

User’s Guide

Release 5

Copyright
© 1997-2000 by Engineering Animation, Inc. All rights reserved.

The information contained in this document is subject to change without notice. Engineering Animation, Inc. MAKES

NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL. Engineering Animation, Inc. shall not be

liable for errors contained herein or for any incidental or consequential damages in connection with the use of this

material. The information contained herein is the exclusive property of Engineering Animation, Inc. and/or its licensors

and should not be distributed, reproduced, or disclosed in whole or in part without the prior written consent of

Engineering Animation, Inc.

The document is for informational and instructional purposes. Engineering Animation, Inc. reserves the right to make

changes in specifications and other information contained in this publication without prior notice, and the reader

should, in all cases, consult Engineering Animation, Inc. to determine whether any changes have been made.

The terms and conditions governing the sale and licensing of Engineering Animation, Inc. products are set forth in the

written contracts between Engineering Animation, Inc. No representation or other affirmation of fact contained in this

publication shall be deemed to be a warranty or give rise to any liability of Engineering Animation, Inc. whatsoever.

Restricted rights legend: Use, duplication, or disclosure by the Government is subject to restrictions as set forth in

subdivision (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013.

Trademarks
World Up, WorldToolKit, SENSE8, World2World and OpenVR are trademarks or registered trademarks of Engineering

Animation Inc.

BasicScript is a registered trademark of Summit Software Company.

All other trademarks are the property of their respective owners.

Engineering Animation, Inc.

100 Shoreline, Suite 282

Mill Valley, CA 94941-3645

(415) 339-3200

(415) 339-3201 (fax)

iii
Contents

Preface . ix

About this Manual . ix

Related Documentation . xi

Style Conventions . xi

Chapter 1 Installing WorldUp . 1

System Requirements . 1

Installation Instructions . 2

Contents of the WorldUp Installation . 3

Getting Started . 5

Chapter 2 Introduction . 7

WorldUp Features . 8

What’s New in Release 5 . 9

Technical Support . 10

Chapter 3 Overview of WorldUp . 11

Understanding Real-Time Simulations . 13

The Building Blocks . 14

The Scene Graph . 16

How the Pieces All Fit Together . 19

Starting and Stopping the Simulation . 20

iv
Reviewing the Simulation Performance . 21

Chapter 4 Organizing Your Scene . 23

The Scene Graph . 23

Organizational Nodes . 25

Working with Scene Graphs . 29

How the Scene Graph is Traversed . 33

Chapter 5 Working with a Project . 35

What is a WorldUp Project? . 35

Creating, Loading, and Saving Projects . 36

Importing An Existing WorldUp Project . 37

Configuring Directory Paths . 39

Global Simulation Settings . 41

Rendering Options . 41

The Universe Object . 42

Chapter 6 A Quick Tour . 45

Tutorial 1: Creating a Model . 46

Tutorial 2: Importing a Model . 54

Tutorial 3: Using Behaviors . 58

Tutorial 4: Paths – Your Doorway to Animations . 67

Chapter 7 Using the Workviews . 73

What are Workviews? . 73

The Project Workview . 73

Scene Workview . 74

Model Workview . 75

Behavior Workview . 76

Type Workview . 77

v

Chapter 8 Development Window – Navigation and Manipulation 79

The Development Window . 79

Moving Around the Simulation . 80

Manipulating Objects . 82

Setting Multiple Viewports . 84

Chapter 9 Objects and Properties . 87

Objects . 87

Properties . 89

Chapter 10 Windows, Viewports, and Viewpoints . 95

Windows and Viewpoints . 95

Clipping Planes . 96

Viewports . 97

Stereo Viewing . 100

Chapter 11 Adding 3D Objects . 103

Geometries . 103

Importing Models from Third Parties . 105

Using the Model Workview . 106

Chapter 12 Editing 3D Objects . 109

Translating and Rotating Movables . 110

Scaling Geometries . 114

Adjusting a Geometry’s Pivot Point . 116

Using Materials to Change Object’s Appearance . 117

Textures . 120

Chapter 13 Lights . 121

Working with Lights . 122

vi
Different Types of Light . 122

Lights and Sensors . 123

Performance Impact of Lights . 123

Chapter 14 The Behavior System . 125

The Behavior Object . 128

Creating and Using Behaviors . 130

Behavior Authoring . 132

Importing and Exporting Script-Based Behaviors . 135

Chapter 15 Paths . 137

Creating New Paths . 138

Using Existing Paths . 139

Moving Viewpoints and 3D Objects Along Paths . 140

Editing Path Elements . 142

Saving Paths . 143

Deleting Paths . 144

Paths and Sensors Use Motion Links . 144

Sensors . 144

Motion Links . 144

Chapter 16 Sounds . 149

Creating a Sound Object . 149

Changing Sounds . 150

Finding Sounds for your Application . 150

Changing Sound Properties . 150

Using Scripts to Play a Sound . 150

Setting the Audio Listener Viewpoint . 151

Troubleshooting Sounds . 151

vii
Chapter 17 Using Input Devices . 153

Working With the State of a Sensor . 168

Chapter 18 Multi-User Simulations . 173

Network Connections . 174

Shared Properties . 179

Sharegroups . 184

Status Messages . 189

Chapter 19 Tips and Tricks . 191

Performance . 191

Rendering . 193

Sounds . 194

Fonts . 195

Miscellaneous . 196

Model Tricks . 197

Chapter 20 Publishing Your Application . 199

Packaging the Project for Distribution . 200

Choosing a Player . 201

Embedding Your Simulation . 202

Distributing Your Simulation over the Internet . 204

Appendix A Environment Variables . 207

Appendix B WorldUp Players and Plug-Ins . 209

Available Players and Plug-Ins . 209

WorldUp Player Installation . 210

Viewing a Simulation Using a WorldUp Player . 210

Important Notes For Direct 3D Users . 211

viii
Appendix C WorldUp User’s Group . 213

Participating in SIG-WTK . 213

Communicating with SIG-WTK . 214

WTK/WUP Electronic Archive Policy . 214

SIG-WTK: Web Site . 214

Appendix D WorldUp Shortcuts . 217

Appendix E Pre-Built Behavior Library . 221

Plug-in Triggers . 222

Plug-in Actions . 225

Appendix F WorldUp File Formats . 229

Autodesk 3D Studio Mesh . 229

MultiGen OpenFlight . 230

Virtual Reality Modeling Language (VRML) . 231

CAD Loader (DirectModel or JT) . 232

WorldToolKit Neutral File Format (NFF) and Binary NFF 233

Wavefront OBJ . 233

Pro/Engineer RENDER SLP . 233

Autodesk DXF . 233

Appendix G Glossary . 235

ix
Preface

This User’s Guide is intended to teach you how to

use WorldUp to create 3D/VR simulations.

Note All reference material, such as function and

object property definitions, is documented in the on-

line help.

About this Manual
The following is a brief description of each chapter

in this guide:

Chapter 1, Installing WorldUp, describes system

requirements, installation, and software license

configuration for starting and running WorldUp on

the Window NT/2000 and Windows 95/98

platforms. Refer to your platform specific

Installation Guide for installation instructions for

other platforms.

Chapter 2, Introduction, provides an overview of the

WorldUp product, new features and enhancements

in Version 5.0, how to get started in WorldUp, and

important contact information.

Chapter 3, Overview of WorldUp, introduces you to

WorldUp and some of the fundamental concepts that

you need to understand before building a WorldUp

simulation.

Chapter 4, Organizing Your Scene, provides an

overview of the Scene Graph and how your entire

3D scene is organized.

Chapter 5, Working with a Project, describes how to

create a new project (or simulation), open an

existing project, and save your project. Also

presents information on Directory paths.

x About this Manual Preface
Chapter 6, A Quick Tour, walks you through four

tutorials that acquaint you with the main

components of WorldUp and the process of creating

a WorldUp simulation. These tutorials are designed

to quickly get you started with your own

simulations.

Chapter 7, Using the Workviews, provides a

description of each Workview–Scene, Model,

Behavior, and Type–and the Project Workview as a

whole. Workviews, new with R5, provide a more

efficient workflow by simplifying the User Interface

using tabs for the task on which you are focused.

Chapter 8, Development Window – Navigation and
Manipulation, describes the various navigation and

manipulation tools available on the Development

Window toolbar and methods for viewing your

graphical objects and moving around your scene in

the Development Window.

Chapter 9, Objects and Properties, defines objects

and properties, and describes how to create, delete,

duplicate, and find objects.

Chapter 10, Windows, Viewports, and Viewpoints,

describes the difference between windows,

viewpoints, and viewports. Also describes stereo

viewing, multi-channel systems, and interleaved

display devices.

Chapter 11, Adding 3D Objects, describes how to

work with primitive objects and import objects from

the Model Workview.

Chapter 12, Editing 3D Objects, describes how to

change the appearance of the objects in your scene.

Chapter 13, Lights, describes the effect of lights and

materials on a scene.

Chapter 14, The Behavior System, describes the

system where all the behavior creation and

scheduling is done. It describes how to create a new

behavior, schedule the behavior, add inputs to the

behavior, edit the behavior's properties, and finally

to export the behavior for reuse.

Chapter 15, Paths, describes the series of position

and orientation records that you can use to guide

Viewpoint or Movable objects. Also describes how

to dynamically create, record, edit, save, load, and

play back paths in a variety of ways.

Chapter 16, Sounds, describes how WorldUp can

play sounds from .WAV files. Scripts control when

and for how long a sounds plays.

Chapter 17, Using Input Devices, describes how to

interface your simulations with each input device

supported by WorldUp, such as the Spacetec

Spaceball.

Chapter 18, Multi-User Simulations, describes how

to use WorldUp to create multi-user simulations that

can be run with Sense8’s World2World server

product. If you have not purchased World2World,

you will not be able to take advantage of the features

described in this chapter.

Chapter 19, Tips and Tricks, provides tips on how to

optimize your simulations.

Chapter 20, Publishing Your Application, provides

instructions for packaging and distributing your

application within a number of industry standard

environments. You can choose from the Web,

ActiveX, Visual Basic, MacroMedia Director,

Matlab, MS Office, and Visual C++.

Appendix , Environment Variables, describes

environment variables that you can add to your

system to configure your computer for maximum

performance.

Appendix , WorldUp Players and Plug-Ins,

describes the available WorldUp players and plug-

ins and describes how to install, distribute, and run

them.

xiPreface Related Documentation
Appendix , WorldUp User’s Group, describes the

WorldUp User’s Group (SIG-WTK) and how you

can join.

Appendix , WorldUp Shortcuts, lists various

shortcuts that you can use as you develop

simulations in WorldUp.

Appendix , Pre-Built Behavior Library, lists the

various pre-built behaviors WorldUp provides so

you can drag and drop them onto objects, rather than

write scripts to create them.

Appendix , WorldUp File Formats, describes which

formats for 3D models WorldUp supports for

importing graphical objects into your simulation.

Appendix , Glossary, defines many of the common

terms used throughout the User’s Guide and on-line

help, and within the WorldUp development

environment.

A detailed index follows the glossary.

Related Documentation
The following publications provide additional

information about the WorldUp product:

WorldUp Programmer’s Guide – This Guide, also

provided with WorldUp R5, provides C and C++

programmers with more detailed information of

WorldUp.

WorldUp Plug-In Author’s Guide – The Plug-in Kit,

provided if you purchase the Plug-In Kit option

from Sense8, allows you to quickly create custom

simulation objects that directly interface with the

WorldUp Object System using a high-level set of

object management routines.

WorldUp BasicScript Reference Manual – This

manual is your on-line help, and is also found in pdf

format on your WorldUp R5 CD. An optional

hardcopy is available from EAI/Sense8.

Style Conventions
This manual uses the following conventions:

• Courier New font – represents text that

you are instructed to type as part of an example

or tutorial, or represents script code.

• SMALL CAPS – represents a key on your

keyboard, such as SHIFT or ENTER.

• Italics – represent emphasized words, chapter

titles in cross-references, or the first use of a new

term.

• “Quotation marks” – represent chapter section

names in cross-references.

xii Style Conventions Preface

1

1
Installing WorldUp

This chapter describes how to install and run

WorldUp on the Microsoft Windows platform. If

you are installing on another platform, refer to your

platform specific Installation Guide for installation

instructions.

System Requirements
WorldUp requires the following minimum

configuration (recommendations are also given):

• A PC with a Pentium microprocessor or its

equivalent

• At least 16 MB of RAM (24 to 32 MB is

recommended for Windows NT)

• A hard drive with 200 MB of free space (typical

install)

• A monitor capable of 1024x768 graphics

resolution and 16-bit color (recommended)

• A mouse

• A CD-ROM drive (to install WorldUp)

• Windows 98, Windows NT 4.0, or Windows

2000

An OpenGL Graphics accelerator card is strongly

recommended to speed performance.

2 Installation Instructions Chapter 1 Installing WorldUp
You should have at least as much free system RAM

as you have dedicated texture memory on your

graphics accelerator card. Since OpenGL maintains

a copy of all texture maps loaded by your

application in virtual memory, you should maximize

your virtual memory allocation in Windows so that

it can be used to swap texture memory instead of

using the hard drive. Swapping to the hard drive will

slow your application’s performance; so the more

RAM you have, the better.

Optional Hardware
You can use WorldUp with just a mouse as an input

device or you may want to consider one or more of

the devices described below. WorldUp supports a

wide range of 2D, 3D, and 6D input sensors, both

desktop sensors and sensors worn on the body for

sensing position and orientation. In addition to these

sensors, WorldUp also supports a standard

Windows compatible sound card or system.

WorldUp supports the following types of devices

and sensors:

• Mouse (any 2 or 3 button mouse)

• Ascension Mouse

• Ascension Bird and Flock of Birds

• Fifth Dimension Technologies’ 5DT Glove

• Gameport Joystick

• General Reality CyberTrak (formerly known as

Precision Navigation WayFinder)

• Intersense Trackers

• Logitech 3D Mouse

• Logitech Head Tracker

• Logitech Space Control Mouse (Magellan)

• Polhemus ISOTRAK, ISOTRAK II,

InsideTRAK, and FASTRAK

• Spacetec IMC Spaceball 2003 and Spaceball

Model 3003 (NT 3.51, using only the pick

button)

• StereoGraphics CrystalEyes and CrystalEyes VR

LCD shutter glasses

• Thrustmaster Flight Control/Weapons Control

Systems and Formula T2 steering console

• VictorMaxx Technologies’ CyberMaxx2 HMD

• Virtual i-O i-glasses!

Optional Software
In addition to sensors, you may want to have the

following tools handy:

• A 3D modeling tool that generates Autocad

DXF, 3D Studio 3DS,Wavefront OBJ, or Virtual

Reality Modeling Language (VRML) format

files.

• A paint or image processing program capable of

generating 24 or 32-bit TARGA format images.

• Sound-capture and processing software or

hardware.

Installation Instructions
Follow these steps to install WorldUp on your hard

drive:

1 Exit any other applications before starting the

installation process.

2 Insert the CD into your CD ROM drive.

The WorldUp installation process should start

automatically. If not, run setup.exe.

3 When the Setup program starts, click Next at the

Welcome Screen.

3Chapter 1 Installing WorldUp Contents of the WorldUp Installation
4 At the Software License Agreement Screen, read

the Software License Agreement and click Yes to

accept the terms of the agreement and continue

with the installation. Choose No to discontinue

the installation.

5 At the Choose Destination Location screen,

choose the directory into which you want to

install WorldUp. Click Yes to accept the default

directory or choose Browse to select a different

directory.

The Setup program will now install the WorldUp

directories and files onto your hard drive and

then display the Select Groups screen.

6 The Select Groups screen allows you to select a

program group that will contain the WorldUp

program items. Click Next to accept the default

or type in a new program group name to store the

program items.

7 At the Finish Installation screen, you can choose

to display the README.TXT file now by selecting

the check box or you can read it later. Click

Finish.

The WorldUp installation is complete. Before

running WorldUp for the first time, you will need to

obtain a WorldUp software license code from

SENSE8 by following the directions shown below.

Contents of the WorldUp
Installation
Once you have installed WorldUp, you will find that

the menu items in the following table have been

added to the program group in which you installed

WorldUp.

Program Group Item Description

WorldUp The WorldUp application.

WorldUp OpenGL
Stand-Alone Player

The WorldUp Stand-Alone Player, OpenGL version, is used to view simulations built
using WorldUp.

WorldUp D3D
Stand-Alone Player

The WorldUp Stand-Alone Player, Direct3D version, is used to view simulations built
using WorldUp. You must install DirectX before you can run the Direct3D version of the
player. See Appendix B, WorldUp Players and Plug-Ins for DirectX installation
information.

WorldUp User’s Guide An online version of the WorldUp Users’ Guide in Portable Document Format (PDF).
PDF files can be viewed using the Adobe Acrobat reader.

WorldUp Online Help The WorldUp Online Help.

WorldUp License
Manager

The WorldUp License Manager is used to display your system-specific ID so that you
can obtain a WorldUp software license code that allows you to run WorldUp.

4 Contents of the WorldUp Installation Chapter 1 Installing WorldUp
In addition to the program group items, the

WorldUp installation adds a number of other files

and directories to the WorldUp install directory. The

items of special importance are listed in the table

below.

File/Directory Description

readme.txt Contains last minute changes and known issues concerning your WorldUp software.

\Behaviors This directory contains the script version of some of the plug-in behaviors for specific use with the
script importer and Behavior Wizard.

\Docs PDF versions of the User’s Guide, Programmer’s Guide, and BasicScript Reference Manual.

\Drivers This directory contains device drivers that are either provided by third parties or are simply external
to WorldUp.

\Images This directory contains an assortment of texture image files.

\Models This directory contains an assortment of geometric model files.

\Plugins This directory contains the standard plug-ins that ship with WorldUp:
WUPActionSet1.dll Set of behavior actions plug-in.
WUPTriggerSet1.dll Set of behavior triggers plug-in.
WUPInterx.dll Intersense driver plug-in.
WUPInterx.txt Readme for Intersense driver plug-in.

\Samples This directory contains subdirectories of various sample simulations which illustrate WorldUp’s
capabilities. A description of each Samples subdirectory follows:

Samples\Basketball
Shows an interactive Basketball game demo.

Samples\Bond
Illustrates the use of path for motion control.

Samples\Clock
Displays clock time in a 3D environment.

Samples\Dragging
Illustrates dragging in the view plane, and the use of the navigation bar.

Samples\Gears
Illustrates collision detection, gear ratios, dragging, and the use of a navigation bar.

Samples\Grassfire
Complex demo illustrating flight dynamics using a flight dynamics plug-in module

Samples\MarsLander
Illustrates the Behavior System and the use of viewports.

5Chapter 1 Installing WorldUp Getting Started
Getting Started
To get started using WorldUp, you first need to

obtain your Software License Code.

Obtaining Your WorldUp Software
License Code
Before running WorldUp for the first time, you need

to obtain a unique system-specifc WorldUp

Software License Code.

Note If you have obtained a floating or site license,

follow the instructions in the documentation

provided with those types of licenses instead of the

directions shown below.

To obtain your system-specific license code

1 Start the WorldUp License Manager program

(license.exe) by clicking its icon in your

WorldUp program folder.

\Samples
continued

Samples\MarsLander
Illustrates the Behavior System and the use of viewports.

Samples\MathEngine
Shows an interface to a WorldUp simulation with a third party library using external DLL calls from
script to achieve real-time physics.

Samples\Network
Three versions of a multi-user driving simulator that illustrate the networking features from basic
networking to dead-reckoning and chat modes. Requires World2World.

Samples\SQL\Stocks
Illustrates simple database connectivity by accessing a database and translating values into 3D
objects

Samples\SQL\ObjectView
Illustrates more advanced database connectivity by reading a list of objects from a database and
constructing a scene from those objects.

Samples\Van_Go
A simple driving simulator implemented with scripting.

\Tutorials This directory contains the project files and the required contents for the Quick Tour chapter of the
User’s Guide.

\Players This directory on the WorldUp CD will not be copied onto your system’s hard drive during WorldUp
installation. It contains a self-extracting file for each of the World Up Players (including the ActiveX
Control). These self-extracting executables can be redistributed to other users so they can view
WorldUp simulations.

\FloatingLicense
Server

This directory on the WorldUp CD will not be copied onto your system’s hard drive during WorldUp
installation. This directory contains the setup file for the EAI/SENSE8 Products Floating License
Server For Windows NT. You should only install this program if you have specifically purchased a
floating license agreement.

File/Directory Description

6 Getting Started Chapter 1 Installing WorldUp
The WorldUp R5 License Manager dialog box

appears. The system-specific Host ID and the

default License Path fields are automatically

filled in.

2 Write down your system-specific Host ID:

3 Choose one of these methods (listed in order of

quickest response time) to reach SENSE8:

• World Wide Web – Point your browser to http:/

/www.sense8.com/licensing/index.html and

select WorldUp Code Request. Fill in.the form

with your name, company name, the WorldUp

Product serial number found on your CD case,

the system-specific Host ID (from step 2) and

your email address, and submit the

information. Your WorldUp License Code

will be emailed to you.

• FAX – Send a FAX to SENSE8 at (415) 339-

3201. Use “Attention: WorldUp License

Codes” as the subject of your FAX and

include your name, company name, the

WorldUp CD’s jewel case serial number, and

the system-specific Host ID (from step 2).

Your system-specific license code(s) will be e-

mailed or faxed to you

4 When you have received the system-specific

WorldUp Software License Code from SENSE8,

start the SENSE8 License Manager again and

type it into the Code field of the WorldUp R5

License Manager dialog box and write it down

here.

System-Specific License Code:

If you have any trouble obtaining your license

code, please send email to Technical Support at

support@sense8.com.

5 Click OK.

Once you’ve entered the system-specific license

code into the SENSE8 Product License Information

window and clicked OK, the system-specific license

code will be saved in a WTKCODES file under a

designated path (the default path is the directory in

which WorldUp was installed), and the path to that

file will be placed into your system’s registry so

WorldUp can find it. You can now run WorldUp by

selecting it from your program folder. You do not

need to re-enter the system-specific license code

every time you start WorldUp, however you will

need it if you reinstall WorldUp. For that reason,

write down the system-specific license code in the

space provided above.

Starting WorldUp

To start WorldUp

1 Click the Start button.

2 Select Programs > WorldUp R5 > WorldUp.

7

2
Introduction

WorldUp is the next generation 3D content

authoring tool for real-time graphical simulations.

WorldUp helps you efficiently create or import 3D

scenes, make them interactive with easy-to-use drag

and drop assembly, and integrate them with the

industry standard tools you already use. WorldUp

combines several technologies into a tightly

integrated, object-oriented environment.

With WorldUp, you create visual simulations in

which graphical objects have real world properties

and behaviors. You can modify these properties and

behaviors while the simulation is running and see

immediate results.

WorldUp provides an easy-to-use graphical user

interface from which you create objects and

properties, and design your simulations. You may

also import 3D models from industry standard

modelers. To add behaviors to your objects, you can

author customer behaviors or change a property of

an existing behavior by writing scripts using the

BasicScript language, or use property change events

to trigger behaviors. And now, in WorldUp

Release 5 (R5), you can drag and drop pre-built

behaviors onto objects.

8 WorldUp Features Chapter 2 Introduction
To navigate within a WorldUp simulation and

control its objects, you use input devices, such as a

mouse or Spaceball. You can view the simulation on

your computer monitor or in a stereo display device,

such as a head-mounted display.

When your simulation is complete, you can

distribute it to your end-users using a variety of

freely-distributable WorldUp players.

With WorldUp, you can develop a prototype in a

fraction of the time it takes to develop one using

traditional development libraries. Simulations that

once took weeks to build can now be built in hours.

What is 3D Content?
WorldUp is a 3D content authoring tool. In a real-

time 3D content application, the content can be

thought of as the sum of these parts:

• objects

• organization and relationship

• behavior

• systems management

• human interface controls

For example, if you use WorldUp to create a driving

simulator, this is how each part of the simulation

would fall into the categories shown above:

• The objects are the car, the wheels, multiple

sections of road, the sound of the car horn, the

viewpoint, and the window containing the

viewpoint.

• The organization and relationship is how the

wheels are attached to the car body.

• The behavior is how the car rolls over the road

and how the wheels rotate when the car moves.

• Systems management refers to which section of

road the simulation draws and when it is drawn.

• Human interface controls include which mouse

button to use for acceleration and how to steer

left or right.

Together, all the parts create the 3D content of the

simulation. In WorldUp, all of the components of a

simulation are stored together in a project file that

contains the content and also references your model,

image, script, and sound files. This project file is the

.UP file you create, load, or run with WorldUp.

WorldUp Features
The WorldUp development environment contains

many features that are valuable when creating

virtual worlds, including:

• A graphical, interactive development

environment.

• Built-in object types.

• An object-oriented application framework.

• Object hierarchy with dynamic property

inheritance.

• The ability to modify and add object properties

and behaviors during a simulation.

• Support for a wide variety of input/output

devices, including devices supported in

WorldToolKit Release 9.

• Support for a variety of file formats.

• An interpreted scripting language (BasicScript)

syntactically equivalent to Visual Basic.

• A script debugger to help resolve errors in your

scripts.

• Run-time binding of C routines from scripts.

• The Scene Graph pane to visualize complex

databases.

• Data visualization through BasicScript SQL

functions.

9Chapter 2 Introduction What’s New in Release 5
• Full integration with SENSE8’s World2World

server product, allowing you to easily create

multi-user simulations (if you have purchased

World2World).

• Players for distributing your application.

• Cross-platform portability (without

recompiling).

• Online Help.

What’s New in Release 5
WorldUp Release 5:

• Makes it easy to create richer 3D interactive
simulations and to integrate them into your
environment.

• Offers higher power, reusability, and extensibility
to developers familiar with C and C++.

• Provides learning paths to facilitate the shift from
novice to expert developer.

Easier to create and integrate richer 3D interactive
simulations into your environment.

• New drag and drop 3D simulation assembly for

simulation building without scripting (using pre-

built objects, behaviors, triggers, and materials).

• More efficient workflow with new Workviews

which simplify the user interface using tabs to

present the task on which you are focused.

• Better placing and viewing of objects by using

the new viewports which provide multiple views

of a scene.

• Revamped navigation system–includes

shadowing, grid placement, and drop lines to

facilitate scene assembly and offer rich feedback

during the development process.

• High-performance 3D includes reflection

mapping, anti-aliasing, true transparency, and

support for multiple OpenGL rendering

viewports.

• Integrated, multi-user, collaborative networking

support with World2World.

• Extensive 3D file format and I/O device support

including a new VRML2 read/write and new

Multigen OpenFlight reader and new CAD

import-capable Direct Model (.jt) file reader

• New, more thorough documentation which now

includes a User's Guide and a Programmer's

Guide.

Higher power, reusability, and extensibility to
developers familiar with C and C++.

• Seamless web-enabled delivery and ActiveX

integration by offering official support for

simulation-building containers, such as

Mathworks MATLAB/Simulink, Microsoft's

Visual C++ 6, Macromedia's Director, Visual

Basic 6, Netscape, Internet Explorer, Excel,

Access, and MS Office.

• Offers an Optional Powerful Plug-in Kit for

integrating 3rd party APIs, legacy C code, or

extending pre-built behaviors and objects, device

support, special effects and OpenGL code.

• Reusable plug-ins for rapid simulation assembly.

Learning paths facilitate the shift from novice to
expert developer.

• A new Behavior Wizard for rapid and easier

script creation. The Behavior Wizard generates

boiler-plate code required to create behaviors

and triggers, and places the code into the

appropriate place in the simulation system.

• Sample scripts and plug-ins are also included to

facilitate learning.

10 Technical Support Chapter 2 Introduction
Technical Support
If you have a question about WorldUp, first look for

the solution in this manual or in the online Help.

To start the online help in WorldUp

" Select WorldUp Contents from the Help menu.

If you cannot find the answer in the documentation

or online Help, you can generally save yourself time

and effort by reading the WorldUp support page on

the SENSE8 web site. It contains answers to

Frequently Asked Questions (FAQs) about

WorldUp and may also contain links to download

the latest WorldUp patches. The web site also

contains a knowledge repository.

If you cannot find the answer to your question on the

SENSE8 web site, post your question on sig-
wtk@sense8.com, where the user-base is very

helpful and efficient in answering your questions.

If you cannot get the answer to your questions in any

of these areas, please contact SENSE8 Technical

Support using one of the following methods:

Technical Support on the Web

www.sense8.com/support/index.html

Technical Support by Email

support@sense8.com

Technical Support by Fax

(415) 339-3201

Technical Support by Telephone

(415) 339-3392

WorldUp License Request Web Site

www.sense8.com/support/index.html

WorldUp License Request by Fax

(415) 339-3201

11
3
Overview of
WorldUp

This chapter introduces you to the WorldUp

development environment and to some of the

fundamental concepts that you need to understand

before building a WorldUp simulation.

The WorldUp Window
When you first start WorldUp, the WorldUp

window opens with a new, blank project.

12 Chapter 3 Overview of WorldUp
The WorldUp Window

Menu Bar
The WorldUp menu bar contains all of the

commands available to WorldUp. Many of these

commands can also be accessed from the toolbars or

by right-clicking when an item is selected.

Toolbar
The main toolbar provides quick access to a number

of the WorldUp commands. The Development

window and Workviews also contain task-specific

toolbars.

Project Workview
The Project Workview is the main interface to the

simulation you are building. The tasks you perform

in the Project Workview are divided into four tabbed

Workviews: Scene, Behavior, Type, and Models.

You access these Workviews by selecting the

desired tab. Each of the Workviews is described in

detail in Chapter 7, Using the Workviews.

Status Window
The Status window is used by WorldUp to display

informational status or error messages.

The Development Window
The Development window is where your scene is

rendered. For more information about this window,

see Chapter 8, Development Window – Navigation
and Manipulation.

Menu Bar
Toolbar

Development
Window

Status
Window

Project
Workview

13Chapter 3 Overview of WorldUp Understanding Real-Time Simulations
Understanding Real-Time
Simulations
Every aspect of the simulation takes place within a

universe. A universe is the finite volume of space in

which all graphical objects appear in a simulation.

Any location in space can be described by its x,y,z

coordinates relative to the origin. The origin is the

center of the universe, which is located at x,y,z

coordinates 0,0,0.

In a three-dimensional (3D) coordinate system, the x

coordinate refers to the left-right location, the y

coordinate refers to the up-down location, and the z

coordinate refers to the near-far location. The

following illustration shows an object and the x, y,
and z axes using WorldUp’s orientation.

The following table shows the direction in which an

object moves relative to the coordinate axes,

depending on whether you use positive or negative

values for the coordinates.

The movement of an object from one (x,y,z) location

to another is known as translation. The rotation of

an object is described in three ways:

• Pitch – the rotation of an object about its x axis.

• Yaw – the rotation of an object about its y axis.

• Roll – the rotation of an object about its z axis.

Coordinate Systems
The concept of a coordinate system is fundamental

to real-time 3D graphics and to WorldUp.

A coordinate system (sometimes called reference
frame or context) refers to the x, y, and z coordinate

axes used to describe position and orientation in

space.

The Scene Workview provides a way of assembling

objects hierarchically, so that the location of any

object is relative to the coordinate system of its

parent in the Scene Workview. Let’s say you have

an object called Road and an object called Car. If

you nest Car underneath Road in the Scene

Coordinate Direction

+ x Right

- x Left

+ y Down

- y Up

+ z Forward

- z Back

14 The Building Blocks Chapter 3 Overview of WorldUp
Workview, then the translation property of Car

specifies the position of the car in the reference

frame of (or in relation to) the road.

Reference frames that are commonly referred to in

WorldUp are described below.

World
The World (or Global) reference frame is

independent of the objects in the universe, and is

fixed in space. The World coordinate system

originates at the center of the universe, defined as

x,y,z coordinates 0,0,0.

Local
The Local reference frame is specific to each Node

object (that is, any object that can appear in the

Scene Workview). For a geometry, it is the

reference frame in which the geometry was

modeled. Let’s say you have a geometry

representing an airplane that was modeled with the

z-axis coinciding with the length of the airplane. If

you rotate the airplane about its z-axis in its local

reference frame, for example, by using the Roll

function in a script, it will roll about its length,

regardless of the airplane’s orientation in space.

Parent
The reference frame of an object’s parent in the

Scene Workview.

Viewpoint
The coordinate system defined by the position and

orientation properties of a given Viewpoint object.

This reference frame can be useful, for example,

when positioning geometries (see "Controlling the

Scene Graph Dragging Options" on page 29 for

more information).

The Building Blocks
This section describes the WorldUp building blocks,

the simulations components that you use to build a

real-time simulation. These building blocks include

objects, object types, properties, the scene graph,

and behaviors.

Object Types, Objects, and
Properties
Object types are displayed in a hierarchical structure

in the Type Workview. These types consist of

properties that describe the characteristics of an

object. You use object types as templates for

creating subtypes or objects, which then inherit all

of the properties from their type.

A subtype is any type that is the child of another

type. Since all types are ultimately derived from the

VBase object type, all types except VBase are also

considered subtypes. Thus, the two terms are often

used interchangeably.

WorldUp Object Types

Type Description

Motion Link Links a viewpoint or geometry to a Path
or sensor for motion control.

Node The base type for all objects that
participate in the scene graph (see
Chapter 4).

Path A collection of position and orientation
elements used to animate objects (see
Chapter 15).

Behavior The base type for Triggers and Actions,
which handle events and modify
objects (see Chapter 14).

15Chapter 3 Overview of WorldUp The Building Blocks
The following figure shows the Block object type in

the Type Workview and its corresponding

properties in the Property pane. Any subtype or

object that is created from Block will include all of

Block’s properties.

Block object type and its Property pane

WorldUp comes with several pre-defined types. In

the Type Workview, green spheres represent

pre-defined types, and green spheres with a yellow

plus represent user-defined types.

Properties can only be added to user-defined

subtypes. That is, you cannot add properties to

WorldUp default object types. This preserves the

integrity of the default types as building blocks for

all your simulations. Nor can you add properties

directly to objects. Thus, if you are creating an

object that requires a property that does not already

exist under the WorldUp object types, you need to

create a subtype and add the necessary properties.

Script A text file containing BasicScript
language code which controls a
simulation (see the WorldUp
Programmer’s Manual for more
information).

Sensor The base type for all devices supported
by WorldUp (see Chapter 17).

Sound A sound file that can be attached to
objects to achieve 3D spatialized sound
(see Chapter 16).

Universe The global simulation object that stores
simulation level preferences (see
Chapter 5).

Viewpoint A representation of the user’s
perspective used to calculate how
objects are drawn in the 3D world (see
Chapter 10).

Window The frame in which the simulation is
rendered (see Chapter 10).

W2Wnetwork The base networking component that
establishes and determines a
simulation’s connection with a
World2World server (see Chapter 18).

Type Description

16 The Scene Graph Chapter 3 Overview of WorldUp
Subtypes are also useful if you plan to create a

number of objects that require similar property

values. For example, let’s say you want to create a

variety of Block objects. They may vary in height

and color, but you want them all to have a depth of

3 and a width of 4. You could create a subtype of

Block and set its Depth property to 3 and its Width

property to 4. Whenever you need to create a new

block, create it from this subtype.

Graphical Objects
Objects that you can see in the Development

window are referred to as graphical objects. These

are objects that are created from subtypes of the

Geometry type in the Type Workview (the Block,

Cylinder, Cone, Imported, Sphere, and Text3d types

as shown in the figure below).

Other types of objects may be in your simulation,

such as Lights or Switchers, but they are not visible.

Graphical objects are one of the building blocks of a

simulation. A graphical object is a discrete, movable

object such as a wheel, and is composed of one or

more polygons, each of which contains three or

more vertices. Examples of graphical objects are

balls, vehicles, cylinders, wheels, houses, and

landscapes.

You can interact with graphical objects and they can

interact with each other. You can organize graphical

objects hierarchically, use sensor devices to affect

their motion or state, and write scripts to define their

behavior in the simulation.

For information on Sensors, see Chapter 17, Using
Input Devices.

Graphical objects do not obey any default physical

laws. If you want a graphical object to fall when you

release it, you must assign a task to the object. You

do this by either using an existing script or by

writing your own script and then attaching it to your

object as a task.

For information on scripts, see the WorldUp
Programmer’s Guide.

The Scene Graph
Objects that are created from the Node type or any

of its subtypes are referred to as nodes. The Nodes

pane in the Scene Workview displays all the Node

types in WorldUp and their instances. The figure

below shows all of the WorldUp default subtypes

for the Node type.

17Chapter 3 Overview of WorldUp The Scene Graph
The three categories of nodes are graphical,

attribute, and organizational. The table below

describes each category and the associated object

types.

The spatial organization and relationship of Node

objects to each other is controlled by your scene
graph. A scene graph is a hierarchical arrangement

of nodes, organized beneath a single Root node. In

WorldUp, you view and modify your scene graph

using the Scene Graph pane.

The order in which nodes appear in the Scene Graph

pane determines the order in which nodes are

processed and the order in which graphical nodes

are rendered. For each frame of the simulation,

WorldUp begins processing the nodes in a top-to-

bottom order (as displayed in the Scene Graph

pane).

The scene graph enhances performance of the

rendering stage (drawing the scene) because it

facilitates spatial culling of the scene. In other

words, WorldUp calculates which parts of the scene

(or scene graph) are visible from the current

viewpoint, and quickly rejects non-visible geometry

before drawing begins.

The structure of your scene graph determines the

parent/child relationships of the objects in the scene.

For example, if you nest Node B beneath Node A, B

becomes a child of A. A child always translates

(moves) and rotates with its parent.

Observe the following scene graph:

In this example, Door, Wheel-1, Wheel-2, Wheel-3,

and Wheel-4 are children of Car. If you move Car in

the Development window, its children move with it.

Light-1, positioned directly beneath Root-1,

illuminates all the graphical objects in the scene

since it is processed first. Spotlight-1, positioned

below Car and its children, illuminates Road,

Building-A, and Building-B, but does not illuminate

Car and its children since they have already been

rendered before Spotlight-1 takes effect.

Notice, however, that because Spotlight-1 is not a

child of Car, it does not move with Car. Attribute

nodes only affect nodes that are at the same

hierarchical level beneath it, or are nested within it.

So, if Spotlight-1 was a child of Car, it would not

Node Category Description Object Types

Graphical Objects that you can
see in the
Development
window.

Block
Cylinder
Cone
Imported
RenderNode
Sphere
Text3d

Attribute Objects that affect
the appearance of
graphical objects.

Fog
Light
MaterialNode

Organizational Objects that affect
how WorldUp
traverses the scene
graph.

Group
Switcher
LevelOfDetail

18 The Scene Graph Chapter 3 Overview of WorldUp
illuminate the road or the buildings. To cause

Spotlight-1 to move with Car, you would add

behaviors, as described below.

Behaviors
Behaviors are activities applied to or demonstrated

by any WorldUp object within the simulation. This

activity is defined by the functions of one or more

Trigger and/or Action objects. Triggers and actions

are assembled together to form higher-level

behaviors. For example, a reflex behavior is

witnessed as the result of an event (tapping the knee

with a hammer) and a response (the calf flexing

upwards).

WorldUp ships with a basic library of Triggers and

Actions. In addition to these, you can author your

own behaviors, either in script using the Behavior

Wizard or in C/C++ using the WorldUp Plug-in Kit

(available as a separate module). You can also

download behaviors authored by other users from

the Sense8 Online Repository.

WorldUp also provides an intuitive drag-and-drop

Behavior System for assembling behaviors into

higher-level event networks that allow you to

control your simulation without programming.

For more informaton on behaviors, see Chapter 14,

The Behavior System.

Scripts
In WorldUp, a script is a text file containing code

written in the BasicScript language, which is

syntactically equivalent to Visual Basic. A script

contains one or more routines that define the

behavior to add to an object, such as making an

object rotate 10 degrees along its y-axis each frame

that the simulation is run.

For information on scripts, see the WorldUp
Programmer’s Guide.

The routines that you use to write scripts for your

WorldUp simulations consist of BasicScript

routines and WorldUp routines. All routines are

documented in WorldUp’s online Help. On the Help

menu, select Script Reference for descriptions of

BasicScript routines, or select WorldUp Commands

and Functions for descriptions of routines supplied

by WorldUp.

With the right script, you can animate objects,

assign motion links, detect collisions between

objects, and do much more in your simulations.

The two kinds of scripts are Stand-Alone and Task.

Stand-Alone scripts are not attached to any

particular object and can be run independent of the

simulation. For example, you could write a Stand-

Alone script that resets certain property values for

various objects. Task scripts are written to work

with a particular object in your simulation. Task

scripts run repeatedly each frame of the simulation.

Once you have written the script, you must attach it

to the appropriate object in order for it to work.

Events
A change to a property’s value is known as an event.
You can react to specific property events by

specifying an entry point in a script that is to be run

each time the event occurs, by routing the property’s

new value to other properties each time the event

occurs, or by routing the property change event to

fire a Trigger in the Behavior System using the

Property Change Trigger.

Note If you have purchased Sense8’s World2World

server product, sharing events is what allows

multiple users to see each others changes.

For information on how to work with events, see the

WorldUp Programmer’s Guide.

19Chapter 3 Overview of WorldUp How the Pieces All Fit Together
How the Pieces All Fit Together
Before you can develop and deploy a WorldUp

simulation, the following objects must exist in your

project:

• a Universe object, containing properties that

affect the entire simulation

• an application window, in which your simulation

displays at run-time

• a Development window, in which your

simulation displays during development

• a viewpoint that specifies how the end-user will

view the simulation (all Development windows

are associated with a viewpoint; this viewpoint

can differ for each window)

• a mouse sensor, to manipulate objects in the

simulation or to navigate your viewpoint (a

mouse is required for development; you can add

other sensors to use in addition to the mouse for

both development and run-time)

• a Root object, which acts as the parent of all

objects in the scene graph

The following objects are not required, but you

would rarely begin building a simulation without

them:

• a motion link, which defines the link between the

sensor and the viewpoint

• a Light object, to illuminate your scene

In anticipation of these requirements, WorldUp

provides the following default objects every time

you create a new project.

WorldUp Default Objects

With this foundation, you can then add additional

objects from the types previously described, and

from the remaining WorldUp pre-defined types

described below to form your simulation:

• Node objects, which include the graphical

objects that display in the Development window

and the objects used to manipulate them.

• Paths, to add movement along a recorded path to

specified objects.

• Behaviors, to add custom or pre-built behaviors

to your objects, such as causing a ball to bounce.

• Scripts, to add custom behaviors (which are not

already pre-built) to your objects.

• Sounds, to add sound to your simulation as it

runs.

• W2WConnection and W2WSharedGroup

objects, to create multi-user World2World-

compliant simulations (only applicable if you

have purchased SENSE8’s World2World server

product). See Chapter 18, Multi-User
Simulations for more information.

20 Starting and Stopping the Simulation Chapter 3 Overview of WorldUp
For a complete reference of all WorldUp object

types and their properties, see the online Help.

Running Simulations
When you run your simulation, WorldUp goes

through the entire simulation loop each frame that

the simulation is run. The following illustration

shows what happens (and in what order) during a

single simulation loop.

Single Simulation Loop

Every object has a list of tasks. These tasks will be

executed every frame just before rendering. The

following rules apply:

• The tasks on the Universe object will be executed

first.

• Tasks on Nodes will be executed next (see

"Order of Tasks Within Nodes" below for further

details).

• Tasks on the non-Node, non-Universe objects

(Windows, Viewpoints, etc.) will be executed

last.

Order of Tasks Within Nodes
Within nodes, children’s tasks will always be

executed before their parent’s, and siblings to the

right will be executed before siblings to the left.

In short, the order in which objects appear in the

scene graph is the reverse order in which their tasks

will be executed (execution will occur from the

bottom-up in the scene graph). Thus, the Root’s

tasks will always be the last tasks executed of all the

nodes’ tasks.

Note If a node is disabled (its Enabled property is

set to False), its tasks and the tasks of all of its

children will not run. For children under a Switcher

node, only those children indicated by the Active

Child property will execute. The tasks for all

children of LevelOfDetail nodes will be executed.

Starting and Stopping the
Simulation
When you are ready to run your simulation, you can

run it in the development environment, or you can

run it as an application.

• Running in the development environment –

WorldUp displays the simulation in the window

that you have defined as your Development

window (see "Creating a Window" on page 97),

and allows you to continue to manipulate objects

as the simulation runs.

• Running as an application – WorldUp displays

the simulation in the window(s) that you have

defined as your application windows (see

"Creating a Window" on page 97). This is a true

representation of how the simulation will appear,

Sensors Update

Paths Play/Record

Tasks Execute

Universe Tasks

Node Tasks
(bottom to top, right to left)

All Other Object Tasks

Scene Rendered and Displayed

21Chapter 3 Overview of WorldUp Reviewing the Simulation Performance
and how end-users will be allowed to interact

with the simulation when they run it with the

WorldUp Players.

Note You can adjust the size of your window as

the simulation runs, but be aware that the larger

the window, the slower the simulation will run.

Keep in mind that simulations run significantly

slower from the WorldUp Development window

(even when run as an application) than they do from

the WorldUp Players. Thus, as you develop your

simulations, it is a good idea to periodically run the

simulation from one of the WorldUp Players and

take note of the performance differences. For

information on running applications from a

WorldUp Player, see Appendix B, WorldUp Players
and Plug-Ins.

To run a simulation as an application

1 Click the Run in AppWindow button on the

main toolbar.

If your simulation contains multiple application

windows, they will display in the same location

unless you have modified the Left Edge and Top

Edge properties for the windows.

To see each window, click in the title bar of the

application window that is currently in view and

drag it away to reveal the application window

underneath.

2 To stop the simulation, do one of the following:

• Close the application window(s).

• Click the Stop button.

• On the Simulation menu, select Stop.

To run a simulation in the development environment

1 Click the Run in DevWindow button.

2 To stop the simulation, click the Stop button.

Note Closing a Development window does not stop

the simulation; it deletes the DevWindow object.

To run the simulation one frame at a time

1 Click the Step in DevWindow button.

2 Repeat the Step command to view the simulation

frame-by-frame.

Reviewing the Simulation
Performance
Reviewing how your simulation uses resources can

help you determine how to improve the performance

of your simulation.

WorldUp’s Profiler (as shown below) provides a

variety of statistics about the performance of your

simulation, both while the simulation is running or

while it is stopped.

At the top of the Profiler, you can see the readings

for the simulation’s overall frame rate and

milliseconds per frame. The Frames Sampled box

indicates how many frames prior to the current

22 Reviewing the Simulation Performance Chapter 3 Overview of WorldUp
frame will be averaged to calculate all readings. The

statistics themselves are updated every frame of the

simulation.

For example, if the Frames Sampled value is set to 8

at frame 20 of the simulation, the statistics displayed

by the Profiler will be an average of the statistics

from frames 13 through 20. This can provide more

realistic results as performance fluctuates from

frame to frame.

However, be aware that increasing the Frames

Sampled value to too high a value can also provide

misleading results. Suppose something happens in

your simulation as it runs that results in a drop in

performance (for example, a RayIntersect function

may be called). If the Frames Sampled value is very

low, you will be able to see a noticeable increase in

the statistics as the RayIntersect function is called. If

the Frames Sampled value is very high, you will not

see that jump in the statistics as it will be averaged

out with frames where the RayIntersect function was

not being called.

The box in the middle of the Profiler indicates how

much of the system’s total resources are being used

by the simulation, and how much is attributed to

specific processes of the simulation loop.

The first line, Main Simulation Loop, indicates the

percentage of the system’s total resources that are

being used by the entire simulation. In the example,

this is approximately 90%. Thus, the other 10% of

the system’s resources are being used by other

applications, such as WorldUp and the operating

system.

The statistics for Rendering, Scripts, 3D Drawing,

and 2D Drawing reflect how much of the system’s

total resources are being used for those specific

processes of the simulation loop. When the

simulation is running, the Scripts line is further

broken down by individual scripts.

The Key Functions section provides an alternative

breakdown of the Scripts statistics. This section

shows the amount of resources being used by some

of WorldUp’s more expensive functions. The

statistics shown for these functions have already

been factored into the statistics for Scripts.

The box at the bottom of the Profiler indicates the

number of polygons that are being rendered for each

application window and each Development window

in the simulation.

To access and work with the Profiler

" Select Profiler from the Simulation menu.

To freeze the statistics for the current frame

" Check the Freeze Stats box.

To set the Frames Sampled value

" Type a value in the Frames Sampled box, or click

the up and down arrows to the right of the value.

To see a breakdown of the resources being used for
individual scripts

" While the simulation is running, click the plus

icon to the left of the Scripts line.

23
4
Organizing Your
Scene

The Scene Graph
The scene graph is the graphical interface that

organizes all the objects of a scene and their

relationship to each other in a hierarchical tree

structure. It’s like a family tree where the root is on

the top and the branches and leaves extend toward

the bottom. A scene is the complete 3D description

of everything needed to render an image.

The scene graph is used to:

• establish relationships with objects, such as

parent/child

• establish groupings of objects, through Group,

Switcher, and LevelOfDetail nodes

• track and select objects

• maintain an overall sense of order

The scene graph hierarchically orders the elements

of the scene, known as nodes. A node can hold

Graphical objects, Light objects, Fog objects,

RenderNode objectss, Material objects, or structural

objects used to maintain the hierarchy of the scene

graph.

24 The Scene Graph Chapter 4 Organizing Your Scene
Nodes and Scene Graphs
Objects that are created from subtypes of the Node

type are referred to as nodes. You cannot create

objects or object types directly from the Node object

type. It exists to provide its subtypes with the

necessary properties and to maintain the coherency

of the Type Workview’s structure.

Type Workview

Nodes can be categorized as follows:

The Graphical object types are described in more

detail in Chapter 11, Adding 3D Objects. Lights are

described in Chapter 13, Lights. Organizational

nodes are described in "Organizational Nodes" on

page 25.

The direct subtypes of the Node object type are:

• Fog – Fog objects are used to obscure distant

objects in the simulation with the color of fog

you select. For best results, the Fog color should

match the window’s background color. Search on

Fog type in the online Help for descriptions of

the Fog properties.

• RenderNode- - RenderNode objects allow you to

create your own custom RenderNode type with

the optional Plug-in Kit from Sense8. The

RenderNode is a node in the scene graph that

calls back to a user-defined function in every

frame during traversal of the scene graph. The

user-defined function contains low-level drawing

commands you can execute, allowing you a

greater flexibility than is offered by the other

physical objects in the scene graph. The benefit

Node Category Description Object Types

Graphical Objects that you can
see in the
Development
window.

Block
Cylinder
Cone
Imported
RenderNode
Sphere
Text3d

Attribute Objects that affect
the appearance of
graphical objects.

Fog
Light
MaterialNode

Organizational Objects that affect
how WorldUp
traverses the scene
graph.

Group
Switcher
LevelOfDetail

25Chapter 4 Organizing Your Scene Organizational Nodes
of RenderNode existing in the scene graph is that

the node can accumulate the state of the scene

graph, including lighting and transformations.

For more details on RenderNode, see the

WorldUp Programmer’s Guide.

• Movable – Movable objects can be selected,

moved, and rotated in the Development window.

For details on the Movable object type and its

subtypes, see Chapter 12, Editing 3D Objects.

• MaterialNode – Using MaterialNode is the most

flexible way to add material to an object.

MaterialNode allows materials to be created,

edited, and saved for reuse in the development

environment. For more information, see Chapter

12, Editing 3D Objects.

• Root – All WorldUp simulations contain a single

Root object, which acts as the starting point for

your scene graph. Since WorldUp provides you

with the necessary Root object (Root-1) by

default, you cannot create objects or object types

from the Root object type. The Root type exists

only to provide you with access to its properties.

Search on Root type in the online Help for

descriptions of the Root properties.

Organizational Nodes
The spatial organization and relationship of Node

objects to each other is controlled by your scene

graph. A scene graph is a hierarchical arrangement

of nodes, organized beneath a single Root node. In

WorldUp, you view and modify your scene graph

with the Scene Workview. Understanding the effect

of the hierarchical order of your nodes is crucial to

creating a successful simulation.

Groups
Objects that you create from the Group type or either

of its subtypes (LevelOfDetail and Switcher) are

non-graphical, Movable objects that act as

containers for other nodes. You specify which nodes

you want to be contained in the Group node by

making them children of the Group node in the

scene graph. See "Working with Scene Graphs" on

page 29. You can then use the Group node to

manipulate all of its child nodes at once.

Note Information on how to translate and rotate

Movable objects, such as Groups, is described in

Chapter 12, Editing 3D Objects.

The three object types from which you can create

Group nodes are:

• Group – Objects created directly from the Group

type exist simply to act as invisible containers for

other nodes in the scene, allowing you to

manipulate all of its children at once, such as

translating the children together.

• LevelOfDetail – LevelOfDetail nodes allow you

to specify which child node to render based on

its distance from the viewpoint.

• Switcher – Switcher nodes allow you to specify

whether one, all, or none of its children are

rendered at any one time.

Group Nodes
The Group object type contains no unique properties

in addition to those provided by the Movable object

type. Objects created directly from the Group type

exist simply to act as invisible containers for other

nodes in the scene graph.

26 Organizational Nodes Chapter 4 Organizing Your Scene
To create a Group node and define its children

1 In the Nodes pane of the Scene Workview, select

the Group object type and click the Instantiate

Selected Type button.

2 In the Scene Graph pane, press the CTRL key and

click on each node that you want to make a child

of the Group node.

3 Drag the selection set onto the Group node.

The children of your Group node can now work

together as one object as well as independently as

separate objects.

LevelOfDetail Nodes
LevelOfDetail nodes are Group nodes that allow

you to improve rendering speed by displaying

simpler objects at a distance and switching to more

complex objects as your viewpoint approaches them

in the simulation. It does this by rendering only one

of its child nodes at a time. The node that is rendered

depends on the distance between the nodes and the

viewpoint.

For example, suppose you have a model of a tree

that is composed of 50 polygons. You could create

two more models that are less detailed: one that is

composed of 20 polygons, and one that is composed

of 5 polygons. Import these models into your

simulation and set them all to the same translation.

Make each model a child of a LevelOfDetail node

and set distance ranges so that the most detailed

model of the tree is rendered when your viewpoint is

very close to the object and the least detailed model

is rendered when the viewpoint is within the farthest

specified range from the object.

Note For tips on creating successful versions of

your model to represent each level, see "Model

Tricks" on page 197.

To create a LevelOfDetail node and define its
children

1 In the Nodes pane, select the LevelOfDetail

object type.

2 Click the Instantiate Selected Type button.

Remember that non-imported Movable objects

are created at the center of the universe. Since

WorldUp will be determining which node to

render based on the distance between the

viewpoint and the LevelOfDetail node, you will

most likely want the LevelOfDetail node to be

translated to the same location as its children.

3 In the Scene Graph pane, click one of the nodes

that you want to be a child of the LevelOfDetail

node.

Note Typically, these nodes are all positioned at

the same global location.

4 In the Property pane, single-click the Translation

property to position the LevelOfDetail node at

the same location as the intended child node.

5 Right-click and select Copy to copy the

Translation value.

6 In the Scene Graph pane, select the

LevelOfDetail node.

7 In the Property pane, right-click on the

Translation property and select Paste to paste the

copied text.

8 Press ENTER.

9 In the Scene Graph pane, press the CTRL key

while selecting each node that you want to make

children of the LevelOfDetail node.

If you want the selected nodes to maintain

their global positions when you drag them in the

scene graph, select Scene Graph Dragging from

the Options menu and ensure that the Scene

27Chapter 4 Organizing Your Scene Organizational Nodes
Graph Dragging option is set to Objects Preserve

Global Position. See "Controlling the Scene

Graph Dragging Options" on page 29.

10 Drag the selection set onto the LevelOfDetail

node.

11 Arrange the children of the LevelOfDetail node

in a descending order so that the node that you

want to be rendered when the viewpoint is

closest (typically your most complex geometry)

is the first child beneath the LevelOfDetail node,

and the node that you want to be rendered when

the viewpoint is farthest away (typically your

simplest geometry) is the last child.

Now you’re ready to set the ranges at which the

LevelOfDetail node will render each child.

To set ranges for the LevelOfDetail node

1 In the Scene Graph pane, click the LevelOfDetail

node.

2 In the Property pane, double-click the Ranges

property.

The Level Of Detail Ranges dialog box displays.

Note WorldUp automatically creates a Range

entry for each child of the selected LevelOfDetail

node. Ranges represent the minimum and

maximum number of units from the

LevelOfDetail node that the viewpoint must be in

order to render the associated node.

The range of the first entry is already set from 0

to infinity. You cannot modify the range of the

first entry. The beginning of the range will

always be set to 0, and the end of the range will

automatically be set to the beginning value that

you specify for the next range.

3 Select the second entry.

4 Drag the slider or type a value in the text box at

the top to represent the beginning of the next

range.

5 Repeat this procedure to set the beginning values

for any remaining entries.

6 If you intend to add more child objects to the

LevelOfDetail node later and want to specify its

range now, click the Add Placeholder button.

A new range entry appears. You can set the range

for this entry now, and it will not be used until

another child is added to the LevelOfDetail node.

7 Click OK when you are finished.

You can also specify ranges by selecting the

Ranges property, clicking on it again for the edit

box, typing in a value and pressing ENTER. For

example, a value of (20, 40) would set three ranges:

0 to 20 for the first child node, 20 to 40 for the

second child node, and 40 to infinity for the third

child node.

Switcher Nodes
Switcher nodes are Group nodes that allow you to

indicate whether WorldUp will display one, all, or

none of the Switcher node’s children at any given

time.

28 Organizational Nodes Chapter 4 Organizing Your Scene
Switcher nodes are useful for animation effects. For

example, suppose you want to create a clown face

that changes expression. You could create three

different clown models, one that is smiling, one that

is frowning, and one that is sad. Import these models

into the simulation and make them children of a

Switcher node. Write a script that will change the

Active Child property for the Switcher object to the

geometry that you want rendered as appropriate.

Switchers are also useful for swapping scene pieces,

such as different floors in a building. Since you can

see only one floor at a time, placing the different

floors under a single Switcher node provides an easy

way to manage the scene.

To create a Switcher node and define its children

1 In the Nodes pane of the Scene Workview, select

the Switcher object type.

2 Click the Instantiate Selected Object button.

3 In the Scene Graph pane, press the CTRL key and

click on each node that you want to make a child

of the Switcher node.

 If you want the selected nodes to maintain

their global positions when you drag them in the

scene graph, select Scene Graph Dragging from

the Options menu and ensure that the Scene

Graph Dragging option is set to Objects Preserve

Global Position.

4 Drag the selection set onto the Switcher node.

To specify which Switcher children to render

1 In the Scene Graph pane, select the Switcher

node.

2 In the Property pane, double-click the Active

Child property.

The Switch’s Active Child dialog box displays.

3 Select one of the following settings and click

OK:

• No Child Active – None of the Switcher’s

child objects are rendered. This option

translates to a property value of -1.

• All Children Active – All of the Switcher’s

child objects are rendered. This option

translates to a property value of -3.

• One Child Active – Only one of the Switcher’s

child objects is rendered. If you click this

option, select which child object to make

active from the list box in the middle of the

dialog box. This option translates to a property

value of 0 for the first child, 1 for the second

child, 2 for the third, and so on.

You can also specify the Active Child by

selecting the Active Child property, typing the

appropriate integer (as described above), and

pressing ENTER.

To achieve the effect of animation, you could write

scripts that change the Active Child value as the

simulation runs. To see an example of this, open

29Chapter 4 Organizing Your Scene Working with Scene Graphs
spinbox.up in the samples\switcher

subdirectory of the directory in which you installed

WorldUp.

The order in which nodes appear in the Scene

Workview determines the order in which nodes are

processed and the order in which graphical nodes

are rendered. For each frame of the simulation,

WorldUp begins processing the nodes in a top-to-

bottom order (as displayed in the Scene Workview).

The scene graph enhances performance of the

rendering stage (drawing the scene) because it

facilitates spatial culling of the scene. In other

words, WorldUp calculates which parts of the scene

(or scene graph) are visible from the current

viewpoint, and quickly rejects non-visible geometry

before drawing begins.

The structure of your scene graph determines the

parent/child relationships of the objects in the scene.

For example, if you nest Node B beneath Node A, B

becomes a child of A. A child always translates

(moves) and rotates with its parent.

Observe the scene graph in the following figure.

In this example, Door, Wheel-1, Wheel-2, Wheel-3,

and Wheel-4 are children of Car. If you move Car in

the Simulation window, its children will move with

it. Light-1, positioned directly beneath Root-1, will

illuminate all the graphical objects in the scene since

it is processed first. Spotlight-1, positioned below

Car and its children, will illuminate Road, Building-

A, and Building-B, but it will not illuminate Car and

its children since they will have already been

rendered before Spotlight-1 takes effect.

Notice, however, that because Spotlight-1 is not a

child of Car, it will not move with Car. Attribute

nodes only affect nodes that are at the same

hierarchical level beneath it, or are nested within it.

So, if Spotlight-1 was a child of Car, it would not

illuminate the road or the buildings. To cause

Spotlight-1 to move with Car, you would add

behaviors. See Chapter 14, The Behavior System.

Working with Scene Graphs
This section describes the following:

• controlling the impact on a node’s position and

orientation when it is dragged in the Scene

Graph pane.

• arranging nodes in the Scene Graph pane

• instancing nodes.

• removing nodes from the scene graph.

Controlling the Scene Graph
Dragging Options
You can rearrange nodes in a scene graph by

dragging and dropping them with your mouse.

When you drag a node onto a new parent, you can

control whether the node will maintain its global

translation and rotation, or whether its translation

and rotation will become relative to the parent

node’s reference frame.

For more information on reference frames, see

"Coordinate Systems" on page 13.

30 Working with Scene Graphs Chapter 4 Organizing Your Scene
To change the scene graph dragging options

1 Select Scene Graph Dragging from the Options

menu.

The Dragging in Scene Graph dialog appears.

2 Select one of the scene graph Dragging Options

buttons.

• Objects Preserve Global Position – The

Translation and Rotation property values for

the node object that is dragged are adjusted to

allow the object to maintain its global

position. The object will not change position

in the Development window.

• Objects Preserve Position Relative To Parent –

The Translation and Rotation property values

for the node object that is dragged remain

unchanged. Thus, if the parent object’s

reference frame is different than the global

reference frame, the object that you drag in the

Scene Graph pane will be repositioned in the

Development window.

3 Click OK.

Rearranging Nodes
In Scene Workview, you can create an object by

selecting a type in the Nodes pane and clicking on

the Instantiate Selected Type button, or by

dragging and dropping the type into the Scene

Graph pane.

Using the drag-and-drop method, you can drop the

object at the right place in the scene graph. When

creating an object by clicking on the Instantiate

Selected Type button, the newly created object

is added at the end of the scene graph. You can then

reposition the object in the scene graph later.

To reposition an object in the scene graph

1 Select the appropriate dragging option, as

described in "Controlling the Scene Graph

Dragging Options" on page 29.

2 Click the object you want to reposition and drag.

The horizontal insertion indicator appears and

moves with the object while dragging.

Note If you want to drage multiple nodes to the

same location, hold down the CTRL key and select

on each node that you want to drag.

Insertion Indicator

31Chapter 4 Organizing Your Scene Working with Scene Graphs
3 While dragging, point the cursor over the node

under which you want to place the dragged

object.

In the figure above, this is the RearWheel Group

node. If a Group node already has some child

node, its subtree expands as you bring the cursor

over it.

4 Drop the object by releasing the mouse button

while the insertion mark stays shortened as

shown in above figure.

Note If you want to make the dragged object a

sibling of the Group node, then drop the object

while the insertion mark covers the whole pane

which is its normal length as shown in the figure

below. Moving the cursor to the right while the

insertion mark is active shortens the length of

insertion mark.

Holding down the CTRL key while you drag a node,

duplicates the node. That is, a new object is created

for each duplicated node and its corresponding node

is positioned in the scene graph where you released

the mouse.

Note Duplicating nodes is not the same as

instancing nodes, as described in the next section.

Instancing Nodes
Instancing a node allows a node to appear multiple

times in the Scene Graph pane and Development

window without the performance impact of adding

additional objects to your simulation. That is, each

node instance references the same source object.

Thus, if you manipulate one node, all instances of

that node are manipulated in the same manner.

The only factor that differentiates node instances

from one another is the Translation value of the

parent for each instance. Creating instances of a

single node under parent nodes with different

translations is what causes the node to be rendered

multiple times in various locations.

32 Working with Scene Graphs Chapter 4 Organizing Your Scene
To instance a node

1 In the Scene Graph pane, click the node that you

want to be the parent of the new instance you are

creating.

2 In the Editable tab of the Property pane, double-

click the Children property.

The Edit Children List dialog box displays.

The Children List box lists the nodes that already

exist as children of the selected node. The Node

Objects box lists all Node objects in the

simulation.

Note It is possible to have Node objects in the

Nodes pane with no corresponding nodes in the

Scene Graph pane. See "Removing Nodes from

the Scene Graph" on page 32.

3 In the Node Objects box, double-click the node

that you want to instance.

The node moves to the Children List.

4 Click Done.

A new instance of the object appears in both the

Scene Graph pane and the Development window,

but no new objects are created in the Type pane.

When you manipulate one node, all other

instances of that node are manipulated in the

same manner.

Note If the object from which you instanced the

node is a graphical object and you cannot see it in

the Development window, make sure that the

parent nodes of each instance are positioned at

different global locations. If they are not, the

instances are being rendered in the same location.

Removing Nodes from the Scene
Graph
Just as you can instance a node by making that node

a child of multiple parents (see "Instancing Nodes"

on page 31), you can also remove some or all

instances of a node by removing the appropriate

parent/child relationships.

When a node has no defined parents, that node no

longer exists in the scene graph, and thus is no

longer rendered anywhere in the Development

window. However, the corresponding Node object

remains in the Nodes pane.

To remove a node from the scene graph

1 In the Scene Graph pane, click the parent node of

the node you want to remove.

2 In the Property pane, double-click the Children

property.

The Edit Children List dialog box displays.

3 In the Children List box, click the node you want

to remove.

4 Click Remove, then click Done.

That instance of the node is removed from the

Scene Graph pane and is no longer rendered in

the Development window. If multiple instances

of the node exist and you do not want any

instance of the node to be rendered in the

Simulation window, repeat this procedure for

each parent of each instance of the node.

Note If you remove a node that has children, the

children will also be removed from the scene graph.

33Chapter 4 Organizing Your Scene How the Scene Graph is Traversed
To remove a Node object from the Nodes pane

" Manually delete the object using the Delete

button.

How the Scene Graph is
Traversed
The order in which nodes are processed is referred

to as the traversal order. Since WorldUp uses a state
preserving architecture, it is very important to note

the way a scene graph is built in order to obtain the

desired results when the simulation runs. In general,

the scene graph is traversed from top to bottom and

left to right. When an attribute node is hit, the

contents of that node are placed onto the state (in

programming terms a stack). When a graphical node

is encountered during traversal, WorldUp looks at

the state and applies what is there to the graphical

node. When an organizational node is encountered,

WorldUp looks at the contents of the node and

decides how traversal should proceed based on the

contents of the organizational node.

Scene Graph Traversal

For example, the figure above represents a simple

scene graph constructed in WorldUp and shows the

resulting simulation. Traversal begins at the Root

node (Root-1) with an empty state, and proceeds to

the Light node (Light-1). Upon encountering the

Light node, WorldUp recognizes this as an attribute

node and places its contents onto the state.

Traversal of the scene graph continues to the next

node (MyBlock). At this point, WorldUp recognizes

this node as a graphical node and takes what is

currently on the state and applies it to the graphical

node. In this way, the graphical node (MyBlock) is

lit by the information contained in the Light node

(Light-1) and rendered to the scene.

Traversal order continues back to the Root node, and

the state is wiped clean, and WorldUp is now

prepared for the next frame and a new traversal.

State
Light Info

34 How the Scene Graph is Traversed Chapter 4 Organizing Your Scene

35
5
Working with a
Project

In WorldUp, simulations are stored in project files

that are saved as .UP files. When you first start

WorldUp, a default project is created that contains

the necessary components common to most

simulations, including a universe, a window, a

viewpoint, and a mouse. This chapter covers in

detail the various file types and components that

comprise a WorldUp project and how to manage

them.

What is a WorldUp Project?
A simulation is comprised of many different

components, such as models, textures, and sounds.

A project is a collection of objects that represent

these components. As such, there is typically a

correspondence for example between a Geometry

object in your simulation and the underlying

geometry file that it represents. This applies to all of

your simulation components except those which are

built into WorldUp, such as sensors and primitive

geometries (block, sphere, cone). These built-in

objects need no external file to define them.

The following table lists the most commonly used

WorldUp simulation objects and the file types they

typically represent.

36 Creating, Loading, and Saving Projects Chapter 5 Working with a Project
WorldUp Objects and File Types

* Since imported geometry files typically contain

their own references to texture files, these references

are not contained in the .UP file.

Your project file preserves how these components

are collected and assembled in your simulation and

what state they are in. It does so through a database

of Objects and Properties. See Chapter 9, Objects
and Properties for more information.

When you save your project, it stores this database

in an ASCII text file called an UP file (.UP). The UP

file does not contain all of your simulation

components, merely a description of their

arrangement and file references. When you load

your project, WorldUp reads this database of objects

and property values, which tells WorldUp which

additional files it needs to load and how to restore

your simulation arrangement and state. It is very

important that WorldUp is able to find all of the files

referenced by objects listed in the UP file.

Otherwise, the object cannot be re-created. Refer to

"Configuring Directory Paths" on page 39 for more

information on how to ensure WorldUp can locate

all referenced files.

Creating, Loading, and Saving
Projects
As mentioned above, WorldUp project files are

ASCII text files describing the simulation contents,

arrangement, and state. In addition to UP files,

WorldUp provides a Simulation Packager that will

package your UP file and all of your simulation’s

other files (models, textures, scripts, etc.) into a

single, compressed file called a ZUP file (.ZUP),

which is very useful when you want to redistribute

your project to another computer. An uncompressed

version of the ZUP file, the WUP file is also

supported by WorldUp R5 for backwards

compatibility with earlier versions of WorldUp. The

following table describes the possible project file

types.

WorldUp Project File Extensions

Object/Component Typical File Types

Imported Geometry .nff, .3ds, .wrl, .jt, .flt

Imported Geometry
Textures*

.tga, .jpg

Script .ebs, .ebx

Sound .wav

Behavior .pup, .dll

Plugins (user defined types) .dll

Dialogs (Script GUI
components)

.dlg

Path .pth

Project File
Extension

Description

.UP An ASCII text file that contains all of
your simulation’s objects and their
properties.

.ZUP A binary archive containing an .UP
file as well as all other simulation
files, including geometries scripts,
textures, etc., as well as any user
added files.

.WUP Similar to a ZUP file, but not
compressed. This file format is no
longer used by WorldUp, but
supported for backward compatibility.

37Chapter 5 Working with a Project Importing An Existing WorldUp Project
Creating a New Project

To create a new project

" Click the New Project button.

A new, empty project appears in the Project

Workview.

Loading a Project
You can load UP, ZUP, or WUP files for editing.

To open a project file

1 Click the Open Project button in the main

toolbar.

A File Open dialog box appears.

2 In the Files Of Type drop-down box at the

bottom, confirm the Simulations (*.Up,

*.ZUP, *.WUP) file filter is selected.

3 Navigate to the appropriate drive and directory

and double click the UP, ZUP, or WUP file you

want to open.

Alternatively, if the project that you want to open

was one of the last eight files opened in WorldUp, its

name appears in the list at the bottom of the File

menu. Select the file name to open it. You can also

open any project by dragging the project file into

WorldUp from any file browser, such as Windows

Explorer.

If you open a file of type ZUP or WUP, WorldUp first

unpacks all of the files contained in the archive into

a directory with the same name as the project in the

WuCache directory under your windows directory.

After unpacking these files, WorldUp then proceeds

to load the UP file from that directory. Since this

project is now unpacked in the WuCache directory,

the next time you load a ZUP or WUP file with the

same name, it will first look in that directory. If the

project already exists there, WorldUp loads the

existing one instead of the ZUP file you selected.

You should be careful to delete the file in the

WuCache directory if this is not the file you want

opened.

Saving a Project

To save your Project file

" Click the Save button.

Exporting a Project
In addition to saving your simulation, you can

choose to export your simulation as a compressed,

single archive that contains all project related files (a

ZUP file).

To export your file

" Select Export Project As>WorldUp Project from

the File menu.

For more information about exporting your project

as a ZUP file, refer to Chapter 20, Publishing Your
Application.

Importing An Existing WorldUp
Project
In WorldUp you can import objects and all elements

associated with those objects from one project into

another. You import an existing project using the

Resource Browser.

38 Importing An Existing WorldUp Project Chapter 5 Working with a Project
Resource Browser

When you open an UP file in the Resource Browser,

all elements of that project, such as scene graph

hierarchies, object types, and attached scripts,

display in a Resource Browser dialog box. When

you drag any project element from the Resource

Browser into the Project Workview, that element

retains and copies with it any other elements to

which it is related.

For example, let’s say two graphical objects are in a

project (FROG.UP), which are called Frog and

Lillypad.

FROG.UP as it appears in the Type Workview

In the project’s scene graph, Lillypad is a child of

Frog. The Frog object may also have a script

attached to it which is called JumpScript.

FROG.UP as it appears in the Resource Browser

In another project, if you load FROG.UP into the

Resource Browser and drag only the Frog node into

the Scene Graph pane of the Scene Workview, the

current project inherits not only the Frog object, but

also the Lillypad object and the JumpScript object.

The Lillypad is automatically positioned as Frog’s

child in the scene graph, and the JumpScript object

is automatically added to Frog’s Task list.

To import elements from a UP file:

1 On the main toolbar, click the Import Project

button.

The main view of the Resource Browser appears.

2 Click Add Resource.

The Open dialog box appears.

3 Navigate to the directory containing the UP file

that you want to import.

4 Double-click the file name.

39Chapter 5 Working with a Project Configuring Directory Paths
The elements of the imported project display in a

new view of the Resource Browser, categorized

under the roots in the following table.

Resource Options for UP files
When you open an UP file in the Resource Browser,

you can access the resource options by clicking the

Options button at the bottom of the Resource

Browser dialog box. The following table shows the

options that are available.
Configuring Directory Paths
It is crucial that your project be able to find all files

referenced by objects in your simulation. Some

problems that may occur as a result of incomplete

path settings are:

• Models load without their textures

• Models fail to load

• Scripts fail to load

• Sounds fail to load

Resource Root Contains

Scene Graph The hierarchical structure of all
nodes in the .UP file

Type Graph All object types and the inheritance
structure in which they were
created

Motion Links All MotionLink objects in the .UP
file

Scripts All Script objects in the .UP file

Viewpoints All Viewpoint objects in the .UP file

Windows All Window objects in the .UP file

Sensors All Sensor objects in the .UP file

Resource Option Description

Reload
Resource

WorldUp reloads the .UP file into
the Resource Browser.
Suppose you are running multiple
sessions of WorldUp. In one
session you have opened
FROG.UP. In the other session, the
Resource Browser contains a
resource for FROG.UP. As you
modify FROG.UP in the first
session, you can use the Reload
Resource command in the second
session to update any changes that
have been made.

Remove
Resource from
Project

Removes the .UP file from the
Resource Browser.
All unused resources are
automatically removed when you
close the project.
When you drag elements of an .UP
file from the Resource Browser into
your current project, they are
actually copied into the current
project, instead of the elements
referencing the UP resource.

40 Configuring Directory Paths Chapter 5 Working with a Project
Typically, WorldUp will displays a message in the

Status window while loading a project if it cannot

find a file that was referenced either by an object in

the UP file or by a model. Plug-ins and other DLLs,

however, may not always be so obvious.

In order for WorldUp to find the referenced files,

they must either exist in the same directory as the UP

file (one advantage to packaging your simulation as

a ZUP file since all of its contents are extracted into

a single directory), or the path names in which they

are located must exist in the Directory Paths To

Search list. Each search path can be stored as a

Project Path or a System Path.

System Paths vs. Project Paths
A System Path is a search path that is available for

any WorldUp project. That is, the path is added to

the Directory Paths To Search list for the entire

WorldUp system which is preserved in the system

registry.

A Project Path, on the other hand, is a search path

that is available only for a certain project (UP file).

That is, the path is added to the Directory Paths To

Search list for the given UP file only.

Depending on the location of the path, a Project Path

may be stored either as an absolute path or a relative

path. If the directory you want to add as a Project

Path is nested within the directory in which the

opened UP file is located, the path is stored as a

relative path. For example, if your UP file is located

in C:\DRIVESIM and you are adding the

C:\DRIVESIM\MODELS\TRUCKS path as a Project

Path, it is stored as:

models\trucks

If you convert that path to a System Path, it is stored

as the absolute path:

c:\drivesim\models\trucks

If you plan on redistributing your simulation onto

other machines, it is very important to store your

search paths with the project, and that these paths

are relative, since you do not necessarily know

where on the target machine your simulation will be

installed.

By storing nested Project Paths as relative paths, you

are given the freedom of moving your project

directories to another location without having to set

new search paths. In the relative path example

above, if you moved the DRIVESIM directory and its

subdirectories to the D drive, your project would still

be able to locate the files in the MODELS\TRUCKS

subdirectories since the path is always relative to the

UP file’s directory.

Note If the directory that you are adding as a Project

Path is not nested within the UP file’s directory, it is

stored as an absolute path.

To add a directory path to the search list

1 Select File Access Settings from the Options

menu.

The Settings dialog box appears.

41Chapter 5 Working with a Project Global Simulation Settings
2 Click the appropriate tab for the type of path

(such as Models) that you want to add.

3 Click Add.

The Open dialog box displays.

4 Select the directory path you want to add and

click OK.

A default storage mode is assigned to the path

and is reflected by both the selected radio button

(System Path or Project Path) and the icon

preceding the path

5 To change the storage mode, click the

appropriate radio button.

Note You can change the storage mode for any

path at any time.

To delete a directory path from the search list

1 Select File Access Settings from the Options

menu.

2 In the Settings dialog box, click the appropriate

tab for the type of path (such as Models) that you

want to delete.

3 Click the path you want to delete and click the

Delete button.

4 Click OK.

Global Simulation Settings
Certain settings can be considered global to your

simulation, which is to say they affect more than just

a single object. These settings typically affect the

way things are done, how things are drawn, etc.

These global settings affect your entire simulation,

such as ambient light, texture mip-mapping styles,

sound device used, etc. Since these global

simulation settings must persist within your project,

they are all stored in the project’s single Universe

object. To help you understand and configure your

global simulation settings, the remainder of this

section covers the Universe object’s properties.

Rendering Options
Rendering is the process of calculating and then

drawing images on a screen. WorldUp provides

several options related to rendering.

Turning Rendering On or Off
By default, rendering is turned on in WorldUp.

To toggle rendering on and off,

" Click the Rendering On/Off button.

When you turn rendering off, the current image in

the Development window is no longer updated.

Thus, all navigational methods are disabled until

you turn rendering back on.

If you are developing a simulation that is graphics-

intensive, you may find it useful to turn off

rendering at times when it is not important to see

rendering updates made in the Development

window. This will free up resources to improve

performance as you work in the Project Workview,

or as you work in another application while

WorldUp is still running.

Setting Rendering Parameters
You can change the way in which the simulation is

rendered by modifying the rendering parameters.

For example, you could render all geometries in the

simulation without textures to increase the frame

rate as you work.

To set rendering parameters

1 Click the Set Rendering Parameters button.

42 The Universe Object Chapter 5 Working with a Project
The Rendering Parameters dialog box displays.

2 Set the desired options (described below) and

click OK.

Note The simulation can be running or idle when

you change the rendering parameters.

Displaying Rendering Performance
By default, the status bar at the bottom of the

WorldUp window displays the current frame rate for

the simulation when rendering is turned on. This is

the number of times per second that the screen

image is redrawn.

To hide or show the rendering performance

" On the View menu, check or uncheck Show

Frame Rate.

Note A number of factors can affect the frame rate

of your simulation. Chapter 19, Tips and Tricks

explores some of these factors and provides

suggestions on how to improve your frame rate.

The Universe Object
Every WorldUp project has a single Universe

object. This object contains all of the properties that

effect your entire simulation.

The following table lists the properties associated

with the Universe object.

Option Description

Wireframe Renders geometries as points and
lines, without texturing and shading.
This option allows for the fastest
rendering possible.

Shaded Shades each polygon of a geometry
according to the intensity of light
striking the polygon and the Material
property value applied to the geometry.

Fully Textured Renders geometries with their textures
fully shaded according to the intensity
of the light. This option is only available
when Shaded is turned on.

Texture
Perspective

Shows geometries with textures and
scales the textures when the viewpoint
changes. This option is only available
when Shaded is turned on.
Note: For some systems, textures are
always scaled to the viewpoint,
regardless of this WorldUp option.

Ambient Light
Level

A number between 0.0 and 1.0 that
adjusts the brightness of ambient light,
with 0.0 being total darkness and 1.0
being total brightness.

43Chapter 5 Working with a Project The Universe Object
Universe Object Properties

Property Description Valid Values

Ambient light Sets the amount of ambient light in the
simulation. Ambient light is light that effects
all polygons equally.

0.0 to 1.0 – A setting of 0.0 effectively turns
the ambient light off. 1.0 is full intensity.

Anti-aliasing Turns on off anti-aliasing. This only works for
specifically supported video hardware.

True or False

Audio Device Sets the .dll used to communicate with your
sound card. By setting it to None you will
release the sound card so that other
programs may access it.

None – No audio device in this simulation.
Default – Use windows default sound device
(winmm). Winmm allows you to play only one
sound at a time.
DiamondWare – Use Diamond Ware sound
device. This allows you to play four sounds
at one time.
CRE – Use Crystal River Engineering sound
server.

Audio Listener Sets the position from which a sound is
heard.

Any viewpoint in the simulation

Audio Rolloff Sets the distance at which sound becomes
inaudible. As this value increases, sounds in
the universe become louder.

Any positive decimal value

FrameRate Sets the number of frames per second (fps)
displayed during a running simulation.

This is calculated by WorldUp and is read
only.

Mipmap Mag Filter Sets the the magnification filter style for
texture mapping.

Nearest
Linear

Mipmap Min Filter Sets the minification filter stye for texture
mapping.

Nearest
Linear
NearestMipMapNearest
LinearMipMapNearest
NearestMipMapLinear
LinearMipMapLinear

NoAutoAlpha Disables automatic use of black pixels as the
alpha channel.

True – Don’t set black as transparent
False – Set black to be transparent

Perspective Texture Enables or disables perspective-correct
texturing.

True – Perspective-correct texturing enabled
False – Perspective-correct texturing
disabled

Sensitivity Percentage Sets the mouse sensitivity as a % of the
universe diameter.

Any non-negative value

44 The Universe Object Chapter 5 Working with a Project
Shutdown script Sets the filename of a script that you want to
run automatically when you stop a
simulation.

Any valid script. The script must contain a
main subroutine.

Startup script Sets the filename of a script that you want to
run automatically when you load a project
(.up) file.

Any valid script. The script must contain a
main subroutine. This subroutine will be run
once when the project is loaded.

Tasks Name(s) of the script(s) to be executed once
per frame during the simulation.

Any valid script. The script must contain a
task subroutine. The task will be run once
each frame of the simulation.

Texture Memory Used Sets the amount of texture memory the
textures are using.

N/A

Textured Enables or disables texture mapping in all
views.

True – Texture mapping enabled
False – Texture Mapping disabled (textures
are not drawn)

User script Sets the name of the script to run whenever
you choose User Defined Script from the
Simulation menu or click the User Defined
Action button on the toolbar.

Any valid script with a main entry point

Wireframe Indicates whether the universe is rendered
with wireframe parameters. When wireframe
rendering is True, WorldUp displays objects
as points and lines, removing all texturing
and shading.

True – Wireframe enabled
False – Wireframe disabled

Property Description Valid Values

45
6
A Quick Tour

This chapter contains four guided tours that are

intended to quickly familiarize you with many of the

procedures involved in creating a WorldUp

simulation.

Completed versions of each guided tour are located

in the Tutorials subdirectory of the directory in

which you installed WorldUp. You can use these

simulations as a reference, or as a starting point

should you decide to skip the previous tutorial.

46 Tutorial 1: Creating a Model Chapter 6 A Quick Tour
Tutorial 1: Creating a Model
In order to familiarize yourself with the WorldUp

development environment, we start by creating a

vehicle from basic primitives, such as a block and

cylinder. The figure below shows the completed

vehicle.

This tutorial will show you how to set up the

development windows, navigate the scene, and

position and manipulate objects using the new user

interface in WorldUp Release 5.

Completed Vehicle in the WorldUp Window

47Chapter 6 A Quick Tour Tutorial 1: Creating a Model
Getting Started

To begin

1 Create a new directory in where you will save

your WorldUp simulations as you work.

2 Start WorldUp, or click File, New Universe if

WorldUp is already running.

The window that is displayed when you start a

WorldUp session is known as the WorldUp

Development window.

3 If desired, enlarge the Development window.

Setting up the working environment
First let us arrange the working environment. In

WorldUp multiple viewports can be set up in

development window to view a scene from various

angles. Multiple viewports facilitates you to

position objects in 3D space correctly and

accurately.

To add more viewports

1 Click on Display Options button on the

navigation toolbar of the Development window.

2 Click Configure Viewports.

3 Select four viewports and click OK.

4 Click OK to close the Display Properties dialog.

You have now added four viewports to the

Development window, showing views from the

default viewpoint (viewpoint-1), top, front, and

right. The default viewpoint shows the perspective

view and the others orthographic views. At any time

only one viewport is active and this is the viewport

on which navigation operations are applied. The

active viewport is highlighted with a white border.

Creating the body
We begin by creating the lower body of the vehicle

using a block. The WorldUp development

environment consists of main menu and main

toolbar on top, project window on left, development

window on right and status window at the bottom.

The project window consists of four various

Workviews; Scene Workview, Behavior Workview,

Type Workview and Model Workview. Workviews

are logically organized folders for doing various

tasks.

We’ll be focusing on Scene Workview in this

chapter. The Scene Workview contains the Nodes

pane showing types and instances on the left, the

Scene Graph pane showing the scene graph on the

right, and the Property pane on the bottom showing

properties of the selected node.

First, we must create a Vehicle group node where

we will put all the vehicles parts.

To create the Vehicle group

1 Select the Scene Workview tab, if not already

selected.

2 Select Group in the Nodes pane.

3 Drag and drop the Group node into the Scene

Graph as a child of Root just below Light-1.

48 Tutorial 1: Creating a Model Chapter 6 A Quick Tour
Note Light-1 must be the first child of the Root

node before all other nodes because lighting is

applied only on nodes below the Light-1 node.

4 Select anywhere on the Name row in the

Property pane.

5 Select the name Group-1.

You will see an edit box appear.

6 Change Group- 1 to Vehicle.

Next, we create the lower body of the vehicle.

To create the lower body

1 Expand the Geometry node in the Nodes pane to

show its sub-types.

2 Select the Block sub-type.

3 Drag and drop the Block to the Scene Graph as a

child of the Vehicle group node.

This creates (instantiates) a node named Block-1

under Vehicle.

4 Select anywhere on the Name row in the

Property pane.

5 Select the name Block-1.

You will see an edit box appear.

6 Change Block-1 to LowerBody.

7 Click on the Material property and select Red

material.

8 Edit the Stretch property to be (12, 4, 7).

9 Edit the Translation property to be (0, -3.5, 0)

This moves the block above ground level.

Now let’s create the upper body of the vehicle.

To create the upper body

1 Create a new Block as we did for the lower body.

2 Name the new Block UpperBody.

3 Apply Red-Dark material.

4 Set the Stretch property to (9, 3, 7).

To look at the vehicle closely in all views

1 Click in a viewport to make it active.

2 Click the Zoom All button.

3 Repeat this for each viewport.

Now we need to place the upper body above the

lower body.

To move the upper body

1 Select UpperBody in the Scene Graph.

2 Change the Translation property of UpperBody

to (1.5, -7, 0).

You can also use one of the following methods to

move the upper body:

• Double click on Translation property and a

Translation tool pops up. Use slider bars to set

the X value to 1.5 and Y value to –7.

• Click the Translate Object button. While

UpperBody is selected in the Scene Graph, click

the Lock Selected button. Then click and

drag the UpperBody to translate it. To move in Y

direction, use right mouse button.

Note Once the Lock Selected button is pressed, the

object currently selected remains selected even if

you click on an empty space in Development

window.

To learn more about the Translate Object and other

tools in the Development window toolbar, see

Chapter 8, Development Window – Navigation and

Manipulation.

49Chapter 6 A Quick Tour Tutorial 1: Creating a Model
Saving the Model
You can save the vehicle you have created as a

project file (.UP) or export it to VRML.

To save your model as a project

" Save As from the File menu.

In this example, let us save the vehicle you have

created so far as VRML1.

To export your model as VRML

1 Select Export Project As > VRML 1.0 from the

File menu.

2 Name the model vehicle.wrl in the project

directory you created at the beginning of this

tutorial.

It is a good practice to save your work frequently to

avoid data loss or to revert back to a previously

saved model.

Working on the Wheels
Now that the body of the vehicle is in place, let’s

create the tires and wheels for the vehicle using

cylinders.

To create the front tire

1 Select the Cylinder sub-type from the Nodes

pane.

2 Drag and drop the Cylinder to the Scene Graph

as a child of the Vehicle group node.

3 Name the Cylinder FrontTire.

4 Change the Material property to MatteBlack.

5 Set the Radius property to 1.5.

6 Set the Height property to 7.2.

7 Rotate the FrontTire on the X axis using one of

the following two methods:

• Double click on the Rotation property of

FrontTire to get the rotation tool. Slide the

Pitch (X) slider bar to right to set it to 90

degrees. Click on "Snap to Every [15]

degrees" to rotate faster and in steps of 15

degrees. You can change this to 30, 45 or 90

degrees if you want to reduce the number of

steps to reach 90 degrees.

• Select the Object Rotate button, press X on the

toolbar to set the axis of rotation as X-axis.

Press Lock Selected to keep the selection

intact. Click on the cylinder and move the

mouse up or down to rotate the object until it

is placed horizontally.

Now creating the wheels and rear tire are easy.

Right click on FrontTire in the Scene Graph and

select duplicate. Name this new cylinder

FrontHubCap, set its Initial Radius to 1.0, height

to 7.3 and change its material to Gray.

8 Save your work as vehicle.wrl in VRML1.0

by selecting File > Export Project As >

VRML1.0.

Grouping the Objects
Grouping of objects and assigning parent-child

relationships between objects are essential in

modeling and creating simulations. For example,

moving one node underneath another node creates a

parent-child relationship between those two objects.

When you move the parent object, the child object

moves with the parent.

For more details about Groups, see Chapter 4,

Organizing Your Scene.

In our model, let’s group the wheel and tire as a

single group node.

To group tire and wheel

1 Select Group in the Nodes pane.

50 Tutorial 1: Creating a Model Chapter 6 A Quick Tour
2 Drag and drop Group into the Scene Graph

below Vehicle.

3 Name this group node FrontWheel

4 Drag and drop FrontTire under the FrontWheel

group node to make it a child of FrontWheel.

5 Drag and drop FrontHubCap to FrontWheel in

the same manner as step 4.

Your scene graph should look similar to the

following figure.

You can also select both FrontTire and

FrontHubCap at the same time by holding down the

shift key when selecting and drag both to

FrontWheel in one step.

Now, let’s move FrontWheel to its correct position.

To move FrontWheel

1 Select FrontWheel in the Scene Graph.

2 Set the Translation property to (-2, -1.5, 0).

To move front wheel using the tools

1 Click the Lock Selected button while

FrontWheel is selected.

2 Select the Translate Object button in toolbar.

3 Click on Constrain X to move it only in X

direction.

4 Using the left mouse button, move FrontWheel

to the left.

5 Use right mouse button to move it Up.

Now that you have successfully created the front

wheel, let’s work on the rear wheel.

To create the rear wheel

1 Create a Group node as child of Vehicle.

2 Name the new Group node RearWheel.

3 Right-click on FrontTire and select the Duplicate

button.

4 Name the copy RearTire.

5 Drag and drop RearTire into the RearWheel

group node we just created.

6 Duplicate FrontHubCap, and name it

RearHubCap.

7 Group RearHubCap with RearTire under

RearWheel.

51Chapter 6 A Quick Tour Tutorial 1: Creating a Model
8 Just as we moved FrontWheel to its correct

location, move RearWheel to its final position

using the Object Translate tool or by setting the

Translation property to (5, -1.5, 0).

Note By duplicating and resizing FrontWheel and

RearWheel parts, an advanced user can create left

and right wheels for each.

9 Save your work as Vehicle.wrl.

Creating Windows
Next, let’s add windows to the vehicle.

To create the Front Side window

1 Add a new Block to the Scene Graph and name it

FrontSideWindow.

2 Set the Material property to MatteBlack.

3 Set the Stretch property to (4, 2.5, 7.1).

4 Translate the window to (-0.75, -7, 0).

Now we can duplicate this object to create the rear

side window and the front-rear window.

To create the rear side window

1 Duplicate FrontSideWindow.

2 Name it RearSideWindow.

3 Translate RearSideWindow to (3.6, -7, 0.)

To create the front-rear window

1 Duplicate FrontSideWindow.

2 Name it FrontRearWindow.

3 Set the Stretch property to (9.1, 2.5, 6.5).

4 Translate the window to (1.5, -7, 0).

Your scene graph should look similar to the

following figure.

Creating Lights
You can create front lights using cylinders. Set a

relatively smaller Z value compared to X in the

Stretch property of the light to get an elliptical shape

as shown in fig.

To create the left light

1 Add a Cylinder to Vehicle and name it LeftLight.

2 Set the Stretch to (0.5, 0.5, 0.6)

3 Rotate it 90 degrees in Z.

4 Set the Material to Gold.

5 Translate the LeftLight to (-6, -4.5, -2.5).

52 Tutorial 1: Creating a Model Chapter 6 A Quick Tour
To create the right light

1 Duplicate LeftLight and name it RightLight.

2 Translate it to (-6, -4.5, 2.5)

To create the front grill

1 Add a new block to the Scene Graph and name it

FrontGrill.

2 Set the Stretch property to (1, 1.8, 4).

3 Set the Material to MatteBlack.

4 Translate it to (-5.6, -3, 0).

5 Save your finished work as vehicle.wrl in VRML

1.0 by clicking on Export Project As> VRML1.0

from the File menu.

The final Scene Graph should look similar to the

following figure, though the nodes may not

necessarily be in the same order.

The completed model should look similar to the

following figure.

Congratulations! You have successfully finished

creating your first model in WorldUp. In this

Tutorial, you have learned to:

• Use the Scene Workview to add objects to the

Scene Graph.

53Chapter 6 A Quick Tour Tutorial 1: Creating a Model
• Set up multiple viewports in the Development

window.

• Create models using primitives such as Block

and Cylinder.

• Use navigation and manipulation tools to view,

translate, and rotate objects.

• Use the Property pane to edit an object’s

properties.

• Group nodes and assign parent-child

relationships between objects.

• Save the model.

54 Tutorial 2: Importing a Model Chapter 6 A Quick Tour
Tutorial 2: Importing a Model
In the previous Tutorial, we learned how to create a

model using basic primitives provided with

World Up. To create a detailed simulation you will

need to bring in already available models to the

WorldUp simulation environment. In this tutorial,

we will import some models, including the vehicle

you created in last lesson, to build a driving

simulation over a terrain.

Using Model Workview
By now you are familiar with the Scene Workview,

which displays the hierarchical structure of your

scene and its properties. It allows you to create new

objects from available types. The Model Workview

allows you to import and preview geometric models

and add them to your scene.

The Model Workview

For more details on the Model Workview, see

Chapter 7, Using the Workviews.

Importing Terrain
First, let’s import something to stand on. Before

importing a model, we create a Group node called

Terrain to group the related geometries together.

To create the Group node

1 Select the Scene Workview tab.

2 Drag and drop a Group node below Light-1 and

name it Terrain.

As we are going to create a high polygon scene let

us turn off shadows and grids.

To turn off shadows and grids

1 Click on Display Options button.

2 Check the boxes next to Grid and Shadows to

toggle them off.

3 Click on Viewport Configuration and select

single viewport.

4 Click OK.

5 Click OK on Display Options dialog box to save

the changes.

To import the terrain model using Model Workview

1 Click on the Models tab to select the Model

Workview.

2 Click on Import New Model button and

select terrain.nff from the Tutorials\Models

directory.

3 Click OK

4 Click on Add New Path to the Search Path.

5 Click OK in the Import Model Parameters dialog

box.

55Chapter 6 A Quick Tour Tutorial 2: Importing a Model
This will show the terrain model in the Preview

Window and its hierarchy in the Imported

Models pane. Other details about the model are

displayed next to the Preview Window.

6 Select Terrain.nff [0] in the Imported Models

pane.

7 Drag and drop it to the Scene Graph pane as a

child of the Terrain group node we just created.

This adds terrain model to the scene graph and

the model shows up in the Development window.

8 Click on Zoom All button.

The terrain disappears from the development

window. This is because the window clips the

terrain. In order to fix this we need to set the far

(yon) clipping plane of the window to a high value.

To set the clipping plane

1 In the Project window, click on Type tab to select

Type Workview.

2 Under Window > DevWindow, select

DevWindow-1.

Make sure you expand the VBase node, if it's not

already expanded.

3 Look at its properties in the Property pane and

set the Yon Clipping to 50000.

You should see the terrain appear in

Development Window. Now we have expanded

the DevWindow view volume.

4 Repeat this for the Application Window also by

selecting Window > Window-1 and setting its

Yon Clipping value to 50000.

5 Save your project as Vehicle.up by selecting Save

As from the File menu.

You have successfully imported terrain into your

simulation. The following figure show the current

state of the scene graph.

Importing Walls
Next, we will build walls around the terrain.

To build the walls

1 Create a Group node in the Scene Workview as

you did before, and name it Walls.

2 From the Model Workview, click the Import New

Model button.

3 Select wall.nff from the Tutorial directory and

click OK.

4 Click OK on the Texture warning as well.

5 Drag and Drop wall.nff from Imported Models

pane to Scene Graph as child of Walls.

6 Repeat Step 3 through 5 three more times to add

a total of four walls to the scene.

56 Tutorial 2: Importing a Model Chapter 6 A Quick Tour
7 Go to Scene Workview and rename Block-1,

Block-2, Block-3 and Block-4 under Walls as

Wall-1, Wall-2, Wall-3 and Wall-4 respectively.

To place the walls correctly

1 Select Wall-1 and set its translation property to

(13000, 0, 0).

Or, use a manipulation tool to translate it. To do

this click on Object Translate button and

constrain translation to left and right by clicking

on X. Lock Wall-1 selection by clicking on the

Lock Selected button. Drag mouse to the left

to place the wall at the left end of terrain.

2 Select Wall-2 and set its translation to (-13000, 0,

0) Or use Object Translate to move it to the other

end of the terrain.

3 Select Wall-3 and rotate it 90 degrees in Y axis

using a method explained in previous section.

4 Apply a translation of (0, 0, 13000).

5 Select Wall-4 and rotate it 90 degrees in Y-axis

6 Set Wall-4’s translation value to (0, 0, -13000).

7 Select Save from the File menu to save your

Project.

You have now put a border around your territory.

Importing Vehicle
The last step is to bring in the vehicle created in the

pervious tutorial.

To import the vehicle

1 Using the Model Workview, import Vehicle.wrl

from the \Tutorials directory.

2 Add it to the Scene Graph.

3 Switch to the Scene Workview and while

keeping Vehicle node selected, click the Lock

Selected button.

4 Click the Zoom to Selected button to zoom

to vehicle.

5 Translate it up to around (0, -112, 0) to bring the

vehicle above the terrain.

57Chapter 6 A Quick Tour Tutorial 2: Importing a Model
6 Select Save from the File menu to save your

project.

You have now completed the scene building for

your simulation. The scene graph should look

similar to the following figure.

In next tutorial, you will add behaviors to your

simulation.

Summary
In this tutorial you have learned how to:

• Use the Model Workview to import models

• Add imported models to your scene

• Work with large databases

• Adjust the Window/Viewport clipping plane to fit

the whole scene

• Save your project

58 Tutorial 3: Using Behaviors Chapter 6 A Quick Tour
Tutorial 3: Using Behaviors
In this tutorial we will bring our simulation to life

through the application of behaviors. In WorldUp, a

behavior is generally defined as some activity that is

applied to or demonstrated by any WorldUp Object

within the Simulation. In our evolving tutorial

simulation, we’re going to add some classic

simulation activities, including interactivity using a

Sensor behavior, collision detection, and terrain

following.

To begin

" Open your WorldUp project file from the

previous tutorial.

You can also use the template file for this

tutorial, Tutorial2_final.up in the

\Tutorial directory. Either project should get

you started where Tutorial 2 left off.

The project should look something like the

following figure.

Tutorial2_final.up in the WorldUp Window

59Chapter 6 A Quick Tour Tutorial 3: Using Behaviors
Lesson 1: Preparing your Geometry
Behaviors involve moving objects. When moving

objects, we typically think in directions (such as

forward, backward, and right) and orientations

(yaw, pitch and roll). 3D graphics conventions

typically map yaw as a rotation about the Y-axis,

pitch as a rotation about the X-axis, and roll as

rotation about the Z-axis. This convention thus

defines "forward" (the direction the "nose" of the

vehicle or viewpoint points) as the + Z-axis and

backward as the –Z-axis.

In our project, we can see that our van’s idea of a

forward direction, however, is down it’s –X-axis:

This is a typical situation, especially when

importing geometries for which you had no control

over how they were modeled. This is not, however,

a problem. This short lesson will show you how to

easily re-orient your model without modifying it at

all.

To orient your model

1 Create a new Group node and name it

VehicleAvatar.

2 Make your Vehicle group a child of

VehicleAvatar by dragging your Vehicle group

node onto the VehicleAvatar Group node.

Your Scene Graph should now look something

like the following figure.

3 Select your Vehicle Group and rotate +90

degrees about it’s Y-axis.

You can do this either interactively in the render

window with the Rotation controls or by double

clicking it’s rotation property and using the

Rotation dialog.

4 From the Development window

toolbar, select Local from the

coordinate frame drop down box.

60 Tutorial 3: Using Behaviors Chapter 6 A Quick Tour
Now take a moment to examine the axes drawn

in the render window, and their difference when

the Vehicle is selected versus when the Vehicle

Avatar is selected.

The Vehicle group shows the Van still pointing

down it’s –X axis. The VehicleAvatar group,

however, shows the van pointing down the

VehicleAvatar’s +Z axis. This is what we’ll need in

order to move it in the direction we consider

"forward."

In this lesson, we have learned how to adjust an

object’s orientation relative to another object’s

orientation. In essence, we are using the group node

we created as a sort of dummy helper that allows us

to change the van’s orientation "with respect to"

another object (the VehicleAvatar group). In the

next lesson, we’ll see why this becomes useful.

Lesson 2: Adding a Sensor
Behavior
Sensors, such as Joysticks, Mice, and Trackers, are

the window of interactivity between the user and the

simulation. WorldUp supports a vast array of

Sensors. For this lesson, we will focus on using a

Behavior that allows the user to control the van with

the Mouse.

To add a behavior

1 Select the Behavior Workview tab in the Project

Workview.

This is where you will be doing most if not all of

your behavior related work.

2 In the Behaviors pane, expand the PluginActions

and PluginTriggers types to examine the

standard set of behaviors that come with

WorldUp.

3 Select the MouseDriver Action type and examine

it’s properties in the Property pane.

Note All types are represented by a icon.

4 To get a feel for what’s particular to this

behavior, click on the Subtype tab on the

Property pane.

This displays those properties specific to the

selected type. For MouseDriver, this is

Controlling Window, Forward Axis, Speed

Feedback, and Steering Feedback.

5 Select and drag the MouseDriver onto the

Behavior Root task in the Task Scheduler.

The Behavior Input Definition dialog box

appears.

Take a moment to look over this dialog. You use this

dialog only to assign inputs to the selected Behavior.

There is, however, additional information to help

you with your decision. For more information on the

Behavior Input Definition dialog, see Chapter 14,

The Behavior System.

Our MouseDriver-1 Behavior needs to know exactly

what geometry to control with the mouse. For our

tutorial, we will be controlling the VehicleAvatar.

To add the VehicleAvatar to the MouseDriver’s
InputList 1

1 Select VehicleAvatar from the list of Movable

objects and click the button.

61Chapter 6 A Quick Tour Tutorial 3: Using Behaviors
2 Click OK.

In the Task Scheduler Pane, you should now see

MouseDriver-1 as a child of the Behavior Root.

3 Expand the MouseDriver-1 behavior by clicking

on the plus symbol to the left of it in the Task

Scheduler pane.

This reveals a 1 which represents the

MouseDriver’s Input List. To the right of the 1 is

{VehicleAvatar}, which is the actual contents of

the input list, and contains a reference to

VehicleAvatar, which we just added. Your

Behavior Graph should now look similar to the

following figure.

You have now successfully created a new

behavior which says "Every Frame, execute the

MouseDriver Behavior on the VehicleAvatar".

Good job.

But wait! Before we can test it, we must make sure

the MouseDriver needs no additional crucial

information to operate. To know this, we must

revisit the properties we examined in Step 2.

4 Making sure the MouseDriver-1 object (not the

type, and not the input list) is selected, click on

the Important tab on the Property pane.

The Important tab shows you just which

properties the behavior author felt were crucial to

getting the behavior up and running. For

MouseDriver, the only crucial property is the

Window object in which our behavior will be

active (Controlling Window).

5 Since we want it to run in the Development

window, double click on the Controlling Window

Property and select DevWindow-1 from the list

of Window objects.

We are now ready!

To test your MouseDriver behavior

1 Click the Run in DevWindow button to run

your simulation in the Development Window.

2 Put your mouse in the Development window and

observe what happens.

Wow, bet you lost the VehicleAvatar, right? Well,

don’t worry, in Lesson 3 we’ll show you a quick

way to fix that. For now, stop your simulation and

find your van using the navigation and placement

techniques you learned in the previous tutorials.

(What? You didn’t do the previous tutorials?) Once

you’ve found it, you might want to put it back on the

terrain somewhere. An easy way to do this is to

select the VehicleAvatar node and set it’s translation

property to (0,0,0).

Behaviors can be dangerous to your scene

arrangement. Now is a good opportunity to save

your project.

Note If you loaded the template tutorial1-3.up at the

beginning of this tutorial, save your current project

with a different name. We suggest saving frequently

so you can always come back to your simulation

when it was in a "nice" state.

Lesson 2 Summary
The MouseDriver Lesson gave you a feel for how to

create and schedule a Behavior, as well as how to

identify crucial properties and how to edit them.

Most Behaviors you will encounter will have 1 or 2

crucial properties and a few additional properties.

Together these properties allow you to customize

the way a Behavior works.

62 Tutorial 3: Using Behaviors Chapter 6 A Quick Tour
Lesson 3: Attaching the Viewpoint
Now that you know what you are doing, we’re going

to add few more behaviors to make your van move

more realistically, as well as prevent you from

losing it.

To prevent the van from just speeding off, we’re

going to attach our viewpoint to it. This will give us

the feeling that we’re actually in the van, instead of

getting left in the dust. To do this, we’ll add a Tether

Viewpoint behavior.

To add a Tether Viewpoint behavior

1 Begin by starting where we left off in Lesson 2.

2 With the Behavior Workview Active, locate the

TetherViewpoint type and select it.

3 Schedule it by dragging it onto the Behavior

Root just like you did with MouseDriver-1.

Again the Behavior Input Definition dialog pops

up.

4 Add the VehicleAvatar to the InputList 1 of the

Tether Viewpoint behavior, just like we did with

the MouseDriver Behavior.

Note the description for TetherViewpoint tells us

this will "tether" the viewpoint to the

VehicleAvatar (input1).

5 Click OK to accept.

In the Task Scheduler Pane, you should now see

TetherViewpoint-1 as a child of the Behavior

Root and below MouseDriver-1.

Again, you can confirm by expanding the

TetherViewpoint icon that the VehicleAvatar is

indeed on TetherViewpoint’s InputList 1.

Good Job! You have now successfully created a

TetherViewpoint behavior. Our simulation now

says, "Every frame, tether the viewpoint to the

VehicleAvatar and control the VehicleAvatar with

the mouse." But wait! Which viewpoint? As

mentioned in the introduction to this lesson, we

should check out this Behavior’s Important

properties. Of course, we know how to do this!

We did it with the MouseDriver.

6 As a refresher, make sure the TetherViewpoint

object is selected and then click on the Important

tab in the Property pane.

Aha! We see our question, "Which Viewpoint?"

is answered in the Property Pane. Filling in

TetherViewpoint’s "Viewpoint" property answers

it. That’s easy!

7 Double-click on the Viewpoint property and

select Viewpoint-1 from the pop-up list.

We’re ready to go!

8 Click the Run in DevWindow button to run

your simulation in the Development Window.

That’s much better than getting left behind!

There is one small complaint, however. We’re

right in the middle of the van (we call this the

"view from the transaxel"). If this view is less

than pleasant for you, don’t sweat it. The

TetherViewpoint author has kindly provided an

Offset Property.

9 With your simulation running, try adjusting this

offset vector by double-clicking on it in the

Property pane and modifying the Y and Z values

 Adjust the sensitivity slider to Slow on the
vector editor for this maneuver.

63Chapter 6 A Quick Tour Tutorial 3: Using Behaviors
Finally, note that the viewpoint seems to move a

little unevenly. This is because we are tethering

the viewpoint before updating the van with the

mouse, so we are receiving a one frame delay.

10 To fix this, move the MouseDriver-1 behavior so

that it gets executed before TetherViewpoint-1 by

dragging it onto the Root Behavior.

The rules of drag and drop are the same here as

in the Scene Graph as learned in the earlier

lessons.

11 Save your Project file if you haven’t done so

recently.

Lesson 3 Summary
Tethering the viewpoint is a classic behavior and a

requirement for many simulations. Chances are

you’ll be using this behavior over and over again in

different situations from Walkthroughs to Flyovers.

By attaching the viewpoint to the VehicleAvatar, we

made a sort of simple Avatar. For more information

on viewpoint control and Avatars in general, refer to

the Avatar User Manual.

Lesson 4: Adding Terrain Following
and Collision Detection
Our van is moving nicely now. There are, however

some key laws of physics we seem to be ignoring,

including gravity and rigid object permeability. In

this lesson, we’re going to get realistic about our

simulation and address these problems by

implementing terrain following and collision

detection with our handy Behavior library.

To begin

1 Begin by starting where we left off in Lesson 3.

Your scene should look similar to the following

figure.

2 Schedule a TerrainFollowLand behavior by

dragging it onto the Behavior Root as we did

with MouseDriver-1 and TetherViewpoint-1.

This brings up the Behavior Input Definition

Dialog.

Note the TerrainFollowLand description. These

descriptions are provided by the Behavior author,

and seek to help you make a decision regarding

what input we should use. In this case, as before,

the "input object" is our van, so add the

VehicleAvatar to the TerrainFollowLand’s input

1 list.

3 4. Click OK and confirm the VehicleAvatar is in

the input list as before.

4 Review TerrrainFollowLand’s Important

properties.

GroundObjectRoot specifies the ground. In our

case, it is the group node that contains all of our

terrain segments. (If you haven’t grouped all of

your terrain objects under a single group node,

now would be a good time.)

64 Tutorial 3: Using Behaviors Chapter 6 A Quick Tour
5 Specify this group node as the Ground by double

clicking the GroundRootObject property and

selecting your terrain (or whatever you named it)

group node from the list.

Great work.

6 Click the Run in DevWindow button to test

your new terrain in the Development Window.

The TerrainFollowLand author saw fit to give

you some flexibility in deciding just how far

above the terrain you wish to follow.

7 Try increasing TerrainFollowLand’s

DistanceOffGround property (while the

simulation is still running).

Now that our van is happily obeying the laws of

physics, let’s handle the law of brick walls:

collision detection.

8 In the Behavior Workview, take a moment to

look at the CollideMovable Trigger, which is

located under the "Plugin Triggers" section.

A Trigger is just like an action, except that it only

fires (that is to say, executes it’s children) if a

condition is satisfied. In this case,

CollideMovable fires if our van collides with a

wall. For this to happen, we can guess our

CollideMovable will need two inputs – One for

our van and one for the list walls. Let’s see how

this works.

To create a CollideMovable Trigger

1 Drag a CollideMovable trigger onto the Behavior

Root, just as we did with the other Behaviors.

2 In the Behavior Input Definition dialog, notice

that this Trigger takes two inputs, unlike our

previous actions (just store that fact in the back

of your mind). This fact, combined with the

description ("Collide movable checks for

intersection between two user specified

geometries") confirms our suspicions that we’ll

need two inputs for this Trigger to work.

3 For CollideMovable’s Input 1, select the

VehicleAvatar.

4 For CollideMovable’s Input 2, select all four wall

objects.

Do not select the group node (if any) that they

may be under.

5 Click OK.

6 Look at CollideMovable’s inputs in the Task

Scheduler by expanding Collide Movable.

Note there are two inputs here, not just one.

7 Visually verify these are correct before

proceeding.

8 Now, before testing our new collision detection,

check to see if it had any important properties.

9 Click the Run in DevWindow button to test

your new collision in the Development Window.

65Chapter 6 A Quick Tour Tutorial 3: Using Behaviors
What happened!? Don’t worry. The

CollideMovable trigger isn’t broken. In fact, it’s

working perfectly fine. We just don’t know it

because we didn’t tell it what to do when the van

ran into the wall. To remedy this, let’s tell

CollideMovable-1 what to do when the van does

run into the wall.

10 Locate the BounceBack action from your list of

Behaviors.

Now, before creating this action, think! We want

our van to bounce backward only when we run

into the wall, not every frame. So, instead of

dragging this action onto the BehaviorRoot,

we’re going to drag it onto the CollideMovable-1

Trigger. Got it? (If not, there’s more

information to be had in the Behaviors section of

this manual). Okay, go ahead and do it.

11 Drag the BounceBack action onto the

CollideMovable-1 Trigger.

In the Behavior Inputs, we note by the

description that BounceBack is going to bounce

input 1 backward. For BounceBack’s input, take

a leap of faith with me here and check the radio

box that says "Parent Out 1." Why not just add

the van like we always do? Well, we could have,

but that would have been less daring. Instead,

what we said by checking "Parent Out 1" is, in

essence, "Mr. BounceBack-1, please use the

output coming from Mr CollideMovable-1."

For more information on this, see Chapter 14,

The Behavior System. A quick check on

BounceBack’s Important properties reveals there

are none, so let’s roll. If all systems are go, you

should be happily following the terrain and

running into walls like any good physical object.

Wait a minute, where’s the fun in that?

Lesson 4 Summary
Like Viewpoint Tethering, Terrain Following and

Collision Detection are classic simulation building

blocks that you can use in a variety of settings. The

crucial difference to understand in this Lesson is that

Terrain Following is simply an action – that is to

say, the van follows the ground every frame.

Collision Detection also happens every frame –

which is to say the system checks for a collision

between the van and the walls every frame.

However, not every frame does a collision occur.

A trigger can thus be though of as an event detection

mechanism that, when detected, notifies others. In

this case, BounceBack gets notified, which is what

we want, since we only want to bounce back when

we collide. This "If this happens Then do this…"

logical structure is a cornerstone in any

programming system, and now that you see how it

works, you can quickly begin incorporating other

such "high level" interactions.

Behavior Tutorial Review
As we have seen, the idea of a behavior covers a

wide variety of activities. It can be useful to think of

behaviors in terms of Triggers (or events) and

Actions (or responses). Wiring these together forms

a behavior. Consider as an analogy the human

reflex. The Trigger is the event of the hammer on the

knee. The response is the kicking of the leg.

Together this event/response forms the reflex

behavior.

66 Tutorial 3: Using Behaviors Chapter 6 A Quick Tour
The key to understanding Behaviors in WorldUp

lies in the Behavior Scheduler, which is the network

that tells you what happens when and to whom.

In our simple simulation, we scheduled behaviors

off of the "root" of the graph, which means they

were executed every frame. We also scheduled a

behavior that was executed only when an event

occurred (Bounce-Back-1). In addition to these

combinations, there are several other basic

combinations that allow you to achieve a wide

variety of logical situations, including if – then,

while –do, and begin - until. Chapter 14, The

Behavior System will help you understand these

concepts and more in greater detail, as well as show

you how you can author your own behaviors!

For now, take a look at the remaining set of

Triggers, and think about how these might be

combined with the actions to form higher level

behaviors. Start simply at first. For example, how

about adding a PlaySound action to

CollideMovable, so when the van hits the wall, it

makes a crash?

67Chapter 6 A Quick Tour Tutorial 4: Paths – Your Doorway to Animations
Tutorial 4: Paths – Your
Doorway to Animations
In this tutorial, we're going to introduce another way

to add interaction to your simulation: Paths. A path

is a list of position and orientation values that can be

applied to any WorldUp Movable or Viewpoint

object. See Chapter 15, Paths for more information.

In this lesson,you will start with an imported model,

adjust its center points, create simple and complex

animations, and experiment with interpolation

methods.

To begin

" Open the project file titled Tutorial4-1.up in the

\Tutorials directory.

Adjusting the center point of the left wing of the Butterfly

Adjusting the Wing Center Points
Your butterfly is already assembled in a hierarchy,

with the body as a parent of the left wing and the

right wing. The wings are attached to the body, but

their center points are still at the default position.

We need the wings to rotate about the body, so the

first thing we will do is to move their center points

to be in the center of the body. Then, when we rotate

the wings, they will rotate about the body, instead of

around the center or the wing itself.

To adjust the wings

1 Select the body and zoom to it.

2 Select the Object Translate button at the top

of the DevWindow.

You can only adjust the center points of objects

in this mode.

3 Select the right wing by clicking on it.

4 Hold down the SHIFT key.

You will see a red square appear. This square

represents the object’s center point.

5 Drag this until it is over the center of the

Butterfly’s body.

6 Repeat for the left wing.

7 Save the Project.

Lesson 1: WingFlap Animation

To animate the wing

1 Select the body and click the Zoom All

button on the Development window toolbar.

2 Setup your viewports so that you can see what

you are doing from all sides.

Select the last choice in the Display Options

dialog box.

68 Tutorial 4: Paths – Your Doorway to Animations Chapter 6 A Quick Tour
3 Bring up the Path Browser by clicking on the

Browser – Toggle Path button on the

toolbar, or by selecting Path Browser from the

View Menu.

4 Create a new path by clicking the New Button.

You will see the following dialog, asking

whether you want to create a new path, or an

interpolated path.

5 Select New path, and click OK.

The system will automatically name it Path-1 for

you, with a corresponding file name of Path-

1.PTH. No actual file exists until you explicitly

save your path. You should always rename it to

something that makes sense to you before saving

the path, otherwise you end up with multiple

Path-1.PTH files, and may become confused as

to which is which.

6 Double-click on the Target column of your new

path to set a Record From Target.

Since this is an animation of the right wing,

select that as your target, and Click the Add

Button. You will see that the Rwing shows up as

a Playback Target and as a Record From Target

for this path.

7 Click OK.

You should now see the Target set to Rwing in

the Path Browser. Your path has zero elements,

because it is still empty.

We are now ready! Lets record the first frame of our

animation right here, with the wings in the open

position.

8 Click the Record 1 Frame button on the Path

Browser to record the first frame.

Note that the number of elements in the path is

now 1. Whee!

9 Right-click on the right wing in the Scene Graph

pane, and select Position Object.

10 Pick the Orientation tab, and move the roll slider

until the wing is in the fully-flapped position.

Try a Roll of -80.

69Chapter 6 A Quick Tour Tutorial 4: Paths – Your Doorway to Animations
11 Click OK.

12 Click the Record 1 Frame button on the Path

Browser to record your second frame.

Note that the number of elements in the path is

now 2. This is a very simple path, so this is the

last frame. Our path is done.

13 Try playing the path by clicking the Rewind

button on the Path Browser, then clicking the

Run button.

The path plays once and stops. To play it again

you will have to rewind it. Set the path to loop

and press play. Now the path will play

indefinitely, and you can get a good idea of what

your flapping animation will look like. It’s a little

too fast and jerky.

We can smooth it out and slow it down by

interpolating the path.

14 Click New on the Path Browser.

15 Select Path-1 from the pull-down menu in the

Create Path dialog box.

16 Type 5 into the Increase elements by box.

This inserts five elements between each of our

old elements, which will make the path smoother

and slower. Since one path element is played per

frame, we have increased the duration of our path

from two frames to six frames, so the butterfly

flaps 1/3 as fast.

17 Click OK.

18 Set the playback Target of your new path to

Rwing to see it play back, similar to Step 6.

19 Click Add and then OK.

Now you can delete Path-1 since we don’t really

need it. We just created it to interpolate from. We

will be prompted to save Path-2 as an

independent, non-interpolated path now.

20 Click Yes.

21 Rename your path to RwingFlap.

To do this, go to the Type Workview, find the

Path Type and expand it, locate your path and

edit its Name property.

22 Now repeat these steps to flap the left wing,

except set the roll to +80 in the second element,

instead of –80.

When you are done, you should have two paths,

called RwingFlap and LwingFlap. You can play

them together, by holding down the CTRL to

select the names of both the paths, then clicking

Play. Pretty cool.

23 Save the project.

This prompts you to save your paths as well.

That’s a good idea, lets do it.

70 Tutorial 4: Paths – Your Doorway to Animations Chapter 6 A Quick Tour
You have a flapping butterfly, congratulations.

Select the body and you can have fun making your

flapping butterfly fly around by dragging it with the

mouse.

Lesson 1 Summary
The wing flap path Lesson gave you a feel for how

to create and playback simple and interpolated

paths, and how to rename them.

Lesson 2 A Longer Animation
Now a butterfly flapping its wings is a wonderful

thing to behold, but even cooler would be to see it fly

around in that carefree way that butterflies have! We

will record a longer animation of the butterfly

flitting about the world. For this animation we rely

on the fact that the wings are children of the body.

We can animate the body and the wings will fly

around attached to it. Since this animation is more

complicated, I made a helper structure out of blocks

first, to help me get the orientation of the butterfly

right, so that it is always facing in the direction that

it is flying.

Import the world tutorial4-3.up, and note the blocks

that I have positioned for the path I am making. Each

block represents the position of the Butterfly for one

path element. The distance between the blocks

determines the relative speed of the butterfly. If you

wanted your butterfly to fly at a constant speed, you

would need to place your blocks exactly the same

distance apart. I used uneven spacing, so that at

times the butterfly is speeding up, and at times it is

flying slower. This makes the motion look more

realistic.

1 Create a new path (non-interpolated) and set the

Target to Body.

In the scene graph, it is helpful to lock the body

as the selection using the Lock Selected

button, so you don't deselect it accidently.

2 Move the Body so that it is over the first block in

the Development window, Block-0.

3 Orient the Body to look towards Block-1.

4 Record one frame.

In the Property pane with the Important tab

selected, you can view the Translation and

Rotation property values for the frame you just

recorded.

The values don’t have to be exactly the values

shown in this Tutorial, but something close to

them means you're on the right track in creating

your animation.

You should have a Translation of (0.000000

0.000000 0.000000) and a Rotation of

(0.000000 0.000000 0.000000 1.000000).

5 Move the Body to Block-1 (using the Rotate

Object tool or the positioning dialog) and orient

it (using the Rotate Object tool or the positioning

dialog) to look towards Block-2.

Note Remember you can right-click and select

Position Object with your cursor on Body.

6 Record one frame.

You should have a Translation of (0.470277

0.000000 2.365093), and a Rotation of (-

0.125140 -0.270752 0.053865 0.952960)

7 Move the Body to Block-2, orient it to look

towards Block-3, and record one frame.

You should have a Translation of (4.834613 -

8.900558 8.266823), and a Rotation of (-

0.262064 -0.734272 0.144990 0.609216).

71Chapter 6 A Quick Tour Tutorial 4: Paths – Your Doorway to Animations
8 Move the Body to Block-3, orient it to look

towards Block-4, and record one frame.

You should have a Translation of (7.420220 -

12.141972 5.765294), and a Rotation of

(0.058921 -0.793465 -0.085788 0.599651).

9 Move the Body to Block-4, orient it to look

towards Block-5, and record one frame.

You should have a Translation of (20.523592 -

9.167504 3.858362), and a Rotation of

(0.023860 -0.960125 0.107181 -0.257103).

10 Move the Body to Block-5, orient it to look

towards Block-6, and record one frame.

You should have a Translation of (16.338177 -

12.147344 -5.011420), and a Rotation of

(0.038578 0.763583 -0.238163 0.598942).

11 Move the Body to Block-6, orient it to look

towards Block-7, and record one frame.

You should have Translation of (4.556245 -

16.004597 -9.549655), and a Rotation of (-

0.086254 -0.888132 -0.025451 -0.450703).

12 Move the Body to Block-7, orient it to look

towards Block-8, and record one frame.

You should have Translation of (2.516228 -

13.548829 -12.062134), and a Rotation of

(0.198164 0.361845 -0.143863 0.899501).

13 Move the Body to Block-8, orient it to look

towards Block-9, and record one frame.

You should have Translation of (-9.066780 -

8.501297 -2.413167), and a Rotation of

(0.253034 -0.616815 -0.319437 0.673404).

14 Move the Body to Block-9, orient it to look

towards Block-0, and record one frame.

You should have Translation of (-0.304579 -

1.260750 0.896567), and a Rotation of(-

0.082994 -0.631824 0.012978 0.770547).

15 Move the Body to Block-0, orient it to look

towards Block-1, and record one frame.

You should have Translation of (0.000000

0.000000 0.000000), and a Rotation of

(0.000000 0.000000 0.000000 1.000000). This is

the last frame.

16 Play back the path using the play option of your

choice and check how you like it.

If anything looks wrong, step through the

elements one by one using the Play1 button. If

you want to modify one of the elements, step to it

and select the edit Element button. You can then

reposition the body as you like and re-record the

frame.

Our rough path is recorded, now we will

interpolate it like we did with the flapping paths

in Lesson One. This time lets try all three of the

interpolation types to see how they are different.

17 Make a Linear interpolation, a Bezier

interpolation, and a B-Spline interpolation of

your path. Use the default value of 10 elements.

18 Rename your paths in the Type Workview, before

you forget what they are.

Name them to FlyAround Bezier, FlyAround

Linear, and FlyAround B-Spline, respectively.

Now, let’s compare the paths.

19 Select the body node.

20 Right-click and select Duplicate Tree to clone

the butterfly.

A Duplicate Attachments dialog box appears.

72 Tutorial 4: Paths – Your Doorway to Animations Chapter 6 A Quick Tour
21 Click Create New Path in the dialog box and

click OK.

22 Repeat to make a third butterfly.

23 Open the Path Browser.

24 Assign each FlyAround path to a different

butterfly body, and start all of the butterflies

flapping.

25 Now select all of the FlyAround paths, and select

Play 1 to let you step through and see how they

are different.

Or, just click Play. Pick the one you like the best

to use in the Vehicle simulation.

26 Save the project and all of your paths.

Lesson 2 Summary
Making a complicated animation can be

challenging, and this example shows you a few

tricks to make it easier. We also learned how to find

and edit elements as desired. We learned about the

effects of different types of interpolation.

73
7
Using the Workviews

This chapter provides a description of the overall

Project Workview and each individual Workview.

What are Workviews?
The new Workviews provide a more efficient work

flow by simplifying the user interface, using tabs, to

focus on the current task. The Project Workview

refers to the overall tabbed interface that brings

often-used features of WorldUp into your view.

The term view in this case should not be confused

with a visual view of the simulation, but is rather an

organizational/informational view of a certain

aspect of the project required to perform a particular

type of work in WorldUp.

The Project Workview
The Project Workview has a row of tabs along the

top that allow you to select a certain view of the

project. These tabbed views are the Scene, Model,

Behavior and Type Workviews.

The Project Workview displays a single Workview

at a time selected by the tab. Each Workview is a

collection of sub-windows that display information

necessary to accomplish a specific type of task in

WorldUp. These nested subregions are called panes

to differentiate them from windows. A window can

74 Scene Workview Chapter 7 Using the Workviews
be moved independently, while a pane is fixed in a

position within a window, possibly resizable using a

splitter.

Scene Workview
The Scene Workview is the most commonly used

workview for creating new objects, editing their

properties, assembling the scene, and laying out the

scene graph. The Scene Workview consists of the

Nodes pane on the left, the Scene Graph pane on the

right, and the Property pane at the bottom.

Scene Workview

The Nodes pane shows all the Node types, which are

the types that can be added to the scene graph, and

their instances. Here you can create new objects by

clicking on the Instantiate Selected Type button

or by dragging and dropping the type from the

Nodes pane to the Scene Graph pane.

The supported Node types are geometries of type

Block, Cone, Cylinder, Imported, Sphere and

Text3D; Lights of type DirectedLight, SpotLight

and PointLight; Groups of type Group, Switcher,

and LevelOfDetail with other types such as Fog,

MaterialNode and RenderNode.

The Scene Graph pane displays the scene graph,

which shows how the objects are organized in your

scene. You can rearrange the objects in a scene

graph using the drag and drop method.

Note The following types are special in that they

cannot have children: Fog, MaterialNode, and

RenderNode. Also, the Geometry and Light types

are abstract which means they cannot be

instantiated. You use their derived types instead.

The Property pane is helpful for viewing and

changing the properties of an object. The Property

pane has four tabs:

All – Shows all the properties of the selected object.

The properties shown in Red are protected or read-

only which means they cannot be changed.

Important – Shows the most specific and basic

properties of an object which are required to create

the object.

Subtype – Shows all the properties that exist in the

derived type that don’t exist in its parent.

Editable – As the name says, lists all the properties

which can be edited.

You can create custom subtypes of any of the Node

types in this Workview, adding properties as

necessary. You cannot add or delete properties for

the built-in types. You can delete properties that you

have added to your custom types.

Property
pane

Nodes
pane

Scene Graph
pane

Toolbar

Window
splitters

75Chapter 7 Using the Workviews Model Workview
The Toolbar contains icons that represent

commonly used commands.

Model Workview
The Model Workview is the center for importing

models into a WorldUp simulation.

Model Workview

The process of importing objects is first loading a

3D model in the Model Workview, previewing the

model, and then adding the model to the scene

graph. The loading process allows you to scale the

geometry, combine all the geometries, or make the

midpoint of an object its center.

Create Subtype – Creates a subtype of the

selected type in the Nodes pane. You can

customize subtypes by adding new

properties.

Instantiate Selected Type – Creates a new

object based on selected object type in the

Nodes pane. Adds the new object under the

Type in the Nodes pane and to the end of

the scene graph in the Scene Graph pane.

You can also drag-and-drop a Type from

the Nodes pane to the Scene Graph pane.

Add Property – Adds a new property to the

selected subtype. The Add Type Property

dialog appears to enter the name, type and

initial value for the new property. New

properties can be added only to subtypes,

not to built-in types.

Remove Property – Deletes properties of

selected subtype. Only properties added to

a subtype can be removed.

Delete Selected – Deletes the selected

object. You can delete multiple objects at

once by selecting the objects while holding

down the CTRL key. You can also use the

DELETE key to delete objects from the

scene graph.

Duplicate Selected – Copies the selected

object.

Duplicate Selected with Children – Copies

the selected object and all of its children.

Expand Selection – Expands the scene

graph tree to display selected object’s

children.

Collapse Selection – Collapses the

selected object’s tree.

Zoom to Selection – Zooms to the selected

object in the Development window.

Preview
pane

Imported
Models

pane

Scene
Graph
pane

Toolbar

Window
splitter

76 Behavior Workview Chapter 7 Using the Workviews
The Preview pane displays the loaded object and its

properties, such as number of polygons, dimension,

etc. To add a loaded object to the scene, you drag

and drop the whole object or parts of it to the desired

location in the scene graph.

For more details on how to import models, see

"Importing Models from Third Parties" on page 105.

The Toolbar contains icons that represent

commonly used commands.

Behavior Workview
The Behavior Workview is where all behavior

creation and scheduling is done. The Behavior

Workview contains four panes which together allow

you to create a new behavior, schedule the behavior,

add inputs to the behavior, edit the behavior’s

properties, and finally export the behavior for re-

use.

For more details on adding behaviors to your scene,

see Chapter 14, The Behavior System.

Behavior Workview

The Behaviors pane lists all of the registered

Behavior types that you can create. The three key

types of behaviors are Group, Trigger, and Action.

The Task Scheduler pane shows the execution flow

of all scheduled behaviors, as well as each

behavior’s inputs. This allows you to both see the

execution order and to drag-and-drop objects onto

specific inputs.

The Scene Graph pane provides you with a source of

objects from which to drag onto a behavior’s inputs.

The Property pane allows you to quickly identify

and modify a behavior’s parameters. (Use the

Subtype tab for a quick view of properties specific

to a certain behavior.)

Import New Model – Imports a new model

into the project.

Remove Model from Project and Memory

– Removes the selected model from the

project.

Reload Model – Reloads the selected

model if it has been modified without

having to reload the project.

Unreference Model – Deletes all objects

from the scene that refer to the selected

model. The model remains in the Model

Workview.

Behaviors
pane

Scene
Graph
pane

Toolbar

Property
pane

Task Scheduler
pane

Window
splitters

77Chapter 7 Using the Workviews Type Workview
The Toolbar contains icons that represent

commonly used commands. In addition to the

commands available in the Scene Workview, the

Behavior Workview contains the following icons:

Type Workview
The Type Workview allows you to create custom

subtypes, viewing and changing type and object

properties. The Type Workview consists of a Type

pane and a Property pane.

Type Workview

The Type pane displays the complete set of

WorldUp types, including non-Node types such as

Windows, the Universe, Sensors, and MotionLinks.

The Property pane shows the properties of the

selected type or object in the Type pane.

The Toolbar contains icons that represent

commonly used commands. These commands are

explained in the Scene Workview as their functions

are exactly same in Type Workview.

Unschedule Behavior – Removes a

behavior from the Task Scheduler.

Edit Behavior Scripts – Opens the Script

Editor and displays the contents of the

selected script.

Edit Inputs – Allows you to edit the

behaviors inputs and outputs.

Behavior Wizard – Opens the Behavior

Wizard dialog box.

Import Behavior – Imports a behavior

script.

Export Behavior – Exports the current

behavior for use later.

Toolbar

Type
pane

Property
pane

Window
splitter

78 Type Workview Chapter 7 Using the Workviews

79
8
Development
Window –
Navigation and
Manipulation

This chapter describes the various navigation and

manipulation methods available for viewing your

graphical objects and moving around your scene in

the Development Window. This chapter also

explains how to set up multiple viewports, change

views, and customize display options, such as

shadows and grids.

The Development Window
The Development window is where your scene is

rendered. This is the window you use to interact

with the 3D scene while authoring your simulation.

The Development window and its various parts are

shown in the following diagram.

80 Moving Around the Simulation Chapter 8 Development Window – Navigation
and Manipulation
The Development Window and Toolbar

The navigation and manipulation tools located on

the Development window toolbar are described in

detail in this chapter.

Moving Around the Simulation
This section discusses panning, rotating, and

zooming in the Development window.

 Pan Viewpoint
Clicking and dragging in the Development window

with this tool selected translates (pans) the

viewpoint in a horizontal and vertical direction. The

amount of translation is in proportion to the

proximity to the viewpoint target.

The viewpoint target is a virtual point projected

along the z-axis of the viewpoint. When WorldUp is

first started, this viewpoint is centered at the

X-Pan Slider

Y-Pan Slider

Viewpoint Name

Active Viewport

Toolbar

Zoom Slider

Pan
 V

iew
po

int

Rot
at

e V
iew

po
int

Zoo
m

 to
 Ta

rg
et

Zoo
m

 to
 S

ele
cte

d

Zoo
m

 A
ll

Fr
am

e o
f R

efe
re

nc
e

Con
str

ain
ts

Tra
ns

lat
e

Obje
ct

Rot
at

e
Obje

ct

Fr
ee

 F
ly

Sele
ct

Obje
ct

Lo
ck

 S
ele

cte
d

Disp
lay

 O
pt

ion
s

Cha
ng

e

View

81Chapter 8 Development Window – Navigation
and Manipulation

Moving Around the Simulation
universe origin. Panning, rotating, and zooming the

viewpoint changes the position of the viewpoint

target.

 Rotate Viewpoint
Clicking and dragging in the Development window

with this tool selected rotates the viewpoint about an

axis formed in the direction of the world y-axis

through the viewpoint target. Up and down dragging

results in a rotation about an axis formed in the

direction of the local x-axis of the viewpoint through

the viewpoint target. Think of this in terms of a pole

which has the viewpoint attached to one end and the

other end is fixed to a pivot.

If an object is selected, the viewpoint target is the

midpoint of that object. If no object is selected, the

viewpoint target is the midpoint of the Root node,

which is the bounding box center of all objects

combined in the scene graph. Vertical rotation is

limited to a 180 degree arc between looking straight

down and directly up along the world y-axis.

This selection is disabled for orthographic views in

order to keep the orientation of the viewpoint intact.

Zoom
In addition to the methods already described in this

section, several controls allow you to zoom in on

your viewpoint.

 Zoom to Target
Clicking on an object when using this tool results in

a smooth transition of the viewpoint to a new

position that is closer to the point of intersection of

the pointer and the target object. The amount of

zoom is about 70 percent of the original distance.

This tool can be used to quickly navigate among

readily visible elements in the universe. This tool is

disabled for orthographic views in order to keep the

orientation of the viewpoint intact.

 Zoom to Selected
Zoom to Selected adjusts the viewpoint by fitting

the window as close as possible to the bounding box

around the selected node.

This option is disabled when nothing is selected or

the object is a non-Movable. See Chapter 12,

Editing 3D Objects for more details.

 Zoom All
Zoom All works exactly as Zoom to Selected except

the selection set is always the entire scene graph.

WorldUp adjusts the viewpoint by fitting the

window to the smallest sphere that could be drawn

around all the graphical objects in the simulation.

Thus, the distance from the viewpoint to your

objects depends on the height and width ratio of the

window.

Zoom All creates an
imaginary sphere around all
of your graphical objects and
moves the viewpoint as close
to that sphere as the window
will allow.

82 Manipulating Objects Chapter 8 Development Window – Navigation
and Manipulation
 Free Fly
Free Fly allows you to navigate around the scene as

if you are in a helicopter. Free Fly is a motion link

that is connected only to the default perspective

viewpoint.

This feature is disabled for orthographic views.

Manipulating Objects
Several tools are available for selecting, translating,

and rotating objects in your scene.

 Translate Object
Translate Object translates the selected object in the

current reference frame. Holding down the left

mouse button and dragging translates in the x,z

plane passing through the center point of the

selection. If multiple objects are selected, the

translation plane is that of the first object traversed

in a normal scene graph traversal.

Dragging the mouse with the right button held down

results in a translation along the Y-axis in the

selected reference frame.

You can select a new object with this tool by

clicking on the object. Clicking while holding down

the CTRL key allows multiple selections.

The origin offset of an object can also be moved

using this tool. The origin offset defines the origin of

the coordinate axes about which an object rotates.

To move the origin offset of a selected object, hold

down the SHIFT key while dragging. A red rectangle

appears around the midpoint of the object and

further dragging applies to the translation of the

origin offset of the object.

 Rotate Object
Rotate Object rotates the selected object in the

current reference frame. Holding down the left

mouse button while dragging up and down the node

rotates the object clockwise and counter-clockwise

about the selected rotation axis. This axis of rotation

is displayed in red.

Holding down the right mouse button in this mode

quickly selects another rotation axis in this order: x,

y, z, repeat. Selecting the corresponding Constraint

button produces the same results.

In this mode, new objects can be selected by

clicking on them. Clicking while holding down the

CTRL key allows multiple selections.

 Constraints
Constraints allow you to define the axes in which to

translate and rotate objects. By clicking on the x, y,

or z button in translation mode, you lock translation

to that particular axis. When rotating objects, this

selects the axis to be rotated about. In rotate object

mode, right clicking changes the axis to rotate about.

An axis constraint button is disabled whenever it is

not possible to translate or rotate on that axis.

 Frame of Reference
The Frame of Reference pull-down menu allows

you to select a reference frame (coordinate system)

about which objects are translated and rotated. Four

reference frames are available:

• World – Object manipulation is performed in the

universe’s reference frame.

• Parent – Object manipulation is performed

relative to the frame of the node’s parent. If the

parent is the Root node, this selection works

exactly the same as World.

83Chapter 8 Development Window – Navigation
and Manipulation

Manipulating Objects
• Local – All manipulations are relative to the

selected node’s local frame.

• View – Object manipulation is performed in

relation to the viewpoint’s frame.

See "Coordinate Systems" on page 13 for more

details on reference frames.

 Select Object
Select Object allows you to select different objects

in the scene, if Lock Selected is not enabled. To

select multiple objects, hold down the CTRL key.

 Lock Selected
Lock Selected locks the current set of selected

objects. The selection set can include graphical and

non-graphical objects.

Using the Window Sliders
The three slider controls on the left, right, and

bottom edges of the Development window allow

you to control the viewpoint’s current position along

each axis.

• Left slider (Y axis) – Drag to move your

viewpoint up or down.

• Right slider (Z axis) – Drag to move your

viewpoint forward or backward (zoom in or out

on the scene).

• Bottom slider (X axis) – Drag to move your

viewpoint left or right.

Changing Views
The Change View button on the

toolbar displays a pull-down menu

allowing you to select a viewpoint for

the active viewport.

The icon on the pull-down menu

indicates orthographic view and the

 icon indicates perspective view.

To change your view

1 Click the Change View button.

2 Select one of the views on the pull-down menu

for the active viewport.

Perspective mode is a three-dimensional view of the

universe. Orthographic mode is a two-dimensional

view of the universe. You may find orthographic

mode helpful for positioning objects.

Setting Display Options
You can change the appearance of the panes in the

Development window using the display options.

To set the display options

1 Click the Display Options button.

84 Setting Multiple Viewports Chapter 8 Development Window – Navigation
and Manipulation
The Display Options window appears.

The Grid, Dropline, Axes and Shadows check-boxes

allow these features to be toggled on and off. The

adjacent colored buttons show the currently selected

colors for each feature.

The Grid is composed of major and minor lines. The

buttons next to Grid are for assigning the color for

major grid lines, minor grid line, and the world axis

line respectively. Clicking on any of these buttons

brings up a standard color selection dialog box

allowing you to select new colors.

Grid Size alters the dimensions of the grid in each

direction. Clicking on the padlock icon to the right

of the Grid Size text boxes allows you to lock one

value to the other so that the grid is always square.

Autosize Grid evaluates the dimensions of the

universe and creates a reasonable grid. The divisions

and units do not change.

Distance between major grid lines specifies the

distance in units between major grid lines.

Minor subdivisions per major line specifies the

number of minor subdividing lines between each

major grid line.

Degrade to Wireframe during transition, when

checked, causes rendering to be performed in

wireframe mode. Transitions and object

manipulations, by default, degrade rendering to

wireframe mode for better visibility while in use. To

turn this off, uncheck the check-box.

Viewpoint Spin, when checked, keeps rotating the

viewpoint when dragged and left in viewpoint rotate

mode.

Configure Viewports allows you to select the number

of viewports to display in the Development window.

Setting Multiple Viewports
Viewports allow you to set up multiple panes in a

single Development window in which you render

different views of the scene. This feature helps you

to position and align objects in the scene. Each

viewport can be set up to have a custom perspective

view or built-in orthographic views of front, back,

right, left, top, and bottom.

85Chapter 8 Development Window – Navigation
and Manipulation

Setting Multiple Viewports
When using multiple viewports, you select one

viewport at any given time on which all the

navigation happens. This viewport is called the

active viewport and is highlighted with a white

border.

Manipulation of an object affects that object in all

the viewports since rendering happens in all the

viewports. Navigating with a viewpoint only affects

the viewport to which it is attached. If the same

viewpoint is attached to more than one viewport, the

navigation changes the views of all those viewports.

A viewport can be set as the active viewport by

clicking anywhere in the pane.

To configure multiple viewports

1 Click the Display Options button.

2 Select Configure Viewports on the Display

Options window.

The Viewport Layout dialog box appears.

3 Select the viewport layout you wish to use.

4 Click OK.

The selected viewport arrangement is created in the

Development window using standard viewpoints.

You can change the viewpoint in each viewport

using the Change View button as described in

"Changing Views" on page 83.

Setting the Mouse Sensitivity
You can control the speed at which you navigate

through a simulation by specifying the percentage of

the universe’s total size that you want to cross with

each mouse click.

To set the mouse sensitivity

1 Click the Mouse Sensitivity button.

The Set Mouse Sensitivity dialog box displays.

2 Drag the slider or enter a specific number in the

text box to set the desired percentage.

For example, if your current setting is 1, entering

10 enables you to navigate ten times faster than

your current speed. Each mouse click moves you

a distance equivalent to 10% of the size of the

universe.

3 Click OK.

86 Setting Multiple Viewports Chapter 8 Development Window – Navigation
and Manipulation

87
9
Objects and
Properties

This chapter defines objects and properties, and

describes how to create, delete, duplicate, and find

objects

Objects
Objects are one of the core building blocks upon

which your simulation is built. Graphical objects are

the objects that you can see in the Development

window. The objects in a scene/simulation are what

ultimately get drawn. Objects may be created or

imported.

Creating an Object
You create objects from types in the Type

Workview or the Nodes pane of the Scene

Workview. Types serve as templates that contain the

properties required to create a particular object.

Thus, when you create an object, it contains all of

the properties of the type from which it was created.

Note For some object types, tadditional methods are

available for creating an object. These are discussed

in the object type's related Workview chapter.

88 Objects Chapter 9 Objects and Properties
To create an object

1 In the Type Workview or the Nodes pane of

Scene Workview, select the object type that

contains the properties you want your new object

to have.

Note If a pre-defined object type includes pre-

defined subtypes, in some cases you cannot create

objects from the parent type. For example, you

cannot create objects from Geometry, but you can

create objects from Block, Cylinder, Cone,

Sphere, and Text3d.

2 Click the Instantiate Selected Type button.

This creates a new object of the selected type

with a default name. You can modify the object’s

name later using the Name property in the

Property pane.

For certain object types, WorldUp prompts you

for specific information at this point. For

example, creating a Sound object requires you to

select the filename for the .WAV file you want

the object to reference.

You can see your new objects in the Type

Workview, indented under the type from which

they were derived. If the objects that you created

were descendants of the Node object type, the

new objects also appear in the Nodes pane of the

Scene Workview.

Deleting an Object

To delete an object

1 In the Type Workview or Scene Workview, select

the object that you want to delete.

2 Press the Delete Selected button.

Duplicating an Object
You can copy an object by itself or with all of its

children attached.

To duplicate objects

1 In the Type Workview or Scene Workview, select

the object that you want to duplicate.

2 Click one of the following buttons:

• Duplicate Selected – copies the selected

object only.

• Duplicate Selected with Children – copies

the selected object, plus any child objects it

may have. For more information on the scene

graph and child objects, see page 23.

The duplicated object contains the same

properties and property values as the object from

which it was duplicated.

For information on modifying property values, see

page 91.

You can also duplicate objects from the Scene

Graph pane by holding down the CTRL key as you

drag nodes within the scene graph. The new objects

are automatically named based upon the names of

the objects from which they are duplicated. You can

later rename the duplicated objects.

Creating and Deleting Subtypes
You create subtypes from existing types. When you

create a subtype, it inherits all of the properties of

the type from which it was derived and becomes

subordinate to that type.

The two cases in which you create a subtype are as

follows:

• You have or are creating an object that will

requires a user-defined property.

89Chapter 9 Objects and Properties Properties
You cannot add properties to pre-defined object

types, so you must create your own type to which

you can add the property. Once you have created

the type and added the necessary properties, you

can create new objects from that type and they

inherit those new properties, or you can drag

existing objects of the same type onto the user-

defined type, and those objects now inherit the

new properties.

• You want to create multiple objects that require

the same value for certain pre-defined properties.

For instance, in your simulation you plan to

import several different models of cars, and you

will be attaching a script called RACE.EBS to

each car. You could create a subtype of Imported

called Race and set its Tasks property to

RaceScript. Any models that you drag onto this

type from the Resource Browser will inherit the

RaceScript value for the Tasks property.

To create an object type

1 In the Type Workview or the Nodes pane of the

Scene Workview, click the type that contains the

same basic properties you want your new

subtype to have.

Note If a pre-defined object type includes pre-

defined subtypes, in some cases you cannot create

subtypes from the parent type. For example, you

cannot create subtypes from Geometry, but you

can create subtypes from Block, Cylinder, Cone,

Sphere, and Text3d.

2 Click the Create Subtype button.

This creates a new subtype of the selected type

with a default name. You can modify the

subtype’s name later using the Name property in

the Property pane.

You can see your new subtype in the Type

Workview or the Nodes pane of the Scene

Workview, indented under the type from which it

was derived.

To delete an object type

1 In the Type Workview or the Nodes pane of the

Scene Workview, select the user-defined type

that you want to delete.

2 Click the Delete Selected button.

Finding an Object
You can locate an object in your project using the

Find Object command.

To find an object

1 Select Find Object from the Edit menu.

The Find Object dialog box displays.

2 In the Name box, type the exact name of the

object you are looking for and click OK.

WorldUp selects the specified object if it exists.

Properties
You can add properties to user-defined object types

only. WorldUp provides several pre-defined

properties with each pre-defined object type, such as

Name for all object types and Background Color for

the Window object type.

For a description of all WorldUp properties, click

WorldUp Contents from the Help menu and open

the Properties topic.

User-defined properties are not used by WorldUp

until they are referenced from scripts or used to

trigger reactions to events. Scripts can reference any

properties, pre-defined or user-defined. Likewise,

90 Properties Chapter 9 Objects and Properties
you can use both pre-defined and user-defined

properties to trigger event reactions (though not all

pre-defined properties generate events).

For more information on scripts and events, see the

WorldUp Programmer’s Manual.

When you select an object or object type, its

properties are displayed in the Property pane. If you

have multiple objects/types selected at once, the

Property pane displays a collective list of properties

for all the selected objects/types, but only displays a

value for a property if it is a property and value that

all the selected objects/types have in common.

An object’s properties can be created, changed, or

removed during run time. They can also be inherited

from their parent type during run time, hence

WorldUp supports dynamic inheritance. When the

simulation is running, the changes you make to an

object’s properties take effect immediately.

Likewise, any property changes that are made by

scripts and behaviors are reflected in the Property

pane, if you have enabled the Update Properties

From Script option (see "Automatically Updating

Properties" on page 92).

Adding a Property

You can add properties to user-defined object types

only.

To add a property

1 In the Nodes pane of the Scene Workview, click

the user-defined type to which you want to add

the property.

Note You cannot add properties to pre-defined

object types (that is, the WorldUp default object

types). You can only add properties to user-

defined object types. See page 88 for instructions

on how to create an object type.

2 In the Scene Workview toolbar, click the Add

Type Property button.

The Add Type Property dialog box displays.

3 Enter a unique name for the new property in the

Property Name field.

You can see a list of all of the existing property

names for the selected type by clicking the drop-

down list.

4 In the Property Type section, click a data type for

the property.

To choose an object type as the data type, click

Object, then click on an existing object type from

the drop-down list.

For a description of each data type, search for

Data Types in the online Help.

5 Type a value in the Initial Value box.

6 This is the value that will initially be assigned to

the property. You can later modify this value (see

"Modifying a Property Value" on page 91).

Note You can leave the Initial Value box empty

and the default value will be used. This value is

dependent on the data type. For example, the

default value for Boolean is False and the default

value for an Orientation is 0, 0, 0, 1.

91Chapter 9 Objects and Properties Properties
7 Click Add.

8 If desired, continue adding properties to the

selected type in this manner.

9 When you are finished, click Done to close the

Add Type Property dialog box.

The properties you created now appear in the

Property pane for the selected object type, and for

any subtypes or objects nested within that type. You

can see a list of the user-defined properties for the

selected type or object by clicking the Subtype tab of

the Property pane.

Removing a Property

To remove a property

1 In the Type pane, click the object type whose

property you want to remove.

2 In the Property pane, select the property you

want to remove by clicking somewhere within

the property row.

3 Click the Delete Type Property button.

Modifying a Property Value
You can modify the value of any property that

appears in black text in the Property pane. Properties

that appear in red text are read-only.

To modify a property value

1 In the Type pane, click the object or object type

whose properties you want to modify.

2 In the Property pane, click the tab that contains

the properties you want to change.

• All – Lists all properties of the selected object

or object type.

• Important – Lists the most specific and basic

properties of an object which are used to

create the object, such as Filename for Sound

objects or Height for Block objects.

• Subtype – Lists only the properties of the

subtype which are not present in the parent

type.

• Editable – Lists only properties whose values

can be edited at any time.

3 Select the property whose value you want to

modify by clicking somewhere within the

property row.

4 To modify the value of any editable property,

click on the selected property in the Value

column.

In most cases, this brings up an edit box in which

you can type in the value.

5 When finished typing, press ENTER.

The new value replaces the old one in the

Property Value column of the selected row.

Many property data types allow for alternative

methods of modifying property values that you may

find more convenient. The following table describes

these methods for each data type.

92 Properties Chapter 9 Objects and Properties
Automatically Updating Properties
Property changes made by scripts and behaviors can

be updated in the Property pane automatically.

To automatically update changes made from scripts

1 On the Options menu, select File Access

Settings.

The Settings dialog box appears.

2 Select the option called Update Property

Changes From Script and click OK.

Editing Properties In-Place
Many properties can be edited directly in the

Property pane. Read-only properties are displayed in

Red and cannot be edited.

To edit properties in-place

1 Double-click on the Name of a property.

2 To edit the text value in-place, do a slow double-

click in the Value column.

This is the same type of click you use to rename

a file on your desktop or in an Explorer window.

If the property cannot be edited in-place, its edit

dialog appears.

Data Type To modify the property value...

Boolean Double click on the Name column of the property to toggle between True and False.

List Double-click on the Name column of the property to display the Edit List dialog box. In the
Objects box, click an object, then click Add to add it to the property’s list. To remove an object
from the list, click the object in the List box, then click Remove. To change the order of the
objects in the list, use the Up and Down buttons. Click Done when you are finished.

Vect3D or Orientation Double-click on the Name column of the property to display a dialog with controls to help you
select new values.

Filename Double-click on the Name column of the property to display the Open dialog box. Navigate to
select the name of the file that contains the information you need and click Open.

Object Double-click on the Name column of the property to display a list of all objects that are
descendants of the type specified as the data type. Click the desired object, then click OK.

Material Double-click on the Name column of the property to display the Choose Material dialog box.
Click the desired color, then click OK.

LOD Ranges Double-click on the Name column of the property to display the Level Of Detail Ranges dialog
box. See "LevelOfDetail Nodes" on page 26 for instructions on using this dialog box.

RGB Double-click on the Name column of the property to display the Color dialog box where you can
choose a new color.

Integer, Single,
String, or Vect2d

Double-click on the Name column of the property to open an edit box in which you can type in
a new value and then press ENTER.

93Chapter 9 Objects and Properties Properties
3 Type in the new value and press ENTER.

You can also copy the value by pressing CTRL-C.

Then you can paste the value by pressing CTRL-V

into any other property that is of the same type

(provided that it is not read-only).

Property Types and How They Can Be Edited

Property Type Edit In-place Edit Dialog Special Cases

Integer YES Active Child and Serial Baud Rate Properties have edit
dialog boxes.

Boolean YES Double-clicking toggles value.

String YES Serial Port has an edit dialog box.

Double YES

Long YES

Float YES

Vect 2D YES

Vect 3D YES YES

Quaternion YES

Filename YES

Material YES

Resource Entry YES

RGB YES

List YES

Object YES

LOD Ranges YES

Constraints YES

Event YES

94 Properties Chapter 9 Objects and Properties

95
10
Windows, Viewports,
and Viewpoints

This chapter discusses windows, viewports,

viewpoints, and their relationships.

Windows and Viewpoints
Each window has a viewpoint associated with it.

The viewpoint defines the position and orientation

from which the graphical universe is projected to the

computer screen and rendered within a window. The

viewpoint represents the point of view of the

observer. As you navigate through a simulation, you

are constantly changing the viewpoint.

The two types of windows are:

• Application window – The window in which the

simulation displays when you run the simulation

as an application within WorldUp, or when your

end-users run the simulation using one of the

WorldUp players. You can add navigation control

panels to application windows, providing a

graphical interface from which the end-user can

navigate through your simulation.

• Development window – The window in the

development environment where you can

navigate and manipulate the scene as you

develop the simulation. For more information on

the Development window, see Chapter 8,

96 Clipping Planes Chapter 10 Windows, Viewports, and Viewpoints
Development Window – Navigation and
Manipulation. You can set up multiple viewports

for the Development window using the Viewport

Configuration dialog box. For more information,

see "Setting Multiple Viewports" on page 84.

You can use a sensor (such as a mouse) or a recorded

path to control a viewpoint. As you move the sensor

or play the path, the viewpoint moves automatically

enabling you to navigate within a graphical

simulation. Using sensors or paths to navigate gives

you control over what you see and when you see it.

Each window and viewpoint that you create has a

corresponding object in the Type Workview.

Viewpoints are created from the Viewpoint object

type, Application windows are created from the

Window object type, and Development windows are

created from the DevWindow object type (which is

a subtype of Window). By default, WorldUp

provides you with one viewpoint (Viewpoint-1),

one application window (Window-1), and one

development window (DevWindow-1).

Clipping Planes
For any window, it is important to be aware of the

clipping planes that are specified for that window.

The Hither Clipping Plane indicates the physical

range in front of the viewpoint, before which objects

are not rendered in that window. The Yon Clipping

Plane indicates the physical range in front of the

viewpoint, beyond which objects are not rendered in

that window. That is, objects are rendered only in

the area between the Hither Clipping Plane and the

Yon Clipping Plane.

Clipping planes are controlled by the Hither

Clipping and Yon Clipping properties on all

Window and DevWindow objects. Search the online

Help for more information on these properties.

View Volumes

Creating Viewpoints
In WorldUp, you can create a viewpoint, link the

Viewpoint object to the sensor or path that you want

to use to navigate the viewpoint, and then associate

the Viewpoint object with a window.

To create a viewpoint

1 Select the Viewpoint object type in the Type

Workview.

2 Click the Instantiate Selected Type button.

3 On the Object menu, select Edit MotionLink

Sources.

The Motion Link Sources dialog box displays.

4 In the Potential Link Sources box, double-click

the sensor or path to which you want to link the

viewpoint.

97Chapter 10 Windows, Viewports, and Viewpoints Viewports
The selected object moves to the Linked Sources

box.

5 Click Done.

This creates a motion link between the selected

source and the viewpoint so that you can use the

source to navigate within any window that uses

this viewpoint.

For more information on motion links, see

"Motion Links" on page 144.

In the Type Workview under the MotionLink

object type, a new object has been created for the

link that you just specified. The Source property

for the MotionLink object is set to the name of

the sensor or path that you specified and the

Target property is set to the viewpoint from

which you accessed the Motion Link Sources

dialog box.

6 In the Type Workview, select the object

representing the Application window (under the

Window object type) or the Development

window (under the DevWindow object type) that

you want to associate with the viewpoint.

7 In the Editable tab of the Property pane, double-

click the Viewpoint property.

The Select Viewpoint dialog box appears.

8 Click the Viewpoint object that you want to

associate with the window, and then click OK.

In the associated window, you can now modify the

viewpoint’s position and orientation using the

sensor or path that you linked to it.

If your motion link’s source is a sensor, use the

navigation techniques described on "Changing

Views" on page 83. If your motion link’s source is a

path, see "Recording Paths" on page 141 for

instructions on playing paths.

Creating a Window
You create a window by creating an object from the

Window object type.

To create a window

1 Click the Window object type in the Type

Workview.

2 Click the Instantiate Selected Type button.

The Select Viewpoint dialog box displays.

3 Click the Viewpoint object that you want to

associate with the window, and then click OK.

Note Although you can create multiple

Development windows, this practice is discouraged.

Instead, use multiple viewports in a single

Development window.

Viewports
Every WorldUp window object contains, by default,

a single viewport which covers the entire area of the

window and in which the scene is rendered. This

viewport is referred to as the Window object’s

default viewport. For each Window object you

create in your simulation, WorldUp automatically

manages the creation, naming, and deletion of this

default viewport.

98 Viewports Chapter 10 Windows, Viewports, and Viewpoints
Viewport Hierarchy

In order to better understand the relationship

between windows and viewports, it’s often helpful

to think of the window as a frame and the viewport

as a pane upon which the scene is actually drawn.

The window frame (also known as a viewport’s base

window) can hold many viewports. Likewise, each

viewport pane must have a frame to hold it. Unlike

traditional window panes, however, viewport panes

can be overlapped. In addition, each viewport has

it’s own viewpoint. This flexibility gives you the

power to combine different rendering surfaces for

unique situations.

Window - Viewport Relationship

For convenience and backward compatibility, all

WorldUp windows come with one default viewport

pane whose properties are accessed through it’s base

window. Additional viewports can be added to any

WorldUp window (up to a maximum of eight).

Since a viewport has it’s own viewpoint, this allows

you the flexibility of having multiple views of one or

more scenes rendered inside a single WorldUp

window.

There are two performance advantages to creating

and using multiple viewports in a single window

instead of creating and using multiple windows. The

first advantage is that performance is improved

when using multiple viewports in a WorldUp

window instead of using multiple (single viewport)

WorldUp windows. The reason for this is that the

rendering buffers are cleared and swapped only once

for the single window, rather than having to clear

and swap for several windows. The second

advantage is that the rendering of each viewport is

frame synchronized, that is all viewports are

rendered on the screen at the same time in a given

frame. In contrast, using multiple windows means

that WorldUp must process and render the geometry

associated with the first WorldUp window before it

can process and render the geometry associated with

succeeding WorldUp windows. If your application’s

frame rate is low, there will be a discernible time lag

between the updates of each window within one

frame.

In addition to performance advantages, the

previously mentioned configuration flexibility

allows you to create unique solutions to rendering

challenges as well as special effects. For example,

you can create a rear-view mirror effect by using

multiple viewports in a window. Simply add an

additional viewport pane to your existing window.

Center its position where you would like the rear

view mirror to be. Now assign it a unique viewpoint

that is looking in the opposite direction of the base

window’s viewpoint.

Creating Viewports
You create a viewport by creating an object from the

Viewport object type and associating it with a

window and viewpoint.

99Chapter 10 Windows, Viewports, and Viewpoints Viewports
To create and configure viewports for the

Development window, see "Setting Multiple

Viewports" on page 84.

To create a viewport

1 Click the Viewport object type in the Type

Workview.

2 Click the Instantiate Selected Type button.

3 Click the Window object that you want to

associate with the viewport, and then click OK.

4 Click the Viewpoint object that you want to

associate with the viewport, and then click OK.

Sizing Viewports
To change a viewport’s size and position, it is

important to understand how viewports are

embedded into base windows.

Window Size Properties

As with windows, the position of a viewport is

specified by the position of its top left corner. The

viewport's position is, however, relative to the

window, and is represented as x and y offsets from

the top left corner of the base window’s client area.

The client area represents the drawing area of the

window and does not include the window’s borders.

For example, if a window is positioned at 50,50 in

screen coordinates, the default viewport's position is

0,0 since it is relative to the top left corner of the

window.

A window object has Client Width and Client

Height properties, which represent the size of the

window without the borders. As an example, a

typical default viewport has the same size as it’s

base window’s Client size properties.

Finally, it is important to note that when a window

is resized (either by changing it’s properties, or by

dragging its frame), all viewports belonging to that

window will be scaled accordingly. The default

viewport remains the exact size of the client area,

while any additional viewports preserve their

relative position within the window. You should

keep this in mind when sizing your viewports.

The following table gives properties that are specific

to viewport size and dimension.

Since the Viewport object type is a subtype of the

Window type, it inherits all of the window

properties. These properties all apply in the same

manner as they do to a window, with the following

exceptions:

Property Description
Acceptable

Values

Viewport
Height

Height of the viewport
(pixels)

Unsigned
Integer

Viewport
Width

Width of the Viewport
(pixels)

Unsigned
Integer

Viewport
XOffset

Location of left side of
viewport relative to base
window’s client area
(pixels)

Integer

Viewport
Yoffset

Location of top side of
viewport relative to base
window client area
(pixels)

Integer

100 Stereo Viewing Chapter 10 Windows, Viewports, and Viewpoints
• Background Color – All viewports share the

same background color as their base window.

• Draw Task (Draw Task 3D) – Each viewport can

have its own draw routine. The default

viewport’s draw routine, however, is associated

with the window object’s draw task, not the

default viewport’s draw task.

• Base Window – All viewports have a base

window, which is the window object they are

embedded in. This property is read-only, since

you cannot change a viewport’s base window

once it is created.

Finally, be aware that the addition of viewports

emphasizes the need for explicit window size

control. The three window sizes for any given

rendering window are client (which is a read-only

property since it is computed), window, and

viewport. Since viewports are a separate rendering

space as defined above, they naturally have differing

parameters for size since they do not include the

MFC window border. Taking the time to understand

the different size properties – Window, Client, and

Viewport – can greatly reduce the chance of errors

arising from sizing confusion.

Stereo Viewing
WorldUp supports numerous methods for achieving

stereoscopic display of your simulation. Before

creating a stereoscopic display, consider the specific

needs of your simulation, such as whether it will be

projected or in an HMD.

Innumerable hardware devices display some form of

stereoscopic output, each having advantages and

disadvantages. You should discuss these advantages

and disadvantages within the context of your

simulation environment with the hardware vendor

before purchasing your hardware. You should also

check www.sense8.com/support for an up-to-date

list of WorldUp supported devices.

The three most common methods of achieving

stereo displays that WorldUp supports are:

• Dual channel – Also referred to as separate

channel or multi-channel, this form of stereo

uses two separate video signals and is typically

used with HMDs.

• Line Interleaved – Also referred to as interlaced

or passive stereo, this form uses polarized glasses

to isolate left and right eye scan lines.

• Quad Buffered – Also referred to as field

sequential or Crystal Eyes, this form uses

shuttering glasses to sequentially produce

alternating left and right eye images at a rate

higher than the human brain is able to

distinguish.

101Chapter 10 Windows, Viewports, and Viewpoints Stereo Viewing
Dual Channel Stereo
WorldUp’s support for dual channel stereo employs

viewports. Users create a dual channel stereo

window by setting the DualChannelStereo property

of the Window type to True and instantiating a

Window object of that type (similar to other stereo

window creation methods). Upon instantiation,

WorldUp creates a Window-1 object of size 1280 x

480 (assumes the common 640 x 480 resolution of

most HMDs), a default viewport for the Window-1

object, and a secondary viewport for the Window-1

object.

The default viewport is considered the left eye and

assumes a dimension of 640 x 480. The secondary

viewport is considered the right eye and assumes a

640 x 480 resolution as well. The right eye is also

positioned in the right half of the base window.

The borderless parameter must be set to the desired

value on the Window type before you create it.

Other stereo parameters, such as asymmetric view

volume, parallax, convergence, and convergence

distance, can be modified either before or after

instantiation.

For more information on the View Volume, refer to

the figure on page 96. For information on parallax,

convergence, and convergence distance, refer to the

figure below. For more information on the

properties of windows, viewpoints, and viewports,

refer to the online Help.

Stereo Parameters

Line Interleaved Stereo
Line interleaved stereo has two modes: software

interlaced and hardware interlaced. WorldUp

supports both approaches. Both of these approaches

draw interleaved left eye/right eye scan lines within

a window. All the even lines are left eye and all the

odd are right eye (or vice versa). This method of

stereo is typically used in conjunction with polarized

glasses. One significant drawback to this approach

is that your vertical resolution is cut in half.

To use software interlaced mode with WorldUp, you

should ensure your video board supports stencil

planes and is configured to use them. Once you have

configured your video board, you create an

interleaved window by setting the Interleaved

property of the Window type to True.

Hardware interlaced mode does not require the use

of stencil planes, but does require special hardware

support. This is an uncommon form of stereo and is

typically only supported by Intergraph video boards.

To create a hardware interlaced window, set both the

Interleaved and Stereo properties of the Window

type to True and instantiate it.

102 Stereo Viewing Chapter 10 Windows, Viewports, and Viewpoints
Quad Buffered
By far the most popular, quad buffered stereo

employs shuttering glasses to present alternating left

eye/right eye images. Quad buffered stereo typically

requires the following video hardware support:

• A video card with stereo support. This means it

is able to generate high enough signal generation

frequency, typically from 90–120 hertz, and has

a VESA standard 3-pin mini DIN connector on

the graphics board to synchronize the signal with

the shutter glasses (although there are exceptions

to this DIN port for synchronization).

• A monitor capable of refreshing at this

frequency.

• Shutter glasses with an interface to allow for

synchronization with the video board. Crystal

Eyes form StereoGraphics is the standard.

To create a quad buffered stereo window, you first

need to prepare your system according to the board

manufacturer’s instructions for quad buffered

stereo. This is typically found in the display settings

for your video board.

Once your board is set to the correct frequencies and

supported resolutions, set the Stereo property of the

Window type to True and instantiate the window. If

your window displays contain two completely

separate images, one on top an one below, this

indicates WorldUp was unable to detect hardware

supported for quad buffered stereo. Don’t forget to

set your viewpoint’s Parallax property.

Troubleshooting Stereo Problems
Most stereo problems result from configuration

errors or unsupported modes in hardware. The first

step is to confirm that your video settings for stereo

are set up correctly according to the board

manufacturer's specifications. If you are still

experiencing difficulty, contact a Sense8 Technical

Support Representative, who can check your video

configuration against a list of known compatible

video boards.

103
11
Adding 3D Objects

This chapter describes how to create geometric

shapes and how to import models into your project

using the Model Workview.

Geometries
Objects that you create from subtypes of the

Geometry type are graphical objects. That is, they

are objects that are visible in the Development

window. You cannot create objects or object types

directly from the Geometry object type. It exists to

provide its subtypes with the necessary properties

and to maintain the coherency of the Type pane’s

structure.

The direct subtypes of the Geometry object type are:

• Block – Block objects contain Height, Depth, and

Width properties, allowing you to create

geometries with a rectangular shape.

• Cone – Cone objects contain Initial Radius and

Height properties, allowing you to create

geometries with a conical shape.

• Cylinder – Cylinder objects contain Initial

Radius and Height properties, allowing you to

create geometries with a cylindrical shape.

• Imported – Imported objects contain a Filename

property, allowing you to reference geometries

that were created with a modeling program.

104 Geometries Chapter 11 Adding 3D Objects
• Sphere – Sphere objects contain an Initial Radius

property, allowing you to create geometries with

a spherical shape.

• Text3d – Text3d objects contain Font File and

Text String properties, allowing you to add 3D

text to your simulation. Color and texture

information are contained in the 3D font file that

you specify.

For information on creating your own 3D font,

see page 195.

Creating Primitives
Primitives are three-dimensional basic geometric

forms stored as a collection of polygons. WorldUp

supplies four object types from which you can create

primitives: Block, Cone, Cylinder, and Sphere. You

can edit or combine primitives with other objects to

make more complex objects.

To create a block, cone, cylinder, or sphere

1 In the Nodes pane of the Scene Workview, select

the Block, Cone, Cylinder, or Sphere object type

located under Geometry.

2 Click the Instantiate Selected Type button.

The new object appears in both the Nodes pane

and the Scene Graph pane.

If you cannot see the new object in the

Development window, see "Viewing Graphical

Objects" on page 193 for possible solutions.

By default, all graphical objects are
positioned at the center of the universe upon
creation. If you created multiple graphical
objects, only the largest object is visible until you
translate some of the smaller objects to a new
location or move the viewpoint inside of the
largest object.

3 In the Scene Graph pane, select the new object.

4 Select the Important tab on the Property pane to

modify the dimensions, material (color), and

number of polygons for the primitive, .

For information on modifying property values,

see "Modifying a Property Value" on page 91.

5 Modify the Important properties to achieve the

results that you want.

For a description of the properties that are

specific to each primitive, search on Block

(Geometry Subtype), Cone (Geometry Subtype),

Cylinder (Geometry Subtype), or Sphere

(Geometry Subtype) in the online Help.

Creating 3D Text
You can create three-dimensional text using the

Scene Workview.

To create 3D text

1 In the Nodes pane, click the Text3d object type,

located under Geometry.

2 Click the Instantiate Selected Type button.

The new object appears in both the Nodes pane

and the Scene Graph pane.

Note The Font File property for the Text3d object

type indicates the name of the font file that will be

used to create the object. If the directory path in

which this file is located does not exist in

WorldUp’s search list, the object will not be

created and an error message will display in the

status window.

For instructions on how to add directory paths to

the search list, see "Configuring Directory Paths"

on page 39. (The default value for the Font File

property is RCFONT3D.NFF, which is located in

the Models directory of the directory in which

105Chapter 11 Adding 3D Objects Importing Models from Third Parties
you installed WorldUp. By default, this Models

directory should already be on your search list

unless you manually removed it.)

If you cannot see the new object in the

Development window, see "Viewing Graphical

Objects" on page 193 for possible solutions.

3 In the Scene Graph pane, click the new object.

4 In the Property pane, click the Important tab.

5 Select the Text String property and slowly click

on it again to get the text edit box.

6 Type the text that you want the object to display

in the Development window.

By default, the Text String is “Sample String!”

For a description of the remaining properties that are

specific to Text3d objects, search on “Text3d

(Geometry Subtype)” in the on-line help.

Note You can create your own 3D font and point to

that font using the Filename property. See "Fonts"

on page 195 for more information.

Importing Models from Third
Parties
You can import models into your project that were

created using a third party modeling program.

To import a model to WorldUp

1 In the project window, select the Model

Workview

2 Click Import New Model.

The Open dialog box displays.

3 Navigate to the directory containing the file that

you want to import.

4 Double-click the file name.

The Import Model Parameters dialog box

displays.

5 Make any necessary modifications to the import

model parameters, which are described in the

following table:

Scale for
Stretch and
Position

This is the amount by which a
geometry is stretched and
positioned. This value applies to all
geometries in the model file. This
option is useful for scaling multi-
object models that you intend to
import as multiple objects, since
each object will maintain its spatial
relationship to the model as a whole.
For single-object models or multi-
object models that have been
combined into a single node,
modifying this setting is no different
than modifying the object’s Stretch
property.

Combine All
Geometry into
Single Node

This option affects multi-object
models. When this option is
checked, the objects that make up a
model are merged into a single
object. In the Model Workview, the
model will contain a single entry,
called <All Geometry>. When this
option is unchecked, each object in
a multi-object file remains distinct.
In the Model Workview, the model
will contain a separate entry for each
object, using the names specified in
the model file for each object.

Treat Geometry
Midpoint as
Object Center
Point

In a 3D Studio file, there is one
origin and a geometry is constructed
relative to that. In WorldUp, each
geometry has its own origin, and the
geometry has a position in space.
With this option enabled, 3DS
objects are given a reasonable
origin and the correct position in
space.

106 Using the Model Workview Chapter 11 Adding 3D Objects
6 When you are finished setting the import model

parameters, click OK.

The newly loaded model is added to the Imported

Models pane and displayed in the Preview pane. Its

properties are shown to the right of the Preview

pane. In the Imported Models pane, all of the

geometries available in the file are displayed under

the Root node which has a name the same as the file

name. Geometries that appear in the Imported

Models pane are also known as model entries.

In WorldUp, all Imported objects contain Filename

and Entry properties, indicating the name of the

model file and the specific entry within that model

file that the object references.

To add an object from an Imported Model to your
scene

1 In the Imported Models pane of Model

Workview, expand the file name you want the

object to import from.

2 Click on the object you want to add to your

scene.

The object is displayed in Preview pane with its

properties on the right.

3 Drag and drop the object to the desired location

in Scene Graph pane.

You can rearrange the scene graph later if you

didn’t drop the object in the right place.

If you cannot see the new object in the Development

window, see "Viewing Graphical Objects" on page

193 for possible solutions.

To add all available objects from a loaded model to
your scene

1 In the Imported Models pane, click on the file

name of the model you want to add to the scene.

2 Drag and drop the object to the desired location

in the Scene Graph pane.

If you cannot see new objects in the Development

window, see "Viewing Graphical Objects" on page

193 for possible solutions.

Using the Model Workview
This section describes various tools available in

Model Workview for importing, previewing,

editing, and adding models to your scene.

Previewing Geometries
When an object is selected in the Imported Models

pane, the Preview pane shows the object and all of

its children.

A Car Model Loaded in Model Work view

The Preview title shows the model’s file name that

is selected in the Imported Models pane which is the

root of all objects contained in the file. If a model

entry is selected in the tree, the title displays the

name of that object.

107Chapter 11 Adding 3D Objects Using the Model Workview
To the right of the preview, the properties relevant to

the object are displayed. First is Polygons which

shows the combined polygon count of the object and

its children. Dimensions shows the combined size

of the object and its children in x, y, and z directions.

References represents the number of times the

object is used in the scene graph. The number of

references of a model or model entry is also shown

in parenthesis after the model or model entry name

in the Imported Models pane.

You can make an object double-sided or single-

sided by checking the Double Sided check box. The

first feature is useful if a geometry is imported

single-sided and you want to see the geometry from

both sides as shown in the figure below. You would

want to make a geometry single sided if the

geometry is not going to be viewed from the other

side. Making a geometry single-sided increases the

performance during rendering.

Making a Geometry Visible from Both Sides

The color in the Preview window can be customized

by clicking on the Preview Window Color button

and selecting a color of your choice from the color

dialog. If the model has a dark color, you might

want to set the window color to a lighter one.

108 Using the Model Workview Chapter 11 Adding 3D Objects
Customize the Preview Window Color

The model can be viewed from different angles by

clicking and dragging with the mouse in the Preview

window

Reloading a Model
You can reload a model already loaded into the

Model Workview or added to the scene.

To reload a model

1 Select the model in the Imported Models pane.

2 Click the Reload Model button.

This option allows you to modify the model file in a

modeling program and see the changes in WorldUp

without reloading the universe. This option can also

be available by right-clicking on a model in the

Imported Models pane.

Removing Imported Models
Before you can remove a model from the Model

Workview, any references to the selected model or

model entry must be removed.

To unreference a model

" Click the Unreference Model button in the

toolbar of the Model Workview.

You can also call Unreference Model by right-

clicking on Model Filename in the Imported Models

pane. Unreference Model deletes all objects from

the scene that refer to the selected model. The

model remains in the Model Workview.

To remove a model from the Model Workview

1 In the Model Workview, select the model you

want to remove.

2 Click on the Remove Model from Project and

Memory button in the toolbar.

You also can right-click on a model and select

Remove Model.

Note All unused imported models are automatically

removed when you close the project.

Re-using Imported Geometries
When you re-use an imported geometry, you allow

multiple objects to share the same model entry.

Thus, if you scale, adjust the pivot point, or optimize

an imported geometry, you are modifying the model

entry itself, and those settings will also be reflected

in any object that shares that model entry. Any other

modifications that you make to the object, such as

translation and rotation, do not affect the model

entry and remain independent.

To re-use an imported model

" Drag the object from the Imported Models pane

into the Scene Graph pane.

You can repeat this procedure to reuse the model as

many times as you want.

109
12
Editing 3D Objects

WorldUp provides various ways of changing the

appearance of an object. These tools allow you to

translate, rotate, and scale objects and change their

Material properties. The objects that can be

translated and rotated are known as Movables.

These are the objects whose type is derived from the

Movable object type. They are Geometry, Group,

and Light as shown below in the Type Workview.

Movable Objects as Displayed in the Type Workview

You cannot create objects or object types directly

from the Movable object type. It exists to provide its

subtypes with the necessary properties and to

maintain the coherency of the Nodes pane structure.

110 Translating and Rotating Movables Chapter 12 Editing 3D Objects
The direct subtypes of the Movable object type are:

• Geometry – A Geometry object (also called a

graphical object) is an object that you can see in

the Development window. See "Geometries" on

page 103 for a detailed description of

Geometries.

• Group – A Group object acts as a container to

allow you to manipulate multiple nodes at once.

See "Groups" on page 25 for a detailed

description of Groups.

• Light – Light objects add various lighting effects

to your geometries. See Chapter 13, Lights for a

detailed description of Lights.

Translating and Rotating
Movables
The three ways that you can translate (move) and

rotate Movable objects are:

• drag the object with the mouse in the

Development window

• use the Property pane to modify the object’s

Translation and Rotation properties

• use the Position Object dialog box

These methods are described in the following

sections. The last two methods can also be used to

scale graphical objects.

Dragging Objects in the
Development Window
Because Lights and Groups cannot be seen in the

Development window, you use different methods

for dragging each of the following types of Movable

objects:

• Graphical objects (Geometries)

• Non-graphical objects (Lights or Groups)

To translate or rotate graphical objects

1 Select the Translate Object or the Rotate

Object button in Development window

toolbar.

For more information on various Development

window toolbar buttons, see Chapter 8,

Development Window – Navigation and
Manipulation.

2 Select the object in the Development window

and drag the mouse to translate/rotate the object.

If you have trouble dragging a particular object,

see "Locking a Selected Object" on page 111 for

help.

Note You must click on the object itself. If you

click outside the object’s bounding box, or on an

empty area within the object’s bounding box, the

object will become deselected.

3 Release the mouse button to stop translating/

rotating the object.

Note You can revert to the object’s original position

by selecting Undo Last Move on the Edit menu

immediately after translating or rotating the object.

To drag Lights and Groups

1 Select the Translate Object or the Rotate

Object button in Development window

toolbar.

2 In the Scene Graph pane, click the Light and/or

Group objects that you want to translate/rotate.

Since the selected objects cannot be seen in the

Development window, you need to lock on to the

object to provide a visual target that you can

drag.

111Chapter 12 Editing 3D Objects Translating and Rotating Movables
3 If it is not already depressed, click the Lock

Selected button on the Development window

toolbar.

4 To translate/rotate the selected object, click the

left mouse button in Development Window and

drag.

5 Release the mouse button to stop translation/

rotation.

Since the translation/rotation value of a child object

is always in relation to its parent’s coordinate frame,

child objects move in the Development window to

maintain their positions within the changing

coordinate frame. The translation/rotation values for

child objects remain unchanged.

Note You can revert to the object’s original position

by selecting Undo Last Move from the Edit menu

immediately after translating or rotating the object.

Locking a Selected Object
You can lock the view and the selection to a

particular Movable object in the Development

window. This option is necessary if you want to drag

non-graphical objects. Also, this feature is useful

when you want to modify a graphical object in your

simulation that is hard to grab (for example, it may

be very thin, or obstructed by another graphical

object).

To lock a Movable object

1 Select the object in the Development Window or,

if the object is non-graphical. in the Scene Graph

pane of the Scene Workview.

2 Click on the Lock button in the Development

window toolbar.

When an object is locked, no other object can be

selected or dragged in the Development window.

Note You can select a new object in Scene Graph

pane even if Lock button is depressed.

Translating and Rotating Using the
Property Pane
This section describes how to modify the

Translation and Rotation property values for an

object from the Property pane.

Translating Movables from the Property
Pane
You can translate Movable objects from the

Property pane by modifying the Translation

property value for the object.

The Translation property has a Vect3d data type.

You can enter specific coordinates in the Property

pane’s text box, or you can use the Translation

dialog box to visually place the objects.

For more information on WorldUp data types, see

the WorldUp Programmer's Guide.

To enter specific coordinates for the Translation
property

1 Select the Movable object that you want to move.

2 In the Property pane, click the Editable tab.

3 Slowly double-click in the Value column of the

Translation property.

4 Enter the coordinates (x, y, z) for the new

location.

5 Press ENTER.

The selected objects move to the new location in

relation to their parents’ coordinate systems. Any

selected objects that have the same parent will

move to the same global location.

112 Translating and Rotating Movables Chapter 12 Editing 3D Objects
To use the Translation dialog box

1 Select the Movable object that you want to move.

Note Select only one object. You cannot access

the Translation dialog box with multiple objects

selected.

2 In the Property pane, click the Editable tab.

3 Double-click the Translation property.

The Translation dialog box displays.

4 Drag the X, Y, and Z sliders as appropriate to

position the object.

You can see the object move in the Development

window as you drag the sliders.

5 To adjust the speed at which the object moves,

drag the slider at the bottom toward Slow or Fast.

6 When you are finished, click Set to apply the

new value and close the dialog box.

Rotating Movables from the Property Pane
You can rotate Movable objects from the Property

pane by modifying the Rotation property value for

the object.

The Rotation property has an Orientation data type,

which is a quaternion. This data type is used for

accuracy and efficiency since, unlike Euler angles,

there is only one way to achieve a result with a

quaternion.

For more information on WorldUp data types, see

the WorldUp Programmer's Guide.

However, unlike the Vect3d data type used with the

Translation property, you are not expected to

calculate an intelligent value to use for the

Orientation value. Instead, WorldUp provides the

Rotation dialog box, which uses Euler angles rather

than quaternions.

Euler angles provide an easy way to achieve the

rotation that you want, but they are inefficient since

there are multiple ways to achieve that rotation. For

example, (0, 180, 0) and (0, -180, 0) result in the

same position. When you use the Rotation dialog

box, WorldUp converts the angles that you set into

a quaternion and the Rotation property is updated

with the converted value.

To use the Rotation dialog box

1 Select the Movable object that you want to

rotate.

Note Select only one object. You cannot access

the Rotation dialog box with multiple objects

selected.

2 In the Property pane, click the Editable tab.

3 Double-click the Rotation property.

The Rotation dialog box displays.

4 Drag the X, Y, and Z sliders as appropriate to

position the object where you want it.

You can see the object rotate in the Development

window as you drag the sliders.

113Chapter 12 Editing 3D Objects Translating and Rotating Movables
Alternatively, you can click inside the sphere at

the right of the Rotation dialog box and drag the

red arrow to achieve the desired rotation. (Use

the right mouse button to adjust the viewpoint of

the sphere.)

5 To cause the rotation of an object to snap at a

specified interval, check the Snap To Every box

at the bottom of the dialog box and type the

number of degrees to which you want the object

to snap.

6 When you are finished, click Set to apply the

new value and close the dialog box.

The Euler angles that you specified are converted

to a quaternion and the Rotation Property value

is updated.

Translating and Rotating Using the
Position Object Dialog Box
The Position Object dialog box provides a

convenient way to rotate, translate, and scale objects

all from one dialog box. All Movable objects can be

translated and rotated, but only graphical objects can

be scaled. For information on scaling geometries,

see "Scaling Geometries" on page 114.

To translate Movables from the Position Object
dialog box

1 In the Scene Graph pane of the Scene Workview,

select the Movable object that you want to move.

Note Select only one object. You cannot translate

multiple objects at once from the Position Object

dialog box.

2 Right-click and select Position Object.

The Position Object dialog box displays.

3 Click the Location tab.

4 At the top of the tab, click the coordinate system

in which you want to move the object.

• Parent Context – The coordinate system of the

object’s parent in the scene graph.

• Global Coordinates – The world coordinate

system.

For more information on coordinate systems, see

"Coordinate Systems" on page 13.

5 Type specific coordinates for each axis, or use

the Fine and Course sliders to move the object.

• Fine – Increments the value up or down by

moving the slider to the left or right of the

center. When you release the mouse, the slider

handle returns to the center.

• Course – Moves an object a certain percentage

of the universe’s current length in that axis.

For example, if you click at the right-most

edge of the slider for the x-axis, the selected

object moves to the farthest point possible

along the positive direction of the x-axis in the

current extents of the universe.

6 To adjust the speed at which the object moves,

drag the slider at the right toward Slow or Fast.

114 Scaling Geometries Chapter 12 Editing 3D Objects
7 When you are finished, click Close.

To rotate Movables from the Position Object dialog
box

1 In the Scene Graph pane of the Scene Workview,

select the Movable object that you want to rotate.

Note Select only one object. You cannot rotate

multiple objects at once from the Position Object

dialog box.

2 Right-click and select Position Object.

3 The Position Object dialog box displays.

4 To rotate a Movable object, click the Orientation

tab.

5 Click the coordinate system in which you want to

rotate the object.

• Parent Context – the coordinate system of the

object’s parent in the scene graph.

• Global Orientation – the world coordinate

system.

For more information on coordinate systems, see

"Coordinate Systems" on page 13.

6 Rotate the object using one of the following

methods:

• Type specific Euler angles for each axis. Pitch

refers to the x-axis, Yaw refers to the y-axis,

and Roll refers to the z-axis.

• Drag the Pitch, Yaw, and Roll sliders as

appropriate to position the object.

• Click inside either sphere at the top-right of

the Position Object dialog box and drag the

red arrow to achieve the desired rotation. Use

the right mouse button to adjust the viewpoint

of the sphere.

7 To cause the rotation of an object to snap at a

specified interval, check the Snap box and use

the up and down arrows to specify the number of

degrees to which you want the object to snap.

8 When you are finished, click Close.

The Euler angles that you specified are converted

to a quaternion and the Rotation property value is

updated.

Scaling Geometries
Scaling a geometry involves specifying along which

axis you want to scale the object and by what factor.

For example, suppose you have a cube with a height,

depth, and width of 3. If you stretch the cube by a

factor of 2 along the x-axis, and 1 along the y and z-

axes, the cube is now rendered 6 units in width, and

3 units in height and depth. However, the Height,

Depth, and Width property values all remain set to

3. The scale factors are stored in the object’s Stretch

property.

Note If you scale a geometry that is also being used

elsewhere, all other objects that also reference that

resource entry will be scaled in the same manner.

115Chapter 12 Editing 3D Objects Scaling Geometries
The two ways that you can scale geometries are:

• use the Property pane to modify the object’s

Stretch property

• use the Position Object dialog box

Note Information on translating and rotating

geometries is described in "Translating and Rotating

Movables" on page 110, since all Movable objects

can be translated and rotated, but only geometries

can be scaled.

Scaling Geometries from the
Property Pane
You can scale graphical objects from the Property

pane by modifying the Stretch property value for the

object. Objects are scaled within their local

coordinate frame only.

The Stretch property has a Vect3d data type. You

can enter specific scale factors in the Property

pane’s text box, or you can use the Stretch dialog

box to visually scale the objects.

For more information on WorldUp data types, see

the WorldUp Programmer's Guide.

Note Visually scaling the objects using the Stretch

dialog box is most useful if you do not know the

exact factor by which you want to scale the object,

and it is not important that the object be scaled

uniformly along each axis.

To enter specific scale factors for the Stretch
property

1 Select the Geometry object that you want to

scale.

2 In the Property pane, click the Editable tab.

3 Single-click the Stretch property.

4 Click the Stretch property again to open the text

edit box and enter the scale factors for each axis

(x, y, z).

5 Press ENTER.

The selected objects stretch accordingly in the

Development window.

To use the Stretch dialog box

1 Select the Geometry object that you want to

stretch.

Note Select only one object. You cannot access

the Stretch dialog box with multiple objects

selected.

2 In the Property pane, click the Editable tab.

3 Double-click the Stretch property.

The Stretch dialog box displays.

4 Drag the X, Y, and Z sliders as appropriate to

stretch the object along any axis.

You can see the object stretch in the

Development window as you drag the sliders.

5 To adjust the speed at which the object moves,

drag the slider at the bottom toward Slow or Fast.

6 When you are finished, click Set to apply the

new value and close the dialog box.

116 Adjusting a Geometry’s Pivot Point Chapter 12 Editing 3D Objects
Scaling Geometries from the
Position Object Dialog Box
You can also scale geometries using the Position

Object dialog box.

To scale geometries from the Position Object dialog
box

1 In Scene Graph pane of Scene Workview, select

the Geometry object that you want to scale.

Note Select only one object. You cannot scale

multiple objects at once from the Position Object

dialog box.

2 Right-click and select Position Object.

For information on using the Position Object

dialog box to translate and rotate Movable

objects, see "Translating and Rotating Using the

Position Object Dialog Box" on page 113.

The Position Object dialog box displays.

3 To scale a geometry, click the Scale tab.

4 If you want to scale the object by the same factor

along each axis, check the Scale Uniformly box.

5 If you have checked the Scale Uniformly box,

drag on any one of the axis sliders and all three

move together. Or, type a specific scale factor in

one of the three text boxes and the other two

values automatically adjust at the correct ratio.

6 If you have unchecked the Scale Uniformly box,

drag the slider or type a specific scale factor for

the axis along which you want to scale the

object.

Note Objects are scaled within their local

coordinate frame only. You might want to lock

the object (click the Lock button on the

Development window) to display the axes for the

object and see how the reference frame is

oriented.

Adjusting a Geometry’s Pivot
Point
A pivot point, also known as an origin point, is the

point around which an object rotates or from which

it stretches. By default, the pivot point of a graphical

object created in WorldUp is located at the center of

the object. However, you can change the location of

a pivot point.

The location of an object’s pivot point (or, its

distance from the geometry’s center) is stored in the

object’s Origin Offset property. The Origin Offset

property is always in reference to the object’s local

coordinate frame. Thus, a value of 0, 0, 0 always

places the pivot point at the center of the object.

You can move an object’s pivot point by dragging it

in the Development window, or by modifying the

Origin Offset property from the Property pane.

117Chapter 12 Editing 3D Objects Using Materials to Change Object’s Appearance
To move an object’s pivot point from the Property
pane

1 Select the Geometry object whose pivot point

you want to move.

2 Click the Lock Selected button if it is not

already depressed.

3 In the Property pane, click the Editable tab.

4 To modify the Origin Offset value, do one of the

following:

• Double click slowly to open the text edit box,

type a new value, and press ENTER.

• If only one object is currently selected,

double-click the Origin Offset property. From

the Origin Offset dialog box, drag the X, Y,

and Z sliders to position the pivot point and

click Set.

To drag an object’s pivot point in the Development
window

1 Select the Geometry objects whose pivot points

you want to move.

2 In the Development window, click the Lock

button if it is not already selected.

3 Press and hold the SHIFT key and drag with left

mouse button to move the pivot point.

To see the effect of the pivot point’s new location,

rotate the object as described on "Dragging Objects

in the Development Window" on page 110.

Using Materials to Change
Object’s Appearance
A material is a combination of light and color

attributes that you use to define the appearance of a

geometry. Geometries either emit light, reflect

light, or both. This light is manifested as color.

When designing a geometry, two kinds of color are

considered:

• The colors used in the geometry itself.

• The colors of the light playing on the geometry.

A realistic image of a geometry includes many

colors – and potentially many ways of reflecting

light. You use a separate material to specify each of

these differences in appearance.

Each material has the following properties:

Diffuse – The color reflected from the material in

direct light.

Ambient – The color reflected from the material in

shadow.

Specular – The color reflected from the highlights of

the geometry. The Specular material property is

what makes a geometry appear to be shiny with

highlights appearing on its surface. Usually, the

specular highlight is white, which means that it

reflects the color of the specular light (which is also

usually white).

Emissive – The color produced (not reflected) by the

material even when there is no light. A geometry

with this property can be seen even when no lights

are contained in the scene. However, the Emissive

light does not illuminate other geometries in the

area. This material property is used less often than

the others.

Shininess – The narrowness of focus of specular

highlights. This has no meaning if the specular color

is black. (Lighting of geometries rendered with

material properties is an additive process; a black

specular highlight doesn’t darken the geometry, it

simply doesn’t contribute to a light highlight on the

geometry.) The lower the Shininess value, the more

118 Using Materials to Change Object’s Appearance Chapter 12 Editing 3D Objects
spread out the highlight; the higher the Shininess

value, the sharper the highlight. A high value for

Shininess makes an object look shiny.

Translucency (Opacity) – The extent to which the

color value of a pixel is combined with the color

value behind it, giving the effect of a transparent

surface.

In WorldUp the two ways you can add materials to

an object are by using the Material Node or by using

the Material Table.

Applying Material Using the
Material Node
Using the Material node is the most flexible method

for adding materials in WorldUp. By this method,

materials can be created and edited. They can also

be saved for re-use in the development environment.

Material properties of all types of objects, including

imported models, can be changed using material

nodes.

To apply material to object using Material Node

1 Drag and drop a Material type onto the Scene

Graph pane above the object(s) to which you

want to apply the materials.

2 Set the UseMaterialNode property of the

object(s) to TRUE.

This allows the object to use the Material

properties of its parent Material type instead of

the default Material Table.

3 Right-click on the Material object you just added

to the Scene Graph pane to launch the Material

Editor.

The Material Editor allows you to modify or

organize materials and has two parts:

• Material Editor – Allows material properties to

be previewed and modified.

• Material Library – Allows you to organize, save

out, and re-use materials.

Material Editor

The current Material properties applied to a lit

sphere are displayed in the Preview window. This

allows you to see the changes in Material properties

as you edit them. The checker-board background is

useful when applying transparency to see the effect.

To set the color values of the Diffuse, Specular,
Ambient, or Emissive properties

1 Single click on the desired material property

swatch.

2 Enter color values for Red, Green, and Blue

directly or use the sliders to select the right

value.

Preview
Window

Active Material
Property Color

Material Property
Swatches

Active Material
Property

119Chapter 12 Editing 3D Objects Using Materials to Change Object’s Appearance
You can toggle between RGB and HSL to enter

values in RGB or HSL format.

3 Change theOpacity or Shininess properties using

sliders or by entering the values directly.

4 Click Apply to see how the updated material

looks when applied on the objects.

5 Click OK.

Using the Material Library, you can apply already

available materials to your objects.

To use the Material Library

1 Click the Material Library button on the Material

Editor.

The Material Library dialog box appears.

The tree shows current materials used in

WorldUp and materials currently stored in the

library.

2 Double-click on a material item to use that as

your material and display it in the Preview

window.

You can also add and save the material you just

created to use later.

To add your material to the library

1 Click the Add Material to Library button.

2 Enter a name for the material.

You can also rename a material in the library by

double-clicking on it with a pause.

To save the changes you made

1 Close the Material Library by clicking on the

Material Library button in the Material Editor.

You are asked to save the changes.

2 Click OK.

The library is saved as wupMaterialLibrary.mat in

your application directory. The file must be writable

in order to save the changes.

To delete a material from the library

1 Select a material in the Material Library dialog

box.

2 Click the Delete Material From Library button.

3 Save the changes when prompted while closing

the Material Library dialog box.

Applying Material Using the
Material Table
Using the Material Table is the easiest way to add

material to an object in WorldUp. Material can only

be selected from a given set of materials in the

Material Table. Material properties of imported

models can not be changed this way.

To apply material to an object this way

1 Select the object in the Scene Graph pane.

2 Select its Material property in the Property pane.

120 Textures Chapter 12 Editing 3D Objects
The Choose Material dialog box appears.

3 Select a material from the list and click OK.

Textures
WorldUp preserves texturing of an object as a

textured object is imported into WorldUp.

However, you must make sure that the path where

the texture is stored is added to the path settings.

Textures to WorldUp objects must be applied

programmatically, either through WorldUp's

scripting language or using the WorldUp Plug-in

Kit. Refer to the SetTexture command in the

WorldUp Programmer’s Guide and the WorldUp
Plug-in Author's Guide.

121
13
Lights

To understand the effect of lights in WorldUp, you

must first understand the concept of materials.

The Effect of Light on Materials
A material is a combination of light and color

attributes that you use to define the appearance of a

geometry or collection of geometries. You can use

the default materials supplied with WorldUp, or you

can use a modeling application to create, edit, and

save customized material information.

Geometries either emit light, reflect light, or both.

This light is manifested as color. When designing a

geometry, you need to consider two kinds of color:

• The colors used in the geometry itself.

• The colors of the light playing on the geometry.

A realistic image of a geometry includes many

colors – and potentially many ways of reflecting

light. You use a separate material to specify each of

these differences in appearance.

Each material has the following properties:

• Diffuse – The color reflected from the material in

direct light.

• Ambient – The color reflected from the material

in shadow.

122 Working with Lights Chapter 13 Lights
• Specular – The color reflected from the

highlights of the geometry. The specular material

property is what makes a geometry appear to be

“shiny” with highlights appearing on its surface.

Usually, the specular highlight is white, which

means that it reflects the color of the specular

light (which is also usually white).

• Emissive – The color produced (not reflected) by

the material even when there is no light. A

geometry with this property can be seen even

when there are no lights in the scene, however,

the emissive light does not illuminate other

geometry in the area. This material property is

used less often than the others.

• Shininess – The narrowness of focus of specular

highlights. This has no meaning if the specular

color is black (lighting of geometry rendered

with material properties is an “additive” process;

a black specular highlight will not darken the

geometry; it simply won't contribute to a light

highlight on the geometry). The lower the

shininess value, the more “spread out” the

highlight; the higher the shininess value, the

sharper the highlight. A high value for shininess

makes an object look shiny.

• Translucency(Opacity) – The extent to which the

color value of a pixel is combined with the color

value behind it, giving the affect of a transparent

surface.

Without light, material properties that are dependent

on light, such as Diffuse and Shininess, are ignored

when the object is rendered.

Working with Lights
In WorldUp, you can manipulate the lighting of

graphical objects in a scene to create many different

kinds of effects. Lights can illuminate and enhance

the visibility of objects in the universe. Light in a

scene can come from several light sources that can

be individually turned on and off. Some light comes

from a particular direction or position, and some

light is a combination of many light sources.

WorldUp can render up to eight lights at a time at

any branch of the scene graph. Each light affects

only its child nodes and nodes that are at the same

hierarchical level and below it in the scene graph. Be

sure to design a scene so that none of its objects are

lit by more than eight lights.

Different Types of Light
WorldUp uses four types of light – one that exists as

a property of the universe (Ambient), and three that

exist as objects that you can add to your simulation

(Directed, Point, and Spot).

Ambient Light
Ambient light is background light that illuminates

all graphical objects equally, regardless of their

position or orientation. It comes from no particular

source. By default, ambient light is always present

in a WorldUp application, even when your

simulation contains no light.

To set the level of ambient light

1 Click the Select Render Style button.

The Universe Rendering Style dialog box

displays.

123Chapter 13 Lights Lights and Sensors
2 Drag the slider for Ambient Light Level, or type

a value between 0.0 and 1.0 in the text box, with

0.0 being total darkness and 1.0 being total

brightness.

3 Click OK.

Note You can also set the ambient light level by

modifying the Ambient Light property value for the

Universe object.

Directed, Point, and Spot Light
A directed light is a light that is located far away but

comes from a single direction. Changing the

distance between a directed light and an object has

no effect because the light is so far away that its rays

become parallel by the time they reach the object.

Use directed light to give the effect of daylight,

making all objects equally visible. By default,

WorldUp provides a Directed Light object (Light-1)

with each new universe.

A point light is a light that comes from a specific

position, traveling outward radially in all directions

from that position. A light bulb is an example of a

point light source. Use point light to make one area

appear more illuminated than another.

A spot light is a beam of light that illuminates only

a small area. Unlike point light, which radiates

outward in all directions, spot light produces a cone

of illumination. An automobile headlight is an

example of a spot light source. Use spot light to

center attention on a specific object by displaying

the object within a cone of light.

To create a directed, point, or spot light

1 In the Nodes pane, select the DirectedLight,

PointLight, or SpotLight subtype under the Light

node, and drag the object to the desired location

in the Scene Graph pane.

2 If necessary, select the new object and drag it to

the correct location in the scene graph so that it

illuminates only the appropriate objects.

3 Once the object is created, you may want to

modify the object’s properties to control factors

such as the light’s name, color, and location.

Note Information on how to translate and rotate

Movable objects, such as Groups, is described in

"Translating and Rotating Movables" on page 110.

Lights and Sensors
You can link Sensor objects to lights, or any other

Movable object. When you use a Sensor object to

control a light, input from the device causes the light

to move or be redirected.

For information on linking a Movable object to a

sensor, see "Motion Links" on page 144.

Performance Impact of Lights
Since WorldUp needs to perform calculations to

determine how much light each Geometry receives

from each light source, increasing the number of

active lights can adversely affect performance.

In general, spot lights are the most computationally

expensive, followed by point lights, and then

directed lights. For any simulation you must decide

the balance between the simulation’s visual quality

and it’s performance. These two issues typically

have an inverse relationship, and it is up to the

developer to decide when image quality must be

sacrificed to sustain interactive frame rates.

In this section we introduced some of the features

WorldUp offers you to improve the realism of your

scene. These elements often come at a performance

cost. Some, however, cost more than others (often

depending on your particular simulation), so we also

124 Performance Impact of Lights Chapter 13 Lights
discussed ways of optimizing performance without

completely compromising your simulation’s

aesthetics.

Lighting is essential for any simulation as a requisite

visual cue for resolving depth, shape, and object

relationship. Lights should also be used carefully,

however, since each light adds significant

computational overhead with respect to shading

your scene. It is recommended you keep the number

of lights in your scene at or below four, depending

on your hardware. The maximum number of lights

you may have in your scene is eight.

 For rendering performance, you should always

disable light nodes if they are not in use. Setting

their intensity to 0 will not speed performance.

WorldUp provides you with four types of lights:

Ambient, Directed, Point, and Spot. Each behave as

their name implies. Ambient is the exception,

however, as it is a global illumination

approximation and as such is controlled as a

property of your Universe object. The remaining

three are node types in the Type pane.

Note Remember light nodes are attribute nodes. As
such, they only illuminate objects that are visited
after and below them during scene graph traversal
and exist at their hierarchical level and below. For

an example, see "Organizational Nodes" on page 25.

125
14
The Behavior System

The WorldUp Behavior System is new to Release 5.

It represents the third tier in our 3-tier simulation

building model as shown in the figure below.

R5 API Triangle

The purpose of the Behavior System is to provide a

truly visual programming paradigm that allows you

to rapidly assemble 3D simulations without

programming. In addition, the system gradualizes

the script learning curve by providing a natural

evolution into scripting once your need to customize

behaviors increases and your simulation’s

complexity requires a custom fit. Finally, it serves as

a mechanism for producing reusable behavior

components that you can build, re-use in other

simulations, and share with other users.

126 Chapter 14 The Behavior System
In short, the core purpose of the R5 Behavior

System is threefold:

• Provide a mechanism for visually assembling

simulations rather than programming them.

• Provide a natural learning pathway for increasing

simulation complexity

• Provide a redistribution mechanism so that users

can both provide and benefit from other pre-built

behaviors.

Using the Behavior System enables you to:

• Reduce the time spent scripting

• Decrease time to prototype

• Build reusable components

• Achieve a modular design for your simulation

• Manage your application’s scalability

In essence, the Behavior System provides for

visible, efficient, modular, event based design

framework for structuring your applications from

scratch to ensure scalability as your simulation

becomes more complex.

You use the Behavior Workview to interact with the

Behavior System in WorldUp, which contains the

following core Behavior System components.

The Behaviors Pane
The Behaviors pane is similar to the Type and Nodes

panes in the Scene and Type Workviews. The

Behavior pane contains a listing of the actual entities

(Triggers, Actions, and Grouping nodes) that

populate the Behavior System. The Behavior pane

displays all of the loaded Behavior types, and groups

them based upon their source, including those

created by plug-ins and those created by BasicScript

(either created by you or imported into your

simulation).

The Behavior Pane

Refer to "The Behavior Object" on page 128 for

more information about the structure of these

entities.

You use the Behaviors pane to create instances of a

particular Behavior type and schedule it in one step

by dragging the desired type into the Task

Scheduler.

The Task Scheduler
The Task Scheduler shows the execution flow of all

scheduled behaviors, as well as each behavior’s

InputLists and the Inputs they contain. This allows

you to both see the execution order of your

behaviors as well as drag and drop scene graph

objects (Movables) onto specific inputs. In addition,

it allows you to change the execution order of your

behaviors by dragging them internally within the

Task Scheduler.

127Chapter 14 The Behavior System
The Task Scheduler

Refer to "Creating and Scheduling Behaviors" on

page 130 for more information.

The Behavior Wizard
The Behavior Wizard is the interface that enables

you to author your own script-based Triggers and

Actions. The Behavior Wizard is a series of dialogs

that step you through the process of creating a new

Behavior type. You access the Behavior Wizard by

clicking on the Behavior Wizard button on the

Behavior Workview toolbar.

The Behavior WIzard Button

Upon completing the set of dialogs, the wizard

generates a new Behavior type as well as a script

template you can then modify to define your new

Behavior’s type’s actual behavior. Refer to

"Behavior Authoring" on page 132 for more

information.

Pre-built Behaviors
WorldUp R5 ships with a basic library of Triggers

and Actions most commonly found in interactive

simulations. These plug-in behaviors are defined in

the TriggerSet1.dll and ActionSet1.dll in your

WorldUp R5 plug-ins directory. When WorldUp

launches, it detects the presence of these DLLs and

registers them with the WorldUp Object System. In

the Behavior Workview, these plug-in triggers and

actions appear under the PluginTrigger and

PluginAction types.

Pre-built Behaviors

A complete description of these pre-built behaviors,

how each works, and their parameters can be found

in Appendix E, Pre-Built Behavior Library.

128 The Behavior Object Chapter 14 The Behavior System
For more information about how you can author

your own Behavior plug-ins, refer to the WorldUp
Plug-in Author’s Guide that ships with the WorldUp

Plug-in Kit (available as a separate module).

The Behavior Object
Strictly speaking, a behavior is some activity that is

applied to or demonstrated by any WorldUp Object

within the Simulation. This activity is defined by the

functions of one or more Trigger and/or Action

objects.

Behavior Anatomy
A Behavior is a function that operates on WorldUp

objects (nodes, sensors, etc.). It has inputs that act as

parameters to the function, and outputs that act as

the return value(s) of the function. A Behavior

typically reads the input in its Input Slot, makes

decisions with that input, writes it’s outputs to it’s

output slots, and fires. These inputs are known as

"primary inputs." For each primary input, a behavior

has an input slot, an input list, an input description,

and a source indicator telling where the behavior is

going to get its input from. A behavior can get its

input from two sources: either explicitly from its

input list or implicitly from the outputs of the

behavior above it (its parent).

The two significant differences between triggers and

actions are:

• Number of Inputs – A trigger can have 0, 1, or 2

inputs, each of which can be of any WorldUp

Object type. An Action has only one input and

one output, and it is a Movable.

• Firing – A trigger typically has a decision

function, which is defined by the user and

determines whether or not it fires. An action

always fires.

Trigger Anatomy

Action Anatomy

A Trigger’s interface consists of primary inputs, primary outputs, and
callbacks.

A primary input is a set containing an input slot, an input list, a flag
indicating the input’s source, and an input description.

A primary output is an output slot containing the Trigger’s current output.

A callback is a function associated with a Trigger that is called in association
with a specific WorldUp event, such as Property change or OnCreate.

An Action’s interface consists of a single primary input and a single
primary output. This is a Movable object. The Movable specified in the
input slot is the same Movable the Action will pass to the output slot.

129Chapter 14 The Behavior System The Behavior Object
As an example of inputs and

outputs, consider a

MousePick trigger. This

trigger takes two inputs –

Input1 is of type Mouse and

represents the Mouse object

from which you wish to retrieve the screen position.

Input2 is of type Movable and represents the list of

Movables you consider pickable (for example, in a

room, the furniture may be pickable while the walls

are not). This trigger has one output – the object that

was picked. When the mouse button is pressed, this

trigger gets the screen position from the Mouse

object in the Input1 slot, and checks to see if it is

over any of the objects in Input2.

Assembling Behaviors
It is possible to think of a behavior as an observable

activity that emerges from a collection of individual

events and responses. For example, a reflex

behavior is witnessed as the result of an event

(tapping the knee with a hammer) and a response

(the calf flexing upwards). WorldUp’s Behavior

System is designed for this exact purpose of hooking

up events to actions to achieve a desired behavior. In

essence, from a design perspective, a behavior is a

dependency network of triggers and actions such

that when one trigger fires, it executes all of its

children (dependencies). In this manner, a behavior

chain can be assembled out of low level triggers

(such as, Collide Movable) and actions (such as,

Rotate Leg) to achieve a higher-level behavior, such

as flexing the calf when a hammer collides with a

knee.

Hooking a trigger up to another trigger or action

involves wiring a trigger’s outputs to another

trigger/action’s inputs. For example, suppose we

wish to implement a behavior that says "When the

mouse clicks on an object, zoom the viewpoint to

the object we clicked on." In this example, our

action zoom viewpoint to a selected object would

need to know what to zoom to. We need to pass the

selected object from the event When the Mouse
clicks on an object to the Zoom To action so that

Zoom To knows which object in fact to zoom to. In

this case, we have wired the Zoom To action’s input

to the MousePick trigger’s output and made its

execution conditional on something being picked.

MousePick Example

In the MousePick example above, we have a

MousePick trigger with two inputs. Input 1 is the

Mouse from which to retrieve the 2D screen

coordinate we will need for our picking. Input 2 is a

list of geometries we consider pickable. For

example, we may have a room in which we want to

be able to pick the furniture but not the walls. In this

example, the pickables are chair and phone.

When the user picks chair, our MousePick trigger

writes chair to its Output1 slot and fires. Firing

causes two things to happen. First, it causes chair to

be passed to our ZoomTo behavior. Second, it

causes ZoomTo to be executed. ZoomTo has only

one input, namely the target to which we will be

130 Creating and Using Behaviors Chapter 14 The Behavior System
zooming. ZoomTo receives chair in its Input1 slot,

as well as the fire notification for MousePick, and

proceeds to zoom the viewpoint to the chair.

In this example, MousePick inputs are explicitly

defined by the user in the trigger’s input lists, while

ZoomTo uses input implicitly passed from its parent

trigger. The source for a behavior’s inputs can be

one or the other and is defined by the primary input,

which is set by you in the Input Definition dialog

box.

Creating and Using Behaviors
The Behavior System employs a drag-and-drop

environment that allows you to easily assemble

conditional action chains out of Trigger and Action

primitives to build high-level behaviors that control

simulation events and objects. The Behavior

Workview is used for all of your behavior

management work, including:

• Creating and scheduling behaviors

• Editing behavior inputs and parameters

• Authoring new behaviors

• Importing and exporting script-based behaviors

This section discusses how to create and schedule a

behavior and how to edit its inputs and parameters.

The following section details behavior authoring

with the Behavior Wizard as well as importing and

exporting script-based behaviors you or someone

else has authored.

Creating and Scheduling Behaviors
Creating a behavior involves instantiating an object

of a particular Behavior type and scheduling it in the

Behavior Workview’s Task Scheduler. In WorldUp,

this is a one step process,

To create and schedule a behavior

1 Select the type of Behavior you want to create

and drag it into the Task Scheduler pane.

2 Drop it onto the object you wish to be its parent.

A parent in the Behavior System determines if the

behavior you created gets executed every frame

(parent is the Behavior Root) or if its execution is

conditional upon another behavior, as discussed in

the On Mouse Pick Zoom To behavior example in

the preceding section.

Dragging a behavior onto the Behavior Root object

inserts the behavior as a child of the Behavior Root,

placing it at the root level of the Task Scheduler. All

root-level behaviors are executed every frame.

131Chapter 14 The Behavior System Creating and Using Behaviors
Dragging a behavior onto another behavior inserts

the new behavior as a child of the behavior onto

which it was dropped. This schedules the new

behavior to be executed when its parent behavior

fires. In the example, when MousePick fires,

ZoomViewToObject executes.

The order of execution can be critical in an

application. For example, you should typically

move your object before checking for collisions.

Doing so afterward may find your object halfway

inside another.

To change a behavior’s order of execution

" Drag it internally in the Task Scheduler.

Note The same dragging conventions apply here as

they do in the Scene Graph pane. Once you have

dropped your behavior onto it’s new parent, you will

again be prompted to edit your behavior’s inputs.

Editing Behavior Inputs
When you drop a behavior into the Task Scheduler,

you are prompted to supply the inputs for the

specified Behavior. This is indicated by the

Behavior Input Definition dialog box.

The input boxes on the right sight of the dialog allow

you to indicate to WorldUp whether your behavior

will be acting upon a list of objects explicitly

specified by you (Explicit List) or acting upon an

output supplied by it’s parent behavior (Parent Out).

Typically, behavior convention suggests that the

first input to a behavior (input 1) is the primary input

the behavior acts upon. For simple actions such as

spin or move, the object to act upon can be very

clear. The second input is typically referred to as the

object(s) the behavior acts with. Many actions, have

no second input. Most triggers, however, do have

second inputs. For example, MousePick takes as

Input 1 the Mouse object it is going to get its screen

position from, and Input2 as the list of objects it will

check for intersection with.

The convention for behavior authors is to apply the

Cartesian product to the two sets of inputs, such that

if MousePick had multiple mice in Input 1, for

example Mouse-1 and Mouse-2, the execution

would be:

If Mouse-1 picked chair-1 Then Fire

132 Behavior Authoring Chapter 14 The Behavior System
If Mouse-1 picked chair-2 Then Fire

If Mouse-2 picked chair-1 Then Fire

If Mouse-2 picked chair-2 Then Fire

Note This is only a convention. You are free to use

the inputs in whichever manner you choose. The

only rule WorldUp applies is that it will execute a

given behavior for each object in that behavior’s

Input1. This also means that a behavior with no

inputs will not be executed.

In addition to using the Behavior Input Definition

dialog box, a simpler way of adding inputs to a

Behavior is by simply dragging them from the Scene

Graph pane onto the input number of the Behavior

you wish to add it to. It is not enough to simply drag

it onto a behavior, since it is not clear which

InputList you wish to add it to.

Behavior Authoring
Authoring behaviors is a significantly different

process than using behaviors. Your goal as a

behavior author is to create a perfectly encapsulated

set of functionality that exposes itself through a set

of parameters that can then be modified

interactively. WorldUp provides two mechanisms

for authoring behaviors: the Behavior Wizard and

the Plug-in Kit. The tool you choose will depend on

your programming background and preferred

programming environment (C versus BasicScript)

and the requirements of the behavior (licensing,

performance, eedistributability, OpenGL, etc.).

This section covers the BasicScript tools for

authoring behaviors, as well as importing and

exporting behaviors. For more information on using

the WorldUp Plug-in Kit to author behaviors, refer

to the WorldUp Plug-in Author’s Guide.

Using the Behavior Wizard
A behavior script consists of a Behavior type and a

BasicScript callback function. All script-based

behaviors are authored through the Behavior Wizard

interface. This interface automatically creates the

type and the script for you, as well as provides you

with a code skeleton that you can use to begin

authoring your behavior. If you are subtyping an

existing behavior script, the Behavior Wizard will

insert that the base type’s code as the skeleton base

(if the code is not protected).

To create a new behavior script using the Behavior
Wizard

1 Select the Behavior type you wish to subtype in

the Behaviors Workview.

If you select an existing script-based action or

trigger, the Behavior Wizard assumes you wish

to subtype the selected behavior. Otherwise, it

creates a new behavior from scratch.

2 Click the Behavior Wizard button.

The Behavior Wizard is a series of dialogs aimed

at simplifying the creation of a new Behavior

type. Upon completing the set of dialogs, the

Behavior Wizard generates a new Behavior type

as well as a script template that you can then

133Chapter 14 The Behavior System Behavior Authoring
modify to either define your new Behavior’s

type’s actual behavior, or customize an existing

behavior.

3 Name and describe your new behavior.

The first step in the Behavior Wizard is to

indicate to WorldUp whether you are creating an

Action or a Trigger. If you are subtyping an

existing script-based behavior, this will already

be checked.

Name and Describe your Behavior

4 Define your behaviors Inputs and Outputs.

The second step asks you to define the number of

inputs and their types.

Define the number and types of your inputs and outputs

If you are creating an action, this will

automatically be set to 1 input of type Movable

and 1 output of type Movable. This is according

to the definition of an action as covered in

"Behavior Anatomy" on page 128.

If you are creating a new trigger, you have a

choice of the number of inputs and outputs and

their types.

If you are subtyping an existing script-based

trigger, these will be filled in based on the parent

types inputs and outputs. Since the ensuing script

depends on these, it is advised you not change

them unless you plan on changing the script as

well.

5 Finish, confirm, and create.

Finally, WorldUp attempts to create the script

type and a new script file. Assuming you have

provided a unique name for your new type, and

WorldUp has proper disk access, a final

confirmation dialog appears.

134 Behavior Authoring Chapter 14 The Behavior System
Finish, confirm, and create your script

Clicking Finish adds this type to your list of script-

based triggers (or actions, depending on what you

chose to subtype). It also opens the new script file

ready for editing.

This script and type are now part of your project and

will automatically be loaded the next time you open

your project. Therefore, it is crucial you keep your

new script in one of the locations specified by your

Scripts directory path settings.

Customizing Your New Script
The behavior script generated by the Behavior

Wizard is referred to as a Script Handler or callback

function. This is the routine that gets called every

frame for each object in the behavior’s InputList1.

behavior Script Handlers typically have the

following structure:

Subroutine Begin (Trigger)
Read Trigger’s Inputs
Process Data
Write Trigger’s Outputs
Fire Trigger (or stop trigger)

Subroutine End

For example, here is a Behavior Wizard generated

trigger Script Handler:

sub task(mytrigger as CollideMovable)

dim flag as boolean

'READ INPUTS
dim ActUpon as Movable
set ActUpon = mytrigger.in1
dim ActWithList as List
set ActWithList =
mytrigger.InputList2
dim ActWith as Movable
set ActWith = CastToMovable
(ActWithList.GetFirstObject())

'TODO: Insert decision processing
code here.
While ActWith is not nothing
success =
ActUpon.IntersectsMovable(ActWith
)
if success then
'WRITE OUTPUTS
set mytrigger.out1 = ActUpon
set mytrigger.out2 = ActWith

'FIRE TRIGGER
flag = mytrigger.Fire()

End If
Set ActWith =
ActWithList.GetNextObject()

Wend
end sub

A behavior’s Script Handler can now be treated like

any other script, with the exception that the

parameter type passed into the script must be the

same as the behavior’s actual name.

To edit the script

1 Select the behavior in the Behavior Workview.

2 Click the Edit Script button.

135Chapter 14 The Behavior System Importing and Exporting Script-Based Behaviors
Some additional conventions to remember when

working with script-based behaviors:

• If the trigger is a two-input trigger, InputList2 is

assumed to be handled by the trigger author.

The benefit of this approach is that the Task

Scheduler does not automatically define the

relationship between Inpulist1 and Inputlist2 (for

each; for each). You can define it how you please.

For example, if you wanted to only fire for the

first object collided with, you could easily define

this relationship by rearranging the loop.

set ActWith =
CollidableList.GetFirstObject()
success = False
While not Success

success =
ActUpon.IntersectsMovable(TargetMov
able)
if success then mytrigger.Fire()
set TargetMovable =
CollidableList.GetNextObject()

Wend

• By convention, the script file created bears the

same name as the behavior type created. The

system also associates the script with the

behavior type, acting essentially as a callback for

that behavior type. As such, it is very important

that a script-based behavior’s callback script be

locatable by the system during project loading.

You should never rename a behavior’s script file.

Importing and Exporting Script-
Based Behaviors
Behavior’s authored with the WorldUp Plug-in Kit

are automatically detected and loaded when

WorldUp starts or a simulation is loaded. With

scripted behaviors, you must import and export

them explicitly.

To export a script-based behavior

1 Select the Behavior type you wish to export in

the Behaviors Workview.

2 Click the Export Behavior button.

Exporting an Encrypted Behavior Script

This exports your behavior into a behavior file

(.pup). This file is a collection of your selected

behavior types and their callback scripts, along with

any additional files you wish to add. These files are

combined together into a single PUP file during

export, at which time you can also decide whether or

not to encrypt the scripts for redistribution without

giving away the source code.

To import a script-based behavior into your project

1 Select the Import Behavior button on the

Behavior Workview.

2 Select available any PUP file.

This brings the types and scripts into your project in

a subdirectory of the same name as the PUP file.

This behavior is now part of your project and will be

saved with it. It is no longer necessary to keep the

PUP file.

Note If the subdirectory contains additional files,

such as sounds, textures, or models, you need to add

these to your search path.

136 Importing and Exporting Script-Based Behaviors Chapter 14 The Behavior System

137
15
Paths

Paths are a series of position and orientation records

that you can use to guide Viewpoint or Movable

objects. In the case of Movable objects, the position

and orientation information in the path affects the

object in its parent's reference frame. You can

dynamically create, record, edit, save, load, and play

back paths in a variety of ways. You can also use

interpolation to smooth a roughly defined path.

As shown in the figure below, paths are made up of

a set of discrete elements, where each element stores

a specific position and orientation.

A path Around an Object

These elements are stored in .PTH files which are

referenced by WorldUp Path objects. You record

elements by specifying the Viewpoint or Movable

object whose position and orientation you want to

record and then manipulating that object’s position

and orientation as you record. You can record

continuously or one element at a time, adjusting the

First Element

Last Element

138 Creating New Paths Chapter 15 Paths
Viewpoint or Movable object’s position as you go.

A path’s playback is not limited to the object from

which it was recorded. Any Viewpoint or Movable

object can play any recorded path. So, for example,

you could record a path from a viewpoint, then have

a graphical object follow that path.

Paths are useful for a variety of applications. For

example, if you are creating a demonstration

program, you can record an optimal path through the

virtual environment before the actual

demonstration. Viewpoint paths are useful for any

application in which it may be important for the user

to see certain aspects of the virtual world. You can

also use viewpoint paths whenever an application

requires that a viewpoint be moved from one

location to another and you wish to provide a

smooth transition.

Similarly, you may have many uses for having

Movable objects follow paths. Consider a simple

case in which you want to have a door swing open

and shut. You could attach a sensor, such as a

Spaceball, to the door, and while twisting the

Spaceball to open the door, record the door’s path.

Through scripts, you could then indicate when the

path is to be played, for example, each time the user

clicks the Door object. By setting the path’s

playback mode to Oscillate, the path will play to the

end, then reverse direction, causing the door to

close.

Many of the properties of a Path object can be

controlled through the Path Browser. For

information on additional Path properties, such as

Speed, search on Path Type in the online Help.

Creating New Paths
You can either create a new, empty path which

contains no elements, or you can create a new,

interpolated path which contains elements that are

interpolated from elements of an existing path.

Creating a New Empty Path
This section explains how to create a new path

containing no elements.

To create a new, empty path

1 Click the Browser - Toggle Path button.

The Path Browser displays.

2 In the Path Browser, click New.

139Chapter 15 Paths Using Existing Paths
The Create Path dialog box displays.

3 Accept the default option, New Path and click

OK.

A new Path object appears in the Type Workview

and a new path is added to the Path Browser.

Note You can also create Path objects for empty

paths from the Type Workview as described in

"Creating an Object" on page 87.

Creating a New Interpolated Path
This section explains how to create a new path

containing elements interpolated from an existing

path. Your project must already contain one or more

recorded paths before this procedure becomes

available.

To create a new, interpolated path

1 Click the Browser - Toggle Path button.

The Path Browser displays.

2 In the Path Browser, click New.

The Create Path dialog box displays.

3 Click Interpolation from Existing Path.

4 In the Path text box, select the existing path

(which contains two or more elements) from

which you want to interpolate the new path.

The selected path will be unaffected by the

interpolation.

5 In the Increase Elements By box, type the

number of interpolated elements that you want to

insert between each element of the original path.

6 Click the desired interpolation method, as

described below:

• Linear – a straight line path between

elements.

• B-Spline – a curve which is the smoothest of

all the options, but which does not in general

pass through the elements of the original path.

• Bezier – a smooth curve which passes through

the elements of the original path.

Note The orientations of the elements are also

interpolated, however the method used to

interpolate orientations is always linear,

independent of the method chosen to interpolate

positions.

7 Click OK.

A new Path object appears in the Type Workview

and a new path is added to the Path Browser.

Using Existing Paths
In the Path Browser, you can load an existing .PTH

file and a Path object is created that references that

file.

To load an existing path

1 Click the Browser - Toggle Path button.

The Path Browser displays.

140 Moving Viewpoints and 3D Objects Along Paths Chapter 15 Paths
2 In the Path Browser, click Load.

3 In the Open dialog box, locate and open the PTH

file that you want to load.

A Path object is created in the Type Workview

and the loaded path is added to the Path Browser.

Note When you load a path, you are only loading

the information contained in the PTH file.

Information that is stored in the Path object for

which the PTH file was originally created, such as

the targets for the path (see below), is not loaded.

You can also load paths by dragging a PTH file

from any file browser directly into the Development

window.

Moving Viewpoints and 3D
Objects Along Paths
Before you can record or play a path, you must

specify the Viewpoint or Movable object from

which you want to record the path (known as the

Record From target), and the Viewpoint and/or

Movable objects to which you want to play the

recorded path (known as the Playback targets).

These associations are known as motion links.

The instructions below describe how to link paths to

target objects within the Path Browser. You can also

create motion links for paths from the Motion Link

Sources and Motion Link Targets dialog boxes, as

described in "Motion Links" on page 144.

To specify Playback and Record from targets

1 In the Path Browser, double-click the path whose

targets you want to set, or single click the path

and click the Modify Target(s) button.

The Path Targets dialog box displays.

2 In the Potential Targets box, select a Viewpoint

or Movable object that will follow the path when

the path is played.

3 Click Add to add the selected object to the list of

Playback Targets.

You can play a path on multiple objects. So, if

necessary, repeat this procedure to add all of the

desired objects to the Playback Targets list.

4 To remove an object from the Playback Targets

list, select the object in the Playback Targets list

and click Remove.

5 In the Record From Target box, select the

Viewpoint or Movable object whose position and

orientation you want to record to create the

path’s elements.

The only objects available are those that you

have specified as Playback targets. Thus, for

example, if you want to record from Viewpoint-

1, but you only want to play the path on Block-1,

you will have to add Viewpoint-1 as a Playback

target in order to be able to record from it, and

then later remove Viewpoint-1 when you are

ready to play the path.

6 Click Done to close the Path Targets dialog box.

For each object that you specify as a target of a path,

WorldUp automatically creates a corresponding

MotionLink object. When you remove a target, the

corresponding MotionLink object is automatically

deleted.

For more information on MotionLink objects, see

"Motion Links" on page 144.

141Chapter 15 Paths Moving Viewpoints and 3D Objects Along Paths
Recording Paths
Once you have specified a Record From target for

your path, you can record elements. You can record

elements continuously or one element at a time.

To record paths continuously

1 Ensure that you have specified a Record From

target as described on page 140.

2 In the Path Browser, select the path that you want

to record.

Note You can record multiple paths at once. To

select multiple paths, press the CTRL key while

you click each path.

3 Click the Record button.

4 In the Development window, manipulate the

Viewpoint or Movable object that you specified

as the Record From target for the selected path.

5 Click the Stop button to stop recording.

For information on how to edit recorded elements,

see "Editing Path Elements" on page 142.

To record a single element for the path

1 Ensure that you have specified a Record From

target as described on page 140.

2 In the Path Browser, select the path for which

you want to record an element.

Note You can record multiple paths at once. To

select multiple paths, press the CTRL key while

you click each path.

3 In the Record Options section of the Path

Browser, select one of the options as described

below:

• Insert Element – The recorded element will be

inserted just before the current element.

• Overwrite Element – The recorded element

will replace the current element.

• Append Element – The recorded element will

be appended at the end of the path.

4 If you have chosen the Insert Element or

Overwrite Element record option, drag the slider

below the Recording and Playback buttons so

that the path is positioned at the location where

you want to record the element.

As you drag the slider, the Element column of

the Path Browser indicates the current position of

the path.

5 In the Development window, set the desired

position and orientation of the object that you

have designated as the Record From target.

6 Click the Record One Frame button.

7 Continue manipulating the Record From object

and recording elements to achieve the desired

path.

Note Keep in mind that when creating paths by

recording single elements, it is often useful to record

rough paths, composed of just a few elements, and

then interpolate a smoother path from the one you

recorded. See "Creating a New Interpolated Path"

on page 139 for instructions.

For information on how to edit recorded elements,

see "Editing Path Elements" on page 142.

142 Editing Path Elements Chapter 15 Paths
Playing Paths
You can play paths from the Path Browser as you

develop your application, or you can play paths from

scripts.

Each Path object has a Forward property in the

Property pane. The default value is True, meaning

that the path will begin playing in the forward

direction. The discussion below assumes that this

property is set to True.

To play paths from the Path Browser

1 Ensure that you have specified at least one

Playback target, as described on page 140, for

each path that you want to play.

2 In the Path Browser, select the path that you want

to play.

Note You can play multiple paths at once. To

select multiple paths, press the CTRL key while

you click each path.

3 In the Play Options section of the Path Browser,

select one of the options as described below:

• Single – The path will play to the end and then

stop.

• Loop – The path will play to the end and then

repeat at the beginning.

• Oscillate – The path will play to the end and

then reverse direction when the final element

is played.

4 If the path is currently positioned at the final

element, click the Rewind button.

5 Click the Play button.

6 Let the path play to the end (if you chose the

Single playing option), or click the Stop

button to interrupt the play.

7 To play one frame (one element) of the path,

click the Forward1 or Back1 button,

depending on which direction you want the path

to play.

To play paths from scripts

" Call the Play or Play1 WorldUp function.

Keep in mind that each Play Option in the Path

Browser has a corresponding property in the

Property pane for all Path objects. You can set these

properties from scripts.

For information on writing scripts, see the WorldUp
Programmer’s Guide. For information on the Play

and Play1 functions, search on Play or Play1 in the

online Help.

Editing Path Elements
From the Path Browser, you can modify or delete

any element in your path.

To modify the translation and rotation of path
elements

1 In the Path Browser, select the path containing

the elements you want to modify.

2 Use the slider to position the path at the desired

element.

3 Click the Edit Element button.

143Chapter 15 Paths Saving Paths
The Edit Element(s) for Path-1 dialog box

displays the translation and rotation values of the

current element.

4 To focus on another element, click the Previous

or Next buttons to move through the path.

The number of the element that currently has

focus is listed at the top of the dialog box.

5 To modify the element’s translation, type new

values in the X, Y, and Z boxes under

Translation.

6 To modify the element’s rotation, type new

values in the Pitch, Yaw, and Roll boxes under

Rotation.

7 Click OK to apply the changes.

To delete elements from a path

1 In the Path Browser, select the path containing

the elements you want to delete.

2 Use the slider to position the path at the desired

element.

Note This is not necessary if you intend to delete

all elements.

3 Click the Edit Element button.

The Edit Element(s) dialog box displays.

4 To focus on another element, click the Previous

or Next buttons to move through the path.

The number of the element that currently has

focus is listed at the top of the dialog box.

5 In the Delete Options section, click one of the

following options:

• Current Element – Deletes the current element

only.

• From ... To ... – Deletes the specified range of

elements. Type the numbers of the first and

last elements of the range you want to delete.

• All Elements – Deletes all elements in the

path.

6 Click OK to delete the specified element(s).

Saving Paths
If you do not save your recorded paths, then no PTH

files are created for them. Thus, while the Path

object remains, all recorded elements are lost once

the project is closed.

Note It is not necessary to save an interpolated path

if the path from which it was interpolated has been

saved. Each time you reopen the project, the

interpolated path is recreated.

To save paths

1 In the Path Browser, select the path that you want

to save.

2 Click Save.

3 In the Save As dialog box, select the directory in

which the current UP file is located and specify a

name for the PTH file.

Note If your PTH files are located in any directory

other than the UP file’s directory, the project will not

be able to locate the PTH files when the project is

opened again.

144 Deleting Paths Chapter 15 Paths
Deleting Paths
To delete a path

1 In the Path Browser, click the path that you want

to delete.

Note You can delete multiple paths at once. To

select multiple paths, press the CTRL key while

you click each path.

2 Click Delete.

The Path object is deleted, along with any

MotionLink objects for which the deleted path

was the source.

Note You can also delete paths from the Type

Workview, as described in "Deleting an Object" on

page 88.

Paths and Sensors Use Motion
Links
Understanding Motion Links can be very helpful

when using paths. When you specify Record From

and Playback Targets in the Modify Targets dialog

box, WorldUp creates the underlying MotionLink

objects used in your simulation in the Type

Workview.

You can control any valid Motion Link Target with

any valid Motion Link Source. Valid Motion Link

Sources are Paths, Sensors, and Movables.

Note It is actually feasible, though not

recommended, to specify any WorldUp object as the

source, since the property is of type VBase.

However, objects would need to have Rotation and

Translation properties to have any effect on the

Target.

Valid Motion Link Targets are Movables and

Viewpoints.

Sensors
Sensors are devices, such as a mouse or a Spaceball,

that can be used to manipulate Movable objects

(such as geometries) or change your viewpoint in

the universe.

In the Type Workview, the Sensor object type

contains subtypes for each sensor that WorldUp

supports.

To use a sensor, you must attach the hardware to

your computer, create a Sensor object under the

appropriate Sensor type, and create motion links

between the sensor and the Viewpoint and/or

Movable objects in the universe.

By default, WorldUp provides each new universe

with a Mouse object (The Mouse). It also provides a

default Viewpoint (Viewpoint-1) and MotionLink

(MotionLink-1), which links The Mouse to

Viewpoint-1. This allows you to instantly begin

navigating the viewpoint of the default

Development window (DevWindow-1) with the

mouse. If you are using a type of sensor other than a

mouse, you’ll need to create your own Sensor object

and MotionLink object.

When you delete a Sensor object, all MotionLink

objects for which the deleted Sensor object was the

source are also deleted.

For information on how to configure specific

sensors, see Chapter 17, Using Input Devices. For

information on how to use motion links to link your

sensor to Viewpoint and Movable objects, see the

Motion Links section below.

Motion Links
Sensors and paths allow you to interact with a virtual

world by providing you with control over the motion

of Viewpoint and Movable objects. To associate a

145Chapter 15 Paths Motion Links
sensor or path with an entity in a world, use motion

links. A motion link connects a source of position

and orientation information (a Sensor or Path object)

with a target (a Viewpoint or Movable object) that

moves to correspond with that changing set of

information.

Through properties of MotionLink objects, you can

specify such attributes as whether the motion link

will be enabled during development, while the

simulation is running, neither, or both. Also, you can

specify in which reference frame the source object is

to manipulate the target object. For a description of

properties specific to MotionLink objects, search on

MotionLink Type in the online Help.

Assigning Motion Link Targets

To assign a target to a source object

1 In the Type Workview, select the Sensor or Path

object that you want to be the source of a new

motion link.

2 Select Edit Motion Link Targets from the Objects

menu, or right-mouse click the object in the Type

Workview and select Edit Motion Link Targets.

The Motion Link Targets dialog box appears.

3 In the Potential Link Targets box, click the

Viewpoint or Movable object that you want to be

the target of the motion link and click Add.

4 Repeat this procedure, if necessary, to link

additional target objects to the source.

A MotionLink object is created in the Type

Workview for each target that you add.

5 Click Done when you are finished.

Note If the source of the motion links you are

creating is a path, be aware that the targets you

specify from this dialog box will be Playback targets

only. You will have to specify the Record From

target from the Path Browser as described on page

140.

Assigning Motion Link Sources

To assign a source to a target object

1 In the Type Workview, select the Viewpoint or

Movable object that you want to be the target of a

new motion link.

2 Select Edit Motion Link Sources from the

Objects menu, or right-mouse click the object in

the Type Workview and select Edit Motion Link

Sources.

The Motion Link Sources dialog box appears.

3 In the Potential Link Sources box, click the

Sensor or Path object that you want to be the

source of the motion link and click Add.

4 Repeat this procedure, if necessary, to link

additional source objects to the target.

A MotionLink object is created in the Type

Workview for each source that you add.

5 Click Done when you are finished.

Note If you select a Path object as a source, be

aware that the target object will be a Playback target

only. You will have to specify the Record From

target from the Path Browser, as described on page

140.

Removing Motion Links
You can remove motion links by deleting the

appropriate MotionLink object from the Type

Workview, or by removing targets or sources.

146 Motion Links Chapter 15 Paths
To remove sources or targets

1 In the Type Workview, click the object that is

either the source or target of the motion link you

want to delete.

2 Select Edit Motion Link Sources or Edit Motion

Link Targets from the Objects menu, depending

on which type of object you have selected.

You can also right-mouse click the object in the

Type Workview and click the corresponding

option.

The Motion Link Sources or Motion Link

Targets dialog box displays.

3 In the Linked Sources or Linked Targets box,

select the object you want to remove and click

Remove.

4 Repeat this procedure, if necessary, to delete

additional objects.

For each object that you remove, the

corresponding MotionLink object is deleted from

the Type Workview.

5 Click Done when you are finished.

To delete MotionLink objects directly

1 In the Type Workview, expand the MotionLink

object type to see its existing objects.

2 To determine which MotionLink object you want

to delete, check the current values of the Source

and Target properties for the object.

3 Click the Delete Selected button on the Type

Workview.

Motion Link Properties
A MotionLink takes a source of position and

orientation information (a sensor or path object) and

applies it to a target (a viewpoint or movable object).

WorldUp creates a default viewpoint (Viewpoint-1)

and a default Mouse object (The Mouse), and

connects these two objects with a default Motion

Link (MotionLink-1). If the motion link is enabled

(its Enabled property is set to True) then WorldUp

automatically updates the target of the motion link

with the sources input.

MotionLink
Property

Definition Acceptable Value(s)

Application
Active

Indicates whether the link will be active
when the application runs.

True – The MotionLink is applied at runtime
False – The MotionLink is not applied at runtime

Development
Active

Indicates whether the link will be active
when you are developing the application.

True – The MotionLink is applied while developing
False – The MotionLink is not applied while developing

Enabled If set True, then the target of the MotionLink
is updated with source input.

True – Update source
False – DO NOT update source

Name The name of the MotionLink in the
simulation.

Any string value

147Chapter 15 Paths Motion Links
Reference
Frame

This is the reference frame in which the
target of the MotionLink will operate.

Local – Target operates in its local reference frame.
World – Target operates in the world reference frame
Parent – Target operates in its parent's reference frame
Viewpoint – Target operates in the viewpoint reference
frame

Source The source object of the MotionLink can be
either a Sensor object such as the mouse
or a Path object.

Any valid device or path object

Target The target of the MotionLink can be a
Viewpoint or Movable object.

Any valid viewpoint or movable object

Tasks Name(s) of the script(s) to be executed
once per frame during the simulation.

Any valid script. The script must contain a task
subroutine. The task will be run once each frame of the
simulation.

MotionLink
Property

Definition Acceptable Value(s)

148 Motion Links Chapter 15 Paths

149
16
Sounds

WorldUp can play sounds from WAV files. You can
use scripts to control how and when a sound plays.

To play sounds, the machines on which you plan to
develop or deploy your simulation must have the
following:

• A sound card

• An operating system configured to use the sound
card

• A pair of speakers attached to the sound output
ports

Be sure to set your sound path (using the File Access
Settings on the Options menu) and put the sounds
you use in your simulation in the sound folder. See
"Configuring Directory Paths" on page 39.

150 Creating a Sound Object Chapter 16 Sounds
Creating a Sound Object
You can create a Sound object using drag-and-drop
or from the Type Workview.

To create a Sound object using drag-and-drop

" Drag a wave file (.WAV) from your file browser
onto WorldUp.

A new Sound object is created and is named to
match the filename of the sound that you dragged.

To create a Sound object in the Type Workview

1 In the Type Workview, select the Sound object
type.

2 Click the Instantiate Selected Type button.

The File Open dialog box appears.

3 Navigate to the sound file you want WorldUp to
play and click Open.

Once the sound object is created, you can test your
sound.

To play your sound

1 Select the Sound object.

2 Set its Playing property to True.

3 Click the Run in DevWindow button or the
Run in AppWindow button.

Changing Sounds
To specify another sound file

1 In the Type Workview, select the Sound object
you wish to replace.

2 In the Property pane, select the Editable tab.

3 Set its Playing property to True, if not set
already.

4 Double-click the Filename property.

The File Open dialog box appears.

5 Navigate to the sound file you want WorldUp to
play and click Open.

6 Click theRun in DevWindow button or the
Run in AppWindow button to hear your new
sound.

151Chapter 16 Sounds Finding Sounds for your Application
Finding Sounds for your Appli-
cation
A number of good sound editors are available for
free over the Internet. Most of the sample sounds for
WorldUp were created with a microphone, office
supplies, and a simple sound editor for cutting and
pasting sound samples.

You can also find sound libraries on CDs at any
large computer software store.

Changing Sound Properties
You may want to modify the Sound object’s
properties and/or the Audio properties of the
Universe object to control factors such as which
sound device to use or whether the sound plays
continuously.

Search on Sound Type in the online Help for a
description of the unique properties for the Sound
object type. Search on Universe Type for a
description of the various Audio properties of the
Universe object.

152 Using Scripts to Play a Sound Chapter 16 Sounds
Using Scripts to Play a Sound
If a Sound object’s Playing property is set to True,
the sound automatically plays when you run the
simulation. To allow the sound to play continuously,
the Repeat property must also be set to True. If you
want to play the sound under certain conditions
only, write a script using WorldUp’s Play command
and attach that script to your Sound object.

See the WorldUp Programmer’s Guide for
information on how to write and attach a script to an
object.

Setting the Audio Listener
Viewpoint
The Universe object contains a pre-defined property
called Audio: Listener. This property indicates
which viewpoint represents the listener. In other
words, it represents where the ears of the viewer are
positioned in the universe.

By default, the Audio: Listener property is set to
Viewpoint-1.

If you set the application window to use another
viewpoint, you also need to set the Audio: Listener
property to that viewpoint, so sounds can be
spatialized correctly.

153Chapter 16 Sounds Troubleshooting Sounds
Troubleshooting Sounds
This secton provides some troubleshooting steps to
take if you are having trouble with your sounds.

Sounds won’t play
The following is a list of reasons why sounds might
not play:

• Does your sound system work?

Make sure that your sound system is properly set
up. Use the sound player that comes with your
operating system to try to play a sound. If the
sound doesn’t play, it could be that your sound
drivers are not installed properly, your sound
card is not working, or your system volume is
simply turned all the way down. Check your
system’s sound settings.

• Does the sound have its Playing property set to
True?

To play a sound, the Sound object’s Playing
property must be set to True. You can set this
directly in Property pane of the Type Workview
or by calling the script method Play. (The
command would be snd.Play, where snd is a
variable pointing to a sound.)

• Is something hogging the sound device?

Another application might be running that’s
holding on to the sound device, not letting
WorldUp play its sounds. Close the other
application and try again.

• Is Audio: Listener set correctly?

The Audio: Listener property of the Universe
object should be pointing to the correct
viewpoint (whichever viewpoint is used in the
main application window).

• What isAudio: Rolloff set to?

The Audio: Rolloff property of the Universe
object determines how fast the sounds in space
fall off. If the number is too low for the size of
your universe, sounds might be falling off too
quickly.

Sounds are not spatialized correctly
• Is the Attached To property set to the correct

object?

Make sure the Sound object’s Attached To
property is set to a valid object which is still in
your scene.

• Is Audio: Listener set correctly?

The Audio: Listener property of the Universe
object should be pointing to the correct
viewpoint (whichever viewpoint is used in the
main application window).

• What isAudio: Rolloff set to?

The Audio: Rolloff property of the Universe
object determines how fast the sounds in space
fall off. If the number is too high for the size of
your universe, you might not, in the area in
which you move in your universe, be able to tell
the difference in roll-off. Try decreasing this
number and see if the results are better.

My sound is playing too fast or too slow
If you are using the DiamondWare sound system
(this is the default for WorldUp on the Windows
platform – check the Audio Device property on the
Universe object), sounds must be recorded at a
frequency of 22 K. Any sound editor will allow you
to resample a sound file.

Make sure the sound’s Pitch property is set to 1.0.

154 Troubleshooting Sounds Chapter 16 Sounds

153
17
Using Input Devices

Sensor objects in WorldUp generate position,

orientation, and other kinds of data by reading input

information that originates in the real world. You

can use the input to control motion and other

behavioral aspects of objects in the simulation.

Sensors permit the user of a WorldUp simulation to

be directly coupled to the Viewpoint objects and

Movable objects in the universe. By linking a

specific Sensor object to a viewpoint, you can use

that sensor to navigate. By linking a specific Sensor

object to a Movable object, you can use that sensor

to control the specified object.

WorldUp provides Sensor properties that allow you

to access and, in some cases, modify the state of a

sensor. For example, you can retrieve the current

translational and rotational value for a sensor,

control the scale factors of the translation and

rotation records, and retrieve miscellaneous data,

such as button press events.

Many of the 3D and 6D (position/orientation)

sensors that are available are supported by

WorldUp. There are two principal classes of such

sensors: desk-based sensors and sensors that are

worn on the body. While most desk-based sensors

generate relative inputs, that is, changes in position

and orientation, devices worn on the body typically

generate absolute records, that is, values that

correspond to their specific spatial location.

154 Chapter 17 Using Input Devices
Desk-based sensors are conventional devices, such

as a mouse, a joystick, or an isometric ball. The

Logitech Space Control Mouse (Magellan) and

Spacetec IMC’s Spaceball are isometric balls that

respond to forces and torques applied by the user.

Using such devices, users can directly manipulate,

displace or rotate a 3D object – the object acts like it

is directly connected to the sensor. Isometric ball

sensors are also useful for moving the viewpoint; the

applied displacements and rotational forces move

and rotate the viewpoint. In this mode of operation,

with an isometric ball sensor attached to the

viewpoint, the sensor operates like a fly-by-wire

helicopter.

Sensors worn on the body (sensors that generate

absolute records) include electromagnetic 6D

trackers such as the Polhemus FASTRAK and

Ascension Bird. You can use this type of sensor for

viewpoint tracking when it is attached to a head-

mounted display. Some devices, like the Virtual i-O

i-glasses! and the StereoGraphics CrystalEyes VR,

provide left and right video displays combined with

head-tracking capability. In addition to

electromagnetic devices, a variety of ultrasonic
ranging/triangulation devices and optical devices

exist for absolute position and orientation tracking.

One example is the ultrasonic Logitech 3D Mouse

and Head Tracker.

Regardless of their underlying hardware

technology, WorldUp Sensor objects are treated

similarly and can be used interchangeably in an

application. Once a sensor object is created, it is

automatically maintained by the simulation

manager, so you do not have to deal directly with

considerations such as whether the sensor is

returning relative or absolute records, or whether it

is polled or streaming its data.

WorldUp provides drivers for the devices listed

below, making them easy to connect to your

computer and use in your applications.

Sensor See page

Any Standard Mouse (two or three buttons) 157

Ascension Mouse 157

Ascension Bird 158

Fifth Dimension Technologies’ 5DT Glove 158

Gameport Joystick 158

Logitech 3D Mouse (Red Baron) 159

Logitech Head Tracker 159

Logitech Space Control Mouse (Magellan) 160

Polhemus FASTRAK 160

Polhemus InsideTRAK 161

Polhemus ISOTRAK 161

Polhemus ISOTRAK II 161

Precision Navigation Wayfinder-VR 162

Spacetec IMC Spaceball – Model 2003 and
Model 3003 (using only the pick button)

162

StereoGraphics CrystalEyes and
CrystalEyes VR LCD Shutter Glasses

162

ThrustMaster Formula T2 Steering Console 162

ThrustMaster Serial Joystick (Mark II Flight
Control/Weapons Control Systems)

166

VictorMaxx Technologies’ CyberMaxx2
HMD

167

Virtual i-O i-glasses! – monoscopic and
stereo (Intergraph only) with head tracking

167

155Chapter 17 Using Input Devices
For the most up-to-date information about sensors

supported by WorldUp, contact SENSE8 Technical

Support, or check our Sensor Setup web page at:

http://www.sense8.com/sensorsetup/index.html

This web page shows what devices are supported

and how to set up the devices correctly. See

"Technical Support" on page 10 for contact

information.

In addition to support for the devices shown above,

WorldUp provides functions for easily obtaining

input from the keyboard (search on GetKey() in the

online Help).

Creating Sensor Objects
To use sensors in your WorldUp simulation, you

must attach the sensor hardware to your computer,

configure the sensor, create a Sensor object in

WorldUp from the appropriate Sensor object type,

and then link that Sensor object to the appropriate

Viewpoint object or Movable object.

To create a sensor object

1 Attach the sensor hardware to your computer.

2 Configure the sensor to run on your computer

(set the DIP switches, display settings, etc.).

"Working With a Specific Sensor" on page 156

describes each sensor and any special

configuration instructions.

3 In the Nodes pane, click the Sensor subtype from

which you want to create your Sensor object.

There is a separate type for each supported

sensor.

"Working With a Specific Sensor" on page 156

describes each supported sensor and indicates

which WorldUp object type to use for that sensor.

4 In the Property pane, set the available properties

as appropriate.

For a complete reference of all WorldUp

properties, search on “Property Reference” in the

online Help.

• Serial Baud Rate – This property is applicable

to serial sensors only. The baud rate will be set

to the default value that WorldUp uses. The

configuration procedures described in

"Working With a Specific Sensor" on page

156 assume the default baud rate. So, if you

want to use a different baud rate you need to

change the configuration accordingly.

• Serial Port – This property is applicable to

serial sensors only. The default value is COM1

(that is, serial port 1). If you did not attach the

sensor to serial port 1, change this property

value as appropriate (COM2 for serial port 2,

COM3 for serial port 3, and COM4 for serial

port 4).

• Unit – This property is applicable only to

those sensors that can have multiple receivers.

These are InsideTRAK, Ascension Mouse,

Bird, FASTRAK, and ISOTRAK II. The

default value is 1, indicating that this object

will represent the first receiver for the sensor.

Change this value only if you are creating an

additional receiver.

5 In the Nodes pane, create your Sensor object by

dragging it to the Scene Graph pane.

6 Link the sensor to a Viewpoint or Movable object

by creating a motion link (see "Motion Links" on

page 144 for instructions).

Note You can link multiple Sensor objects to a

particular Viewpoint or Movable object.

156 Chapter 17 Using Input Devices
7 If desired, create additional receivers for the

sensor (only available for InsideTRAK,

Ascension Mouse, Bird, FASTRAK, and

ISOTRAK II). To do so, increment the Unit

property value (for example, set it to 2 to create

the second receiver, 3 to create the third receiver,

and so on). Then, create a new object for that

receiver. Repeat this process to create the number

of receivers that you want.

Note You can delete a Sensor object just like any

other object (see "Deleting an Object" on page 88).

When you delete a Sensor object, any motion link

that references the deleted Sensor object will

automatically be deleted.

Sensor Lag and Frame-Rate
WorldUp is designed so you can interact with

computer-generated graphics flexibly and in real-

time. Sensor objects provide a means of

accomplishing this by directly coupling the user of

an application to the geometry in the virtual world.

The effectiveness of this interaction depends on

several factors:

• Sensor lag – The time from when the sensor’s

state in the real world changes to when the sensor

generates a record corresponding to that state;

inversely proportional to sensor speed.

• Sensor accuracy – The range of values that a

sensor may return when in a given state. This is

usually specified as something such as ±0.1

inches within a range of 8 feet.

• Frame-rate – The number of frames per second

that the system displays.

Note Even if your application runs with a high

frame-rate, if the sensor lag is very large, then the

user’s impression of being able to interact in the

virtual world may suffer. For very precise

manipulations within the virtual world, the shorter

the lag time, the better the user control.

Working With a Specific Sensor
This section describes each sensor supported by

WorldUp, including any special configuration

settings (such as, DIP switch settings, display

settings, etc.) and a list of defined constants for any

sensors that have buttons or switches. You can use

these defined constants in scripts to refer to the

sensor’s buttons/switches.

Note Not all sensors have special configuration

settings. The configuration procedures described

may not be the only way to hook up a particular

sensor.

For more detailed information on hooking up a

particular sensor to your computer, refer to the

sensor manufacturer’s documentation or consult

Sense8’s web site at:

http://www.sense8.com/sensorsetup/index.html

Note When DIP switch settings are shown, the

value 1 refers to ON, the value 0 refers to OFF.

Sensors may vary as to whether ON is the up or

down position for the DIP switch. The only

exception to this is the InsideTRAK in which 1

refers to OFF whereas 0 refers to ON. Also, for

serial sensors, the DIP switches corresponding to the

baud rate are set to the value that WorldUp uses as

default. So if you want to use a different baud rate,

refer to the documentation for that sensor to change

the DIP switch settings to the desired baud rate.

In the Type Workview, the Sensor object type

contains subtypes for each sensor that WorldUp

supports. Stand-alone sensors are located directly

157Chapter 17 Using Input Devices
within the Sensor type. Serial sensors (sensors that

need to be plugged into the serial port) are located

within the Serial Sensor subtype.

Mouse
The Mouse object type represents a standard mouse

input device. By default, WorldUp provides you

with a Mouse object named The Mouse. This object

exists so you can use your mouse to navigate

through worlds and select and move objects while

creating a simulation.

Note You can have only one Mouse object. Since

WorldUp creates a Mouse object automatically

when it starts, you cannot create additional Mouse

objects.

Defined Constants
The following constants define the event generated

each frame that the button moves from up to down.

• LEFTDOWN

• MIDDLEDOWN

• RIGHTDOWN

The following constants define the event generated

each frame that the button is held down.

• LEFTHELD

• MIDDLEHELD

• RIGHTHELD

The following constants define the event generated

each frame that the button moves from down to up.

• LEFTUP

• MIDDLEUP

• RIGHTHUP

These can be used in scripts to access button press

events as shown in the following example.

Sample Script Using Defined Constants

Sub Task (m as Mouse
If m.MiscData and RIGHTHELD then
message "The right mouse button is _
depressed"

ElseIf m.MiscData and MIDDLEHELD then
message "The middle mouse button is _
depressed"

ElseIf m.MiscData and LEFTHELD then
message "the left mouse button is _
depressed"

End If
End Sub

Note The constants for the Mouse middle button are

used only on three-button mice.

Ascension Mouse
The Ascension Mouse object type represents an

Ascension Technology Corporation mouse, a six

degree-of-freedom sensor that not only measures

absolute position and orientation by using an

electromagnetic field tracking system, but also has

three user-programmable buttons like a standard

mouse input device.

Defined Constants
The following constants define the event generated

each frame that the button moves from up to down.

• ASCMOUSE_LEFTDOWN

• ASCMOUSE_MIDDLEDOWN

• ASCMOUSE_RIGHTDOWN

These can be used in scripts to access button press

events as shown in the example for Mouse defined

constant.

158 Chapter 17 Using Input Devices
Ascension Bird
The Bird object type represents an Ascension

Technology Corporation Bird, a six degree-of-

freedom sensor that measures absolute position and

orientation by using an electromagnetic field

tracking system. Multiple bird units, known as Flock

of Birds, are also supported.

Configuring the Bird
" To configure one Bird, set the DIP switches as

shown below.

The DIP switch settings reference the following

settings:

• Baud rate set to 19200 (switches 1, 2, and 3)

• Unit address set to 1 (switches 4, 5, 6 and 7)

Note The Bird must be set as unit 1, not 0.

• Mode set to fly (Switch 8)

" To configure two Birds, set the DIP switches as

shown below.

Unit 1

Unit 2

Multiple Birds can be daisy-chained to make the

Flock of Birds. See the Ascension Bird User’s Guide

for setup guidelines.

Note A flock can have up to 20 Bird units.

5DT Glove
The Glove5DT object type represents a Fifth

Dimension Technologies’ 5DT Glove, a data glove

that measures finger flexure and the orientation

(±128 degrees of pitch and roll with 0 being straight

up) of a user’s hand.

Gameport Joystick
The Gameport Joystick object type supports

standard Gameport (analog) joysticks.

Installing the Joystick Driver for NT
You must have the Windows NT system driver for

the gameport joystick installed to use the joystick

with WorldUp. If you have not previously installed

the driver or are unsure, follow the steps below:

To add the driver to your system

1 Insert the Windows NT 4.0 CD into your drive.

2 Open the Control Panel.

3 Select Multimedia.

4 Select Devices.

5 Select Add.

6. Choose Unlisted or updated driver‚ and press OK.

7. Type in d:\drvlib\multimed\joystick\x86‚

where d is the letter of your CD-ROM drive.

8. Restart system when prompted.

1 0 0 0 0 0 1 0

Dip Switch 1

Dip Switch 8

1 0 0 0 0 0 1 0

Dip Switch 1

Dip Switch 8

1 0 0 0 0 1 0 0

Dip Switch 1

Dip Switch 8

159Chapter 17 Using Input Devices
Calibrating the Gameport Joystick
WorldUp uses the standard Windows NT joystick

control panel to calibrate the gameport joystick.

You must calibrate before you use a joystick for the

first time, and any time your joystick is not behaving

correctly.

To calibrate your joystick

1. Open the Control Panel.

2. Select joystick.

3. Select the attributes that reflect your joystick.

4. Choose Calibrate and follow directions.

5. Choose Test‚to verify your calibration.

Note Currently you can have only one joystick

attached to your system. It must be on Port 1. (This

is a limitation of the current Windows NT joystick

driver).

Logitech 3D Mouse (Red Baron)
The Logitech 3D Mouse object type represents a

Logitech, Inc. 3D Mouse, a desk-based sensor that

measures absolute position and orientation by using

three microphones to triangulate on three ultrasonic

speakers. The speakers are mounted in a large

triangle, and the microphones are in a smaller

triangle, which is attached to the end of the mouse.

Note The Logitech 3D Mouse is also known as the

Red Baron.

Defined Constants
The 3D Mouse has three buttons (left, middle, and

right), similar to a normal Mouse. In addition, it has

a button on the side of the mouse body called the

suspend button, so named because it is used to

suspend motion. When depressed, position and

orientation records for the sensor are frozen at their

current values, until the button is released. In this

manner, the button can be used as a “clutch” or

“ratchet” to be able to traverse large distances or

angles by depressing the button while returning the

sensor to within range of the ultrasonic speakers.

The following constants define the event generated

each frame that the button is held down.

• LOGI_LEFTHELD

• LOGI_MIDDLEHELD

• LOGI_RIGHTHELD

• LOGI_SUSPEND

The following constant can be used to detect when

the 3D Mouse is currently off the desktop. Note that

this constant makes sense only if the 3D Mouse was

on the desk at initialization.

• LOGI_FLYINGHELD

These can be used in scripts to access sensor data as

shown in the example for Mouse defined constants

on page 157.

Logitech Head Tracker
The Logitech Tracker object type represents a

Logitech, Inc. Head Tracker, a head tracker sensor

that measures absolute position and orientation by

using three microphones to triangulate on three

ultrasonic speakers. The speakers are mounted in a

large triangle, and the microphones are in a smaller

triangle, which is attached to the top of head-

mounted displays for use as a head tracker.

160 Chapter 17 Using Input Devices
Logitech Space Contol Mouse
(Magellan)
The Magellan object type represents a Logitech, Inc.

Space Control Mouse, a six degree-of-freedom

table-top sensor that measures relative position and

orientation by mapping the force and torque inputs

applied to it.

Defined Constants
There are nine user-programmable buttons on the

Space Control Mouse. All of these are positioned on

the top edge of the Space Control Mouse frame. The

button marked with an asterisk (*) is called the pick
button (to maintain compatibility with the

Spaceball).

The following constants define the event generated

each frame that the button is held down.

• MAG_BTN1DOWN

• MAG_BTN2DOWN

• MAG_BTN3DOWN

• MAG_BTN4DOWN

• MAG_BTN5DOWN

• MAG_BTN6DOWN

• MAG_BTN7DOWN

• MAG_BTN8DOWN

• MAG_BTNADOWN

These can be used in scripts to access button press

events as shown in the example for Mouse defined

constants on page 157.

Polhemus FASTRAK
The Fastrak object type represents a Polhemus

FASTRAK, a six degree-of-freedom sensor that

measures absolute position and orientation by using

an electromagnetic field tracking system. It can

support multiple receivers (up to four) and has a

much smaller sensor lag.

Configuring the FASTRAK
Note You must use a NULL MODEM cable to

attach the FASTRAK to a PC.

To configure one receiver

• Set the DIP switches as shown below.

Back

Front

The back DIP switch settings reference the

following settings:

• Baud rate set to 19200 (switches 1, 2, and 3)

• No hardware handshaking functionality (switch

4)

• Character width set to 8 bits (switch 5)

• No parity (switches 6 and 7)

• RS-232 serial operation (switch 8)

The front DIP Switch settings indicate how many

receivers the FASTRAK currently has. The above

setting indicates the FASTRAK has one receiver.

Note When a receiver is being used, its

corresponding DIP switch is set to OFF.

To configure two receivers

• The DIP Switch settings in the back of the unit

are the same as shown above for one receiver. Set

the front DIP Switch settings as follows:

0 0 1 1 1 0 0 1

Dip Switch 1 Dip Switch 8

0 1 1 1Dip Switch 1 Dip Switch 4

161Chapter 17 Using Input Devices
Front

Note The FASTRAK can have up to four receivers.

Polhemus InsideTRAK
The InsideTrak object type represents a Polhemus

InsideTRAK, a six degree-of-freedom sensor that

measures absolute position and orientation by using

an electromagnetic field tracking system. It is

similar to the Polhemus ISOTRAKII, but is only

available on Intel-based workstations with ISA bus

slots.

To configure the InsideTRAK

1 Set the jumper switches to address 0x280 as

shown below. The default setting is 0x300 but

this is commonly used by network cards.

Note For the InsideTRAK, value 0 is ON and

value 1 is OFF.

2 Copy the ITRAKNT.SYS file (the actual port

driver for Windows NT) from the

\WORLDUP\DRIVERS directory to your

\WINNT35\SYSTEM32\DRIVERS directory

(\WINNT\SYSTEM32\DRIVERS for NT 4.0

systems).

Note The remaining steps tell you how to configure

the NT Registry for use with the Polhemus

InsideTRAK. If you have WorldToolKit on your

computer, you can skip the remaining steps since the

WTK installation does this automatically.

3 Configure the NT Registry for use with the

Polhemus InsideTRAK using the steps below. ()

4 Double-click the file

\WINNT35\SYSTEM32\REGEDT32.EXE

(\WINNT\SYSTEM32\REGEDT32.EXE for NT 4.0

systems).

Note Do not use \WINNT35\REGEDIT.EXE

(\WINNT\REGEDIT.EXE for NT 4.0 systems)

for this configuration.

5 Click the "HKEY_LOCAL_MACHINE on

Local Machine" registry window.

6 Navigate through the Registry hierarchy to the

Services key: SYSTEM > CurrentControlSet >

Services.

7 Click the Services key, then on the Edit menu,

click Add Key.

8 In the Add Key dialog box, type Itraknt in the

Key Name box and press ENTER.

9 Under Services, click the new Itraknt key.

10 On the Edit menu, click Add Value.

11 In the Add Value dialog box, type Type in the

Value Name box and set the Data Type to

REG_DWORD. Press ENTER.

12 In the DWORD Editor dialog box, type 1 in the

Data box and press ENTER.

Note The Registry will show this value as 0x1.

This is normal.

13 Continue using the Add Value command on the

Edit menu to add the following values to the

Itraknt key:

0 0 1 1Dip Switch 1 Dip Switch 4

0 0 0 0 0 1 0 1

Jumper 1 (J1)

Jumper 8 (J8)

Value Name Settings

Start Data Type: REG_DWORD
Data: 2

162 Chapter 17 Using Input Devices
14 On the Edit menu, click Add Key.

15 In the Add Key dialog box, type Parameters in

the Key Name box and press ENTER.

16 Under Itraknt, click the new Parameters key.

17 On the Edit menu, click Add Value and add the

following values to the Parameters key:

18 Click Exit to end the session.

Note The InsideTRAK does not use interrupts, so

the interrupt jumper should be set to disable

interrupts.

Polhemus ISOTRAK/ISOTRAK II
The Isotrak object type represents a Polhemus

ISOTRAK, a six degree-of-freedom sensor that

measures absolute position and orientation by using

an electromagnetic field tracking system.

The IsotrakII object type represents a Polhemus

ISOTRAK II, a two-receiver six degree-of-freedom

sensor that measures absolute position and

orientation by using an electromagnetic field

tracking system.

Configuring the ISOTRAK and ISOTRAK II

Note You must use a NULL MODEM cable to

attach the ISOTRAK or the ISOTRAKII to a PC.

" Set the DIP switches as shown below.

The DIP Switch settings reference the following

settings:

• Baud rate set to 9600 (switches 1, 2, and 3)

• Internal Sync Mode (switch 4)

• Sync Generator OFF (switches 5 and 6)

Switches 7 and 8 are don’t care.

Precision Navigation Wayfinder-VR
The CyberTrack object type represents a Precision

Navigation Wayfinder-VR, a head tracker that

measures absolute orientation using inertial and

compass technologies. This tracker provides 360

degrees of yaw rotation, and about +/- 45 degrees of

pitch and roll rotation.

Spacetec IMC Spaceball
The Spaceball object type represents a Spacetec

IMC Spaceball, a six degree of freedom table-top

sensor that measures relative position and

orientation by mapping the force and torque inputs

applied to it.

Group Data Type: REG_SZ
String: Extended Base

ErrorControl
(no spaces)

Data Type: REG_DWORD
Data: 1

Value Name Settings

IoPortAddress
(no spaces)

Data Type: REG_DWORD
Data: 280

IoPortCount
(no spaces)

Data Type: REG_DWORD
Data: 4

Value Name Settings

1 1 0 1 0 0 0 0

Dip Switch 1

Dip Switch 8

163Chapter 17 Using Input Devices
Defined Constants
There are nine user-programmable buttons on the

Spaceball. Eight of these are positioned on the top

edge of the Spaceball frame. One other button,

called the pick button, is mounted on the forward

face of the ball itself.

The following constants define the event generated

each frame that the button moves from up to down.

• SBALL_BTN1DOWN

• SBALL_BTN2DOWN

• SBALL_BTN3DOWN

• SBALL_BTN4DOWN

• SBALL_BTN5DOWN

• SBALL_BTN6DOWN

• SBALL_BTN7DOWN

• SBALL_BTN8DOWN

• SBALL_PICKDOWN

The following constants define the event generated

each frame that the button is held down.

• SBALL_BTN1HELD

• SBALL_BTN2HELD

• SBALL_BTN3HELD

• SBALL_BTN4HELD

• SBALL_BTN5HELD

• SBALL_BTN6HELD

• SBALL_BTN7HELD

• SBALL_BTN8HELD

• SBALL_PICKHELD

These can be used in scripts to access button press

events as shown in the example for Mouse defined

constants on page 157.

Note If you are using the Spacetec Spaceball Model

3003, be aware that the WorldUp driver has not been

rewritten for the Model 3003. The 2003 driver

works for both units, with a couple of differences.

The ball controls translation and rotation in 6

degrees in real time for both models, but the 3003

only has one button (whereas the 2003 has 8 plus a

pick button) that WorldUp supports. The button on

the right side of the 3003 acts as the pick button.

StereoGraphics CrystalEyes and
CrystalEyes VR LCD Shutter
Glasses
The CrystalEyes VR object type represents a

StereoGraphics, Inc. CrystalEyes VR stereo display

and head tracker system that measures absolute

position and orientation.

To configure the CrystalEyes VR

1 Setup the Emitter (EPC) unit. Attach it between

the video out connector on your video card and

your monitor using VGA cables.

2 If head tracking is required, connect the

CrystalEyesVR to the Logitech unit and plug the

serial cable from the Logitech unit into the serial

port of your computer.

3 The next step depends on whether you want to

configure the CrystalEyes VR for stereo or mono

operation.

For stereo operation with an Intergraph GLZ

graphics accelerator board, do the following:

• In Control Panel, set your screen display to

stereo. This will reset your graphics card to

output 120 Hz. You can set the resolution to

whatever you desire, but be sure that your

monitor can handle the 120 Hz at that

resolution. To be safe, try it first at 640 x 480

164 Chapter 17 Using Input Devices
(a 21" Intergraph can be set to 1024 x 768 @

120 Hz) and increase the resolution as your

monitor allows. Check with your monitor’s

specifications before you try. You will need to

reboot your computer if you are running

Windows NT 3.51. Windows NT 4.0 will reset

your resolution, but the Intergraph driver must

have a reboot to change to stereo mode.

For mono operation with non-GLZ graphics

accelerator boards (ie: Stealth, Millenia, Mach,

etc.), do the following:

• In Control Panel, set the display resolution to

640 x 480 @ 60 Hz. You will need to reboot if

you are running Windows NT 3.51. Windows

NT 4.0 will reset your resolution immediately

if your video board supports it.

4 The emitter unit should be switched into either

the high or low position (which controls signal

range - usually set it to high).

5 In WorldUp, create a new Window (as described

in "Windows, Viewports, and Viewpoints" on

page 95).

Note Be sure to assign the correct Viewpoint

object to the window.

6 Set the Width and Height properties for the

Window object as appropriate (usually the same

resolution as the screen.)

7 Set the Stereo property to True.

8 Set the Interleaved property as appropriate:

• True – for GLZ boards.

• False – for non-GLZ boards.

9 For stereo operaton, run the simulation and

adjust the Parallax property of the Viewpoint

object that is being used by the window to

achieve maximum stereo effect (a parallax of 0.7

often works well).

ThrustMaster Formula T2 Steering
Console
The FormulaT2 object type represents a

Thrustmaster Technologies, Inc. Formula T2, a

steering console that provides a natural driving

experience around your virtual world.

To configuring the Formula T2

To configure the Formula T2, you must make the

port driver available to your system, configure the

NT Registry, and then calibrate the Formula T2.

To make the port driver available to your system:

" Copy the FORMULA.SYS file (the actual port

driver for Windows NT) from the

\WORLDUP\DRIVERS directory to your

\WINNT35\SYSTEM32DRIVERS directory.

To configure the NT Registry:

Note If you have WorldToolKit on your computer,

you can skip this section since the WTK installation

does this automatically. Otherwise follow the

instructions below.

1 Double-click the file

\WINNT35\SYSTEM32\REGEDT32.EXE.

Note Do not use \WINNT35\REGEDIT.EXE for

this configuration.

2 Click the HKEY_LOCAL_MACHINE on Local

Machine registry window.

3 Navigate through the Registry hierarchy to the

Services key: SYSTEM > CurrentControlSet >

Services.

4 Click the Services key, then on the Edit menu,

click Add Key.

5 In the Add Key dialog box, type Formula in the

Key Name box and press ENTER.

6 Under Services, click the new Formula key.

165Chapter 17 Using Input Devices
7 On the Edit menu, select Add Value.

8 In the Add Value dialog box, type Type in the

Value Name box and set the Data Type to

REG_DWORD. Press ENTER.

9 In the DWORD Editor dialog box, type 1 in the

Data box and press ENTER.

Note The Registry will show this value as 0x1.

This is normal.

10 Continue using the Add Value command on the

Edit menu to add the following values to the

Formula key:

11 On the Edit menu, select Add Key.

12 In the Add Key dialog box, type Parameters in

the Key Name box and press ENTER.

13 Under Formula, click the new Parameters key.

14 On the Edit menu, click Add Value and add the

following values to the Parameters key:

15 Windows NT Registry input is now complete.

On the Registry menu, click Exit to end the

session.

To calibrate the Formula T2
At initialization, WorldUp searches the current

directory for the formula calibration file named

FORMULA.CAL. You can copy the default

calibration file from the

\WORLDUP\DRIVERS\directory to the correct

directory, or you can create a new calibration file.

To do this:

• Run T2CAL.EXE from the

\WORLDUP\DRIVERS directory, which will

generate the calibration file – FORMULA.CAL.

This should be put in the same directory as the

WorldUp executable. The following text reflects

both the sample calibration file that ships with

WorldUp (located in the \WORLDUP\DRIVERS

directory) and the default values used by

WorldUp:

11 24 4 20 21 4

The six entries specify integer values for wheel

center, wheel range, wheel drift, pedal center,

pedal range, and pedal drift. If the calibration file

is not found, the default values are used.

Defined Constants

The following constants define the event generated

each frame that the two buttons move from up to

down.

• FORMULA_BUTTON1

• FORMULA_BUTTON2

The following constants define the event generated

each frame that the shift knob is moved up or down.

• FORMULA_SHIFTUP

• FORMULA_SHIFTDN

Value Name Settings

Start Data Type: REG_DWORD
Data: 2

Group Data Type: REG_SZ
String: Extended Base

ErrorControl
(no spaces)

Data Type: REG_DWORD
Data: 1

Value Name Settings

IoPortAddress
(no spaces)

Data Type: REG_DWORD
Data: 201

IoPortCount
(no spaces)

Data Type: REG_DWORD
Data: 1

166 Chapter 17 Using Input Devices
These can be used in scripts to access sensor data as

shown in the example for Mouse defined constants

on page 157.

ThrustMaster Serial Joystick
The Serial Joystick object type represents a

Thrustmaster Technologies, Inc. Serial Joystick

(Mark II Flight Control/Weapons Control system)

that measures relative position and orientation.

Configuring the Serial Joystick
At initialization WorldUp searches the current

directory for the joystick calibration file named

JOYSTICK.CAL. The following text reflects both

the sample calibration file that ships with WorldUp

(located in the \WORLDUP\DRIVERS directory)

and the default values used by WorldUp:

0.0 255.0 0.0 255.0 128.0 128.0

The six entries specify floating point values for

minimum X, maximum X, minimum Y, maximum

Y, center X and center Y, respectively. If the

calibration file is not found, the default values are

used. You can copy the default calibration file from

the \WORLDUP\DRIVERS directory to the correct

directory, however it is better to create a new

calibration file since the calibration values might

differ for individual joysticks.

To calibrate the joystick

1 Create the Serial Joystick object as described in

"Creating Sensor Objects" on page 155.

2 With the Serial Joystick object selected, on the

Object menu click Calibrate Joystick (you must

have rendering on to do this).

The Calibrate Serial Joystick dialog box

displays.

3 Follow the instructions provided.

Note Since the joystick is calibrated upon

creation of the Serial Joystick object, the object

that you created in Step 1was actually calibrated

using the values of the last calibration file

created, or the WorldUp default values. You must

create a new Serial Joystick object to use the new

calibration file.

4 In the Type pane, click the Serial Joystick object

that you created in Step 1 and click the Delete

Selected button.

5 Create a new Serial Joystick object as described

on "Creating an Object" on page 87.

This object is calibrated using the new

calibration file.

Note You can continue to use this same calibration

file for any sensor object corresponding to the same

joystick device. You only need to recreate the

calibration file if you are creating a sensor object

corresponding to a different joystick device.

Defined Constants
The ThrustMaster Mark II Flight Control System

supports three momentary buttons in addition to the

trigger and a hat switch. The Mark II Weapons

Control System adds an additional six momentary

switches as well as a three-position rocker switch.

• SERJOY_TRIGGERDOWN

• SERJOY_TOPDOWN

• SERJOY_SIDEDOWN

• SERJOY_BOTTOMDOWN

• SERJOY_HATRIGHT

• SERJOY_HATLEFT

• SERJOY_HATDOWN

• SERJOY_HATUP

• SERJOY_WCS1

167Chapter 17 Using Input Devices
• SERJOY_WCS2

• SERJOY_WCS3

• SERJOY_WCS4

• SERJOY_WCS5

• SERJOY_WCS6

• SERJOY_WCS7

• SERJOY_WCSUP

• SERJOY_WCSDOWN

These can be used in scripts to access sensor data as

shown in the example for Mouse defined constants

on page 157.

VictorMAxx Technologies’
CyberMAxx2 HMD
The CyberMaxx2 object type represents a

VictorMaxx Technologies’ CyberMaxx2 HMD, a

head tracker that measures absolute orientation

using inertial and compass technologies. This

tracker provides 360 degrees of yaw rotation, and

about +/- 60 degrees of pitch and roll rotation.

To configure the CyberMaxx2

1 Run the VGA signal through the daisy chain

cable supplied with the CyberMaxx2.

2 Plug in the serial cable from the CyberMaxx2

into the serial port of your computer, if head

tracking is desired.

The next step depends on whether you want to

configure the CyberMaxx2 for stereo or mono

operation.

3 For stereo operation with an Intergraph GLZ

graphics accelerator board, do the following:

• In Control Panel, set the Intergraph driver for

640 x 480 @ 60Hz and true color (if your

computer supports it). You will need to reboot

if you are running Windows NT 3.51. Adjust

the CyberMaxx2 video switch (on the right

front side of the unit) to F1 for best results.

4 For mono operation with non-GLZ graphics

accelerator boards (ie: Stealth, Millenia, Mach,

etc.), do the following:

• In Control Panel, set the display resolution to

640 x 480 @ 60 Hz and true color. (Reboot if

you are running Windows NT 3.51).

5 In WorldUp, create a new Window (as described

in "Creating a Window" on page 97).

Note Be sure to assign the correct Viewpoint

object to the window.

6 Set the Width and Height properties for the

Window object as appropriate (usually the same

resolution as the screen, for example 640 x 480).

7 Set the Stereo property as appropriate:

• True – for stereo operation on GLZ boards.

• False – for mono operation on non-GLZ

boards.

Note Stereo mode on non-GLZ boards is used for

the CrystalEyesVR, and not the CyberMaxx2.

8 For stereo operaton, run the simulation and

adjust the Parallax property of the Viewpoint

object that is being used by the window to

achieve maximum stereo effect (a parallax of 0.5

often works well).

Virtual i-O i-glasses!
The IGlasses object type represents a Virtual i-O

Corporation i-glasses!, a monoscopic and stereo

head tracker that measures absolute orientation

168 Working With the State of a Sensor Chapter 17 Using Input Devices
using inertial and compass technologies. This

tracker provides 360 degrees of yaw rotation, and

about +/- 60 degrees of pitch and roll rotation.

To configure i-Glasses!

1 Attach the VGA breakout box between the video

out connector on your video card and your

monitor using VGA cables.

2 Plug in the serial cable from the breakout box

into the serial port of your computer if head

tracking is desired.

The next step depends on whether you want to

configure the i-Glasses! for stereo or mono

operation.

3 For stereo operation with an Intergraph GLZ

graphics accelerator board, do the following:

• In the Control Panel, set the Intergraph driver

for 640 x 480 @ 60 Hz and true color (if your

computer supports it). You will need to reboot

if you are running Windows NT 3.51. Adjust

the Virtual I/O switch (on the right front side

of the IGlasses) to 3D2.

4 For mono operation with non-GLZ graphics

accelerator boards (ie: Stealth, Millenia, Mach,

etc.), do the following:

• In the Control Panel, set the Intergraph driver

for 640 x 480 @ 60 Hz and true color. (Reboot

if you are running Windows NT 3.51).

5 In WorldUp, create a new Window (as described

in "Creating a Window" on page 97).

Note Be sure to assign the correct Viewpoint

object to the window.

6 Set the Width and Height properties for the

Window object as appropriate (usually the same

resolution as the screen, for example 640 x 480).

7 Set the Stereo property as appropriate:

• True – for stereo operation on GLZ boards.

• False – for mono operation on non-GLZ

boards.

Note Stereo mode on non-GLZ boards is used for

the CrystalEyesVR, and not the i-Glasses!.

8 For stereo operaton, run the simulation and

adjust the Parallax property of the Viewpoint

object that is being used by the window to

achieve maximum stereo effect (a parallax of 0.5

often works well).

Note To get stereo with the Virtual I/O i-Glasses!,

you need a hardware accelerator that can do line-

interleaved stereo full screen (that is, not in a
window) over a single channel at 640 x 480 @

60 Hz. Currently, the Intergraph GLZ boardset

drivers do this. Most PC video cards are not capable

of outputting line-interleaved stereo. Hence, the

Virtual I/O i-Glasses! will be in monoscopic mode

under most circumstances.

Working With the State of a
Sensor
This section describes the common Sensor

properties that define a sensor’s state. These

properties allow you to access or modify (writable

properties only) the current state of a sensor. A

sample of how to work with these properties from

scripts is provided at the end of this section.

Note For information on properties that are specific

to a particular sensor, search on the name of the

object type from which you created the sensor in the

online Help.

169Chapter 17 Using Input Devices Working With the State of a Sensor
Sensor Properties
Not all Sensor properties are applicable to all

sensors. For example, you cannot set the rotational

speed of absolute position and orientation sensors,

such as the FASTRAK or Bird. Thus, these sensors

do not have the Angular Rate property.

The following table lists the Sensor properties

applicable to each sensor. A detailed description of

each property follows the table.

Sensor
Angular Rate

(page 170)
Misc Data
(page 170)

Rotation
(page 170)

Sensitivity
(page 170)

Translation
(page 170)

FormulaT2 X X X X X

InsideTrak X X X

Mouse X X X X X

Ascension Mouse X X X X

Bird X X X

CrystalEyesVR X X X

CyberMaxx2 X

CyberTrack X

Fastrak X X X

Glove5DT Pitch/Roll

Gameport Joystick X X X X

IGlasses X

Isotrak X X X

IsotrakII X X X

Logitech 3D Mouse X X X X

Logitech Tracker X X X

Magellan X X X X X

Serial Joystick X X X X X

Spaceball X X X X X

170 Working With the State of a Sensor Chapter 17 Using Input Devices
Angular Rate
This property is used to get or set the scale factor for

a sensor’s rotation records. The angular rate is the

maximum rotation (in radians) around any axis that

a sensor returns in any pass through the simulation

loop. For example, suppose you have a Spaceball

attached to a viewpoint. The Spaceball’s angular

rate determines the maximum rotation around any

axis that your viewpoint rotates when you apply

torque on the ball.

Not all sensors supported in WorldUp have their

rotational records scaled in this manner. You cannot

set the rotational speed of absolute position and

orientation sensors, such as the FASTRAK or Bird.

The default angular rate for all sensors is 0.087266

radians, or 5 degrees. It may be convenient to

specify the angular rate in terms of the defined

constant PI (for example, 45 degrees = PI/4).

Misc Data
This property is used to get an integer value in which

miscellaneous data pertaining to the sensor, like

button press events, are stored. This value, together

with the defined constants, can be used in scripts to

access sensor data (see the example for Mouse

defined constants on page 157).

Rotation
This property is used to get the rotational value of

the current rotation record. The rotational value is

the combined effect of the Pitch (x-rotation), Roll (z-

rotation), and Yaw (y-rotation). The rotation record

is affected by the sensor’s angular rate value (see

Angular Rate above).

Sensitivity
This property is used to get or set the scale factor for

a sensor’s translation records. The sensitivity is the

maximum magnitude of the translational input from

the sensor along each axis (in the same distance

units as the 3D geometry making up the virtual

world) in any pass through the simulation loop. For

example, suppose you have a Spaceball attached to

a viewpoint. The Spaceball’s sensitivity determines

the maximum distance along each axis that your

viewpoint moves when you push on the ball.

Not all sensors supported in WorldUp have their

translational records scaled in this way. Thus, you

cannot set the translational speed of some sensors,

such as the CyberMaxx2 or IGlasses. Some of the

sensors that are scaled in this way are the Spaceball,

Magellan, and the Mouse. The default sensitivity

value for all sensors is 1.0. Attempts to set a sensor’s

sensitivity to a negative value are rejected, with no

change to the current sensitivity. See the example at

the end of this section.

Translation
This property is used to get the translational value of

the current translation record. The translation record

is affected by the sensor’s sensitivity value (see

"Sensitivity").

Sample Script
The following example lets you access and change

some of the properties affecting the state of the

Spaceball sensor.

Note Some of the properties previously described

are read-only. You can retrieve the values of read-

only properties, but you cannot modify them.

Sub Task (s as Spaceball)
Dim key as String
key = GetKey()
If key <> "" Then
Select Case key
Case "up"

171Chapter 17 Using Input Devices Working With the State of a Sensor
s.AngularRate =
s.AngularRate*1.1

Case "down"
s.AngularRate =
s.AngularRate*0.9

Case "right"
s.Sensitivity =
s.Sensitivity*1.1

Case "left"
s.Sensitivity =
s.Sensitivity*0.9

Case "t"
Dim trans as Vect3d

s.GetTranslation trans
Message "Current Translation"
Vect3dPrint trans

Case "r"
Dim rot as Orientation

s.GetRotation rot
 Message "Current Rotation"
OriPrint rot

End Select
End If
End Sub

172 Working With the State of a Sensor Chapter 17 Using Input Devices

173
18
Multi-User
Simulations

The high-level networking functionality provided in

WorldUp Release 5, provides you with the ability to

easily develop multi-user 3D/VR networked

applications for use over LANs or the Internet. The

high level networking capabilities are designed to

operate in conjunction with SENSE8’s World2World

server product.

If you have not purchased the World2World server

product, you will not be able to take advantage of the

high level networking capabilities described in this

chapter to build multi-user simulations. See below

for a brief description of World2World or contact

SENSE8 for detailed information about the

World2World product.

To allow multiple users to run and participate in the

same simulation, each user (client) needs to be able

to receive certain updates (changes in property

values) made by the other participants. For example,

suppose there is a graphical object in your

simulation that you want each user to be able to

manipulate. If one user drags the object to a new

location, you will want the other users to also see

that movement.

To achieve this, the affected property must be shared

by both the client that is modifying the value and the

clients that want to receive the new value. Each

174 Network Connections Chapter 18 Multi-User Simulations
change made to the value of a property is known as

an event. When a property is shared, the events that

are internally generated for each property value

change are what allow the updated information to be

automatically sent over the network to any other

clients that have also shared that property. If desired,

you can trigger reactions to occur in response to an

event.

The mechanism by which property value changes

are transmitted to all clients who are sharing the

property is the World2World server product. The

World2World server product consists of a Server

Manager, Simulation Servers, and an optional

Firewall Proxy. A multi-user client application

connects to the Server Manager, which determines

whether the client has the appropriate log-in

authority and directs the client to the appropriate

Simulation Server, based on the simulation that the

client is running. The Simulation Server stores and

organizes simulation data and distributes data

updates as appropriate to other users of the multi-

user application connected to the same Simulation

Server.

In WorldUp, you specify how the simulation is to

connect to the World2World servers, which object

properties are to be shared, and how that shared data

will be stored and organized on a World2World

Simulation Server. By limiting network data

transfer to only properties that have been shared,

WorldUp and World2World help to reduce

bandwidth usage.

WorldUp simulations can connect to multiple

World2World Simulation Servers. Each connection

made by WorldUp to a World2World Simulation

Server is represented by a W2WConnection object.

Each W2WConnection object is associated with one

or more W2WSharedGroup objects, which are used

to group together a set of shared properties. By

default, when you create a W2WConnection object,

a W2WSharedGroup object is automatically created

(called <connection name>Root), and is

associated with the connection. You can create

additional sharegroups in a hierarchical

arrangement under the default Root sharegroup.

Note For more information on the server-side

components of World2World, including how to

install, configure, and start the World2World

servers, see the World2World User’s Guide. This

chapter discusses the client-side aspects of

developing a multi-user World2World-compliant

simulation.

Network Connections
When a client starts a World2World-compliant

simulation, the simulation will connect to a server

where the application’s data is to be shared. This

process begins with a login call to a World2World

Server Manager at a specified port, which

determines what simulation this client will be

entering. The Server Manager then proceeds to

direct the client to the Simulation Server that has

been designated to host that particular simulation.

Once connected to the Simulation Server, the client

can begin creating sharegroups (see "Sharegroups"

on page 184) and sharing properties (see "Shared

Properties" on page 179).

To better understand how this process works, see the

example provided in the World2World User’s
Guide, Chapter 4, “Starting and Ending

World2World.” As the developer of the simulation,

you only need to worry about the host name of the

machine on which the Server Manager is located

and determining a unique, unused port on that

machine that you can associate with your

simulation. The system administrator will take care

of configuring the World2World servers to ensure

that the clients of your simulation are connected to

the appropriate Simulation Server.

175Chapter 18 Multi-User Simulations Network Connections
In WorldUp, connections are represented by the

W2WConnection object type, located under

W2WNetwork. Each W2WConnection object

represents a unique connection to a specific port on

the Server Manager.

As you develop your multi-user simulation you must

enable networking for WorldUp before connections

can be activated. Once networking is enabled, any

W2WConnection objects whose Connect property

is set to True will attempt to connect to their

specified machines and ports.

If you are running the multi-user simulation from a

WorldUp Player, networking is always enabled, and

any W2WConnection objects whose Connect

property is set to True will immediately attempt to

connect to their specified machines and ports.

Connected Users
Once a client has connected to a Simulation Server,

it will be assigned a user name and Id. If the

UserName property for the W2WConnection object

is blank, the computer’s system-defined name will

be used.

If system-defined names are undesirable, you can

assign alternative names through the UserName

property. Typically, you will set the UserName

property through scripts. For example, you could

start the simulation with the connection disabled

(Enabled property is False), and prompt the user to

type their name. You could then set the UserName

property equal to the value entered by the user, and

then enable the connection.

When a connection is active (see page 177), a

W2WUser object is created for each user that is

currently connected to any of the simulation’s active

connections. The Users property on a

W2WConnection object lists which of those users

are connected to that specific connection (that is,

which users are connected to the same host name

and port, specified by the W2WConnection object).

You can also view this list in the Network

Connection dialog box (see page 177).

Note You cannot create objects from the W2WUser

object type. This type exists only to contain the

objects that are automatically created upon

receiving notification from the Simulation Server

that a new user has been added to the simulation.

Update Rates
Connections have an update rate, which determines

the maximum updates per second for the

connection. This is the maximum number of times

per second that the client will send data packets to

the Simulation Server and the maximum number of

times per second that the Simulation Server will

send packets to the client. The lower the update rate,

the lower the packet traffic over the network.

For example, suppose that changes to a particular

property in the simulation are being queued every

half second and the connection’s update rate is once

per second. Since the property changes are being

queued more frequently than the connection sends

them to the Simulation Server, the connection can

compare the updates waiting in the queue and only

forward the most recent update for each shared

property.

Note See "Update Frequencies" on page 179 for

information on how to set the update frequency for

each shared property. It is important to consider

these settings when choosing your connection’s

update rate.

For modems, or other low-bandwidth mediums, the

connection’s update rate should be as low as

possible. The default behavior is for the connection

to match the client frame-rate (the UpdateRate

property is set to 0).

176 Network Connections Chapter 18 Multi-User Simulations
Reducing the connection’s update rate may require

you to use dead-reckoning techniques to smooth the

data updates on receiving clients. An example of

dead reckoning is provided in the

Samples\Network\Van_go (intermediate) directory

which is in the directory where you installed

WorldUp.

User Added and User Removed
Events
Any time a user connects to or disconnects from a

connection, the Simulation Server is responsible for

sending notification of this change to any other

client that is connected to that connection.

When a client is notified of the addition of a user, a

corresponding W2WUser object is created on the

client’s machine which generates a User Added

event. If a response has been specified for that event,

it will be triggered. For example, you might want to

execute a script that creates a graphical object

representing the new user.

Likewise, when a client is notified of the removal of

a user, the corresponding W2WUser object is

deleted from the client’s machine, which generates a

User Removed event. If a response has been

specified for that event, it will be triggered.

For more information on events, see the WorldUp
Programmer’s Guide.

Working With Connections
You can add, edit, and delete connections from the

Type Workview or from the Network Browser.

Once you have created a W2WConnection object

and supplied the necessary parameters, you can

activate the connection, which connects it to the

World2World servers.

To create a new connection

1 On the Type Workview, select W2WConnection

object located under W2WNetwork.

2 Click the Instantiate Selected Type button.

The Network Connection dialog box displays

where you can set the connection’s parameters

and view statistics about the connection.

3 Set the desired parameters for the connection as

described in "Network Connection Dialog Box"

on page 177 and click OK.

Note If you are not sure how you want to set these

parameters at this time, specify a name for the

connection and set the remaining parameters

later. While you will not be able to connect to the

World2World servers without a specified host

and port, having a W2WConnection object will

allow you to begin creating sharegroups and

sharing properties under that connection.

The new connection is added to the Network

Browser, along with a default root sharegroup.

Corresponding W2WConnection and

W2WSharedGroup objects are also added to the

Type Workview.

For more information on sharegroups, see

"Sharegroups" on page 184.

177Chapter 18 Multi-User Simulations Network Connections
To edit or view statistics about a connection

" Select Network Browser from the Networking

menu.

The Network Connection dialog box displays

from which you can modify any of the

connection’s parameters, and view the

connection’s statistics. Each component of the

Network Connection dialog box is described in

detail in the table on page 178.

To delete a connection

1 In the Type Workview, click the desired

W2WConnection object located under

W2WNetwork.

2 Click the Delete Selected button.

To activate a connection

1 Start the Server Manager and Simulation Server

as described in the World2World User’s Guide.

2 Select the W2WConnection object in the Type

Workview and set its Enabled property to True to

ensure that the connection you want to activate is

enabled.

3 In WorldUp, turn on networking mode in one of

the following ways:

• On the Networking menu, select Enable

Networking.

• In the Network Browser, check the option

called Networking Enabled.

WorldUp attempts to connect all enabled

connections in the simulation to the World2World

servers.

Network Connection Dialog Box
As previously described, the Network Connection

dialog box allows you to set a connection’s

parameters and view statistics about the connection.

All of the information contained in the Network

Connection dialog box is also reflected in the

various properties of the W2WConnection object

type.

To access the Network Connection dialog box,

follow the steps for creating or editing connections

in "Working With Connections" on page 176).

The following table describes each component of

the Network Connection dialog box.

178 Network Connections Chapter 18 Multi-User Simulations
Network Connection Dialog Box Components

Dialog Component Description

Name The name of the connection.

Host Host name or IP address of the machine to which you want to connect. This is the machine that
you or your system administrator has designated as the host for the Server Manager.

Port The number of the specific port on the host machine to which you want to connect. This is the port
number that you or your system administrator has associated with this particular simulation.
Note: When choosing a port number, keep in mind that ports 0 to 1024 are generally used by your
operating system. You will probably want to specify a number between 1025 and 32,000. Check
with your system administrator to determine whether certain ports are available.

Enable Connection Indicates whether WorldUp will attempt to make a connection when Networking mode is enabled.
The steps on activating a connection (page 177) describe how to enable Networking mode.

Match Local
Frame Rate

Sets the connection’s update frequency to the local machine’s frame rate. See page 175 to
understand update rates for connections.

Updates Per Sec Allows you to specify the frequency (in seconds) for data value updates to be sent over the
connection. See page 175 to understand update rates for connections.

User Added Event Clicking the User Added Event button displays the Event Settings dialog box from which you can
specify a response to occur each time a user is added to the connection. If you run a script as a
response, WorldUp automatically inserts code after the entry point which determines whether the
added user is the local user, as you will likely want to make use of this information. For information
on how to specify event responses, see the WorldUp Programmer’s Guide.

User Removed
Event

Clicking the User Removed Event button displays the Event Settings dialog box from which you
can specify a response to occur each time a user is removed from the connection. If you run a
script as a response, WorldUp automatically inserts code after the entry point which determines
whether the removed user is the local user, as you will likely want to make use of this information.
For information on how to specify event responses, see the WorldUp Programmer’s Guide.

Users Connected When the connection has a status of Connected, this box lists all users who are also currently
connected to that connection.

Local User Displays the local client’s name for this connection.

Share Group Root The name of the root sharegroup for the connection.

Latency Amount of time it takes for packets to be transmitted to or from a World2World Simulation Server.

Clock Difference The time, in seconds, that the local and World2World Simulation Server clocks differ.

Status The current status for the connection. See page 189 for a list of possible status messages and
their meanings.

179Chapter 18 Multi-User Simulations Shared Properties
Shared Properties
As described in the introduction, when a client

shares a property, the events that are internally

generated each time that a client makes changes to

the property’s value cause those updates to be sent

to the World2World Simulation Server. Once the

update has been made on the Simulation Server, the

Simulation Server sends the property update to all

the other clients who are also sharing that property.

For more information about sharegroups, see

"Sharegroups" on page 184.

Properties are shared under specific sharegroups.

Each Simulation Server can have a hierarchical

arrangement of sharegroups that are used to

organize the properties stored on a Simulation

Server. A single property can be shared under

multiple sharegroups, though each Simulation

Server will only retain a single copy of the shared

property value.

When you share a property, internally a

W2WSharedProperty object is created. The

W2WSharedProperty object type is a hidden object

type. That is, neither the type nor its objects appear

in the Type Workview. However, through scripts,

you can access and modify W2WSharedProperty

objects just like any other object.

Locked Properties
Shared properties can be locked by a client, causing

the Simulation Server to prohibit any other user

from removing the property from its sharegroup or

from modifying the property’s value until the client

(which holds the lock) releases the lock.

Only one client can have a lock on a particular

property at any given time. However, any number of

users can have active requests for a lock at the same

time. When the client that currently owns the lock

releases the lock, the lock will be passed on to one

of the clients in the request queue.

Be aware that properties are also affected by locks

on sharegroups in that a sharegroup lock trickles

down to the sharegroup’s properties (as well as its

child sharegroups and their properties). See "Locked

Sharegroups" on page 185 for information on locked

sharegroups.

Persistent Properties
Shared properties can be flagged as being persistent.

By making a shared property persistent, you ensure

that the property will not be removed from the

Simulation Server even if all of the clients who are

sharing the property have disconnected from the

Simulation Server. If a property is not persistent, the

property will be automatically removed from the

Simulation Server when there are no remaining

clients who are sharing that property.

Note that a shared property will be persistent if at

least one client who has asked to share the property

has specified that the property is to be persistent.

Update Frequencies
Shared properties have an update frequency,

specified in seconds, which determines how often

property value updates are queued up to be sent over

the network. It is the connection’s update rate (see

"Update Rates" on page 175) that controls how often

the queued updates are actually sent across the

network.

For details about this command, search on

SendUpdate in the online Help.

180 Shared Properties Chapter 18 Multi-User Simulations
The default for shared properties is to queue updates

each time the property value changes. You can

override this default and set the update frequency to

queue updates at a set time interval, specified in

seconds. For example, a value of 2 would send an

update every two seconds. You can also set the

update frequency to send no automatic updates. In

this case, you would have to use scripts to call the

SendUpdate command to manually update the

property at the appropriate times.

Note that it is pointless (and inefficient) to queue

property updates faster than they are actually being

sent across the network. In fact, if you want to

reduce network traffic, and you have shared

properties whose update frequency is not critical to

your simulation, you can queue property updates

less often than they are being sent across the

network, so that property updates aren’t made more

often than is really necessary. Take these factors into

consideration when setting your properties’ update

frequencies and your connections’ update rates.

Be aware that reducing the number of times that an

update is sent across the network may require you to

employ dead reckoning techniques to smooth the

data updates on receiving clients. An example of

dead reckoning is provided in the

Samples\Network\Van_go (intermediate) directory

of the directory in which you installed WorldUp.

Working With Shared Properties
Before you can share a property, you must have at

least one W2WConnection object in your universe.

See page 176 for instructions. Note that you can

share properties on objects only, not object types.

To share a property

1 Select Toggle Event Icons from the Networking

menu to see the event icons in the Property pane.

These icons give you instant feedback on which

properties are shareable, as well as which are

currently being shared.

2 In the Connection pull-down box, select the

connection for which you want to share a

property.

The Network Browser contains a data tree

representing the connection’s sharegroup

hierarchy and the location of each existing

shared property. The data tree also includes an

insertion indicator, indicating which sharegroup

will be used to contain new shared properties.

In the example above, any new shared properties

would be contained directly within the

ConnectionRoot sharegroup. You can position

the insertion indicator under any sharegroup.

3 Click the insertion indicator and drag it under the

sharegroup that you want to contain the property

you are about to share.

4 In the Type Workview or Scene Graph pane,

select the object that contains the property you

want to share.

Insertion Indicator

181Chapter 18 Multi-User Simulations Shared Properties
Note You cannot share properties on object

types. Be sure to select a specific object.

5 In the Property pane, right-click on the property

you want to share.

If the property is sharable, you can select the

Event Settings option.

The Event Settings dialog box displays.

If the Event icon is grey, no events are generated

for this property and you cannot access the Event

Settings dialog box. For more information on

events, see the WorldUp Programmer’s Guide.

You can also right-mouse click on the
property in the Property pane and click Share
Property to bypass the Event Settings dialog box.

6 Check the option at the top called Share Property

On Network.

If this option is not available, your project does

not contain a W2WConnection object. See page

176 for instructions on creating one.

The Shared Property dialog box displays where

you can set the shared property’s parameters and

view statistics about the shared property.

Notice that the Connection and Sharegroup

values are set to the connection and sharegroup

that you specified in the Network Browser.

7 Set the desired parameters for the shared

property as described on "The Shared Property

Dialog Box" on page 183 and click OK.

The shared property is added to the connection’s

data tree in the Network Browser.

Note Internally, a W2WSharedProperty object is

created. W2WSharedProperty is a hidden object

type. These objects do not display in the Type

Workview, but you can manipulate them via scripts

using WorldUp’s functions and commands.

182 Shared Properties Chapter 18 Multi-User Simulations
To edit a shared property

1 Open the Shared Property dialog box for an

existing shared property by doing one of the

following:

• On the Networking menu, select Network

Browser. Select the desired connection. In the

connection’s data tree, double-click the shared

property you want to edit.

• In the Type Workview or Scene Workview,

select the object that contains the shared

property you want to edit. In the Property

pane, right-click the desired shared property.

(The Event icon for a shared property has a

lightning bolt over it.) In the Event Settings

dialog box, click the check box next to the

Share Property On Network option.

The Shared Property dialog box displays from

which you can edit the shared property’s

parameters and view statistics about the shared

property.

2 Set the desired parameters for the shared

property as described on page 183 and click OK.

To move or copy a shared property to another
sharegroup

1 On the Networking menu, select Network

Browser.

2 Select the desired connection.

3 To move a shared property, in the connection’s

data tree, click the property and drag it onto the

desired sharegroup.

4 To copy a shared property, press and hold the

CTRL key while you drag the shared property

onto the desired sharegroup.

The property is now shared under both

sharegroups.

Note You cannot move or copy a shared property to

another connection.

To unshare a property from the Event Settings dialog
box

1 In the Type Workview or Scene Workview, select

the object that contains the shared property you

want to edit.

2 In the Property pane, right-click on the property

you want to unshare and select Event Settings.

(The Event icon for a shared property has a

lightning bolt over it.)

3 In the Event Settings dialog box, uncheck the

Share Property On Network option.

 You can also right-click on the property in the
Property pane and select Unshare Property to
bypass the Event Settings dialog box.

The property becomes unshared and all instances

of that property are removed from the

connection’s data tree in the Network Browser.

To remove or unshare a property from the Network
Browser

1 On the Networking menu, select Network

Browser.

2 In the Network Browser, select the connection

that contains the property you want to unshare.

3 In the connection’s data tree, click the property

and click Delete.

If the property you deleted was the only instance

of that property in the connection’s data tree, the

property becomes unshared. If there are other

instances, you must delete them all in order to

unshare the property.

183Chapter 18 Multi-User Simulations Shared Properties
The Shared Property Dialog Box
As previously described, the Shared Property dialog

box allows you to set a shared property’s parameters

and view statistics about the shared property.

Although W2WSharedProperty is a hidden object

type, you can still access its properties through

scripts. Search on W2WSharedProperty Type in the

online Help.

To access the Shared Property dialog box, follow the

steps for sharing properties (see page 180) or editing

shared properties (see page 182).

The following table describes each component of

the Shared Property dialog box.

Dialog Component Description

Object The name of the object that contains the selected property.

Property The name of the selected property.

Connection The name of the connection for which this property will be shared. The connection that is
indicated is the connection that was last selected in the Network Browser. So, if your
universe contains multiple connections, ensure that the appropriate connection has focus in
the Network Browser before sharing properties.
Note: You cannot change this setting. To share a property under another connection, you
must unshare the property, select the appropriate connection in the Network Browser, then
share the property again. Also, you cannot share properties under multiple connections.

Share Group(s) Lists the sharegroups under which the property is and/or will be shared. For information on
how to share a property under multiple sharegroups, see page 182. The sharegroup under
which the new share will be made is determined by the location of the insertion indicator in
the Network Browser. See page 180 for details.

Update Frequency – The options in this section of the dialog box determine the frequency at which property change
updates will be queued to be sent over the network. For more information on update frequencies for shared properties,
see page 179.

Update Whenever
Changed

Indicates that a property change update will be queued every time the property is changed.

Updates Every Indicates that a property change update will be queued at the indicated time interval,
specified in seconds. For example, a value of 2 would send an update every two seconds.

No Automatic Updates Indicates that property change updates will not be queued for the property and must
therefore be sent manually with calls to SendUpdate. (Search on “SendUpdate” in the
online help for information on this WorldUp function.)

Settings – The options in this section of the dialog box allow you to specify how the shared property will be treated.

184 Sharegroups Chapter 18 Multi-User Simulations
Sharegroups
Sharegroups are container objects that are used to

group one or more shared properties together on a

World2World Simulation Server. Sharegroups can

also contain child sharegroups. That is, they can

have a parent/child relationship with other

sharegroups so that a hierarchical arrangement of

sharegroups can be created on a Simulation Server.

Each connection has, by default, a root sharegroup.

All other sharegroups created on that connection

will be direct descendants (children) or indirect

descendants of the root sharegroup. Sharegroups

that are siblings (that is, they are children of a

common parent sharegroup) must be uniquely

named.

In the sample sharegroup data tree below, the Root,

House1, and House2 sharegroups are placeholders.

They contain no properties and exist only to add

structure to the data tree.

Sample Sharegroup Data Tree

Request Lock Requests a property lock for the local client so that other clients cannot modify this property.
If the property has already been locked by another client, the name of the user who
currently has the lock displays in the Locked By box. When that user releases the lock, the
lock will be given to one of the clients in the request queue.
For more information on shared property locks, see page 179.

Persistent Flags the property as being persistent, ensuring that the property will not be removed from
the Simulation Server. For more information on persistent properties, see page 179.

Status The current status for the shared property. See page 189 for a list of possible status
messages and their meanings.

Dialog Component Description

Root

House1 Outside

Kitchen Bedroom Bedroom

Master Bath

Master Bedroom

House2

185Chapter 18 Multi-User Simulations Sharegroups
Locked Sharegroups
Sharegroups can be locked by a client, causing the

Simulation Server to prohibit all other users from

adding, moving, or removing properties or child

sharegroups within the locked sharegroup’s subtree,

or from modifying the values of any properties

contained within the locked sharegroup’s subtree

until the lock is released. That is, the lock on a

sharegroup is recursive, affecting not only the

properties located directly within the sharegroup,

but also any of its child sharegroups and their

properties. Locks are granted on a first-come, first-

served basis.

In the preceding example, if a client placed a lock on

the House1 sharegroup, its Kitchen and Bedroom

child sharegroups, and all the properties contained

within them would also be locked.

Registered Interest
While the Simulation Server keeps track of the data

tree for all sharegroups and their properties, clients

will only stay up-to-date with the sub-trees of

sharegroups in which they have registered interest.

Any time a property or sharegroup is added or

removed from a sharegroup in the connection’s data

tree, the Simulation Server is responsible for

sending notification of these changes to any client

that is interested in that sharegroup.

In the sample data tree on page 184, suppose a client

registers interest in only the MasterBedroom

sharegroup. Upon registering interest, the client will

immediately receive notification of the current

children (sub-sharegroups) and properties of

MasterBedroom.

Unlike locks, registered interest is not recursive. So,

the client does not receive notification of the

properties of MasterBath. To receive notification of

the properties of MasterBath, the client would have

to also register interest in MasterBath.

If any other client participating in the multi-user

simulation adds or removes any sharegroups or

properties to or from MasterBedroom or

MasterBath, this client will be notified of the change

so that it can stay up-to-date.

So, what happens when a client receives notification

of an added sharegroup or shared property?

When a client is notified of the addition of a

sharegroup, a corresponding W2WSharedGroup

object is created on the client’s machine, which

generates a GroupAdded event. If a response has

been specified for that event, it will be triggered.

For shared properties, it’s a little more complicated.

When a client is notified of the addition of a shared

property, a corresponding W2WSharedProperty

object is created (internally) on the client’s machine,

which generates a PropertyAdded event. If a

response has been specified for that event, it will be

Master Bath

Master Bedroom

Master Bath

Master Bedroom

186 Sharegroups Chapter 18 Multi-User Simulations
triggered. What happens next depends on whether

the object and property being shared already exist in

the client’s simulation.

For example, if a client is notified that a property

called Rotation of an object called Door was shared,

and the Door object with a Rotation property already

exists in the client’s application, that property will

be automatically shared.

If the Door object does not exist (or does not contain

a Rotation property), and the PropertyAdded event

does not trigger the execution of a script that creates

the missing Door object and Rotation property, the

W2WSharedProperty object that was internally

created is deleted. If the PropertyAdded event does

trigger the execution of a script that creates the Door

object and Rotation property, the newly-created

property will be automatically shared.

Note that registering and unregistering interest does

not affect the distribution of shared property

updates. Suppose a client registers interest in the

MasterBedroom sharegroup, and (under the

MasterBedroom sharegroup) shares the Rotation

property of the Door object. If the client then

unregisters interest in MasterBedroom, the client

will still receive updates made to the Rotation

property of Door, but will not be notified if another

client removes or adds a property or sharegroup to

MasterBedroom.

Persistent Sharegroups
Sharegroups, like properties, can be flagged as being

persistent. By making a sharegroup persistent, you

can ensure that the sharegroup and its properties will

not be removed from the Simulation Server, even if

all of the clients who are interested in the sharegroup

or who are sharing one or more of the sharegroup’s

properties have disconnected from the Simulation

Server. Making a sharegroup persistent has the same

effect as making each of the sharegroup’s properties

persistent. Note, however, that making a sharegroup

persistent does not affect the actual Persistent setting

on each property.

A sharegroup will be persistent if at least one client

has specified that the sharegroup is to be persistent.

When a persistent property or persistent sharegroup

is hierarchically below a non-persistent sharegroup

in the Simulation Server’s data tree, the sharegroups

that are ancestors of the persistent property or

sharegroup are, for all intents and purposes, also

persistent. The sharegroups from the root

sharegroup down to the parent sharegroup of the

persistent property (or sharegroup) must be retained

on the Simulation Server to maintain the structural

integrity of the sharegroups and properties stored

within the Simulation Server.

Working With Sharegroups

To create a sharegroup from the Network Browser

1 On the Networking menu, select Network

Browser.

2 In the drop-down box at the top, select the

connection to which you want to add the

sharegroup.

In the middle of the Network Browser is a data

tree representing the connection’s sharegroup

hierarchy and the location of each existing

sharegroup and shared property. The data tree

also includes an insertion indicator, which

indicates under which sharegroup the new

sharegroup will be added.

187Chapter 18 Multi-User Simulations Sharegroups
In the example above, any added sharegroups

would be contained directly within the

ConnectionRoot sharegroup. You can position

the insertion indicator under any sharegroup.

3 In the Network Browser, click the insertion

indicator and drag it under the sharegroup that

you want to contain your new sharegroups.

4 Click the Add Sharegroup button.

The Shared Group dialog box displays from

which you can set the sharegroup’s parameters

and view statistics about the sharegroup.

5 Set the desired parameters for the sharegroup as

described in "The Shared Group Dialog Box" on

page 188 and click OK.

A W2WSharedGroup object is created and added to

the connection’s data tree under the sharegroup

where the insertion indicator was last positioned.

page 188 describes how you can reposition the

sharegroup in the data tree.

To create a sharegroup from the Type Workview

1 In the Type Workview, select W2WSharedGroup

object located under W2WNetwork.

2 Click the Instantiate Selected Type button.

The Shared Group dialog box displays from

which you can set the sharegroup’s parameters

and view statistics about the sharegroup.

3 Set the desired parameters for the sharegroup as

described in "The Shared Group Dialog Box" on

page 188 and click OK.

A W2WSharedGroup object is created and added

to the connection’s data tree under the

sharegroup where the insertion indicator was last

positioned.

Insertion Indicator

188 Sharegroups Chapter 18 Multi-User Simulations
To edit a sharegroup

1 Do one of the following to access the Shared

Group dialog box:

• In the Network Browser, select the connection

containing the sharegroup you want to edit,

and double-click the sharegroup in the

connection’s data tree.

• In the Type Workview, double-click the

desired W2WSharedGroup object.

The Shared Group dialog box displays from

which you can edit the sharegroup’s parameters

and view statistics about the sharegroup.

2 Set the desired parameters for the sharegroup as

described on page 188 and click OK.

To move a sharegroup

1 In the Network Browser, select the connection

containing the sharegroup you want to move.

2 Click the sharegroup and drag it onto the

sharegroup under which you want to position the

selected sharegroup.

To delete a sharegroup

" Do one of the following:

• In the Network Browser, select the desired

connection from the drop-down box at the top.

In the connection’s data tree, click the

sharegroup you want to delete and click

Delete.

• In the Type Workview, select the desired

W2WSharedGroup object located under

W2WNetwork.

• Click the Delete Selected button.

The Shared Group Dialog Box
As previously described, the Shared Group dialog

box allows you to set a sharegroup’s parameters and

view statistics about the sharegroup. All of the

information contained in the Shared Group dialog

box is also reflected in the various properties of the

W2WSharedGroup object type.

The following table describes each component of

the Shared Group dialog box.

Shared Group Dialog Box Components

Component Description

Name The name that you want to assign to the sharegroup.

Enabled Indicates whether this sharegroup will be added to the data on the Simulation Server when the
connection is active.

Persistent Flags the sharegroup as being persistent, ensuring that the sharegroup (and its ancestors) are not
removed from the Simulation Server. For more information on persistent properties, see page 179.

Request Lock Requests a sharegroup lock for the local client so that other clients cannot add, move, or remove
properties or child sharegroup’s within the locked sharegroup’s subtree, or modify the values of any
properties contained within the locked sharegroup’s subtree. If the sharegroup has already been
locked by another client, the name of the user who currently has the lock displays in the Locked By
box. When that user releases the lock, the lock will be given to one of the clients in the request
queue. For more information on sharegroup locks, see page 185.

189Chapter 18 Multi-User Simulations Status Messages
Status Messages
Status messages are available for all connections,

sharegroups, and shared properties.

You can access status messages as follows:

• For connections – open the Network Connection

dialog box (see page 177), or from the Property

pane access the Status property value for the

desired W2WConnection object.

• For sharegroups – open the Shared Group dialog

box (see page 177), or from the Property pane

access the Status property value for the desired

W2WSharedGroup object.

• For shared properties – open the Shared Property

dialog box (see page 177), or through scripts

access the Status property value for the desired

W2WSharedProperty object.

(W2WSharedProperty is a hidden object type, so

you cannot access its properties from the

Property pane.)

The rest of this section explains the various status

messages that you may receive.

Not Connected
The object is not connected and is not trying to

connect to the World2World servers. This could

indicate one of the following:

• WorldUp is not in Networking mode (see page

177).

• For connections or sharegroups, the object’s

Enabled property is set to False.

• For sharegroups or shared properties, the

object is not connected to a valid networking

tree. In other words, the specified parent of the

sharegroup or shared property is not a valid

sharegroup for the connection.

• For sharegroups or shared properties, a parent

object failed to connect.

Interested In
Changes

Allows you to register interest in the sharegroup. See page 185 to understand the effect of
registering interest in sharegroups.

Property Added Clicking the Property Added Event button displays the Event Settings dialog box from which you
can specify a response to occur each time a W2WSharedProperty object is added to the
sharegroup (see page 185 to better understand how this works).
If you run a script as a reponse, WorldUp automatically inserts code after the entry point which
determines whether the added property (and the object that contains the property) already exist in
the client’s application, as you will likely want to make use of this information.
For information on how to specify event responses, see the WorldUp Programmer’s Guide.

Group Added Clicking the Group Added Event button displays the Event Settings dialog box from which you can
specify a response to occur each time a W2WSharedGroup object is added to the sharegroup (see
page 185 to better understand how this works).
For information on how to specify event responses, see WorldUp Programmer’s Guide.

Status The current status for the sharegroup. See below for a list of possible status messages and their
meanings.

Component Description

190 Status Messages Chapter 18 Multi-User Simulations
Attempting To Connect
The object is trying to connect to the

World2World servers.

Connected
The object is successfully connected to and

communicating with the World2World servers.

Failed To Connect
The connection was attempted but was

unsuccessful.

Object Uncreated
The object has not yet been constructed, or is in

the process of being constructed.

Conflict Encounter
Two distinct objects with the same name have

been registered for the same job.

For Shared Properties Only
Property’s Object Does Not Exist
The W2WSharedProperty object refers to an

object that never or no longer exists.

Duplicate Share For Property
Multiple W2WSharedProperty objects exist for

the same property.

191
19
Tips and Tricks

This chapter provides performance hints, tips, and

tricks, and responses to frequently asked questions.

Performance
When WorldUp is running, all my other applications
are extremely sluggish.

WorldUp is designed to cheat every other

application of processor time so that it can both run

quickly and support its complex interface. When

you want to use another application, you may find it

necessary to turn rendering off before you switch to

your other application. This forces WorldUp to

release its stranglehold on the processor.

My simulation needs to run faster.

Use the Profiler (see "Running Simulations" on page

20) to track down what part of your simulation is

taking the most time. Leave the Profiler open while

moving to different locations or stages of your

simulation, and note any changes in the performance

profile. It may take you a while to understand the

profiler information; give yourself some time to

become familiar and comfortable with the statistics

reported by the Profiler. The questions below

address what you might be able to do in response to

specific problems.

192 Performance Chapter 19 Tips and Tricks
RayIntersect is taking all of my simulation time.

If used pervasively in your simulation, RayIntersect

can begin to take quite a bit of time from your

simulation. If you can give RayIntersect less nodes

to search through, it will be faster. RayIntersect

takes a starting node as an input parameter. If you

pass in Root, it may have to search through far more

than if you gave it a more targeted node, depending

on your simulation. It’s usually better to call it once

for a lot of nodes, than many times on specific

nodes.

Breaking down your scene such that the scene graph

node hierarchy corresponds to the spatial layout of

the scene will help RayItersect’s performance

considerably. This will give RayIntersect more

information about the scene, and so it can be more

efficient.

Collision detection is taking all of my simulation time.

There are many ways to minimize the number of

collision detection calls being made. Do anything

you can to isolate the objects you’re interested in.

You may want to iterate through all of the objects of

a particular type and call IntersectMovable on each.

This might succeed in just colliding against the

objects you’re interested in, but if you have a scene

graph that incorporates smart spatial divisions, you

might have more success by starting at a node and,

if there’s a collision, recursively iterating through

the node’s children and testing against each of them,

until you’ve collided with a node you’re interested

in.

Creating objects from scripts is taking forever.

Creating objects from scripts is actually a

reasonably fast operation. The slowness you’re

seeing is probably due to the fact that when an object

is created in the development environment,

WorldUp has to update the Workviews. This is

slow. When the simulation is run through the

WorldUp Players, you won’t see this performance

hit. If this drop in performance is bothering you, you

can disable the Update Property Changes From

Scripts option in WorldUp (see "Automatically

Updating Properties" on page 92 for instructions).

Rendering is taking a long time.

In general, rendering is simply a very expensive

process. If you don’t have a graphics accelerator

card, textures will cost dearly. If you have a good

graphics accelerator card, textures may be no slower

than non-textured surfaces; on these machines using

low polygon, highly textured objects is a better trade

off. There are more issues for creating efficient real-

time 3D worlds than we have a forum to address in

this manual. An obvious point is that the less

polygons being rendered at once, the better. Use the

Profiler to monitor how many polygons you’re

rendering.

Here are some general tips:

• To increase rendering speed in the Development

window, turn off helper features, such as

shadows, grids, and drop lines. You can do this

by selecting the Display Options button from

the Development window toolbar.

• If a geometry is not going to be changing shape

or appearance during the simulation, optimize it,

using the Optimize property. It is best to do this

when you’re finished with your simulation, and

not planning anymore scene alterations.

• One of the biggest performance problems is

rendering parts of the scene that are obscured by

closer objects. Try to minimize this type of

useless rendering. For example, if you’re in a

room with all of the doors closed, you may not

be able to see the rest of the house, but it may be

being rendered. Try to disable areas that you

can’t see by using the Enabled property (note

that if a parent node is disabled, all of its children

193Chapter 19 Tips and Tricks Rendering
will also not be rendered). Also, you can

decrease the value of the window’s Yon Clipping

property. This value represents the distance from

the viewpoint at which objects will no longer be

rendered.

• LevelOfDetail nodes are critical for making large

simulations run reasonably. By creating

geometries with several different versions of

decreasing levels of complexity, LevelOfDetail

nodes can manage swapping in less detailed

versions when the object is far away.

For more information on LevelOfDetail nodes,

see "LevelOfDetail Nodes" on page 26.

• Using multiple lights can significantly hurt

performance. If you need multiple lights, arrange

them in the scene graph so they only affect the

nodes that they absolutely need to.

How can I make my models more efficient?

Unless necessary for the simulation, models should

be single-sided. That is, their polygons should only

be visible from one side, the outside. Unnecessary

use of doubled-sided polygons can skyrocket the

cost of rendering a geometry.

Obviously, the fewer polygons, the better. Most

professional modelers now have good optimizers.

Make sure you use one of these optimizers, as many

techniques used in modern modeling tools are very

polygon intensive.

Rendering
Viewing Graphical Objects

If you don’t see any objects in the Development

window check the following:

• Is rendering turned on?

If the Rendering On button is not pressed down,

click it to toggle rendering on. Or, on the Options

menu, click Rendering On if there is not already

a check mark next to it.

• Does your simulation contain any graphical

objects?

In the Nodes pane of the Scene Workview, check

to see that you have at least one object beneath

one of the Geometry subtypes (Block, Cylinder,

Imported, Sphere, or Text3d). If there are no

graphical objects, create some as described in

"Adding 3D Objects" on page 83.

• Are the graphical objects simply out of the

window’s current view, or is the viewpoint inside

of your objects?

Click the Zoom All button or use other

navigation techniques described in Chapter 8,

Development Window – Navigation and
Manipulation, to adjust your viewpoint so that

you can see all of your graphical objects. Or,

translate (move) the graphical objects away from

the viewpoint using the methods described in

"Manipulating Objects" on page 82.

Note All Movable objects (except imported

geometries) that you create are initially

positioned at the center of the universe (0,0,0).

• Is the graphical object that you want to see inside

of another graphical object?

Translate (move) one of the graphical objects

using the methods described in "Translating and

Rotating Movables" on page 110. Or, move the

viewpoint inside of the graphical object that is

obstructing the view using the navigation

techniques described in "Manipulating Objects"

on page 82.

194 Sounds Chapter 19 Tips and Tricks
• If it’s a small object that is close to the

viewpoint, it could be that the value of your

window’s Hither Clipping property is too high

and is excluding the object from rendering.

• If the object is large or far away, it could be that

the value of your window’s Yon Clipping

property is too low and is excluding the object

from rendering.

Note Remember you have at least two windows:

an Application window (Window-1) and a

Development window (DevWindow-1). If you

change the Hither Clipping or Yon Clipping

values, be sure to make those changes to all

appropriate windows.

• The Enabled property of the object or of one of

the object’s parents could be False.

• If it’s an Imported object, there might be an

invalid file name/entry name combination that

doesn’t point to a valid entry in a valid file.

Select the Filename or Entry property in the

Property pane, highlight the value in the Property

text box, and press ENTER. This will trick the

editor into thinking you just changed the

property, and will try to reload the object. Check

the Status window for an error message.

My rendering is wrong. My geometries get flashing,
jaggy strips or bites cut out of them through which I
can see objects or surfaces behind them.

It could be that the distance between your hither

clipping plane and yon clipping plane are too far

apart. The greater the difference between the values

of your window’s Hither Clipping and Yon Clipping

properties, the less ability the renderer will have to

distinguish which object is above the other. Try

making these two planes closer together. Either that

or move the objects farther apart.

It could be that you have two surfaces that are

actually co-planar, that is, they sit exactly on top of

each other. If this is true, the renderer will never be

able to decide which surface is on top, and you will

get the stripped effect. You will have to move the

surfaces away from each other, far enough for the

renderer to tell them apart.

My rendering is wrong. My textures, when viewed at
an angle, get warped and distorted.

You probably have Texture Perspective turned off.

If you don’t have a graphics accelerator card,

disabling this option can increase your performance

significantly, if you’re willing to suffer the warping

textures. You can change this option in the

Rendering Style dialog box (see "Setting Rendering

Parameters" on page 41 for instructions).

Sounds
Sounds won’t play.

There are a variety of reasons why sounds might not

play:

• Does your sound system work?

Make sure that your sound system is properly set

up. Use the sound player that comes with your

operating system to try and play a sound. If not,

it could be that your sound drivers are not

installed or are corrupted, or your sound card is

not working, or your system volume is simply

turned all the way down. Check your system’s

sound settings.

• Does the sound have its Playing property set to

True?

To play a sound, the Sound object’s Playing

property must be set to True. You can set this

directly through the Property pane, or by calling

195Chapter 19 Tips and Tricks Fonts
the script method Play. (The command would be

snd.Play, where snd is a variable pointing to

a sound.)

• Is something hogging the sound device?

Another application might be running that’s

holding on to the sound device, not letting

WorldUp play its sounds. Close that application.

• Is Audio: Listener set correctly?

The Audio: Listener property of the Universe

object should be pointing to the correct

viewpoint (whichever viewpoint is used in the

main application window).

• What is Audio: Rolloff set to?

The Audio: Rolloff property of the Universe

object determines how fast the sounds in space

fall off. If the number is too low for the size of

your universe, sounds might be falling off too

quickly.

Sounds are not spatialized correctly.

• Is the Attached To property set to the correct

object?

Make sure the Sound object’s Attached To

property is set to a valid object, which is still in

your scene.

• Is Audio: Listener set correctly?

The Audio: Listener property of the Universe

object should be pointing to the correct

viewpoint (whichever viewpoint is used in the

main application window).

• What is Audio: Rolloff set to?

The Audio: Rolloff property of the Universe

object determines how fast the sounds in space

fall off. If the number is too high for the size of

your universe, you might not, in the area in

which you move in your universe, be able to tell

the difference in roll-off. Try decreasing this

number and see if the results are better.

My sounds is playing too fast or too slow.

If you are using the DiamondWare sound system

(this is the default for WorldUp on the Windows

platform – check the Audio Device property on the

Universe object), sounds must be recorded at a

frequency of 22 K. Any sound editor will allow you

to resample a sound file.

Make sure the sound’s Pitch property is set to 1.0.

Fonts
How do I create a 3D font?

A 3D font file can be of any supported 3D model

type. You can create a new 3D font file by making a

model of each character and/or symbol you want.

Then you must name each of these objects with the

char prefix followed with that character/symbol's

ASCII value. For example, the letter a would be

named char97 and A would be char65.

How do I change 2D fonts and their size?

First, you need to find out which fonts are installed

on your machine. In Windows, you can do this by

going to the Control Panel and choosing Fonts. This

will display all the fonts currently installed. Now,

create a file named FONT.WTK and put the name of

the font you want followed by the size. This

FONT.WTK file must be in the directory of the

WorldUp executable you are running. If you are

running a plug-in, the FONT.WTK file must be in

your plug-in directory. The only problem here is, in

order for someone else to view your font, they must

also have the FONT.WTK in their executables

196 Miscellaneous Chapter 19 Tips and Tricks
directory and they must have that font installed on

their computer. Your best bet is to just go with the

default font of WorldUp.

Miscellaneous
I change the Properties of an object, but the
simulation doesn’t change!

or

All the properties of the Universe are displayed in red
text (implying read-only), how do I change them?

Make sure you are editing the object itself and not

the object type. Changing the property values of the

type will affect only newly created objects of that

type, but not existing objects. For the Universe type,

all of the properties have been made read-only.

Since you can’t create a Universe object (you can

only have one universe, and it is created for you),

there is no purpose in changing the type’s properties.

My LevelOfDetail node isn’t switching at the right
time, or isn’t switching at all.

1 Select the LevelOfDetail node and see where the

axes are.

2 If you don’t see any axes, click the Zoom To

Selected button in the Development window.

The axes represent the LevelOfDetail’s center. This

is where the distance from the LevelOfDetail is

measured from. Move the LevelOfDetail node to

where you want the center to be and make the

translation of the LevelOfDetail children 0,0,0, or

whatever offset you want from this center.

When I rotate my object, it doesn't rotate around the
center I want.

If you’re rotating a geometry, you need to adjust the

Origin Offset property. (See "Adjusting a

Geometry’s Pivot Point" on page 116 for

instructions on how to do this in the Development

window.)

If you’re rotating a group, remember that the objects

contained within that group will rotate around the

Group node’s pivot point, not their own. You will

either need to move the Group node’s pivot point as

described above, or else move the entire location of

the Group node, and then move the children back

where you want them. A frequent mistake with

Group nodes is to neglect to translate its children to

the group’s center (if that’s what you want). An easy

way to do this for groups with only one immediate

child is to select the child object, copy its translation

(right click on the Translation property and select

Copy), then select the group, paste the translation in

(by right clicking on the property and selecting

Paste), and then go back to the child object and type

0,0,0 in for the translation).

This dumb bar appears when I load my world in a
plug-in.

That is the navigation bar. By default, it is on in the

plug-ins. To turn it off, put the following command

in your Startup script:

NavBarOptions 0

I output my universe as a VRML file and it is upside
down in my viewer. How do I fix this?

This is not actually a bug. It is just that WorldUp has

its coordinate axis with the Y reversed from the

VRML specifications. Rotate your viewpoint 180˚

in the Y (yaw) and save it out as a VRML file again.

197Chapter 19 Tips and Tricks Model Tricks
How do I implement database connectivity?

You can implement database connectivity via

BasicScript’s SQL functions. The two SQL samples

provided with WorldUp are located in the

Samples\SQL subdirectory of the directory in which

you installed WorldUp. For details on BasicScript’s

SQL functions, search on SQL in the online Help.

Model Tricks
How do I create versions of a model, varying in
detail, to successfully work with LevelOfDetail
nodes?

In creating different levels of detail, the process is to

usually start with your most complex or highest

level of detail geometry and to create copies of it

with fewer and fewer polygons. The trick is to keep

enough (and the right) polygons such that the

general topology, color, and texture is maintained in

the process and the switch from one geometry to

another is visually seamless. With some simple

geometric shapes (such as spheres, cones, cylinders)

this is a trivial effort requiring you to generate

multiple versions of the object.

For information on LevelOfDetail nodes, see

"LevelOfDetail Nodes" on page 26.

The more typical problem, however, is where you

attempt to create three or four versions of a house,

car, or terrain. Various tools and techniques are

available that can help you in this process, such as

the following:

• Automatic mesh simplifiers – Several companies

offer tools that will take a meshed surface and

create reduced versions while maintaining

topology and textures. They usually only work

with meshed surfaces, which isn’t always the

case with many models.

• Image processing program (texture replacement)
– At a suitable distance, a single texture or

several crossed textures can replace a highly

complex object. You can use WorldUp to render

the complex object, save the image out to a file,

and then use an image processing program to

create a suitable texture that is then mapped onto

several polygons crossed like an "X".

• Modeling programs – Most modelers allow you

to manually reduce polygon count. A rare few,

like Multigen, have some tools to help create

LevelOfDetail nodes. In general, it takes

experience to learn how to simplify enough – but

not too much – to create proper LevelOfDetail

nodes.

How can I create radiosity-preprocessed models?

As with Gouraud shading, use of vertex colors can

be used to increase the visual realism of your virtual

scene.

For example, vertex color support enables you to

render models that have been radiosity-

preprocessed. A radiosity-preprocessed model

stores lighting information such as shadows and

reflections as vertex colors – this lighting doesn’t

then have to be computed at run-time. The result is

complex lighting with real-time performance.

A radiosity preprocessor is a program that takes as

input a model and a light source specification and

generates a new model with lighting information

(such as for shadows or reflections) built into it. This

involves meshing the original model to contain more

detailed color information. This color information is

stored at the vertices of the mesh, and WorldUp (or

the hardware that WorldUp is running on)

interpolates between these vertex color values to

produce a smooth effect.

198 Model Tricks Chapter 19 Tips and Tricks
For a better understanding, take a look at any of the

several radiosity rendered models on the WorldUp

CD in the \models\radiosity directory.

In addition to storing lighting information, vertex

colors can also represent other values such as the

temperature or pressure throughout an object.

Vertex colors can be set for geometries in the

following ways:

• In an NFF file. Search on NFF File Format in the

online Help for instructions.

• Using a radiosity preprocessing program.

ATMA’s program called Real Light is a radiosity

preprocessor that reads and writes NFF files.

199
20
Publishing Your
Application

Once you have finished building your application,

you need to determine how you will distribute it to

other users. WorldUp provides you with three

options:

• As a stand-alone application/simulation

• As an ActiveX control that can be embedded in

another application

• As an internet plug-in

Whichever you choose, you need to ensure that the

target system gets the project file (.UP) as well as all

of the models, scripts, images, behaviors, DLLs,

sounds, and whatever else is included in your

simulation. You can do this yourself, or you can

export your simulation using WorldUp’s Simulation

Packager, which packages all the components into a

single file, encrypts your scripts, and compresses the

whole package into a single ZUP file.

In addition to your simulation files, you need to

consider whether the correct player is installed on

the target computer. You should also consider

whether you want to distribute source script files

(.EBS) or encrypted script files (.EBX).

This chapter covers WorldUp’s role in these key

distribution choices.

200 Packaging the Project for Distribution Chapter 20 Publishing Your Application
Packaging the Project for
Distribution
The simplest mechanism for distributing your

application is through WorldUp’s Simulation

Packager, which collects all the files WorldUp

determines are necessary to your simulation.

To export your simulation as a WorldUp package file

1 Select Export Package As > WorldUp Package

from the File menu.

The Package Project For Export dialog box

appears.

The Package Project for Export dialog box gives

you the opportunity to:

• Add/Remove any additional files to the package.

• Encrypt your BasicScript script files to protect

your source code from being copied.

• Compress the entire package.

The packager then places all the files into a single

ZUP file with the same name as your project in the

simulation directory. A ZUP file can be opened by

either WorldUp or any of the WorldUp Players.

When you open a ZUP file, WorldUp expands all the

files contained in the ZUP file into a WuCache

directory (this directory is in your Windows

directory), and then proceeds to load the project file.

The following gives some important notes about

ZUP files:

• In many situations, a file your simulation

depends on is not automatically detected by

WorldUp, including geometry files that get

instantiated dynamically, external DLLs called

from script, etc. You need to add these files

manually using the Add Files button on the

Package Project For Export dialog box.

• WorldUp only adds model files for currently

instantiated objects. If you will be instantiating

other models during your simulation, you need to

manually add these models and their textures.

• When you open a ZUP file, WorldUp checks the

WuCache directory to see if this file already

exists. If it does, WorldUp opens the already

expanded version; otherwise WorldUp expands

the ZUP file into the WuCache directory. The

danger occurs if you were then to create a new

ZUP file of the same name. When you attempted

to open the new file, WorldUp would open the

existing expanded ZUP file, and you would not

see any changes. To be safe, you should first

clear the WuCache directory of the previous

project files.

• As you’ve discovered from using WorldUp, it is

extremely important that WorldUp know where

models, textures, scripts, and sounds are located.

WorldUp does this using directory paths, which

you control in the Universe Settings dialog box.

201Chapter 20 Publishing Your Application Choosing a Player
Setting Project Paths within WorldUp

When planning to export a project manually, you

should add the requisite directories to the Project

path so that when your simulation is opened in one

of the players, the UP file itself knows where to look

for these files. By default, WorldUp looks in the

same directory as the UP file, which is why ZUP files

work, since it expands all files into one directory. If

you are creating your own distribution mechanism,

however, you will find this invaluable.

Choosing a Player
Three different WorldUp players can be used to

distribute your simulation:

• Stand-alone Player – A stand-alone executable

that loads and runs simulation files.

• Internet Plug-in – A DLL that loads and runs

simulations inside of Netscape Navigator or

Internet Explorer.

• ActiveX Control – An OCX that can embed

your simulation inside of ActiveX Control

Containers, such as Visual Basic, Internet

Explorer, or Macromedia Director. Exposes an

interface allowing communication between

control and container.

Which one you choose depends upon your project’s

requirements. In addition, all players come in both

an OpenGL and a Direct3D version. Before

choosing your player, consider the following issues.

Is my simulation an immersive or desktop
application?

If you are creating an immersive simulation, you

want to create borderless windows for your

application, and run it in the stand-alone player. This

way, no user interface interference occurs with your

simulation. If however, you are running your

simulation as a desktop application, you may

consider running it with a traditional interface,

which means integrating it into a Visual C++ or

Visual Basic application using the ActiveX Control.

Will my simulation run with other applications?

If the simulation works with other applications,

consider embedding the simulation in another

application.

Will my simulation be running in a Web Browser?

If your simulation is an Internet application, you can

use the Internet plug-in or the ActiveX control. The

ActiveX control only works in Internet Explorer,

however it’s ActiveX interface wields much more

flexibility than the standard Netscape plug-in.

Will my simulation run on a desktop or a laptop?

Typically, laptop computers have little hardware

acceleration. In this case, it’s often better to run your

simulation under Direct3D for performance reasons.

Am I using any graphics API specific calls?

If you are using Viewport or RenderNode objects in

your simulation, you need to use the OpenGL player

since these are not supported under Direct3D.

202 Embedding Your Simulation Chapter 20 Publishing Your Application
Embedding Your Simulation
WorldUp provides you with the ability to distribute

your simulation as a stand-alone application or

embedded as an ActiveX control. The ActiveX

control is a powerful mechanism for embedding a

3D interface into a larger application where it is not

always appropriate to have 3D control the entire

interface, or for where traditional 2D control and/or

additional multimedia elements are more

appropriate for a greater view.

Real Estate Example

The example in the figure above is of such an

application, where browsing the Real Estate market

requires both the visual-spatial perception of a 3D

world combined with more traditional 2D media

components and controls. Using the WorldUp

ActiveX control, you can quickly drop your

simulation into any container-aware application.

To use the ActiveX Control, you must either install

it from the CD, or else from our web site

(www.sense8.com). When you install it, WorldUp

registers the control with your system. You can now

embed this control in any OLE-aware container

application, including the Microsoft Office, Internet

Explorer, and a multitude of others, including any

container application you create using Visual C++

or Visual Basic. For more information on how to

embed ActiveX controls within these containers,

refer to your container application’s documentation.

You don’t need to make any specific modifications

to a WorldUp simulation to run it in the WorldUp

ActiveX control. You do, however, need to make

entry points and routines if you wish to

203Chapter 20 Publishing Your Application Embedding Your Simulation
communicate between your control and your

container. Like any other ActiveX control, the

WorldUp control provides you with a standard set of

methods and properties, which you can use to

interface with your simulation. The table below lists

the properties, methods, and events the WorldUp

ActiveX control exposes.

WorldUp ActiveX Control Interface

Properties Data Type Description

Filename BSTR Specifies current UP file. Changing this value loads a new UP file

WindowObject BSTR Specifies which window object in your simulation will be used

Running BOOL Specifies whether the system simulation is running or not

ScriptsRunning BOOL Specifies whether the scripts in your simulation runs every frame

WantCallBack BOOL When set to TRUE, this sends a "Callback" event to the container
every frame. It also sends a "LoadingProgress" event to the
container while a simulation is loading.

Methods Returns

RunScript(BSTR Script) Boolean Runs a script in the simulation. The script must have a "main"
entry point.

RunSubroutine(BSTR Script,
BSTR SubRoutine,
VARIANT arg1, VARIANT
arg2)

Boolean Calls the SubRoutine within a Script object, passing (optional)
two arguments to the subroutine as type Variant.

Step(short number) Boolean If simulation is stopped, processes one frame of the simulation.

GetObject(BSTR ObjecName) WUPOBJECT* Gets a WorldUp object and returns it inside a wup object wrapper
(WUPOBJECT).

Events Returns

CallBack() Void If the WantCallBack property is set to TRUE, this event will be
called every frame

ScriptEvent(VARIANT arg1,
VARIANT arg2)

Void This event is triggered by the BasicScript call SendToContainer
(See online Help under SendToContainer for more information).

LoadingComplete(BSTR Name) Void This event is called when the up file has finished loading. Places
the file’s name into FileName.

LoadingProgress(float
Progress)

Void If WantCallBack is True, this event will be called several times
during file load. The Progress variable will contain a normalized
indicator of file load progress.

204 Distributing Your Simulation over the Internet Chapter 20 Publishing Your Application
Note In the table above, BSTR is simply a standard

variable type representing a 32-bit character pointer.

BOOL is a Boolean variable type. The new type

definitions are simply provided for compatibility

when communicating across various environments.

The WUPOBJECT type is a special wrapper that

contains a WorldUp object. The following table lists

the interface to the WUPOBJECT class.

WUPOBJECT Class Interface

Before leaving this section, let’s take a quick look at

a simple example of how this works. In the

following code sample, we use a Visual Basic

container from which to examine the position of an

object in our simulation at every frame:

sub WUP1_Callback()
dim myobject as WUPOBJECT
set myobject = WUP1.GetObject(
"Avatar")

dim position as Single
position = myobject.GetProperty(
"Translation")

end sub

Refer to a Visual Basic manual for more in-depth

coverage of container applications and how to

interface with ActiveX controls from Visual Basic.

Distributing Your Simulation
over the Internet
To distribute your simulation over the Internet in a

browser, you can use either the Internet Plug-in or

the ActiveX control. The Internet Plug-in works

with both Netscape Navigator and Internet Explorer.

However, it offers little flexibility for interfacing

between the browser and the simulation. In addition,

the user must first install the Internet Plug-in on their

machine before they can view WorldUp simulation

files.

A much more robust way of handling Internet

distribution and viewing is using the signed

WorldUp ActiveX Control CAB file. Using

ActiveX technology, a new user can encounter

WorldUp content on a web site and with one click

Properties Data Type Description

SzObjectName BSTR Name of the WorldUp object.

Methods Returns

SetProperty(BSTR PropertyName,
VARIANT Value)

Boolean Set the specified object property to the specified value.

GetProperty(BSTR PropertyName) VARIANT Get the property specified

Destroy() Void Delete the object

GetType() BSTR Get the type of the object (returns a string).

Duplicate IDispatch* Duplicate the object

IsDerivedFrom(BSTR szTypeName) Boolean True if the object is of the specified type.

205Chapter 20 Publishing Your Application Distributing Your Simulation over the Internet
download, install, and view your simulation,

without requiring the user to leave the web site or

reboot their system.

As a developer you can also redistribute our

ActiveX Control on your own web page with your

WorldUp content. To do this, simply embed the

ActiveX control CAB file (located on your

WorldUp R5 CD) into your HTML file using the

object tag

<object
classid="CLSID:A94D0C23-BE25-11CF-
A0B7-00A024281615"
align="center"
border="0"
width="256"
height="256"
codebase="http://www.mywebsite.com/
wupcabllocation/
wupogl.cab#version=5,0,0,0"
id=wup

</object>

If the ActiveX control is not already registered on

the user’s machine, this will prompt them to

download and register the WorldUp ActiveX

control. Before distributing the ActiveX control,

you should contact us to confirm the version you

have is the most current version.

Once the control has been registered on the target

machine, Internet Explorer will be able to display

WorldUp simulation files. To do this, simply set the

Filename property of the WorldUp ActiveX control

embedded on the page with the name of a simulation

file. For example:

wup.Filename = "http://
www.mywebsite.com/wupcontent/
mysimulation.zup"

Distribution Checklist
Finally, as a review, before distributing your

application confirm the following:

• Does the target machine have a WorldUp player

installed on it?

• Do the player and graphics hardware agree (D3D

or OGL on Windows platforms)?

• Are you using any OpenGL or Direct3D specific

calls in your simulation/plug-ins that require the

use of a specific player?

• Are you distributing your simulation as an UP or

ZUP file?

• If you are distributing as an UP file, have you set

the project paths correctly?

• If you are distributing your simulation as a ZUP

file, does the target computer have a previous

version of your simulation already expanded on

it in its WuCache directory?

• Have you included all DLLs, sounds, scripts,

models, and images in your UP or WUP file,

including those not instantiated during

packaging?

• If you need protection, have you encrypted your

BasicScript files?

206 Distributing Your Simulation over the Internet Chapter 20 Publishing Your Application

207
A
Environment
Variables

You may want to configure your computer for

maximum performance. Environment variables

allow you to optimize the way your operating

system interacts with your hardware and the

WorldUp software.

To add environment variables, do one of the

following, depending on your platform:

• For Windows NT 4.0 – Choose Settings from the

Start menu, then select System and click the

Environment tab.

• For Windows NT 3.51 – Choose Control Panel

from the Main Program group, then select

System.

• For Windows 95 – Use the set command in either

your autoexec.bat file or another batch file.

Warning Do not change your environment variables
unless you are quite certain of the consequences.

WTKZBUFFERSIZE
WorldUp performs its calculations assuming that a

Z-buffer of depth 24 exists. Some graphic

accelerators only support 16-bit (or less) Z-buffers.

If you don’t set this value correctly, the hardware

graphics accelerator won’t work and you’ll wind up

using the default software OpenGL implementation,

208 Chapter
causing a significant drop in performance. You can

avoid this by setting WTKZBUFFERSIZE to the

depth of the actual hardware Z-buffer. For example:

• Variable WTKZBUFFERSIZE

• Value 16

WTKALPHATEST
Causes pixels, whose final computed transparency

value (after factoring in the polygon’s material

opacity and texture alpha values) is below this value

(0-255), to not be written to the framebuffer. This

will ensure that all pixels whose transparency value

is below a specified threshold value to be treated as

completely transparent. This can be useful when you

want to have a cookie-cutter effect with your

textures. For example:

• Variable WTKALPHATEST

• Value 24

The default is 0 on Windows platforms.

WTKMAXTEXSIZE
Texture images will be shrunk, if necessary, so that

the image width and height in pixels will not exceed

this value. By setting this environment variable to an

appropriate value you can help ensure that your

application does not exceed your hardware texture

memory limits. For example:

• Variable WTKMAXTEXSIZE

• Value 256

The default is 1024 (this is also the maximum).

WTKSQRTEX
Texture images will be shrunk, if necessary, so that

the texture's width and height are equal. The

possible values are 0 (zero) and 1 (one), where 0 =

off. For example:

• Variable WTKSQRTEX

• Value 1

The default is off (zero).

WTKPROXY
HTTP proxy server (hostname:port). Used when

reading VRML files, for example, URLs contained

in anchor and/or inline nodes are relative to the

proxy server specified here.

• Variable WTKPROXY

• Value BATMOBILE:8080

WTKMULTISAMPLE
Specifies the anti-aliasing sampling rate (must be a

power of 2). A higher sampling rate will result in a

better quality image but will take more processing

time. The default is 0. This variable is used in

conjunction with the Anti-aliasing property of the

Universe object in your simulation.

Note This applies only to supported hardware.

Contact Technical Support for a current list of

supported video hardware.

209
B
WorldUp Players
and Plug-Ins

Several players and plug-ins are available for

WorldUp that allow you to freely distribute your

simulations for non-commercial use. If you wish to

distribute your simulations for commercial use,

commercial versions of the WorldUp players are

also available. These players and plug-ins allow an

end-user to view your simulations without having

WorldUp installed on their computer. There are two

versions of each player, one for OpenGL and one for

Direct3D.

This appendix gives a description of the available

WorldUp players and plug-ins and describes how to

install, distribute, and run them.

Available Players and Plug-Ins
The following WorldUp Players and Plug-Ins are

available:

• WorldUp Stand-Alone Player

The basic stand-alone player that requires no

additional software is ideal for re-distributing

your WorldUp simulations for non-commercial

use. This player (both the OpenGL and Direct3D

versions) is automatically installed on your

system by the WorldUp installation program.

210 WorldUp Player Installation Chapter B WorldUp Players and Plug-Ins
• WorldUp Internet Plug-In Player

An internet plug-in player that allows WorldUp

simulations to be viewed through browsers like

Netscape and Internet Explorer. You can freely

distribute the WorldUp Internet plug-in players

for non-commercial use. (Currently only

available for the Windows platforms.)

• WorldUp Embeddable Player

An ActiveX plug-in that allows you to embed

WorldUp simulations in Visual Basic, Visual

C++, Access, and other OCX aware applications.

You can freely distribute the Embeddable plug-in

player for non-commercial use. (Currently only

available for the Windows platforms.)

• WorldUp Stand-Alone Commercial Player

The basic stand-alone player that requires no

additional software is used to re-distribute your

WorldUp simulations for commercial use. (Note
that the WorldUp CD does not contain the
commercial versions of the players. Please
contact Sense8 for information on obtaining the
commercial player(s).)

WorldUp Player Installation
The WorldUp CD contains a directory named

Players which contains six self-extracting files.

Each self-extracting file represents one of the

players described above and can be distributed to

end-users. To install one of the players, simply run

the corresponding file, and the desired player will be

installed on the system. Users who wish to use the

Direct3D version of the players must also install

DirectX on their system.

Viewing a Simulation Using a
WorldUp Player
You can start the player to view simulations by

using the program group item that was created when

you installed WorldUp (or the WorldUp Player).

On Windows platforms

1 In the WorldUp program group, select WorldUp

Player (either OpenGL or Direct3D).

2 From the File Open dialog box, select a

simulation file (any file with an .UP, .WUP, or

.ZUP extension).

3 The WorldUp simulation is displayed in a

window on your screen.

Note Your universe must contain an application

window in order for the simulation to run in a

player. For information on application windows,

see Chapter 10, Windows, Viewports, and
Viewpoints.

4 To close the simulation, click the Close button in

the upper right corner of the window.

Note If the application window is set to

borderless for this simulation, the control-menu

box will not be visible. Choose End Task from the

Windows Task List to end the simulation.

You can also start the player from the a file browser

in Windows by double-clicking the

WUPlayOGL.exe or WUPlayD3D.exe file. Or, by

using the command line option with an argument,

you can specify the player to be run, as well as the

UP file you want loaded into the player.

211Chapter B WorldUp Players and Plug-Ins Important Notes For Direct 3D Users
Important Notes For Direct 3D
Users
Direct3D users should be aware that currently the

Direct3D version of the WorldUp Players do not

support:

• Viewports

• Render Nodes

If you have any of these objects in your simulation,

they will not be visible in the Direct 3D players. You

should take this into consideration when developing

and distributing your simulation.

212 Important Notes For Direct 3D Users Chapter B WorldUp Players and Plug-Ins

213
C
WorldUp User’s
Group

A WorldToolKit/WorldUp user group has been

organized by WorldToolKit/WorldUp customers

with assistance from SENSE8. SIG-WTK provides a

world-wide electronic forum for the discussion of

WorldToolKit, WorldUp and World2World related

issus as well as an anonymous ftp site for uploading

and downloading WTK/WUP related data.

Participating in SIG-WTK
The following material comes from the original

SIG-WTK chairman, Terry Fong. (Note that SIG-

WTK was originally formed for WorldToolKit

users, but has since expanded to include WorldUp

users.)

Greetings, fellow WTK user!

I would like to cordially invite you to participate in

SIG-WTK, the WorldToolKit Users' Group. This

group provides a contact point for users of EAI/

SENSE8 Product Group’s WorldToolKit to discuss

and exchange information on a variety of topics.

Among these are:

• 3D objects: modeling, importing/exporting to

WTK NFF, sharing.

214 Communicating with SIG-WTK Chapter
• Sensor drivers: development, reducing lag and

latency.

• Managing user interaction.

• Efficient development of virtual environments

with WTK.

• Distribution and sharing of virtual environments.

• Improving simulation performance (e.g., frame

rate, quality).

• Platform-specific issues (e.g., GL queues on SGI

machines).

• Advocating WTK improvements/changes to

SENSE8.

Communicating with SIG-WTK
To subscribe or unsubscribe, go to:

http://www.sense8.com/support/
forum.html

To send a message to all SIG-WTK members, please

address it to:

sig-wtk@sense8.com

WTK/WUP Electronic Archive
Policy
The purpose of this site is to facilitate the collection

and dissemination of public-domain data for use

with WTK/WUP. This archive will not contain any

data which is copyrighted, classified, or

commercially sensitive to U.S. organizations.

The site is subject to all pertinent laws and

regulations of the U.S. government. Regulation of

the site will be performed with the following

stipulations:

• All connections and file transfers (in and out)

will be logged.

• Access to the site will be subject to the approval

of the EAI/SENSE8 Group, and restriction may

be enforced at any time.

• Abuse of the site, including the import or export

of non public-domain data, will result in access

denial.

The EAI/SENSE8 Group software developers for

WTK/WUP recognize these things about this

archive:

• It is likely to encourage and facilitate the use of

WTK/WUP by users within and outside of the

U.S.

• It provides unrestricted access to public domain

data which is usable by WTK/WUP and may

offer added value or benefit to WTK/WUP

application developers.

Usage
• This site is intended for SIG-WTK related items

only. Please do not use this site for other

purposes.

• To contribute, please write the files to the ftp/

sig-wtk/incoming directory.

• After review, approved submissions will be

moved to the appropriate directories.

SIG-WTK: Web Site
The SIG-WTK support web site features:

• An easy way to subscribe/unsubscribe to the

forum at:

http://www.sense8.com/support/
forum.html

215Chapter SIG-WTK: Web Site
• An online searchable support knowledge base for

your support questions at: http://

www.sense8.com/support/support.html

• Will soon contain an online 3D content and

support repository. This will be announced to the

SIG-WTK shortly. It's location will also be on

our web pages.

216 SIG-WTK: Web Site Chapter

217
D
WorldUp Shortcuts

General

Development Window

F1 Help

F4 Toggle Rendering

F5 Run

F6 Step Simulation

F7 Stop (only applies when you are running the simulation in the development environment, or you when
you are running the simulation as an application but the Development window has the focus.)

Ctrl + N New Script

Ctrl + O Open a Script or a Project

Ctrl + Z Undo last object movement

Delete Delete the currently selected objects

Ctrl + A Zoom All

Ctrl + M Zoom To Selected Node

Ctrl + F Change Modes to Select Mode

Ctrl + ↑ Change active viewpoint direction to Front view

Ctrl + ↓ Change active viewpoint direction to Back view

Ctrl + → Change active viewpoint direction to Left view

Ctrl + ← Change active viewpoint direction to Right view

218 Chapter
Script Editor

When Clicking in Scene and Type Workviews

Right-Mouse Clicking On Objects and Properties
In the Type Workview and Scene Workview, right-mouse clicking on an object displays a pop-up menu of

commands that are applicable to that type of object. In the Property pane, right-mouse clicking on properties

displays a pop-up menu for the following commands:

Ctrl + Page
Up

Change active viewpoint direction to Top view

Ctrl + Page
Down

Change active viewpoint direction to Bottom view

Ctrl-S Save and Compile Script

Ctrl-F Find Text

Ctrl-G Go To Line

Ctrl-C Copy

Ctrl-X Cut

Ctrl-V Paste

F8 Step Over Line of Script (only when debugging)

F9 Step Into Line of Script (only when debugging)

Ctrl Select or deselect targeted item without deselecting others.

Event Settings Displays the Event Settings dialog box

Share Property Displays the Shared Property dialog box (only displays if your universe contains a W2WConnection
object)

Copy Copies the current value of the selected property

Paste Pastes the copied property value

219Chapter
Cutting and Pasting Properties in the Property Pane
Please note that this does not actually use the clipboard, so your property value will not be available for use

elsewhere, nor can you paste in text from a file, for example.

When Dragging Shared Properties in Network Browser

Ctrl + C With a property selected: Copies the current value of the selected property

Ctrl + V With a property selected: Pastes the copied property value into the currently selected property. The
properties must be of the same type, or the paste will be ignored. You can only paste values for the
following types: Integer, Float, Bool, Vect3D, Vect2D and String.

Ctrl Duplicates the shared property so that is shared under both the sharegroup from which it is
dragged and the sharegroup on which it is dropped

220 Chapter

221
E
Pre-Built Behavior
Library

WorldUp ships with a library of pre-built behaviors for you to use in your

simulations. These pre-built behaviors were built using the WorldUp Plug-in Kit,

and are contained in the ActionSet and TriggerSet DLLs in your .\plugins

directory. When WorldUp opens, it automatically detects and loads these DLLs,

which register the behavior types with WorldUp as shown in the figure to the right.

Several of these behaviors are also available for import as script-based behaviors.

These can be subtyped, and their code examined to better understand how a

concept is implemented in script, script syntax, or for the purpose of

customization. Those that have been ported are available in your .\Behaviors

directory. To import them, simply select the desired .PUP file after selecting the

Import Behavior button on the Behavior WorkView.

This appendix gives a brief description of each Trigger and Action in the pre-built

Behavior Library, along with a description of each object’s inputs and parameters

as a reference for both using and creating your own behaviors.

Most behaviors have important properties that you can visually identify with the

Important tab on the Property pane. With respect to behaviors, important

properties are typically those properties the behavior author felt must be filled in

to get the behavior up and running properly.

222 Plug-in Triggers Chapter
Plug-in Triggers

COLLIDE POLYGON 1:2
Collide Polygon performs a ray intersect using the input Movable's user-defined cardinal axes as ray direction

and the input Movable’s global center as ray origin.

VIEW INTERSECT 1:2
Collide polygon performs a ray intersect using the input movable's user-defined cardinal axes as ray direction

and the input Movable's global center as ray origin.

Input1 Movable Source object from which a ray will be cast to determine intersection.

Output1 Movable Input1.

Output2 Movable Object containing the polygon the ray intersected.

Search Node Node Node to search under in scene graph (default = Root)

Ray Axis Vect3D Local axis of Input 1 vector along which to cast ray (default = Z Axis)

Distance Threshold Float Distance to poly threshold. Distances below this threshold fire
trigger.

Polygon Hit Integer ID of polygon intersected by ray.

Distance Float Calculated distance to poly intersected.

Input1 Viewpoint Viewpoint from which ray will be cast

Output1 Viewpoint Input1

Output2 Movable Object containing the polygon the ray intersected.

Search Node Node Node to search under in scene graph (default = Root).

Distance Threshold Float Distance to poly threshold. Distances below this threshold fire trigger

Polygon Hit Integer ID of polygon intersected by ray.

Distance Calculated distance to poly intersected.

223Chapter Plug-in Triggers
COLLIDE MOVABLE 2:2
Collide Movable checks for intersection between two user-specified geometries.

COLLIDE UNIVERSE 1:2
Collide Universe checks for intersection between the object it is attached to and the scene graph. If it collides

(or is in collision with) something, it sets the Movable Hit property to the object collided with and fires.

MOUSE BUTTON 1:0
Get Mouse event. If event satisfies user-specified event of nine possible button conditions (LEFTDOWN,

LEFTHELD, LEFTUP, MIDDLEDOWN, MIDDLEHELD, MIDDLEUP, RIGHTDOWN, RIGHTHELD, RIGHTUP), get the

2D position of the mouse at event time and, if mouse is over geometry, set the triggers' "geometry picked"

and "3d point picked". Finally, fire the Trigger.

Input1 Movable Subject Movable

Input2 Movable Target Movable(s) to check for collision with

Output1 Movable Input1

Output2 Movable First Movable in target list (input2) that subject Movable collided with

Ignore Subject
Children

Boolean Check Subject’s subtree?

Ignore Target Children Boolean Check Target’s subtree?

Input1 Movable Subject Movable

Output1 Movable Input1

Output2 Movable Movable in universe subject movable (input1) collided with

Input1 Mouse Mouse Object we'll be getting button events from.

Mouse Event ENUM LEFT, MIDDLE, RIGHT + DOWN, HELD, DOWN (i.e. LEFTDOWN)

3D Point Picked Vect3d Point (if any) on 3D geometry under mouse’ coordinates

2D Coordinates Vect2d 2d screen coordinates of mouse cursor.

224 Plug-in Triggers Chapter
MOUSE PICK 2:1
Fires if the geometry the mouse is over when the button is pressed is in the list of pickables.

KEYPRESS 1:0
Get the keyboard event and store it in Last Key Pressed.

TIMER 1:0
Timer fires every rate seconds.

Input1 Mouse Mouse Object we’ll be getting events from

Input2 Movable List of pickable objects

Output1 Movable Movable picked (if in list of pickables specified in inputlist2)

Mouse Event ENUM LEFT, MIDDLE, RIGHT + DOWN, HELD, DOWN (i.e. LEFTDOWN)

Geometry Picked Geometry WUP Geometry object picked

3D Point Picked Vect3d Point (if any) on 3D geometry under mouse coordinates

2D Coordinates Vect2d 2D screen coordinates of mouse cursor.

Input1 Window Window Object to retrieve keypresses from

Filter Key String Keypress condition trigger must match in order to fire. If left empty,
any key will fire

Current Key Pressed String Current key pressed

Last Key Pressed String Last key pressed

Input1 VBase WUP Object to which the Timer is attached.

Rate Float Time (in seconds) between firings.

Reference Time Float Internal – used by the timer.

225Chapter Plug-in Actions
PROXIMITY DETECTOR 2:2
Proximity Detector checks for proximity between a subject Movable and a list of target Movables. Proximity

is measured as the distance between geometry midpoints. If a target is a Group node, it is the computed center

of the Group node, including its children. This trigger fires for each object in list of targets the subject is in

proximity with.

PROPERTY CHANGE 1:1
Property Change monitors a particular property common to a list of inputs and fires when that property

changes, passing along the object whose property changed.

Plug-in Actions

SPIN
Spins an object about a user-defined axis and rate in degrees per frame.

Input1 Movable Subject Movable

Input2 Movable Target Movable to check for proximity with.

Output1 Movable Input1.

Output2 Movable Target Movable within proximity.

Distance Threshold Movable Distance between midpoints below which trigger fires

Input1 Vbase Object(s) whose property will be monitored

Output1 Vbase Input1

Property Name String Property name to register with the event system.

Always Active Boolean If False, fires only when simulation is running

SpinAxis ENUM Cardinal axis about which to rotate the object (X, Y, or Z)

ReferenceFrame ENUM Coordinate frame in which to rotate the object (local, parent, or
global)

PerSecond Boolean If true, rotates in Speed/second. Otherwise, it’s Speed/frame

Speed Float Number of degrees per frame (or second) to rotate

226 Plug-in Actions Chapter
MOVE
Moves an object by the amount specified in the translation property.

APPLY VELOCITY
Takes the input Movable’s Velocity property and applies it to the Movable in a time-based manner.

ZOOM VIEW TO OBJECT
Zooms the viewpoint specified by the "Viewpoint" property to the movable in Input1.

TERRAIN FOLLOWING LAND
TerrainFollow causes the input Movable(s) to follow a certain height above a list of user-specified terrain

geometries. Orientation of the target is updated to remain in alignment with the ground geometry’s surface

normal.

PLAY SOUND
Plays a WorldUp Sound object. This behavior uses the Sound object’s properties to determine play

characteristics (pitch, repeating, etc.).

Translation Vect3d Direction and magnitude to move the object

Reference Frame ENUM Frame in which to translate the object (local, parent, or global)

Reference Frame ENUM Frame in which to translate the object (local, parent, or global)

Speed float rate (in units per frame) at which to zoom to the input1

Distance Threshold float Distance from center of input1target at which to stop zooming

Viewpoint Viewpoint Viewpoint that will be doing the zooming

DistanceOffGround float Distance from center of input to center of ground terrain geometry

GroundObjectRoot Node Group node containing one or more terrain geometries

Sound Sound Any WorldUp sound object currently loaded in the project

227Chapter Plug-in Actions
FOLLOW OBJECT
FollowObject causes the input Movable(s) to follow the specified Target.

MOUSE DRIVER
Control a Movable's position with the Mouse cursor.

TETHER VIEWPOINT
Tether Viewpoint tethers (or attaches) a viewpoint to a Movable. Offset allows you to control the position of

the viewpoint relative to the Movable's center. If you apply an offset, the viewpoint’s direction will be set to

look at the center of the Movable it is tethered to.

BOUNCE BACK
Bounce Back reverses a movable along it's z-axis.

TOGGLER
Toggler is a helper behavior that adds it’s input Movable to another behavior’s input list. If the input is already

in the other behavior’s input list, Toggler removes it. This has the effect of toggling a behavior on a certain

object by adding/removing the object from the input list of a specified behavior.

Speed Float Rate at which to update follow location

Follow Distance Float target distance input (follower) should strive to achieve behind
"Target"

Target Movable Object to follow

Speed Feedback Sound Sound object whose pitch is modulated by the object's speed

Steering Feedback Movable Object whose rotation is modulated by the turn angle

Controlling Window Window Window that should be checked for mouse messages

Forward Axis ENUM Cartesian axis on the input movable this behavior should consider to
be "forward"

Viewpoint Viewpoint The viewpoint to tether.

Offset Vect3d Vector displacement of viewpoint center relative to movable's center

Target Action Action The Action whose input list we wish to add the Active Movable to.

228 Plug-in Actions Chapter
CONSTRAIN ROTATION
Constrain Rotation constrains a Movable’s rotation abilities to the user-specified angle sweep in the user-

specified coordinate system.

PLAY PATH
Sets an input Movable position and orientation to a position specified by an element in a Path object. Note

this does not change the Path object playing status. It simply uses the Path object's array of element positions.

Positive Sweep Float Positive angle sweep (in degrees) the object can rotate in

Negative Sweep Float Negative angle sweep (in degrees) the object can rotate in

Relative To Movable Optional parent object whose coordinate frame should be used to
calculate ± sweep (for example, a door’s frame).

PathObject Path Any currently loaded path object.

MyElement Integer Behavior instance specific element number to play.

229
F
WorldUp File
Formats

WorldUp supports the following 3D geometry file

formats.

Descriptions for each supported file format are

given below.

Autodesk 3D Studio Mesh
WorldUp supports the Autodesk 3DStudio format

for Releases 3 and 4. WorldUp reads polygonal

information from a 3DS file including color and

texture information. WorldUp uses the ambient
color material value as the color for each polygon,

and supports 3DS texture uv values to allow correct

reproduction of the 3D Studio texture application

.3DS Autodesk 3D Studio mesh format

.FLT MultiGen OpenFlight format

.WRL Virtual Reality Modeling Language 1.0 and 2.0

.JT DirectModel (JT) CAD Loader

.NFF WorldToolKit Neutral File Format

.OBJ Wavefront OBJ format

.SLP Pro/Engineer RENDER SLP format

.DXF Autodesk DXF format

230 MultiGen OpenFlight Chapter
methods. Smoothing groups are supported for

Gouraud shading. A 3DS file can contain multiple

geometries. The reader does not yet support the

following:

• Points, Lines, Splines, Curves

• Face mapping of textures, Box Mapping of

textures

• Mirror objects

• Masks

WorldUp does not currently support the

3DStudioMAX file format; however,

3DStudioMAX supplies an exporting tool that

allows you to save your files in the *.3ds file format

that WorldUp can use.

MultiGen OpenFlight
WorldUp R5 now supports the latest WorldToolKit

Multigen FLT reader which supports MultiGen files

greater than V14.2 through V15.5. This is shipped as

a separate product. The FLT reader supports

textures and transforms with other records as shown

below.

Supported records

• Material Palette

• Texture Palette

• Object

• Group

• Group with animation 1

• Light source records (Infinite, Point, Spot)

• Level of Detail

• Subfaces

• Switch 2

• External Reference

• Instance

Note A MultiGen animation record is translated to

a WorldUp switch node. Each frame of the

animation sequence is a child object of the switch.

The first frame is the default active child. Translated

MultiGen switch nodes do not maintain a list of

masks. The default active node under the resulting

WorldUp switch node will be the first child of the

switch node.

Unsupported records

• Header

• Eye point

• Light point

• Binary Space Partition

• Curve

• DOF

• Sound

• Text

• Road

• Path

Note

1 Any WorldUp simulation using the FLT reader

must also distribute all of the MultiGen API

DLLs.

2 Primary colors are applied to polygons only if

there is no material applied to the polygon.

Secondary colors are unsupported.

3 Material properties are always blended with

textures.

4 If a texture specified in the MultiGen file is

missing, a texture representing a red X on a

white field will be applied in its place. The user

can change this texture by replacing the existing

NOTEX.TGA image located in the WorldUp/

images directory with one of their own creation.

231Chapter Virtual Reality Modeling Language (VRML)
5 A separate material table is created for the

MultiGen file and each external reference.

6 The name of the table is the name of the file with

an MT appended to the front and missing the .flt

suffix. For example, the externally referenced file

TEST.FLT will have a corresponding material

table called MTtest.

7 Material table indices in WorldUp will be one

greater than the same entry in the MultiGen

material palette. This is to allow the addition of a

default material at index 0 for those polygons

without a material or color.

8 If your geometry is not visible in a shaded

rendering mode, you may have a 100%

transparent material applied to it. Check the

material table entries in your modeler.

Virtual Reality Modeling
Language (VRML)
WorldUp can read and write VRML 1.0 and VRML

2.0 (.wrl) files.

VRML 1.0
WorldUp supports most of the VRML 1.0

specification. The VRML 1.0 limitations of

WorldUp include:

• No support for AsciiText, FontStyle,

IndexedLineSet, and PointSet nodes.

• The crease angle field within ShapeHints nodes

is ignored.

• WorldUp ignores scaling factors (if any) within a

Transform node’s transformation.

• WorldUp can read and process geometric

primitives (such as cone, cube, cylinder, and

sphere), but they are internally decomposed into

polygons (i.e., they are not internally retained as

cone, cube, cylinder and sphere primitives).

• WorldUp uses its own convention to apply

textures to faces without texture coordinates

• WorldUp support for instancing (USE/DEF

scheme) does not include all node types. The

Coordinate3, Material, and Normal node types

cannot be instanced unless they are in the same

scope (for example, there is no separator that

differentiates the state of one instance from that

of the other).

VRML 2.0/97
WordUp supports basic geometry within the VRML

2.0/97 specifiication. It is not intended to support

any behavior or other advanced node types (such as

sound). The following gives a list of the limitations

for VRML 2.0/97.

• Limitations of Supported Common Node Types:

ImageTexture – Remaining issue between

texture blend and texture decal. Use Texture

blend.

IndexedFaceSet – If a colorIndex is specified this

will override the use of textures. Polygon are

limited to 256 vertices. In addition each vertex

may be shared by a maximum of 64 polygons.

Lights (DirectionalLight, PointLight, SpotLight)

– Point lights and spot lights work best, however

directional lights are supported, though the

desired lighting effect maybe slightly off.

Material – Do not specifiy (export) a material

color if you want the geometry to be textured.

Textured and colored geometry is not currently

supported.

232 CAD Loader (DirectModel or JT) Chapter
PROTO – Be careful using this type, it is not

currently fully supported.

TextureCoordinate – Do not specifiy a material

color if you want texture coordinates to work

correctly.

USE/DEF – Do not create recursive DEFs. That

is:

DEF Mytype {
USE Mytype
 …

}

Viewpoint – This works, but currently sets the

active viewpoint each time this node type is

encountered. Hence a file with 10 viewpoints

will cause the importer to change the active

viewpoint ten times

• Unsupported Node Types:

If any of these appear in the file most will be

discarded as expected.

Audio Clip - Discarded

Background - Discarded

Billboard - Treated as group node.

Collision - Treated as group node.

ExternPrototype - Discarded

FontStyle - Discarded

IndexedLineSet - Discarded

Interpolator - Discarded

NavigationInfo - Discarded

PointSet - Causes WTK to crash in one case. DO

NOT USE!

Routes - Discarded

Script - Discarded

Sensors (CylinderSensor, PlaneSensor,

ProximitySensor, SphereSensor, TimeSensor,

TouchSensor, VisibilitySensor) - Discarded

Sound - Discarded

Text - Discarded

WorldInfo - Discarded

Exporting a File as VRML1.0
If you are planning to export your scene graph in the

VRML format, you will need to ensure that all of

your textures are stored as JPEG files. This is

because web browsers do not support *.rgb or *.tga

files. They require JPEG or GIF IMAGE files (GIF

images are currently unsupported by WorldUp).

CAD Loader (DirectModel or
JT)
WorldUp now has CAD loader solution which can

load DirectModel (.jt) files. This is shipped as a

separate product.

Notes on CAD Loader

• Geometry Reconstruction - At the geometry level

in the JT file format, vertex information is

organized in triangle strips for rendering

performance. Thus, the associated geometry

cannot be efficiently edited at the vertex level

(for example, vertices are not shared across strips

so you cannot move one vertex without creating

a hole in the model's mesh). WorldToolKit’s

jt2wt file loader actually processes these vertices

and reconstructs polygons out of them.

Duplicated vertices are collapsed into one shared

vertex, so the resulting database is efficient.

• No support for textures.

233Chapter WorldToolKit Neutral File Format (NFF) and
Binary NFF
WorldToolKit Neutral File
Format (NFF) and Binary NFF
The NFF format is an efficient and readable

representation of 3D geometry. It is also useful as an

intermediary format between WorldUp and formats

not otherwise supported. An NFF or binary NFF file

can contain multiple geometries.

Wavefront OBJ
The Wavefront modeling tool generates this format.

WorldUp imports the 3D polygonal geometry and

curved surfaces that have been polygonalized.

Vertex normals and texture vertices are supported

for Gouraud shading and texture draping. WorldUp

reads map files and material files, but the only

supported properties are diffuse color (Kd) and

diffuse texture (map_Kd). An OBJ file describes a

single geometry.

Pro/Engineer RENDER SLP
WorldUp reads the facets in an SLP file as colored

polygons with vertex normals for smooth shading. A

SLP file contains only one geometry.

Autodesk DXF
Many CAD packages such as AutoCAD and other

3D modeling programs generate this common

format.

You can load in many other geometry files into

WorldUp using third-party geometry conversion

programs capable of writing formats that WorldUp

can read. A program, such as PolyTrans, reads and

writes most popular 3D file formats.

234 Autodesk DXF Chapter

235
G
Glossary

3D Sound Spatialized sound that appears to the end-user to have a distinct location in the
simulation.

3DS The native file format of Autodesk’s 3D Studio. You can use this binary file format to
represent 3D geometry, lighting, and animation.

6D Sensor Sensors that have six degrees of freedom of movement. That is, they can control
movement in the X, Y, and Z direction, i.e. can control pitch, yaw, and roll.

Absolute Record Sensor values that correspond to a specific absolute spatial location (i.e. the position
and orientation of the sensor). See also Relative Record.

Active Moveable The movable currently occupying a behavior "input X" slot.

Active X Control A powerful mechanism for embedding a 3D interface into a larger application where it
is not always appropriate to have 3D control the entire interface, or for where
traditional 2D control and/or additional multimedia elements are more appropriate for
a greater view. With this, you can embed your simulation inside of ActiveX Control
Containers, such as Visual Basic, Internet Explorer, or Macromedia Director.
Exposes an interface that allows communication between control and container.

Ambient Color The material property that represents the color reflected from a material in shadow.

Ambient Light Background light that illuminates all graphical objects equally, regardless of their
position or orientation. By default, ambient light is always present in a WorldUp
application.

Ancestor Node Any node whose sub-tree contains a node (N), is considered to be an ancestor of
that node (N).

Anti-Aliasing The process of reducing aliasing, or jaggies, in creating an image.

Application windows The windows in which the simulation displays when you run the simulation as an
application within WorldUp, or when your end-users run the simulation using one of
the WorldUp players. Application windows are created from the Window object type.

Attenuation The degree to which a point or spot light’s intensity decreases with increasing
distance from the position of the light.

236 Chapter
Axis An axis represents a reference line of a coordinate system along which a geometry is
translated, or around which a geometry is scaled or rotated. There are three axes (X,
Y, and Z) representing width, height, and depth.

Back Face The back face of a polygon is the side facing away from the direction of the polygon
normal (or if the polygon does not have a polygon normal, the back face is the side
from which the polygon’s vertices appear in clockwise order).

Back Face Rejection The elimination of a single-sided polygon (that is, a polygon that can only be viewed
from one side) from the rendering process. In the back face rejection process, those
polygons whose normals face away from the viewpoint (or whose vertices appear in
clockwise order) are not rendered.

Base Window All viewports must have a base window which acts as frame to hold a set of
viewports. A Base window can contain up to 8 viewports.

BasicScript A scripting language which is syntactically identical to Microsoft’s Visual Basic.

BasicScript Encryption A binary version of a script file which can be generated by WorldUp so that the
contents of your scripts can remain hidden even when you distribute your simulation
by deploying your .WUP or .UP file. Encrypted BasicScript files have an .EBC
extension, while BasicScript ascii files have an .EBS extension.

Baud Rate Data transmission speed in bits per second.

Behavior State A Behavior has 3 defined states:
• READY (0) Behavior is ready to fire (could be disabled though through its Enabled

property)
• FIRING (1) A Behavior is currently in it's or one of it's children's callbacks.
• SPENT (2) Behavior has fired, and as a result of its Repeating property set to false,

is not ready to fire again. This typically occurs in "one shot" behaviors.

Behavior System • Provides a mechanism for visually assembling simulations rather than programming
them.

• Provides a natural learning pathway for increasing simulation complexity
• Provides a redistribution mechanism so that users can both provide and benefit

from other pre-built behaviors.

Behavior Wizard The interface that enables you to author your own script based Triggers and Actions.
A series of dialogs the steps you through the process of creating a new Behavior
type.

Behavior Workview The Workview where all Behavior creation and scheduling is done. This Workview is
comprised of four panes which together allow you to create a new behavior, schedule
the behavior, add inputs to the behavior, edit the behavior’s properties, and finally
export the behavior for re-use.

BFF The binary version of SENSE8’s neutral file format used for representing 3D
geometry. See NFF.

237Chapter
Bothsides
(of a polygon)

Polygons have front and back sides (or faces). The side facing in the direction of the
polygon normal (or if there is no polygon normal, the side from which the vertices
appear in counter-clockwise order) is considered to be the front facing side. You can
choose to display just the front side of a polygon or bothsides of a polygon. If a
polygon is bothsided, it can be viewed from either side.

Bounding Box Also known as Extents Box (smallest box that surrounds an object). The term
bounding box sometimes refers to the fact that extents boxes can be made visible in
the scene.

Breakpoint A user-specified line in a script at which WorldUp will stop running the script. You set
breakpoints to help debug your script. For example, if you set breakpoints on lines 4
and 7 of the script and the script runs correctly up to the first break point, but fails
before the second breakpoint, the failure is somewhere between lines 5 and 7.

Callback A Behavior's actual subroutine (C or BasicScript) that represents the Behaviors
actual function.

Casting Mechanism in BasicScript by which objects can be assigned to variables whose type
is not identical to the object’s type. To use casting, the object’s type must be a
subtype or supertype of the variable’s type.

Centroid The centermost position of a three-dimensional object.

Child Node A scene graph node that is a direct descendent of another (parent) node. A child
node can inherit state information from its ancestor nodes.

Collision Detection Intersection testing of objects at either the bounding box level or at the polygon level.

Concave Polygons Any polygon that has at least one interior angle greater than 180 degrees.

Coordinate System A positional system, containing X, Y, and Z components, by which three-dimensional
entities can be described. See Local Coordinate System, Parent Coordinate System,
and World Coordinate System.

Coplanar Polygon Polygon surfaces that overlap and lie in the same plane.

Culling See Hierarchical Culling.

Cylindrical Mapping A technique for applying texture mapping coordinates so that the image appears to
be wrapped around the object in a tube-like fashion. The application of a label to a
can or bottle is an example of cylindrical mapping.

Data Point Entry Mode The mouse, when used with the WorldUp Modeler, is in one of two modes at any one
time: viewpoint manipulation mode or data point entry. Data point entry mode allows
you to create, edit, and select the components of your model.

Descendant Node Any node that is contained in the sub-tree of another node is considered to be a
descendant of that node.

238 Chapter
Development windows The application window in the application editor, where you can manipulate your
Node objects as you develop the simulation. Development windows are created from
the DevWindow subtype, located under the Window type.

Diffuse Color The material property that represents the color reflected from a material in direct
light.

Diffuse Light Positional or directional light that illuminates polygons as a function of the angle
between the light direction and the polygon (or vertex) normal.

Direct Model (.jt files) A cross-platform large CAD model rendering toolkit

Directed Light A light source that has direction but no (finite) position. A directed light can be used to
emulate the effects of sunlight.

Distributed Simulation A simulation that is shared between multiple users across the network.

DLL A Dynamic Link Library is a software library which dynamically links to an application
at runtime.

DOF Degrees of freedom. See 6D Sensor.

Downstream A descendant to a Behavior's is said to be downstream.

DXF Drawing Interchange Format. This file format was developed by Autodesk, Inc. as a
way to transfer geometric data from one design application to another.

Emissive A material property that represents the color produced (not reflected) by the material
even when there is no light. A geometry with this property can be seen even when
there are no lights in the scene, however, the emissive light does not illuminate other
geometry in the area. This material property is used less often than the others

Encrypted BasicScript Files See BasicScript Encryption.

Euler A mathematical representation of a position and orientation in three-dimensional
space.

Extents Box The extents box is the smallest box that fits around an object. See also Midpoint and
Radius.

Extrusion The 3D outline or object created by taking a 2D contour and extending it into three
dimensions.

Facet Mapping A technique for applying texture mapping coordinates so that the image appears on
each polygon of a object. For example, if facet mapping is applied to a cube, each
facet of the cube would look the same.

239Chapter
Flip Normals A polygon has a front side and a back side (face). The side of the polygon facing in
the direction of the polygon normal is the front face. The side of the polygon facing
away from the direction of the polygon normal is the back face. (See Backface for
information regarding polygons which do not have polygon normals.) The Flip
Normals command in the Modeler swaps a polygon’s front and back faces.

FLT MultiGen/ModelGen Flight file format used to represent geometric objects. FLT files
can contain multiple geometric objects and may contain textures and LODs.

Fog Node A scene graph node used to simulate fog, smoke, etc.

Frame An individual rendering loop during which each active window is redrawn after
updating sensor input, path information, and running scripts associated with
simulation objects. See also Simulation Loop.

Frame of Reference Allows you to select a reference frame (coordinate system) about which objects are
translated and rotated. Four reference frames are available. World, Parent, Local and
View. World: Object manipulation is performed in the universe’s reference frame.
Parent: Manipulation is performed relative to the frame of the node’s parents. Local:
Manipulation is performed relative to the selected node’s local frame. View:
Manipulation is performed relative to the viewpoint’s frame.

Frame Rate The number of times per second that WorldUp completes the simulation loop, i.e.
renders a frame.

 Front Face The side of the polygon in the direction of the polygon normal. The front face of a
polygon which does not have a polygon normal, is the side from which the polygon’s
vertices appear in counter-clockwise order.

Geometry Node A scene graph node, such as block, sphere, cylinder, text3d, or imported, which is
used to model physical objects contained in the scene.

Gouraud Shading A technique used for shading a 3D graphical object composed of polygons, by
interpolating light intensities at the vertices of each polygon’s face, rendering a
smooth surface.

Graphical objects Objects created from the Geometry object type or one of its subtypes (Block,
Cylinder, Imported, Sphere, and Text3d).

Graphics Pipeline Many high performance systems utilize specialized graphics hardware (aka graphics
pipeline) to substantially increase the system’s ability to process and render
geometric objects composed of polygons.

Group Node A scene graph node that has children and is used to organize components of the
scene graph in a logical manner.

GUI Acronym for graphical user interface. Also called user interface (UI).

Head Mounted Display A display device that is worn on the head, which sometimes permits position and
orientation tracking.

240 Chapter
Heads Up Display The static portion of an image rendered on a display device.

Hierarchical Culling WorldUp’s automatic process of quickly and efficiently eliminating objects that are not
visible from the viewpoint so that they are not unnecessarily processed during the
rendering process.

Hierarchy Used in the context of scene graphs, hierarchy refers to how the nodes in a scene
graph are organized and the relationship of one node to another. Used in the context
of the Type Workview, hierarchy refers to how object types are sub-classed from other
types.

Hither Clipping Plane The physical range in front of the viewpoint, before which objects are not rendered in
that window. That is, objects that appear between the viewpoint and the hither
clipping plane are not rendered. Objects are rendered only in the area between the
hither clipping plane and the yon clipping plane. Hither Clipping is a Window property.

HLS HLS stands for hue/luminance/saturation.

Input Slot The slot that hold a Behavior's "Active" input, which is the object the Behavior is
currently acting upon.

InputList A list of WUPObjects set by the behavior user to define the list of objects that a
behavior will act upon. The Task Scheduler uses this list to fill slot "in1" as such,
"InputListX" and "inx" will always have the same type. This list is accessed either
through the IDE, or with the behavior functions AddToInputList(int, Movable) and
RemoveFromInputList(int, Movable)

Instance WorldUp’s scene graph hierarchy allows geometry nodes to be referenced multiple
times within a scene graph. Since it is sometimes necessary to identify a particular
occurrence of a node to distinguish it from other occurrences, each occurrence is
called an instance.

Interpolation The method of determining a new value using two or more existing values. WorldUp
uses interpolation when new paths are created from previously defined paths.

Intersection Testing See Collision Detection.

Iterators Iterators are script variables used to cycle through objects of a given type. Search on
“GetFirst” and “GetNext” in the online help.

Leaf Node A scene graph node that has no descendants.

Level of Detail (LOD) Node A scene graph node used to automatically select between different representations
(levels of detail) of an object based upon the distance between the object and the
viewpoint position.

Light Node A scene graph node used to specify a light (point, directed, or spot).

Material A material is used to define the appearance of graphical objects and consists of the
following material properties: ambient color, diffuse color, specular color, shininess,
emissive, and translucency.

241Chapter
Material Table Used to store the material properties of any number of materials. Each geometric
object references a number of materials from the material table that is associated
with that object.

MaterialNode Is the most flexible way to add material to an object. The MaterialNode allows
materials to be created, edited and saved out for reusing in the Development
Environment.

Matrix A 3x3 or 4x4 array of floating point numbers which is a mathematical entity that can
be used to represent position and orientation in 2D/3D space.

Mesh A group of polygons that share vertices and define a complex surface, such as a
curved hood on a car. In the Modeler, meshes can be selected as a unit by using
Select by Connected.

Midpoint The center of a node’s extents box. See also Extents Box and Radius.

Model Workview The import central for importing models into WorldUp simulation.

Motion Link Used to connect a source of position and orientation information (a path or sensor)
with a target that moves to correspond with that changing set of information. A target
can be any Viewpoint or Movable object.

Movable Node A scene graph node that represents self-contained entities like geometries or lights
that can be easily moved around in the scene.

NFF Neutral File Format, SENSE8’s neutral ASCII file format used for representing 3D
geometry.

Node The fundamental element or building block used to construct a scene graph. A node
is simply an element of content (like a geometry or light), state (fog), or a grouping/
procedural element (group, switcher or lod) used to maintain scene hierarchy.

Node-locked License A WorldUp software license designed to be used on a stand-alone computer.

Normal A direction vector used for shading and rendering. Normals can be applied at both
the vertex and polygon level. A polygon normal is perpendicular to the polygon
surface and extends outward from the visible side of the polygon. A vertex normal
represents the direction that is perpendicular to the tangent vector at the vertex
position of the polygon.

Normalized A normalized vector is a vector whose magnitude is 1.0.

OBJ Wavefront/Alias file format used for representing 3D geometry.

Objects Are one of the core building blocks upon which your simulation is built. Graphical
objects are the objects that you can see in the Application window. The objects in a
scene/simulation are what ultimately gets drawn.

Object Types The classes of objects that can be instantiated or sub-typed. Each object type has a
number of properties which describe the characteristics of the object type.

242 Chapter
Opacity See Translucency.

Optimization A technique used to optimally organize the contents of an imported geometry node
so that it can be rendered in the shortest amount of time. Once an imported
geometry node’s optimized flag is set, you will not be able to make edits to the
imported geometry, unless you unset the optimized flag.

Orphaned Nodes Nodes that are not contained in the Scene Workview but are in the Type Workview
are considered to be orphaned nodes. This can occur if nodes are removed from the
Scene Workview.

Orthogonal Viewing A 2D view of the universe (helpful for fine tuning object positioning.)

Orthographic Projection Orthographic projection is a window property that can be set if you want plan views or
anytime a perspective distortion is not desired; parallel lines remain parallel
regardless of viewpoint position. Translations in the X and Y directions work as
before, but translations along the Z-axis do not affect the scene. If this window
property is not set, the view seen will be a 3D perspective projection. See
Perspective Projection.

Output Slot The slot that holds a Behavior's "Active " output, which is the object the Behavior has
most recently written.

Parallax A property of the Viewpoint object type which represents the distance between the
left eye and the right eye position when using a stereo viewing device.

Parent coordinate system The coordinate system of the parent object in the scene graph.

Parent Node A node’s direct ancestor in the scene graph.

Path Stores a series of position and orientation records in absolute world coordinates. A
path can be used to pre-program a flight path through a scene, or to pre-define the
motion of an object within the scene.

Path Element A single position and orientation record. A sequence of path elements defines a path.

Perspective Projection Perspective projection is a window projection type that is used to display objects in
three dimensions (height, width, and depth). By default, a window’s orthographic
property is FALSE, and hence a perspective projection will be used in each
simulation. See Orthographic Projection.

Perspective Viewing A 3D view of the universe.

Picking The ability to select the front-most rendered polygon (i.e. object) in a window.

Pitch The orientation of an object about the X axis.

Pivot Point The point around which vertices rotate and are scaled. The default pivot point is at
the center of the object or set of selected vertices.

243Chapter
Pixel A contraction of “picture element,” it refers to one point in a graphics image on a
computer display. A standard VGA display might have 640 x 480 pixels. The number
of bits per pixel determines how many colors can be represented on the image. VGA
displays typically have eight bits per pixel. “Truecolor” displays typically use 24 bits
per pixel.

Planar Mapping A technique for applying texture mapping coordinates so that the image appears to
be projected through an object.

Planar Polygon Polygons whose vertices are all positioned within the allowable distance (0.004))
from the plane passing through the vertices.

Plug-In SDK is a set of high level C functions simulation authors can use to extend the functionality
of WorldUp.

Plug-Ins Are created with R5’s optional Pug-in Kit. Plug-ins are custom simulation objects that
directly interface with the WorldUp Object System using a high level set of object
management routines. Plug-ins can be made re-usable.

Point Light An omni-directional source of lighting capable of being positioned by the user. A light
bulb is an example of a point light source.

Polygon A polygon is a planar surface defined by a set of three or more vertices. It is the basic
building block of geometries. Polygon properties include material, texture, bothsides,
and smooth.

Polygon Normal See Normal.

Port A logical channel in a communications system. See also Serial Port.

Portability The ability to move a simulation built using WorldUp from one hardware platform to
another platform without having to recompile or make extensive changes to the
simulation.

Position The current X, Y, and Z coordinates of an object.

Pre-Built Behaviors A basic library of Triggers and Actions most commonly found in interactive
simulations.

Predecessor Node Any node in a scene graph that can directly affect how a specific node (N) is
processed is considered to be a predecessor of that node (N), even though that node
is not an ancestor node.

244 Chapter
Primary Input A WUPObject that is acknowledged as a primary, required, input to a behavior's
callback function. The Behavior author defines 0, 1 or 2 inputs. The 1st input ("in1") is
assumed by the Task Scheduler to be the current WUPObject that the Behavior will
act upon. The Task Scheduler fills in this property based on either the Behavior's
parent's out1 property or from the user-defined list of WUPObjects ("InputListX").
Primary inputs implemented as a special property set that includes the properties
"inX", "InputListX", and "UsesParentX." "InputListX" and "InX" are of the same type,
and are defined by the Behavior Author. These properties are not manipulated
directly, but indirectly via the GUI.

Primary Output A WUPObject that is acknowledged as a primary, required, output parameter of a
behavior's callback function. The Behavior Author defines 0, 1 or 2 outputs. Primary
Outputs are defined by the Behavior Author and are added during Subtyping.
Primary Outputs are implemented as "out1" and "out2". They are read-only.

Primitive (Geometric) A three-dimensional basic geometric form (such as a block, sphere, or cylinder)
stored as a collection of polygons.

Project Workview The overall tabbed interface that brings often used features of worldup into the user’s
view. The project Workview has a certain row of tabs along the top of it that select a
certain ‘view of the project’. These tabbed views are the scene, model, behavior and
type Workviews.

Projection Modes Defines how the scene is projected onto the display device. See Orthographic
Projection and Perspective Projection.

Propagation of state When processing the scene graph tree, the lighting and positional state created by
each geometric or light movable accumulates (propagates) as the remainder of the
scene graph is processed.

Property Object types and instances of objects have a set of properties which defines the
object’s characteristics. The actual property values assigned to an object’s properties
is what distinguishes two objects of the same type. Each property is typed, that is it
can be an integer, float, or any other WorldUp supported type.

Property Pane The pane helpful in viewing and changing the properties of an object. The property
pane has four tabs; All, Important, Subtype and Editable. "All" tab shows all the
properties of the selected object. "Important" tab just shows the most specific and
basic properties of an object which are required to create the object. "Subtype"
shows all the properties that exist in the derived type that doesn’t exist in its parent.
"Editable", as the name says, lists all the properties, which can be edited. In "All" tab
the properties shown in Red color are protected or read-only which can not be
changed.

Quads Four-sided polygons.

Quaternion A mathematical representation of an orientation.

Radius The distance from the midpoint of a node’s extents box to a corner of the box. This is
the same as the length of the extents vector. See also Extents Box and Midpoint.

245Chapter
Ray Casting A ray is a vector representing a direction. Ray casting is the process of calculating a
ray that emanates from a position (for example, a viewpoint) and which then passes
through a specified point. Ray casting can be used for terrain following or intersection
testing.

Real-time Simulation A 3D application (such as a WorldUp simulation) that responds to input and displays
the corresponding change (almost) instantly. When measured in frames per second,
real-time usually means at least 10 fps.

Reflection Mapping Cues to the viewer that determine the spatial relationships between objects. The way
visible surfaces are reflected, takes into account light sources, surface
characteristics, and the positions and orientations of the surfaces and sources.

Relative Record Sensor values that correspond to a sensor’s change in spatial location (position and
orientation) since the last time through the simulation loop. See also Absolute
Record.

Rendering Generation of a graphical image from mathematical models of three-dimensional
objects, i.e. a scene.

Rendering Settings The Project’s Rendering Settings for displaying geometries in a simulation. Types of
rendering include wireframe, shaded, textured, and textured with perspective
correction.

RenderNode Allows you to create your own custom RenderNode type with the optional Plug-in Kit
from Sense8. The RenderNode is a node in the Scene Graph that calls back to a user
defined function in every frame during traversal of the Scene Graph. The user-
defined function contains low-level drawing commands the user can execute,
allowing the user a greater flexibility than is offered by the other physical objects in
the Scene Graph. The benefit of RenderNode existing in the Scene Graph is that the
node can accumulate the state of the Scene Graph, including lighting and
transformations.

Resources A resource is a file that contains objects, types, or geometry entries that can be
extracted and used in the current simulation. Any geometry file of one of the
supported file formats, or any universe (.UP) file can be opened as a resource.

RGB RGB stands for the red, green, and blue components of a color specification. Valid
values for color components range from 0 to 255. An RGB triple of (255, 0, 0)
represents the color red while an RGB triple of (255, 255, 0) is yellow.

Right-hand Rule The WorldUp coordinate system obeys the right-hand rule. The default coordinate
system has the X axis pointing to the right, the Y axis pointing down, and the Z axis
pointing straight ahead.

Roll The orientation of an object about the Z axis.

Root Node A scene graph node that is the top most node in any scene graph. A scene graph has
only one root node. All other nodes in the scene graph are descendants of the root
node.

246 Chapter
Rotation The turning of an object so that it has a different orientation.

Scene The virtual world being displayed.

Scene Graph The spatial organization and relationship of Node objects to each other is controlled
by your scene graph. A scene graph is a hierarchical arrangement of nodes,
organized beneath a single Root node. In WorldUp, you view and modify your scene
graph with the Scene Workview.
The order in which nodes appear in the Scene Graph pane determines the order in
which nodes are processed and the order in which graphical nodes are rendered.

Scene Workview The most commonly used Workview for creating new objects, editing their properties,
scene assembly and scene graph layout. The Scene Workview consists of Nodes
pane on the left, Scene Graph pane on the right and Property pane at the bottom.

Script A script is a collection of one or more functions written in BasicScript that exist in a
script file to add behavior to your objects (such as animating objects, detecting
collisions between objects, etc.). Script files have an .EBS extension. WorldUp uses
two kinds of scripts: Stand-Alone and Task.

Script-Based Behavior A BasicScript Behavior. All BasicScript Behavior's are comprised of 3 parts:
1. A Script Behavior Object
2. A Script Handler Object
3. A Script File

Script Handler The WUP Script Object associated with a WUP BasicScript Behavior

 Selection Sets Selection sets are temporary (per modeling session) collections of vertices or
polygons of a geometry assigned to one of three letter buttons (A, B, or C) in the
Select Menu (or toolbar) of the Modeler. Selection sets allow you to manipulate and
assign commands to groups of elements within a geometry. For example, by making
all of an object’s polygons part of a selection set, you can copy them all at once.

Sensor A device that responds to physical movement and that transmits the resulting position
and (possibly) orientation information.

Sensor Sensitivity The scale factor associated with a sensor’s translational record, i.e. the maximum
magnitude of translational input along any axis in any pass through the simulation
loop.

Serial Port A connector on a computer where you can attach a serial line connected to
peripherals that communicate using a serial protocol.

Shading The process of rendering polygons, especially when using lighting effects. See
Gouraud Shading.

Shaded Texture When you enable the texture shading feature, texture colors are affected by lights in
the scene. If colored lights are used, the color of texture elements is also affected.

247Chapter
Shininess A material property that controls the narrowness of focus of specular highlights. This
has no meaning if the specular color is black (lighting of geometry rendered with
material properties is an “additive” process; a black specular highlight will not darken
the geometry; it simply won't contribute to a light highlight on the geometry). The
lower the shininess value, the more “spread out” the highlight; the higher the
shininess value, the sharper the highlight. A high value for shininess makes an object
look shiny.

Shutdown Script The script that is run each time you close a universe (.UP).). The Shutdown script for
a universe is indicated by the Shutdown Script property.

Sibling Node Children of the same parent node are siblings.

Simulations The 3D/VR applications that you can build using WorldUp.

Simulation Loop When a WorldUp simulation is running, the simulation loop is repeatedly executed.
WorldUp reads input sensors, updates objects with sensor input, executes object
tasks and scripts, steps any paths, and renders a new view of your scene into the
simulation window(s) during each pass through the simulation loop. Each pass
through the simulation loop is called a frame.

Six Degrees of Freedom See 6D Sensor.

SLP Pro/Engineer file format used for representing 3D geometry.

Spanning If true, it indicates a Behavior/Action spans multiple frames versus steady state.
Zoom to is an example of a behavior that spans.

Spatialized Sound See 3D Sound.

Specular Color A material property that represents the color reflected from the highlights of the
geometry. The specular material property is what makes a geometry appear to be
“shiny” with highlights appearing on its surface. Usually, the specular highlight is
white, which means that it reflects the color of the specular light (which is also usually
white).

Spherical Mapping A technique for applying texture mapping coordinates so that the image appears to
be wrapped around the object in a spherical fashion. A good example of spherical
mapping would be a world globe.

Spot Light A light source that illuminates a small area, within a cone of a specified angle. An
automobile headlight is an example of a spot light source.

248 Chapter
Stand-Alone Script A Stand-Alone script contains a Main subroutine.
Scripts can contain any number of routines, but only scripts that contain a Main
subroutine are Stand-Alone scripts. A script can only have one Main subroutine (In
fact, a script cannot contain more than one routine with the same name).
You can run any Stand-Alone script independent of the simulation (that is, the script
does not have to be attached to an object). Additionally, in WorldUp, you can
designate particular Stand-Alone scripts to be your Startup, Shutdown, and User
scripts.
Stand-Alone scripts are also used to define the action for Navigation Bar buttons.

Startup Script The script that is run each time you load a project (.UP). The Startup script for a
universe is indicated by the Startup Script property. Startup scripts are useful for
loading .DLL files.

State Refers to the accumulated lighting and positional state that results during the
processing of a scene graph. The scene graph state affects how and where geometry
is rendered at any particular point in the scene graph.

Stereoscopic Viewing The visual effect achieved when part of your scene appears to be in front of your
display screen, and part of the scene appears to be behind your display screen,
giving the illusion that the image is a 3 dimensional image.

Subfaces ModelGen and MultiGen permit “subfaces,” polygons that generally are oriented in
the same plane as another polygon, but that are intended to appear as if they are on
top of the other polygon. When polygons with subfaces are translated literally into the
WorldUp viewing format, Z-buffer roundoff becomes pronounced, resulting in
flickering between the coplanar faces as the object is rendered. When WorldUp
encounters subfaces in an OpenFlight file, it translates them by a constant amount in
the direction of the parent polygon’s normal vector.

Sub-tree A node and all its descendants in the scene graph is called a sub-tree of the overall
scene graph tree.

Sub-type Lists only the properties of the subtype which are not present in the parent type.
When you create a subtype, it inherits all of the properties of the type from which it
was derived and becomes subordinate to that type.

Switcher Node A scene graph node that allows the user to control which of its children to process.

Task Scheduler This graph on the Behavior Workview shows the execution flow of all scheduled
behaviors, as well as each behaviors inputs. This allows the user to both see the
execution order and to drag and drop objects onto specific inputs.

249Chapter
Task Script A Task script contains a Task subroutine. The task subroutine must take one
parameter of the appropriate type.
Similar to Stand-Alone scripts, a Task script can contain any number of other
routines, but must have one and only one Task subroutine.
Each object in your simulation has a task list. You implement the behavior in a Task
script by adding that script to the task list of one or more objects, and then running
the simulation. When you run the simulation, Task scripts are executed every frame
for every object to which the Task script is attached.

Tessellation Refers to the manner in which the surface of a geometric object is modeled via
polygons. Finer tessellations usually require the use of more polygons than a rough
tessellation. For example, a cone that was tessellated using 100 polygons would,
when rendered, appear much superior to a cone that was tessellated using only 10
polygons, since the 10 polygon tessellated cone would appear very faceted.

Texels A contraction of “Texture element”, it refers to the individual texture elements of a
texture image.

Text Fields A text field user interface object is a simple object that allows a user to enter text
using the keyboard. Text field objects are normally used as a single line data entry
field. It gives the user text editing capabilities and also provides the point and click
functionality expected of GUI applications.

Texture A bitmap image usually created for the purpose of applying complex images to
simple polygons to increase the visual quality of the simulation and to also improve
the performance of the simulation.

Texture Draping The process of applying a texture bitmap image stored in a file to a polygon or an
entire geometry.

Texture Mapping The process of applying a digitized image onto a polygon or structure composed of
polygons.

Texture Tiling Mechanism by which a texture image can be applied to a polygon in a manner such
that the image is repeated a number of times horizontally across the polygon and/or
vertically across the polygon, producing a ‘tiling’ effect.

Texture uv Coordinates WorldUp allows you to specify how the texture is mapped onto a polygon, by allowing
you to specify texture (uv) coordinates in polygon definitions.

The Universe The container object for all global properties used by WorldUp.

TPS Triangles per second. A commonly used statistic used to compare performance
characteristics of graphics hardware.

Transformation Matrix See Matrix.

Translation A change in an object’s position.

Translucency A material property that represents the extent to which the color value of a pixel is
combined with the color value behind it, giving the affect of a transparent surface.

250 Chapter
Traversal Order The order in which nodes in a scene graph are processed while the simulation is
running. WorldUp starts at the root node and processes the scene graph tree from
top to bottom and left to right.

Type Workview Type Workview is used for creating custom subtypes, viewing and changing type and
object properties. The Type Workview consists of a Type Graph pane and a Property
pane below it. The Type graph pane displays the complete set of worldup Types,
including non-Node types such as Windows, the Universe, Sensors and MotionLinks.

Unit An arbitrary measurement that you use to represent distance (inches, feet,
centimeters, meters, etc.).

Universal Resource Locator
(URL)

String properties used in VRML files to specify a file location and file name that
contains data to be imported.

Universe or UP Files A .UP file is a WorldUp universe file which is used to save your simulation. An .UP
file, as opposed to an .WUP file, does not incorporate script, model, image, and
sound file data into the .UP file. Instead a .UP file references other files which contain
this information.

Upstream An ancestor to a Behavior is said to be upstream.

User Script The script that is run each time you click the User-Defined Action button. User scripts
are useful for performing routine actions like resetting objects to their initial positions.
The User script for a project is indicated by the User Script property.

Vertex A single point in three-dimensional space, which defines a corner of a polygon. A
sequence of vertices defines a polygon. Vertex properties include position, normal,
and texture UV coordinates.

Vertex Normals A direction vector used for shading and rendering. You can generate vertex normals
with a modeling program. When WorldUp reads a vertex with a normal associated
with it, it automatically renders the associated polygon as Gouraud-shaded. See also
Normals.

Viewpoint Defines the position and orientation from which the graphical universe is projected to
the computer screen and rendered within a window. Each window has a viewpoint
associated with it. The viewpoint represents the point of view of the observer.

Viewports Viewports represent the actual drawing area of a window. All WorldUp windows have
a default viewport assigned to them. This viewport is given the same dimensions as
the client area of the window, but can be changed by the user.

VRML An acronym for Virtual Reality Modeling Language. A specification for the design and
implementation of a platform-independent language for virtual reality scene
description.

Wireframe A rendering setting in which textures, materials, and shading is not visible because
only the outlines of polygons will be rendered, i.e. polygons will not be solid-filled.
Rendering using the wireframe style typically achieves the highest frame rate of any
of the rendering settings.

251Chapter
Workview Provides a more efficient workflow by simplifying the User Interface, using tabs, for
the task on which one is focused.

World Coordinate System The World Coordinate System (WCS) originates at the center of the universe, defined
as XYZ coordinates 0,0,0.

WorldToolKit Sense8 Corporation also produces WorldToolKit, which is a C/C++ library used by
programmers to build real-time 3D virtual reality applications. WorldUp is built on top
of WorldToolKit.

WorldUp Player The WorldUp players allow end-users to run your simulations without having to install
WorldUp on their machines. There are both commercial and non-commercial players
available. The non-commercial players are freely-distributable.

WRL The VRML file format used for representing hierarchical 3D geometry and other data.

WUP Files A .WUP file is a WorldUp project file that contains all the information required to run
your simulation. A .WUP file, as opposed to an .UP file, does not reference any other
files and is therefore suitable for distribution over the Internet so that others can run
the simulation you built and exported as a .WUP file.

Yaw The orientation of an object about the Y axis.

Yon Clipping Plane The physical range in front of the viewpoint, beyond which objects are not rendered in
that window. That is, objects appearing beyond the yon clipping plane are not
rendered. Objects are rendered only in the area between the hither clipping plane
and the yon clipping plane. See Hither Clipping Plane.

Z-buffer A software or hardware buffer that stores Z coordinate information when rendering
3D scenes.

252 Chapter

253
Numerics
2D drawing

performance statistics, 22
3D content

overview, 8
3D drawing

performance statistics, 22
3D Mouse

defined constants, 159
suspend button, 159

3D text
creating, 104
font files, 104
objects, 104

A
Absolute

search paths, 40
sensor records, 153

Activating connections, 177
Active Child property, 28
Add Type Property dialog box, 90
Adding

properties, 90
search paths, 40

All tab (Property pane), 91
Ambient light, 122
Angular Rate property, 170
Animation

using Switcher nodes, 27
Application windows

definition, 95
running simulations in, 21

Applications
running simulations as, 20

Ascension Bird
configuration, 158

Ascension Mouse
defined constants, 157

ASCMOUSE_LEFTDOWN, 157
ASCMOUSE_MIDDLEDOWN, 157
ASCMOUSE_RIGHTDOWN, 157
Attempting To Connect status message, 190

B
Behavior object, 128
Behavior Wizard, 127, 132
Behaviors

anatomy, 128
assembling, 129
importing and exporting, 135
overview, 18
pre-built, 127
scripts, 18

Behaviors pane, 126
Bezier interpolation method (paths), 139
Blocks

Block object type, 103
creating in the Development window, 104

Booleans
modifying in Property pane, 92

B-Spline interpolation method (paths), 139

C
Choose Material dialog box, 92
Clipping planes, 96

and windows, 96
Collision detection

performance tip, 192
Cones

Cone object type, 103
Conflict Encounter

status message, 190
Connected status message, 190
Connections

activating, 177
clock difference, 178
connected users, 175, 178
creating, 176
deleting, 177
editing, 177
introduction, 174
latency, 178
parameters, 178
responding to addition/removal of users, 176, 178
statistics, viewing, 177
status messages, 189
understanding, 174
update rates, 175

254
Constraints, 82
Contents of the WorldUp Installation, 3
Coordinate systems

and motion links, 145
Local, 14
overview, 13
Parent, 14
scene graph dragging options, 29
Viewpoint, 14
World, 14

Copying
objects, 88
shared properties, 182

Course slider (Position Object dialog box), 113
Create Object dialog box, 88
Create Path dialog box, 139
Create Subtype dialog box, 89
Creating

3D fonts, 195
3D text, 104
blocks, 104
connections, for multi-user simulations, 176
cylinders, 104
geometries (Development window), 103
groups, 25
LevelOfDetail nodes, 26
node instances, 31
object types, 89
objects, 88
objects, performance tip, 192
projects, new, 37
properties, 90
sensors, 155
shared properties, for multi-user simulations, 180
sharegroups, for multi-user simulations, 186
spheres, 104
Switcher nodes, 28
viewpoints, 96

Creating Viewports, 98
Cropped objects

controlling clipping planes, 96
CrystalEyes

configuration, 163
Culling

automatic, 96

hierarchical, 17
CyberMaxx2

configuration, 167
Cylinders

creating in the Development window, 104
Cylinder object type, 103

D
Database connectivity, 197
Dead reckoning, 176
Default

objects, 19
sensor sensitivity, 170

Defined constants
3D Mouse, 159
Ascension Mouse, 157
Formula T2, 165
Mouse, 157
sample script, 157
Serial Joystick, 166
Space Control Mouse, 160
Spaceball, 163

Deleting
connections, 177
motion links, 145
node instances, 32
nodes, from scene graph only, 32
object types, 89
objects, 88
path elements, 143
paths, 144
properties, 91
search paths, 41
sharegroups, 188

Development environment
running simulations in, 20

Development window
dragging objects, 110
lock mode, 111
sliders, 83

Development windows
definition, 95
running simulations in, 21

DIP switch settings, 156
Direct 3D, 211

255
Directed light, 123
Directories

installed, 4
Display Options, 83
Display Options dialog box, 84
Distances

swapping nodes at certain distances, 26
Dragging

graphical objects, 110
lights and groups, 110
Movable objects, 110
options (scene graph), 29

Duplicate Share For Property status message, 190
Duplicating objects, 88
Dynamic inheritance, 90

E
Edit Children List dialog box, 32
Edit List dialog box, 92
Edit MLink Sources command, 145
Edit MLink Targets command, 145
Editable tab (Property pane), 91
Editing

connections, 177
path elements, 142
property values, 91
shared properties, 182
sharegroups, 188

Electromagnetic sensors
overview, 154

Euler angles, 112
Event Settings dialog box, 182
Events, 89

Group Added, 185, 189
overview, 18
Property Added, 185, 189
User Added, 176, 178
User Removed, 176, 178

Export Behavior, 135
Exporting

behaviors, 135

F
Failed To Connect status message, 190
FASTRAK

configuration, 160
Filenames

modifying in Property pane, 92
files

PUP, 135
Find Object dialog box, 89
Finding

objects, 89
Fine slider (Position Object dialog box), 113
Firewall Proxy

introduction, 174
Fog, 24
Fonts

changing font and font size (2D), 195
creating 3D fonts, 195

Formula T2
configuration, 164
defined constants, 165

FORMULA_BUTTON1, 165
FORMULA_BUTTON2, 165
FORMULA_SHIFTDN, 165
FORMULA_SHIFTUP, 165
Frame of Reference, 82
Frame rate

displaying rendering performance, 42
Profiler statistics, 21
sensors, 155

Free Fly, 82
Functions

performance statistics, 22

G
Gameport Joystick, 158
Geometries

adjusting pivot points, 116
Geometry object type, 103
scaling, 114

GetGlobalLocation
performance statistics, 22

Global simulation settings, 41
Glossary, 235
Graphical objects, 103

cropping, controlling, 96
dragging in Development window, 110
instancing, 31

256
overview, 16
snapping, 113, 114

Graphics accelerator cards, 1
Group Added events, 185, 189
Groups

dragging, 110
Group nodes, 25
LevelOfDetail nodes, 26, 197
overview, 25
Switcher nodes, 27

H
Hiding/showing

Development window sliders, 83
rendering performance, 42

Hierarchical culling, 17
Hierarchies, 16

scene graphs, 24
sharegroups, 184

Hither clipping
and windows, 96

I
Icons

objects and object types, 15
search paths, 41

i-Glasses!
configuration, 168

Import Behavior, 135
Important tab (Property pane), 91
Imported object type, 103
Importing

behaviors, 135
Insertion indicator

in the Network Browser, 180, 186
InsideTRAK

configuration, 161
Installation

installed programs and files, 3
instructions, 2
system requirements, 1
WorldUp Players, 210

Instancing nodes, 31
Integers

modifying in Property pane, 92

IntersectMovable
performance statistics, 22

IntersectUniverse
performance statistics, 22

Introduction
3D content, 8
behaviors, 18
coordinate systems, 13
events, 18
graphical objects, 16
scene graphs, 16
scripts, 18
World Up features, 8

ISOTRAK/ISOTRAK II
configuration, 162

L
LEFTDOWN, 157
LEFTHELD, 157
LEFTUP, 157
Level Of Detail Ranges dialog box, 27, 92
LevelOfDetail nodes, 26, 197

creating, 26
problems with, 196
setting ranges for, 27

License codes, 5
License Manager, 3
Lights

and sensors, 123
and vertex colors, 197
directed, 123
dragging, 110
maximum number, 122
point, definition, 123
Rendering Parameters dialog box, 41
spot, definition, 123

Linear interpolation method (paths), 139
Linking (motion links)

sources to targets, 145
targets to sources, 145

Lists
modifying in Property pane, 92

Local coordinate system, 14
Locating

objects with the Find command, 89

257
Lock Selected, 83
Locked properties (multi-user simulations), 179, 184
Locked sharegroups (multi-user simulations), 185, 188
Locking

view/selection to an object, 111
LOD Ranges

modifying in Property pane, 92
LOGI_FLYINGHELD, 159
LOGI_LEFTHELD, 159
LOGI_MIDDLEHELD, 159
LOGI_RIGHTHELD, 159
LOGI_SUSPEND, 159
Loop play option (paths), 142

M
MAG_BTN1DOWN, 160
MAG_BTN2DOWN, 160
MAG_BTN3DOWN, 160
MAG_BTN4DOWN, 160
MAG_BTN5DOWN, 160
MAG_BTN6DOWN, 160
MAG_BTN7DOWN, 160
MAG_BTN8DOWN, 160
MAG_BTNADOWN, 160
Materials

applying in the Development window, 104
as affected by light, 121
selecting in Property pane, 92
vertex colors, 197

Maximum
number of lights, 122

Memory requirements, 2
MIDDLEDOWN, 157
MIDDLEHELD, 157
MIDDLEUP, 157
Misc Data property, 170
Models

creating levels of detail, 197
efficient, 193
radiosity-preprocessed, 197
tricks, 197
using in simulations, 103

Motion Link Sources dialog box, 96, 145
Motion Link Targets dialog box, 145
Motion links

and reference frames, 145
assigning sources, 145
assigning targets, 145
creating from the Path Browser, 140
removing, 145

Mouse
defined constants, 157

Mouse sensitivity, 85
Movables

and sensors, 144
dragging, 110
linking to paths, 140
translating and rotating, 110

Movement
through sensors, 144

Moving
sharegroups in data tree, 188

Moving objects, 110
by dragging, 110
from the Position Object dialog box, 113
from the Property pane, 111

Multi-user simulations
connections, 174
shared properties, 179
sharegroups, 184

N
Navigating

changing views, 83
Development window sliders, 83
mouse speed, 85

Navigation control panels, 95
removing from plug-in players, 196

Network Browser
creating connections, 176
creating sharegroups, 186
deleting sharegroups, 188
editing sharegroups, 188
moving sharegroups in data tree, 188
moving/copying properties in data tree, 182
removing shared properties, 182

Network Connection dialog box, 177
Networking mode, 177
.NFF format, 198
Nodes

258
definition, 16
grouping, 25
instancing, 31
overview, 24
removing from scene graph, 32
swapping nodes at certain distances, 26
using Switchers to ignore/render certain objects, 27

Not Connected status message, 189

O
object

behavior, 128
Object (data type)

modifying in Property pane, 92
Object types, 14

Block, 103
Cone, 103
creating, 89
Cylinder, 103
deleting, 89
DirectedLight, 123
Fog, 24
Geometry, 103
Group, 25
icons, 15
Imported, 103
LevelOfDetail, 26
Node, 24
PointLight, 123
Root, 25
Sensor, 144
Sphere, 104
SpotLight, 123
Switcher, 27
Text3d, 104
W2WConnection, 175
W2WSharedGroup, 184
W2WSharedProperty, 179
W2WUser, 175
when to create, 88

Object Uncreated status message, 190
Objects, 14

creating, 88
cropping, controlling, 96
default, 19

deleting, 88
dragging in Development window, 110
duplicating, 88
finding, 89
instancing, 31
locking view and selection, 111
MotionLink-1, 144
pre-defined, 15
Root-1, 25
The Mouse, 144
translating and rotating, 110
VBase, 14
Viewpoint-1, 144

Optical devices, 154
Optional Hardware, 2
Optional Software, 2
Orientation

modifying in Property pane, 92
rotating Movables, 110
understanding coordinate systems, 13

Origin offset, 82
Origin points

moving, 116
Orthographic view, 83
Oscillate play option (paths), 142

P
Pan Viewpoint, 80
Parent coordinate system, 14
Path Browser

creating new, empty paths, 138
editing path elements, 142
interpolating paths, 139
playing paths, 142
specifying Playback and Record From targets, 140

Path Targets dialog box, 140
Paths

deleting, 144
editing elements, 142
interpolation methods, 139
linking to an object, 140
play options, 142
playing, 142
playing from scripts, 142
saving, 143

259
update order in simulation loop, 20
Performance

graphics accelerator cards, 1
instancing nodes, 31
maximizing virtual memory, 2
radiosity-preprocessed models, 197
rendering, 42
swapping less-detailed objects at certain distances, 26
tips, 191
turning off rendering, 41

Persistent properties (multi-user simulations), 179, 184
Persistent sharegroups (multi-user simulations), 186, 188
Perspective view, 83
PickGeometry

performance statistics, 22
Pitch

definition, 13
Pivot points

moving, in Development window, 116
Play options (paths), 142
Playback targets (paths), 140
Playing

paths from scripts, 142
paths from the Path Browser, 142
sounds from scripts, 150

Point light, 123
Polygons

rendered per application window, 22
rendered per development window, 22
setting number per object, 104
using LevelOfDetail nodes to swap in less-detailed

objects, 26
Position Object dialog box, 113

scaling geometries, 116
Pre-built Behaviors, 127
Primitives

creating, 104
Processing order

in simulation loop, 20
scene graphs, 16

Profiler, 21
Project paths, 40
Projects

creating, 37
Properties, 14

adding, 90
modifying values, 91
problems with modifying, 196
read-only, 91
reflecting a sensor’s state, 169
removing, 91
shared, 179

Property Added events, 185, 189
Property pane

adding properties, 90
modifying values, 91
removing properties, 91
rotating objects, 112
tab descriptions, 91
translating objects, 111

Property’s Object Does Not Exist status message, 190
PUP file, 135

Q
quaternions, 112

R
Radiosity pre-processed models, 197
Ranges

setting for LevelOfDetail nodes, 27
RayIntersect

performance statistics, 22
performance tip, 192

RCFONT3D.NFF, 104
Real-time simulations, 13
Record From targets (paths), 140
Registered interest, in sharegroups, 185, 189
Relative search paths, 40
Rendering

order in simulation loop, 20
parameters, 41
performance, 22, 42
performance tip, 192
problems with, 193
turning on/off, 41

Resource Browser, 37
RGB

modifying in Property pane, 92
RIGHTDOWN, 157
RIGHTHELD, 157

260
RIGHTHUP, 157
Roll

definition, 13
Root, 25
Rotate Object, 82
Rotate Viewpoint, 81
Rotating objects, 110

by dragging, 110
from the Position Object dialog box, 113
from the Property pane, 111
moving a geometry’s pivot point, 116

Rotation
definition, 13

Rotation dialog box, 112
Rotation property, for sensors, 170
Routines

performance statistics, 22
Run in AppWindow, 21
Run in DevWindow, 21
Running simulations

from the Development window, 20
from the WorldUp Players, 210

S
Saving

paths, 143
SBALL_BTN1DOWN, 163
SBALL_BTN1HELD, 163
SBALL_BTN2DOWN, 163
SBALL_BTN2HELD, 163
SBALL_BTN3DOWN, 163
SBALL_BTN3HELD, 163
SBALL_BTN4DOWN, 163
SBALL_BTN4HELD, 163
SBALL_BTN5DOWN, 163
SBALL_BTN5HELD, 163
SBALL_BTN6DOWN, 163
SBALL_BTN6HELD, 163
SBALL_BTN7DOWN, 163
SBALL_BTN7HELD, 163
SBALL_BTN8DOWN, 163
SBALL_BTN8HELD, 163
SBALL_PICKDOWN, 163
SBALL_PICKHELD, 163
Scale

and clipping planes, 96
Scaling

geometries, 114
Scene Graph Browser

dragging options, 29
parent axis, 29

Scene Graph pane
deleting objects, 88
duplicating objects, 88
finding objects, 89

Scene graphs
grouping nodes, 25
instancing nodes, 31
overview, 16, 24
removing node instances, 32
root node, 25
working with, 29

Script Handler, 134
Scripts

overview, 18
performance statistics, 22

Search paths
adding, 40
deleting, 41
icons, 41

Select Object, 83
Select Render Style, 122
Sensitivity property, 170
Sensitivity value

default, 170
Sensors, 144

absolute sensor records, 153
and lights, 123
angular rate, 170
creating, 155
DIP switch settings, 156
frame-rate, 155
lag, 155
miscellaneous data, 170
rotation, 170
sensitivity, 170
Serial Baud Rate, 155
Serial Port, 155
translation, 170
Unit, 155

261
update order in simulation loop, 20
working with specific types, 156

Serial Baud Rate property, 155
Serial Joystick

configuration, 166
defined constants, 166

Serial Port property, 155
SERJOY_BOTTOMDOWN, 166
SERJOY_HATDOWN, 166
SERJOY_HATLEFT, 166
SERJOY_HATRIGHT, 166
SERJOY_HATUP, 166
SERJOY_SIDEDOWN, 166
SERJOY_TOPDOWN, 166
SERJOY_TRIGGERDOWN, 166
SERJOY_WCS1, 166
SERJOY_WCS2, 167
SERJOY_WCS3, 167
SERJOY_WCS4, 167
SERJOY_WCS5, 167
SERJOY_WCS6, 167
SERJOY_WCS7, 167
SERJOY_WCSDOWN, 167
SERJOY_WCSUP, 167
Server Manager

connection process, 174
introduction, 174

Set Mouse Sensitivity dialog box, 85
SetGlobalLocation

performance statistics, 22
Settings dialog box

search paths, 40
Shaded rendering, 41
Shared Group dialog box, 188
Shared properties

creating, 180
editing, 182
introduction, 173
locked, 179, 184
moving/copying to another sharegroup, 182
parameters, 183
persistent, 179, 184
removing from Network Browser, 182
statistics, viewing, 182
status messages, 189

understanding, 179
unsharing, 182
update frequencies, 179

Shared Property dialog box, 181, 183
Sharegroups

creating, 186
deleting, 188
editing, 188
introduction, 174
locked, 185, 188
moving in data tree, 188
persistent, 186, 188
registered interest, 185, 189
responding to addition of sharegroups/

properties, 185, 189
statistics, viewing, 188
status messages, 189
understanding, 184

Simulation
real-time, 13

Simulation Servers
connection process, 174
introduction, 174

Simulations
global settings, 41
running (from the Development window), 20
simulation loop (processing order), 20

Single play option (paths), 142
Singles

modifying in Property pane, 92
Sizing Viewports, 99
Snapping objects, 113, 114
Sounds

playing from scripts, 150
problems with, 194

Sources (motion links)
assigning, 145

Space Control Mouse
defined constants, 160
pick button, 160

Spaceball
defined constants, 163

Spheres
creating in the Development window, 104
Sphere object type, 104

262
Spot light, 123
SQL, 197
Starting WorldUp, 6
Statistics

connection, 177
shared properties, 182
sharegroups, 188

Status messages
for connections, sharegroups, and shared

properties, 189
Strings

modifying in Property pane, 92
Subtype, 14
Subtype tab (Property pane), 91
Switch’s Active Child dialog box, 28
Switcher nodes, 27

creating, 28
specifying which children to render, 28

System paths, 40
System requirements, 1

T
Targets (motion links)

assigning, 145
Task Scheduler, 126
Task scripts

execution order in simulation loop, 20
Terms, definitions, 235
Text3d object type, 104
Textures

improving performance, 208
perspective, 41
rendering, 41

Translate Object, 82
Translating objects, 110

by dragging, 110
from the Position Object dialog box, 113
from the Property pane, 111

Translation
definition, 13

Translation dialog box, 112
Translation property, for sensors, 170
Transparency

related to performance, 208
traversal order, 33

Type Workview
creating objects, 88
deleting objects, 88
duplicating objects, 88
finding objects, 89

Types, 14

U
Ultrasonic sensor

overview, 154
Unit property, 155
Universe

overview, 13
Universe Rendering Style dialog box, 122
Unsharing shared properties, 182
Update frequencies, shared properties

setting, 183
understanding, 179

Update rates, connections
setting, 178
understanding, 175

User Added events, 176, 178
User Removed Events, 176, 178

V
VBase object, 14
Vect2ds

modifying in Property pane, 92
Vect3d data type

and orientations, 112
modifying in Property pane, 92

Vertex colors, 197
View

orthographic, 83
perspective, 83

Viewpoint coordinate system, 14
Viewpoints

and LevelOfDetail nodes, 26
and sensors, 144
creating, 96
linking to paths, 140

Viewports
creating, 98

Views
changing direction, 83

263
VRML
fixing an upside-down model, 196
WTKPROXY environment variable, 208

W
Windows

affect of size on performance, 21
Application, 95
clipping planes, 96
Development, 95

Wireframe rendering, 41
World coordinate system, 14
WorldUp

Embeddable Player, 210
Internet Plug-In Player, 210
License Manager, 3
Stand-Alone Commercial Player, 210
Stand-Alone Player, 209
starting, 6

WorldUp Players
Installation, 210
removing the navigation bar, 196
running simulations from, 210

WTKALPHATEST, 208
WTKMAXTEXSIZE, 208
WTKMULTISAMPLE, 208
WTKPROXY, 208
WTKSQRTEX, 208
WTKZBUFFERSIZE, 207

Y
Yaw

definition, 13
Yon clipping

and windows, 96

Z
Z-buffer

related to performance, 207
Zoom All, 81
Zoom to Selected, 81
Zoom to Target, 81

264

	Preface
	About this Manual
	Related Documentation
	Style Conventions

	1 Installing WorldUp
	System Requirements
	Optional Hardware
	Optional Software

	Installation Instructions
	Contents of the WorldUp Installation
	Getting Started
	Obtaining Your WorldUp Software License Code
	Starting WorldUp

	2 Introduction
	What is 3D Content?
	WorldUp Features
	What’s New in Release 5
	Technical Support

	3 Overview of WorldUp
	The WorldUp Window
	Understanding Real-Time Simulations
	Coordinate Systems

	The Building Blocks
	Object Types, Objects, and Properties

	The Scene Graph
	Behaviors

	How the Pieces All Fit Together
	Running Simulations

	Starting and Stopping the Simulation
	Reviewing the Simulation Performance

	4 Organizing Your Scene
	The Scene Graph
	Nodes and Scene Graphs

	Organizational Nodes
	Groups
	Group Nodes
	LevelOfDetail Nodes
	Switcher Nodes

	Working with Scene Graphs
	Controlling the Scene Graph Dragging Options
	Rearranging Nodes
	Instancing Nodes
	Removing Nodes from the Scene Graph

	How the Scene Graph is Traversed

	5 Working with a Project
	What is a WorldUp Project?
	Creating, Loading, and Saving Projects
	Creating a New Project
	Loading a Project
	Saving a Project
	Exporting a Project

	Importing An Existing WorldUp Project
	Resource Options for UP files

	Configuring Directory Paths
	System Paths vs. Project Paths

	Global Simulation Settings
	Rendering Options
	Turning Rendering On or Off
	Setting Rendering Parameters
	Displaying Rendering Performance

	The Universe Object

	6 A Quick Tour
	Tutorial 1: Creating a Model
	Getting Started
	Setting up the working environment
	Creating the body
	Saving the Model
	Working on the Wheels
	Grouping the Objects
	Creating Windows
	Creating Lights

	Tutorial 2: Importing a Model
	Using Model Workview
	Summary

	Tutorial 3: Using Behaviors
	Lesson 1: Preparing your Geometry
	Lesson 2: Adding a Sensor Behavior
	Lesson 3: Attaching the Viewpoint
	Lesson 4: Adding Terrain Following and Collision Detection
	Behavior Tutorial Review

	Tutorial 4: Paths – Your Doorway to Animations
	Adjusting the Wing Center Points
	Lesson 1: WingFlap Animation
	Lesson 2 A Longer Animation

	7 Using the Workviews
	What are Workviews?
	The Project Workview
	Scene Workview
	Model Workview
	Behavior Workview
	Type Workview

	8 Development Window – Navigation and Manipulation
	The Development Window
	Moving Around the Simulation
	Zoom

	Manipulating Objects
	Using the Window Sliders
	Changing Views
	Setting Display Options

	Setting Multiple Viewports
	Setting the Mouse Sensitivity

	9 Objects and Properties
	Objects
	Creating an Object
	Deleting an Object
	Duplicating an Object
	Creating and Deleting Subtypes
	Finding an Object

	Properties
	Adding a Property
	Removing a Property
	Modifying a Property Value
	Automatically Updating Properties
	Editing Properties In-Place

	10 Windows, Viewports, and Viewpoints
	Windows and Viewpoints
	Clipping Planes
	Creating Viewpoints
	Creating a Window

	Viewports
	Creating Viewports
	Sizing Viewports

	Stereo Viewing
	Dual Channel Stereo
	Line Interleaved Stereo
	Quad Buffered
	Troubleshooting Stereo Problems

	11 Adding 3D Objects
	Geometries
	Creating Primitives
	Creating 3D Text

	Importing Models from Third Parties
	Using the Model Workview
	Previewing Geometries
	Reloading a Model
	Removing Imported Models
	Re-using Imported Geometries

	12 Editing 3D Objects
	Translating and Rotating Movables
	Dragging Objects in the Development Window
	Locking a Selected Object
	Translating and Rotating Using the Property Pane
	Translating and Rotating Using the Position Object Dialog Box

	Scaling Geometries
	Scaling Geometries from the Property Pane
	Scaling Geometries from the Position Object Dialog Box

	Adjusting a Geometry’s Pivot Point
	Using Materials to Change Object’s Appearance
	Applying Material Using the Material Node
	Applying Material Using the Material Table

	Textures

	13 Lights
	The Effect of Light on Materials
	Working with Lights
	Different Types of Light
	Ambient Light
	Directed, Point, and Spot Light

	Lights and Sensors
	Performance Impact of Lights

	14 The Behavior System
	The Behavior Object
	Behavior Anatomy
	Assembling Behaviors

	Creating and Using Behaviors
	Creating and Scheduling Behaviors
	Editing Behavior Inputs

	Behavior Authoring
	Using the Behavior Wizard
	Customizing Your New Script

	Importing and Exporting Script- Based Behaviors

	15 Paths
	Creating New Paths
	Creating a New Empty Path
	Creating a New Interpolated Path

	Using Existing Paths
	Moving Viewpoints and 3D Objects Along Paths
	Recording Paths
	Playing Paths

	Editing Path Elements
	Saving Paths
	Deleting Paths
	Paths and Sensors Use Motion Links
	Sensors
	Motion Links
	Assigning Motion Link Targets
	Assigning Motion Link Sources
	Removing Motion Links
	Motion Link Properties

	16 Sounds
	Creating a Sound Object
	Changing Sounds
	Finding Sounds for your Application
	Changing Sound Properties
	Using Scripts to Play a Sound
	Setting the Audio Listener Viewpoint
	Troubleshooting Sounds

	17 Using Input Devices
	Creating Sensor Objects
	Sensor Lag and Frame-Rate
	Working With a Specific Sensor
	Mouse
	Ascension Mouse
	Ascension Bird
	5DT Glove
	Gameport Joystick
	Logitech 3D Mouse (Red Baron)
	Logitech Head Tracker
	Logitech Space Contol Mouse (Magellan)
	Polhemus FASTRAK
	Polhemus InsideTRAK
	Polhemus ISOTRAK/ISOTRAK II
	Precision Navigation Wayfinder-VR
	Spacetec IMC Spaceball
	StereoGraphics CrystalEyes and CrystalEyes VR LCD Shutter Glasses
	ThrustMaster Formula T2 Steering Console
	ThrustMaster Serial Joystick
	VictorMAxx Technologies’ CyberMAxx2 HMD
	Virtual i-O i-glasses!
	Working With the State of a Sensor
	Sensor Properties
	Sample Script

	18 Multi-User Simulations
	Network Connections
	Connected Users
	Update Rates
	User Added and User Removed Events
	Working With Connections
	Network Connection Dialog Box

	Shared Properties
	Locked Properties
	Persistent Properties
	Update Frequencies
	Working With Shared Properties
	The Shared Property Dialog Box

	Sharegroups
	Locked Sharegroups
	Registered Interest
	Persistent Sharegroups
	Working With Sharegroups
	The Shared Group Dialog Box

	Status Messages
	For Shared Properties Only

	19 Tips and Tricks
	Performance
	Rendering
	Sounds
	Fonts
	Miscellaneous
	Model Tricks

	20 Publishing Your Application
	Packaging the Project for Distribution
	Choosing a Player
	Embedding Your Simulation
	Distributing Your Simulation over the Internet
	Distribution Checklist

	A Environment Variables
	B WorldUp Players and Plug-Ins
	Available Players and Plug-Ins
	WorldUp Player Installation
	Viewing a Simulation Using a WorldUp Player
	Important Notes For Direct 3D Users

	C WorldUp User’s Group
	Participating in SIG-WTK
	Communicating with SIG-WTK
	WTK/WUP Electronic Archive Policy
	Usage

	SIG-WTK: Web Site

	D WorldUp Shortcuts
	General
	Development Window
	Script Editor
	When Clicking in Scene and Type Workviews
	Right-Mouse Clicking On Objects and Properties
	Cutting and Pasting Properties in the Property Pane
	When Dragging Shared Properties in Network Browser

	E Pre-Built Behavior Library
	Plug-in Triggers
	Plug-in Actions

	F WorldUp File Formats
	Autodesk 3D Studio Mesh
	MultiGen OpenFlight
	Virtual Reality Modeling Language (VRML)
	VRML 1.0
	VRML 2.0/97
	Exporting a File as VRML1.0

	CAD Loader (DirectModel or JT)
	WorldToolKit Neutral File Format (NFF) and Binary NFF
	Wavefront OBJ
	Pro/Engineer RENDER SLP
	Autodesk DXF

	G Glossary
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

