- Conclusion and Future Work

Conclusion and Future Work

- Based on MAC-layer statistics exposed to user-level
- Defined the key metrics able to characterize common 802.11 pathologies
- Developed our application-level framework for identifying trends of metrics in presence of a pathology
- Achieved high accuracy of detection

Conclusion and Future Work

- Extension of our framework for detection in presence of multiple pathologies
- ► Large-scale evaluation in real-world environments
- Passive detection for reducing overhead

Thank you!