LCS

pCO ADVANCED MICROPROCESSOR USER MANUAL GB

COMPANY WITH QUALITY SYSTEM CERTIFIED BY DNV =ISO 9001/2000=

Index

1.	Ger	eral description of the application4	1
	1.1.	Types of units controlled	4
	1.2.	Types of regulation	4
	1.3.	Condensation	4
	1.4.	Safety devices on the cooling circuit	4
	1.5.	System safety features	4
	1.6.	Optional accessories	4
2	Reg	ulation logic	5
	2.1.	Inlet temperature regulation	5
	2.1.1 2.1.2		
	2.2.	Compressor times and configuration	
	2.2.1 2.2.2 2.2.3 2.2.4	Minimum compressor "OFF" time Delay between two successive start-ups of the compressor	7 7
	2.3.	Condensation Control	
	2.3.1 2.3.2 2.3.3	High pressure alarm	9
	2.4.	Antifreeze regulation	Э
3.	Sta	rt-up and configuration10)
	3.1.	Terminal with keyboard and display10	C
	3.2.	Display10	C
	3.3.	Keyboard1	1
	3.4.	Starting up the unit for the first time	2
	3.5.	General description of menus	2
4	Alaı	rm management14	1
	4.1.	Alarm table14	4
	4.2.	Alarm history1	5

AGalletti

5.	Menut	ree structure	15
	5.1.1.	Main menu	15
	5.1.2.	Maintenance menu	
	5.1.3.	I/O Menu	
	5.1.4.	Clock menu	
	5.1.5.	Setpoint Menu	
	5.1.6.	Manufacturer menu	
	5.1.7.	Alarm menu	
6.	Archite	ecture of the control system	31
6. 6.1		ecture of the control system	
	. De	-	31
6.1 6.2	. De	scription of inputs and outputs	31

1. General description of the application

The operation of unit with screw compressor is managed by application software installed in the controller on the unit. The main features of the application software are described below.

1.1. Types of units controlled

The software makes it possible to control air/water single/double-circuit chillers with screw compressors.

1.2. Types of regulation

Proportional regulation on the evaporator input temperature with 4 steps of capacity controlled operation of compressors. Possibility of adjusting the setpoint remotely.

1.3. Condensation

Modulating condensation control device is based on the reading of the pressure probe and it is independent for the two circuits.

1.4. Safety devices on the cooling circuit

- High pressure (pressure switch).
- · High pressure alarm from the probe
- High pressure prevention function
- Low pressure (pressure switch).
- General compressor alarm (INT69).
- High delivery temperature prevention function.
- Power limiting function at compressor starting

1.5. System safety features

- Evaporator flow switch
- Pumps thermal switch
- Condensation fan thermal switch
- Remote on/off input
- Probe failure alarms

1.6. Optional accessories

- Local supervision by means of RS485 serial board.
- Remote supervision by means of GSM modem or analog modem and modem board

2. Regulation logic

2.1. Inlet temperature regulation

Inputs used:

- Evaporator inlet water temperature
- Refrigerant outlet temperature

Parameters used:

- Regulation setpoint
- Regulation differential

Outputs used:

- Compressor 1 Compressor 2 On/Off
- Compr. 1 Compr. 2 CR1 valve On/Off
- Compr. 1 Compr. 2 CR2 valve On/Off
- Compr. 1 Compr. 2 CR3 valve On/Off
- Compr. 1 Compr. 2 CR4 valve On/Off

Regulation diagram with 1 compressor

Figure 1 : Regulation diagram with 1 compressor

Regulation diagram with 2 compressors

Output power correspondence – CR1 CR2 CR3 and CR4 solenoid valves

	CR1	CR2	CR3	CR4
Start/Stop	0	0	•	0
25% power	0	0	•	۲
50% power	0	•	0	۲
75% power	•	0	0	۲
100% power	0	0	0	۲

O = solenoid valve cut off

= solenoid valve cut in

● = intermittent solenoid valve (10s Off – 10s On)

2.1.1. Setpoint

Main Setpoint

From the m_set_01 mask it is possible to set the main setpoint for summer and winter operation modes (heat pump version).

Remote Setpoint

From the ID10 digital input it is possible to enable the remote setpoint adjustment function. When contact is open the function is enabled. In this case, the current setpoint is the algebraic sum of the setpoint in the m_set_01 mask and the remote setpoint variation determined at the 4-20mA B1 analog input, converted from a minimum value and a maximum value set in the m_set_02 mask.

```
m_set_02
+----+
|Setpoint variation |
|from remote: |
|Min.(4 mA): 0.0 °C|
|Max.(20 mA): 0.0 °C|
+----+
```

Setpoint for time periods

The function for changing the setpoint for programmed time periods may be enabled from the "m_fasce" mask. A time period can be programmed for every day of the week by setting a starting and end time in the masks from "m_fasce_01" to "m_fasce_07". From the two masks "m_fasce_set_01" and "m_fasce_set_02" it is possible to enter the setpoints valid within and outside the programmed time periods.

m_fasce_set_01	m_fasce_set_02	m_fascia_01
++	++	++
Adjust setpoint	Adjust setpoint	Monday
within time band	outside time band	Start: 00:00
		End : 00:00
Set.: 00.0 °C	Set.: 00.0 °C	

2.1.2. High delivery temperature prevention function.

(ref mask m_tempi_comp_03)

To safeguard the efficiency of the compressor, if the refrigerant outlet temperature exceeds the setpoint entered from the "m_prev_alta_T02" mask, the function for reducing compressor capacity to 25% will be inhibited to improve oil circulation within the compressor itself.

This function can be enabled from the "m_prev_alta_T01" mask.

2.2. Compressor times and configuration

The unit enables the control of a screw compressor. Most of the operations performed by the pCO² are conditioned by programmable delays. Some of them serve to delay the triggering of some alarms or to assure the proper functioning of the compressor, thereby lengthening their lives and guaranteeing system stability.

2.2.1. Minimum compressor "ON" time

(ref mask m_tempi_comp_03)

This determines the minimum time (in seconds) the device must continue running: therefore, once activated it must stay on for the set length of time.

Figure 3: Minimum compressor "ON" time

2.2.2. Minimum compressor "OFF" time

(ref mask m_tempi_comp_01)

This determines the minimum time the device must remain off. After it is shut off, the compressor cannot start up again until the set time has elapsed.

Figure 4: Minimum compressor "OFF" time

2.2.3. Delay between two successive start-ups of the compressor

(ref mask m_tempi_comp_02)

This establishes the minimum time that must elapse between two starts of the device, irrespective of the read measurement and of the setpoint. This parameter makes it possible to limit the number of starts per hour. If, for instance, the maximum allowed number of starts per hour is 10, setting a value of 360 seconds will ensure that this limit is complied with.

Figure 5: Delay between two successive start-ups

2.2.4. Power limiting function at compressor starting

When the compressor is started, regardless of the inlet water temperature, an override function will reduce capacity to 25% for an amount of time which may be set from the "m_temp_tempi_03" mask.

2.3. Condensation Control

• The condensation control device is of modulating type, based on the pressure transducer reading.

Inputs used:

• High pressure probe of first circuit (B3 analog input)

Parameters used:

- Condensation Setpoint
- Condensation Differential
- Enabling of prevent function
- Prevent Setpoint
- Prevent Differential
- Delay in device reactivation after triggering of prevent function
- Output voltage relative to minimum inverter speed
- Output voltage relative to maximum inverter speed

Outputs used

• Fan speed regulation (Y1 analog output)

2.3.1. Regulation diagram

The condenser fans are adjusted according to the condensation pressure sensed by the transducer, with proportional control within the band width defined by the setpoint and differential, which may be set from the "m_condenser_05" mask, delimited by upper and lower limits (L1 and L2, which may be set in "m_condenser_06"), see Figure .

It is possible to program the condenser fans to start up a certain amount of time before the compressor; this

Figure 6: Condensation control logic

time as well as the fan speed during the phase prior to compressor start-up can be set respectively from the "m_condenser_02" and "m_condenser_03" masks.

In case of a broken pressure sensor, an override function can bring operating speed to a value which may be set from the "m_condenser_04" mask.

2.3.2. High pressure alarm

If the pressure value exceeds the high pressure alarm setpoint selected in the mask an alarm will be signalled and the compressor will be stopped. The alarm will turn off when the pressure drops below the setpoint – differential value.

2.3.3. High pressure prevention function

This function is used to prevent the compressor from stopping due to high pressure alarm triggered by the manually reset pressure switch. If the function has been enabled from the "m_hp_prevent_01" mask and the pressure exceeds the setpoint entered in the "m_hp_prevent_02" mask, the 100% compressor capacity control function will be inhibited until the pressure falls below the setpoint – differential

2.4. Antifreeze regulation

Inputs used

• Evaporator outlet water temperature probe.

Parameters used:

- Antifreeze alarm setpoint;
- Antifreeze alarm differential;

Outputs used:

Antifreeze alarm;

To prevent outgoing water from freezing, an anti-freeze alarm is signalled and compressor operation is inhibited.

Antifreeze Setpoint Setpoint + diff. band

Figure 7: Antifreeze regulation

3. Start-up and configuration

3.1. Terminal with keyboard and display

Figure 8: Terminal

The user *terminal* is shown in the picture. It consists of a 4 line x 20 column LCD, keyboard and LEDs controlled by a microprocessor: from the terminal the user can set the control parameters (setpoint, differential band, alarm thresholds, etc.) and perform fundamental operations.

The following main operations can be performed via the terminal:

- initial machine configuration;
- modification of main operating parameters;
- · display of machine status and of all measured data;
- display of the alarms detected and a 'buzzer' (that can be disabled);

The terminal and the pCO^2 controller are connected via a 6-way telephone cable.

This connection is not essential for standard controller operation.

3.2. Display

The display used is of the 4 line x 20 column LCD type. The data and information regarding operation alternate as successive windows called *masks*. It is possible to move around inside the masks using the terminal keys as described below:

3.3. Keyboard

The microprocessor features a 4x20 backlit LCD screen (see picture below) for turning on the unit, displaying the status of the devices and configuring the operating parameters.

By pressing or or the user can view in sequence the masks (display pages) contained in the menus and change the numeric value of parameters. A cursor can be seen in the top left corner.
By pressing the user can move the cursor into the fields of the modifiable parameters. At the end the cursor will return into its initial position. After setting the desired value using the arrows, the user should
press the 🛄 key again to store the setting. The cursor will automatically move to the next field.
The key provides access to the main menu.
The 🔤 key provides access to the manufacturer's menu.
The key provides access to the maintenance menu.
The key provides access to the I/O menu.
The 🔯 key provides access to the clock menu.
The key provides access to the setpoint menu.
The Exprovides access to the alarms menu.
The two is used to switch the unit on and off.
NOTE : The LEDs at the top left light up when the corresponding functions are activated.

Starting up the unit for the first time 3.4.

When the microprocessor is connected to the power supply, the main menu will be displayed (main). It contains the following information:

- current time and date;
- unit status: •
- evaporator inlet water temperature;
- evaporator outlet water temperature;

Pressing the Down key provides access to the following masks:

main_	01			
+		 	 	+

In main_01 is displayed:

- |Compr.1 status: OFF | the on/off status compressor 1 |Cool capacity : 000%| |CR1: OFF CR2: OFF | |CR3: OFF CR4: OFF |
 - the cool capacity of compressor 1
 - the on/off status of the solenoid valves CR1, CR2, CR3 and CR4

main 02

+				•+
Compi	r.2 st	atus:	OFF	1
Cool	capad	city :	000	1
CR1:	OFF	CR2:	OFF	1
CR3:	OFF	CR4:	OFF	1
+				+

......

main 03

+	+
Circ.1 cond	den.status
T.supply:	000.0 °C I
P.supply:	00.0 barl
Cond. fan:	
+	+

main 04

----+ |Circ.2 conden.status| |T.supply: 000.0 °C | P.supply: 00.0 bar | • Supply pressure |Cond. fan: 000.0 % |

main 05

+		+
Unit ON/OFF:	OFF	
Remote consent:	YES	
Pump 1: OFF		
Pump 2: OFF		
+		+

In main 02 is displayed:

- the on/off status compressor 2
- the cool capacity of compressor 2
- the on/off status of the solenoid valves CR1, CR2, CR3 and CR4

In main_03 is displayed the status of the first circuit:

- Supply temperature
- Supply pressure
- Condensing fan speed

In main_04 is displayed the status of the second circuit:

- Supply temperature
- Condensing fan speed ٠

In main_05 is displayed: Unit on/off:

- Unit ON: if is pressed ON by keyboard and if is enable the remote consent
- Remote consent
- Pumps status •

3.5. General description of menus

General description of the menus featured in the application; all the masks are shown and described in the Chapter 5 Menu tree structure

Main menu

The main menu is displayed when the unit is started up and consists of the masks described in the section 3.4 Starting up the unit for the first time

Maintenance menu

The maintenance menu can be accessed by pressing key Menu. It shows the compressor and pump hour meter as well as the alarm history. It is also possible to set the device hour meter alarm and thresholds,

main	
+	+
00:00	00/00/00
Unit statu	us: OFF
Watertemp	IN 00.0°C
Watertemp	OUT 00.0°C
+	+

clear the hour meter, set the current date and time and enable the buzzer. Access is protected by a maintenance password.

I/O Menu

The I/O menu can be accessed by pressing key and shows the system's inputs and outputs. Access is protected by means of a maintenance password.

Clock menu

The clock menu can be accessed by pressing key is and contains the time and date display.

Setpoint Menu

The Setpoint menu can be accessed by pressing key and contains the setpoint display. If the user password is entered it will be possible to change the main setpoint, set the remote setpoint variation limits and configure the programmed time periods.

Manufacturer menu

The Manufacturer menu can be accessed by pressing key 🖾 and contains the configuration of manufacturer parameters. It is protected by a manufacturer password.

Alarm menu

The Alarm menu can be accessed by pressing key and gives information about the alarms that have

been triggered. The red LED, provided in the key \square , goes on when an alarm is triggered. If the key is pressed ones the type of alarm triggered is displayed. Pressing the key a second time will reset the alarms . If the cause of alarm persists, the signalling will be displayed again.

4. Alarm management

4.1. Alarm table

Mask name	Code	Description	Problem solution
m_al_probe_01	AL01	Probe alarm B1	Check probe electric wiring or replace probe
m_al_probe_02	AL02	Probe alarm B2	Check probe electric wiring or replace probe
m_al_probe_03	AL03	Probe alarm B3	Check probe electric wiring or replace probe
m_al_probe_04	AL04	Probe alarm B4	Check probe electric wiring or replace probe
m_al_probe_05	AL05	Probe alarm B5	Check probe electric wiring or replace probe
m_al_probe_06	AL06	Probe alarm B6	Check probe electric wiring or replace probe
m_al_probe_07	AL07	Probe alarm B7	Check probe electric wiring or replace probe
m_al_probe_08	AL08	Probe alarm B8	Check probe electric wiring or replace probe
m_al_probe_09	AL09	Probe alarm B9	Check probe electric wiring or replace probe
m_al_probe_10	AL10	Probe alarm B10	Check probe electric wiring or replace probe
m_al_hp_ps_1	AL11	High pressure alarm circuit 1	Check condenser fan operation Clean condenser coil
m_al_lp_ps_1	AL12	Low pressure alarm circuit 1	Check evaporator fan operation Check refrigerant level
m_al_int69_1	AL13	AllarmeINT69 compressore 1	Check compressor 1 operation
m_al_hp_probe_1	AL14	High pressure alarm from the probe circuit 1	Check condenser fan operation Clean condenser coil
m_al_t_cond_1	AL16	Condenser fan thermal switch alarm circuit 1	Check condenser fan operation
m_al_man_comp_1	AL17	Exceeding compressor 1 operation hour threshold	Check compressor 1 operation
m_al_man_pump_1	AL18	Exceeding pump 1 operation hour threshold	Check pump 1 operation
m_al_ov_pump_1	AL20	Pump 1 thermal switch alarm	Check pump 1 operation
m_al_antigelo	AL21	Antifreeze alarm	Check pump operation
m_al_flow	AL22	Flow switch alarm	Check pump operation
m_al_hp_ps_2	AL23	High pressure alarm circuit 2	Check condenser fan operation Clean condenser coil
m_al_lp_ps_2	AL24	Low pressure alarm circuit 2	Check evaporator fan operation Check refrigerant level
m_al_int69_2	AL25	AllarmeINT69 compressore 2	Check compressor 2 operation
m_al_hp_probe_2	AL26	High pressure alarm from the probe circuit 2	Check condenser fan operation Clean condenser coil
m_al_t_cond_2	AL28	Condenser fan thermal switch alarm circuit 2	Check condenser fan operation
m_al_man_comp_2	AL29	Exceeding compressor 2 operation hour threshold	Check compressor 2 operation
m_al_man_pump_2	AL30	Exceeding pump 2 operation hour threshold	Check pump 2 operation
m_al_ov_pump_2	AL31	Pump 2 thermal switch alarm	Check pump 2 operation
m_al_pump	AL33	All pumps thermal switch alarm	Check pumps operation

4.2. Alarm history

Alarms detected by the microprocessor are cumulated according to operation priority and stored in an alarm history file. The maintenance menu shows the alarm history. The progressive number, time, date and code of the last ten alarms are stored according to FIFO logic (first in – first out).

```
al_story_01
+-----+
|Alarm history (1)|
|00:00 00/00/00 |
|code: AL00 |
|
```

5. Menu tree structure

-

5.1.1. Main menu

+		+
00:00	00)/00/00
Unit statu	ıs:	OFF
Watertemp	IN	00.0°C
Watertemp	OUT	00.0°C
+		+

The main information on the chiller operation is displayed here.

main	01

+			+
Comp:	r.1 st	tatus:	OFF
Cool	capad	city :	0008
CR1:	OFF	CR2:	OFF
CR3:	OFF	CR4:	OFF
+			+

main_02

+				+-
Comp:	r.2 st	atus:	OFF	
Cool	capad	city :	000	
CR1:	OFF	CR2:	OFF	
CR3:	OFF	CR4:	OFF	
+				+-

main_03

+		+
Circ.1 cond	den.sta	atus
T.supply:	000.0	°C
P.supply:	00.0	bar
Cond. fan:	000.0	8
+		+

main_04

+		+
Circ.2 cond	den.sta	atus
T.supply:	000.0	°C
P.supply:	00.00	bar
Cond. fan:	000.0	8
+		+

main_05

+				+-
Unit	OI	N/OFF:	OFF	
Remot	ce d	consent:	YES	
Pump	1:	OFF		
Pump	2:	OFF		
+				

5.1.2. Maintenance menu 📝

pw_manutentore

MAINTENANCE MENU | |------| |Insert maintenance | |password: 0000 | +-------

m_manutentore

	+
MAINTENANCE MENU	I
	•
Press DOWN button	
to continue	
+	+

ore_comp_1_01

+	
Enable alarm	
run out limits	of
working hours o	f
compressor? No	
+	

ore_comp_1_02

+				-+
Compr.	run	time	hrs.	.
Hours	:(00000	h	
Thresho	old:(00000	h	
Reset	:1	10		
+				-+

ore_comp_2_01

+			+
Compr.2	rur	n time	hrs
Hours	:	00000	h
Threshol	Ld:	00000	h
Reset	:	No	
+			+

ore_pompa_1_01

+	
Enable alarm	
run out limits of	
working hours of	
pump? No	
+	

ore_pompa_1_02

+					-+
Pump run	t	Lme	hou	ırs	
Hours	:	000	000	h	
Threshold	l:	000	000	h	
Reset	:	No			
+					-+

ore_pompa_2_01

+	
Pump 2 run	time hrs
Hours :	00000 h
Threshold:	00000 h
Reset :	No
+	

pump_conf_01

+	+
Pump rotation	n type:
M	ANUAL
Rotat.time:	000 hrs
Select pump:	PUMP2
+	+

The maintenance password is required for viewing the following masks. The password is only available on request

From this mask it is possible to enable the alarm function when compressor operation hour threshold has been exceeded.

Default:

Enabled = Yes

From this mask it is possible to view the operation hours of the compressor, modify the device maintenance threshold value and reset the hour meter following maintenance operations.

Default:

Threshold = 1000 h

From this mask it is possible to enable the alarm function when pump operation hour threshold has been exceeded.

Default: Enabled = Yes

From this mask it is possible to view the pump operation hours, to modify the maintenance alarm threshold of the device and to reset the hour meter following maintenance operations.

Default:

Threshold = 1000 h

		_			-		
	Ŀ	ıa		IE	32	τ	
ATR	c o	N D	т т	1 0	NI	NG	

set_clock	
Insert date & hour: 00:00 00/00/00 Insert day:	From this mask it is possible to set date, time and day of the week
++	
buzzer_01	Francischia angele it is specifile to specific the classe function when the summ
Enable buzzer:	From this mask it is possible to enable the alarm function when the pump operation hour threshold has been exceeded.
disabled	Default: Enabled = Yes
++	
<pre>m_en_al_story ++</pre>	From this mask it is possible to enable the clarm history displaying function
Press PROG. button in order to show alarm history.	From this mask it is possible to enable the alarm history displaying function
++	
new_pw_manut ++	
New password	From this mask the maintenance password can be modified
++	

5.1.3. I/O Menu

10

This set of masks provides a complete display of the statuses of the analog and digital inputs and outputs connected to the microprocessor. I/O menu access is protected by a maintenance password. The password is only available on request.

pw_inout

P
++ IN/OUT MENU
Insert maintenance password: 0000 ++
<pre>m_inout_01 ++ Digital input (1) 1: C 2: C 3: C 4: C 5: C 6: C 7: C 8: C 9: C ++</pre>
<pre>m_inout_04 ++ Analog input (2) B6: 00.0 B7: 00.0 </pre>

m_ino	out_07	+
Ana	log Output	(1)
Y1:	0000	
Y2:	0000	
Y3:	0000	
+		+

<pre>m_inout + Digital 10: C 13: C +</pre>	l input 11: C		(2) : C
<pre>m_inout_ + Digital 1: 0</pre>	l Outpu	 1t 3:	(1)
4: 0			0

m_ino	out_03		+
Ana	Log ing	out	(1)
B1:	0000		1
B2:	0000	в3:	0000
B4:	000.0	B5:	000.01
+			+

m_in	out	_06				+
Dig:	ita	l Out	τpu	ıt	(2)	Ì
10:	0	11:	0	12:	0	I
13:	0	14:	0	15:	0	I
16:	0	17:	0	18:	0	I
+						+

5.1.4. Clock menu

clock			+
	CLOCF	K MENU	
00:	:00	00/00/00	
 +			 +

5.1.5. Setpoint Menu

m	set
_	

+		ł
Actual	Setpoint:	
]	00.0 °C	
1		
+		+

By pressing the SET key it is possible to access the following masks to view and set the operation setpoint.

pw_utente_01

+				+	•
SE	Г	MENU			
Insert	us	ser			
passwor	d:		0000	0	
+				+	_

m_set_01

+				-+
∣Adju	stm	ent of	Ē	
prin	cip	al set	point:	
Set	:	00.0	°C	
+				-+

m_set_02

+			+
Setpoint	t vari	atior	1
from ren	note:		
Min.(4	mA):	0.0	°CI
Max.(20	mA):	0.0	°CI
+			+

m fasce

+	-+
Enable Management	
of setpoint on	
time band?	
No	
+	-+

m_fasce_set_01

+		
Adjust	setpoint	
within	time band	
Set.:	00.0 °C	
+		-+

m_fasce_set_02

Adjust setpoint | |outside time band | | set.: 00.0 °C |

m_fascia_01

+	
Monday	
Start:	00:00
End :	00:00
+	

To modify the setpoint and the programmed time periods the user password must be entered.

User password: 100

From this mask it is possible to enter the main regulation setpoint

Default: Set = 12 °C

0

From this mask it is possible to set the minimum and maximum remote setpoint variation limits.

Default: Min = 0 °C

Max = 5 °C

From this mask it is possible to enable the management of setpoint for programmed time periods

Default: Enabled = NO

From this mask it is possible to enter the setpoint within the programmed time periods

```
Default:
Set = 12 °C
```

From this mask it is possible to enter the setpoint outside the programmed time periods.

Default: Set = 12 °C

1

In the next seven masks it is possible to set the start and end of the programmed time period of the indicated day.

Default: Start = 7:00 End = 22.00

+			-+
new_p	pw_ute	ente	_+
New	User	password:	
		0000	
+			-+

From this mask it is possible to modify the user password

5.1.6. Manufacturer menu

31003

Manufacturer menu access is protected by a password. The password is only available on request.

pw costruttore _____ | MANUFACTURER MENU _____ |Insert manufacturer |password 0000 +-----

m_raff_4step_01

+	+
4 steps capac	ity
control	1
	1
Differential	00.0°C
+	+

config 02

+		+
Cor	nfig. Unit	- 1
N.	compressors	:0
N.	partializations	s:0
N.	pumps	:0
+		+

forzatura_pompe

```
+-----
|Pump forced in off: |
          No
             1
+----+
```

probe_01

+-----+ |Enable Management |of probe failure lalarms? No +----+ Default: Differential = 4 °C

From this mask it is possible to enter the setpoint valid within the programmed

From this mask it is possible to activate the override function for turning off the pump. If NO is set, the pump will always run while the unit is ON

Default:	
Enabled =	= NO

time periods.

From this mask it is possible to enable alarm signalling in case probe failure occurs

Default:

Enabled = Yes

____+

-+

1

probe_02

----+ |Enable alarms from | |probe failure (1)| |B1: No B2: No |B3: No B4: No I ____ ____

probe_03

+				+
Enab	ole a	larms	fro	m
prob	be fa	ailur∈)	(2)
B5:	No	в6:	No	
B7:	No	B8:	No	
+				+

From this mask it is possible to enable alarm signalling for each probe failure Default:

B5: No B6: No B7: No B8: No

Default:

B1: No B2: No B3: No B4: No

probe_04

+ - - - -_____+ |Enable alarms from | |probe failure (3)| |B9: No B10: No _____

probe_05

+			·+
Alarm	delay		T
probe	failure:		T
	0000	s	T
1			T
+			+

From this mask it is possible to set the delay time for probe failure signalling

From this mask it is possible to enable alarm signalling for each probe failure.

Default:	
Delay = 10 s	

probe_06

+			+
Offs	et pro	obe	(1)
B3:	00.0	bar	
B4:	00.0	bar	
1			
+			+

probe_07

+			+
Offs	et pro	obe	(2)
B6:	00.0	bar	1
B7:	00.0	bar	1
1			1
+			+

Default: B3: 00.0 bar B4: 00.0 bar

probe_08

+			+
Offs	et pro	be	(3)
B6:	00.0	°C	1
B7:	00.0	°C	1
1			1
+			+

probe_09

+			+
Offse	t prok	be	(4)
B8:	00.0	°C	1
B9:	00.0	°C	1
B10:	00.0	°C	1
+			+

probe 10

+				+
Range	Inlet	B	L	- 1
Lower	limit	:	00.0)°C
Highe:	r limit	::	00.0)°C
				- 1
+				+

Default:

From this mask it is possible to set a probe offset value

From this mask it is possible to set a probe offset value

B6:	00.0	bar
B7:	00.0	bar

probe 11

|Range probe B2 |Lower limit 00.0bar| |Higher limit 00.0bar| _____

probe 12

+	+
Range probe H	33
Lower limit	00.0bar
Higher limit	00.0bar
+	+

From this mask it is possible to set operation limits for B3 high pressure probe

Default: Lower: 00.0 bar Upper: 30.0 bar

debug operations

Default: Enabled = NO

ain_by_tast_01

+	
Analogue	e input
from key	yboard?
	No
1	

ain_by_tast_02

+	+
Enable	analog. input
from ke	eyboard (1)
B1: No	B2: No
B3: No	B4: No
+	+

ain_by_tast_03

----+ |Enable analog. input| |from keyboard (2) |B5: No B6: No |B7: No B8: No

B5: No B6: No B7: No B8: No

ain_by_tast_04

----+ |Enable analog. input| |from keyboard (4) |B8: No B9:No |B10:No +----+

din 01

----+ |Enable digital input| |filter? No +----+

Default: Enabled = NO

Default: Time = 5 s

reading delay of the same.

din 02

+		+
Digital	input	filter
1		1
		00 s
+		

din_by_tast_01

+			-+
Digital	Input	from	
keyboard	l?		
1		No	
+			-+

From this mask it is possible to enable keyboard entering of digital inputs for debug operations.

Default[.] Enabled = NO

+-----

From this mask it is possible to enable keyboard entering of individual analog inputs.

From this mask it is possible to enable keyboard entering of analog inputs for

Default: B1: No B2: No B3: No B4: No

From this mask it is possible to enable keyboard entering of individual analog inputs.

From this mask it is possible to enable the digital input filtering that enters a

From this mask it is possible to enable the digital input filter function, which

introduces a delay in the reading of the inputs themselves.

Default:

dout by tast 01

+	+
Digital output	1
from keyboard?	
1	10
1	
+	+

aout_by_tast_01

|Analogue output |from keyboard? | No |

aout_by_tast_02 +-----+ |Enable analogue out-|

|put f. keyboard (1) | |Y1: No | |

m_hp_ps_1_01
+----+
|Enable high pressure|
|alarm from |
|pressostat? No |
|
+----+

m_hp_ps_1_02
+----|Alarm delay high

pressure from the | pressostat: 0000 s | |

m_hp_ps_1_03

High pressure alarm | |Pressostat | |Reset aut./man.:A |

m_lp_ps_1_01

Enable low pressure | |alarm from | |pressostat? No |

+----+

m_lp_ps_1_02
+----+
Low pressure delay |

|pressostat | |STARTUP: 0000 s | |RUNNING: 0000 s | +-----+

m_lp_ps_1_03

 From this mask it is possible to enable keyboard entering of digital outputs for debug operations.

Default: Enabled = NO

From this mask it is possible to enable keyboard entering of analog outputs for debug operations.

Default: Enabled = NO

From this mask it is possible to enable keyboard entering of individual digital inputs for debug operations.

Default: Y1: No

From this mask it is possible to enable high pressure switch alarm.

Default: Enabled = Yes

From this mask it is possible to set the high pressure switch alarm delay

```
Default:
Delay = 0 s
```

From this mask it is possible to set the restoring of high pressure switch alarm.

Default: Restore = M (manual)

From this mask it is possible to enable the low pressure switch alarm

Default: Enabled = Yes

From this mask it is possible to set the delay time of high pressure switch alarm at start-up and running condition.

Default: Startup = 60 s Running = 0 s

From this mask it is possible to set the restoring of low pressure switch alarm,

Default: Restore = M (manual)

m_hp_probe_1_01

|Enable high pressure| |alarm from probe? | | No | | +----++

m_hp_probe_1_02

|High pressure alarm | |probe | |Set : 00.0 bar | |Diff.: 00.0 bar |

m_hp_probe_1_03
+----+
|High pressure alarm |
|probe |
|Delay : 000 s |
|
+---++

m_hp_probe_1_04

+				
Al.	alta	pr.	son	da
 Rip.	aut.	./mai	n.:	A
 +				

m_lp_probe_1_01

Enable low pressure | |alarm from probe? | | No | |

m_lp_probe_1_02

+			
Low	pre	essure	e alarm
prob	5e		
Set	:	00.0	bar
Dif:	E.:	00.0	bar
+			

m_lp_probe_1_03

|Delay low pressure | |alarm probe | |STARTUP: 000 s | |RUNNING: 000 s |

m_lp_probe_1_04
+------Low pressure alarm
probe

|probe |Reset aut./man.:A | +------

1	
Enable prevention	
high pressure alarm?	
No	
+	+

From this mask it is possible to enable the probe high pressure

Default: Enabled = NO

From this mask it is possible to enter the setpoint and differential of probe high pressure alarm enableing.

Default: Set = 21 bar Diff = 2 bar

From this mask it is possible to set the delay time of probe high pressure alarm.

Default: Delay = 0 s

From this mask it is possible to set the restoring of probe high pressure alarm.

Default: Restore = M (manual)

From this mask it is possible to enable the probe low pressure alarm.

Default: Enabled = NO

From this mask it is possible to enter the setpoint and differential of probe low pressure alarm enableing

Default: Set = 1 bar

Set = 1 bar Diff = 2 bar

From this mask it is possible to set the delay time of low pressure switch alarm at startup and running condition

Default: Startup = 60 s Running = 0 s

From this mask it is possible to set the restoring of the probe low pressure switch alarm.

Default: Restore = M (manual)

From this mask it is possible to enable the high pressure alarm prevention function.

Default: Enabled = NO

m hp prevent 02

+		+
Preven	tion 1	nigh
pressu	re ala	arm
Set :	00.0	bar
Diff.:	00.0	bar
+		+

m hp prevent 03

1			
Prevention high			
pressure alar	n		
1			
Delay:	000	s	
+			-+

Diff = 2 bar From this mask it is possible to set the delay time of high pressure alarm

From this mask it is possible to enter the setpoint and differential of high

Default: Delay = 0 s

prevention

Default: Set = 26 bar

pressure alarm prevention enableing .

From this mask it is possible to enable the management of liquid injection.

management	enabled:	Default	-
	No	Enabled	I = No
+		+	

m_iniez_liq_02

m_iniez_liq_01

|Liquid injection

+			+
Liquid	injec	tion	- 1
config.	:		- I
Set.	:	000.0	°CI
Diff.	:	000.0	°C
+			+

m_iniez_liq_03

+	+
Liquid injectio	on
solenoid valve	logic
	N.O.
+	+

m_prev_alta_T01

m prev alta TO2

|prevent |Set.

+-----

|Diff.

|High outlet temp.

+----+ |Enable prevention 1 |high outlet temp. No I +----+

----+

Default:

From this mask it is possible to enable INT69 global alarm of compressor

:	000.0°C	De
:	000.0°C	De Se
	+	Dif

m termico 1 01

|Enable alarm |INT69 compr.? No +-----

m termico 1 02

Alarm	delay			
INT69	compr.:	:		
Start	•	0000	s	
Runni	ng:	0000	s	
+				- +

From this mask it is possible to set the delay time of INT69 global alarm of compressor at start up and running condition.

Default: Start = 20 s Running = 0 s

Default: Set = 105°C Diff = 15 °C			

From this mask it is possible to configure the logic (N.O or N.C) of the solenoid valve for the liquid injection.

From this mask it is possible to configure the management of liquid injection.

Default:

Logic = N.O.

From this mask it is possible to enable the management of high temperature prevention of refrigerant outlet by inhibiting the compressor reduced capacity to 25%

Enabled = Yes

From this mask it is possible to enter the setpoint and differential of high temperature prevention enableing

efault: et = 110 °C ff = 15 °C

Default: Enabled = Yes

m_termico_1_03

|Alarm INT69 |compressor |Reset aut./man.:A -----+

m_term_cond_1

++
Enable therm. switch
alarm cond. fan?
No
1
++

m_term_cond_2

+----|Thermal switch alarm| |condenser fan |Delay: 000 s

m_term_cond_3 _____ ----+

|Thermal switch alarm| |condenser fan |Reset aut./man.:A +-----+

 $\texttt{m_term_p_1_01}$ ----+ |Enable therm. switch| |alarm pump? No +----+

 $m_term_p_1_02$ ____ |Thermal switch alarm| pump |Delay: 000 s +----+

m term p 1 03 +----

|Thermal switch alarm| |pump |Reset aut./man.:A +----+

m_antigelo_1 |Enable antifreeze lalarm? No _____

m antigelo 2 ____+ |Antifreeze alarm Т |Set : 00.0 |Diff.: 00.0

From this mask it is possible to set the restoring of INT69 global alarm of compressor.

Default: Restore = M (manual)

From this mask it is possible to enable the fan condenser thermal switch.

Default: Enabled = Yes

From this mask it is possible to set the delay time of fan condenser thermal switch alarm

Default: Delay = 0 s

From this mask it is possible to set the restoring of fan condenser thermal switch alarm

Default: Restore = M (manual)

From this mask it is possible to enable the pump thermal switch alarm

Default: Enabled = SI

From this mask it is possible to set the delay time of pump thermal switch alarm

Default: Delay = 0 s

From this mask it is possible to set the restoring of pump thermal switch alarm.

Default: Restore = M (manual)

From this mask it is possible to enable antifreeze alarm

Default: Enabled = SI

From this mask it is possible to enter the setpoint and differential of antifreeze alarm activation

Default: Set = 4 °C Diff = 2 °C

<pre>m_antigel +</pre>	o_3		+
Antifree	ze al	Larm	İ
 Delay:	000	S	
 +			 +

From this mask it is possible to set the delay time of antifreeze alarm thermal switch.

From this mask it is possible to set the restoring of antifreeze alarm thermal

From this mask it is possible to enable the flow switch alarm

Default: Delay = 0 s

switch

Default:

Default: Enabled = Yes

Restore = M (manual)

m_antigelo_4 |Antifreeze alarm |Reset aut./man.:A ------

m_flussostato_1

+			-+
Enable	flow	switch	
alarm?		No	
1			
1			

m flussostato 2

+		ł
Delay flow	w switch	l
alarm		l
STARTUP:	000 s	l
RUNNING:	000 s	l
+		L

Default: Startup = 20 s Running = 0 s

up and running condition

m flussostato 3

+
Flow switch alarm
Reset aut./man.:A
1
1

m tempi comp 01

|Minimum compressors | |power-off time 000 s| |Minimum compressors | |power-on time 000 s| _ _ _ _ -+

m tempi comp 02

----+ |Min time betw. same | |comp. starts 000 s|

+----+

m_tempi_comp_03

|Min. running time lwith 25% 000 s -----+

From this mask it is possible to manage the power limiting function at compressor starting and to set the minimum time of stay at compressor reduced capacity to 25%

Default:

Min.T between 2 ON = 360 s

m_pumpdown_01 +-----

|Enable pump-down? No | From this mask it is possible to enable pump-down function

Default: Enabled = NO

From this mask it is possible to set the restoring of flow switch thermal switch

From this mask it is possible to set the delay time of flow switch alarm at start

Default: Restore = M (manual)

From this mask it is possible to set operation times of compressors. The minimum OFF and ON time

Default:

alarm.

T min Off = 10 sT min On = 10 s

From this mask it is possible to set the compressor times, the minimum time lapse between two starts of the compressor

Default:

Min.T between 2 ON = 360 s

m pumpdown 02 ----+ |Pump-down Management| |Set : 00.0 bar |Diff.: 00.0 bar |Time max: 000 s

m pumpdown 03 _____

|Enable alarm for |overcoming time |max pump-down? No ----+

m condenser 01

|Enable anticipation | |condenser before |compressor start? No

m condenser 02

Anticipation conder	ıs
fans before	
compressor ON: 000	sl
1	
+	+

m_condenser_03

+		+
Condensing	g control	- 1
1		
Fan speed	antici-	
pation:	000.0	8

+----+

m condenser 04

+	
Condensing	control
Fan speed w	when air
flow probe	failure:
	000.0 %
+	

m condenser 05

+		
Condens	sing d	control
Set :	00.0	bar
Diff.:	00.0	bar

+----+

m condenser 06

+		-+
Condensing	control	
Out 0 - 10	V	
Lower lim.	00.0 V	
Higher lim	. 00.0 V	
+		-+

m delay 01

+			+
ON/OFF	time	delay	- 1
pump:	000	S	- 1
			- I
			- I
+			+

From this mask it is possible to set the operation parameters if pump-down function is enabled, i.e. setpoint, differential and maximum time

Default:

Set = 1.5 bar Diff = 0.5 bar Max time= 20 s

From this mask it is possible to enable the maximum pump-down exceeding alarm

Default: Enabled = NO

From this mask it is possible to enable the condensation fan to start earlier than the compressor.

Default:

Enabled = NO

From this mask it is possible to set the advance duration, it the condensation fan startup advance is enabled.

Default:

Advance duration = 0 s

From this mask it is possible to set the fan speed during the advance operation, if the condensation fan startup advance is enabled.

Default:

Speed = 80 %

From this mask it is possible to set fan speed in case of pressure probe failure.

Default: Speed = 100 %

From this mask it is possible to set the condensatioan control parameters: setpoint and differential.

Default: Set = 11 bar Diff. = 10 bar

From this mask it is possible to set condensation control parameters: lower and upper regulation limits.

Default: Lower Lim. . = 0 V Upper Lim. = 10 V

From this mask it is possible to set the duration of startup advance and the stop delay of pump.

Default: Duration = 20 s

m_delay_02

++	
Pump switch off	
delay on flow alarm:	
000 s	
++	

From this mask it is possible to set the duration of pump switch off delay on flow alarm

From this mask it is possible to set the maximum and minimum values within

From this mask it is possible to enable the digital input remote control function

```
Default:
Duration = 30 s
```

m_limiti_set

+	+
Set-point	management
Set max:	00.0 °C
Set min:	00.0 °C

Default: Set max = 16 °C Set min = 10 °C

which the regulation setpoint can be entered

on the electric panel terminal block.

on_off_rem

+	
Enable	remote
on/off	?
	No
1	

Default: Enabled = NO

supervisor 01

supervisor_02

+	
Protocol	type:
+	

From this mask it is possible to set the protocol communication when a serial board is present. The permitted protocols are: ---, Carel, Modbus, Lon, RS232 (for connection to analog modem) and GSM (for connection to GSM modem)

Default: Protocol = ---

Default: Protocol= 9600 Serial address = 001

From this mask it is possible to set transmission speed of the serial line.

+		
Transmi	ssion	speed:
1200		
Serial	addres	s:
000		

default

+
Reset Default
parameters? No
+

new_pw_costrut

+	
New manufactur	er
password:	
	0000
+	

From this mask it is possible to set the default parameters.

From this mask it is possible to modify the manufacturer password.

∆Galletti

5.1.7. Alarm menu attern

information about a specific alarm situation. The activation of the masks is Each mask gives accompanied by the sounding of the buzzer and tripping of the general alarm signalling relay. By pressing atom 2 th

e 🖾 key once the user	can access the first	active mask and then	scroll all alarms using the
and the second s			Ŭ

keys. Pressing the III a second time will clear the alarm message. Each mask shows the code used in the alarm history to identify the particular event.

m_no_alarm ++		
ALARM MENU		
 No alarm is present! ++		
m_al_probe_01	m_al_probe_02 ++	m_al_probe_03 ++
AL01 Alarm probe B1 	ALO2 Alarm probe B2 	ALO3 Alarm probe B3
++	++	++
m_al_probe_04 ++	m_al_probe_05 ++	m_al_probe_06 ++
AL04 Alarm probe B4 	AL05 Alarm probe B5 	AL06 Alarm probe B6
m_al_probe_07	m_al_probe_08	m_al_probe_09
++ AL07 Alarm probe B7 ++++++++++++++++++++++++++++++	++ AL08 Alarm probe B8 	++ AL09 Alarm probe B9
m_al_probe_10	m_al_hp_ps_1	m_al_lp_ps_1
++ AL10 Alarm probe B10 	++ AL11 High pressure alarm 	++ AL12 Low pressure alarm
m_al_int69_1	m_al_hp_probe_1	m_al_lp_probe_1
++ AL13 INT69 alarm 	AL14 High pressure alarm from probe 	++ AL15 Low pressure alarm from probe
m_al_t_cond_1 ++	m_al_man_comp_1 ++	m_al_man_pump_1 ++
AL16 Thermal switch alarm condenser fan 	AL17 Run out time working hrs compr. 	AL18 Run out time working hrs pump

m al pumpdown 1 m_al_ov_pump_1 ----+ |AL19 |AL20 | Run out max time | Thermal switch 1 pump-down alarm pump +----+ +----+ m_al_flow m_al_hp_ps_2 ____ |AL22 |AL23 | Flow switch alarm | |High pressure alarm | on circuit 2 +----+ +----+ m_al_int69_2 +----____+ m_al_hp_probe_2 |AL25 | INT69 alarm |AL26 1 compressor 2 |High pressure alarm | |from probe circuit 2| m_al_t_cond_2 m_al_man_comp_2 +-----____ ____+ |AL28 |AL29 |Thermal switch alarm| | Run out time | condenser fan 2 |working hrs compr.2 | 1 +----+ +----+ m_al_pumpdown_2 $m_al_ov_pump_2$ +----+ +-----|AL31 |AL32 | Run out max time |

```
| Thermal switch
                         alarm pump 2
|pump-down circuit 2 |
                       +----+
                       +----+
```

m_al_antigelo
++ AL21 Antifreeze alarm
<pre>m_al_lp_ps_2 ++ AL24 Low pressure alarm on circuit 2 +++</pre>
<pre>m_al_lp_probe_2 ++ AL27 Low pressure alarm from probe circuit 2 +++</pre>
<pre>m_al_man_pump_2 ++ AL30 Run out time working hrs pump 2 +++</pre>
<pre>m_al_pump ++ AL33 Thermal switch alarm on all pumps </pre>

+----+

----+

6. Architecture of the control system

6.1. Description of inputs and outputs

Conn	Initials	Signal	Description
Analog i	input		·
J2-1	B1 (UNI)	420 mA	Remote setpoint
J2-1	B2 (UNI)	420 mA	Condensing pressure 1
J2-3	B3 (UNI)	420 mA	Condensing pressure 2
J3-1	B4	PT1000	Compressor supply gas temperature 1
J3-3	B5	PT1000	Compressor supply gas temperature 2
J6-1	B6 (UNI)	NTC	Evaporator inlet water temperature
J6-2	B7 (UNI)	NTC	Evaporator outlet water temperature
J6-3	B8 (UNI)	NTC	External air temperature
J20-3	B9	NTC	
J20-5	B10	NTC	
Digital i			
J5-1	ID1	24 Vac/Vdc	Condenser 1 fan thermal switch
J5-2	ID2	24 Vac/Vdc	Low pressure switch 1
J5-3	ID3	24 Vac/Vdc	High pressure switch 1
J5-4	ID4	24 Vac/Vdc	INT69 compressor 1 alarm
J5-5	ID5	24 Vac/Vdc	Condenser 2 fan thermal switch
J5-6	ID6	24 Vac/Vdc	Low pressure switch 2
J5-7	ID7	24 Vac/Vdc	High pressure switch 2
J5-8	ID8	24 Vac/Vdc	INT69 compressor 2 alarm
J7-1	ID9	24 Vac/Vdc	Remote On-Off
J7-2	ID10	24 Vac/Vdc	Remote setpoint - selector
J7-3	ID11	24 Vac/Vdc	
J7-4	ID12	24 Vac/Vdc	Flow switch
J8-2	ID13	24 Vac/Vdc	Pump 1 thermal switch / external pump interlock
J8-4	ID14	24 Vac/Vdc	Pump 2 thermal switch / external pump interlock
J19-2	ID15	24 Vac/Vdc	
J19-4	ID16	24 Vac/Vdc	
Analog			
_	-	0.10.1/	Condensor for revolution regulator 1
J4-3 J4-4	Y1 Y2	010 V 010 V	Condenser fan revolution regulator 1
J4-4 J4-5	Y3	010 V	Condenser fan revolution regulator 1 (for 2 parallel regulators) Condenser fan revolution regulator 2
		010 V	
Digital o			0
J12-2	NO1	relè NO	Compressor 1 On/Off
J12-3	NO2	relè NO	CR1 1 valve On/Off
J12-4	NO3	relè NO	CR2 1 valve On/Off
J13-2	NO4	relè NO	CR3 1 valve On/Off
J13-3	NO5	relè NO	CR4 1 valve On/Off
J13-4	NO6	relè NO	Pump 1 On/Off
010 4	100		
J14-2	NO7	relè NO	Pump 2 On/Off
J15-1	NO8	relè NO	Unit On/Off
515-1	NOO	Tele NO	
J16-2	NO9	relè NO	Liquid solenoid valve 1
J16-3	NO10	relè NO	Liquid injection solenoid valve 1
J16-4	NO11	relè NO	Liquid solenoid valve 2
J17-1	NO12	relè NO	Liquid injection solenoid valve 2
J18-1	NO13	relè NO	Failure alarm
J21-1	NO14	relè NO	Compressor 2 On/Off
104 4	NO15		CP1 2 volvo Op/Off
J21-4	NO15	relè NO	CR1 2 valve On/Off
J22-2	NO16	relè NO	CR2 2 valve On/Off
J22-2	NO17	relè NO	CR3 2 valve On/Off
J22-4	NO18	relè NO	CR4 2 valve On/Off
		1010110	

6.2. Optional boards

6.2.1. RS485 serial board for supervisory function

The serial connection to a local or remote supervision system requires the installation of an RS485 serial board, available on request (see Figure 0: RS485).

Figure 0: RS485 serial board

Connection to the local supervisor computer

The connection to the local supervisor computer is made via a RS485 serial line and communication takes place via the proprietary Carel protocol. A RS485/RS232 converter is needed for connecting to the serial port of the PC.

Figure 1: Connection between microprocessor and local supervisor computer

6.3. Technical data

General specifications

operating conditions	-10T60 °C 90% R H not condensing
protection rating	IP20, IP40 on front panel only
heat and fire resistance class	class D (UL94 - V0)
Immunity against over voltages	Class 1
number of manoeuvring cycles of automatic	100 000
operations (e.g.: relay)	
Class and structure of software	Class A

Electrical specifications

power supply (controller with connected	22 to 40 Vdc and 24 Vac ±15% 50/60 Hz. Maximum power
terminal)	consumption: 20 W
terminal block	with extractable male/female connectors
	maximum voltage: 250 Vac; cable size (2mm): min 0.5 to max 2.5
CPU	H8S3002 16 bits 14 MHz
program memory (on FLASH MEMORY)	16 bit organisation: 1 MByte (expandable to 6 MByte)
data memory (static RAM)	16 bit organisation: 256 kByte (expandable to 1 MByte)
Parameter data memory	16 bits organisation 2 kByte
	(upper limit: 400,000 recordings per memory location)
useful pCO2 cycle with applications of	0.5 s
medium complexity	

Analog inputs

number	8
Analog conversion	A/D converter 10 bit CPU built-in
Туре	Passive: NTC, PT1000 or clean contact digital input (5mA), selectable
	via software (B4-B5)
	Universal: NTC, voltage 0 to 1 Vdc or 0 to 5 Vdc, current 0 to 20 mA or
	B6 to 20 mA, selectable via dip-switch (B1, B2, B6, B7, B8)

Digital inputs

number	14
Туре	- optoisolated inputs at 24 Vac 50/60 Hz or 24 Vdc (ID1 to ID12)
	- optoisolated inputs at 24 Vac 50/60 Hz or 230 Vac (ID13 to ID14)

Analog outputs

number	4
Туре	- 0 – 10 Vdc optoisolated outputs
power supply	external power supply 24 Vac/Vdc
maximum load	1kΩ (10 mA) for 0 -10V

Digital outputs

J ·····	
number	13
Туре	with electromechanical relays

40010 Bentivoglio (BO) Via Romagnoli, 12/a Tel. 051/8908111 Fax 051/8908122 www.galletti.it