

GLX-RSS-2-100 GLX-RSS-2-300

Radar Speed Sensor User Manual

Starting Point

Thank you for purchasing Geolux GLX-RSS-2 radar sensor! We have put together the experience of our engineers, the domain knowledge of our customers, the enthusiasm of our team, and the manufacturing excellence to deliver this product to you.

You may freely rely on our field-proven technology for collecting vehicle speed data. The use of advanced signal processing algorithms ensures that Geolux Radar Speed Sensor can be used in any vehicle detection / vehicle speed measurement / road utilization measurement application.

Although we are certain that you are more than capable of connecting the Radar Speed Sensor to your system using a serial cable, we have created this User Manual to assist you in setting up and using Geolux Radar Speed Sensor device.

Should there be any questions left unanswered, please feel free to contact us directly:

Geolux d.o.o. Ljudevita Gaja 62 10430 Samobor Croatia

E-mail: geolux@geolux.hr

1. Introduction

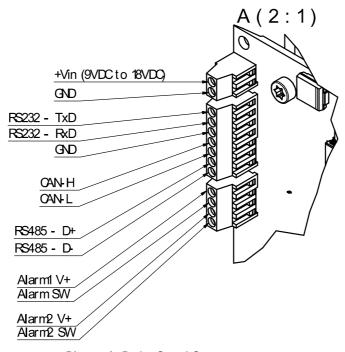
Geolux Radar Speed Sensor devices are used to detect distant moving objects and measure the speed of detected objects (targets). This functionality is achieved by transmitting an electromagnetic wave in 24 GHz frequency range (K-band), and measuring the frequency shift of the reflected electromagnetic wave. The frequency shift is caused by the Doppler effect of the moving target on the electromagnetic wave. As the relative speed between the radar sensor and the target increases, the detected frequency shift also increases, thus enabling the radar sensor to precisely determine the target speed.

Two different models are made available by Geolux: GLX-RSS-2-100 and GLX-RSS-2-300. The only difference between these models is the transmission power of the radar antenna. GLX-RSS-2-100 model is a low-power device with effective target detection range of up to 250 meters (800 ft); GLX-RSS-2-300 model uses a high power transmitter to yield effective target detection range of up to 500 meters (1600 ft).

The radar sensor is able to detect moving objects (targets) traveling at speeds ranging from 5 km/h (3 mph) to 400 km/h (248 mph). Detected targets are tracked by the radar sensor, and the current speed, detection level and direction are reported over the serial (RS-232 or RS-485) interface or over the CAN 2.0B interface. The radar sensor is able to track multiple approaching and receding targets at the same time, which makes this radar sensor an excellent choice for multi-lane traffic monitoring.

2. Electrical Characteristics

The electrical characteristics of the Geolux Radar Sensor are given in the Table 1.


Table 1. Electrical characteristics

Parameter	MIN	TYP	MAX	Unit
Communication interface:				
RS-232 interface speed	1200		115200	bps
RS-485 interface speed	1200		115200	bps
CAN interface speed	125	500	1000	kbps
Radar Sensor				
Frequency		24.125		GHz
Radiated power (EIRP) GLX-RSS-2-100	16	18	20	dBm
Radiated power (EIRP) GLX-RSS-2-300	25	27	29	dBm
Sensitivity	-108	-110	-112	dBm
Beam-width (3dB) - Azimuth		12		•
Beam-width (3dB) - Elevation		24		•
Power supply voltage	9,0	12,0	14,0	V
Power dissipation		490		mW
Operational temperature range	-40		+85	,C

3. Connector Pin-Out

The Radar Speed Sensor uses three connectors, as displayed on Picture 1. The Table 2. gives detailed description for each pin.

Picture 1. Radar Speed Sensor connectors

Table 2. Connector pin-out

Table 2. Connect	o. p oat	
Pin name	Pin no.	Pin Description
+Vin	J6:1	The power supply for the Radar Speed Sensor is provided on this pin.
		The Radar Speed Sensor power supply voltage must be in the range 9
		VDC to 18 VDC, and the power supply must be able to provide at last
		0,65W.
GND	J6:2	This pin should be connected to the ground (negative) pole of the
		power supply.
RS232 – TxD	J5:1	RS-232 data transmit signal.
RS232 – RxD	J5:2	RS-232 data receive signal.
GND	J5:3	Signal ground.
CAN – H	J5:4	CAN2.0B high signal.
CAN – L	J5:5	CAN2.0B low signal.
RS485 - D+	J5:6	RS-485 data transmitter/receiver high signal.
RS485 – D-	J5:7	RS-485 data transmitter/receiver low signal.
Alarm1 V+	J4:1	Alarm 1 – power supply.
Alarm SW	J4:2	Alarm 1 - open collector switch signal.
Alarm2 V+	J4:3	Alarm 2 – power supply.
Alarm2 SW	J4:4	Alarm 2 - open collector switch signal.

4. Data Interface

Geolux Radar Speed Sensors offer multiple data interfaces, in order to make the system integration of the radar sensor device easy. In addition to RS-232 and RS-485 serial interfaces, Geolux Radar Speed Sensors also have a CAN interface, and additional Alarm GPIO pins.

4.1. Serial RS-232 interface

Serial RS-232 interface is used to send detected targets report as well as target detection statistics reports. Additionally, Radar Speed Sensor configuration is also performed through RS-232 interface.

Default communication parameters are:

Bitrates: 57600 bps

Data bits: 8
Stop bits: 1
Parity: None

The communication interface is using three wires located on the J5 connector of the module, as described in Table 3.

Table 3. RS-232 interface pin descriptions

Pin	Direction	Description
J5:1	Out	RS232 Data transmit signal.
J5:2	In	RS232 Data receive signal.
J5:3	GND	Signal ground.

Two communication protocols are available, and more are possible upon the request. Simple ASCII-S protocol will report only the strongest target's speed and the more complex NMEA protocol will report multiple targets, counting and statistics. Detailed description of the communication protocols is given in the Chapter 5 of the User Manual.

4.2. Serial RS-485 interface

Serial RS-485 interface is used to send detected targets report as well as target detection statistics reports using the same data protocol that is used on RS-232 interface. This interface is also capable for radar sensor configuration. The RS-485 interface uses differential signals for communication so it is more convenient for the applications where distance from radar sensor to the controller that is collecting data from radar sensor is greater than 5m.

Default communication parameters are:

Bitrates: 57600 bps

Data bits: 8
Stop bits: 1
Parity: None

Communication is done half-duplex over one twisted-pair communication line. The radar sensor is using communication line as master device — will send data to the communication line as targets are detected.

Same communication protocols that are available on the RS-232 interface are available on the RS-485 serial interface.

4.3. CAN interface

CAN interface is used to send events and statistics of all targets detected by the radar sensor. Interface is implementing standard CAN2.0B message oriented communication with 11-bit standard ID for each message. The ID for the messages can be configured in the configuration of the sensor. Sensors can be connected to the CAN bus with other equipment or if necessary more than one radar sensor with different ID can be connected to the single CAN bus. Default communication speed is 500kbps but this also can be changed in the configuration of the sensor.

4.4. Alarm signals

Alarm signals are used to indicate events to the collecting controller. That signals can be configured to indicate various events and states:

Table 4. Alarm signals events

Tuble 4. Alumi signals events	
Event	Description
Target	Detected at least one valid target.
Approaching Target	Detected at least one valid approaching target.
Receding Target	Detected at least one valid receding target.
Speed – over limit	Detected at least one valid target with speed over the configured speed limit.
Speed – under limit	Speed of all detected targets is under the configured speed limit.
Approaching Speed – over limit	Detected at least one valid approaching target with speed over
	the configured speed limit.
Approaching Speed – under limit	Speed of all approaching detected targets is under the configured speed limit.
Receding Speed – over limit	Detected at least one valid receding target with speed over the configured speed limit.
Receding Speed – under limit	Speed of all receding detected targets is under the configured speed limit.

5. Data Protocols

Geolux GLX-RSS-2 speed sensors support two different communication protocols that send the detected target data from the radar sensor device. The user may select which data protocol will be used based on the system requirements. The ASCII-S protocol is very simple, as it only outputs the detected speed for a single target only. The more complex NMEA-like protocol outputs the detected speed and signal power for all detected targets, and the NMEA protocol also reports various statistics, such as detected target count, calculated road occupancy and average target speed.

Support for additional protocols is available upon customer request.

Geolux GLS-RSS-2 sensors also support a servicing protocol that allows the users to modify radar sensor device operating parameters.

5.1. ASCII-S protocol

The ASCII-S protocol has been designed with simple applications in mind. It is minimal and straightforward. ASCII-S protocol provides only the direction and speed information for the single strongest detected target. Radar device settings determine whether the radar detects only approaching targets, only receding targets, or both kind of targets. The radar sensor device periodically outputs the target data. The data output frequency depends on the current radar device setting, and can be either 20 Hz, 10 Hz, 2 Hz or 1 Hz. If there are no valid detected targets, no data will be sent from the radar device.

ASCII-S protocol periodically sends exactly 4 bytes of data plus additional <0x0D> ('\r') carriage-return character.

The first byte of data denotes the detected vehicle direction, and can be either a minus sign ('.'), a plus sign ('+') or a question mark sign ('?'). The minus sign denotes receding targets, the plus sign denotes approaching targets, and the question mark sign denotes non-directional targets.

The next three bytes of data indicate the speed of the detected vehicle. The speed is reported either in metric units (km/h) or in imperial units (mph), depending on the radar device settings. The speed reading is ASCII encoded.

The following line contains an example of the radar sensor output for an approaching target moving at 25 mph:

+025 < 0x0D >

The target with same speed but receding will have output:

-025<0x0D>

5.2. NMEA protocol

NMEA protocol is based on the standard protocol family widely used by the navigation equipment. NMEA protocol is sentence oriented, and is capable of sending multiple sentences with different information. The sentence content is designated by the starting keyword which is different for each sentence type. NMEA sentences are terminated with the checksum which makes this protocol extremely reliable.

While in NMEA mode, the radar sensor device outputs any of the following data sentences:

Detected target report

 $\label{eq:cross_control_signal} $$RDTGT,D1,S1,L1,D2,S2,L2,...,Dn,Sn,Ln*CSUM<CR><LF>$

<i>\$RDTGT</i> :	The keyword sent on the beginning of each detection report. This sentence is sent whenever there is detected at least one valid target.
<i>D1</i> :	The direction of the first (strongest) target (1 approaching, -1 receding).
<i>S1</i> :	The speed of the first detected target (speed ¹ is reported as speed*10).
<i>L1</i> :	The detected level of the signal reflection from the first target.
<i>D2</i> :	The direction of the second detected target (1 approaching, -1 receding).
<i>52</i> :	The speed of the second detected target (speed is reported as Speed*10).
<i>L2</i> :	The detected level of the signal reflection from the second target.
 Dп.	The direction of the last detected target (1 approaching, -1 receding).
Srr.	The speed of the last detected target (speed is reported as Speed*10).
Lm.	The detected level of the signal reflection from the last target.
CSUM:	The check sum of the characters in the report from \$ to * excluding these characters.

Targets count report

<i>\$RDCNT</i> :	The keyword sent on the beginning of each counting report. The counting report is sent whenever new valid target is detected.
D:	The direction for the new counted target (1 approaching, -1 receding).
S:	The speed for the new counted target (speed is reported as Speed*10).
L:	The detection level for the new counter target.
aprCNT:	The cumulative counter for the approaching targets.
rcdCNT:	The cumulative counter for the receding targets.
CSUM:	The check sum of the characters in the report from \$ to * excluding these characters.

¹ In the radar sensor setting it is possible to select km/h or mph for the speed reporting

Target statistics report

CSUM:

\$RDSTA,count,avgSpeed,minSpeed,maxSpeed,roadOCP,tmpCNT*CSUM<CR><LF>

\$RDSTA: The keyword sent on the beginning of each statistics report for approaching

targets direction. The report is sent periodically and period is determined in the radar device settings. All values are relative to the time period from the last

sent report.

count: The timeslot counter.

avgSpeed: The average speed for all approaching targets in the defined time period.

minSpeed: The minimal detected target speed for all approaching targets in the defined

time period.

maxSpeed: The maximal detected target speed for all approaching targets in the defined

time period.

roadOCP: The road occupation percentage for the defined time period calculated as

number of samplings with at least one valid approaching detected target

divided by the total number of samplings in the defined time period.

tmpCNT: The temporary counter of all approaching targets in the defined time period.

The check sum of the characters in the report from \$ to * excluding these

characters.

\$RDSTR,count,avgSpeed,minSpeed,maxSpeed,roadOCP,tmpCNT*CSUM<CR><LF>

\$RDSTR: The keyword sent on the beginning of each statistics report for receding

targets direction. The report is sent periodically and period is determined in the settings. All values are relative to the time period from the last sent report.

count: The timeslot counter.

avgSpeed: The average speed for all receding targets in the defined time period.

minSpeed: The minimal detected target speed for all receding targets in the defined time

period.

maxSpeed: The maximal detected target speed for all receding targets in the defined time

period.

roadOCP: The road occupation percentage for the defined time period calculated as

number of samplings with at least one valid receding detected target divided by

the total number of samplings in the defined time period.

tmpCNT: The temporary counter of all receding targets in the defined time period.

CSUM: The check sum of the characters in the report from \$ to * excluding these

characters.

5.3. CAN protocol

CAN interface is using special protocol based on the standardized CAN message format. All messages are sent with standard 11-bit ID and all messages have same ID that is configured as radar sensor CAN ID in the settings. Protocol is message based and for each event separate message is sent. The first byte of the message data is always defining the type of the message content.

CAN protocol is defining the following data messages:

Detected target report

ID	SIZE	Data0	Data1	Data2	Data3	Data4	Data5	Data6	Data7
SensorID	5	0x01	D	Ş	5	L			

0x01: The keyword sent on the beginning of each message. This message is

sent for every detected valid target.

D: The direction of the detected target (1 approaching, -1 receding).

S: The speed of the detected target (speed¹ is reported as speed*10).

L: The detected level of the signal reflection for the target (normalized to range

from 1 to 255)

Targets count report

ID	SIZE	Data0	Data1	Data2	Data3	Data4	Data5	Data6	Data7
SensorID	8	0x02	D	9	5		cou	nter	

0x02: The keyword sent on the beginning of each message. This message is

sent for every new detected valid target.

D: The direction for the new counted target (1 approaching, -1 receding).

S: The speed for the new counted target (speed is reported as Speed*10).

counter: The cumulative counter for the approaching or receding targets, depending on

the direction of the new detected target (if 1 this will be cumulative counter for approaching targets, if -1 this will be cumulative counter for receding

targets)

Target statistics report - approaching

ID	SIZE	Data0	Data1	Data2	Data3	Data4	Data5	Data6	Data7
SensorID	8	0x03	count	av	gS	mi	nS	ma	ıxS

0x03: The keyword sent on the beginning of each message. This message is sent

periodically every 15s. The time period for accumulation is configured in the

settings of the sensor.

count: The timeslot counter.

avgS: The average speed for all approaching targets in the defined time period.

minS: The minimal detected target speed for all approaching targets in the defined

time period.

maxS: The maximal detected target speed for all approaching targets in the defined

time period.

Target statistics report – receding

ID	SIZE	Data0	Data1	Data2	Data3	Data4	Data5	Data6	Data7
SensorID	8	0x04	count	av	gS	mi	nS	ma	ıxS

0x04: The keyword sent on the beginning of each message. This message is sent

periodically every 15s. The time period for accumulation is configured in the

settings of the sensor.

count: The timeslot counter.

avgS: The average speed for all receding targets in the defined time period.

minS: The minimal detected target speed for all receding targets in the defined

time period.

maxS: The maximal detected target speed for all receding targets in the defined

time period.

Road statistics report - occupation

ID	SIZE	Data0	Data1	Data2	Data3	Data4	Data5	Data6	Data7
SensorID	4	0x05	count	roadOCP-A	roadOCP-R				

0x05: The keyword sent on the beginning of each message. This message is sent

periodically every 15s. The time period for accumulation is configured in the

settings of the sensor.

count: The timeslot counter.

roadOCP-A: The road occupation percentage for the time period in approaching direction

(percentage of time when at least one target is detected)

roadOCP-R: The road occupation percentage for the time period in receding direction

(percentage of time when at least one target is detected)

Road statistics report – counter approaching

ID	SIZE	Data0	Data1	Data2	Data3	Data4	Data5	Data6	Data7
SensorID	6	0×06	count		aprCo	ounter			

0x06: The keyword sent on the beginning of each message. This message is sent

periodically every 15s. The time period for accumulation is configured in the

settings of the sensor.

count: The timeslot counter.

aprCounter. Counter of the approaching targets for the current time period

Road statistics report - counter receding

ID	SIZE	Data0	Data1	Data2	Data3	Data4	Data5	Data6	Data7
SensorID	6	0x07	count	rcdCounter					

0x07: The keyword sent on the beginning of each message. This message is sent

periodically every 15s. The time period for accumulation is configured in the

settings of the sensor.

count: The timeslot counter.

rcdCounter. Counter of the receding targets for the current time period

5.4. Servicing protocol

The servicing protocol is used to retrieve and modify device operating parameters. Various device settings, such as unit system (imperial or metric), and the direction of detected vehicles (approaching or receding, or both) are configured using this protocol. Since all data protocols are on-way (both ASCII-S and NMEA protocol only output the data, they do not read incoming data), the servicing protocol is always active.

To make radar configuration easy, Geolux provides a Radar Configurator utility application. Regular users do not need to be concerned about the servicing protocol used between the Radar Configurator utility and the radar device. The Radar Configurator utility is described in the Chapter 8.

The servicing protocol listens on RS-232 serial port for incoming requests, and on each received request, it will answer back.

The following requests are recognized by the servicing protocol:

Change data protocol

```
#set_proto=nmea
#set_proto=ascii64
```

Sets the current data protocol. Default setting is ASCII-S (ascii64).

Change units type

```
#set_units=mph
#set_units=kmh
```

Sets the units type in which the target speed is reported. Default setting is imperial units (mph).

Change output data frequency

```
#set_out_freq=20
#set_out_freq=10
#set_out_freq=2
#set_out_freq=1
```

Changes the data output frequency; allowed values are 20Hz, 10Hz, 2Hz and 1Hz. Default setting is 20 Hz.

Change detected targets direction

```
#set_direction=in
#set_direction=out
#set_direction=both
```

Changes the parameter that specifies which vehicles will be detected. By default, only approaching vehicles are detected (in).

Change statistics accumulation period

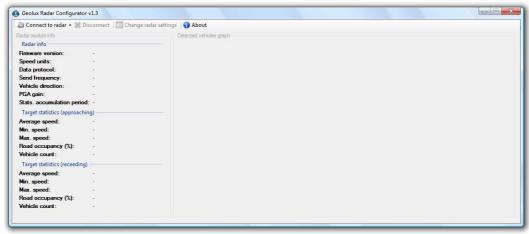
```
#set_stats_period=15min
#set_stats_period=30min
#set_stats_period=1hr
#set_stats_period=2hr
#set_stats_period=6hr
#set_stats_period=12hr
#set_stats_period=24hr
```

Changes the time period for collecting target statistics. The collected target statistics are reported on NMEA protocol using RDSTA and RDSTR sentences.

Retrieve current device status

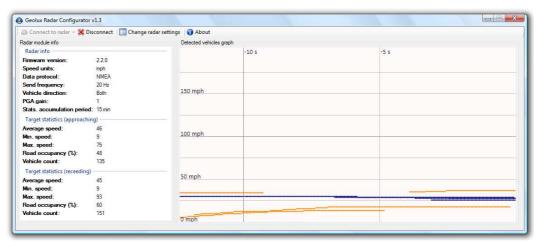
```
#get info
```

Requests the current device status. Here is an example status output:


```
# firmware:2.1.0
# pga_gain:2
# proto:nmea
# units:mph
# out_freq:20
# direction:in
# stats_period:30min
```


6. Radar Configurator Utility

Geolux provides a user-friendy PC application for configuring the Radar Sensor operating parameters. Additionally, the Radar Configurator Utility displays the currently detected targets, and the active target statistics info.

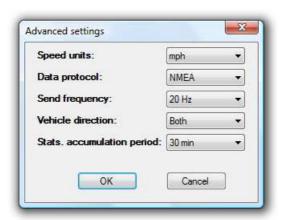

The Radar Configurator Utility displays its main window when started. The main window is displayed in the Picture 2.

Picture 2. Radar Configurator main window

To connect the Radar Configurator utility with the speed radar device, connect your PC to the speed radar using an RS-232 serial cable connection. Then, select the *Connect to radar* menu option in the Radar Configurator Utility, and choose the appropriate COM port number. The Radar Configurator will try to establish a data link between your PC and the radar sensor device.

After the data link is established, the left part of the Radar Configurator utility will show the current device operating parameters, as displayed on Picture 3. Please note that the Target statistics data will be valid only when NMEA protocol is used. If ASCII-S protocol is active, then Target statistics fields will not be updated.

Picture 3. Radar Configurator main window - connected to the radar sensor



The right part of the Radar Configurator utility window displays the targets detected by the radar sensor. The targets are continuously updated, as displayed in Picture 4. Blue dots indicate approaching targets, while receding targets are indicated by orange dots.

Picture 4. Radar Detected targets window

To change the current radar sensor device operating parameters, simply click on the *Change radar settings* menu item. A new window will open where you will be able to change the radar settings. Picture 5 shows the radar settings window.

Picture 5. Radar settings window

The following settings can be changed:

Speed units:

Choose between metric and imperial measuring units. The target velocity data sent over data link is transformed into currently selected units type.

Data protocol: Select the data protocol that is used to send the detected

targets information. For detailed description of available

protocols, please refer to Chapter 7.

Send frequency: The frequency rate of sending detected target data.

Allowed values are 1Hz, 2Hz, 10Hz and 20Hz.

Vehicle direction: Defines whether all targets are reported, or only

approaching or receding targets are reported.

Stats. accumulation period: The length of time interval during which accumulated

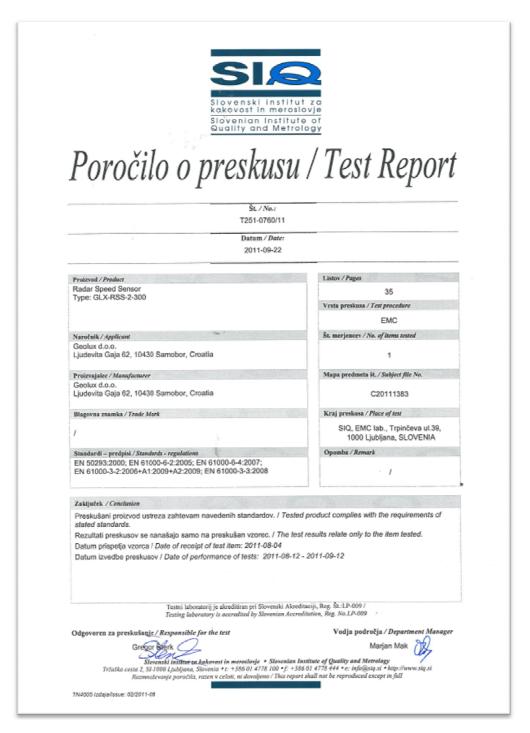
statistics are collected. This parameter is only used with the NMEA protocol, since ASCII-S protocol does not

send target statistics information.

Appendix A - EN Test Report Summary

Test performed by: SIQ – Slovenian Institute of Quality and Metrology

 Test report No.:
 T251-0760/11

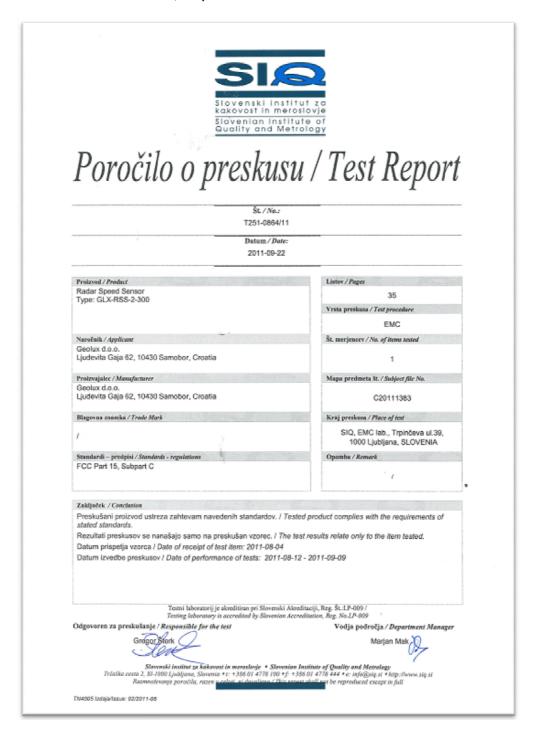

 Date:
 2011-09-22

 Standards:
 EN 50293:2000

EN 61000-6-2:2005 EN 61000-6-4:2007

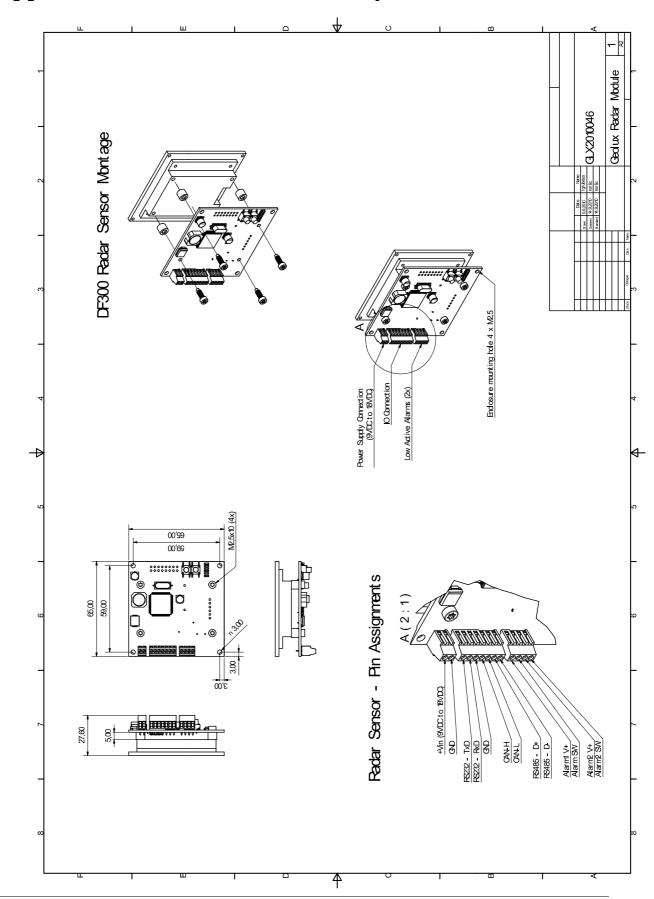
EN 61000-3-2:2006+A1:2009+A2:2009

EN 61000-3-3:2008



Appendix B - FCC Test Report Summary

Test performed by: SIQ – Slovenian Institute of Quality and Metrology


Test report No.: *T251-0864/11* Date: *2011-09-22*

Standards: FCC Part 15, Subpart C

Appendix C - Mechanical Assembly

