

Motion Controller

4-Quadrant PWM for DC-Micromotors and Brushless DC-Servomotors

Operating Instructions

Surf to the following Internet address and you will find the latest edition of the instruction manual on-line:

www.minimotor.ch/uk/pr/ -

Back Forward Reload H	👔 🥖 ome Search	Netscape Ima	l) 📑 Iges Print	Securit	y Sho	p s	1) itop			N
ation : 🧶 http://www.minimot	or.ch/uk/pr/								👘 What's R	elated
					-1		a.			
FAULHABER				Drive	e Ele	ctroi	nics			
Company profile										-
System	Туре	Motor type	Function	Operating mode	Current	Speed	Power supply	Current limit	Instruction manual Download	
FAULHABER®	LC 3002	Brush comm.	4 Quadrant	Linear	Yes	Yes	12 - 32	2	10841 KB)	
Product design	MCDC 2805	Brush comm.	4 Quadrant	PWM	No	Yes	12-28	10	(674 KB)	
Product range	MCDC 3603	Brush comm.	4 Quadrant	PWM	No	Yes	12 - 36	3 ((3258 KB)	
Applications	MCDC 5004	Brush comm.	4 Quadrant	PWM	No	Yes	12 - 50	10	21(3407 KB)	
FAULHABER	BLD 3502	Brushless	2-Quadrant	PWM	No	Yes	12 - 35	з	🔀 (829 КВ)	
GROUP	BLD 5603	Brushless	4 Quadrant	PWM	Yes	Yes	14 - 56	4	🖾 (1677 KB)	
Sales network	BLD 5604	Brushless	2-Quadrant	PWM	No	Yes	10 - 56	4	🖾 (661 КВ)	
Exhibitions	BLD 5606	Brushless	4 Quadrant	PWM	Yes	Yes	14 - 56	8	💯 (1677 KB)	
	BLD 5608	Brushless	2-Quadrant	PWM	No	Yes	10 - 56	8	🗓 (661 КВ)	
NEWS Catalogue	MCBL 2805	Brushless	4Quadrant	PWM	No	Yes	12-28	10	Cros KB	
request	MCBL 3603	Brushless	4 Quadrant	PWM	No	Yes	12 - 36	3	(3258 КВ)	-
	MCBL 5004	Brushless	4 Quadrant	PWM	No	Yes	12 - 50	10	(3407 KB)	
LHABER GROUP										
We create motion	Mnimotor SA, 69	30 Croglio, Switze	arland		Tel.: +4	(0)91 61	1'31'00, Fax: +41	(0)91 611:31:10	0, Email: info@minimotor	.ch
-0								100.00		2

For direct Download:

http://www.minimotor.ch/minicatalog/pdf/DriveCircuits/Manuals/IM_e_MCDC_MCBL_3603.pdf

Index

Cha	pter	Page
1.	Description	2
2	Model eveniew	2
۷.	Nodel overview	2
3.	Technical information	4
4.	Dimensions	5
5.	Start-up Procedure	6
6.	Connection diagram for MCBL 3603	7
7.	Connection diagram for MCDC 3603	8
8.	General software information	9
9.	Set up values	10
10.	On line control	11-12
11.	System parameter set-up	13
12.	Call up program from normal inputs	14
13.	Call up program from binary coded digital inputs	15
14.	Example of sequential multi-axis application	16
15.	Analogue input command	17
16.	Stepper motor emulation	18
17.	RS485easy-Bus	18-19
18.	Trouble-shooting	20
19.	Operating system error	20
20.	General usage instructions	21
21.	Hardware	22
22.	Pin configuration	23-26
	Note	27-29

Description

1. Description

The MCBL 3603 and the MCDC 3603 are very compact motion controllers ideal for our brushless DC-Servomotors and brushed DC-Micromotors.

Each model comprises a PWM servo amplifier.

Technology

Both motion controllers are based on a fast, powerful 16 bit microcomputer system.

This guarantees high dynamics, precise positioning and quiet running, regardless of the motor type used.

The well thought-out design and consistent application of SMD technology ensures a very compact device. The specially developed user software offers high flexibility and simple handling.

Application field

Developed with the use of state-of-the-art technology, the motion controllers are suitable for a wide range of applications: insertion and handling machines, machine tools, robots, X/Y tables, drive and automation systems in medical technology, chemical and food industry, etc.

Programming

One of the most important objectives in the development of these units was to keep its operation as simple as possible. This has been attained with the use of just a few, highly efficient functions.

Manual balancing or potentiometers are no longer required. Menu-guided program and parameter-editing functions are already integrated for operation with an ASCII terminal. In place of internal menu management, the clearly structured command set can be simply integrated into a customer-specific interface, e.g. with Visual Basic, Lab View, Pascal, C++, etc.

Any PC with Windows operating system can be used as an input terminal. Program updates are made directly via the serial interface without changing the hardware. Communication is made via the serial port RS232 or RS485.

We advise the use of the software WINMOTION® for an easy programming of Motion Controllers provided with Firmware 4.10.

Model overview

EXTERNAL PLC

Technical information

3. Technical data	MCBL 3603	MCDC 3603	
Electrical data			
Supply voltage	12 ÷ 36	12 ÷ 36	V DC
PWM switching frequency	20	20	kHz
Max. continuous output current	3	3	А
Max. peak output current	10	10	А
Max. encoder frequency	200	200	kHz
Software data			
Program memory (16 bit access)	256 v 8	256 v 8	kbyte
Sampling period	500	500	μs
Number of programs	15	15	
Lines per program	50	50	
Number of indexes	50	50	
Communication data			
Interface	RS232 / RS485 /	RS485easy-Bus	
Status display	3 LEC)'s	
Optional inputs (5V pull-up standard,	12 (1911)	I)	
24v pull-down on request)	12 (optio	onal)	
Optional outputs (6 x EQ)//EQ0mA open			
collector 2 x TTL level)	8 (ontio	nal)	
	0 (00110	Jildiy	
Program and parameter editor	integrated ASC	II terminal	
Program up-date	via serial i	nterface	
Application and parameter save / load	via serial i	nterface	
Starting position function	via encoder Z-index	/ via external sensor	
To man a water water of			
Constanting terrestant	0		۰c
Storage temperature	0	. + 55	د •۲
storage temperature	-20	. + 00	C
Weight / Dimensions			
Weight:	1	30	g
Dimensions: see diagram on page 5			
5 . 5			

Dimensions

4. Dimensions for MCBL 3603 and MCDC 3603

Scale reduced 105 10,5 35 m 7,5 3,2 75 66,7 للللللل հոու 3 99.2 2,9 (5) 0 0 O 8888 Ш (ft) **(**2) ඡ **(**4) **Connection for MCBL 3603** Connection for MCDC 3603

- (1) Power supply motor / motor connection
- (2) Encoder ¹⁾ and Hall sensors
- ③ Input for special function
- (4) RS232
- (5) Optional digital Input / Output

- ① Power supply motor / motor connection
- (2) Encoder ¹⁾
- ③ Input for special function
- (4) RS232
- (5) Optional digital Input / Output

¹⁾ Line driver encoders for noisy environments or long distances can be used.

Start-up procedure

5. Start-up procedure

Here we list a step-by-step start-up procedure for both the electrics and software. Also included are several examples in order to allow the user to test the unit and familiarise himself with programming.

We therefore recommend that this sequence is followed for trouble-free installation:

Start-up Procedure for MCBL 3603

- Connect the motor phases to MOTOR
- Connect the encoder and the motor Hall sensor leads to ENCODER HALL
- Connect the RS232 (or RS485) to the computer port COM
- Connect the power supply to **PWR**
- Power the motion controller
- Software start-up

Start-up Procedure for MCDC 3603

- Connect the motor terminals to MOTOR
- Connect the encoder to **ENCODER**
- Connect the RS232 (or RS485) to the computer port COM
- Connect the power supply to PWR
- Power the motion controller
- Software start-up

The computer link is necessary to program the motion controller. After programming has been completed, the computer link can be disconnected since the

programs can be started using the motion controller input functions.

For advanced functions such as:

- Analogue input command
- Stepper motor emulation
- RS 485 serial interface
- Multi-axis operation

please refer to the specifique chapters

Start-up procedure

Start-up procedure

PLC I/O description

The PLC I/O port enables direct communication with the position control function without having to use a computer. For example, once a program has been created, it can be executed by simply giving a command to the assigned input. In the initial phases of installation, and to allow the user to better understand the operation of the motion controller, all instructions are given via computer. It is therefore not necessary to connect this port.

RS232 description

This port is the communication link between the motion controller and the external computer via the COM1 connection point. Additional information regarding the connection and set-up is given in chapter 29. The link is make with a standard computer cable which, if necessary, can be optionally supplied by Minimotor.

General software information

8. General software information

Terminal emulator description

The computer is only used as a terminal. The terminal emulator therefore enables communication between the computer and motion controller software. The actual programming is made directly in the motion controller itself.

Motion controller software organisation

The software is constructed on three different levels.

Operating system

The operating system normally remains invisible to the user and is a background function for:

download functions

back-up in emergency situations

For additional information, see chapter 26.

Program xx36_yyy.S19

Is the basic working program which realises all described functions and programming possibilities. This program is already installed within the unit and automatically goes into operation once the system is started-up. Actualy version 4.10

Application user programs

Contains the complete set of customer-defined data and parameters (= "application").

LED status

Display	Description
LED 1	Internal 5V power supply OK
LED 2	Software OK
LED 3	Servo OK, system closed
LED 3 blinking	Error, ask error code, see troubleshooting chapter 27

General programming instructions

General instructions on how to move, insert, delete, etc. within the program:

- Close every entry with the command <ENTER>
- Text can be entered using either small or capital letters
- Use the arrows to move up and/or down the menu lines
- To go back to the previous menu always use <ESC>
- Close erroneous entries with <ENTER> and re-enter data

Delete characters	Back Space
Clear line	<crtl c=""></crtl>
Insert line	<crtl i=""></crtl>
Page down	<crtl d=""></crtl>
Page up	<crtl u=""></crtl>

Set up values

9. Set up values			
Description			
MODE	0 = Programs and commands operated using the standard inputs (see chapter 19)		
	2 = Programs and commands operated using the standard inputs. PULSE/DIRECTION input signal for stepper control emulation function active (see chapter 23)		
	3 = Programs and commands operated using the standard inputs. Analogue input signal for digital speed control function active (see chapter 22)		
	10 = Programs operated using the 4 binary coded inputs and input 8 as starting trigger (see chapter 20)		
	 Programs operated using the 4 binary coded inputs and input 8 as starting trigger. Stepper control emulation function active (see chapter 23) 		
	 13 = Programs operated using the 4 binary coded inputs and input 8 as starting trigger. Analogue input signal for digital speed control function active (see chapter 22) 		
INOM	Nominal current		
I PEAK	Peak current		
PROPORTIONAL	Proportional closed loop parameter (stiffness)		
INTEGRAL	Integral closed loop parameter (positioning precision)		
DERIVATIVE	Differential closed loop parameter (stability, dynamic)		
VELOCITY	Velocity closed loop parameter (oscillation prevention)		
INC PER PULSE	Increment (lines) per pulse in MODE 2 or 12 for stepper emulation function (see chapter 23)		
DEVIATE POS	Permissible max. position deviation in lines		
PROFILE ROUND	To smooths the speed profile out (see below)		
	v profile round 10 = 5 ms 100 = 50 ms		
	By setting to profile round, the speed profile is smoothed out, this reducing mechanical stress for better live performance.		
INPUT H-ACTIVE	0=Input active low, I=Input active		
ANALOG FUNCTION	Analog function active with mode 3 or 13 for digital speed control.		
	0=CW (+), I=CCW (-), 2=Cw and CCW (+/-)		

On line control

10. On line control				
Command	Parameter	Description		
AC	1 000 - 4 000 000 lines/s ²	Acceleration		
AIX	10 - 50 000 (x 1 000) lines/s ²	number by remote control		
ANF	0 - 2	Analog function mode 3/13 0 = CW (+)		
		1 = CCW(-)		
CI	0-100	Card identifier for RS485easy-Bus		
CO	1-8	Clear output		
DIX	± 2 000 000 000 lines	Overwrite distance index at preloaded NIX		
DRH	1 - 2	number by remote control Direction of motor rotation, for seeking coarse		
	1 - 7	sensor 1 = CW, 2 = CCW Direction of motor rotation, for seeking 7 mark		
DIVE	1 - Z	sensor 1 = CW, 2 = CCW		
DP	lines	Permitted position deviation in lines		
EC	0-50	Encoder counter on-line diagnosis		
ED	1 000 - 5 000 000 lines/s ²	Emergency deceleration with Exit function EE and Limit-switch function LL and LR		
GP		Go to position (absolute)		
GVV GZ		Go to Z-index (encoder)		
HO		HOME function according to program		
HOF	0 - 100 000 increment	direction, if HOF is not 0 this value is indicated		
	1 60	on HOMÉ menu		
IHA	0 - 1	0 = input low active, 1 = input high active		
IN	1 - xx	Nominal current		
INH	1 - 8 1 - xx	Peak current		
ÏŢ	0 - 50	Integral closed loop parameter		
IX IP	1 - 50	Run index # according to program		
JN		Jog (run) negative, constant speed		
JN2[letter]	1 - 50	Indicate loop reference letter (from A to E). Decrements the loop repeats, whereby if not		
		zero, jump to line xx		
NIX	1 - 50	parameters by remote control		
PG	1 - 15	Run program #		
PO PP	± 2 000 000 000 lines 1 - 50	Proportional closed loop parameter		
PRF	1 - 100	Rounding of speed profile (should be value),		
PQ		Servo amplifier power OFF		
PŴ		Power ON, reset position counter		
RI	0 - 100	Required identifier for RS485easy-Bus		
*RI	1 - 99	Get back identifier, position, and status complete		
RW	1 - 10 000	Repeat way CW/CCW Repeat way (same direction)		
SET[letter]	1 - 10 000	Set loop reference letter (five possibilies,		
		from A to E) and number of repeats xxxx		

On line control

Command	Parameter	Description
SIX SM SO SP SR TE TGD TGU TI TP TS	Parameter 25 - 1 000 000 lines/s 1 - 8 25 - 1 000 000 lines/s ± 1 - 100 :10 ± 2 000 000 000 ± 2 000 000 000 ? or 1 - 12	Description Overwrite speed index at preloaded NIX number by remote control Stop motion Set output Speed Synchronisation ratio with optional second encoder Tell error codes 01-99 Trigger downward count, absolute, at output x (5 ms) defined in output function Trigger upward count, absolute, at output x (5 ms) defined in output function Tell status input, 0=Low 1=High Tell status: 0 = power OFF 1 = power ON
VL WA WT	1 - 50 ± 2 000 000 000 lines x 10 ms	2 = moving 3 = program active 9 = error Velocity closed loop parameter Way (relative) Waiting time

Set-up values

11. System parameter set-up

Current limiter set up

The current limits I NOM and I PEAK must be set according the motor used. The value of I NOM should not exceed the motor's recommended current for continuous operation.

I NOM limit is only active during constant speed operation.

I PEAK limit is only active during acceleration and deceleration.

There is a continuous monitoring of incremental feedback. If the motor is blocked more than 0,5 seconds then the current will be automatic reduced.

Optimising the closed loop parameters

The closed loop system can be optimised by running the motor (including assembled mechanical parts) directly on line and by adjusting the following parameters via the SET UP VALUES menu:

PROPORTIONAL	(1 - 50)
INTEGRAL	(0 - 50)
DERIVATIVE	(0 - 50)
VELOCITY	(0 - 50)

This optimisation is best carried out by running the motor with the RW and/or RR instructions.

When executing these instructions, all parameters (even set-up) can be changed on line, thus enabling the user to see the reaction of the system whilst making changes. One helpful function is the EC (encoder counter) which gives information on the actual motor shaft position.

Improved dynamics

If your application requires more dynamics, this can be obtained by increasing the PROPORTIONAL, DERIVATIVE and VELOCITY LOOP values (e.g. to 10, 20 and 20). If the motor is noisy or vibrates (indicating system instability), these parameters should be reduced.

Precise positioning

If you need to improve the motor's position holding, an INTEGRAL value should be given (e.g. 5). The INTEGRAL value is only activated when the motor reaches the requested position. In this way the system's dynamic is not influenced by this value.

To control the exact position of the motor, the EC (encoder counter) command is used via the ON LINE CONTROL menu.

Call up program

12. Call up program from normal inputs (Optional I/O)

The procedure to execute a program or another instruction via the 8 normal inputs is as follows.

- assign the instruction to the desired input via the INPUT FUNCTION menu
- activate the input via an external circuit (see example below)

PLC I/O		
PIN	Functior	
1	OUT 1	
2	OUT 2	
3	OUT 3	
4	OUT 4	
5	OUT 5	
6	OUT 6	
7	OUT 7	
8	OUT 8	
9	COM	
10	GND	
 • 11	GND	
12	VCC	
17	IN 1	
18	IN 2	
19	IN 3	
20	IN 4	
 • 21	IN 5	
22	IN 6	
23	IN 7	
24	IN 8	
13	IN 9	
14	IN 10	
15	IN 11	
16	IN 12	

Call up program

13. Call up program from BCD coded digital inputs (Optional I/O)

When the application uses more than 8 digital inputs, the user should call them up via the BCD coded digital inputs. In this case, the MODE in SET-UP VALUES menu should be set to 10 (or 12 or 13).

The input lines 9 - 12 are used as binary coded program numbers. The trigger to start the pre-selected program is input line 8. Program number 0 is not used. Therefore:

pre-select program number with binary-switch (numbers 1-15)

start program with start button S

Call up program

14. Example of sequential multi-axis application (optional I/O)

The program number and program start of the sequential follow-on motion controllers are specified through the output of the lined up motion controller.

Advanced functions

15. Analogue input command

To activate the analogue input command function the MODE parameter in the SET UP VALUES menu must be set to 3 or 13 and the ANALOG FUNCT to:

- 0 for CW operation
- 1 for CCW operation
- 2 for CW and CCW operation

The maximum speed is defined with the SP command. For high dynamics we recommend increasing the AC value (AC > 2 000 000).

External voltage

Potentiometer

Advanced functions

16. Stepper motor emulation

To activate the stepper motor emulation function the MODE parameter in the SET UP VALUES menu must be set to 2 or 12 and the INC PER PULSE according to the application requirements.

17. RS485easy-Bus

With this feature up to 32 motion controllers can be adressed and controlled by one host computer using a simple RS485 interface. The connection principle is show below.

Advanced functions

To simplify the connection Minimotor offers a special RS485 easy-Bus adapter and RJ45 cables.

Cable specification:

Modular RJ45 round shielded cable configuration 1:1. Twisted pairs 1&2, 3&6, 4&5, 7&8

Start-up Procedure

Attention: function only available with software version \geq 3.00

 <u>Assign an adress</u> (number) to each motion controller (axis). This operation is made by connecting the single motion controller to the RS232 interface and using the CI (card identifier) command.

Example: CI 5 <CR> to assign the number 5 to a motion controller. The number can be checked using the command CI ? <CR>

Attention: Each motion controller in the system must have a different number. Once the number is assigned it is memorized even if the power supply is switched off. The CI value goes from **0-99**. The number **0** is used as a default value for single axis application. For multi-axis operation a number from **1-99** should be used, Number **1** must always be used (see below).

- 2) <u>Realise an RS485 connections</u> and set the baud rate in the terminal emulator software to **19 200.** To use the RS485 it is necessary to have a RS232/RS485 converter since PCs usually only offer a RS232 interface.
- 3) <u>To operate a motion controller</u> it is first necessary to adress it using the RI (request identifier) command.

Example: **RI 5 <CR>.** To make the prompt appear. If it does not appear check the RS485 connection and baud rate.

Using the **RI 0** command the host computer can control all the axis at the same time. In this case the echo from Motion Controller number **1** (in multi-axis the number **1** must always be used) will appear on the computer screen.

Trouble-shooting

18. Trouble-shooting

Error messages are shown with LED 3 blinking. A detailed information on the error type can be obtained using the TE (Tell Error) command.

There are two types of error code: one for input errors (WH wait high or WL wait low) and the other for controller errors (DP deviation position or over-heating).

Error code	Description	Remarks
01 to 12 50	Waiting for input (low or high) Deviation position too great	 Continues if status has been reached or restart with HO, SM or PQ, PW. Difference between the internal calculated position and actual motor position greater than the number of increments defined in DP (deviation
60	Power stage over-heating	 > 80° C detected by the temperature
61	Power supply over voltage	 Power supply voltage or retarding energy on ballast circuit to high.
62	Ballast circuit active too long	 If the ballast circuit is active for more than 5 seconds the power stage is switched off.

19. Operating system error

If the message "user program corrupted" appears on the screen, the operating system has to be turned off and re-started manually. This is done as follows:

set the S1 switch from OFF to ON (the SMD multiswitch is located be between the battery a the 9 poles D-sub RS232 connector)

- re-load the xx36_yyy.S19 program
- turn the S1 switch from ON to OFF position

The system can now be switched on normally.

Notice of use

20. General usage instruction

Power supply and fuse

Any unstabilised DC power supply voltage within the motion controllers range:

- MCBL 3603 12 V \leq Vm \leq 36V
- MCDC 3603 $12 V \le Vm \le 36V$

may be used, although it is advisable to keep this voltage as low as possible in order to minimize the EMI noise. Thus the optimum power supply voltage is given by the following equation:

 $Vm [V] = 5V + R [\Omega] \cdot I_{max} [A] + kE [V/rpm] \cdot n_{max} [rpm]$

Where:	R	= motor terminal resistance
	kε	= motor back-EMF constant
	Imax	= max. requested motor current for acceleration (= IPEAK)
	nmax	= max. motor speed reach in the application Both motion controllers
		are provided with an internal fuse.

Braking energy

When decelerating the motor, brake energy is developed. This energy increases the motion controller voltage supply. Therefore the motion controllers supplied with an internal ballast circuit which converts this energy into heat.

Wiring

A well known disadvantage of PWM (pulse width modulation), is that it generates a lot of interference. In order to reduce the effect of the interference there are some basic rules to follow:

- Use wires as short as possible
- Avoid running signal wires (logical and analog signal) in close proximity to power lead wires (power supply and motor power leads)

21

Use shielded wires

Hardware

21. Hardware

Connector layout for MCBL 3603

Connect	Nr. Terminal	Function	Туре
PWR	2	Power supply	
Motor	3	Motor phases	WAGO Multiconnector 5,0mm
Encoder	15	Encoder input, encoder 1phases, Hall effect sensors	D-SUB High-Density
Optio	8	Pulse/dir, analogue, encoder 2	
PLC I/O	26	12 inputs / 8 outputs	Modular RJ45
RS232/	9	Serial interface RS232/RS485/	D-SUB High-Density
RS485		RS485easy-Bus	D-SUB normal

Connector layout for MCDC 3603

Connect	Nr. Terminal	Function	Туре
PWR	2	Motor terminals	WAGO Multiconnector 5,0 mm
Motor	2	Power supply	
Encoder	15	Encoder-Input, encoder 1	D-SUB High-Density
Optio	8	Pulse/dir, analogue, encoder 2	Modular RJ45
PLC I/O	26	12 inputs / 8 outputs	D-SUB High-Density
RS232/	9	Serial interface RS232/RS485/	D-SUB normal
RS485		RS485easy-Bus	

PIN configuration

22. PIN configuration

Serial interface RS 232 or RS 485, 9 POLE D-SUB

Pin 1 NC Pin 2 R5232 Pin 3 R5232 Pin 4 NC Pin 5 R5232 Pin 6 R5485 Pin 7 R5485 Pin 8 R5485	Not connected Receiver Rx Transmitter Tx Not connected GND Receiver R Receiver R Transmitter T Transmitter T
---	--

RS232 set up

Set the baud rate RS232 via 6-bit CONFIG switch S1 (6 bit SMD multiswitch)

data 8bit stop bit 1 parity no

bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	Function
х	х	х	OFF	OFF	х	RS232 9 600 baud (default)
х	х	х	OFF	ON	х	RS232 2 400 baud
х	х	х	ON	OFF	х	RS232 4 800 baud
х	х	х	ON	ON	х	RS232 19 200 baud

By turning the system off and back on the new baud rate will be activated.

RS232 electrical connection

FAULHABER

PIN configuration

RS485 set up

Setting of the baud rate RS485 over 6-bit CONFIG switch S1: data 8bit, stop bit 1, parity no

bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	Function
х	OFF	OFF	х	х	х	RS485 19 200 baud (default)
Х	OFF	ON	х	х	х	RS485 9 600 baud
х	ON	OFF	х	х	х	RS485 38 400 baud
х	ON	ON	х	х	х	RS485 free

By turning system off and back on the new baud rate will be activated.

Bus RS485easy, MODULAR RJ45

Pin Pin Pin Pin Pin Pin Pin	1 2 3 4 5 6 7 8	NC NC RS485 RS485 NC RS485 RS485 RS485	Receiver R Receiver R Transmitter T Transmitter T
---	--------------------------------------	---	--

PLC 12 Input / 8 Output available to the user, 26 pole HD-DSUB

Pin 1 Pin 2 Pin 3 Pin 4 Pin 5 Pin 6 Pin 7 Pin 8	Output 1 Output 2 Output 3 Output 4 Output 5 Output 6 Output 7 Output 8	Active low, open collector 50 V / 500 mA on GND, free- wheeling diode Active low 0 V / 50 mA, high 5 V / 50 mA Active low 0 V / 50 mA, high 5 V / 50 mA
Pin 9 Pin 10 Pin 11 Pin 12	COMMON GND GND VCC	Joint cathodes of output free wheeling diodes 1 - 6 2A 2A 5 V /250 mA
Pin 17 Pin 18 Pin 19 Pin 20 Pin 21 Pin 22 Pin 23 Pin 23 Pin 24 Pin 25 Pin 26	Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7 Input 8 ¹⁾ GND 5V	Pull up 2,7 k on VCC 5 V standard or optional 24 V (for PNP sensors) 2A 250 mA
Pin 13 Pin 14 Pin 15 Pin 16	Input 9 ²⁾ Input 10 ²⁾ Input 11 ²⁾ Input 12 ²⁾	Pull up 2,7 k on VCC 5 V standard or optional 24 V Bit for BCD program decoder.

¹⁾ Program start trigger with BCD coded input (MODE = 10)

²⁾ BCD coded input for program, 1-15, selection (MODE = 10)

PIN configuration

Input and output internal electrical circuit

Encoder Hall, 15 Pole HD DSUB

Pin 1	GND	GND for both, encoder and Hall
Pin 2	5V Encoder	150 mA
Pin 3	Encoder B	Pull up 2,4k to 5V, differential input 26LS32
Pin 4	Encoder B	middle level:pull up 2,4k to 5V, pull down 2k, differential input 26LS32
Pin 5	Encoder A	Pull up 2,4k to 5V, differential input 26LS32
Pin 6	Encoder A	middle level:pull up 2,4k to 5V, pull down 2k, differential input 26LS32
Pin 7	Encoder Z	Pull up 2,4k to 5V, differential input 26LS32
Pin 8	Encoder Z	middle level:pull up 2,4k to 5V, pull down 2k, differential input 26LS32
Pin 9	Hall A	Pull up 2,4k to 5V, differential input 26LS32
Pin 10	Hall A	middle level:pull up 2,4k to 5V, pull down 2k, differential input 26LS32
Pin 11	Hall B	Pull up 2,4k to 5V, differential input 26LS32
Pin 12	Hall B	middle level:pull up 2,4k to 5V, pull down 2k, differential input 26LS32
Pin 13	Hall C	Pull up 2,4k to 5V, differential input 26LS32
Pin 14	Hall C	middle level:pull up 2,4k to 5V, pull down 2k, differential input 26LS32
Pin 15	5V Hall	150 mA

Power supply

Pin 1	GND		
Pin 2	POWER	MCDC 12 - 36V (over v	oltage limited with protection diode)
		MCBL 12 - 36V (over v	voltage limited with protection diode)
		DC motor	BL motor
Pin 3		Motor (-)	Phase A
Pin 4		Motor (+)	Phase B
Pin 5		NC	Phase C

PIN configuration

Optional function, 8 pole modular RJ45

GND	GND internal
10V (5V)	10V default voltage (5V with option second Encoder on request)
Pulse	pull up 2,4k to 5V, differential input 26LS32
Direction	pull up 2,4k to 5V, differential input 26LS32
Direction	middle level: Pull up 2,4k to 5V, pull down 2k, differential input 26LS32
Pulse	middle level: Pull up 2,4k to 5V, pull down 2k, differential input 26LS32
+/- 10V	analogue input reference, range +/- 10V
0- 10V	analogue input reference, range 0-10V
	GND 10V (5V) Pulse Direction Direction Pulse +/- 10V 0- 10V

FAULHABER

The FAULHABER Group:

DR. FRITZ FAULHABER GMBH & CO. KG

Daimlerstraße 23 71101 Schönaich · Germany Tel.: +49 (0)7031/638-0 Fax: +49 (0)7031/638-100 Email: info@faulhaber.de www.faulhaber.de

MINIMOTOR SA

6980 Croglio · Switzerland Tel.: +41 (0)91 611 31 00 Fax: +41 (0)91 611 31 10 Email: info@minimotor.ch www.minimotor.ch

MicroMo Electronics, Inc.

14881 Evergreen Avenue Clearwater · FL 33762-3008 · USA Phone: +1 (727) 572-0131 Fax: +1 (727) 573-5918 Toll-Free: (800) 807-9166 Email: info@micromo.com www.micromo.com

© MINIMOTOR SA, Switzerland MA15011, english, 3. issue, 11.05.2005 Version 4.10