
 1

RMCSANS user guide
Orsolya Gereben

24.06.2010

I. The Reverse Monte Carlo algorithm
The Reverse Monte Carlo (RMC) computer simulation technique is capable of building 3-dimensional

structural models in agreement with the experimental (mainly diffraction) data. The description of the
algorithm is given elsewhere1,2,3. Several computer version of RMC exist, one of the newest
implementation (RMC++)4 was written in C++ and was parallelised and improved with new capabilities
(RMC++_new and RMC++_multi)5. These later software were used as the staring point of the
RMCSANS program. The theoretical background is discussed elsewhere6, here the usage of the program
will be described.

II. The RMCSANS program
The RMCSANS program was written in C++, using only the standard statements as far as it was

possible. There were however few cases, where operation system-specific statements have to be used,
these are located in altern.h and altern.cpp files. The program was tested on Windows and Linux
platform, if other platform is used, some alteration might be necessary!

The RMCSANS program can be used in normal (consecutive) or multi-threaded environment
depending on the compilation, which will be discussed later.

A. The structure of the program

The program consists of several header and source files listed below.
Header files

altern.h header file including the necessary built-in headers,
containing the options regulating the building of the code,
declaration of the functions differing according to the
options chosen

Coordinates.h declaration of the SimpleCfg class which stores the
coordinates, and the class’ destructor

Grid.h declaration of the Grid class related to the gridding of the
simulation box, and the class’ destructor

Move.h declaration of the Move class responsible for making the
movement

PrimaryClasses.h declaration of basic classes: ExptsData, CoordNumbConst,
AvCoordConst, RunParams and the classes’ destructors

SecondaryClasses.h declaration of the classes involved in the calculation:
HistoSet, DataMat, PPCFSet, CalcPart, CalcData,
ChiSquared, History and the classes’ destructors

Threads.h declaration of the Threads class for multi-threading and
the class’ destructor

units.h declaration of the used constants
utilities.h declaration of the auxiliary functions

Source files

altern.cpp definition of the function differing according to the chosen
options

AvCoordConst.cpp definition of the AvCoordConst class describing the
average coordination number constraint

 2

CalcData.cpp definition of the CalcData class holding and calculating
the calculated data comparable with the experimental

CalcPart.cpp definition of the CalcPart class holding and calculating the
partial S(Q) and SPA(Q)

ChiSquared.cpp definition of the ChiSquared class holding and calculating
difference between the calculated and the experimental
data

CoordNumbConst.cpp definition of the CoordNumbConst class describing the
coordination number constraint

DataMat.cpp definition of the DataMat class containing the conversion
table for the normalization of the g(r), and the Fourier
transformation matrices

ExptsData.cpp definition of the ExptsData class containing the
experimental data

Grid.cpp definition of the Grid class containing the gridding of the
simulation box

History.cpp definition of the History class gathering and outputting
information about the run

HistoSet.cpp definition of the HistoSet class containing and calculating
the histogram

MakeMove.cpp containing the makemove function creating the movement
of the spheres

Move.cpp definition of the Move class, regulating the movements of
the spheres, functions connected with the “too close”
spheres, other functions of the Move class

PPCFSet.cpp definition of the PPCFSet class, containing the partial pair
correlation functions (ppcf)

RMCSANS.cpp the main program for RMCSANS regulating the run,
creating the instances of the classes, containing the
simulation loop

RunParams.cpp definition of the RunParams class describing the
parameters of the simulation, calculating some necessary
parameters

SimpleCfg.cpp definition of the SimpleCfg class containing the
coordinates of the spheres

Threads.cpp definition of the Threads class containing the variables and
function necessary for multi-threading, but a basic Thread
class without multi-threading-specific variables is used
even in case of consecutive compilation

utilities.cpp definition of the auxiliary functions

B. Files used by RMCSANS

The _X in some of the file names refers to the time frame index. In case of the *.hst, *.datmat, the
same file is used during a simulation for all the time frames, indexing is only added, if the simulation was
not started from the initial data.
*.dat INPUT: the data file containing the parameters of the run.
*.cfg, *.cfg_X The text type configuration file containing the coordinates.
*.bcf, *.bcf_X The binary type configuration file containing the coordinates.
anyname_X INPUT: The files containing the experimental data, name can be free

choice.
*.ind INPUT: only if AtomEye option 3 is used, containing the indices of the

 3

selected atoms, one for a line, (indexing starting with 1).
*.fdat INPUT: for frame specific coordination or average coordination number

data.
sfactorcube INPUT: Only needed, if xmax>√2.
*.hgm, *.hgm_X Partial histograms.
*.grid, *.grid_X Gridding of the simulation box.
*.cnc, *.cnc_X The coordination number constraint.
*.acn, *.acn_X The average coordination number constraint.
*.tcs, , *.tcs_X The indices of the tooclose spheres in case of the moveout option.
*.sind OUTPUT: the indices of the selected spheres in case AtomEye option 1
*.fit_X OUTPUT: the total calculated I(Q.
*.expt, *.expt_X OUTPUT: The experimental data is saved to it for checking.
*.ppcf, *ppcf_X OUTPUT: The initial radial distribution function.
*.psq, *.psq_X OUTPUT: The calculated S(Q) partials.
.spa, (.spa_X) OUTPUT: The calculated SPA(Q) partials.
.hst, (.hst_X) OUTPUT: The history file containing information about the run.
.chi, (.chi_X) OUTPUT: The initial χ2 for each data set.
.datmat, (.datmat_X) OUTPUT: The conversion tables of the DataMat object.
.calcdat, (.calcdat_X) OUTPUT: The initial calculated I(Q) data.

• The input files written in bold are mandatory, but it is enough, if either the text or the binary

coordinates files is given, text type has precedence over binary, if both is given and they are not
compatible.

• The software can be started without giving any I(Q) data, in this case a hard sphere simulation
is performed, constraints can be present.

• The files given in (brackets) are produced only at the beginning of a whole simulation process,
if the simulation does not start from the beginning, but it is a continuation of the simulation
starting from frame X. In this case the starting frame index is appended to these file names. In
case of the history file, the same history file created at the beginning of a simulation is used
during all the time frames during a continuous simulation.

C. Visualization using AtomEye

Changes of particle coordinates during the simulation can be visualized. The whole simulation box or a
chosen subset of particles, depending on the AtomEye options specified in the parameter file of
RMCSANS, can be displayed during or after the simulation. For this purpose the Atomistic Configuration
viewer7,8, AtomEye 3.0, was modified. AtomEye is a linux-based free software capable of making 3D
colour images based on a specific, AtomEye-format configuration file containing, among others, the
coordinates and atomic symbols of atoms. There are lots of possibilities to govern the appearance of the
pictures. As RMCSANS does not use atoms but larger particles, the program had to be modified to be
able to handle them. Several other modifications were performed; the most important are making
AtomEye to check if the image belonging to the next simulation stage is available and automatically
display it; it is now also possible to display transparent particles. The new, modified version is called
AtomEye3.1. RMCSANS and AtomEye are two completely different program working separately.

D. The structure of the *.dat file

The example will show the *.dat parameter file for a two-component system, the first component
having 3 and the second 2 shells. The first column will contain a serial number to help referencing the
lines later, but it is not part of the file. As there are parameters, which has to be given in separate line (see
coloured lines) for each instance of a parameter specified before them in the *.dat file, the index of a line
can be subject to the structure of the file.

 4

1 test_run

2 8 ! total number of threads
3 10 ! number of time frames
4 1.2148e-6 ! number density
5 0.375 0.625 ! molar fraction
6 3 2 ! number of shells/type
7 13 10 ! mean core sphere radius for each type
8 15 16 17 ! mean shell radius(es) sphere radius for a given type
9 12 14 ! mean shell radius(es) sphere radius for a given type
10 0 0 ! maximum change in sphere radius
11 -1 -1 ! z parameter (controlling the width of the size

distribution), -1 for monodispersity
12 0 0 ! maximum change in z parameter (integer)
13 1.0 1.2 ! maximum moves
14 1.0 ! r spacing (Å)
15 0 ! initial bin shift
16 1.0 ! xmax used in the run (in reduced units)
17 0 ! whether to use moveout option (0: false, 1: true)
18 1 ! whether to load the histogram (and coordination

numbers, if there is a constraint), if the files are
available (0: false, 1: true)

19 14 ! maximum number of atoms in a gridcell
20 0.3 1 ! fraction of swaps, ntypes*(ntypes-1)/2 0 (not allowed)

or 1 (allowed) for the possible mixed partial (in order 1-
2, 1-3,... 2-3...)

21 1 0.5 s1 s4 501.0 502.0 300 400 ! whether to generate AtomEye3.1 input file,
weight/type in amu, number of used spheres/type
(needed for option 1, optional for option 2)

22 100 ! step for printing (number of moves)
23 20000 30 0.5 ! time limit, step for saving in minutes , multiplication

factor for the time limit of the first time frame
24 100 !size of the history buffer (0->no history record, 200 is

good)
25 50 !number of savings between each history buffering

(>=0)
26 2 ! no. of neutron data series
27 s2_non_eq.iq
28 10 101 ! range of Q points (start with 1)
29 0.000 ! constant to subtract
30 0.2 -0.1 ! core relative scattering length density/type (Å-2)
31 0.4 0.6 0.8 ! shell relative scattering length densities for the given

type
32 0.3 -0.3 ! shell relative scattering length densities for the given

type
33 3e-12 ! standard deviation
34 0 ! whether to vary amplitudes (0: false, 1: true)
35 0 ! whether to vary constant
36 0 ! whether to vary linear
37 0 ! whether to vary quadratic
38 s2.iq
39 1 139 ! range of Q points (start with 1)
40 0.000 ! constant to subtract

 5

41 -0.2 -0.5 ! core relative scattering length density/type (Å-2)
42 0.0 0.2 0.4 ! shell relative scattering length densities for the given

type
43 -0.1 -0.7 ! shell relative scattering length densities for the given

type
44 2e-12 ! standard deviation
45 0 ! whether to vary amplitudes (0: false, 1: true)
46 0 ! whether to vary constant
47 0 ! whether to vary linear
48 0 ! whether to vary quadratic
49 1 1 5 ! number of coordination constraints, number of

neighbour type/constraint, number of sub-
constraint/constraint

50 1 1 34.0 40.0 8 9 10 11 12 0.4 0.5
0.6 0.8 1.0 0.0002 0.0003 0.0004
0.0005 0.0005

! central type, neighbour type(s),
rmin[first_neightype]… rmin[last_neightype],
rmax[first_neightype]… rmax[last_neightype], desired
coordination number[first_subconst] ...desired
coordination number[last_subconst],
fraction[first_subconst] ...fraction[last_subconst],
sigma[first_subconst] ...sigma[last_subconst]

51 2 ! number of average coordination constraints
52 1 1 34.0 40.0 12 0.004 ! type of the central atom, type of neighbour, min dist,

max dist, desired average coord numb, sigma
53 1 2 34.0 40.0 12 0.004 ! type of the central atom, type of neighbour, min dist,

max dist, desired average coord numb, sigma

Detailed description of some of the parameters, the parameters will be referenced by the serial number

in the first column.
2.) Number of threads for parallel execution.
3.) Number of consecutive time frames to fit, which is the number of experimental data snap shots

separated by a time interval.
6.) Number of shells for the onion sphere model (see Ref 6). It can be zero, in this case no lines like 8

and 9 can be in the file.
7.) The radius of the core for each type of particle.
8-9.) As many line like this, as the number of shells given in line 6.
10-12.) Related to the poly-dispersity, which is not implemented in the software yet, leave the values, as

they are.
14.) The histogram bin size in Ångstrom.
15.) Number of imaginary bins to leave out from the calculation at the small distance end (before the

first used histogram bin). Can be a fraction!
16.) Largest distance between the particles to include in the histogram calculation in reduced unit

(maximum is √3).
17.) If there are particles closer to each other than the cut-off distance, using the moveout option (1)

means to move more frequently the “too close” particles to increase their distance above the cut-
off. (0) means not to use moveout option. There can be more, than one “too close” particles
among the nmoved moved particles!

18.) If the histogram file *.hgm, {the *.cnc and *.acn files if there is/are (average) coordination
number constraint(s)} are available, in case of (1) loading of them will be attempted, and if they
are compatible with the given constraints and parameters, then initial histogram calculation will
not be done. In case of option 0 initial histogram calculation will be performed, and if they were
existing files, they will be overwritten. The values of the initial calculation will be saved in the
*start.hgm, *start.cnc and *start.acn files as well to be preserved. It has to be emphasized, that in

 6

case of loading the histogram and coordination constraint files, the validity of the actual values
cannot be checked, so care must be taken to use files corresponding to the *.cfg and/or *.bcf files!

19.) Gridding means that the simulation box is divided into a given number of sub-cells in each
direction. If we know about each particle, in which grid cell it is located, and we want to calculate
certain properties for only those particles that are not farther from the chosen particle than a given
distance, then it is enough to calculate only for those particles, which are located in the same, and
a given number of neighbouring grid cells. As checking, whether the move can be acceptable
based on the satisfaction of the cutoff distances falls in this category, calculation can be quicker, if
the grid-based cutoff check is performed before entering the lengthy histogram change calculation.
The number of particles in the grid cell is regulated by this parameter. Based on this, the average
number density of the sample and an additional safety parameter, SAFE_ADD located in the
units.h, the program calculates the number of grid cells in each direction t. As due to
inhomogenity in the sample these numbers can vary, the program always checks, whether the
maximum is not exceeded, before attempting to write into the arrays. If the maximum was
exceeded, the program gives a warning message, resizes the necessary arrays automatically, and
continues execution. Gridding can only increase speed, if the number of particles in a grid cell is
chosen adequately! It is preferable to set the desired maximum number of particles in a grid cell in
the *.dat file to a relatively low value (5-10) depending of course on the system size to ensure at
least 5 or preferably more grid cell in each direction. The actual number of grid cells is calculated
by the program and printed on screen during the initialisation period, or can be found in the *.grid
file. It has to be kept in mind, that even if the largest cutoff distance is smaller than the length of
one grid cell, not just the cell containing the central particle, but all its closest neighbour cells are
checked, as the central particle can be close to the edge. This way normally at least 27 cells are
checked. Speed increase due to gridding can only be expected, if the number of grid cells to be
checked is smaller, than the total number of grid cells!

20.) Only has meaning for multi-component systems, where particles from different types can be
swapped with each other to help the mixing of the simulation box. First swap fraction has to be
given, a real number (between 0-1), which regulates the fraction of swaps related to the moves. In
case of (1) only swaps, (0) no swap at all. After this in case of swaps as many integer as the
number of mixed partials (their number is ntypes*(ntypes-1)/2) specify, which mixed partials can
participate in the swap, (0) not involved, (1) involved. The order of the partials is the same, as
usual, without the ‘clean’ partials (1-2, 1-3,…2-3,…).

21.) The parameters concerning AtomEye are given in one line following each other. These are the
AtomEye_option, AtomEye_timesave, particle_name/type, weight/type, [pnused_spheres/type for
AtomEye_option=1,2,3] or [select_axis, coord_limit1, coord_limit2 for AtomEye_option=4].
Description of the options:

� AtomEye_option controls, whether AtomEye type cfg file will be created, and if it will be, how
the particles are chosen.
0: No AtomEye cfg file is created, the rest of the line is skipped.
1: The indices of the Np used particles will be spread among the particles of this type with as

equal step as possible. The particles can be found everywhere in the simulation
box.(default). NUMBER of used spheres/type is needed after weight/type!

2: The first Np particle will be used from a type. (Most probably particles close to each other
are chosen this way!) NUMBER of used spheres/type is needed after weight/type!

3: Particles of given indices specified in the index file will be selected. (Index can range from 1
� ntotal). NUMBER of used spheres/type is needed after weight/type!

4: Only particles between two parallel planes will be saved into the file. The planes have to be
parallel to one of the sides of the simulation box! In case of option 4 after the weight/type
has to be specified by an integer, which axis is perpendicular to the plane (x:0, y:1, z:2),
followed by two real numbers (between -1 and +1) to specify the reduced coordinates
according to the selected axis, between which the atoms will be outputed. Example for
choosing the atoms, which reduced y-coordinates are between -0.7 � -0.5, after the
weight/types: 1 -0.7 -0.5

 7

� AtomEye configuration saving time as the fraction of RMC saving time (0.5 means a
configuration is saved between RMC savings, and an other at RMC saving).

� particle_name has to be the standard chemical symbol for atoms, or s1, s2, s3, s4, s5 for
compound particles.

� weight for each type is needed by the AtomEye extended configuration file, but the value is not
relevant, if only the visualization of the configuration is wanted.

� number of used spheres for each type is needed for AtomEye_option=1,2,3. If number of used
spheres is equal or greater total number of spheres for this type, than all the spheres of this type
will be selected!

� select_axis only for AtomEye_option=4, to specify, which axis is perpendicular to the cutting
planes, 0 for x, 1 for y, 2 for z.

� coord_limit1, coord_limit2 only for AtomEye_option=4, values between -1 and +1 to specify the
reduced coordinates according to the selected axis, between which the atoms will be outputted.

23.) Time limit (minutes) is the total running time for one time frame. Saving time (minutes) regulates
the interval the data is saved to disc. The duration of the first time frame can be different from the
others, the multiplication factor has to be given here, it is a real number. Can be useful, is the
simulation is stopped at a time frame and continued from it, but there is no need to complete a
whole time limit interval.

24.) Size of the history buffer, each containing the χ2 for a given phase of the simulation. When the
buffer is full, the data is written to disc. Large value means less frequent disc writing, so greater
program speed. (0->no history record, 200 is good).

25.) Regulates the interval, the χ2 is saved to the history buffer. Integer number, denotes the number of
savings between each history buffering.

26.) This is the number of different experimental SANS data sets. Each set has to have the same
number of time frames (number of consecutive experiments) given in line 3. The following two
green blocks in this example (27-37,38-48) specifies the parameters for a set.

27.) Name of the experimental data file (filename). Each time frame has to be in a separate file, named
filename_X, where X is the time frame index.

28.) Range of the data points used from the files (index begins with 1).
29.) Constant to be subtracted from the experimental data after it was read, shifting the data along the

y-axis. The S(Q), and consequently the I(Q) calculated by RMC tends to zero at larger Q, so
should the experimental data!

33.) Standard deviation. The χ2 is divided by its square, it is used for scaling the contribution of the
different data series and constraint to each other. The smaller the value, the larger the contribution
of the given data set will have in the total χ2.

34-37.)Whether to use renormalization of the data sets, see RMC.
49-53.) See the details later, where the frame-specific constraints are discussed.

1. Frame-specific average and normal coordination number constraints

Coordination number constraint
The coordination number constraint try to enforce the system, that a specified fraction of the central

particle of the given type should have a specified number of neighbours of a desired type between rmin and
rmax.

To save memory and increase speed the coordination number constraint was generalized, so not only
one, but also a specified number of neighbour types can exist for a constraint. For example in case of 3
atom types it is possible to define a constraint that the central atom of type1 should have 3 atoms
belonging to type2 and type3 between rmin[type2] � rmax[type2] and rmin[type3] � rmax[type3]
respectively, which means, that there are several possibilities satisfying this constraint (type2-type2-
type2, type2-type2-type3, type2-type3-type3 and type3-type3-type3).

The concept of sub-constraints was also introduced. More than one sub-constraint means, that more
than one desired coordination number (each with its own desired fraction and sigma) can be specified for

 8

a constraint to make the calculation quicker and use less memory and disk space, if constraints should
only differ in their desired coordination number. In the original concept each constraint had only one sub-
constraint. The introduction of sub-constraint will not result in additional functionality.

The *.dat file should contain the constraint the following way, for example for 3 constraint, the first
having 1 neighbour type and 1 sub-constraint, the second 1 neighbour type and 2 sub-constraints and the
third 2 neighbour type and 1 sub-constraint:

3 1 1 2 1 2 1 ! no of coordination constraints, number of neighbour types for

each constraint, number of sub-constraint for each constraint

1 2 2.2 3.05 2 1.0 0.00025 ! central type, neighbour type(s),

rmin[first_neightype]… rmin[last_neightype], rmax[first_neightype]…

rmax[last_neightype], desired coordination

number[first_subconst]...desired coordination number[last_subconst],

fraction[first_subconst]...fraction[last_subconst],

sigma[first_subconst]...sigma[last_subconst]

1 3 2.1 3.1 3 4 0.4 0.6 0.00025 0.00015! central type, neighbour type(s),

rmin[first_neightype]… rmin[last_neightype], rmax[first_neightype]…

rmax[last_neightype], desired coordination

number[first_subconst]...desired coordination number[last_subconst],

fraction[first_subconst]...fraction[last_subconst],

sigma[first_subconst]...sigma[last_subconst]

1 2 3 2.2 2.1 3.05 3.1 3 1.0 0.00001 ! central type, neighbour type(s),

rmin[first_neightype]… rmin[last_neightype], rmax[first_neightype]…

rmax[last_neightype], desired coordination

number[first_subconst]...desired coordination number[last_subconst],

fraction[first_subconst]...fraction[last_subconst],

sigma[first_subconst]...sigma[last_subconst]

If coordination number constraint is applied, the number of types cannot exceed 7 if long int type is 4
byte or 10 if long int type is 8 bytes (this depend on the computer applied and the compiler) as the 8*size
of internal variable CoordNumbConst::cctype (defined as long int) cannot exceed the number of partials!
If more, than 7 types needed, and long int is only 4 byte, then change the type of this variable to 64bit
integer, which is unfortunately called by different names in different C++ environment, so it is not used
presently in the program.

If we have several time frames in a data set, then it can be necessary to define different desired fraction
and/or sigma for each time frame. The indicator for frame specific data is different for the fraction and the
σ, as for fraction zero can be a valid value. So for fraction < 0 means, that frame specific data is given,
for σ ~0 (absolute value smaller than LOAD_TOL specified in the units.h) indicates, that frame specific
data is given. If σ is negative value either in the *.dat or in *.fdat file, it means that not the actual value of
σ is given, but the percent of the initial χ2 of the given constraint to the initial χ2 of the first I(Q) data set.
This means, that for example σ= -0.8 in the *.dat file means, that the initial χ2 at the beginning of each
time frame of the given coordination constraint has to be 80% of the initial χ2 of the first I(Q) constraint
of the given time frame. σ =-0.8 for a given time frame in the *.fdat file means, that the initial χ2 for this
time frame of the given coordination constraint has to be 80% of the initial χ2 of the first I(Q) constraint
of the given time frame. Specifying the actual σ value or the starting percentage can be used mixed even
for one coordination constraint, you can specify actual value for a given frame and percentage for the
other frame, also this might not make too much sense.

Each sub-constraint of a constraint is handled separately. The *.fdat file has to contain the frame
related data for the coordination constraint(s) in the following format described below beginning in the
first line of the file. For a sub-constraint of a constraint which has any frame-specific data there has to be
as many lines in the *.fdat file, as the total number of time frames (not just the used ones). Each line has
to have the format containing the data for the given frame:

constraint_index sub-constarint_index fraction σ

Even if there is not frame specific data for the fraction, but there is for σ, some value for the fraction
has to be given, it will not be used by the program, but needed for reading the file. This way the format of

 9

the file can be the same, if you change your mind after using both frame specific fraction and σ only to
use frame specific σ.

If there are more than one constraints with frame specific data, then they have to follow each other in
the same order as in the *.dat file. For those coordination constraints, where there is not any frame
specific data, the *.fdat file will not contain any line for them.

Average coordination number constraint
The concept is similar to the coordination constraint, but here not the actual number of

neighbours/particle is constrained, but only the average coordination number. The indicator for frame
specific data is different for the required coordination number and the σ, as for acnreq zero can be a valid
value. So for acnreq < 0, and/or σ ~0 (absolute value smaller than LOAD_TOL) indicates, that frame
specific data is given in the *.fdat file.

For σ negative value in either in the *.dat or in *.fdat file means, that not the actual value of σ is given,
but the required percent of the initial χ2 of the given constraint to the initial χ2 of the first I(Q) data set.
This means, that for example σ -0.8 in the *.dat file means, that the initial χ2 at the beginning of each
time frame of the given average coordination constraint has to be 80% of the initial χ2 of the first I(Q)
constraint of the given time frame. σ -0.8 for a given time frame in the *.fdat file means, that the initial χ2
for this time frame of the given average coordination constraint has to be 80% of the initial χ2 of the first
I(Q) constraint of the given time frame. Specifying the actual σ value or the starting percentage can be
used mixed even for one average coordination constraint, you can specify actual value for a given frame
and percentage for the other frame, also this might not make too much sense.

The *.fdat file has to contain the frame related data for the average coordination constraint(s) in the
following format described below, after the last line of the frame specific information for the coordination
constraint, if there is any. For a constraint which has any frame specific data there has to be as many lines
in the *.fdat file, as the total number of time frames (not just the used ones). Each line has to have the
format containing the data for the given frame:

constraint_index acnreq σ

Even if there is not frame specific data for the acnreq, but there is for σ, some value for the acnreq has to

be given, it will not be used by the program, but needed for reading the file. This way the format of the
file can be the same, if you change your mind after using both frame specific acnreq and σ only to use
frame specific σ.

If there are more than one constraints with frame specific data, then they have to follow each other in
the same order as in the *.dat file. For those average coordination constraints, where there is not any
frame specific data, the *.fdat file will not contain any line for them.

E. The structure of the *.cfg file

The format of the text-type coordinate file is identical to the RMC version 3 format, except few places
in the text, so RMCSANS can read the RMC file, and vice versa.

First a header can be found with general information. The coordinates of the spheres are arranged
according to types, first are all the coordinates of the first type, then the second and so on. It has to be
noted, that regardless the three separate box vectors, only cubic simulation box can be handled, and only
the first box vector is read.

(RMCSANS version 1 format configuration file) !file created by SimpleCfg::save !

test

 1000 962 376 moves generated, tried, accepted

 0 configurations saved

 32000 spheres of all types

 10

 2 types of spheres

 1 (to be compatible with RMC)

 0 (to be compatible with RMC)

 F (box is cubic)

 Defining vectors are:

 690.534004 0.000000 0.000000

 0.000000 690.534004 0.000000

 0.000000 0.000000 690.534004

 12000 spheres of type 1

 1 sphere sites

 0.000000 0.000000 0.000000

 20000 spheres of type 2

 1 sphere sites

 0.000000 0.000000 0.000000

 -0.987633336403535 0.925880785212280 0.909503049321865
 -0.977325226155868 -0.953697637327416 -0.990475192582183

 0.887719053851144 0.997024791676164 -0.974844995102832

 -0.883800549659262 -0.936855638162484 -0.869230768516112

 -0.926418036537766 0.939895658760871 -0.921847223726014

 -0.867742379356644 -0.880791969987750 0.989364262371605

 0.985969129847551 -0.852903753907912 -0.902887487782913

 -0.822462269892600 -0.964524782323185 -0.894389827275485

 -0.766888765973420 -0.868694927876430 0.932139201516232

 �
 -0.709210176450055 -0.991277379975797 0.994665938293646

 -0.819921420524851 -0.922772485395741 -0.989073934225886

 -0.790493404801405 -0.970241507519512 0.990513018228407

F. The structure of the experimental data file

First the title of the data series can be given, then an empty line followed by the Q and I(Q) data. I(Q)
is used instead of the microscopic differential (scattering) cross section, which is the experimental data
for RMCSANS, see [6] for details.

290 !hs_c2_cc12_2

0.001000000 1.726670E-08

0.001050000 1.717757E-08

0.001102500 1.707971E-08

0.001157625 1.697231E-08

0.001215506 1.685451E-08

0.001276282 1.672537E-08

0.001340096 1.658387E-08

0.001407100 1.642894E-08

 �

0.445000000 2.221700E-12

0.455000000 7.536251E-15

0.465000000 2.333310E-12

0.475000000 7.845965E-12

0.485000000 1.539494E-11

0.495000000 2.366464E-11

 11

III. Usage of the RMCSANS program

A. Compilation of the program

As the programs was developed with the possibility to be run on different platforms, due to the
differences of the operating systems and the available compilers some code changes are necessary before
compilation. The program was tested both on PC having Windows operation system using Microsoft
Visual C++ compiler, and on GNU/LINUX platform.

1. Pre-processor directives for code building

Pre-processor directives regulate the conditional building of the code. The description of the options
regulating the different building of the code can be found in the header file altern.h having the simple
form of #define PARAMETER. The options can be turned on in LINUX environment by passing the
appropriate command line argument to make. In WINDOWS environment, if we want to choose the given
option, then the #define PARAMETER belonging to it has to be in the code, if not then it has to be
commented out from the code preceding it with //. Here the available option will be given in their order
appearing in the file.

First option: choosing the platform
#define _MICROSOFT_VC//If switched on, compiling using MS Visual C++ with WINDOWS is

assumed. If option _GNU_LINUX is not passed to the compiler explicitly, than
MICROSOFTWINDOWS is assumed. DO NOT SWITCH THIS OFF, as in case of the linux Makefile
the _GNU_LINUX option is automatically switched on.

Second option: whether the code will be built for normal running (this is what usually needed), or for

running in test mode. The later was introduced during the testing of the programs to ensure, that the
random number generator start with the same value each time, and the program will run to a given
number of generated steps specified by LAST_GEN to make the results produced by the different version
comparable. It is also useful for performance testing.

#define _TEST_MODE //this has to be disabled, if the program is used in normal running mode
#define LAST_GEN 1000//the run will end at ngenerated=LAST_GEN in test mode (this does NOT

have to be disabled!!!)

Third option: whether build a multi-threading application. If switched on, multi-threading is possible,

the thread libraries needed, but the program can still run with only one thread! DO NOT TOUCH IT for
WINDOWS with Microsoft Visual C++, as it is passed to the pre-processor by the project setting of the
RMC_POT.dsw project file, and it is not passed by the consecutive RMC_POT_s.dsw. Do not touch this
either, if you use the Linux Makefile provided with the source code, only pass the MULTI=0 to make, if
you want to switch it on. ONLY switch it on or off, if you do not use the project files or Makefile
provided! Do not compile for multi-threading only if you do not have more, than one processor and no
thread libraries, in this case of course only one thread is assumed, (usual consecutive code) is generated..

#define _MULTI
Fourth option: the ppcf-s will be summed at each saving, and the average is calculated and saved too

//#define _SUM_PPCF

Fifth option: regulating the LINUX platform based ATLAS library usage. The libraries have to be

installed separately (see the ATLAS web site), only use this option if they are installed! The installed
ATLAS libraries are using the BLAS routines, optimised for the given platform, and can increase the
speed of the vector-vector, matrix-vector and matrix-matrix operations. In RMCSANS ATLAS is applied
for the ppcf calculation and the partial S(Q) Fourier-transformation

//#define _ATLAS//use the ATLAS libraries for matrix operations

 12

Sixth option: only if old style header files are used (this depends on the compiler), which is most

probably not the case.
//#define _OLD_HEADER //if the old style header (name.h) are used, THE NEW STYLE headers are

used by default, this option has to be commented out normally

Seventh option: for Code Warrior on Macintosh, but the RMCt++ code was never tested on this

platform, so there is no guarantee, that it can be compiled without any change! For example I have no
idea how the integer represented on 64 bits is called in this case, so this was only kept for historical
reasons!!!

//#define _CODE_WARRIOR_MAC //DEFAULT is the PC or UNIX version, this option has to be

commented out normally

Eights option: additional to the normal output, a *.out file will be created to be compatible with

RMCA containing the PPCF-s and partial S(Q) data, then the RMC and (renormalised) experimental total
I(Q).

#define _OLDFORMAT_OUT

2. Constant values

There are some preset constant values in the units.h file, which can be altered if need arises. These are:

#define FILE_NAME_LENGTH 30 : length of the file names without extensions
#define TOLERANCE 1.0e-15 : the tolerable difference coming from the different number

representation in the binary and decimal number system (if the numbers are represented by 15 digits after
the decimal point)

#define GRID_TOL 1.0e-14 : this is used to ensure the accuracy of the bin->dr conversion
#define WAIT_FOR_FILE 2 : amount of time in seconds to wait before trying to open a file again, if

file open failed
#define WAIT_LIMIT 10 : maximum amount of time in seconds to wait for a file without error

message
#define SAFE_ADD 6 : this is a safety increase for array dimensions in NeighbouList object
#define LOAD_TOL 1.0e-9 : used during the load of CoordNumbConst and CoordConst and

RunParams
The CACHE related things are architecture dependent, the given values and caching concept is for the

Intel64 architecture.
#define NUMBER_OF_CACHE_LINES_TO_FETCH 1 : Number of cache lines to cache in the same

time (pre-fetch)
#define CACHE_LINE_SIZE 64 : Byte .Size of the L1 cache, needed in some cases to optimise cache

usage. False sharing between threads has to be prevented. This can happen, when although different
threads are writing different memory addresses, but the addresses are so close to each other, that they
would be cached together into the same cache line (are inside the same CACHE_ALIGNMENT block).
Because of this, if one part of a cache line is modified, the whole cache line is written back to memory, so
different threads may want to write the same part of the memory holding back each other causing if this
happens too often to slow the performance down.

#define CACHE_PADDING NUMBER_OF_CACHE_LINES_TO_FETCH *
CACHE_LINE_SIZE : the thread segments of some arrays have to be separated at least with
CACHE_PADDING-size(data_type) amount of bytes have to be kept between the threads segment data.

 13

3. Compilation on Linux platform, the usage of the Makefile for RMCSANS

The supplied Linux Makefile can have the following command line options, which will regulate the
building of the code. The status of the switches in altern.h, whether they are commented out or not is of
no consequence, as the Makefile will always pass the Linux platform specific _GNU_LINUX switch to
the compiler, and the options in the altern.h will be bypassed. Instead, an option can be switch on by
passing command line arguments to the make. The name of the executable will contain indicators of the
used option switches to avoid confusion. The file names will always begin with 'rmcsans' and end with
'.exe'.
 The command line options for make, and the indicators in the executable name are the following:
Command line argument file name indicator option switch
TEST=X _t for _TEST_MODE, X is

the number of generated
steps to make

MULTI=0 _multi for _MULTI threading
SUMP=0 _sp for _SUM_PPCF
AT=0 _atlas for _ATLAS
OH=0 _oh for _OLD_HEADER
MAC=0 _mac for

_CODE_WARRIOR_MAC
OLDOUT=0 _oo for _OLDFORMAT_OUT
ARCH=X X where X is a number, this

adds the X to the end of the
file name before extension
to differenciate between
different architecture, if
necessary

For example compiling the RMCSANS code with ATLAS usage, summing the ppcf and compiling for
consecutive execution on a 64-bit architecture use
 make AT=0 SUMP=0 ARCH=64
This will result in executable named rmcsans_atlas_sp64.exe

4. Compilation using Windows operation system with Microsoft Visual C++

There will be two set of workspace files (*.dsw, *.dsp, *.ncb, *.opt, *.plg), the *: RMCSANS_s is for the
standard consecutive version, and the *: RMCSANS is for the parallel version. The parallel version needs
the thread libraries, this is the reason for having two workspaces. Both workspaces use the same header
and source files.

The passing of the _MULTI compiler option switch by the parallel RMCSACS workspace is done
automatically by the project setting, so do not touch the switched off _MULTI switch in altern.h!

Choose among the other preferred option switches in the altern.h file by turning them off (commenting
out) or turning on. Then build the application. The consecutive executable will be named
RMCSANS_s.exe, and the parallel RMCSANS.exe, regardless the chosen option switches.

B. Starting the program

The program can be started by the executable file name followed by the following variation of
command line arguments:

• exename

• exename filename

• exename filename y

• exename filename frame_offset

• exename filename frame_offset y

• exename filename frame_offset AtomEye_index

• exename filename frame_offset AtomEye_index y

 14

If the program is started without any command line option, then it will ask for the filename, give it

without any extension. In this case the simulation will be started from the very beginning, so *.cfg or
*.bcf file without any frame offset has to be present.

The frame_offset is for starting the program with the simulation of the frame_offset-th time frame. For
example, if we want to continue the simulation from the coordinates of the 2nd time frame, and lets
assume, that the filename is mytest, then start the program with

exename mytest _2

 and the program will look for mytest.dat, mytest.cfg_2 (mytest.hgm_2, mytest.grid_2, if constraints
present then for mytest.acn_2, mytest.cnc_2, but these are not necessary, if not found, they will be
recalculated). The same *.dat file can be used, regardless which time frame the simulation is started from,
and do not reset the number of time frames!

'y' indicates to close the window at the end of simulation, which is useful, if the output is redirected to
a file, and the program is running in the background.

AtomEye_index will be used as the serial index of the first saved AtomEye configuration file, if not
specified, 0 is assumed. The AtomEye configuration files will be numbered continuously during the
whole simulation series of the consecutive time frames, the name of the last AtomEye configuration file
for a given frame will be written into the *.hst file.

1 McGreevy, R.L., Pusztai, L.: Molec. Simul. 1, (1988) 359.
2 Pusztai, L.: J. Non-Cryst. Sol. 227-230, (1998) 88.
3 McGreevy, R.L.: J. Phys.: Cond. Matter 13, (2001), R877.
4 Evrard, G., Pusztai, L.: J. Phys.: Cond. Matter. 17, (2005) S1.
5 Gereben, O., Jóvári, P., Temleitner, L., Pusztai, L.: J. Optoelectron. Adv. Mater. 9, (2007) 3021
6 Gereben, O., Pusztai, L., McGreevy, R.L.: J. Phys.: Condens. Matter 22 (2010) 404216
7 Li J 2003 Modelling Simul. Mater. Sci. Eng. 11 173
8 Futoshi S and Li J 2006 AtomEye 3.0 software, http://mt.seas.upenn.edu/Archive/Graphics/A3/A3.html

