
THE DL POLY 4 USER MANUAL

I.T. Todorov & W. Smith

STFC Daresbury Laboratory
Daresbury, Warrington WA4 4AD

Cheshire, England, United Kingdom

Version 4.03.4, June 2012

c©STFC Preface

ABOUT DL POLY 4

DL POLY 4 is a general purpose parallel molecular dynamics simulation package developed at
Daresbury Laboratory by W. Smith and I.T. Todorov. The DL POLY project was developed under
the auspices of the Engineering and Physical Sciences Research Council (EPSRC) for the EPSRC’s
Collaborative Computational Project for the Computer Simulation of Condensed Phases (CCP5),
the Computational Chemistry and Advanced Research Computing Groups (CCG & ARCG) at
Daresbury Laboratory and the Natural Environment Research Council (NERC) for the NERC’s
eScience project Computational Chemistry in the Environment (eMinerals), directed by M.T. Dove.

DL POLY 4 is the property of Daresbury Laboratory and is issued free under licence to academic
institutions pursuing scientific research of a non-commercial nature. Commercial organisations may
be permitted a licence to use the package after negotiation with the owners. Daresbury Laboratory
is the sole centre for distribution of the package. Under no account is it to be redistributed to third
parties without consent of the owners.

The purpose of the DL POLY 4 package is to provide software for academic research that is inex-
pensive, accessible and free of commercial considerations. Users have direct access to source code
for modification and inspection. In the spirit of the enterprise, contributions in the form of working
code are welcome, provided the code is compatible with DL POLY 4 in regard to its interfaces and
programming style and it is adequately documented.

i

c©STFC Preface

DISCLAIMER

Neither the STFC, EPSRC, NERC, CCP5 nor any of the authors of the DL POLY 4 package or
its derivatives guarantee that the package is free from error. Neither do they accept responsibility
for any loss or damage that results from its use.

ii

c©STFC Preface

ACKNOWLEDGEMENTS

DL POLY 4 was developed at Daresbury Laboratory (DL - http://www.dl.ac.uk/), the Science
and Technology Facilities Council (STFC - http://www.stfc.ac.uk/), UK, with support from the
Engineering and Physical Sciences Research Council (EPSRC - http://www.epsrc.ac.uk/) and the
Natural Environment Research Council (NERC - http://www.nerc.ac.uk/).

Advice, assistance and encouragement in the development of DL POLY 4 has been given by many
people. We gratefully acknowledge the following:

T.R. Forester, I.J. Bush, M. Leslie, M.F. Guest, R.J. Allan, D. Tildesley, M. Pinches, D. Rapaport,
the UK’s “Materials Chemistry Consortium” under C.R.A. Catlow and the eMinerals project under
M.T. Dove.

This document is produced with LATEX & hdvipdfm

iii

http://www.dl.ac.uk/
http://www.stfc.ac.uk/
http://www.epsrc.ac.uk/
http://www.nerc.ac.uk/

c©STFC Preface

Manual Notation

In the DL POLY manuals specific fonts are used to convey specific meanings:

1. directories - indicates UNIX file directories

2. routines - indicates subroutines, functions and programs

3. macros - indicates a macro (file of UNIX commands)

4. directive - indicates directives or keywords

5. variables - indicates named variables and parameters

6. FILE - indicates filenames.

iv

Contents

THE DL POLY 4 USER MANUAL a

About DL POLY 4 . i

Disclaimer . ii

Acknowledgements . iii

Manual Notation . iv

Contents v

List of Tables xi

List of Figures xii

1 Introduction 1

1.1 The DL POLY Package . 2

1.2 Functionality . 2

1.2.1 Molecular Systems . 2

1.2.2 Force Field . 3

1.2.3 Boundary Conditions . 3

1.2.4 Java Graphical User Interface . 4

1.2.5 Algorithms . 4

1.2.6 DL POLY Classic features incompatible or unavalable in DL POLY 4 5

1.3 Programming Style . 5

1.3.1 Programming Language . 5

1.3.2 Modularisation and Intent . 6

1.3.3 Memory Management . 6

1.3.4 Target Platforms . 6

1.3.5 Internal Documentation . 6

1.3.6 FORTRAN90 Parameters and Arithmetic Precision 6

1.3.7 Units . 7

1.3.8 Error Messages . 8

v

c©STFC Contents

1.4 Directory Structure . 8

1.4.1 The source Sub-directory . 8

1.4.2 The utility Sub-directory . 8

1.4.3 The data Sub-directory . 9

1.4.4 The bench Sub-directory . 9

1.4.5 The execute Sub-directory . 9

1.4.6 The build Sub-directory . 9

1.4.7 The public Sub-directory . 9

1.4.8 The java Sub-directory . 9

1.5 Obtaining the Source Code . 10

1.6 OS and Hardware Specific Ports . 10

1.7 Other Information . 10

2 Force Fields 11

2.1 Introduction to the DL POLY 4 Force Field . 12

2.2 The Intramolecular Potential Functions . 13

2.2.1 Bond Potentials . 13

2.2.2 Distance Restraints . 15

2.2.3 Valence Angle Potentials . 16

2.2.4 Angular Restraints . 18

2.2.5 Dihedral Angle Potentials . 19

2.2.6 Improper Dihedral Angle Potentials . 21

2.2.7 Inversion Angle Potentials . 22

2.2.8 The Calcite Four-Body Potential . 25

2.2.9 Tethering Forces . 26

2.3 The Intermolecular Potential Functions . 27

2.3.1 Short Ranged (van der Waals) Potentials . 27

2.3.2 Metal Potentials . 29

2.3.3 Tersoff Potential . 37

2.3.4 Three-Body Potentials . 40

2.3.5 Four-Body Potentials . 41

2.4 Long Ranged Electrostatic (coulombic) Potentials . 42

2.4.1 Direct Coulomb Sum . 42

2.4.2 Force-Shifted Coulomb Sum . 43

2.4.3 Coulomb Sum with Distance Dependent Dielectric 44

2.4.4 Reaction Field . 45

2.4.5 Smoothed Particle Mesh Ewald . 46

vi

c©STFC Contents

2.5 Polarisation Shell Models . 49

2.5.1 Dynamical (Adiabatic Shells) . 50

2.5.2 Relaxed (Massless Shells) . 50

2.6 External Fields . 51

2.7 Treatment of Frozen Atoms, Rigid Body and Core-Shell Units 52

3 Integration Algorithms 53

3.1 Introduction . 54

3.2 Bond Constraints . 57

3.3 Potential of Mean Force (PMF) Constraints and the Evaluation of Free Energy . . . 59

3.4 Thermostats . 60

3.4.1 Evans Thermostat (Gaussian Constraints) . 60

3.4.2 Langevin Thermostat . 62

3.4.3 Andersen Thermostat . 64

3.4.4 Berendsen Thermostat . 65

3.4.5 Nosé-Hoover Thermostat . 67

3.4.6 Gentle Stochastic Thermostat . 69

3.5 Barostats . 71

3.5.1 Instantaneous pressure and stress . 71

3.5.2 Langevin Barostat . 72

3.5.3 Berendsen Barostat . 77

3.5.4 Nosé-Hoover Barostat . 80

3.5.5 Martyna-Tuckerman-Klein Barostat . 86

3.6 Rigid Bodies and Rotational Integration Algorithms 89

3.6.1 Description of Rigid Body Units . 89

3.6.2 Integration of the Rigid Body Equations of Motion 90

3.6.3 Thermostats and Barostats coupling to the Rigid Body Equations of Motion 93

4 Construction and Execution 95

4.1 Constructing DL POLY 4: an Overview . 96

4.1.1 Constructing the Standard Versions . 96

4.1.2 Constructing Non-standard Versions . 97

4.2 Compiling and Running DL POLY 4 . 99

4.2.1 Compiling the Source Code . 99

4.2.2 Running . 100

4.2.3 Parallel I/O . 101

4.2.4 Restarting . 102

vii

c©STFC Contents

4.2.5 Optimising the Starting Structure . 102

4.2.6 Simulation Efficiency and Performance . 104

4.3 A Guide to Preparing Input Files . 106

4.3.1 Inorganic Materials . 106

4.3.2 Macromolecules . 106

4.3.3 Adding Solvent to a Structure . 107

4.3.4 Analysing Results . 107

4.3.5 Choosing Ewald Sum Variables . 107

4.4 Warning and Error Processing . 109

4.4.1 The DL POLY 4 Internal Warning Facility 109

4.4.2 The DL POLY 4 Internal Error Facility . 110

5 Data Files 111

5.1 The INPUT Files . 112

5.1.1 The CONTROL File . 112

5.1.2 The CONFIG File . 131

5.1.3 The FIELD File . 134

5.1.4 The REFERENCE File . 150

5.1.5 The REVOLD File . 151

5.1.6 The TABLE File . 152

5.1.7 The TABEAM File . 153

5.2 The OUTPUT Files . 154

5.2.1 The HISTORY File . 154

5.2.2 The MSDTMP File . 156

5.2.3 The DEFECTS File . 157

5.2.4 The RSDDAT File . 158

5.2.5 The CFGMIN File . 160

5.2.6 The OUTPUT File . 160

5.2.7 The REVCON File . 163

5.2.8 The REVIVE File . 163

5.2.9 The RDFDAT File . 164

5.2.10 The ZDNDAT File . 164

5.2.11 The STATIS File . 165

6 The DL POLY 4 Parallelisation and Source Code 167

6.1 Parallelisation . 168

6.1.1 The Domain Decomposition Strategy . 168

viii

c©STFC Contents

6.1.2 Distributing the Intramolecular Bonded Terms 169

6.1.3 Distributing the Non-bonded Terms . 170

6.1.4 Modifications for the Ewald Sum . 171

6.1.5 Metal Potentials . 172

6.1.6 Tersoff, Three-Body and Four-Body Potentials 172

6.1.7 Globally Summed Properties . 172

6.1.8 The Parallel (DD tailored) SHAKE and RATTLE Algorithms 172

6.1.9 The Parallel Rigid Body Implementation . 173

6.2 Source Code . 174

6.2.1 Modularisation Principles . 174

6.2.2 File Structure . 176

6.2.3 Module Files . 178

6.2.4 General Files . 178

6.2.5 VV and LFV Specific Files . 179

6.2.6 SERIAL Specific Files . 179

6.2.7 Comments on MPI Handling . 179

6.2.8 Comments on setup module . 179

7 Examples 182

7.1 Test Cases . 183

7.1.1 Test Case 1 and 2: Sodium Chloride . 183

7.1.2 Test Case 3 and 4: DPMC in Water . 183

7.1.3 Test Case 5 and 6: KNaSi2O5 . 183

7.1.4 Test Case 7 and 8: Gramicidin A molecules in Water 184

7.1.5 Test Case 9 and 10: SiC with Tersoff Potentials 184

7.1.6 Test Case 11 and 12: Cu3Au alloy with Sutton-Chen (metal) Potentials . . . 184

7.1.7 Test Case 13 and 14: lipid bilayer in water 184

7.1.8 Test Case 15 and 16: relaxed and adiabatic shell model MgO 184

7.1.9 Test Case 17 and 18: Potential of mean force on K+ in water MgO 184

7.1.10 Test Case 19 and 20: Cu3Au alloy with Gupta (metal) Potentials 184

7.1.11 Test Case 21 and 22: Cu with EAM (metal) Potentials 184

7.1.12 Test Case 23 and 24: Al with Sutton-Chen (metal) Potentials 185

7.1.13 Test Case 25 and 26: Al with EAM (metal) Potentials 185

7.1.14 Test Case 27 and 28: NiAl alloy with EAM (metal) Potentials 185

7.1.15 Test Case 29 and 30: Fe with Finnis-Sincair (metal) Potentials 185

7.1.16 Test Case 31 and 32: Ni with EAM (metal) Potentials 185

7.1.17 Test Case 33 and 34: SPC IceVII water with constraints 185

ix

c©STFC Contents

7.1.18 Test Case 35 and 36: NaCl molecules in SPC water represented as CBs+RBs 185

7.1.19 Test Case 37 and 38: TIP4P water: RBs with a massless charged site 185

7.1.20 Test Case 39 and 40: Ionic liquid dimethylimidazolium chloride 186

7.1.21 Test Case 41 and 42: Calcite nano-particles in TIP3P water 186

7.2 Benchmark Cases . 186

Appendices 186

A DL POLY 4 Periodic Boundary Conditions 187

B DL POLY 4 Macros 190

C DL POLY 4 Makefiles 194

D DL POLY 4 Error Messages and User Action 236

E DL POLY 4 README 286

Bibliography 291

Index 295

x

List of Tables

5.1 Internal Trajectory/Defects File Key . 124

5.2 Internal Restart Key . 125

5.3 Internal Ensemble Key . 126

5.4 Electrostatics Key . 129

5.5 CONFIG File Key (record 2) . 133

5.6 Periodic Boundary Key (record 2) . 133

5.7 Tethering Potentials . 139

5.8 Chemical Bond Potentials . 140

5.9 Valence Angle Potentials . 142

5.10 Dihedral Angle Potentials . 143

5.11 Inversion Angle Potentials . 143

5.12 Pair Potentials . 145

5.13 Metal Potential . 146

5.14 Tersoff Potential . 148

5.15 Three-body Potentials . 149

5.16 Four-body Potentials . 149

5.17 External Fields . 150

xi

List of Figures

2.1 The interatomic bond vector . 13

2.2 The valence angle and associated vectors . 16

2.3 The dihedral angle and associated vectors . 19

2.4 The L and D enantiomers and defining vectors . 22

2.5 The inversion angle and associated vectors . 22

2.6 The vectors of the calcite potential . 25

3.1 The SHAKE (RATTLE VV1) schematics and associated vectors 57

5.1 DL POLY 4 input (left) and output (right) files . 112

A.1 The cubic MD cell . 188

A.2 The orthorhomic MD cell . 188

A.3 The parallelepiped MD cell . 188

xii

Chapter 1

Introduction

Scope of Chapter

This chapter describes the concept, design and directory structure of DL POLY 4 and how to
obtain a copy of the source code.

1

c©STFC Section 1.2

1.1 The DL POLY Package

DL POLY [1] is a package of subroutines, programs and data files, designed to facilitate molecular
dynamics simulations of macromolecules, polymers, ionic systems and solutions on a distributed
memory parallel computer. It is available in two forms: DL POLY Classic (written by Bill Smith &
Tim Forester) and DL POLY 4 (written by Ilian Todorov & Bill Smith) [2, 3]. Both versions were
originally written on behalf of CCP5, the UK’s Collaborative Computational Project on Molecular
Simulation, which has been in existence since 1980 ([4], http://www.ccp5.ac.uk/DL POLY/).

The two forms of DL POLY differ primarily in their method of exploiting parallelism. DL POLY Classic
uses a Replicated Data (RD) strategy [5, 6, 7, 8] which works well simulations of up to 30,000
atoms on up to 100 processors. DL POLY 4 is based on the Domain Decomposition (DD) strategy
[2, 3, 9, 10, 5, 6], and is best suited for large molecular simulations from 103 to 109 atoms on large
processor counts. The two packages are reasonably compatible, so that it is possible to scale up
from a DL POLY Classic to a DL POLY 4 simulation with little effort. It should be apparent from
these comments that DL POLY 4 is not intended as a replacement for DL POLY Classic.

Users are reminded that we are interested in hearing what other features could be usefully incor-
porated. We obviously have ideas of our own and CCP5 strongly influences developments, but
other input would be welcome nevertheless. We also request that our users respect the integrity of
DL POLY 4 source and not pass it on to third parties. We require that all users of the package
register with us, not least because we need to keep everyone abreast of new developments and
discovered bugs. We have developed various forms of licence, which we hope will ward off litigation
(from both sides), without denying access to genuine scientific users.

Further information on the DL POLY packages may be obtained from the DL POLY project website
- http://www.ccp5.ac.uk/DL POLY/ .

1.2 Functionality

The following is a list of the features DL POLY 4 supports.

1.2.1 Molecular Systems

DL POLY 4 will simulate the following molecular species:

• Simple atomic systems and mixtures, e.g. Ne, Ar, Kr, etc.

• Simple unpolarisable point ions, e.g. NaCl, KCl, etc.

• Polarisable point ions and molecules, e.g. MgO, H2O, etc.

• Simple rigid molecules e.g. CCl4, SF6, Benzene, etc.

• Rigid molecular ions with point charges e.g. KNO3, (NH4)2SO4, etc.

• Polymers with rigid bonds, e.g. CnH2n+2

• Polymers with flexible and rigid bonds and point charges, e.g. proteins, macromolecules etc.

• Silicate glasses and zeolites

• Simple metals and metal alloys, e.g. Al, Ni, Cu, Cu3Au, etc.

2

http://www.ccp5.ac.uk/DL_POLY/
http://www.ccp5.ac.uk/DL_POLY/

c©STFC Section 1.2

• Covalent systems as hydro-carbons and transition elements, e.g. C, Si, Ge, SiC, SiGe, ets.

1.2.2 Force Field

The DL POLY 4 force field includes the following features:

1. All common forms of non-bonded atom-atom (van der Waals) potentials

2. Atom-atom (and site-site) coulombic potentials

3. Metal-metal (local density dependent) potentials [11, 12, 13, 14, 15, 16]

4. Tersoff (local density dependent) potentials (for hydro-carbons) [17]

5. Three-body valence angle and hydrogen bond potentials

6. Four-body inversion potentials

7. Ion core-shell polarasation

8. Tether potentials

9. Chemical bond potentials

10. Valence angle potentials

11. Dihedral angle (and improper dihedral angle) potentials

12. Inversion angle potentials

13. External field potentials.

The parameters describing these potentials may be obtained, for example, from the GROMOS [18],
Dreiding [19] or AMBER [20] forcefield, which share functional forms. It is relatively easy to adapt
DL POLY 4 to user specific force fields.

1.2.3 Boundary Conditions

DL POLY 4 will accommodate the following boundary conditions:

1. None, e.g. isolated molecules in vacuo

2. Cubic periodic boundaries

3. Orthorhombic periodic boundaries

4. Parallelepiped periodic boundaries

5. Slab (x,y periodic, z non-periodic).

These are described in detail in Appendix A. Note that periodic boundary conditions (PBC) 1 and
5 above require careful consideration to enable efficient load balancing on a parallel computer.

3

c©STFC Section 1.2

1.2.4 Java Graphical User Interface

The DL POLY 4 Graphical User Interface (GUI) is the same one that also comes with DL POLY Classic,
which is written in the Java R©programming language from Sun R©Microsystems. A major advantage
of this is the free availability of the Java programming environment from Sun R©, and also its porta-
bility across platforms. The compiled GUI may be run without recompiling on any Java R©supported
machine. The GUI is an integral component of the DL POLY suites and is available on the same
terms (see the GUI manual [21]).

1.2.5 Algorithms

1.2.5.1 Parallel Algorithms

DL POLY 4 exclusively employs the Domain Decomposition parallelisation strategy [9, 10, 5, 6]
(see Section 6.1.1).

1.2.5.2 Molecular Dynamics Algorithms

DL POLY 4 offers a selection of MD integration algorithms couched in both Velocity Verlet (VV)
and Leapfrog Verlet (LFV) manner [22]. These generate NVE, NVEkin, NVT, NPT and NσT
ensembles with a selection of thermostats and barostats. Parallel versions of the RATTLE [23] and
SHAKE [8] algorithms are used for solving bond constraints in the VV and LFV cast integrations
respectively. The rotational motion of rigid bodies (RBs) is handled with Fincham’s implicit
quaternion algorithm (FIQA) [24] under the LFV scheme or with the “NOSQUISH” algorithm of
Miller et al [25] under the VV integration.

The following MD algorithms are available:

1. Constant E algorithm

2. Evans constant Ekin algorithm [26]

3. Langevin constant T algorithm [27]

4. Andersen constant T algorithm [28]

5. Berendsen constant T algorithm [29]

6. Nosé-Hoover constant T algorithm [30]

7. Langevin constant T,P algorithm [31]

8. Berendsen constant T,P algorithm [29]

9. Nosé-Hoover constant T,P algorithm [30]

10. Martyna, Tuckerman and Klein (MTK) constant T,P algorithm [32]

11. Langevin constant T,σ algorithm [31]

12. Berendsen constant T,σ algorithm [29]

13. Nosé-Hoover constant T,σ algorithm [30]

14. Martyna, Tuckerman and Klein (MTK) constant T,σ algorithm [32].

4

c©STFC Section 1.3

1.2.6 DL POLY Classic features incompatible or unavalable in DL POLY 4

• Force field

– Rigid bodies connected with constraint links are not available

– Shell models specification is solely determined by the presence of mass on the shells

– Dihedral potentials with more than three original parameters (see OPLS) have two
artificially added parameters, defining the 1-4 electrostatic and van der Waals scaling
factors, which must be placed at fourth and fifth position respectively, extending the
original parameter list split by them

• Boundary conditions

– Truncated octahedral periodic boundaries (imcon = 4) are not available

– Rhombic dodecahedral periodic boundaries (imcon = 5) are not available

– Hexagonal prism periodic boundaries (imcon = 7) are not available

• Electrostatics

– Standard Ewald Summation is not available, but is substituted by Smoothed Particle
Mesh Ewald (SPME) summation

– Hautman-Klein Ewald Summation for 3D non-periodic but 2D periodic systems is not
available

• Non-standard functionality

– Temperature Accelerated Dynamics

– Hyperdynamics

– Solvation Energies

1.3 Programming Style

The programming style of DL POLY 4 is intended to be as uniform as possible. The following
stylistic rules apply throughout. Potential contributors of code are requested to note the stylistic
convention.

1.3.1 Programming Language

DL POLY 4 is written in free format FORTRAN90. In DL POLY 4 we have adopted the convention
of explicit type declaration i.e. we have used

Implicit None

in all subroutines. Thus all variables must be given an explicit type: Integer, Real(Kind =

wp), etc.

5

c©STFC Section 1.3

1.3.2 Modularisation and Intent

DL POLY 4 exploits the full potential of the modularisation concept in FORTRAN90. Variables
having in common description of certain feature or method in DL POLY 4 are grouped in modules.
This simplifies subroutines’ calling sequences and decreases error-proneness in programming as
subroutines must define what they use and from which module. To decrease error-proneness further,
arguments that are passed in calling sequences of functions or subroutines have defined intent, i.e.
whether they are to be:

• passed in only (Intent (In)) - the argument is not allowed to be changed by the routine

• passed out only (Intent (Out)) - the “coming in” value of the argument is unimportant

• passed in both directions in and out (Intent (InOut)) - the “coming in” value of the argu-
ment is important and the argument is allowed to be changed.

1.3.3 Memory Management

DL POLY 4 exploits the dynamic array allocation features of FORTRAN90 to assign the necessary
array dimensions.

1.3.4 Target Platforms

DL POLY 4 is intended for distributed memory parallel computers.

Compilation of DL POLY 4 in parallel mode requires only a FORTRAN90 compiler and Message
Passing Interface (MPI) to handle communications. Compilation of DL POLY 4 in serial mode is
also possible and requires only a FORTRAN90 compiler.

1.3.5 Internal Documentation

All subroutines are supplied with a header block of FORTRAN90 comment (!) records giving:

1. The name of the author and/or modifying author

2. The version number or date of production

3. A brief description of the function of the subroutine

4. A copyright statement.

Elsewhere FORTRAN90 comment cards (!) are used liberally.

1.3.6 FORTRAN90 Parameters and Arithmetic Precision

All global parameters defined by the FORTRAN90 parameter statements are specified in the mod-
ule file: setup module, which is included at compilation time in all subroutines requiring the
parameters. All parameters specified in setup module are described by one or more comment
cards.

One super-global parameter is defined at compilation time in the kinds f90 module file specifying
the working precision (wp) by kind for real and complex variables and parameters. The default

6

c©STFC Section 1.3

is 64-bit (double) precision, i.e. Real(wp). Users wishing to compile the code with quadruple
precision must ensure that their architecture and FORTRAN90 compiler can allow that and then
change the default in kinds f90. Changing the precision to anything else that is allowed by the
FORTRAN90 compiler and the machine architecture must also be compliant with the MPI working
precision mpi wp as defined in comms module (in such cases users must correct for that in there).

1.3.7 Units

Internally all DL POLY subroutines and functions assume the use of the following definedmolecular
units:

• The unit of time (to) is 1× 10−12 seconds (i.e. picoseconds)

• The unit of length (`o) is 1× 10−10 metres (i.e. Ångstroms)

• The unit of mass (mo) is 1.6605402× 10−27 kilograms (i.e. Daltons - atomic mass units)

• The unit of charge (qo) is 1.60217733 × 10−19 Coulombs (i.e. electrons - units of proton
charge)

• The unit of energy (Eo = mo(`o/to)
2) is 1.6605402× 10−23 Joules (10 J mol−1)

• The unit of pressure (Po = Eo`
−3
o) is 1.6605402× 107 Pascals (163.882576 atmospheres)

• Planck’s constant (h̄) which is 6.350780668× Eoto .

In addition, the following conversion factors are used:

• The coulombic conversion factor (γo) is:

γo =
1

Eo

[
q2o

4πεo`o

]
= 138935.4835 ,

such that:

UMKS = EoγoUInternal ,

where U represents the configuration energy.

• The Boltzmann factor (kB) is 0.831451115 Eo K−1, such that:

T = Ekin/kB

represents the conversion from kinetic energy (in internal units) to temperature (in Kelvin).

Note: In the DL POLY 4 OUTPUT file, the print out of pressure is in units of katms (kilo-
atmospheres) at all times. The unit of energy is either DL POLY units specified above, or in other
units specified by the user at run time. The default is DL POLY units.

7

c©STFC Section 1.4

1.3.8 Error Messages

All errors detected by DL POLY 4 during run time initiate a call to the subroutine error, which
prints an error message in the standard output file and terminates the program. All terminations of
the program are global (i.e. every node of the parallel computer will be informed of the termination
condition and stop executing).

In addition to terminal error messages, DL POLY 4 will sometimes print warning messages. These
indicate that the code has detected something that is unusual or inconsistent. The detection is
non-fatal, but the user should make sure that the warning does represent a harmless condition.

1.4 Directory Structure

vac

The entire DL POLY 4 package is stored in a UNIX directory structure. The topmost directory
is named dl poly 4.nn, where nn is a generation number. Beneath this directory are several sub-
directories named: source, utility, data, bench, execute, build, public, and java.

Briefly, the content of each sub-directory is as follows:

sub-directory contents

source primary subroutines for the DL POLY 4 package
utility subroutines, programs and example data for all utilities
data example input and output files for DL POLY 4
bench large test cases suitable for benchmarking
execute the DL POLY 4 run-time directory
build makefiles to assemble and compile DL POLY 4 programs
public directory of routines donated by DL POLY 4 users
java directory of Java and FORTRAN routines for the Java GUI.

A more detailed description of each sub-directory follows.

1.4.1 The source Sub-directory

In this sub-directory all the essential source code for DL POLY 4, excluding the utility software
is stored. In keeping with the ‘package’ concept of DL POLY 4, it does not contain any complete
programs; these are assembled at compile time using an appropriate makefile. The subroutines in
this sub-directory are documented in Chapter 6.

1.4.2 The utility Sub-directory

This sub-directory stores all the utility subroutines, functions and programs in DL POLY 4, to-
gether with examples of data. Some of the various routines in this sub-directory are documented
in the DL POLY Classic User Manual. Users who devise their own utilities are advised to store
them in the utility sub-directory.

8

c©STFC Section 1.5

1.4.3 The data Sub-directory

This sub-directory contains examples of input and output files for testing the released version of
DL POLY 4. The examples of input data are copied into the execute sub-directory when a program
is being tested. The test cases are documented in Chapter 7. Note that these are no longer within
the distribution of any DL POLY version but are made available on-line at the DL POLY FTP -
ftp://ftp.dl.ac.uk/ccp5/DL POLY/ .

1.4.4 The bench Sub-directory

This directory contains examples of input and output data for DL POLY 4 that are suitable for
benchmarking DL POLY 4 on large scale computers. These are described in Chapter 7. Note that
these are no longer within the distribution of any DL POLY version but are made available on-line
at the DL POLY FTP - ftp://ftp.dl.ac.uk/ccp5/DL POLY/ .

1.4.5 The execute Sub-directory

In the supplied version of DL POLY 4, this sub-directory contains only a few macros for copying
and storing data from and to the data sub-directory and for submitting programs for execution
(see Appendix B). However, when a DL POLY 4 program is assembled by using the appropriate
makefile, it will be placed in this sub-directory and will subsequently be executed from here. The
output from the job will also appear here, so users will find it convenient to use this sub-directory
if they wish to use DL POLY 4 as intended. (The experienced user is not at all required to use
DL POLY 4 this way however.)

1.4.6 The build Sub-directory

This sub-directory contains the standard makefiles for the creation (i.e. compilation and linking)
of the DL POLY 4 simulation program. The makefiles supplied select the appropriate subroutines
from the source sub-directory and deposit the executable program in the execute directory. The
user is advised to copy the appropriate makefile into the source directory, in case any modifications
are required. The copy in the build sub-directory will then serve as a backup.

1.4.7 The public Sub-directory

This sub-directory contains assorted routines donated by DL POLY users. Potential users should
note that these routines are unsupported and come without any guarantee or liability what-
soever. They should be regarded as potentially useful resources to be hacked into shape as needed
by the user. This directory is available from the CCP5 Program Library by direct FTP(see below).

1.4.8 The java Sub-directory

The DL POLY 4 Java Graphical User Interface (GUI) is based on the Java language developed by
Sun. The Java source code for this GUI is to be found in this sub-directory. The source is complete
and sufficient to create a working GUI, provided the user has installed the Java Development Kit,
(1.3 or above) which is available free from Sun at http://java.sun.com/. The GUI, once compiled,
may be executed on any machine where Java is installed [21].

9

ftp://ftp.dl.ac.uk/ccp5/DL_POLY/
ftp://ftp.dl.ac.uk/ccp5/DL_POLY/
http://java.sun.com/

c©STFC Section 1.7

1.5 Obtaining the Source Code

To obtain a copy of DL POLY 4 it is necessary to have internet connection. Log on to the DL POLY
website - http://www.ccp5.ac.uk/DL POLY/ , and follow the links to the DL POLY 4 registration
page, where you will firstly be shown the DL POLY 4 software licence, which details the terms and
conditions under which the code will be supplied. By proceeding further with the registration
and download process you are signalling your acceptance of the terms of this licence.
Click the ‘Registration’ button to find the registration page, where you will be invited to enter
your name, address and e-mail address. The code is supplied free of charge to academic users,
but commercial users will be required to purchase a software licence.

Once the online registration has been completed, information on downloading the DL POLY 4
source code will be sent by e-mail, so it is therefore essential to supply a correct e-mail
address.

The data and bench subdirectories of DL POLY 4 are not issued in the standard package, but can
be downloaded directly from the FTP site (in the ccp5/DL POLY/DL POLY 4.0/ directory).

Note: Daresbury Laboratory is the sole centre for the distribution of DL POLY 4 and copies
obtained from elsewhere will be regarded as illegal and will not be supported.

1.6 OS and Hardware Specific Ports

DL POLY 4 is also available as a CUDA+OpenMP port, offered as extra source within the source
directory (see the README.txt for further information). The purpose of this development, a
collaboration with the Irish Centre for High-End Computing (ICHEC - http://www.ichec.ie/), is
to harness the power offered by NVIDIA R©(http://www.nvidia.com/) GPUs.

Note that no support is offered for these highly specific developments!

1.7 Other Information

The DL POLY website - http://www.ccp5.ac.uk/DL POLY/ , provides additional information in
the form of

1. Access to all documentation (including licences)

2. Frequently asked questions

3. Bug reports

4. Access to the DL POLY online forum.

Daresbury Laboratory also maintains a DL POLY 4 associated electronic mailing list, dl poly 4 news,
to which all registered DL POLY 4 users are automatically subscribed. It is via this list that error
reports and announcements of new versions are made. If you are a DL POLY 4 user, but not on
this list you may request to be added by sending a mail message to majordomo@dl.ac.uk with the
one-line message: subscribe dl poly 4 news.

The DL POLY Forum is a web based centre for all DL POLY users to exchange comments and
queries. You may access the forum through the DL POLY website. A registration (and vetting)
process is required before you can use the forum, but it is open, in principle, to everyone.

10

http://www.ccp5.ac.uk/DL_POLY/
http://www.ichec.ie/
http://www.nvidia.com/
http://www.ccp5.ac.uk/DL_POLY/
mailto:majordomo@dl.ac.uk

Chapter 2

Force Fields

Scope of Chapter

This chapter describes the variety of interaction potentials available in DL POLY 4.

11

c©STFC Section 2.1

2.1 Introduction to the DL POLY 4 Force Field

The force field is the set of functions needed to define the interactions in a molecular system. These
may have a wide variety of analytical forms, with some basis in chemical physics, which must be
parameterised to give the correct energy and forces. A huge variety of forms is possible and for this
reason the DL POLY 4 force field is designed to be adaptable. While it is not supplied with its own
force field parameters, many of the functions familiar to GROMOS [18], Dreiding [19] and AMBER
[20] users have been coded in the package, as well as less familiar forms. In addition DL POLY 4
retains the possibility of the user defining additional potentials.

In DL POLY 4 the total configuration energy of a molecular system may be written as:

U(r1, r2, . . . , rN) =
Nshel∑
ishel=1

Ushel(ishel, rcore, rshell)

+
Nteth∑
iteth=1

Uteth(iteth, ri(t = t), ri(t = 0)

+
Nbond∑
ibond=1

Ubond(ibond, ra, rb)

+

Nangl∑
iangl=1

Uangl(iangl, ra, rb, rc)

+
Ndihd∑
idihd=1

Udihd(idihd, ra, rb, rc, rd)

+
Ninv∑
iinv=1

Uinv(iinv, ra, rb, rc, rd)

+
N−1∑
i=1

N∑
j>i

U
(metal)
2 body (i, j, |ri − rj |) (2.1)

+
N∑
i=1

N∑
j 6=i

N∑
k 6=j

Utersoff (i, j, k, ri, rj , rk)

+
N−2∑
i=1

N−1∑
j>i

N∑
k>j

U3 body(i, j, k, ri, rj , rk)

+
N−3∑
i=1

N−2∑
j>i

N−1∑
k>j

N∑
n>k

U4 body(i, j, k, n, ri, rj , rk, rn)

+
N∑
i=1

Uextn(i, ri, vi) ,

where Ushel, Uteth, Ubond, Uangl, Udihd, Uinv, Upair, Utersoff , U3 body and U4 body are empirical
interaction functions representing ion core-shell polarisation, tethered particles, chemical bonds,
valence angles, dihedral (and improper dihedral angles), inversion angles, two-body, Tersoff, three-
body and four-body forces respectively. The first six are regarded by DL POLY 4 as intra-molecular
interactions and the next four as inter-molecular interactions. The final term Uextn represents an
external field potential. The position vectors ra, rb, rc and rd refer to the positions of the atoms
specifically involved in a given interaction. (Almost universally, it is the differences in position

12

c©STFC Section 2.2

that determine the interaction.) The numbers Nshel, Nteth, Nbond, Nangl, Ndihd and Ninv refer
to the total numbers of these respective interactions present in the simulated system, and the
indices ishel, iteth, ibond, iangl, idihd and iinv uniquely specify an individual interaction of each
type. It is important to note that there is no global specification of the intramolecular interactions
in DL POLY 4 - all core-shell units, tethered particles, chemical bonds, valence angles, dihedral
angles and inversion angles must be individually cited. The same applies for bond constraints and
PMF constraints.

The indices i, j (and k, n) appearing in the intermolecular interactions’ (non-bonded) terms indicate
the atoms involved in the interaction. There is normally a very large number of these and they are
therefore specified globally according to the atom types involved rather than indices. In DL POLY 4
it is assumed that the ”pure” two-body terms arise from van der Waals interactions (regarded
as short-ranged) and electrostatic interactions (coulombic, also regarded as long-ranged). Long-
ranged forces require special techniques to evaluate accurately (see Section 2.4). The metal terms
are many-body interactions which are functionally presented in an expansion of many two-body
contributions augmented by a function of the local density, which again is derived from the two-body
spatial distribution (and these are, therefore, evaluated in the two-body routines). In DL POLY 4
the three-body terms are restricted to valence angle and H-bond forms.

Throughout this chapter the description of the force field assumes the simulated system is de-
scribed as an assembly of atoms. This is for convenience only, and readers should understand that
DL POLY 4 does recognize molecular entities, defined through constraint bonds and rigid bodies.
In the case of rigid bodies, the atomic forces are resolved into molecular forces and torques. These
matters are discussed in greater detail in Sections 3.2 and 3.6.

2.2 The Intramolecular Potential Functions

In this section we catalogue and describe the forms of potential function available in DL POLY 4.
The keywords required to select potential forms are given in brackets () before each definition.
The derivations of the atomic forces, virial and stress tensor are also outlined.

2.2.1 Bond Potentials

i

rij

j

Figure 2.1: The interatomic bond vector

The bond potentials describe explicit chemical bonds between specified atoms. They are all func-
tions of the interatomic distance. Only the coulomb potential makes an exception as it depends on
the charges of the specified atoms. The potential functions available are as follows:

1. Harmonic bond: (harm)

U(rij) =
1

2
k(rij − ro)2 (2.2)

13

c©STFC Section 2.2

2. Morse potential: (mors)

U(rij) = Eo[{1− exp(−k(rij − ro))}2 − 1] (2.3)

3. 12-6 potential bond: (12-6)

U(rij) =

(
A

r12ij

)
−
(
B

r6ij

)
(2.4)

4. Lennard-Jones potential: (lj)

U(rij) = 4ε

(σ

rij

)12

−
(
σ

rij

)6
 (2.5)

5. Restrained harmonic: (rhrm)

U(rij) =

{
1
2k(rij − ro)

2 : |rij − ro| ≤ rc
1
2kr

2
c + krc(|rij − ro| − rc) : |rij − ro| > rc

(2.6)

6. Quartic potential: (quar)

U(rij) =
k

2
(rij − ro)2 +

k′

3
(rij − ro)3 +

k′′

4
(rij − ro)4 (2.7)

7. Buckingham potential: (buck)

U(rij) = A exp

(
−rij
ρ

)
− C

r6ij
(2.8)

8. Coulomb potential: (coul)

U(rij) = k · UElectrostatics(rij)

(
=

k

4πε0ε

qiqj
rij

)
, (2.9)

where q` is the charge on an atom labelled `. It is worth noting that the Coulomb potential
switches to the paricular model of Electrostatics opted in CONTROL.

9. Shifted finitely extendible non-linear elastic (FENE) potential [33, 34, 35]: (fene)

U(rij) =

 −0.5 k R2
o ln

[
1−

(
rij−∆
Ro

)2]
: |rij −∆| < Ro

∞ : |rij −∆| ≥ Ro

(2.10)

The FENE potential is used to maintain the distance between connected beads and to prevent
chains from crossing each other. It is used in combination with the WCA (2.91) potential to
create a potential well for the flexible bonds of a molecule, that maintains the topology of
the molecule. This implementation allows for a radius shift of up to half a Ro (|∆| ≤ 0.5 Ro)
with a default of zero (∆default = 0).

14

c©STFC Section 2.2

In these formulae rij is the distance between atoms labelled i and j:

rij = |rj − ri|1 , (2.11)

where r` is the position vector of an atom labelled `.

The force on the atom j arising from a bond potential is obtained using the general formula:

f
j
= − 1

rij

[
∂

∂rij
U(rij)

]
rij . (2.12)

The force f
i
acting on atom i is the negative of this.

The contribution to be added to the atomic virial is given by

W = −rij · f j , (2.13)

with only one such contribution from each bond.

The contribution to be added to the atomic stress tensor is given by

σαβ = rαijf
β
j , (2.14)

where α and β indicate the x, y, z components. The atomic stress tensor derived in this way is
symmetric.

In DL POLY 4 bond forces are handled by the routine bonds forces (and intra coul called
within).

2.2.2 Distance Restraints

In DL POLY 4 distance restraints, in which the separation between two atoms, is maintained
around some preset value r0 is handled as a special case of bond potentials. As a consequence, dis-
tance restraints may be applied only between atoms in the same molecule. Unlike with application
of the “pure” bond potentials, the electrostatic and van der Waals interactions between the pair
of atoms are still evaluated when distance restraints are applied. All the potential forms of the
previous section are available as distance restraints, although they have different key words:

1. Harmonic potential: (-hrm)

2. Morse potential: (-mrs)

3. 12-6 potential bond: (-126)

4. Lennard-Jones potential: (-lj)

5. Restrained harmonic: (-rhm)

6. Quartic potential: (-qur)

7. Buckingham potential: (-bck)

8. Coulomb potential: (-cul)

9. FENE potential: (-fne)

In DL POLY 4 distance restraints are handled by the routine bonds forces (and intra coul
called within).

1Note: some DL POLY 4 routines may use the convention that rij = ri − rj .

15

c©STFC Section 2.2

2.2.3 Valence Angle Potentials

i

j

θ
rij rik

k

Figure 2.2: The valence angle and associated vectors

The valence angle potentials describe the bond bending terms between the specified atoms. They
should not be confused with the three-body potentials described later, which are defined by atom
types rather than indices.

1. Harmonic: (harm)

U(θjik) =
k

2
(θjik − θ0)2 (2.15)

2. Quartic: (quar)

U(θjik) =
k

2
(θjik − θ0)2 +

k′

3
(θjik − θ0)3 +

k′′

4
(θjik − θ0)4 (2.16)

3. Truncated harmonic: (thrm)

U(θjik) =
k

2
(θjik − θ0)2 exp[−(r8ij + r8ik)/ρ

8] (2.17)

4. Screened harmonic: (shrm)

U(θjik) =
k

2
(θjik − θ0)2 exp[−(rij/ρ1 + rik/ρ2)] (2.18)

5. Screened Vessal [36]: (bvs1)

U(θjik) =
k

8(θjik − π)2
[
(θ0 − π)2 − (θjik − π)2

]2
×

exp[−(rij/ρ1 + rik/ρ2)] (2.19)

6. Truncated Vessal [37]: (bvs2)

U(θjik) = k (θjik − θ0)2 [θajik(θjik + θ0 − 2π)2 +
a

2
πa−1(θ0 − π)3] exp[−(r8ij + r8ik)/ρ

8] (2.20)

7. Harmonic cosine: (hcos)

U(θjik) =
k

2
(cos(θjik)− cos(θ0))2 (2.21)

16

c©STFC Section 2.2

8. Cosine: (cos)
U(θjik) = A [1 + cos(m θjik − δ)] (2.22)

9. MM3 stretch-bend [38]: (mmsb)

U(θjik) = A (θjik − θ0) (rij − roij) (rik − roik) (2.23)

10. Compass stretch-stretch [39]: (stst)

U(θjik) = A (rij − roij) (rik − roik) (2.24)

11. Compass stretch-bend [39]: (stbe)

U(θjik) = A (θjik − θ0) (rij − roij) (2.25)

12. Compass all terms [39]: (cmps)

U(θjik) = A (rij − roij) (rik − roik) + (θjik − θ0) [B (rij − roij) + C (rik − roik)] (2.26)

In these formulae θjik is the angle between bond vectors rij and rik:

θjik = cos−1

{
rij · rik
rijrik

}
. (2.27)

In DL POLY 4 the most general form for the valence angle potentials can be written as:

U(θjik, rij , rik) = A(θjik) S(rij) S(rik) S(rik) , (2.28)

where A(θ) is a purely angular function and S(r) is a screening or truncation function. All the
function arguments are scalars. With this reduction the force on an atom derived from the valence
angle potential is given by:

fα` = − ∂

∂rα`
U(θjik, rij , rik, rjk) , (2.29)

with atomic label ` being one of i, j, k and α indicating the x, y, z component. The derivative is

− ∂

∂rα`
U(θjik, rij , rik, rjk) = −S(rij)S(rik)S(rjk)

∂

∂rα`
A(θjik)

−A(θjik)S(rik)S(rjk)(δ`j − δ`i)
rαij
rij

∂

∂rij
S(rij)

−A(θjik)S(rij)S(rjk)(δ`k − δ`i)
rαik
rik

∂

∂rik
S(rik)

−A(θjik)S(rij)S(rik)(δ`k − δ`j)
rαjk
rjk

∂

∂rjk
S(rjk) , (2.30)

with δab = 1 if a = b and δab = 0 if a 6= b . In the absence of screening terms S(r), this formula
reduces to:

− ∂

∂rα`
U(θjik, rij , rik, rjk) = −

∂

∂rα`
A(θjik) . (2.31)

The derivative of the angular function is

− ∂

∂rα`
A(θjik) =

{
1

sin(θjik)

}
∂

∂θjik
A(θjik)

∂

∂rα`

{
rij · rik
rijrik

}
, (2.32)

17

c©STFC Section 2.2

with

∂

∂rα`

{
rij · rik
rijrik

}
= (δ`j − δ`i)

rαik
rijrik

+ (δ`k − δ`i)
rαij
rijrik

−

cos(θjik)

{
(δ`j − δ`i)

rαij
r2ij

+ (δ`k − δ`i)
rαik
r2ik

}
. (2.33)

The atomic forces are then completely specified by the derivatives of the particular functions A(θ)
and S(r) .

The contribution to be added to the atomic virial is given by

W = −(rij · f j + rik · fk) . (2.34)

It is worth noting that in the absence of screening terms S(r), the virial is zero [40].

The contribution to be added to the atomic stress tensor is given by

σαβ = rαijf
β
j + rαikf

β
k (2.35)

and the stress tensor is symmetric.

In DL POLY 4 valence forces are handled by the routine angles forces.

2.2.4 Angular Restraints

In DL POLY 4 angle restraints, in which the angle subtended by a triplet of atoms, is maintained
around some preset value θ0 is handled as a special case of angle potentials. As a consequence
angle restraints may be applied only between atoms in the same molecule. Unlike with application
of the “pure” angle potentials, the electrostatic and van der Waals interactions between the pair
of atoms are still evaluated when distance restraints are applied. All the potential forms of the
previous section are avaliable as angular restraints, although they have different key words:

1. Harmonic: (-hrm)

2. Quartic: (-qur)

3. Truncated harmonic: (-thm)

4. Screened harmonic: (-shm)

5. Screened Vessal [36]: (-bv1)

6. Truncated Vessal [37]: (-bv2)

7. Harmonic cosine: (-hcs)

8. Cosine: (-cos)

9. MM3 stretch-bend [38]: (-msb)

10. Compass stretch-stretch [39]: (-sts)

11. Compass stretch-bend [39]: (-stb)

12. Compass all terms [39]: (-cmp)

In DL POLY 4 angular restraints are handled by the routine angles forces.

18

c©STFC Section 2.2

2.2.5 Dihedral Angle Potentials

Φ

i

rjk

rij rkn

j k

n

Figure 2.3: The dihedral angle and associated vectors

The dihedral angle potentials describe the interaction arising from torsional forces in molecules.
(They are sometimes referred to as torsion potentials.) They require the specification of four atomic
positions. The potential functions available in DL POLY 4 are as follows:

1. Cosine potential: (cos)
U(φijkn) = A [1 + cos(mφijkn − δ)] (2.36)

2. Harmonic: (harm)

U(φijkn) =
k

2
(φijkn − φ0)2 (2.37)

3. Harmonic cosine: (hcos)

U(φijkn) =
k

2
(cos(φijkn)− cos(φ0))

2 (2.38)

4. Triple cosine: (cos3)

U(φ) =
1

2
{A1 (1 + cos(φ)) +A2 (1− cos(2φ)) +A3 (1 + cos(3φ))} (2.39)

5. Ryckaert-Bellemans [41] with fixed constants a-f: (ryck)

U(φ) = A { a+ b cos(φ) + c cos2(φ) + d cos3(φ) + e cos4(φ) + f cos5(φ) } (2.40)

6. Fluorinated Ryckaert-Bellemans [42] with fixed constants a-h: (rbf)

U(φ) = A { a+ b cos(φ) + c cos2(φ) + d cos3(φ) + e cos4(φ) + f cos5(φ) +

g exp(−h(φ− π)2)) } (2.41)

7. OPLS torsion potential: (opls)

U(φ) = A0 +
1

2
{A1 (1 + cos(φ)) +A2 (1− cos(2φ)) +A3 (1 + cos(3φ))} (2.42)

19

c©STFC Section 2.2

In these formulae φijkn is the dihedral angle defined by

φijkn = cos−1{B(rij , rjk, rkn)} , (2.43)

with

B(rij , rjk, rkn) =

{
(rij × rjk) · (rjk × rkn)
|rij × rjk||rjk × rkn|

}
. (2.44)

With this definition, the sign of the dihedral angle is positive if the vector product
(rij × rjk)× (rjk × rkn) is in the same direction as the bond vector rjk and negative if in the
opposite direction.

The force on an atom arising from the dihedral potential is given by

fα` = − ∂

∂rα`
U(φijkn) , (2.45)

with ` being one of i, j, k, n and α one of x, y, z. This may be expanded into

− ∂

∂rα`
U(φijkn) =

{
1

sin(φijkn)

}
∂

∂φijkn
U(φijkn)

∂

∂rα`
B(rij , rjk, rkn) . (2.46)

The derivative of the function B(rij , rjk, rkn) is

∂

∂rα`
B(rij , rjk, rkn) =

1

|rij × rjk||rjk × rkn|
∂

∂rα`
{(rij × rjk) · (rjk × rkn)} −

cos(φijkn)

2

{
1

|rij × rjk|2
∂

∂rα`
|rij × rjk|2 +

1

|rjk × rkn|2
∂

∂rα`
|rjk × rkn|2

}
, (2.47)

with

∂

∂rα`
{(rij × rjk) · (rjk × rkn)} = rαij([rjkrjk]α(δ`k − δ`n) + [rjkrkn]α(δ`k − δ`j)) +

rαjk([rijrjk]α(δ`n − δ`k) + [rjkrkn]α(δ`j − δ`i)) +

rαkn([rijrjk]α(δ`k − δ`j) + [rjkrjk]α(δ`i − δ`j)) +

2rαjk[rijrkn]α(δ`j − δ`k) , (2.48)

∂

∂rα`
|rij × rjk|2 = 2rαij([rjkrjk]α(δ`j − δ`i) + [rijrjk]α(δ`j − δ`k)) +

2rαjk([rijrij]α(δ`k − δ`j) + [rijrjk]α(δ`i − δ`j)) , (2.49)

∂

∂rα`
|rjk × rkn|2 = 2rαkn([rjkrjk]α(δ`n − δ`k) + [rjkrkn]α(δ`j − δ`k)) +

2rαjk([rknrkn]α(δ`k − δ`j) + [rjkrkn]α(δ`k − δ`n)) . (2.50)

Where we have used the the following definition:

[a b]α =
∑
β

(1− δαβ)aβbβ . (2.51)

20

c©STFC Section 2.2

Formally, the contribution to be added to the atomic virial is given by

W = −
4∑

i=1

ri · f i . (2.52)

However, it is possible to show (by tedious algebra using the above formulae, or more elegantly by
thermodynamic arguments [40],) that the dihedral makes no contribution to the atomic virial.

The contribution to be added to the atomic stress tensor is given by

σαβ = rαijp
β
i + rαjkp

β
jk + rαknp

β
n (2.53)

−cos(φijkn)

2

{
rαijg

β
i + rαjkg

β
k + rαjkh

β
j + rαknh

β
n

}
,

with

pαi = (rαjk[rjkrkn]α − rαkn[rjkrjk]α)/(|rij × rjk||rjk × rkn|)
pαn = (rαjk[rijrjk]α − rαij [rjkrjk]α)/(|rij × rjk||rjk × rkn|)
pαjk = (rαij [rjkrkn]α + rαkn[rijrjk]α − 2rαjk[rijrkn]α)/(|rij × rjk||rjk × rkn|)
gαi = 2(rαij [rjkrjk]α − rαjk[rijrjk]α)/|rij × rjk|2 (2.54)

gαk = 2(rαjk[rijrij]α − rαij [rijrjk]α)/|rij × rjk|2

hαj = 2(rαjk[rknrkn]α − rαkn[rjkrkn]α)/|rjk × rkn|2

hαn = 2(rαkn[rknrkn]α − rαjk[rjkrkn]α)/|rjk × rkn|2 .

The sum of the diagonal elements of the stress tensor is zero (since the virial is zero) and the matrix
is symmetric.

Lastly, it should be noted that the above description does not take into account the possible inclu-
sion of distance-dependent 1-4 interactions, as permitted by some force fields. Such interactions are
permissible in DL POLY 4 and are described in the section on pair potentials below. DL POLY 4
also permits scaling of the 1-4 van der Waals and Coulomb interactions by a numerical factor
(see Table 5.10). Note that scaling is abandoned when the 1-4 members are also 1-3 members
in a valence angle intercation (1-4 checks are performed in dihedrals 14 check routine). 1-4
interactions do, of course, contribute to the atomic virial.

In DL POLY 4 dihedral forces are handled by the routine dihedrals forces (and intra coul
and dihedrals 14 vdw called within).

2.2.6 Improper Dihedral Angle Potentials

Improper dihedrals are used to restrict the geometry of molecules and as such need not have
a simple relation to conventional chemical bonding. DL POLY 4 makes no distinction between
dihedral and improper dihedral angle functions (both are calculated by the same subroutines) and
all the comments made in the preceding section apply.

An important example of the use of the improper dihedral is to conserve the structure of chiral
centres in molecules modelled by united-atom centres. For example α-amino acids such as alanine
(CH3CH(NH2)COOH), in which it is common to represent the CH3 and CH groups as single centres.
Conservation of the chirality of the α carbon is achieved by defining a harmonic improper dihedral
angle potential with an equilibrium angle of 35.264o. The angle is defined by vectors r12, r23 and
r34, where the atoms 1,2,3 and 4 are shown in the following figure. The figure defines the D and

21

c©STFC Section 2.2

1

2

3

4

C

N

H

α

β

D

1

2

3

4

C

N

H

α

β

L

L = α - N - C - β
1 2 3 4

D = α - C - N - β
1 2 3 4

Figure 2.4: The L and D enantiomers and defining vectors

L enantiomers consistent with the international (IUPAC) convention. When defining the dihedral,
the atom indices are entered in DL POLY 4 in the order 1-2-3-4.

In DL POLY 4 improper dihedral forces are handled by the routine dihedrals forces.

2.2.7 Inversion Angle Potentials

Φ

i

j

k

n

Figure 2.5: The inversion angle and associated vectors

The inversion angle potentials describe the interaction arising from a particular geometry of three
atoms around a central atom. The best known example of this is the arrangement of hydrogen

22

c©STFC Section 2.2

atoms around nitrogen in ammonia to form a trigonal pyramid. The hydrogens can ‘flip’ like an
inverting umbrella to an alternative structure, which in this case is identical, but in principle causes
a change in chirality. The force restraining the ammonia to one structure can be described as an
inversion potential (though it is usually augmented by valence angle potentials also). The inversion
angle is defined in the figure above - note that the inversion angle potential is a sum of the
three possible inversion angle terms. It resembles a dihedral potential in that it requires the
specification of four atomic positions.

The potential functions available in DL POLY 4 are as follows:

1. Harmonic: (harm)

U(φijkn) =
k

2
(φijkn − φ0)2 (2.55)

2. Harmonic cosine: (hcos)

U(φijkn) =
k

2
(cos(φijkn)− cos(φ0))

2 (2.56)

3. Planar potential: (plan)

U(φijkn) = A [1− cos(φijkn)] (2.57)

4. Extended planar potential: (xpln)

U(φijkn) =
k

2
[1− cos(m φijkn − φ0)] (2.58)

In these formulae φijkn is the inversion angle defined by

φijkn = cos−1

{
rij · wkn

rijwkn

}
, (2.59)

with

wkn = (rij · ûkn)ûkn + (rij · v̂kn)v̂kn (2.60)

and the unit vectors

ûkn = (r̂ik + r̂in)/|r̂ik + r̂in|
v̂kn = (r̂ik − r̂in)/|r̂ik − r̂in| . (2.61)

As usual, rij = rj − ri etc. and the hat r̂ indicates a unit vector in the direction of r. The total
inversion potential requires the calculation of three such angles, the formula being derived from the
above using the cyclic permutation of the indices j → k → n→ j etc.

Equivalently, the angle φijkn may be written as

φijkn = cos−1

{
[(rij · ûkn)2 + (rij · v̂kn)2]1/2

rij

}
. (2.62)

Formally, the force on an atom arising from the inversion potential is given by

fα` = − ∂

∂rα`
U(φijkn) , (2.63)

23

c©STFC Section 2.2

with ` being one of i, j, k, n and α one of x, y, z. This may be expanded into

− ∂

∂rα`
U(φijkn) =

{
1

sin(φijkn)

}
∂

∂φijkn
U(φijkn)×

∂

∂rα`

{
[(rij · ûkn)2 + (rij · v̂kn)2]1/2

rij

}
. (2.64)

Following through, the (extremely tedious!) differentiation gives the result:

fα` =

{
1

sin(φijkn)

}
∂

∂φijkn
U(φijkn)× (2.65){

−(δ`j − δ`i)
cos(φijkn)

r2ij
rαij +

1

rijwkn

[
(δ`j − δ`i){(rij · ûkn)ûαkn + (rij · v̂kn)v̂αkn}

+(δ`k − δ`i)
rij · ûkn
uknrik

{
rαij − (rij · ûkn)ûαkn − (rij · rik − (rij · ûkn)(rik · ûkn))

rαik
r2ik

}

+(δ`k − δ`i)
rij · v̂kn
vknrik

{
rαij − (rij · v̂kn)v̂αkn − (rij · rik − (rij · v̂kn)(rik · v̂kn))

rαik
r2ik

}

+(δ`n − δ`i)
rij · ûkn
uknrin

{
rαij − (rij · ûkn)ûαkn − (rij · rin − (rij · ûkn)(rin · ûkn))

rαin
r2in

}

−(δ`n − δ`i)
rij · v̂kn
vknrin

{
rαij − (rij · v̂kn)v̂αkn − (rij · rin − (rij · v̂kn)(rin · v̂kn))

rαin
r2in

}]}
.

This general formula applies to all atoms ` = i, j, k, n. It must be remembered however, that
these formulae apply to just one of the three contributing terms (i.e. one angle φ) of the full
inversion potential: specifically the inversion angle pertaining to the out-of-plane vector rij . The
contributions arising from the other vectors rik and rin are obtained by the cyclic permutation of
the indices in the manner described above. All these force contributions must be added to the final
atomic forces.

Formally, the contribution to be added to the atomic virial is given by

W = −
4∑

i=1

ri · f i . (2.66)

However, it is possible to show by thermodynamic arguments (cf [40],) or simply from the fact that
the sum of forces on atoms j,k and n is equal and opposite to the force on atom i, that the inversion
potential makes no contribution to the atomic virial.

If the force components fα` for atoms ` = i, j, k, n are calculated using the above formulae, it is
easily seen that the contribution to be added to the atomic stress tensor is given by

σαβ = rαijf
β
j + rαikf

β
k + rαinf

β
n . (2.67)

The sum of the diagonal elements of the stress tensor is zero (since the virial is zero) and the matrix
is symmetric.

In DL POLY 4 inversion forces are handled by the routine inversions forces.

24

c©STFC Section 2.2

a

b

c

d

u

Figure 2.6: The vectors of the calcite potential

2.2.8 The Calcite Four-Body Potential

This potential [43, 44] is designed to help maintain the planar structure of the carbonate anion
[CO3]

2− in a similar manner to the planar inversion potential described above. However, it is not
an angular potential. It is dependent on the perpendicular displacement (u) of an atom a from a
plane defined by three other atoms b, c, and d (see Figure 2.6) and has the form:

Uabcd(u) = Au2 +Bu4 , (2.68)

where the displacement u is given by

u =
rab · rbc × rbd
|rbc × rbd|

. (2.69)

Vectors rab,rac and rad define bonds between the central atom a and the peripheral atoms b, c and
d. Vectors rbc and rbd define the plane and are related to the bond vectors by

rbc = rac − rab
rbd = rad − rab . (2.70)

In what follows it is convenient to define the vector product appearing in both the numerator and
denominator of equation (2.69) as the vector wcd vis.

wcd = rbc × rbd . (2.71)

We also define the quantity γ(u) as

γ(u) = −(2Au+ 4Bu3) . (2.72)

The forces on the individual atoms due to the calcite potential are then given by

f
a

= −γ(u) ŵcd

f
c

= rbd × (rab − uŵcd) γ(u)/wcd

f
d

= −rbc × (rab − uŵcd) γ(u)/wcd (2.73)

f
b

= −(f
a
+ f

c
+ f

d
) ,

25

c©STFC Section 2.3

where wcd = |wcd| and ŵcd = wcd/wcd. The virial contribution ψabcd(u) is given by

ψabcd(u) = 2Au2 + 4Bu4 (2.74)

and the stress tensor contribution σαβabcd(u) by

σαβabcd(u) =
u γ(u)

w2
cd

wα
cd w

β
cd . (2.75)

In DL POLY 4 the calcite forces are handled by the routine inversions forces, which is a con-
venient intramolecular four-body force routine. However, it is manifestly not an inversion potential
as such.

2.2.9 Tethering Forces

DL POLY 4 also allows atomic sites to be tethered to a fixed point in space, ~r0, taken as their
position at the beginning of the simulation (t = 0). This is also known as position restraining. The
specification, which comes as part of the molecular description, requires a tether potential type and
the associated interaction parameters.

Note, firstly, that application of tethering potentials means that the momentum will no longer be
a conserved quantity of the simulation. Secondly, in constant pressure simulations, where the MD
cell changes size or shape, the tethers’ reference positions are scaled with the cell vectors.

The tethering potential functions available in DL POLY 4 are as follows:

1. Harmonic: (harm)

U(rij) =
1

2
k(ri0)

2 (2.76)

2. Restrained harmonic: (rhrm)

U(rij) =

{
1
2k(ri0)

2 : |ri0| ≤ rc
1
2kr

2
c + krc(ri0 − rc) : |ri0| > rc

(2.77)

3. Quartic potential: (quar)

U(rij) =
k

2
(ri0)

2 +
k′

3
(ri0)

3 +
k′′

4
(ri0)

4 (2.78)

as in each case rio is the distance between the atom positions at moment t = t1 and t = 0.

The force on the atom i arising from a tether potential potential is obtained using the general
formula:

f
i
= − 1

ri0

[
∂

∂ri0
U(ri0)

]
ri0 . (2.79)

The contribution to be added to the atomic virial is given by

W = ri0 · f i . (2.80)

The contribution to be added to the atomic stress tensor is given by

σαβ = −rαi0f
β
i , (2.81)

where α and β indicate the x, y, z components. The atomic stress tensor derived in this way is
symmetric.

In DL POLY 4 tether forces are handled by the routine tethers forces.

26

c©STFC Section 2.3

2.3 The Intermolecular Potential Functions

In this section we outline the two-body, metal, Tersoff, three-body and four-body potential func-
tions in DL POLY 4. An important distinction between these and intramolecular (bond) forces in
DL POLY 4 is that they are specified by atom types rather than atom indices.

2.3.1 Short Ranged (van der Waals) Potentials

The short ranged pair forces available in DL POLY 4 are as follows:

1. 12-6 potential: (12-6)

U(rij) =

(
A

r12ij

)
−
(
B

r6ij

)
(2.82)

2. Lennard-Jones potential: (lj)

U(rij) = 4ε

(σ

rij

)12

−
(
σ

rij

)6
 (2.83)

3. n-m potential [45]: (nm)

U(rij) =
Eo

(n−m)

[
m

(
ro
rij

)n

− n
(
ro
rij

)m]
(2.84)

4. Buckingham potential: (buck)

U(rij) = A exp

(
−rij
ρ

)
− C

r6ij
(2.85)

5. Born-Huggins-Meyer potential: (bhm)

U(rij) = A exp[B(σ − rij)]−
C

r6ij
− D

r8ij
(2.86)

6. Hydrogen-bond (12-10) potential: (hbnd)

U(rij) =

(
A

r12ij

)
−
(
B

r10ij

)
(2.87)

7. Shifted force n-m potential [45]: (snm)

U(rij) =
αEo

(n−m)

[
mβn

{(
ro
rij

)n

−
(
1

γ

)n
}
− nβm

{(
ro
rij

)m

−
(
1

γ

)m
}]

+

nmαEo

(n−m)

(
rij − γro
γro

){(
β

γ

)n

−
(
β

γ

)m}
, (2.88)

27

c©STFC Section 2.3

with

α =
(n−m)

[nβm(1 + (m/γ −m− 1)/γm)−mβn(1 + (n/γ − n− 1)/γn)]

β = γ

(
γm+1 − 1

γn+1 − 1

) 1
n−m

(2.89)

γ =
rcut
ro

.

This peculiar form has the advantage over the standard shifted n-m potential in that both
Eo and r0 (well depth and location of minimum) retain their original values after the shifting
process.

8. Morse potential: (mors)

U(rij) = Eo [{1− exp(−k(rij − ro))}2 − 1] (2.90)

9. Shifted Weeks-Chandler-Anderson (WCA) potential [46]: (wca)

U(rij) =

 4ε

[(
σ

rij−∆

)12
−
(

σ
rij−∆

)6]
+ ε : rij < 2

1
6 σ +∆

0 : rij ≥ 2
1
6 σ +∆

(2.91)

The WCA potential is the Lennard-Jones potential truncated at the position of the minimum
and shifted to eliminate discontinuity (includes the effect of excluded volume). It is usually
used in combination with the FENE (2.10) bond potential. This implementation allows for a
radius shift of up to half a σ (|∆| ≤ 0.5 σ) with a default of zero (∆default = 0).

10. Tabulation: (tab). The potential is defined numerically only.

The parameters defining these potentials are supplied to DL POLY 4 at run time (see the descrip-
tion of the FIELD file in Section 5.1.3). Each atom type in the system is specified by a unique
eight-character label defined by the user. The pair potential is then defined internally by the
combination of two atom labels.

As well as the numerical parameters defining the potentials, DL POLY 4 must also be provided with
a cutoff radius rvdw, which sets a range limit on the computation of the interaction. Together with
the parameters, the cutoff is used by the subroutine vdw generate to construct an interpolation
array vvdw for the potential function over the range 0 to rvdw . A second array gvdw is also
calculated, which is related to the potential via the formula:

G(rij) = −rij
∂

∂rij
U(rij) , (2.92)

and is used in the calculation of the forces. Both arrays are tabulated in units of energy. The use
of interpolation arrays, rather than the explicit formulae, makes the routines for calculating the
potential energy and atomic forces very general, and enables the use of user defined pair potential
functions. DL POLY 4 also allows the user to read in the interpolation arrays directly from a
file (implemented in the vdw table read routine) and the TABLE file (Section 5.1.6). This is
particularly useful if the pair potential function has no simple analytical description (e.g. spline
potentials).

28

c©STFC Section 2.3

The force on an atom j derived from one of these potentials is formally calculated with the standard
formula:

f
j
= − 1

rij

[
∂

∂rij
U(rij)

]
rij , (2.93)

where rij = rj − ri . The force on atom i is the negative of this.

The contribution to be added to the atomic virial (for each pair interaction) is

W = −rij · f j . (2.94)

The contribution to be added to the atomic stress tensor is given by

σαβ = rαijf
β
j , (2.95)

where α and β indicate the x, y, z components. The atomic stress tensor derived from the pair
forces is symmetric.

Since the calculation of pair potentials assumes a spherical cutoff (rvdw) it is necessary to apply a
long-ranged correction to the system potential energy and virial. Explicit formulae are needed for
each case and are derived as follows. For two atom types a and b, the correction for the potential
energy is calculated via the integral

Uab
corr = 2π

NaNb

V

∫ ∞

rvdw

gab(r)Uab(r)r
2dr , (2.96)

where Na, Nb are the numbers of atoms of types a and b in the system, V is the system volume and
gab(r) and Uab(r) are the appropriate pair correlation function and pair potential respectively. It is
usual to assume gab(r) = 1 for r > rvdw . DL POLY 4 sometimes makes the additional assumption
that the repulsive part of the short ranged potential is negligible beyond rvdw .

The correction for the system virial is

Wab
corr = −2π

NaNb

V

∫ ∞

rvdw

gab(r)
∂

∂r
Uab(r)r

3dr , (2.97)

where the same approximations are applied.

Note that these formulae are based on the assumption that the system is reasonably isotropic
beyond the cutoff.

In DL POLY 4 the short ranged forces are calculated by the subroutine vdw forces. The long-
ranged corrections are calculated by routine vdw lrc. The calculation makes use of the Verlet
neighbour list (see above).

2.3.2 Metal Potentials

The metal potentials in DL POLY 4 follow two similar but distinct formalisms. The first of these
is the embedded atom model (EAM) [11, 12] and the second is the Finnis-Sinclair model (FS) [13].
Both are density dependent potentials derived from density functional theory (DFT) and describe
the bonding of a metal atom ultimately in terms of the local electronic density. They are suitable
for calculating the properties of metals and metal alloys.

For single component metals the two approaches are the same. However, they are subtly dif-
ferent in the way they are extended to handle alloys (see below). It follows that EAM and FS
class potentials cannot be mixed in a single simulation. Furthermore, even for FS class potentials

29

c©STFC Section 2.3

possessing different analytical forms there is no agreed procedure for mixing the parameters. The
user is therefore strongly advised to be consistent in the choice of potential when modelling alloys.

The general form of the EAM and FS potentials is [47]

Umetal =
1

2

N∑
i=1

N∑
j 6=i

Vij(rij) +
N∑
i=1

F (ρi) , (2.98)

where F (ρi) is a functional describing the energy of embedding an atom in the bulk density, ρi,
which is defined as

ρi =
N∑

j=1,j 6=i

ρij(rij) . (2.99)

It should be noted that the density is determined by the coordination number of the atom defined
by pairs of atoms. This makes the metal potential dependent on the local density (environmental).
Vij(rij) is a pair potential incorporating repulsive electrostatic and overlap interactions. N is the
number of interacting particles in the MD box.

The types of metal potentials available in DL POLY 4 are as follows:

1. EAM potential: (eam) There are no explicit mathematical expressions for EAM potentials, so
this potential type is read exclusively in the form of interpolation arrays from the TABEAM
table file (as implemented in the metal table read routine - Section 5.1.7.) The rules for
combining the potentials from different metals to handle alloys are different from the FS class
of potentials (see below).

2. Finnis-Sinclair potential [13]: (fnsc) Finnis-Sinclair potential is explicitly analytical. It has
the following form:

Vij(rij) = (rij − c)2(c0 + c1rij + c2r
2
ij)

ρij(rij) = (rij − d)2 + β
(rij − d)3

d
(2.100)

F (ρi) = −A√ρi ,

with parameters: c0, c1, c2, c, A, d, β, both c and d are cutoffs. Since first being proposed
a number of alternative analysical forms have been proposed, some of which are descibed
below. The rules for combining different metal potentials to model alloys are different from
the EAM potentials (see below).

3. Extended Finnis-Sinclair potential [48]: (exfs) It has the following form:

Vij(rij) = (rij − c)2(c0 + c1rij + c2r
2
ij + c3r

3
ij + c4r

4
ij)

ρij(rij) = (rij − d)2 +B2(rij − d)4 (2.101)

F (ρi) = −A√ρi ,

with parameters: c0, c1, c2, c3, c4, c, A, d, B, both c and d are cutoffs.

4. Sutton-Chen potential [14, 15, 16]: (stch) The Sutton Chen potential is an analytical poten-
tial in the FS class. It has the form:

Vij(rij) = ε

(
a

rij

)n

ρij(rij) =

(
a

rij

)m

(2.102)

F (ρi) = −cε√ρi ,

30

c©STFC Section 2.3

with parameters: ε, a, n, m, c.

5. Gupta potential [49]: (gupt) The Gupta potential is another analytical potential in the FS
class. It has the form:

Vij(rij) = A exp

(
−prij − r0

r0

)
ρij(rij) = exp

(
−2qij

rij − r0
r0

)
(2.103)

F (ρi) = −B√ρi ,

with parameters: A, r0, p, B, qij .

All of these metal potentials can be decomposed into pair contributions and thus fit within the
general tabulation scheme of DL POLY 4, where they are treated as pair interactions (though
note that the metal cutoff, rmet has nothing to do with short ranged cutoff, rvdw). DL POLY 4
calculates this potential in two stages: the first calculates the local density, ρi, for each atom; and
the second calculates the potential energy and forces. Interpolation arrays, vmet, gmet and fmet

(metal generate, metal table read) are used in both these stages in the same spirit as in the
van der Waals interaction calculations.

The total force f tot
k

on an atom k derived from this potential is calculated in the standard way:

f tot
k

= −∇kUmetal . (2.104)

We rewrite the EAM/FS potential, (2.98), as

Umetal = U1 + U2

U1 =
1

2

N∑
i=1

N∑
j 6=i

Vij(rij) (2.105)

U2 =
N∑
i=1

F (ρi) ,

where rij = rj − ri . The force on atom k is the sum of the derivatives of U1 and U2 with respect
to rk, which is recognisable as a sum of pair forces:

− ∂U1

∂rk
= −1

2

N∑
i=1

N∑
j 6=i

∂Vij(rij)

∂rij

∂rij
∂rk

=
N∑

j=1,j 6=k

∂Vkj(rkj)

∂rkj

rkj

rkj

−∂U2

∂rk
= −

N∑
i=1

∂F

∂ρi

N∑
j 6=i

∂ρij(rij)

∂rij

∂rij
∂rk

(2.106)

= −
N∑

i=1,i 6=k

∂F

∂ρi

∂ρik(rik)

∂rik

∂rik
∂rk
−

N∑
j=1,j 6=k

∂F

∂ρk

∂ρkj(rkj)

∂rkj

∂rkj
∂rk

=
N∑

j=1,j 6=k

(
∂F

∂ρk
+
∂F

∂ρj

)
∂ρkj(rkj)

∂rkj

rkj

rkj
.

1. EAM force
The same as shown above. However, it is worth noting that the generation of the force arrays
from tabulated data (implemented in the metal table derivatives routine) is done using
a five point interpolation precedure.

31

c©STFC Section 2.3

2. Finnis-Sinclair force

− ∂U1

∂rk
=

N∑
j=1,j 6=k

{
2(rkj − c)(c0 + c1rkj + c2r

2
kj) + (rkj − c)2(c1 + 2c2rkj)

} rkj
rkj

−∂U2

∂rk
= −

N∑
j=1,j 6=k

A

2

(√
ρk +

√
ρj
){

2(rkj − d) + 3β
(rkj − d)2

d

}
rkj

rkj
. (2.107)

3. Extended Finnis-Sinclair force

− ∂U1

∂rk
=

N∑
j=1,j 6=k

{
2(rkj − c)(c0 + c1rkj + c2r

2
kj + c3r

3
kj + c4r

4
kj)+

(rkj − c)2(c1 + 2c2rkj + 3c3r
2
kj + 4c4r

3
kj)
} rkj
rkj

(2.108)

−∂U2

∂rk
= −

N∑
j=1,j 6=k

A

2

(√
ρk +

√
ρj
) {

2(rkj − d) + 4B2(rkj − d)3
} rkj
rkj

.

4. Sutton-Chen force

− ∂U1

∂rk
= −

N∑
j=1,j 6=k

nε

(
a

rkj

)n rkj

rkj

−∂U2

∂rk
=

N∑
j=1,j 6=k

mcε

2

(√
ρk +

√
ρj
)(a

rkj

)m rkj

rkj
. (2.109)

5. Gupta force

− ∂U1

∂rk
= −

N∑
j=1,j 6=k

Ap

r0
exp

(
−prkj − r0

r0

) rkj
rkj

−∂U2

∂rk
=

N∑
j=1,j 6=k

Bqkj
r0

(√
ρk +

√
ρj
)
exp

(
−2qkj

rkj − r0
r0

) rkj
rkj

. (2.110)

With the metal forces thus defined the contribution to be added to the atomic virial from each
atom pair is then

W = −rij · f j , (2.111)

which equates to:

Ψ = 3V
∂U

∂V

Ψ =
3

2
V

N∑
i=1

N∑
j 6=i

∂Vij(rij)

∂rij

∂rij
∂V

+ 3V
N∑
i=1

∂F (ρi)

∂ρi

∂ρi
∂V

= Ψ1 +Ψ2

∂rij
∂V

=
∂V 1/3sij
∂V

=
1

3
V −2/3sij =

rij
3V

Ψ1 =
1

2

N∑
i=1

N∑
j 6=i

∂Vij(rij)

∂rij
rij (2.112)

32

c©STFC Section 2.3

∂ρi
∂V

=
∂

∂V

N∑
j=1,j 6=i

ρij(rij) =
N∑

j=1,j 6=i

∂ρij(rij)

∂rij

∂rij
∂V

=
1

3V

N∑
j=1,j 6=i

∂ρij(rij)

∂rij
rij

Ψ2 =
1

2

N∑
i=1

N∑
j 6=i

(
∂F (ρi)

∂ρi
+
∂F (ρj)

∂ρj

)
∂ρij(rij)

∂rij
rij .

1. EAM virial
The same as above.

2. Finnis-Sinclair virial

Ψ1 =
1

2

N∑
i=1

N∑
j 6=i

{
2(rij − c)(c0 + c1rij + c2r

2
ij) + (rij − c)2(c1 + 2c2rij)

}
rij

Ψ2 =
1

2

N∑
i=1

N∑
j 6=i

A

2

(√
ρk +

√
ρj
){

2(rij − d) + 3β
(rij − d)2

d

}
rija . (2.113)

3. Extended Finnis-Sinclair virial

Ψ1 =
1

2

N∑
i=1

N∑
j 6=i

{
2(rij − c)(c0 + c1rij + c2r

2
ij + c3r

3
ij + c4r

4
ij)+

(rij − c)2(c1 + 2c2rij + 3c3r
2
ij + 4c4riji

3)
}
rij (2.114)

Ψ2 =
1

2

N∑
i=1

N∑
j 6=i

A

2

(√
ρk +

√
ρj
) {

2(rij − d) + 4B2(rij − d)3
}
rija .

4. Sutton-Chen virial

Ψ1 = −1

2

N∑
i=1

N∑
j 6=i

nε

(
a

rij

)n

Ψ2 =
1

2

N∑
i=1

N∑
j 6=i

mcε

2

(
∂F (ρi)

∂ρi
+
∂F (ρj)

∂ρj

)(
a

rij

)m

. (2.115)

5. Gupta virial

Ψ1 = −1

2

N∑
i=1

N∑
j 6=i

Ap

r0
exp

(
−prij − r0

r0

)
rij

Ψ2 =
1

2

N∑
i=1

N∑
j 6=i

Bqij
r0

(√
ρk +

√
ρj
)
exp

(
−2qij

rij − r0
r0

)
rij . (2.116)

The contribution to be added to the atomic stress tensor is given by

σαβ = rαijf
β
j , (2.117)

where α and β indicate the x, y, z components. The atomic stress tensor is symmetric.

33

c©STFC Section 2.3

The long-ranged correction for the DL POLY 4 metal potential is in two parts. Firstly, by analogy
with the short ranged potentials, the correction to the local density is

ρi =
∞∑

j=1,j 6=i

ρij(rij)

ρi =

rij<rmet∑
j=1,j 6=i

ρij(rij) +

rij≥rmet∑
j=1,j 6=i

ρij(rij) = ρoi + δρi (2.118)

δρi = 4πρ̄

∫ ∞

rmet

ρij(r)dr ,

where ρoi is the uncorrected local density and ρ̄ is the mean particle density. Evaluating the integral
part of the above equation yields:

1. EAM density correction
No long-ranged corrections apply beyond rmet.

2. Finnis-Sinclair density correction
No long-ranged corrections apply beyond cutoffs c and d.

3. Extended Finnis-Sinclair density correction
No long-ranged corrections apply beyond cutoffs c and d.

4. Sutton-Chen density correction

δρi =
4πρ̄a3

(m− 3)

(
a

rmet

)m−3

. (2.119)

5. Gupta density correction

δρi =
2πρ̄r0
qij

r2met + 2rmet

(
r0
qij

)
+ 2

(
r0
qij

)2
 exp(−2qij rmet − r0

r0

)
. (2.120)

The density correction is applied immediately after the local density is calculated. The pair term
correction is obtained by analogy with the short ranged potentials and is

U1 =
1

2

N∑
i=1

∞∑
j 6=i

Vij(rij)

U1 =
1

2

N∑
i=1

rij<rmet∑
j 6=i

Vij(rij) +
1

2

N∑
i=1

rij≥rmet∑
j 6=i

Vij(rij) = Uo
1 + δU1

δU1 = 2πNρ̄

∫ ∞

rmet

Vij(r)r
2dr

U2 =
N∑
i=1

F (ρ0i + δρi) (2.121)

U2 =
N∑
i=1

F (ρ0i) +
N∑
i=1

∂F (ρi)0
∂ρi

δρi) = U0
2 + δU2

δU2 = 4πρ̄
N∑
i=1

∂F (ρi)0
∂ρi

∫ ∞

rmet

ρij(r)r
2dr .

Note: that δU2 is not required if ρi has already been corrected. Evaluating the integral part of
the above equations yields:

34

c©STFC Section 2.3

1. EAM energy correction
No long-ranged corrections apply beyond rmet.

2. Finnis-Sinclair energy correction
No long-ranged corrections apply beyond cutoffs c and d.

3. Extended Finnis-Sinclair energy correction
No long-ranged corrections apply beyond cutoffs c and d.

4. Sutton-Chen energy correction

δU1 =
2πNρ̄εa3

(n− 3)

(
a

rmet

)n−3

δU2 = − 4πρ̄a3

(m− 3)

(
a

rmet

)n−3
〈
Ncε

2
√
ρ0i

〉
. (2.122)

5. Gupta energy correction

δU1 =
2πNρ̄Ar0

p

[
r2met + 2rmet

(
r0
p

)
+ 2

(
r0
p

)2
]
×

exp

(
−prmet − r0

r0

)

δU2 = −2πρ̄r0
qij

r2met + 2rmet

(
r0
qij

)
+ 2

(
r0
qij

)2
× (2.123)

exp

(
−2qij

rmet − r0
r0

)〈
NB

2
√
ρ0i

〉
.

To estimate the virial correction we assume the corrected local densities are constants (i.e. in-
dependent of distance - at least beyond the range rmet). This allows the virial correction to be
computed by the methods used in the short ranged potentials:

Ψ1 =
1

2

N∑
i=1

∞∑
j 6=i

∂Vij(rij)

∂rij
rij

Ψ1 =
1

2

N∑
i=1

rij<rmet∑
j 6=i

∂Vij(rij)

∂rij
rij +

1

2

N∑
i=1

rij≥rmet∑
j 6=i

∂Vij(rij)

∂rij
rij = Ψ0

1 + δΨ1

δΨ1 = 2πNρ̄

∫ ∞

rmet

∂Vij(r)

∂rij
r3dr

Ψ2 =
N∑
i=1

∂F (ρi)

∂ρi

∞∑
j 6=i

∂ρij(rij)

∂rij
rij (2.124)

Ψ2 =
N∑
i=1

∂F (ρi)

∂ρi

rij<rmet∑
j 6=i

∂ρij(rij)

∂rij
rij +

N∑
i=1

∂F (ρi)

∂ρi

rij≥rmet∑
j 6=i

∂ρij(rij)

∂rij
rij = Ψ0

2 + δΨ2

δΨ2 = 4πρ̄
N∑
i=1

∂F (ρi)

∂ρi

∫ ∞

rmet

∂ρij(r)

∂r
r3dr .

Evaluating the integral part of the above equations yields:

35

c©STFC Section 2.3

1. EAM virial correction
No long-ranged corrections apply beyond rmet.

2. Finnis-Sinclair virial correction
No long-ranged corrections apply beyond cutoffs c and d.

3. Extended Finnis-Sinclair virial correction
No long-ranged corrections apply beyond cutoffs c and d.

4. Sutton-Chen virial correction

δΨ1 = −n2πNρ̄εa
3

(n− 3)

(
a

rmet

)n−3

δΨ2 = m
4πρ̄a3

(m− 3)

(
a

rmet

)n−3
〈
Ncε

2
√
ρ0i

〉
. (2.125)

5. Gupta virial correction

δΨ1 = − p

r0

2πNρ̄Ar0
p

[
r3met + 3r2met

(
r0
p

)
+ 6rmet

(
r0
p

)2

+ 6

(
r0
p

)3
]
×

exp

(
−prmet − r0

r0

)

δΨ2 =
qij
r0

2πρ̄r0
qij

r3met + 3r2met

(
r0
qij

)
+ 6rmet

(
r0
qij

)2

+ 6

(
r0
qij

)3
× (2.126)

exp

(
−2qij

rmet − r0
r0

)〈
NB

2
√
ρ0i

〉
.

In the energy and virial corrections we have used the approximation:

N∑
i

ρ
−1/2
i =

N

< ρ
1/2
i >

, (2.127)

where < ρ
1/2
i > is regarded as a constant of the system.

In DL POLY 4 the metal forces are handled by the routine metal forces. The local density is cal-
culated by the routines metal ld collect eam, metal ld collect fst, metal ld compute,
metal ld set halo andmetal ld export. The long-ranged corrections are calculated bymetal lrc.
Reading and generation of EAM table data from TABEAM is handled by metal table read and
metal table derivatives.

Notes on the Treatment of Alloys

The distinction to be made between EAM and FS potentials with regard to alloys concerns the
mixing rules for unlike interactions. Starting with equations (2.98) and (2.99), it is clear that we
require mixing rules for terms Vij(rij) and ρij(rij) when atoms i and j are of different kinds. Thus
two different metals A and B we can distinguish 4 possible variants of each:

V AA
ij (rij), V

BB
ij (rij), V

AB
ij (rij), V

BA
ij (rij)

36

c©STFC Section 2.3

and
ρAA
ij (rij), ρ

BB
ij (rij), ρ

AB
ij (rij), ρ

BA
ij (rij) .

These forms recognise that the contribution of a type A atom to the potential of a type B atom
may be different from the contribution of a type B atom to the potential of a type A atom. In
both EAM [50] and FS [15] cases it turns out that

V BA
ij (rij) = V BA

ij (rij) , (2.128)

though the mixing rules are different in each case (beware!).

With regard to density, in the EAM case it is required that [50]:

ρAB
ij (rij) = ρBB

ij (rij)

ρBA
ij (rij) = ρAA

ij (rij) , (2.129)

which means that an atom of type A contributes the same density to the environment of an atom
of type B as it does to an atom of type A, and vice versa.

For the FS case [15] a different rule applies:

ρAB
ij (rij) = (ρAA

ij (rij) ρ
BB
ij (rij))

1/2 (2.130)

so that atoms of type A and B contribute the same densities to each other, but not to atoms of
the same type.

Thus when specifying these potentials in the DL POLY 4 FIELD file for an alloy composed of n
different metal atom types both EAM and FS require the specification of n(n+1)/2 pair functions
V AB
ij (rij). However, the EAM requires only n density functions ρAA

ij (rij), whereas the FS class

requires all the cross functions ρAB
ij (rij) or n(n+ 1)/2 in total. In addition to the n(n+ 1)/2 pair

functions and n density functions the EAM requires further specification of n functional forms of
the density dependence (i.e. the embedding function F (ρi) in (2.98)).

For EAM potentials all the functions are supplied in tabular form via the table file TABEAM (see
section 5.1.7) to which DL POLY 4 is redirected by the FIELD file data. The FS potentials are
defined via the necessary parameters in the FIELD file.

2.3.3 Tersoff Potential

The Tersoff [17] potential has been developed to be used in multi-component covalent systems by
an effective coupling of two-body and higher many-body correlations into one model. The central
idea is that in real systems, the strength of each bond depends on the local environment, i.e. an
atom with many neighbors forms weaker bonds than an atom with few neighbors. Effectively, it
is a pair potential the strength of which depends on the environment. It has 11 atomic and 2
bi-atomic parameters. The energy is modelled as a sum of pair-like interactions, where, however
the coefficient of the attractive term in the pair-like potential (which plays the role of a bond order)
depends on the local environment giving a many-body potential.

The form of the Tersoff potential is: (ters)

Uij = fC(rij) [fR(rij)− γij fA(rij)] , (2.131)

where fR and fA are the repulsive and attractive pair potential respectively:

fR(rij) = Aij exp(−aij rij) , fA(rij) = Bij exp(−bij rij) (2.132)

37

c©STFC Section 2.3

and fC is a smooth cutoff function with parameters R and S so chosen that to include the first-
neighbor shell:

fC(rij) =


1 : rij < Rij
1
2 + 1

2 cos
[
π

rij−Rij

Sij−Rij

]
: Rij < rij < Sij .

0 : rij > Sij

(2.133)

γij expresses a dependence that can accentuate or diminish the attractive force relative to the
repulsive force, according to the local environment, such that

γij = χij (1 + βi
ηi Lηiij)

− 1
2ηi

Lij =
∑
k 6=i,j

fC(rik) ωik g(θijk) (2.134)

g(θijk) = 1 +
c2i
d2i
− c2i
d2i + (hi − cos θijk)2

,

where the term Lij defines the effective coordination number of atom i i.e. the number of nearest
neighbors, taking into account the relative distance of the two neighbors, i and k, rij − rik, and
the bond angle, θijk, between them with respect to the central atom i. The function g(θ) has a
minimum for hi = cos(θijk), the parameter di determines how sharp the dependence on angle is,
and ci expresses the strength of the angular effect. Further mixed parameters are defined as:

aij = (ai + aj)/2 , bij = (bi + bj)/2

Aij = (AiAj)
1/2 , Bij = (BiBj)

1/2 (2.135)

Rij = (RiRj)
1/2 , Sij = (SiSj)

1/2 .

Singly subscripted parameters (11), such as ai and ηi, depend only on the type of atom.

The chemistry between different atom types is locked in the two sets bi-atomic parameters χij and
ωij :

χii = 1 , χij = χji

ωii = 1 , ωij = ωji , (2.136)

which define only one independent parameter each per pair of atom types. The χ parameter is
used to strengthen or weaken the heteropolar bonds, relative to the value obtained by simple inter-
polation. The ω parameter is used to permit greater flexibility when dealing with more drastically
different types of atoms. In DL POLY 4 a third, additional parameter, λij is also available. It only
takes the values of 0 (as if not specified) and 1 (any other value apart from 0) and can be used to
remove the pure two body part of a specific tersoff cross interaction from the system and so leave
out only the pure angular one.

The force on an atom ` derived from this potential is formally calculated with the formula:

fα` = − ∂

∂rα`
Etersoff =

1

2

∑
i

∑
j 6=i

− ∂

∂rα`
Uij , (2.137)

with atomic label ` being one of i, j, k and α indicating the x, y, z component. The derivative after
the summation is worked out as

− ∂Uij

∂rα`
= − ∂

∂rα`
fC(rij)fR(rij) + γij

∂

∂rα`
fC(rij)fA(rij) + fC(rij)fA(rij)

∂

∂rα`
γij , (2.138)

38

c©STFC Section 2.3

with the contributions from the first in the forms:

− ∂

∂rα`
fC(rij)fR(rij) = −

{
fC(rij)

∂

∂rij
fR(rij) + fR(rij)

∂

∂rij
fC(rij)

}
×{

δj`
rαi`
ri`
− δi`

rα`j
r`j

}
(2.139)

γij
∂

∂rα`
fC(rij)fA(rij) = γij

{
fC(rij)

∂

∂rij
fA(rij) + fA(rij)

∂

∂rij
fC(rij)

}
×{

δj`
rαi`
ri`
− δi`

rα`j
r`j

}
, (2.140)

and from the third (angular) term:

fC(rij)fA(rij)
∂

∂rα`
γij = fC(rij)fA(rij) χij ×(

−1

2

)(
1 + βi

ηi Lηiij
)− 1

2ηi
−1
βi

ηi Lηi−1
ij

∂

∂rα`
Lij , (2.141)

where
∂

∂rα`
Lij =

∂

∂rα`

∑
k 6=i,j

ωik fC(rik) g(θijk) . (2.142)

The angular term can have three different contributions depending on the index of the particle
participating in the interaction:

` = i :
∂

∂rαi
Lij =

∑
k 6=i,j

ωik

[
g(θijk)

∂

∂rαi
fC(rik) + fC(rik)

∂

∂rαi
g(θijk)

]
(2.143)

` = j :
∂

∂rαj
Lij =

∑
k 6=i,j

ωik fC(rik)
∂

∂rαj
g(θijk) (2.144)

` 6= i, j :
∂

∂rα`
Lij = ωi`

[
g(θij`)

∂

∂rα`
fC(ri`) + fC(ri`)

∂

∂rα`
g(θij`)

]
. (2.145)

The derivative of g(θijk) is worked out in the following manner:

∂

∂rα`
g(θijk) =

∂g(θijk)

∂θijk

−1
sin θijk

∂

∂rα`

{
rij · rik
rij rik

}
, (2.146)

where

∂g(θijk)

∂θijk
=

2 c2i (hi − cos θijk) sin θijk
[d2i + (hi − cos θijk)2]2

(2.147)

∂

∂rα`

{
rij · rik
rijrik

}
= (δ`j − δ`i)

rαik
rijrik

+ (δ`k − δ`i)
rαij
rijrik

−

cos(θjik)

{
(δ`j − δ`i)

rαij
r2ij

+ (δ`k − δ`i)
rαik
r2ik

}
. (2.148)

39

c©STFC Section 2.3

The contribution to be added to the atomic virial can be derived as

W = 3V
∂Etersoff

∂V
=

3 V

2

∑
i

∑
j 6=i

∂Uij

∂V
(2.149)

W =
1

2

∑
i

∑
j 6=i

{[
∂

∂rij
fC(rij)fR(rij)− γij

∂

∂rij
fC(rij)fA(rij)

]
rij −

(
−1

2

)
fC(rij)fA(rij) χij

(
1 + βi

ηi Lηiij
)− 1

2ηi
−1
βi

ηi Lηi−1
ij × (2.150)

∑
k 6=i,j

ωik g(θijk)

[
∂

∂rik
fC(rik)

]
rik

 .

The contribution to be added to the atomic stress tensor is given by

σαβ = −rαi f
β
i , (2.151)

where α and β indicate the x, y, z components. The stress tensor is symmetric.

Interpolation arrays, vter and gter (set up in tersoff generate) - similar to those in van der
Waals interactions 2.3.1, are used in the calculation of the Tersoff forces, virial and stress.

The Tersoff potentials are very short ranged, typically of order 3 Å. This property, plus the fact
that Tersoff potentials (two- and three-body contributions) scale as N3, where N is the number of
particles, makes it essential that these terms are calculated by the link-cell method [51].

DL POLY 4 applies no long-ranged corrections to the Tersoff potentials. In DL POLY 4 Tersoff
forces are handled by the routine tersoff forces.

2.3.4 Three-Body Potentials

The three-body potentials in DL POLY 4 are mostly valence angle forms. (They are primarily
included to permit simulation of amorphous materials e.g. silicate glasses.) However, these have
been extended to include the Dreiding [19] hydrogen bond. The potential forms available are as
follows:

1. Harmonic: (harm)

U(θjik) =
k

2
(θjik − θ0)2 (2.152)

2. Truncated harmonic: (thrm)

U(θjik) =
k

2
(θjik − θ0)2 exp[−(r8ij + r8ik)/ρ

8] (2.153)

3. Screened Harmonic: (shrm)

U(θjik) =
k

2
(θjik − θ0)2 exp[−(rij/ρ1 + rik/ρ2)] (2.154)

4. Screened Vessal [36]: (bvs1)

U(θjik) =
k

8(θjik − π)2
{[

(θ0 − π)2 − (θjik − π)2
]2}
×

exp[−(rij/ρ1 + rik/ρ2)] (2.155)

40

c©STFC Section 2.3

5. Truncated Vessal [37]: (bvs2)

U(θjik) = k [θajik(θjik − θ0)2(θjik + θ0 − 2π)2 −
a

2
πa−1(θjik − θ0)2(π − θ0)3] exp[−(r8ij + r8ik)/ρ

8] (2.156)

6. Dreiding hydrogen bond [19]: (hbnd)

U(θjik) = Dhb cos4(θjik) [5(Rhb/rjk)
12 − 6(Rhb/rjk)

10] (2.157)

Note that for the hydrogen bond, the hydrogen atom must be the central atom. Several of these
functions are identical to those appearing in the intra-molecular valence angle descriptions above.
There are significant differences in implementation however, arising from the fact that the three-
body potentials are regarded as inter-molecular. Firstly, the atoms involved are defined by atom
types, not specific indices. Secondly, there are no excluded atoms arising from the three-body
terms. (The inclusion of other potentials, for example pair potentials, may in fact be essential to
maintain the structure of the system.)

The three-body potentials are very short ranged, typically of order 3 Å. This property, plus the
fact that three-body potentials scale as N4, where N is the number of particles, makes it essential
that these terms are calculated by the link-cell method [51].

The calculation of the forces, virial and stress tensor as described in the section valence angle
potentials above.

DL POLY 4 applies no long-ranged corrections to the three-body potentials. The three-body forces
are calculated by the routine three body forces.

2.3.5 Four-Body Potentials

The four-body potentials in DL POLY 4 are entirely inversion angle forms, primarily included
to permit simulation of amorphous materials (particularly borate glasses). The potential forms
available in DL POLY 4 are as follows:

1. Harmonic: (harm)

U(φijkn) =
k

2
(φijkn − φ0)2 (2.158)

2. Harmonic cosine: (hcos)

U(φijkn) =
k

2
(cos(φijkn)− cos(φ0))

2 (2.159)

3. Planar potential: (plan)

U(φijkn) = A [1− cos(φijkn)] (2.160)

These functions are identical to those appearing in the intra-molecular inversion angle descriptions
above. There are significant differences in implementation however, arising from the fact that the
four-body potentials are regarded as inter-molecular. Firstly, the atoms involved are defined by
atom types, not specific indices. Secondly, there are no excluded atoms arising from the four-body
terms. (The inclusion of other potentials, for example pair potentials, may in fact be essential to
maintain the structure of the system.)

41

c©STFC Section 2.4

The four-body potentials are very short ranged, typically of order 3 Å. This property, plus the fact
that four-body potentials scale as N4, where N is the number of particles, makes it essential that
these terms are calculated by the link-cell method [51].

The calculation of the forces, virial and stress tensor described in the section on inversion angle
potentials above.

DL POLY 4 applies no long-ranged corrections to the four body potentials. The four-body forces
are calculated by the routine four body forces.

2.4 Long Ranged Electrostatic (coulombic) Potentials

DL POLY 4 incorporates several techniques for dealing with long-ranged electrostatic potentials2.
These are as follows:

1. Direct Coulomb sum

2. Force-shifted Coulomb sum

3. Coulomb sum with distance dependent dielectric

4. Reaction field

5. Smoothed Particle Mesh Ewald (SPME)

All of these can be used in conjunction with the shell model technique used to account for ions
polarisation.

The SPME technique is restricted to periodic systems only. (Users must exercise care when using
pseudo-periodic boundary conditions.) The other techniques can be used with either periodic or
non-periodic systems safely, although in the case of the direct Coulomb sum there are likely to be
problems with convergence.

DL POLY 4 will correctly handle the electrostatics of both molecular and atomic species. However,
it is assumed that the system is electrically neutral. A warning message is printed if the system is
found to be charged, but otherwise the simulation proceeds as normal.

Note that DL POLY 4 does not use the basic Ewald method, which is an option in DL POLY Classic,
on account of it being too slow for large scale systems. The SPME method is the standard Ewald
method in DL POLY 4.

2.4.1 Direct Coulomb Sum

Use of the direct Coulomb sum is sometimes necessary for accurate simulation of isolated (non-
periodic) systems. It is not recommended for periodic systems.

The interaction potential for two charged ions is

U(rij) =
1

4πε0ε

qiqj
rij

, (2.161)

with q` the charge on an atom labelled `, and rij the magnitude of the separation vector rij = rj−ri .
2Unlike the other elements of the force field, the electrostatic forces are NOT specified in the input FIELD file,

but by setting appropriate directives in the CONTROL file. See Section 5.1.1.

42

c©STFC Section 2.4

The force on an atom j derived from this force is

f
j
=

1

4πε0ε

qiqj
r3ij

rij , (2.162)

with the force on atom i the negative of this.

The contribution to the atomic virial is

W = − 1

4πε0ε

qiqj
rij

, (2.163)

which is simply the negative of the potential term.

The contribution to be added to the atomic stress tensor is

σαβ = rαijf
β
j , (2.164)

where α, β are x, y, z components. The atomic stress tensor is symmetric.

In DL POLY 4 these forces are handled by the subroutine coul cp forces.

2.4.2 Force-Shifted Coulomb Sum

This form of the Coulomb sum has the advantage that it drastically reduces the range of electrostatic
interactions, without giving rise to a violent step in the potential energy at the cutoff. Its main use
is for preliminary preparation of systems and it is not recommended for realistic models.

The form of the simple truncated and shifted potential function is

U(rij) =
qiqj
4πε0ε

{
1

rij
− 1

rcut

}
, (2.165)

with q` the charge on an atom labelled `, rcut the cutoff radius and rij the magnitude of the
separation vector rij = rj − ri .
A further refinement of this approach is to truncate the 1/r potential at rcut and add a linear term
to the potential in order to make both the energy and the force zero at the cutoff. This removes the
heating effects that arise from the discontinuity in the forces at the cutoff in the simple truncated
and shifted potential (the formula above). (The physics of this potential, however, is little better.
It is only recommended for very crude structure optimizations.)

The force-shifted potential is thus

U(rij) =
qiqj
4πε0ε

[{
1

rij
+

1

r2cut
rij

}
−
{

1

rcut
+

1

r2cut
rcut

}]
=

qiqj
4πε0ε

[
1

rij
+

rij
r2cut
− 2

rcut

]
, (2.166)

with the force on an atom j given by

f
j
=

qiqj
4πε0ε

[
1

r3ij
− 1

rijr2cut

]
rij , (2.167)

with the force on atom i the negative of this.

The force-shifted Coulomb potential can be elegantly extended to emulate long-range ordering by
including distance depending damping function erfc(α rij) (identical to that seen in the real-space

43

c©STFC Section 2.4

portion of the Ewald sum) and thus mirror the effective charge screening [52] as shown below

U(rij) =
qiqj
4πε0ε

[{
erfc(α rij)

rij
+

(
erfc(α rcut)

r2cut
+

2α√
π

exp(−α2 r2cut)

rcut

)
rij

}
−{

erfc(α rcut)

rcut
+

(
erfc(α rcut)

r2cut
+

2α√
π

exp(−α2 r2cut)

rcut

)
rcut

}]
, (2.168)

with the force on an atom j given by

f
j
=

qiqj
4πε0ε

[(
erfc(α rij)

r2ij
+

2α√
π

exp(−α2 r2ij)

rij

)
−(

erfc(α rcut)

r2cut
+

2α√
π

exp(−α2 r2cut)

rcut

)]
rij
rij

, (2.169)

with the force on atom i the negative of this.

It is worth noting that, as discussed in [52] and references therein, this is only an approximation
of the Ewald sum and its accuracy and effectiveness become better when the cutoff is large (> 10
preferably 12 Å).

The contribution to the atomic virial is

W = −rij · f j , (2.170)

which is not the negative of the potential term in this case.

The contribution to be added to the atomic stress tensor is given by

σαβ = rαijf
β
j , (2.171)

where α, β are x, y, z components. The atomic stress tensor is symmetric.

In DL POLY 4 these forces are handled by the routine coul fscp forces.

2.4.3 Coulomb Sum with Distance Dependent Dielectric

This potential attempts to address the difficulties of applying the direct Coulomb sum, without the
brutal truncation of the previous case. It hinges on the assumption that the electrostatic forces are
effectively ‘screened’ in real systems - an effect which is approximated by introducing a dielectric
term that increases with distance.

The interatomic potential for two charged ions is

U(rij) =
1

4πε0ε(rij)

qiqj
rij

, (2.172)

with q` the charge on an atom labelled `, and rij the magnitude of the separation vector rij = rj−ri .
ε(r) is the distance dependent dielectric function. In DL POLY 4 it is assumed that this function
has the form

ε(r) = ε r , (2.173)

where ε is a constant. Inclusion of this term effectively accelerates the rate of convergence of the
Coulomb sum.

44

c©STFC Section 2.4

The force on an atom j derived from this potential is

f
j
=

1

2πε0ε

qiqj
r4ij

rij , (2.174)

with the force on atom i the negative of this.

The contribution to the atomic virial is

W = −rij · f j , (2.175)

which is −2 times the potential term.

The contribution to be added to the atomic stress tensor is given by

σαβ = rαijf
β
j , (2.176)

where α, β are x, y, z components. The atomic stress tensor is symmetric.

In DL POLY 4 these forces are handled by the routine coul dddp forces.

2.4.4 Reaction Field

In the reaction field method it is assumed that any given molecule is surrounded by a spherical
cavity of finite radius within which the electrostatic interactions are calculated explicitly. Outside
the cavity the system is treated as a dielectric continuum. The occurrence of any net dipole within
the cavity induces a polarisation in the dielectric, which in turn interacts with the given molecule.
The model allows the replacement of the infinite Coulomb sum by a finite sum plus the reaction
field.

The reaction field model coded into DL POLY 4 is the implementation of Neumann based on
charge-charge interactions [53]. In this model, the total coulombic potential is given by

Uc =
1

4πε0ε

∑
j<n

qjqn

[
1

rnj
+
B0r

2
nj

2R3
c

]
, (2.177)

where the second term on the right is the reaction field correction to the explicit sum, with Rc the
radius of the cavity. The constant B0 is defined as

B0 =
2(ε1 − 1)

(2ε1 + 1)
, (2.178)

with ε1 the dielectric constant outside the cavity. The effective pair potential is therefore

U(rij) =
1

4πε0ε
qiqj

[
1

rij
+
B0r

2
ij

2R3
c

]
. (2.179)

This expression unfortunately leads to large fluctuations in the system coulombic energy, due to the
large ‘step’ in the function at the cavity boundary. In DL POLY 4 this is countered by subtracting
the value of the potential at the cavity boundary from each pair contribution. The term subtracted
is

1

4πε0ε

qiqj
Rc

[
1 +

B0

2

]
. (2.180)

45

c©STFC Section 2.4

The effective pair force on an atom j arising from another atom n within the cavity is given by

f
j
=

qiqj
4πε0ε

[
1

r3ij
− B0

R3
c

]
rij . (2.181)

In DL POLY 4 the reaction field is optionally extended to emulate long-range ordering in a force-
shifted manner by countering the reaction term and using a distance depending damping function
erfc(α rij) (identical to that seen in the real-space portion of the Ewald sum) and thus mirror the
effective charge screening [52]:

U(rij) =
qiqj
4πε0ε

[{
erfc(α rij)

rij
+

(
erfc(α rcut)

r2cut
+

2α√
π

exp(−α2 r2cut)

rcut

)
rij

}
−{

erfc(α rcut)

rcut
+

(
erfc(α rcut)

r2cut
+

2α√
π

exp(−α2 r2cut)

rcut

)
rcut

}
+
B0(r

2
ij − r2cut)
2r3cut

]
,(2.182)

with the force on an atom j given by

f
j
=

qiqj
4πε0ε

[(
erfc(α rij)

r2ij
+

2α√
π

exp(−α2 r2ij)

rij

)
−(

erfc(α rcut)

r2cut
+

2α√
π

exp(−α2 r2cut)

rcut

)
− B0rij

r3cut

]
rij
rij

, (2.183)

with the force on atom i the negative of this.

It is worth noting that, as discussed in [52] and references therein, this is only an approximation
of the Ewald sum and its accuracy and effectiveness become better when the cutoff is large (> 10
preferably 12 Å).

The contribution of each effective pair interaction to the atomic virial is

W = −rij · f j (2.184)

and the contribution to the atomic stress tensor is

σαβ = rαijf
β
j , (2.185)

where α, β are x, y, z components. The atomic stress tensor is symmetric.

In DL POLY 4 the reaction field is handled by the subroutine coul rfp forces.

2.4.5 Smoothed Particle Mesh Ewald

The Ewald sum [22] is the best technique for calculating electrostatic interactions in a periodic (or
pseudo-periodic) system.

The basic model for a neutral periodic system is a system of charged point ions mutually interacting
via the Coulomb potential. The Ewald method makes two amendments to this simple model. Firstly
each ion is effectively neutralised (at long-ranged) by the superposition of a spherical Gaussian cloud
of opposite charge centred on the ion. The combined assembly of point ions and Gaussian charges
becomes the Real Space part of the Ewald sum, which is now short ranged and treatable by the
methods described above (Section 2)3. The second modification is to superimpose a second set of

3Strictly speaking, the real space sum ranges over all periodic images of the simulation cell, but in the DL POLY 4
implementation, the parameters are chosen to restrict the sum to the simulation cell and its nearest neighbours i.e.
the minimum images of the cell contents.

46

c©STFC Section 2.4

Gaussian charges, this time with the same charges as the original point ions and again centred on
the point ions (so nullifying the effect of the first set of Gaussians). The potential due to these
Gaussians is obtained from Poisson’s equation and is solved as a Fourier series in Reciprocal Space.
The complete Ewald sum requires an additional correction, known as the self energy correction,
which arises from a Gaussian acting on its own site, and is constant. Ewald’s method, therefore,
replaces a potentially infinite sum in real space by two finite sums: one in real space and one in
reciprocal space; and the self energy correction.

For molecular systems, as opposed to systems comprised simply of point ions, additional modifica-
tions ewald excl forces are necessary to correct for the excluded (intra-molecular) coulombic
interactions. In the real space sum these are simply omitted. In reciprocal space however, the
effects of individual Gaussian charges cannot easily be extracted, and the correction is made in real
space. It amounts to removing terms corresponding to the potential energy of an ion ` due to the
Gaussian charge on a neighbouring charge m (or vice versa). This correction appears as the final
term in the full Ewald formula below. The distinction between the error function erf and the more
usual complementary error function erfc found in the real space sum, should be noted.

The same considerations and modifications ewald frozen forces are taken into account for
frozen atoms, which mutual coulombic interaction must be excluded.

The total electrostatic energy is given by the following formula.

Uc =
1

2Voε0ε

∞∑
k 6=0

exp(−k2/4α2)

k2
|

N∑
j

qj exp(−ik · rj)|2 +
1

4πε0ε

N∗∑
n<j

qjqn
rnj

erfc(αrnj)−

1

4πε0ε

∑
molecules

M∗∑
`≤m

q`qm

{
δ`m

α√
π
+
erf(αr`m)

r1−δ`m
`m

}
− (2.186)

1

4πε0ε

F ∗∑
`≤m

q`qm

{
δ`m

α√
π
+
erf(αr`m)

r1−δ`m
`m

}
− 1

4πε0ε

1

Voα2


N∑
j

qj


2

,

where N is the number of ions in the system and N∗ the same number discounting any excluded
(intramolecular and frozen) interactions. M∗ represents the number of excluded atoms in a given
molecule. F ∗ represents the number of frozen atoms in the MD cell. Vo is the simulation cell
volume and k is a reciprocal lattice vector defined by

k = `u+mv + nw , (2.187)

where `,m, n are integers and u, v, w are the reciprocal space basis vectors. Both Vo and u, v, w are
derived from the vectors (a, b, c) defining the simulation cell. Thus

Vo = |a · b× c| (2.188)

and

u = 2π
b× c
a · b× c

v = 2π
c× a
a · b× c

(2.189)

w = 2π
a× b
a · b× c

.

With these definitions, the Ewald formula above is applicable to general periodic systems. The last
term in the Ewald formula above is the Fuchs correction [54] for electrically non-neutral MD cells

47

c©STFC Section 2.4

which prevents the build-up of a charged background and the introduction of extra pressure due
to it.

In practice the convergence of the Ewald sum is controlled by three variables: the real space cutoff
rcut; the convergence parameter α and the largest reciprocal space vector kmax used in the reciprocal
space sum. These are discussed more fully in Section 4.3.5. DL POLY 4 can provide estimates if
requested (see CONTROL file description 5.1.1).

As its name implies the Smoothed Particle Mesh Ewald (SPME) method is a modification of the
standard Ewald method. DL POLY 4 implements the SPME method of Essmann et al. [55].
Formally, this method is capable of treating van der Waals forces also, but in DL POLY 4 it
is confined to electrostatic forces only. The main difference from the standard Ewald method
is in its treatment of the the reciprocal space terms. By means of an interpolation procedure
involving (complex) B-splines, the sum in reciprocal space is represented on a three dimensional
rectangular grid. In this form the Fast Fourier Transform (FFT) may be used to perform the
primary mathematical operation, which is a 3D convolution. The efficiency of these procedures
greatly reduces the cost of the reciprocal space sum when the range of k vectors is large. The
method (briefly) is as follows (for full details see [55]):

1. Interpolation of the exp(−i k · rj) terms (given here for one dimension):

exp(2πi ujk/L) ≈ b(k)
∞∑

`=−∞
Mn(uj − `) exp(2πi k`/K) , (2.190)

in which k is the integer index of the k vector in a principal direction, K is the total number
of grid points in the same direction and uj is the fractional coordinate of ion j scaled by a
factor K (i.e. uj = Ksxj) . Note that the definition of the B-splines implies a dependence
on the integer K, which limits the formally infinite sum over `. The coefficients Mn(u) are
B-splines of order n and the factor b(k) is a constant computable from the formula:

b(k) = exp(2πi (n− 1)k/K)

[
n−2∑
`=0

Mn(`+ 1) exp(2πi k`/K)

]−1

. (2.191)

2. Approximation of the structure factor S(k):

S(k) ≈ b1(k1) b2(k2) b3(k3) Q†(k1, k2, k3) , (2.192)

where Q†(k1, k2, k3) is the discrete Fourier transform of the charge array Q(`1, `2, `3) defined
as

Q(`1, `2, `3) =
N∑
j=1

qj
∑

n1,n2,n3

Mn(u1j − `1 − n1L1) × Mn(u2j − `2 − n2L2) ×

Mn(u3j − `3 − n3L3) , (2.193)

in which the sums over n1,2,3 etc are required to capture contributions from all relevant
periodic cell images (which in practice means the nearest images).

3. Approximating the reciprocal space energy Urecip:

Urecip =
1

2Voε0ε

∑
k1,k2,k3

G†(k1, k2, k3) Q(k1, k2, k3) , (2.194)

48

c©STFC Section 2.5

where G† is the discrete Fourier transform of the function

G(k1, k2, k3) =
exp(−k2/4α2)

k2
B(k1, k2, k3) (Q

†(k1, k2, k3))
∗ , (2.195)

in which (Q†(k1, k2, k3))
∗ is the complex conjugate of Q†(k1, k2, k3) and

B(k1, k2, k3) = |b1(k1)|2 |b2(k2)|2 |b3(k3)|2 . (2.196)

The function G(k1, k2, k3) is thus a relatively simple product of the Gaussian screening term
appearing in the conventional Ewald sum, the function B(k1, k2, k3) and the discrete Fourier
transform of Q(k1, k2, k3).

4. Calculating the atomic forces, which are given formally by:

fαj = −∂Urecip

∂rαj
= − 1

Voε0ε

∑
k1,k2,k3

G†(k1, k2, k3)
∂Q(k1, k2, k3)

∂rαj
. (2.197)

Fortunately, due to the recursive properties of the B-splines, these formulae are easily evaluated.

The virial and the stress tensor are calculated in the same manner as for the conventional Ewald
sum.

The DL POLY 4 subroutines required to calculate the SPME contributions are:

1. spme container containing

(a) bspgen, which calculates the B-splines

(b) bspcoe, which calculates B-spline coefficients

(c) spl cexp, which calculates the FFT and B-spline complex exponentials

2. parallel fft and gpfa module (native DL POLY 4 subroutines that respect the domain
decomposition concept) which calculate the 3D complex fast Fourier transforms

3. ewald spme forces, which calculates the reciprocal space contributions (uncorrected)

4. ewald real forces, which calculates the real space contributions (corrected)

5. ewald excl forces, which calculates the reciprocal space corrections due to the coulombic
exclusions in intramolecular interactions

6. ewald frozen forces, which calculates the reciprocal space corrections due to the exclu-
sion interactions between frozen atoms

7. two body forces, in which all of the above subroutines are called sequentially and also the
Fuchs correction [54] for electrically non-neutral MD cells is applied if needed.

2.5 Polarisation Shell Models

An atom or ion is polarisable if it develops a dipole moment when placed in an electric field. It is
commonly expressed by the equation

µ = αE , (2.198)

where µ is the induced dipole and E is the electric field. The constant α is the polarisability.

49

c©STFC Section 2.5

In the static shell model a polarisable atom is represented by a massive core and massless shell,
connected by a harmonic spring, hereafter called the core-shell unit. The core and shell carry
different electric charges, the sum of which equals the charge on the original atom. There is no
electrostatic interaction (i.e. self interaction) between the core and shell of the same atom. Non-
coulombic interactions arise from the shell alone. The effect of an electric field is to separate the
core and shell, giving rise to a polarisation dipole. The condition of static equilibrium gives the
polarisability as:

α = (2q2s − q2c)/k , (2.199)

where qs and qc are the shell and core charges and k is the force constant of the harmonic spring.

The calculation of the virial and stress tensor in this model is based on that for a diatomic molecule
with charged atoms. The electrostatic and short ranged forces are calculated as described above.
The forces of the harmonic springs are calculated as described for intramolecular harmonic bonds.
The relationship between the kinetic energy and the temperature is different however, as the core-
shell unit is permitted only three translational degrees of freedom, and the degrees of freedom
corresponding to rotation and vibration of the unit are discounted as if the kinetic energy of these
is regarded as zero (3.11).

2.5.1 Dynamical (Adiabatic Shells)

The dynamical shell model is a method of incorporating polarisability into a molecular dynamics
simulation. The method used in DL POLY 4 is that devised by Fincham et al [56] and is known
as the adiabatic shell model.

In the adiabatic method, a fraction of the atomic mass is assigned to the shell to permit a dynamical
description. The fraction of mass, x, is chosen to ensure that the natural frequency of vibration
νcore−shell of the harmonic spring (which depends on the reduced mass, i.e.

νcore−shell =
1

2π

[
k

x(1− x)m

]1/2
, (2.200)

with m the rigid ion atomic mass) is well above the frequency of vibration of the whole atom in
the bulk system. Dynamically, the core-shell unit resembles a diatomic molecule with a harmonic
bond, however, the high vibrational frequency of the bond prevents effective exchange of kinetic
energy between the core-shell unit and the remaining system. Therefore, from an initial condition
in which the core-shell units have negligible internal vibrational energy, the units will remain close
to this condition throughout the simulation. This is essential if the core-shell unit is to maintain a
net polarisation. (In practice, there is a slow leakage of kinetic energy into the core-shell units, but
this should should not amount to more than a few percent of the total kinetic energy. To determine
safe shell masses in practice, first a rigid ion simulation is performed in order to gather the velocity
autocorrelation functions, VAC, of the ions of interest to polarise. Then each VAC is fast fourier
tranformed to find their highest frequency of interaction, νrigid−ion. It is, then, a safe choice to
assign a shell mass, x m, so that νcore−shell ≥ 3 νrigid−ion. The user must make sure to assign the
corect mass, (1− x) m, to the core!)

2.5.2 Relaxed (Massless Shells)

The relaxed shell model is presented in [57], where shells have no mass and as such their motion
is not governed by the usual Newtonian equation, whereas their cores’ motion is. Because of that,
shells respond instantaneously to the motion of the cores: for any set of core positions, the positions

50

c©STFC Section 2.6

of the shells are such that the force on every shell is zero. The energy is thus a minimum with
respect to the shell positions. This represents the physical fact that the system is always in the
ground state with respect to the electronic degrees of freedom.

Relaxation of the shells is carried out at each time step and involves a search in the multidimensional
space of shell configurations. The search in DL POLY 4 is based on the powerful conjugate-
gradients technique [58] in an adaptation as shown in [57]. Each time step a few iterations (10÷30)
are needed to achieve convergence to zero net force.

In DL POLY 4 the shell forces are handled by the routine core shell forces. In case of the
adiabatic shell model the kinetic energy is calculated by core shell kinetic and temperature
scaling applied by routine core shell quench. In case of the relaxed shell model shell are relaxed
to zero force by core shell relaxed.

Either shell model can be used in conjunction with the methods for long-ranged forces described
above.

Note that DL POLY 4 determines which shell model to use by scanning shell weights provided the
FIELD file (see Section 5.1.3). If all shells have zero weight the DL POLY 4 will choose the relaxed
shell model. If no shell has zero weight then DL POLY 4 will choose the dynamical one. In case
when some shells are massless and some are not DL POLY 4 will terminate execution controllably
and provide information about the error and possible possible choices of action in the OUTPUT
file (see Section 5.2.6).

2.6 External Fields

In addition to the molecular force field, DL POLY 4 allows the use of an external force field.
Examples of fields available include:

1. Electric field: (elec)

Fi = Fi + qi.E (2.201)

2. Oscillating shear: (oshr)

F x = A cos(2nπ.z/Lz) (2.202)

3. Continuous shear: (shrx)

vx =
1

2
A
|z|
z

: |z| > z0 (2.203)

4. Gravitational field: (grav)

Fi = Fi +mi.G (2.204)

5. Magnetic field: (magn)

Fi = Fi + qi.(vi ×H) (2.205)

6. Containing sphere: (sphr)

F = A(R0 − r)−n : r > Rcut (2.206)

7. Repulsive wall: (zbnd)

F = A(zo − z) : z > zo . (2.207)

51

c©STFC Section 2.7

It is recommended that the use of an external field should be accompanied by a thermostat (this
does not apply to examples 6 and 7, since these are conservative fields). The “Oscillating shear”
field should be used with orthorhombic cell geometry (imcon=1,2) and “Continuous shear” field
with slab cell geometry (imcon=6). The user is advised to be careful with units!

In DL POLY 4 external field forces are handled by the routines external field apply and ex-
ternal field correct.

2.7 Treatment of Frozen Atoms, Rigid Body and Core-Shell Units

Frozen atoms, core-shell units and rigid body units are treated in a manner similar to that of the
intra-molecular interactions due to their “by site” definition.

DL POLY 4 allows for atoms to be completely immobilized (i.e. “frozen” at a fixed point in the
MD cell). This is achieved by setting all forces and velocities associated with that atom to zero
during each MD timestep. Frozen atoms are signalled by assigning an atom a non-zero value for
the freeze parameter in the FIELD file. DL POLY 4 does not calculate contributions to the virial
or the stress tensor arising from the constraints required to freeze atomic positions. Neither does
it calculate contributions from intra- and inter- molecular interactions between frozen atoms. As
with the tethering potential, the reference position of a frozen site is scaled with the cell vectors in
constant pressure simulations. In the case of frozen rigid bodies, their “centre of mass” is scaled
with the cell vectors in constant pressure simulations and the positions of their constituent sites
are thenmoved accordingly.

In DL POLY 4 the frozen atom option is handled by the subroutine freeze atoms.

The rigid body dynamics (see Section 3.6) is resolved by solving the Eulerian equations of rotational
motion. However, their statics includes calculation of the individual contributions of each RB’s
centre of mass stress and virial due to the action of the resolved forces on sites/atoms constituting
it. These contribute towards the total system stress and pressure.

As seen in Section 2.5.1 core-shell units are dealth with (i) kinetically by the adiabatic shell model
or (ii) staticly by the dynamic shell model. Both contribute to the total system stress (pressure) but
in different manner. The former does it via the kinetic stress (energy) and atomic sterss (potential
energy) due to the core-shell spring. The latter via atomic sterss (potential energy) due to the
shells move to minimised configuration.

52

Chapter 3

Integration Algorithms

Scope of Chapter

This chapter describes the integration algorithms coded into DL POLY 4.

53

c©STFC Section 3.1

3.1 Introduction

As a default the DL POLY 4 integration algorithms are based on the Velocity Verlet (VV) scheme,
which is both simple and time reversible [22]. It generates trajectories in the microcanonical (NVE)
ensemble in which the total energy (kinetic plus potential) is conserved. If this property drifts or
fluctuates excessively in the course of a simulation it indicates that the timestep is too large or the
potential cutoffs too small (relative r.m.s. fluctuations in the total energy of 10−5 are typical with
this algorithm).

The VV algorithm has two stages (VV1 and VV2). At the first stage it requires values of position
(r), velocity (v) and force (f) at time t. The first stage is to advance the velocities to t+ (1/2)∆t
by integration of the force and then to advance the positions to a full step t + ∆t using the new
half-step velocities:

1. VV1:

v(t+
1

2
∆t)← v(t) +

∆t

2

f(t)

m
, (3.1)

where m is the mass of a site and ∆t is the timestep

r(t+∆t)← r(t) + ∆t v(t+
1

2
∆t) (3.2)

2. FF:
Between the first and the second stage a recalculation of the force at time t+∆t is required
since the positions have changed

f(t+∆t)← f(t) (3.3)

3. VV2:
In the second stage the half-step velocities are advanced to to a full step using the new force

v(t+∆t)← v(t+
1

2
∆t) +

∆t

2

f(t+∆t)

m
(3.4)

DL POLY 4 also offers integration algorithms based on the leapfrog Verlet (LFV) scheme [22].
Although LFV scheme is somewhat simpler and numerically faster than the VV scheme, it is not
time reversible and does not offer the numerical stability the VV scheme does. Furthermore, all
kinetic related properties have approximate estimators due to the half a step out of phase between
velocity and psoition.

The LFV algorithm is one staged. It requires values of position (r) and force (f) at time t and
velocity (v) at half a timestep behind: t − (1/2)∆t. Firstly, the forces are recalculated afresh at
time t (from time t−∆t) since the positions have changed from the last step:

1. FF:

f(t)← f(t−∆t) , (3.5)

where ∆t is the timestep

2. LFV:
The velocities are advanced by a timestep to t+ (1/2)∆t by integration of the new force

v(t+
1

2
∆t)← v(t− 1

2
∆t) + ∆t

f(t)

m
, (3.6)

54

c©STFC Section 3.1

where m is the mass of a site, and then the positions are advanced to a full step t+∆t using
the new half-step velocities

r(t+∆t)← r(t) + ∆t v(t+
1

2
∆t) (3.7)

Molecular dynamics simulations normally require properties that depend on position and velocity
at the same time (such as the sum of potential and kinetic energy). The velocity at time t is
obtained from the average of the velocities half a timestep either side of timestep t:

v(t)← 1

2

[
v(t− 1

2
∆t) + v(t+

1

2
∆t)

]
. (3.8)

The instantaneous kinetic energy, for example, can then be obtained from the atomic velocities as

Ekin(t) =
1

2

N∑
1

miv
2
i (t) , (3.9)

and assuming the system has no net momentum the instantaneous temperature is

T (t) = 2

kBf
Ekin(t) , (3.10)

where i labels particles (that can be free atoms or rigid bodies), N the number of particles (free
atoms and rigid bodies) in the system, kB the Boltzmann’s constant and f the number of degrees
of freedom in the system.

f = 3N − 3Nfrozen − 3Nshells −Nconstraints − 3− p . (3.11)

Here Nfrozen indicates the number of frozen atoms in the system, Nshells number of core-shell units
and Nconstraints number of bond and PMF constraints. Three degrees of freedom are subtracted
for the centre of mass zero net momentum (which we impose) and p is zero for periodic or three
for non-periodic systems, where it accounts for fixing angular momentum about origin (which we
impose).

In the case of rigid bodies (see Section 3.6) the first part of equation (3.11)

f ′ = 3N − 3Nfrozen (3.12)

splits into

f ′ =
(
3N FP − 3N FP

frozen

)
+
(
3NRB(tra) − 3NRB(tra)

frozen

)
+
(
3NRB(rot) − 3NRB(rot)

frozen

)
(3.13)

or
f ′ = fFP + fRB(tra) + fRB(rot) . (3.14)

Here FP stands for a free particle, i.e. a particle not participating in the constitution of a rigid
body, and RB for a rigid body. In general a rigid body has 3 translational (tra) degrees of freedom,
corresponding to its centre of mass being allowed to move in the 3 general direction of space, and
3 rotational (rot), corresponding to the RB being allowed to rotate around the 3 general axis
in space. It is not far removed to see that for a not fully frozen rigid body one must assign 0
translational degrees of freedom but depending on the ”frozenness” of the RB one may assign 1
rotational degrees of freedom when all the frozen sites are in line (i.e. rotation around one axis
only) or 3 when just one site is frozen.

55

c©STFC Section 3.2

The routines nve 0 vv and nve 0 lfv implement the Verlet algorithm in velocity and leapfrog
flavours respectively for free particles and calculate the instantaneous temperature. Whereas the
routines nve 1 vv and nve 1 lfv implement the same for systems also containing rigid bodies.
The conserved quantity is the total energy of the system

HNVE = U + Ekin , (3.15)

where U is the potential energy of the system and Ekin the kinetic energy at time t.

The full selection of integration algorithms, indicating both VV and LFV cast integration, within
DL POLY 4 is as follows:

nve 0 vv nve 0 lfv Constant E algorithm
nve 1 vv nve 1 lfv The same as the above but also incorporating RB integration
nvt e0 vv nvt e0 lfv Constant Ekin algorithm (Evans [26])
nvt e1 vv nvt e1 lfv The same as the above but also incorporating RB integration
nvt l0 vv nvt l0 lfv Constant T algorithm (Langevin [27])
nvt l1 vv nvt l1 lfv The same as the above but also incorporating RB integration
nvt a0 vv nvt a0 lfv Constant T algorithm (Andersen [28])
nvt a1 vv nvt a1 lfv The same as the above but also incorporating RB integration
nvt b0 vv nvt b0 lfv Constant T algorithm (Berendsen [29])
nvt b1 vv nvt b1 lfv The same as the above but also incorporating RB integration
nvt h0 vv nvt h0 lfv Constant T algorithm (Hoover [30])
nvt h1 vv nvt h1 lfv The same as the above but also incorporating RB integration
nvt g0 vv nvt g0 lfv Constant T algorithm (GST [59])
nvt g1 vv nvt g1 lfv The same as the above but also incorporating RB integration
npt l0 vv npt l0 lfv Constant T,P algorithm (Langevin [31])
npt l1 vv npt l1 lfv The same as the above but also incorporating RB integration
npt b0 vv npt b0 lfv Constant T,P algorithm (Berendsen [29])
npt b1 vv npt b1 lfv The same as the above but also incorporating RB integration
npt h0 vv npt h0 lfv Constant T,P algorithm (Hoover [30])
npt h1 vv npt h1 lfv The same as the above but also incorporating RB integration
npt m0 vv npt m0 lfv Constant T,P algorithm (Martyna-Tuckerman-Klein [32])
npt m1 vv npt m1 lfv The same as the above but also incorporating RB integration
npt l0 vv npt l0 lfv Constant T,σ algorithm (Langevin [31])
npt l1 vv npt l1 lfv The same as the above but also incorporating RB integration
nst b0 vv nst b0 lfv Constant T,σ algorithm (Berendsen [29])
nst b1 vv nst b1 lfv The same as the above but also incorporating RB integration
nst h0 vv nst h0 lfv Constant T,σ algorithm (Hoover [30])
nst h1 vv nst h1 lfv The same as the above but also incorporating RB integration
nst m0 vv nst m0 lfv Constant T,σ algorithm (Martyna-Tuckerman-Klein [32])
nst m0 vv nst m0 lfv The same as the above but also incorporating RB integration

It is worth noting that the last four ensembles are also optionally available in an extended from to
constant normal pressure and constant surface area, NPnAT, or constant surface tension, NPnγT
[60].

56

c©STFC Section 3.2

3.2 Bond Constraints

The SHAKE algorithm for bond constraints was devised by Ryckaert et al. [61] and is widely used
in molecular simulation. It is a two stage algorithm based on the leapfrog Verlet integration scheme
[22]. In the first stage the LFV algorithm calculates the motion of the atoms in the system assuming
a complete absence of the rigid bond forces. The positions of the atoms at the end of this stage do
not conserve the distance constraint required by the rigid bond and a correction is necessary. In the
second stage the deviation in the length of a given rigid bond is used retrospectively to compute
the constraint force needed to conserve the bondlength. It is relatively simple to show that the
constraint force has the form:

Gij ≈
1

2

µij
∆t2

(d2ij − d′2ij)
doij · d′ij

doij , (3.16)

where: µij is the reduced mass of the two atoms connected by the bond; doij and d
′
ij are the original

and intermediate bond vectors; dij is the constrained bondlength; and ∆t is the Verlet integration
time step. It should be noted that this formula is an approximation only.

i

j
dij

o

dij

i

j

j’

i’

Gji

Gij

d’ij

Figure 3.1: The SHAKE (RATTLE VV1) schematics and associated vectors. The algorithm cal-
culates the constraint force Gij = −Gji that conserves the bondlength dij between atoms i and j,
following the initial movement to positions i′ and j′ under the unconstrained forces F i and F j and
velocities vi and vj .

The RATTLE algorithm was devised by Andersen [23] and it fits within the concept of the Velocity
Verlet integration scheme. It consists of two parts RATTLE VV1 and RATTLE VV2 applied
respectively in stages one and two of Velocity Verlet algorithm. RATTLE VV1 is similar to the
SHAKE algorithm as described above and handles the bond length constraint. However, due to
the difference in the velocity update between VV (VV1) and LFV schemes, the constraint force
generated to conserve the bondlength in RATTLE VV1 has the form as in (3.16) but missing the

57

c©STFC Section 3.2

factor of a half:

Gij ≈
µij
∆t2

(d2ij − d′2ij)
doij · d′ij

doij . (3.17)

The constraint force in RATTLE VV2 imposes a new condition of rigidity on constraint bonded
atom velocities. RATTLE VV2 is also a two stage algorithm. In the first stage, the VV2 algorithm
calculates the velocities of the atoms in the system assuming a complete absence of the rigid bond
forces (since forces have just been recalculated afresh after VV1). The relative velocity of atom i
with respect to atom j (or vice versa) constituting the rigid bond ij may not be perpendicular to
the bond - i.e. may have a non-zero component along the bond. However, by the stricter definition
of rigidity this is is required to be zero as it will otherwise lead to a change in the rigid bond length
during the consequent timestepping. In the second stage the deviation from zero of the scalar
product dij · (vj − vi) is used retrospectively to compute the constraint force needed to keep the
bond rigid over the length of the timestep ∆t. It is relatively simple to show that the constraint
force has the form:

Bij ≈
µij
∆t

dij · (vj − vi)
d2ij

dij . (3.18)

The velocity corrections can therefore be written as

vcorri = ∆t
Bij

mi
=
µij
mi

dij · (vj − vi)
d2ij

dij . (3.19)

For a system of simple diatomic molecules, computation of the constraint force will, in principle,
allow the correct atomic positions to be calculated in one pass. However, in the general polyatomic
case this correction is merely an interim adjustment, not only because the above formula is ap-
proximate, but the successive correction of other bonds in a molecule has the effect of perturbing
previously corrected bonds. Either part of the RATTLE algorithm is therefore iterative, with the
correction cycle being repeated for all bonds until: each has converged to the correct length, within
a given tolerance for RATTLE VV1 (SHAKE) and the relative bond velocities are perpendicular
to their respective bonds within a given tolerance for RATTLE VV2 (RATTLE). The tolerance
may be of the order 10−4 Å to 10−8 Å depending on the precision desired.

The SHAKE procedure may be summarised as follows:

1. All atoms in the system are moved using the LFV algorithm, assuming an absence of rigid
bonds (constraint forces). (This is stage 1 of the SHAKE algorithm.)

2. The deviation in each bondlength is used to calculate the corresponding constraint force
(3.16) that (retrospectively) ‘corrects’ the bond length.

3. After the correction (3.16) has been applied to all bonds, every bondlength is checked. If the
largest deviation found exceeds the desired tolerance, the correction calculation is repeated.

4. Steps 2 and 3 are repeated until all bondlengths satisfy the convergence criterion (this iteration
constitutes stage 2 of the SHAKE algorithm).

The RATTLE procedures may be summarised as follows:

1. RATTLE stage 1:

(a) All atoms in the system are moved using the VV algorithm, assuming an absence of
rigid bonds (constraint forces). (This is stage 1 of the RATTLE VV1 algorithm.)

58

c©STFC Section 3.3

(b) The deviation in each bondlength is used to calculate the corresponding constraint force
(3.17) that (retrospectively) ‘corrects’ the bond length.

(c) After the correction (3.17) has been applied to all bonds, every bondlength is checked.
If the largest deviation found exceeds the desired tolerance, the correction calculation is
repeated.

(d) Steps (b) and (c) are repeated until all bondlengths satisfy the convergence criterion
(this iteration constitutes stage 2 of the RATTLE VV1 algorithm).

2. Forces calculated afresh.

3. RATTLE stage 2:

(a) All atom velocities are updated to a full step, assuming an absence of rigid bonds. (This
is stage 1 of the RATTLE VV2 algorithm.)

(b) The deviation of dij · (vj − di) in each bond is used to calculate the corresponding
constraint force that (retrospectively) ‘corrects’ the bond velocities.

(c) After the correction (3.18) has been applied to all bonds, every bond velocity is checked
against the above condition. If the largest deviation found exceeds the desired tolerance,
the correction calculation is repeated.

(d) Steps (b) and (c) are repeated until all bonds satisfy the convergence criterion (this
iteration constitutes stage 2 of the RATTLE VV2 algorithm).

The parallel version of the RATTLE algorithm, as implemented in DL POLY 4, is derived from
the RD SHAKE algorithm [8] although its implementation in the Domain Decomposition frame-
work requires no global merging operations and is consequently significantly more efficient. The
routine constraints shake is called to apply corrections to the atomic positions and the routine
constraints rattle to apply corrections to the atomic velocities of constrained particles.

It should be noted that the fully converged constraint forces Gij make a contribution to the system
virial and the stress tensor.

The contribution to be added to the atomic virial (for each constrained bond) is

W = −dij ·Gij . (3.20)

The contribution to be added to the atomic stress tensor (for each constrained bond) is given by

σαβ = dαijG
β
ij , (3.21)

where α and β indicate the x, y, z components. The atomic stress tensor derived from the pair
forces is symmetric.

3.3 Potential of Mean Force (PMF) Constraints and the Evalua-
tion of Free Energy

A generalization of bond constraints can be made to constrain a system to some point along a
reaction coordinate. A simple example of such a reaction coordinate would be the distance between
two ions in solution. If a number of simulations are conducted with the system constrained to
different points along the reaction coordinate then the mean constraint force may be plotted as a

59

c©STFC Section 3.4

function of reaction coordinate and the function integrated to obtain the free energy for the overall
process [62]. The PMF constraint force, virial and contributions to the stress tensor are obtained in
a manner analagous to that for a bond constraint (see previous section). The only difference is that
the constraint is now applied between the centres of two groups which need not be atoms alone.
DL POLY 4 reports the PMF constraint virial,WPMF , for each simulation. Users can convert this
to the PMF constraint force from

GPMF =
WPMF

dPMF
, (3.22)

where is dPMF the constraint distance between the two groups used to define the reaction coordi-
nate.

The routines pmf shake and pmf rattle are called to apply corrections to the atomic positions
and respectively the atomic velocities of all particles constituting PMF units.

In presence of both bond constraints and PMF constraints. The constraint procedures, i.e. SHAKE
or RATTLE, for both types of constraineds are applied iteratively in order bonds-PMFs until
convergence of WPMF reached. The number of iteration cycles is limited by the same limit as for
the bond constraints’ procedures (SHAKE/RATTLE).

3.4 Thermostats

The system may be coupled to a heat bath to ensure that the average system temperature is
maintained close to the requested temperature, Text. When this is done the equations of motion
are modified and the system no longer samples the microcanonical ensemble. Instead trajectories
in the canonical (NVT) ensemble, or something close to it are generated. DL POLY 4 comes
with six different thermostats: Evans (Gaussian constraints) [26], Langevin [27, 63], Andersen [28],
Berendsen [29], Nosé-Hoover [30] and the gentle stochastic thermostat [59, 64]. Of these, only the
gentle stochastic thermostat, Nosé-Hoover and Langevin algorithms generate trajectories in the
canonical (NVT) ensemble. The rest will produce properties that typically differ from canonical
averages by O(1/N) [22] (where N is the number of particles in the system), as the Evans algorithm
generates trajectories in the (NVEkin) ensemble.

3.4.1 Evans Thermostat (Gaussian Constraints)

Kinetic temperature can be made a constant of the equations of motion by imposing an additional
constraint on the system. If one writes the equations of motion as:

dr(t)

dt
= v(t)

dv(t)

dt
=

f(t)

m
− χ(t) v(t) , (3.23)

the kinetic temperature constraint χ can be found as follows:

d

dt
T ∝ d

dt

(
1

2

∑
i

miv
2
i

)
=
∑
i

mivi ·
d

dt
vi = 0

∑
i

mivi(t) ·
{
f
i
(t)

mi
− χ(t) vi(t)

}
= 0 (3.24)

χ(t) =

∑
i vi(t) · f i(t)∑
imiv2i (t)

,

60

c©STFC Section 3.4

where T is the instantaneous temperature defined in equation (3.10).

The VV implementation of the Evans algorithm is straight forward. The conventional VV1 and
VV2 steps are carried out as before the start of VV1 and after the end of VV2 there is an application
of thermal constraining. This involves the calculation of χ(t) before the VV1 stage and χ(t+∆t)
after the VV2 stage with consecutive thermalisation on the unthermostated velocities for half a
timestep at each stage in the following manner:

1. Thermostat VV1

χ(t) ←
∑

i vi(t) · f i(t)
2 Ekin(t)

v(t) ← v(t) exp

(
−χ(t)∆t

2

)
. (3.25)

2. VV1:

v(t+
1

2
∆t) ← v(t) +

∆t

2

f(t)

m

r(t+∆t) ← r(t) + ∆t v(t+
1

2
∆t) (3.26)

3. RATTLE VV1

4. FF:
f(t+∆t)← f(t) (3.27)

5. VV2:

v(t+∆t)← v(t+
1

2
∆t) +

∆t

2

[
f(t+∆t)

m

]
(3.28)

6. RATTLE VV2

7. Thermostat VV2

χ(t+∆t) ←
∑

i vi(t+∆t) · f
i
(t+∆t)

2 Ekin(t+∆t)

v(t+∆t) ← v(t+∆t) exp

(
−χ(t+∆t)

∆t

2

)
. (3.29)

The algorithm is self-consistent and requires no iterations.

The LFV implementation of the Evans algorithm is iterative as an initial estimate of χ(t) at full
step is calculated using an unconstrained estimate of the velocity at full step, v(t)). The iterative
part is as follows:

1. FF:
f(t)← f(t−∆t) (3.30)

2. LFV: The iterative part is as follows:

scale = 1 + χ(t)
∆t

2
, scale v =

2

scale
− 1 , scale f =

∆t

scale

v(t+
1

2
∆t) ← scale v v(t− 1

2
∆t) + scale f

f(t)

m
(3.31)

r(t+∆t) ← r(t) + ∆t v(t+
1

2
∆t)

61

c©STFC Section 3.4

3. SHAKE

4. Full step velocity:

v(t)← 1

2

[
v(t− 1

2
∆t) + v(t+

1

2
∆t)

]
(3.32)

5. Thermostat:

χ(t)←
∑

i vi(t) · f i(t)
2 Ekin(t)

. (3.33)

Several iterations are required to obtain self consistency. In DL POLY 4 the number of iterations
is set to 8 (9 if bond constraints are present).

The conserved quantity by these algorithms is the system kinetic energy.

The VV and LFV flavours of the Gaussian constraints algorithm are implemented in the DL POLY 4
routines nvt e0 vv and nvt e0 lfv respectively. The routines nvt e1 vv and nvt e1 lfv im-
plement the same but also incorporate RB dynamics.

3.4.2 Langevin Thermostat

The Langevin thermostat works by coupling every particle to a viscous background and a stochastic
heath bath (Brownian dynamics) such that

dri(t)

dt
= vi(t)

dvi(t)

dt
=

f
i
(t) +Ri(t)

mi
− χ vi(t) , (3.34)

where χ is the user defined constant (positive, in units of ps−1) specifying the thermostat friction
parameter and R(t) is stochastic force with zero mean that satisfies the fluctuation- dissipation
theorem: 〈

Rα
i (t) R

β
j (t

′)
〉
= 2 χ mi kBT δij δαβ δ(t− t′) , (3.35)

where superscripts denote Cartesian indices, subscripts particle indices, kB is the Boltzmann con-
stant, T the target temperature and mi the particle’s mass. The Stokes-Einstein relation for the
diffusion coefficient can then be used to show that the average value of Ri(t) over a time step (in
thermal equilibrium) should be a random deviate drawn from a Gaussian distribution of zero mean

and unit variance, Gauss(0, 1), scaled by
√

2 χ mi kBT
∆t .

The effect of this algorithm is thermostat the system on a local scale. Particles that are too
“cold” are given more energy by the noise term and particles that are too “hot” are slowed down
by the friction. Numerical instabilities, which usually arise from inaccurate calculation of a local
collision-like process, are thus efficiently kept under control and cannot propagate.

The generation of random forces is implemented in the routine langevin forces.

The VV implementation of the algorithm is tailored in a Langevin Impulse (LI) manner [63]:

1. VV1:

v(t+ ε) ← v(t) +
∆t

2

f(t)

m

v(t+
1

2
∆t− ε) ← exp(−χ ∆t) v(t+ ε) +

√
2 χ m kBT

m
~Z1(χ,∆t) (3.36)

r(t+∆t) ← r(t) +
1− exp(−χ ∆t)

χ
v(t+ ε) +

√
2 χ m kBT

χ m
~Z2(χ,∆t) ,

62

c©STFC Section 3.4

where ~Z1(χ,∆t) and ~Z2(χ,∆t) are joint Gaussian random variables of zero mean, sampling
from a bivariate Gaussian distribution [63]:[

Z1

Z2

]
=

[
σ
1/2
2 0

(σ1 − σ2)σ−1/2
2 (∆t− σ21σ−1

2)1/2

] [
R1

R2

]
(3.37)

with

σk =
1− exp(−k χ ∆t)

k χ
, k = 1, 2 (3.38)

and Rk vectors of independent standard Gaussian random numbers of zero mean and unit
variance, Gauss(0, 1), - easily related to the Langevin random forces as defined in equation
(3.35).

2. RATTLE VV1

3. FF:
f(t+∆t)← f(t) (3.39)

4. VV2:

v(t+∆t)← v(t+
1

2
∆t− ε) + ∆t

2

f(t+∆t)

m
(3.40)

5. RATTLE VV2 .

The algorithm is self-consistent and requires no iterations.

The LFV implementation of the Langevin thermostat is straightforward:

1. FF:

f(t) ← f(t−∆t)

R(t) ← R(t−∆t) (3.41)

(3.42)

2. LFV and Thermostat:

scale = 1 + χ
∆t

2
, scale v =

2

scale
− 1 , scale f =

∆t

scale

v(t+
1

2
∆t) ← scale v v(t− 1

2
∆t) + scale f

f(t) +R(t)

m
(3.43)

r(t+∆t) ← r(t) + ∆t v(t+
1

2
∆t) ,

where R(t) are the Langevin random forces as defined in equation (3.35).

3. SHAKE

4. Full step velocity:

v(t)← 1

2

[
v(t− 1

2
∆t) + v(t+

1

2
∆t)

]
. (3.44)

The VV and LFV flavours of the Langevin thermostat are implemented in the DL POLY 4 routines
nvt l0 vv and nvt l0 lfv respectively. The routines nvt l1 vv and nvt l1 lfv implement
the same but also incorporate RB dynamics.

63

c©STFC Section 3.4

3.4.3 Andersen Thermostat

This thermostat assumes the idea that the system, or some subset of the system, has an instanta-
neous interaction with some fictional particles and exchanges energy. Practically, this interaction
amounts to replacing the momentum of some atoms with a new momentum drawn from the cor-
rect Boltzmann distribution at the desired temperature. The strength of the thermostat can be
adjusted by setting the average time interval over which the interactions occur, and by setting the
magnitude of the interaction. The collisions are best described as a random (Poisson) process so
that the probability that a collision occurs in a time step ∆t is

Pcollision(t) = 1− exp

(
−∆t

τT

)
, (3.45)

where τT is the thermostat relaxation time. The hardest collision is to completely reset the mo-
mentum of the Poisson selected atoms in the system, with a new one selected from the Boltzmann
distribution

F (vi) =

√(
mi

2πkBText

)3

exp

(
− mi v

2
i

2kBText

)
=

√
kBText
2mi

Gauss(0, 1) . (3.46)

where subscripts denote particle indices, kB is the Boltzmann constant, Text the target temperature
and mi the particle’s mass. The thermostat can be made softer by mixing the new momentum vnewi

drawn from F (vi) with the old momentum voldi

vi = α voldi +
√
1− α2 vnewi , (3.47)

where α (0 ≤ α ≤ 1) is the softness of the thermostat. In practice, a uniform distribution random
number, uni(i), is generated for each particle in the system, which is compared to the collision

probability. If uni(i) ≤ 1− exp
(
−∆t

τT

)
the particle momentum is changed as described above.

The VV implementation of the Andersen algorithm is as follows:

1. VV1:

v(t+
1

2
∆t) ← v(t) +

∆t

2

f(t)

m

r(t+∆t) ← r(t) + ∆t v(t+
1

2
∆t) (3.48)

2. RATTLE VV1

3. FF:

f(t+∆t)← f(t) (3.49)

4. VV2:

v(t+∆t)← v(t+
1

2
∆t) +

∆t

2

[
f(t+∆t)

m

]
(3.50)

5. RATTLE VV2

64

c©STFC Section 3.4

6. Thermostat: Note that the MD cell centre of mass momentum must not change!

If

(
uni(i) ≤ 1− exp

(
−∆t

τT

))
Then

vnewi (t+∆t) ←
√
kBT

2mi
Gauss(0, 1) (3.51)

vi(t+∆t) ← α vi(t+∆t) +
√
1− α2 vnewi (t+∆t)

End If .

The algorithm is self-consistent and requires no iterations.

The LFV implementation of the Andersen algorithm is as follows:

1. FF:
f(t)← f(t−∆t) (3.52)

2. LFV:

v(t+
1

2
∆t) ← v(t− 1

2
∆t) + ∆t

f(t)

m

r(t+∆t) ← r(t) + ∆t v(t+
1

2
∆t) (3.53)

3. Full step velocity:

v(t)← 1

2

[
v(t− 1

2
∆t) + v(t+

1

2
∆t)

]
(3.54)

4. Thermostat: Note that the MD cell centre of mass momentum must not change!

If

(
uni(i) ≤ 1− exp

(
−∆t

τT

))
Then

vnewi (t+
1

2
∆t) ←

√
kBT

2mi
Gauss(0, 1)

vi(t+
1

2
∆t) ← α vi(t+

1

2
∆t) +

√
1− α2 vnewi (t+

1

2
∆t) (3.55)

vi(t) ← vi(t+
1

2
∆t)

End If .

5. SHAKE

The algorithm is self-consistent and requires no iterations.

The VV and LFV flavours of the Andersen thermostat are implemented in the DL POLY 4 routines
nvt a0 vv and nvt a0 lfv respectively. The routines nvt a1 vv and nvt a1 lfv implement
the same but also incorporate RB dynamics.

3.4.4 Berendsen Thermostat

In the Berendsen algorithm the instantaneous temperature is pushed towards the desired temper-
ature Text by scaling the velocities at each step by

χ(t) =

[
1 +

∆t

τT

(
σ

Ekin(t)
− 1

)]1/2
, (3.56)

65

c©STFC Section 3.4

where

σ =
f

2
kB Text (3.57)

is the target thermostat energy (depending on the external temperature and the system total degrees
of freedom, f - equation (3.11)) and τT a specified time constant for temperature fluctuations
(normally in the range [0.5, 2] ps).

The VV implementation of the Berendsen algorithm is straight forward. A conventional VV1 and
VV2 (thermally unconstrained) steps are carried out. At the end of VV2 velocities are scaled by a
factor of χ in the following manner

1. VV1:

v(t+
1

2
∆t) ← v(t) +

∆t

2

f(t)

m

r(t+∆t) ← r(t) + ∆t v(t+
1

2
∆t) (3.58)

2. RATTLE VV1

3. FF:

f(t+∆t)← f(t) (3.59)

4. VV2:

v(t+∆t)← v(t+
1

2
∆t) +

∆t

2

f(t+∆t)

m
(3.60)

5. RATTLE VV2

6. Thermostat:

χ(t+∆t) ←
[
1 +

∆t

τT

(
σ

Ekin(t+∆t)
− 1

)]1/2
v(t+∆t) ← v(t+∆t) χ . (3.61)

The LFV implementation of the Berendsen algorithm is iterative as an initial estimate of χ(t) at
full step is calculated using an unconstrained estimate of the velocity at full step, v(t).

1. FF:

f(t)← f(t−∆t) (3.62)

2. LFV: The iterative part is as follows:

v(t+
1

2
∆t) ←

[
v(t− 1

2
∆t) + ∆t

f(t)

m

]
χ(t)

r(t+∆t) ← r(t) + ∆t v(t+
1

2
∆t) (3.63)

3. SHAKE

4. Full step velocity:

v(t)← 1

2

[
v(t− 1

2
∆t) + v(t+

1

2
∆t)

]
(3.64)

66

c©STFC Section 3.4

5. Thermostat:

χ(t)←
[
1 +

∆t

τT

(
σ

Ekin(t)
− 1

)]1/2
. (3.65)

Several iterations are required to obtain self consistency. In DL POLY 4 the number of iterations
is set to 3 (4 if bond constraints are present).

Note that the MD cell’s centre of mass momentum is removed at the end of the integration
algorithms.

The Berendsen algorithms conserve total momentum but not energy.

The VV and LFV flavours of the Berendsen thermostat are implemented in the DL POLY 4 routines
nvt b0 vv and nvt b0 lfv respectively. The routines nvt b1 vv and nvt b1 lfv implement
the same but also incorporate RB dynamics.

3.4.5 Nosé-Hoover Thermostat

In the Nosé-Hoover algorithm [30] Newton’s equations of motion are modified to read:

dr(t)

dt
= v(t)

dv(t)

dt
=

f(t)

m
− χ(t) v(t) (3.66)

The friction coefficient, χ, is controlled by the first order differential equation

dχ(t)

dt
=

2Ekin(t)− 2σ

qmass
(3.67)

where σ is the target thermostat energy, equation (3.57), and

qmass = 2 σ τ2T (3.68)

is the thermostat mass, which depends on a specified time constant τT (for temperature fluctuations
normally in the range [0.5, 2] ps).

The VV implementation of the Nosé-Hoover algorithm takes place in a symplectic manner as
follows:

1. Thermostat: Note Ekin(t) changes inside

χ(t+
1

4
∆t) ← χ(t) +

∆t

4

2Ekin(t)− 2σ

qmass

v(t) ← v(t) exp

(
−χ(t+ 1

4
∆t)

∆t

2

)
(3.69)

χ(t+
1

2
∆t) ← χ(t+

1

4
∆t) +

∆t

4

2Ekin(t)− 2σ

qmass

(3.70)

2. VV1:

v(t+
1

2
∆t) ← v(t) +

∆t

2

f(t)

m

r(t+∆t) ← r(t) + ∆t v(t+
1

2
∆t) (3.71)

67

c©STFC Section 3.4

3. RATTLE VV1

4. FF:
f(t+∆t)← f(t) (3.72)

5. VV2:

v(t+∆t)← v(t+
1

2
∆t) +

∆t

2

f(t+∆t)

m
(3.73)

6. RATTLE VV2

7. Thermostat: Note Ekin(t+∆t) changes inside

χ(t+
3

4
∆t) ← χ(t+

1

2
∆t) +

∆t

4

2Ekin(t+∆t)− 2σ

qmass

v(t+∆t) ← v(t+∆t) exp

(
−χ(t+ 3

4
∆t)

∆t

2

)
(3.74)

χ(t+∆t) ← χ(t+
3

4
∆t) +

∆t

4

2Ekin(t+∆t)− 2σ

qmass
.

The algorithm is self-consistent and requires no iterations.

The LFV implementation of the Nosé-Hoover algorithm is iterative as an initial estimate of χ(t) at
full step is calculated using an unconstrained estimate of the velocity at full step, v(t).

1. FF:
f(t)← f(t−∆t) (3.75)

2. LFV: The iterative part is as follows:

v(t+
1

2
∆t) ← v(t− 1

2
∆t) + ∆t

[
f(t)

m
− χ(t) v(t)

]

r(t+∆t) ← r(t) + ∆t v(t+
1

2
∆t) (3.76)

3. SHAKE

4. Full step velocity:

v(t)← 1

2

[
v(t− 1

2
∆t) + v(t+

1

2
∆t)

]
(3.77)

5. Thermostat:

χ(t+
1

2
∆t) ← χ(t− 1

2
∆t) + ∆t

2Ekin(t)− 2σ

qmass

χ(t) ← 1

2

[
χ(t− 1

2
∆t) + χ(t+

1

2
∆t)

]
. (3.78)

Several iterations are required to obtain self consistency. In DL POLY 4 the number of iterations
is set to 2 (3 if bond constraints are present).

The conserved quantity is derived from the extended Hamiltonian for the system which, to within
a constant, is the Helmholtz free energy:

HNVT = HNVE +
qmass χ(t)

2

2
+ f kB Text

∫ t

o
χ(s)ds , (3.79)

68

c©STFC Section 3.4

where f is the system’s degrees of freedom - equation (3.11).

The VV and LFV flavours of the Nosé-Hoover thermostat are implemented in the DL POLY 4
routines nvt h0 vv and nvt h0 lfv respectively. The routines nvt h1 vv and nvt h1 lfv
implement the same but also incorporate RB dynamics.

3.4.6 Gentle Stochastic Thermostat

The Gentle Stochastic Thermostat [59, 64] is an extension of the Nosé-Hoover algorithm [30]

dr(t)

dt
= v(t)

dv(t)

dt
=

f(t)

m
− χ(t) v(t) (3.80)

in which the thermostat friction, χ, has its own Brownian dynamics:

dχ(t)

dt
=

2Ekin(t)− 2σ

qmass
− γ χ(t) +

√
2 γ kB Text qmass

qmass

dω(t)

dt
, (3.81)

governed by the Langevin friction γ (positive, in units of ps−1), where ω(t) is the standard Brownian
motion (Wiener process - Gauss(0,1)), σ is the target thermostat energy, as in equation (3.57).

qmass = 2 σ τ2T (3.82)

is the thermostat mass, which depends on a specified time constant τT (for temperature fluctuations
normally in the range [0.5, 2] ps).

It is worth noting that equation (3.81) similar to the Ornstein-Uhlenbeck equation:

dχ

dt
= −ασ

2

2
χ+ σ

dω

dt
, (3.83)

which for a given realization of the Wiener process ω(t) has exact solution:

χn+1 = e−εt

χn + σ

√
e2 εt − 1

2ε
∆ω

 , (3.84)

where ε = ασ2/2 and ∆ω ∼ N (0, 1). The VV implementation of the Gentle Stochastic Thermostat
algorithm takes place in a symplectic manner as follows:

1. Thermostat: Note Ekin(t) changes inside and Rg(t), drown from Gauss(0, 1), is carried over
from the previous half-timestep

χ(t+
1

4
∆t) ← χ(t) exp

[
−γ ∆t

4

]
+

√
kB Text
qmass

(
1− exp2

[
−γ ∆t

4

])
Rg(t)

+
∆t

4

2Ekin(t)− 2σ

qmass

v(t) ← v(t) exp

(
−χ(t+ 1

4
∆t)

∆t

2

)
(3.85)

χ(t+
1

2
∆t) ← χ(t+

1

4
∆t) exp

[
−γ ∆t

4

]
+

√
kB Text
qmass

(
1− exp2

[
−γ ∆t

4

])
Rg(t)

+
∆t

4

2Ekin(t)− 2σ

qmass

69

c©STFC Section 3.4

2. VV1:

v(t+
1

2
∆t) ← v(t) +

∆t

2

f(t)

m

r(t+∆t) ← r(t) + ∆t v(t+
1

2
∆t) (3.86)

3. RATTLE VV1

4. FF:
f(t+∆t)← f(t) (3.87)

5. VV2:

v(t+∆t)← v(t+
1

2
∆t) +

∆t

2

f(t+∆t)

m
(3.88)

6. RATTLE VV2

7. Thermostat: Note Ekin(t+∆t) changes inside and Rg(t+∆t) is drown anew from Gauss(0, 1),
and is to be carried over the next half-timestep

χ(t+
3

4
∆t) ← χ(t+

1

2
∆t) exp

[
−γ ∆t

4

]
+

√
kB Text
qmass

(
1− exp2

[
−γ ∆t

4

])
Rg(t+∆t)

+
∆t

4

2Ekin(t)− 2σ

qmass

v(t+∆t) ← v(t+∆t) exp

(
−χ(t+ 3

4
∆t)

∆t

2

)
(3.89)

χ(t+∆t) ← χ(t+
3

4
∆t) exp

[
−γ ∆t

4

]
+

√
kB Text
qmass

(
1− exp2

[
−γ ∆t

4

])
Rg(t+∆t)

+
∆t

4

2Ekin(t)− 2σ

qmass

The algorithm is self-consistent and requires no iterations.

The LFV implementation of the Gentle Stochastic Thermostat algorithm is iterative as an initial
estimate of χ(t) at full step is calculated using an unconstrained estimate of the velocity at full
step, v(t).

1. FF:
f(t)← f(t−∆t) (3.90)

2. LFV: The iterative part is as follows:

v(t+
1

2
∆t) ← v(t− 1

2
∆t) + ∆t

[
f(t)

m
− χ(t) v(t)

]

r(t+∆t) ← r(t) + ∆t v(t+
1

2
∆t) (3.91)

3. SHAKE

4. Full step velocity:

v(t)← 1

2

[
v(t− 1

2
∆t) + v(t+

1

2
∆t)

]
(3.92)

70

c©STFC Section 3.5

5. Thermostat: Note Rg(t) is drown from Gauss(0, 1) just once per timestep

χ(t+
1

2
∆t) ← χ(t− 1

2
∆t) exp

[
−γ ∆t

4

]
+

√
kB Text
qmass

(
1− exp2

[
−γ ∆t

4

])
Rg(t)

+ ∆t
2Ekin(t)− 2σ

qmass

χ(t) ← 1

2

[
χ(t− 1

2
∆t) + χ(t+

1

2
∆t)

]
. (3.93)

Several iterations are required to obtain self consistency. In DL POLY 4 the number of iterations
is set to 3 (4 if bond constraints are present).

The conserved quantity is derived from the extended Hamiltonian for the system which, to within
a constant, is the Helmholtz free energy:

HNVT = HNVE +
qmass χ(t)

2

2
+ f kB Text

∫ t

o
χ(s)ds , (3.94)

where f is the system’s degrees of freedom - equation (3.11).

The VV and LFV flavours of the Gentle Stochastic Thermostat are implemented in the DL POLY 4
routines nvt g0 vv and nvt g0 lfv respectively. The routines nvt g1 vv and nvt g1 lfv
implement the same but also incorporate RB dynamics.

3.5 Barostats

The size and shape of the simulation cell may be dynamically adjusted by coupling the system to
a barostat in order to obtain a desired average pressure (Pext) and/or isotropic stress tensor (σ).
DL POLY 4 has four such algorithms: the Langevin type barostat [31], the Berendsen barostat
[29], the Nosé-Hoover type barostat [30] and the Martyna-Tuckerman-Klein (MTK) barsotat [32].
Only the Berendsen barostat does not have defined conserved quantity.

Note that the MD cell’s centre of mass momentum is removed at the end of the integration
algorithms with barostats.

3.5.1 Instantaneous pressure and stress

The instantaneous pressure in a system,

P(t) = [2Ekin(t)−Watomic(t)−Wconstrain(t−∆t)−WPMF(t−∆t)]

3V (t)
, (3.95)

is a function of the system volume, kinetic energy and virial, W.
Note that when bond constraints or/and PMF constraints are present in the system P will not
converge to the exact value of Pext during equilibration in NPT and NσT simulations. This is
due to iterative nature of the constrained motion, in which the virials Wconstrain and WPMF are
calculated retrospectively to the forcefield virial Watomic.

The instantaneous stress tensor in a system,

σ(t) = σ
kin

(t) + σ
atomic

(t) + σ
constrain

(t−∆t) + σ
PMF

(t−∆t) , (3.96)

71

c©STFC Section 3.5

is a sum of the forcefield, σ
atomic

, constrain, σ
constrains

, and PMF, σ
PMF

, stresses.
Note that when bond constraints or/and PMF constraints are present in the system, the quantity
Tr[σ]
3V will not converge to the exact value of Pext during equilibration in NPT and NσT simulations.

This is due to iterative nature of the constrained motion in which the constraint and PMF stresses
are calculated retrospectively to the forcefield stress.

3.5.2 Langevin Barostat

DL POLY 4 implements a Langevin barostat [31] for isotropic and anisotropic cell fluctuations.

Cell size variations

For isotropic fluctuations the equations of motion are:

d

dt
r(t) = v(t) + η(t) r(t)

d

dt
v(t) =

f(t) +R(t)

m
−
[
χ+

(
1 +

3

f

)
η(t)

]
v(t)

d

dt
η(t) = 3V (t)

P(t)− Pext

pmass
+ 3

2Ekin(t)

f

1

pmass
− χp η(t) +

Rp

pmass
(3.97)

pmass =
(f + 3) kB Text

(2π χp)2

d

dt
H(t) = η(t) H(t)

d

dt
V (t) = [3η(t)] V (t) ,

where χ and χp are the user defined constants (positive, in units of ps−1), specifying the thermostat
and barostat friction parameters, R(t) is the Langevin stochastic force (see equation (3.35)), P the
instantaneous pressure (equation (3.95)) and Rp is the stochastic (Langevin) pressure variable〈

Rp(t) Rp(t
′)
〉
= 2 χp pmass kBT δ(t− t′) , (3.98)

which is drawn from Gaussian distribution of zero mean and unit variance, Gauss(0, 1), scaled by√
2 χp pmass kBT

∆t . kB is the Boltzmann constant, T the target temperature and pmass the barostat
mass. H is the cell matrix whose columns are the three cell vectors a, b, c.

The conserved quantity these generate is:

HNPT = HNVE +
pmass η(t)

2

2
+ PextV (t) . (3.99)

The VV implementation of the Langevin algorithm only requires iterations if bond or PMF con-
straints are present (4 until satisfactory convergence of the constraint forces is achieved). These
are with respect to the pressure (i.e. η(t)) in the first part, VV1+RATTLE VV1. The second part
is conventional, VV2+RATTLE VV2, as at the end the velocities are scaled by a factor of χ.

1. Thermostat: Note 2Ekin(t) changes inside

v(t)← exp

(
−χ ∆t

4

)
v(t) (3.100)

72

c©STFC Section 3.5

2. Barostat: Note Ekin(t) and P(t) have changed and change inside

η(t) ← exp

(
−χp

∆t

8

)
η(t)

η(t+
1

4
∆t) ← η(t) +

∆t

4

[
3V (t)

P(t)− Pext

pmass
+

3
2Ekin(t)

f

1

pmass
+
Rp(t)

pmass

]
η(t+

1

4
∆t) ← exp

(
−χp

∆t

8

)
η(t+

1

4
∆t)

v(t) ← exp

[
−η(t+ 1

4
∆t)

∆t

2

]
v(t) (3.101)

η(t+
1

4
∆t) ← exp

(
−χp

∆t

8

)
η(t+

1

4
∆t)

η(t+
1

2
∆t) ← η(t+

1

4
∆t) +

∆t

4

[
3V (t)

P(t)− Pext

pmass
+

3
2Ekin(t)

f

1

pmass
+
Rp(t)

pmass

]
η(t+

1

2
∆t) ← exp

(
−χp

∆t

8

)
η(t+

1

2
∆t)

3. Thermostat: Note Ekin(t) has changed and changes inside

v(t)← exp

(
−χ ∆t

4

)
v(t) (3.102)

4. VV1:

v(t+
1

2
∆t) ← v(t) +

∆t

2

f(t) +R(t)

m

H(t+∆t) ← exp

[
η(t+

1

2
∆t) ∆t

]
H(t)

V (t+∆t) ← exp

[
3η(t+

1

2
∆t) ∆t

]
V (t) (3.103)

r(t+∆t) ← exp

[
η(t+

1

2
∆t) ∆t

]
r(t) + ∆t v(t+

1

2
∆t)

5. RATTLE VV1

6. FF:

f(t+∆t) ← f(t)

R(t+∆t) ← R(t) (3.104)

Rp(t+∆t) ← Rp(t)

7. VV2:

v(t+∆t) ← v(t+
∆t

2
) +

∆t

2

f(t) +R(t)

m
(3.105)

8. RATTLE VV2

73

c©STFC Section 3.5

9. Thermostat: Note Ekin(t+∆t) has changed and changes inside

v(t+∆t)← exp

(
−χ ∆t

4

)
v(t+∆t) (3.106)

10. Barostat: Note Ekin(t+∆t) and P(t+∆t) have changed and change inside

η(t+
1

2
∆t) ← exp

(
−χp

∆t

8

)
η(t+

1

2
∆t)

η(t+
3

4
∆t) ← η(t+

1

2
∆t) +

∆t

4

[
3V (t+∆t)

P(t+∆t)− Pext

pmass
+

3
2Ekin(t+∆t)

f

1

pmass
+
Rp(t)

pmass

]
η(t+

3

4
∆t) ← exp

(
−χp

∆t

8

)
η(t+

3

4
∆t)

v(t+∆t) ← exp

[
−η(t+ 3

4
∆t)

∆t

2

]
v(t+∆t) (3.107)

η(t+
3

4
∆t) ← exp

(
−χp

∆t

8

)
η(t+

3

4
∆t)

η(t+∆t) ← η(t+
3

4
∆t) +

∆t

4

[
3V (t+∆t)

P(t+∆t)− Pext

pmass
+

3
2Ekin(t+∆t)

f

1

pmass
+
Rp(t)

pmass

]
η(t+∆t) ← exp

(
−χp

∆t

8

)
η(t+∆t)

11. Thermostat: Note Ekin(t+∆t) has changed and changes inside

v(t+∆t)← exp

(
−χ ∆t

4

)
v(t+∆t) , (3.108)

The LFV implementation of the Langevin algorithm is iterative, until self consistency in the full step
velocity, v(t), is obtained. Initial estimate of η(t) at full step are calculated using an unconstrained
estimate of the velocity at full step, v(t). Also calculated is an unconstrained estimate of the half
step position r(t+ 1

2∆t).

1. FF:

f(t) ← f(t−∆t)

R(t) ← R(t−∆t) (3.109)

Rp(t) ← Rp(t−∆t)

2. LFV: The iterative part is as follows:

scale = 1 +

[
χ+

(
1 +

3

f

)
η(t)

]
∆t

2

scale v =
2

scale
− 1

scale f =
∆t

scale

74

c©STFC Section 3.5

v(t+
1

2
∆t) ← scale v v(t− 1

2
∆t) + scale f

f(t) +R(t)

m

r(t+∆t) ← r(t) + ∆t

{
v(t+

1

2
∆t) + η(t+

1

2
∆t)r(t+

1

2
∆t)

}
(3.110)

H(t+∆t) ← exp

[
η(t+

1

2
∆t) ∆t

]
H(t)

V (t+∆t) ← exp

[
3η(t+

1

2
∆t) ∆t

]
V (t)

3. SHAKE

4. Full step velocity and half step position:

v(t) ← 1

2

[
v(t− 1

2
∆t) + v(t+

1

2
∆t)

]
r(t+

1

2
∆t) ← r(t) + r(t+∆t)

2
(3.111)

5. Thermostat and Barostat:

η(t+
1

2
∆t) ← exp (−χp ∆t) η(t− 1

2
∆t) +

∆t

[
3V (t+∆t)

P(t+∆t)− Pext

pmass
+ 3

2Ekin(t+∆t)

f

1

pmass

]
(3.112)

η(t) ← 1

2

[
η(t− 1

2
∆t) + η(t+

1

2
∆t)

]
.

Several iterations are required to obtain self consistency. In DL POLY 4 the number of iterations
is set to 7 (8 if bond constraints are present). Note also that the change in box size requires the
SHAKE algorithm to be called each iteration.

The VV and LFV flavours of the langevin barostat (and Nosé-Hoover thermostat) are implemented
in the DL POLY 4 routines npt l0 vv and npt l0 lfv respectively. Both VV and LFV imple-
mentations make use of the DL POLY 4 module langevin module. The routines npt l1 vv and
npt l1 lfv implement the same but also incorporate RB dynamics.

Cell size and shape variations

The isotropic algorithms (VV and LFV) may be extended to allowing the cell shape to vary by
defining η as a tensor, η and extending the Langevin pressure variable Rp to a stochastic (Langevin)

tensor Rp: 〈
Rp,i(t) Rp,j(t

′)
〉
= 2 χp pmass kBT δij δ(t− t′) , (3.113)

which is drawn from Gaussian distribution of zero mean and unit variance, Gauss(0, 1), scaled by√
2 χp pmass kBT

∆t . kB is the Boltzmann constant, T the target temperature and pmass the barostat
mass. Note that Rp has to be symmetric and only 6 independent components must be generated

each timestep.

The equations of motion are written in the same fashion as is in the isotropic algorithm with slight
modifications (as now the equations with η are extended to matrix forms)

d

dt
r(t) = v(t) + η(t) · r(t)

75

c©STFC Section 3.5

d

dt
v(t) =

f(t) +R(t)

m
−

χ 1+ η(t) +
Tr
[
η(t)

]
f

1

 · v(t)
d

dt
η(t) =

σ(t)− Pext V (t) 1

pmass
+

2Ekin(t)

f

1

pmass
− χpη(t) +

Rp

pmass
(3.114)

pmass =
(f + 3)

3

kB Text
(2π χP)2

d

dt
H(t) = η(t) ·H(t)

d

dt
V (t) = Tr[η(t)] V (t) .

where σ is the stress tensor (equation (3.96)) and 1 is the identity matrix.

The conserved quantity these generate is:

HNσT = HNVE +
pmass Tr[η · ηT]

2
+ PextV (t) . (3.115)

the VV and LFV algorithmic equations are, therefore, written in the same fashion as in the isotropic
case with slight modifications. For the VV couched algorithm these are of the following sort

η(t) ← exp

(
−χp

∆t

8

)
η(t)

η(t+
1

4
∆t) ← η(t) +

∆t

4

σ(t)− Pext V (t) 1

pmass
+

2Ekin(t)

f

1

pmass
+

Rp(t)

pmass

 (3.116)

v(t) ← exp

[
−
(
η(t+

1

4
∆t) +

1

f
Tr

[
η(t+

1

4
∆t)

])
∆t

2

]
· v(t)

r(t+∆t) ← exp

[
η(t+

1

2
∆t) ∆t

]
· r(t) + ∆t v(t+

1

2
∆t)

Similarly, for the LFV couched algorithms these are

η(t+
1

2
∆t) ← exp (−χp(t)∆t) η(t−

∆t

2
) +

∆t
σ(t)− Pext V (t) 1

pmass
+

2Ekin(t)

f

1

pmass
+

Rp(t)

pmass

scale = 1+

[
χ 1+

(
1 +

3

f

)
η(t)

]
∆t

2

scale v =
2

scale
− 1 (3.117)

scale f =
∆t

scale

v(t+
1

2
∆t) ← scale v · v(t− 1

2
∆t) + scale f ·

f(t) +R(t)

m

r(t+∆t) ← r(t) + ∆t

{
v(t+

1

2
∆t) + η(t+

1

2
∆t) · r(t+ 1

2
∆t)

}
76

c©STFC Section 3.5

It is worth noting DL POLY 4 uses Taylor expansion truncated to the quadratic term to approxi-
mate exponentials of tensorial terms.

This ensemble is optionally extending to constant normal pressure and constant surface area,
NPnAT [60], by semi-isotropic constraining of the barostat equation of motion to:

d

dt
ηαβ(t) =

{
σzz(t)−Pext V (t)

pmass
+ 2Ekin(t)

f pmass
− χpηzz(t) +

Rp,zz(t)
pmass

: (α = β) = z

0 ; ηαβ(0) = 0 : (α, β) 6= z .
(3.118)

Similarly, this ensemble is optionally extending to constant normal pressure and constant surface
tension, NPnγT [60], by semi-isotropic constraining of the barostat equation of motion to:

d

dt
ηαβ(t) =


σαα(t)−[Pext−γext/hz(t)] V (t)

pmass
+ 2Ekin(t)

f pmass
− χpηαα(t) +

Rp,αα(t)
pmass

: (α = β) = x, y

:
σzz(t)−Pext V (t)

pmass
+ 2Ekin(t)

f
1

pmass
− χpηzz(t) +

Rp,zz(t)
pmass

: (α = β) = z

0 ; ηαβ(0) = 0 : (α 6= β) = x, y, z

,

(3.119)
where γext is the user defined external surface tension and hz(t) = V (t)/Axy(t) is the instantaneous
hight of the MD box (or MD box volume over area). The instnatneous surface tension is defined as

γα(t) = −hz(t) [σαα(t)− Pext] . (3.120)

The case γext = 0 generates the NPT anisotropic ensemble for the orthorhombic cell (imcon=2 in
CONFIG, see Appendix A). This can be considered as an ”orthorhombic” constraint on the NσT
ensemble. The constraint can be strengthened further, to a ”semi-orthorhombic” one, by imposing
that the MD cell change isotropically in the (x, y) plane which leads to the following modification
in the NPnγT set of equatons

d

dt
ηαα(t) =

[σxx(t) + σyy(t)] /2− [Pext − γext/hz(t)] V (t)

pmass
+

2 Ekin(t)

f pmass
− (3.121)

− χpηαα(t) +
Rp,xx(t) +Rp,yy(t)

2 pmass
: (α = β) = x, y .

The VV and LFV flavours of the non-isotropic Langevin barostat (and Nosé-Hoover thermostat)
are implemented in the DL POLY 4 routines nst l0 vv and nst l0 lfv respectively. Both make
use of the DL POLY 4 module langevin module. The routines nst l1 vv and nst l1 lfv
implement the same but also incorporate RB dynamics.

3.5.3 Berendsen Barostat

With the Berendsen barostat the system is made to obey the equation of motion at the beginning
of each step

dP(t)
dt

=
Pext −P(t)

τP
, (3.122)

where P is the instantaneous pressure (equation (3.95)) and τP is the barostat relaxation time
constant.

Cell size variations

77

c©STFC Section 3.5

In the isotropic implementation, at each step the MD cell volume is scaled by a factor η, and the
coordinates and cell vectors by η1/3,

η(t) = 1− β∆t

τP
(Pext − P(t)) (3.123)

where β is the isothermal compressibility of the system. In practice β is a specified constant which
DL POLY 4 takes to be the isothermal compressibility of liquid water. The exact value is not
critical to the algorithm as it relies on the ratio τP /β. τP is a specified time constant for pressure
fluctuations, supplied by the user.

It is worth noting that the barostat and the thermostat are independent and fully separable.

The VV implementation of the Berendsen algorithm only requires iterations if bond or PMF con-
straints are present (7 until satisfactory convergence of the constraint forces is achieved). These
are with respect to the pressure (i.e. η(t)) in the first part, VV1+RATTLE VV1. The second part
is conventional, VV2+RATTLE VV2, as at the end the velocities are scaled by a factor of χ.

1. VV1:

v(t+
1

2
∆t) ← v(t) +

∆t

2

f(t)

m

r(t+∆t) ← η(t)1/3 r(t) + ∆t v(t+
1

2
∆t) (3.124)

H(t+∆t) ← η(t)1/3 H(t)

V (t+∆t) ← η(t) V (t)

2. RATTLE VV1

3. Barostat:

η(t) = 1− β∆t

τP
(Pext − P(t)) (3.125)

4. FF:
f(t+∆t)← f(t) (3.126)

5. VV2:

v(t+∆t)← v(t+
1

2
∆t) +

∆t

2

f(t+∆t)

m
(3.127)

6. RATTLE VV2

7. Thermostat:

χ(t+∆t) ←
[
1 +

∆t

τT

(
σ

Ekin(t+∆t)
− 1

)]1/2
v(t+∆t) ← v(t+∆t) χ . (3.128)

where H is the cell matrix whose columns are the three cell vectors a, b, c.

The LFV implementation of the Berendsen algorithm is iterative, until self consistency in the full
step velocity, v(t), is obtained. Initial estimates of χ(t) and η(t) at full step are calculated using
an unconstrained estimate of the velocity at full step, v(t).

1. FF:
f(t)← f(t−∆t) (3.129)

78

c©STFC Section 3.5

2. LFV: The iterative part is as follows:

v(t+
1

2
∆t) ←

[
v(t− 1

2
∆t) + ∆t

f(t)

m

]
χ(t)

r(t+∆t) ← η(t)1/3 r(t) + ∆t v(t+
1

2
∆t) (3.130)

H(t+∆t) ← η(t)1/3 H(t)

V (t+∆t) ← η(t) V (t)

3. SHAKE

4. Full step velocity:

v(t)← 1

2

[
v(t− 1

2
∆t) + v(t+

1

2
∆t)

]
(3.131)

5. Thermostat:

χ(t)←
[
1 +

∆t

τT

(
σ

Ekin(t)
− 1

)]1/2
(3.132)

6. Barostat:

η(t) = 1− β∆t

τP
(Pext − P(t)) . (3.133)

Several iterations are required to obtain self consistency. In DL POLY 4 the number of iterations
is set to 7 (8 if bond constraints are present). Note also that the change in box size requires the
SHAKE algorithm to be called each iteration.

The Berendsen algorithms conserve total momentum but not energy.

The VV and LFV flavours of the Berendsen barostat (and thermostat) are implemented in the
DL POLY 4 routines npt b0 vv and npt b0 lfv respectively. The routines npt b1 vv and
npt b1 lfv implement the same but also incorporate RB dynamics.

Cell size and shape variations

The extension of the isotropic algorithm to anisotropic cell variations is straightforward. A tensor
η is defined as

η(t) = 1− β∆t

τP
(Pext 1− σ(t)/V (t)) , (3.134)

where where σ is the stress tensor (equation (3.96)) and 1 is the identity matrix. Then new cell
vectors and volume are given by

H(t+∆t) ← η(t) ·H(t)

V (t+∆t) ← Tr[η(t)] V (t) . (3.135)

and the velocity updates for VV and LFV algorithms as

VV1 : r(t+∆t) ← η(t) · r(t) + ∆t v(t+
1

2
∆t)

LFV : r(t+∆t) ← η(t) · r(t) + ∆t v(t+
1

2
∆t) . (3.136)

79

c©STFC Section 3.5

This ensemble is optionally extending to constant normal pressure and constant surface area,
NPnAT [60], by semi-isotropic constraining of the barostat equation of motion to:

ηαδ(t) =


1− β∆t

τP
[Pext − σzz(t)/V (t)] : (α = δ) = z

1 : (α = δ) = x, y
0 : (α 6= δ) .

(3.137)

Similarly, this ensemble is optionally extending to constant normal pressure and constant surface
tension, NPnγT [60], by semi-isotropic constraining of the barostat equation of motion to:

ηαδ(t) =


1− β∆t

τP
[Pext − γext V (t)/hz(t)− σαα(t)/V (t)] : (α = δ) = x, y

:

1− β∆t
τP

[Pext − σzz(t)/V (t)] : (α = δ) = z

0 : (α 6= δ) ,

(3.138)

where γext is the user defined external surface tension and hz(t) = V (t)/Axy(t) is the instantaneous
hight of the MD box (or MD box volume over area). One defines the instantaneous surface tension
as given in equation (3.120). The case γext = 0 generates the NPT anisotropic ensemble for
the orthorhombic cell (imcon=2 in CONFIG, see Appendix A). This can be considered as an
”orthorhombic” constraint on the NσT ensemble. The constraint can be strengthened further, to
a ”semi-orthorhombic” one, by imposing that the MD cell change isotropically in the (x, y) plane
which leads to the following change in the equations above

ηαα(t) = 1− β∆t

τP

[
Pext − γext

V (t)

hz(t)
− σxx(t) + σyy(t)

2 V (t)

]
: (α = δ) = x, y . (3.139)

The VV and LFV flavours of the non-isotropic Berendsen barostat (and thermostat) are im-
plemented in the DL POLY 4 routines nst b0 vv and nst b0 lfv respectively. The routines
nst b1 vv and nst b1 lfv implement the same but also incorporate RB dynamics.

3.5.4 Nosé-Hoover Barostat

DL POLY 4 uses the Melchionna modification of the Nosé-Hoover algorithm [65] in which the equa-
tions of motion involve a Nosé-Hoover thermostat and a barostat in the same spirit. Additionally,
as shown in [66], a modification allowing for coupling between the thermostat and barostat is also
introduced.

Cell size variation

For isotropic fluctuations the equations of motion are:

d

dt
r(t) = v(t) + η(t) (r(t)−R0(t))

d

dt
v(t) =

f(t)

m
− [χ(t) + η(t)] v(t)

d

dt
χ(t) =

2Ekin(t) + pmass η(t)
2 − 2σ − kB Text

qmass

qmass = 2 σ τ2T (3.140)

d

dt
η(t) = 3V (t)

P(t)− Pext

pmass
− χ(t)η(t)

80

c©STFC Section 3.5

pmass = (f + 3) kB Text τ
2
P

d

dt
H(t) = η(t) H(t)

d

dt
V (t) = [3η(t)] V (t) ,

where η is the barostat friction coefficient, R0(t) the system centre of mass at time t, qmass the
thermostat mass, τT a specified time constant for temperature fluctuations, σ the target thermo-
stat energy (equation (3.57)), pmass the barostat mass, τP a specified time constant for pressure
fluctuations, P the instantaneous pressure (equation (3.95)) and V the system volume. H is the
cell matrix whose columns are the three cell vectors a, b, c.

The conserved quantity is, to within a constant, the Gibbs free energy of the system:

HNPT = HNVE +
qmass χ(t)

2

2
+
pmass η(t)

2

2
+ PextV (t) + (f + 1) kB Text

∫ t

o
χ(s)ds , (3.141)

where f is the system’s degrees of freedom - equation (3.11).

The VV implementation of the Nosé-Hoover algorithm only requires iterations if bond or PMF
constraints are present (5 until satisfactory convergence of the constraint forces is achieved). These
are with respect to the pressure (i.e. η(t)) in the first part, VV1+RATTLE VV1. The second part
is conventional, VV2+RATTLE VV2, as at the end the velocities are scaled by a factor of χ.

1. Thermostat: Note 2Ekin(t) changes inside

χ(t+
1

8
∆t) ← χ(t) +

∆t

8

2Ekin(t) + pmass η(t)
2 − 2σ − kB Text

qmass

v(t) ← exp

(
−χ(t+ 1

8
∆t)

∆t

4

)
v(t) (3.142)

χ(t+
1

4
∆t) ← χ(t+

1

8
∆t) +

∆t

8

2Ekin(t) + pmass η(t)
2 − 2σ − kB Text

qmass

2. Barostat: Note Ekin(t) and P(t) have changed and change inside

η(t) ← exp

(
−χ(t+ 1

4
∆t)

∆t

8

)
η(t)

η(t+
1

4
∆t) ← η(t) +

∆t

4

3 [P(t)− Pext]V (t)

pmass

η(t+
1

4
∆t) ← exp

(
−χ(t+ 1

4
∆t)

∆t

8

)
η(t+

1

4
∆t)

v(t) ← exp

[
−η(t+ 1

4
∆t)

∆t

2

]
v(t) (3.143)

η(t+
1

4
∆t) ← exp

(
−χ(t+ 1

4
∆t)

∆t

8

)
η(t+

1

4
∆t)

η(t+
1

2
∆t) ← η(t+

1

4
∆t) +

∆t

4

3 [P(t)− Pext]V (t)

pmass

η(t+
1

2
∆t) ← exp

(
−χ(t+ 1

4
∆t)

∆t

8

)
η(t+

1

2
∆t)

3. Thermostat: Note Ekin(t) has changed and changes inside

χ(t+
3

8
∆t) ← χ(t+

1

4
∆t) +

∆t

8

2Ekin(t) + pmass η(t+
1
2∆t)

2 − 2σ − kB Text

qmass

81

c©STFC Section 3.5

v(t) ← exp

(
−χ(t+ 3

8
∆t)

∆t

4

)
v(t) (3.144)

χ(t+
1

2
∆t) ← χ(t+

3

8
∆t) +

∆t

8

2Ekin(t) + pmass η(t+
1
2∆t)

2 − 2σ − kB Text

qmass

4. VV1:

v(t+
1

2
∆t) ← v(t) +

∆t

2

f(t)

m

H(t+∆t) ← exp

[
η(t+

1

2
∆t) ∆t

]
H(t)

V (t+∆t) ← exp

[
3η(t+

1

2
∆t) ∆t

]
V (t) (3.145)

r(t+∆t) ← exp

[
η(t+

1

2
∆t) ∆t

]
(r(t)−R0(t)) + ∆t v(t+

1

2
∆t) +R0(t)

5. RATTLE VV1

6. FF:
f(t+∆t)← f(t) (3.146)

7. VV2:

v(t+∆t) ← v(t+
∆t

2
) +

∆t

2

f(t)

m
(3.147)

8. RATTLE VV2

9. Thermostat: Note Ekin(t+∆t) has changed and changes inside

χ(t+
5

8
∆t) ← χ(t+

1

2
∆t) +

∆t

8

2Ekin(t+∆t) + pmass η(t+
1
2∆t)

2 − 2σ − kB Text

qmass

v(t+∆t) ← exp

(
−χ(t+ 5

8
∆t)

∆t

4

)
v(t+∆t) (3.148)

χ(t+
3

4
∆t) ← χ(t+

5

8
∆t) +

∆t

8

2Ekin(t+∆t) + pmass η(t+
1
2∆t)

2 − 2σ − kB Text

qmass

10. Barostat: Note Ekin(t+∆t) and P(t+∆t) have changed and change inside

η(t+
1

2
∆t) ← exp

(
−χ(t+ 3

4
∆t)

∆t

8

)
η(t+

1

2
∆t)

η(t+
3

4
∆t) ← η(t+

1

2
∆t) +

∆t

4

3 [P(t+∆t)− Pext]V (t+∆t)

pmass

η(t+
3

4
∆t) ← exp

(
−χ(t+ 3

4
∆t)

∆t

8

)
η(t+

3

4
∆t)

v(t+∆t) ← exp

[
−η(t+ 3

4
∆t)

∆t

2

]
v(t+∆t) (3.149)

η(t+
3

4
∆t) ← exp

(
−χ(t+ 3

4
∆t)

∆t

8

)
η(t+

3

4
∆t)

η(t+∆t) ← η(t+
3

4
∆t) +

∆t

4

3 [P(t+∆t)− Pext]V (t+∆t)

pmass

η(t+∆t) ← exp

(
−χ(t+ 3

4
∆t)

∆t

8

)
η(t+∆t)

82

c©STFC Section 3.5

11. Thermostat: Note Ekin(t+∆t) has changed and changes inside

χ(t+
7

8
∆t) ← χ(t+

3

4
∆t) +

∆t

8

2Ekin(t+∆t) + pmass η(t+∆t)2 − 2σ − kB Text
qmass

v(t+∆t) ← exp

(
−χ(t+ 7

8
∆t)

∆t

4

)
v(t+∆t) (3.150)

χ(t+∆t) ← χ(t+
7

8
∆t) +

∆t

8

2Ekin(t+∆t) + pmass η(t+∆t)2 − 2σ − kB Text
qmass

v(t+∆t) ← v(t+∆t)− V 0(t+∆t) ,

where V 0(t+∆t) is the c.o.m. velocity at timestep t+∆t and H is the cell matrix whose columns
are the three cell vectors a, b, c.

The LFV implementation of the Nosé-Hoover algorithm is iterative, until self consistency in the full
step velocity, v(t), is obtained. Initial estimates of χ(t) and η(t) at full step are calculated using
an unconstrained estimate of the velocity at full step, v(t). Also calculated is an unconstrained
estimate of the half step position r(t+ 1

2∆t).

1. FF:
f(t)← f(t−∆t) (3.151)

2. LFV: The iterative part is as follows:

v(t+
1

2
∆t) ← v(t− 1

2
∆t) + ∆t

[
f(t)

m
− (χ(t) + η(t)) v(t)

]

r(t+∆t) ← r(t) + ∆t

{
v(t+

1

2
∆t) + η(t+

1

2
∆t)

[
r(t+

1

2
∆t)−R0(t)

]}
H(t+∆t) ← exp

[
η(t+

1

2
∆t) ∆t

]
H(t) (3.152)

V (t+∆t) ← exp

[
3η(t+

1

2
∆t) ∆t

]
V (t)

3. SHAKE

4. Full step velocity and half step position:

v(t) ← 1

2

[
v(t− 1

2
∆t) + v(t+

1

2
∆t)

]
r(t+

1

2
∆t) ← r(t) + r(t+∆t)

2
(3.153)

5. Thermostat and Barostat:

χ(t+
1

2
∆t) ← χ(t− 1

2
∆t) + ∆t

2Ekin(t) + pmass η(t)
2 − 2σ − kB Text

qmass

η(t+
1

2
∆t) ← exp (−χ(t)∆t) η(t− 1

2
∆t) + ∆t

3 [P(t)− Pext]V (t)

pmass

χ(t) ← 1

2

[
χ(t− 1

2
∆t) + χ(t+

1

2
∆t)

]
(3.154)

η(t) ← 1

2

[
η(t− 1

2
∆t) + η(t+

1

2
∆t)

]
.

83

c©STFC Section 3.5

Several iterations are required to obtain self consistency. In DL POLY 4 the number of iterations
is set to 7 (8 if bond constraints are present). Note also that the change in box size requires the
SHAKE algorithm to be called each iteration.

The VV and LFV flavours of the Nosé-Hoover barostat (and thermostat) are implemented in
the DL POLY 4 routines npt h0 vv and npt h0 lfv respectively. The routines npt h1 vv and
npt h1 lfv implement the same but also incorporate RB dynamics.

Cell size and shape variation

The isotropic algorithms (VV and LFV) may be extended to allowing the cell shape to vary by
defining η as a tensor, η. The equations of motion are written in the same fashion as is in the

isotropic algorithm with slight modifications (as now the equations with η are extended to matrix
forms)

d

dt
r(t) = v(t) + η(t) · (r(t)−R0(t))

d

dt
v(t) =

f(t)

m
−
[
χ(t) 1+ η(t)

]
· v(t)

d

dt
χ(t) =

2Ekin(t) + pmass Tr[η(t) · η(t)T]− 2σ − 32 kB Text

qmass

qmass = 2 σ τ2T (3.155)

d

dt
η(t) =

σ(t)− Pext V (t) 1

pmass
− χ(t)η(t)

pmass =
(f + 3)

3
kB Text τ

2
P

d

dt
H(t) = η(t) ·H(t)

d

dt
V (t) = Tr[η(t)] V (t) ,

where σ is the stress tensor (equation (3.96)) and 1 is the identity matrix. The VV and LFV
algorithmic equations are, therefore, written in the same fashion as above with slight modifications
in (i) the equations for the thermostat and barostat frictions, and (ii) the equations for the system
volume and cell parameters. The modifications in (i) for the VV couched algorithm are of the
following sort

χ(t+
1

8
∆t) ← χ(t) +

∆t

8

2Ekin(t) + pmass Tr[η(t) · η(t)T]− 2σ − 32 kB Text

qmass

v(t) ← exp

[
−η(t+ 1

4
∆t)

∆t

2

]
· v(t) (3.156)

η(t+
1

4
∆t) ← η(t) +

∆t

4

σ(t)− Pext V (t) 1

pmass
,

whereas for the LFV couched algorithm they are

χ(t+
1

2
∆t) ← χ(t− 1

2
∆t) + ∆t

2Ekin(t) + pmass Tr[η(t) · η(t)T]− 2σ − 32 kB Text

qmass

v(t+
1

2
∆t) ← v(t− 1

2
∆t) + ∆t

[
f(t)

m
−
{
χ(t) 1+ η(t)

}
· v(t)

]
(3.157)

84

c©STFC Section 3.5

η(t+
1

2
∆t) ← exp (−χ(t)∆t) η(t− 1

2
∆t) + ∆t

σ(t)− Pext V (t) 1

pmass
.

The modifications in (ii) are the same for both the VV and LFV couched algorithms

H(t+∆t) ← exp

(
η(t+

1

2
∆t) ∆t

)
·H(t)

V (t+∆t) ← exp

(
Tr

[
η(t+

1

2
∆t)

]
∆t

)
V (t) . (3.158)

It is worth noting DL POLY 4 uses Taylor expansion truncated to the quadratic term to approxi-
mate exponentials of tensorial terms.

The conserved quantity is, to within a constant, the Gibbs free energy of the system:

HNσT = HNVE+
qmass χ(t)

2

2
+
pmass Tr[η · ηT]

2
+PextV (t)+(f+32) kB Text

∫ t

o
χ(s)ds , (3.159)

where f is the system’s degrees of freedom - equation (3.11).

This ensemble is optionally extending to constant normal pressure and constant surface area,
NPnAT [60], by semi-isotropic constraining of the barostat equation of motion and slight amending
the thermostat equation of motion and the conserved quantity to:

d

dt
ηαβ(t) =

{
σzz(t)−Pext V (t)

pmass
− χ(t)ηzz(t) : (α = β) = z

0 ; ηαβ(0) = 0 : (α, β) 6= z

d

dt
χ(t) =

2Ekin(t) + pmass Tr[η(t) · η(t)T]− 2σ − kB Text

qmass
(3.160)

HNPnAT = HNVE +
qmass χ(t)

2

2
+
pmass Tr[η · ηT]

2
+ PextV (t) + (f + 1) kB Text

∫ t

o
χ(s)ds .

Similarly, this ensemble is optionally extending to constant normal pressure and constant surface
tension, NPnγT [60], by semi-isotropic constraining of the barostat equation of motion and slight
amending the thermostat equation of motion and the conserved quantity to:

d

dt
ηαβ(t) =


σαα(t)−[Pext−γext/hz(t)] V (t)

pmass
− χ(t)ηαα(t) : (α = β) = x, y

:
σzz(t)−Pext V (t)

pmass
− χ(t)ηzz(t) : (α = β) = z

0 ; ηαβ(0) = 0 : (α 6= β) = x, y, z

d

dt
χ(t) =

2Ekin(t) + pmass Tr[η(t) · η(t)T]− 2σ − 3 kB Text

qmass
(3.161)

HNPnγT = HNVE +
qmass χ(t)

2

2
+
pmass Tr[η · ηT]

2
+ PextV (t) + (f + 3) kB Text

∫ t

o
χ(s)ds .

where γext is the user defined external surface tension and hz(t) = V (t)/Axy(t) is the instantaneous
hight of the MD box (or MD box volume over area). One defines the instantaneous surface tension
as given in equation (3.120). The case γext = 0 generates the NPT anisotropic ensemble for
the orthorhombic cell (imcon=2 in CONFIG, see Appendix A). This can be considered as an
”orthorhombic” constraint on the NσT ensemble. The constraint can be strengthened further, to

85

c©STFC Section 3.5

a ”semi-orthorhombic” one, by imposing that the MD cell change isotropically in the (x, y) plane
which leads to the following changes in the equations above

d

dt
ηαα(t) =

[σxx(t) + σyy(t)] /2− [Pext − γext/hz(t)] V (t)

pmass
− χ(t)ηαα(t) : (α = β) = x, y

(3.162)

HNPnγ=0T = HNVE +
qmass χ(t)

2

2
+
pmass Tr[η · ηT]

2
+ PextV (t) + (f + 2) kB Text

∫ t

o
χ(s)ds .

The VV and LFV flavours of the non-isotropic Nosé-Hoover barostat (and thermostat) are im-
plemented in the DL POLY 4 routines nst h0 vv and nst h0 lfv respectively. The routines
nst h1 vv and nst h1 lfv implement the same but also incorporate RB dynamics.

3.5.5 Martyna-Tuckerman-Klein Barostat

DL POLY 4 includes the Martyna-Tuckerman-Klein (MTK) interpretation of the VV flavoured
Nosé-Hoover algorithms [32] for isotropic and anisotropic cell fluctuations in which the equations
of motion are only slightly augmented with respect to those for the coupled Nosé-Hoover thermostat
and barostat. Compare the isotropic cell changes case, equations (3.140), to

d

dt
r(t) = v(t) + η(t) r(t)

d

dt
v(t) =

f(t)

m
−
[
χ(t) +

(
1 +

3

f

)
η(t)

]
v(t)

d

dt
χ(t) =

2Ekin(t) + pmass η(t)
2 − 2σ − kB Text

qmass

qmass = 2 σ τ2T (3.163)

d

dt
η(t) = 3V (t)

P(t)− Pext

pmass
+ 3

2Ekin(t)

f

1

pmass
− χ(t)η(t)

pmass = (f + 3) kB Text τ
2
P

d

dt
H(t) = η(t) H(t)

d

dt
V (t) = [3η(t)] V (t) ,

and the anisotropic cell change case, equations (3.155), to

d

dt
r(t) = v(t) + η(t) · r(t)

d

dt
v(t) =

f(t)

m
−

χ(t) 1+ η(t) +
Tr
[
η(t)

]
f

1

 · v(t)
d

dt
χ(t) =

2Ekin(t) + pmass Tr[η(t) · η(t)T]− 2σ − 32 kB Text

qmass

qmass = 2 σ τ2T (3.164)

d

dt
η(t) =

σ(t)− Pext V (t) 1

pmass
+

2Ekin(t)

f

1

pmass
− χ(t)η(t)

pmass =
(f + 3)

3
kB Text τ

2
P

86

c©STFC Section 3.5

d

dt
H(t) = η(t) ·H(t)

d

dt
V (t) = Tr[η(t)] V (t) .

The changes include one extra dependence to the velocity and barostat equations and removal of
the centre of mass variable R0(t) dependence in the position equation.

The modifications in for the VV couched algorithms are of the following sort

η(t+
1

4
∆t) ← η(t) +

∆t

4

[
3V (t)

P(t)− Pext

pmass
+ 3

2Ekin(t)

f

1

pmass

]
v(t) ← v(t) exp

[
−
(
1 +

3

f

)
η(t+

1

4
∆t)

∆t

2

]
(3.165)

r(t+∆t) ← exp

[
η(t+

1

2
∆t) ∆t

]
r(t) + ∆t v(t+

1

2
∆t)

for the isotropic cell fluctuations case and

η(t+
1

4
∆t) ← η(t) +

∆t

4

[
σ(t)− Pext V (t) 1

pmass
+

2Ekin(t)

f

1

pmass

]

v(t) ← exp

[
−
(
η(t+

1

4
∆t) +

1

f
Tr

[
η(t+

1

4
∆t)

])
∆t

2

]
· v(t) (3.166)

r(t+∆t) ← exp

[
η(t+

1

2
∆t) ∆t

]
· r(t) + ∆t v(t+

1

2
∆t)

for the anisotropic cell fluctuations case. Similarly, for the LFV couched algorithms these are

η(t+
1

2
∆t) ← exp (−χ(t)∆t) η(t− 1

2
∆t) +

∆t

[
3V (t)

P(t)− Pext

pmass
+ 3

2Ekin(t)

f

1

pmass

]
v(t+

1

2
∆t) ← v(t− 1

2
∆t) + ∆t

[
f(t)

m
−
{
χ(t) +

(
1 +

3

f

)
η(t)

}
v(t)

]
(3.167)

r(t+∆t) ← r(t) + ∆t

{
v(t+

1

2
∆t)− η(t+ 1

2
∆t) r(t+

1

2
∆t)

}
for the isotropic cell fluctuations case and

η(t+
1

2
∆t) ← exp (−χ(t)∆t) η(t− ∆t

2
) +

∆t

[
σ(t)− Pext V (t) 1

pmass
+

2Ekin(t)

f

1

pmass

]

v(t+
1

2
∆t) ← v(t− 1

2
∆t) + ∆t

f(t)
m
−

χ(t) 1+ η(t) +
Tr
[
η(t)

]
f

1

 · v(t)
 (3.168)

r(t+∆t) ← r(t) + ∆t

{
v(t+

1

2
∆t) + η(t+

1

2
∆t) · r(t+ 1

2
∆t)

}
for the anisotropic cell fluctuations case.

This ensemble is optionally extending to constant normal pressure and constant surface area,
NPnAT [60], by semi-isotropic constraining of the barostat equation of motion and slight amending

87

c©STFC Section 3.6

the thermostat equation of motion and the conserved quantity to:

d

dt
ηαβ(t) =

{
σzz(t)−Pext V (t)

pmass
+ 2Ekin(t)

f pmass
− χ(t)ηzz(t) : (α = β) = z

0 ; ηαβ(0) = 0 : (α, β) 6= z

d

dt
χ(t) =

2Ekin(t) + pmass Tr[η(t) · η(t)T]− 2σ − kB Text

qmass
(3.169)

HNPnAT = HNVE +
qmass χ(t)

2

2
+
pmass Tr[η · ηT]

2
+ PextV (t) + (f + 1) kB Text

∫ t

o
χ(s)ds .

Similarly, this ensemble is optionally extending to constant normal pressure and constant surface
tension, NPnγT [60], by semi-isotropic constraining of the barostat equation of motion and slight
amending the thermostat equation of motion and the conserved quantity to:

d

dt
ηαβ(t) =


σαα(t)−[Pext−γext/hz(t)] V (t)

pmass
+ 2Ekin(t)

f
1

pmass
− χ(t)ηαα(t) : (α = β) = x, y

:
σzz(t)−Pext V (t)

pmass
+ 2Ekin(t)

f pmass
− χ(t)ηzz(t) : (α = β) = z

0 ; ηαβ(0) = 0 : (α 6= β) = x, y, z

d

dt
χ(t) =

2Ekin(t) + pmass Tr[η(t) · η(t)T]− 2σ − 3 kB Text

qmass
(3.170)

HNPnγT = HNVE +
qmass χ(t)

2

2
+
pmass Tr[η · ηT]

2
+ PextV (t) + (f + 3) kB Text

∫ t

o
χ(s)ds ,

where γext is the user defined external surface tension and hz(t) = V (t)/Axy(t) is the instantaneous
hight of the MD box (or MD box volume over area). One defines the instantaneous surface tension
as given in equation (3.120). The case γext = 0 generates the NPT anisotropic ensemble for
the orthorhombic cell (imcon=2 in CONFIG, see Appendix A). This can be considered as an
”orthorhombic” constraint on the NσT ensemble. The constraint can be strengthened further, to
a ”semi-orthorhombic” one, by imposing that the MD cell change isotropically in the (x, y) plane
which leads to the following changes in the equations above

d

dt
ηαα(t) =

[σxx(t) + σyy(t)] /2− [Pext − γext/hz(t)] V (t)

pmass
+

2 Ekin(t)

f pmass
− χ(t)ηαα(t) :

: (α = β) = x, y (3.171)

HNPnγ=0T = HNVE +
qmass χ(t)

2

2
+
pmass Tr[η · ηT]

2
+ PextV (t) + (f + 2) kB Text

∫ t

o
χ(s)ds .

Although the Martyna-Tuckerman-Klein equations of motion have same conserved quantities as the
Nosé-Hoover’s ones they are proven to generate ensembles that conserve the phase space volume
and thus have well defined conserved quantities even in presence of forces external to the system
[66], which is not the case for Nosé-Hoover NPT and NσT ensembles.

The NPT and NσT versions of the MTK ensemble are implemented in the DL POLY 4 rou-
tines npt m0 vv and nst m0 vv - in VV flavour, and npt m0 lfv and nst m0 lfv - LFV
flavour, respectively. The corresponding routines incorporating RB dynamics are npt m1 vv and
npt m1 lfv, and nst m1 vv and nst m1 lfv.

88

c©STFC Section 3.6

3.6 Rigid Bodies and Rotational Integration Algorithms

3.6.1 Description of Rigid Body Units

A rigid body unit is a collection of point entities whose local geometry is time invariant. One way
to enforce this in a simulation is to impose a sufficient number of bond constraints between the
atoms in the unit. However, in many cases this may be either problematic or impossible. Examples
in which it is impossible to specify sufficient bond constraints are

1. linear molecules with more than 2 atoms (e.g. CO2)

2. planar molecules with more than three atoms (e.g. benzene).

Even when the structure can be defined by bond constraints the network of bonds produced may
be problematic. Normally, they make the iterative SHAKE in the LFV integration (or RATTLE in
the VV integration) procedure slow, particularly if a ring of constraints is involved (as occurs when
one defines water as a constrained triangle). It is also possible, inadvertently, to over constrain a
molecule (e.g. by defining a methane tetrahedron to have 10 rather than 9 bond constraints) in
which case the SHAKE/RATTLE procedure will become unstable. In addition, massless sites (e.g.
charge sites) cannot be included in a simple constraint approach making modelling with potentials
such as TIP4P water impossible.

All these problems may be circumvented by defining rigid body units, the dynamics of which may
be described in terms of the translational motion of the centre of mass (COM) and rotation about
the COM. To do this we need to define the appropriate variables describing the position, orientation
and inertia of a rigid body, and the rigid body equations of motion1.

The mass of a rigid unit M is the sum of the atomic masses in that unit:

M =
Nsites∑
j=1

mj , (3.172)

where mj is the mass of an atom and the sum includes all sites (Nsites) in the body. The position
of the rigid unit is defined as the location of its centre of mass R:

R =
1

M

Nsites∑
j=1

mjrj , (3.173)

where rj is the position vector of atom j. The rigid body translational velocity V is defined by:

V =
1

M

Nsites∑
j=1

mjvj , (3.174)

where vj is the velocity of atom j. The net translational force acting on the rigid body unit is the
vector sum of the forces acting on the atoms of the body:

F =
Nsites∑
j=1

f
j
, (3.175)

1An alternative approach is to define “basic” and “secondary” particles. The basic particles are the minimun
number needed to define a local body axis system. The remaining particle positions are expressed in terms of the
COM and the basic particles. Ordinary bond constraints can then be applied to the basic particles provided the forces
and torques arising from the secondary particles are transferred to the basic particles in a physically meaningful way.

89

c©STFC Section 3.6

where f
j
is the force on a rigid unit site.

A rigid body also has associated with it a rotational inertia matrix I, whose components are given
by:

Iαβ =
Nsites∑
j=1

mj(d
2
jδαβ − dαj r

β
j) , (3.176)

and COM stress and virial respectively written down as:

σαβ =
Nsites∑
j=1

dαj f
β
j

W = −
Nsites∑
j=1

dj · f j , (3.177)

where dj is the displacement vector of the atom j from the COM, and is given by:

dj = rj −R . (3.178)

It is common practice in the treatment of rigid body motion to define the position R of the body
in a universal frame of reference (the so called laboratory or inertial frame), but to describe the
moment of inertia tensor in a frame of reference that is localised in the rigid body and changes
as the rigid body rotates. Thus the local body frame is taken to be that in which the rotational
inertia tensor Î is diagonal and the components satisfy Ixx ≥ Iyy ≥ Izz. In this local frame (the so
called Principal Frame) the inertia tensor is therefore constant.

The orientation of the local body frame with respect to the space fixed frame is described via a
four dimensional unit vector, the quaternion:

q = [q0, q1, q2, q3]
T , (3.179)

and the rotational matrix R to transform from the local body frame to the space fixed frame is the
unitary matrix:

R =

 q20 + q21 − q22 − q23 2 (q1 q2 − q0 q3) 2 (q1 q3 + q0 q2)
2 (q1 q2 + q0 q3) q20 − q21 + q22 − q23 2 (q2 q3 − q0 q1)
2 (q1 q3 − q0 q2) 2 (q2 q3 + q0 q1) q20 − q21 − q22 + q23

 (3.180)

so that if d̂j is the position of an atom in the local body frame (with respect to its COM), its
position in the universal frame (w.r.t. its COM) is given by:

dj = R · d̂j . (3.181)

With these variables defined we can now consider the equations of motion for the rigid body unit.

3.6.2 Integration of the Rigid Body Equations of Motion

The equations of translational motion of a rigid body are the same as those describing the motion
of a single atom, except that the force is the total force acting on the rigid body i.e. F in equation
(3.175) and the mass is the total mass of the rigid body unit i.e. M in equation (3.172). These
equations can be integrated by the standard Verlet LFV or VV algorithms described in the previous
sections. Thus we need only consider the rotational motion here.

90

c©STFC Section 3.6

The rotational equation of motion for a rigid body is:

τ =
d

dt
J =

d

dt

(
I · ω

)
, (3.182)

in which J is the angular momentum of the rigid body defined by the expression:

J =
Nsites∑
j=1

mjdj × vj , (3.183)

and ω is the angular velocity.

The vector τ is the torque acting on the body in the universal frame and is given by:

τ =
Nsites∑
j=1

dj × f j . (3.184)

The rotational equations of motion for rigid bodies in a theromostat can be written as:

J̇ i = τ i − ωi × J i +
χ

qmass
J i , (3.185)

where i is the index of the rigid body, χ and qmass are the thermostat friction coefficient and mass.
In the local frame of the rigid body and without the thermostat term, these simplify to the Euler’s
equations

˙̂ωx =
τ̂x

Îxx
+ (Îyy − Îzz) ω̂y ω̂z

˙̂ωy =
τ̂y

Îyy
+ (Îzz − Îxx) ω̂z ω̂z (3.186)

˙̂ωz =
τ̂z

Îzz
+ (Îxx − Îyy) ω̂x ω̂y .

The vectors τ̂ and ω̂ are the torque and angular velocity acting on the body transformed to the
local body frame. Integration of ω̂ is complicated by the fact that as the rigid body rotates, so does
the local reference frame. So it is necessary to integrate equations (3.186) simultaneously with an
integration of the quaternions describing the orientation of the rigid body. The equation describing
this is: 

q̇0
q̇1
q̇2
q̇3

 =
1

2


q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0




0
ω̂x

ω̂y

ω̂z

 . (3.187)

Rotational motion in DL POLY 4 is handled by two different methods. For LFV implementation,
the Fincham Implicit Quaternion Algorithm (FIQA) is used [24]. The VV implementation uses the
NOSQUISH algorithm of Miller et al. [25]. The implementation of FIQA is coded in q update
and NOSQUSH in no squish both contained within quaternion container.

The LFV implementation begins by integrating the angular velocity equation in the local frame:

ω̂(t+
∆t

2
) = ω̂(t− ∆t

2
) + ∆t Î

−1 · ˙̂ω(t) . (3.188)

The new quaternions are found using the FIQA algorithm. In this algorithm the new quaternions
are found by solving the implicit equation:

q(t+∆t) = q(t) +
∆t

2

(
Q [q(t)] · ŵ(t) +Q [q(t+∆t)] · ŵ(t+∆t)

)
, (3.189)

91

c©STFC Section 3.6

where ŵ = [0, ω̂]T and Q[q] is:

Q =
1

2


q0 −q1 −q2 −q3
q1 q0 −q3 −q2
q2 q3 q0 −q1
q3 −q2 q1 q0

 . (3.190)

The above equation is solved iteratively with

q(t+∆t) = q(t) + ∆t Q[q(t)] · ŵ(t) (3.191)

as the first guess. Typically, no more than 3 or 4 iterations are needed for convergence. At each
step the normalisation constraint:

‖q(t+∆t)‖ = 1 (3.192)

is imposed.

While all the above is enough to build LFV implementations, the VV implementations, based on
the NOSQUISH algorithm of Miller et al. [25], also require treatment of the quaternion momenta
as defined by: 

p0
p1
p2
p3

 = 2


q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0




0
Îxx ω̂x

Îyy ω̂y

Îzz ω̂z

 , (3.193)

and quaternion torques as defined by:
Υ0

Υ1

Υ2

Υ3

 = 2


q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0




0
τ̂x
τ̂y
τ̂z

 . (3.194)

It should be noted that vectors p and Υ are 4-component vectors. The quaternion momenta are
first updated a half-step using the formula:

p(t+
∆t

2
)← p(t) +

∆t

2
Υ(t) . (3.195)

Next a sequence of operations is applied to the quaternions and the quaternion momenta in the
order:

eiL3(δt/2) eiL2(δt/2) eiL1(δt) eiL2(δt/2) eiL3(δt/2) , (3.196)

which preserves the symplecticness of the operations (see reference [32]). Note that δt is some
submultiple of ∆t. (In DL POLY 4 the default is ∆t = 10δt.) The operators themselves are of the
following kind:

eiL(δt) q = cos(ζkδt) q + sin(ζkδt) Pk q

eiL(δt) p = cos(ζkδt) p+ sin(ζkδt) Pk p , (3.197)

where Pk is a permutation operator with k = 0, . . . , 3 with the following properties:

P0 q = { q0, q1, q2, q3}
P1 q = {−q1, q0, q3,−q2} (3.198)

P2 q = {−q2,−q3, q0, q1}
P3 q = {−q3, q2,−q1, q0} ,

92

c©STFC Section 3.6

and the angular velocity ζk is defined as:

ζk =
1

4Ik
pTPk q . (3.199)

Equations (3.196) to (3.198) represent the heart of the NOSQUISH algorithm and are repeatedly
applied (10 times in DL POLY 4). The final result is the quaternion updated to the full timestep
value i.e. q(t+∆t). These equations form part of the first stage of the VV algorithm (VV1).

In the second stage of the VV algorithm (VV2), new torques are used to update the quaternion
momenta to a full timestep:

p(t+∆t)← p(t+
∆t

2
) +

∆t

2
Υ(t+∆t) . (3.200)

3.6.3 Thermostats and Barostats coupling to the Rigid Body Equations of Mo-
tion

In the presence of rigid bodies in the atomic system the system’s instantaneous pressure, equation
(3.95):

P(t) = [2Ekin(t)−Watomic(t)−WCOM(t)−Wconstrain(t−∆t)−WPMF(t−∆t)]

3V (t)
(3.201)

and stress, equation (3.96):

σ(t) = σ
kin

(t) + σ
atomic

(t) + σ
COM

(t) + σ
constrain

(t−∆t) + σ
PMF

(t−∆t) (3.202)

are augmented to include the RBs’ COM virial and stress contributions. Note that the kinetic
energy and stress in the above also include the contributions of the RB’s COM kinetic energy and
stress!

It is straightforward to couple the rigid body equations of motion to a thermostat and/or barostat.
The thermostat is coupled to both the translational and rotational degrees of freedom and so both
the translational and rotational velocities are thermostated in the same manner as the purely atomic
velocities. The barostat, however, is coupled only to the translational degrees of freedom and does
not contribute to the rotational motion. Therefore, if we notion the change of the system’s degrees
of freedom as:

f → F = f + fRB(tra) + fRB(rot) (3.203)

then all equations of motion defining the ensembles as described in this chapter are subject to the
following notional changes in order to include the RB contributions:

σ(f) → σ(F) = σ(f + fRB(tra) + fRB(rot))

H(f) → H(F) = H(f + fRB(tra) + fRB(rot))

pmass(f) → pmass(F − fRB(rot)) = pmass(f + fRB(tra)) (3.204)

η(f) → η(F − fRB(rot)) = η(f + fRB(tra))

η(f) → η(F − fRB(rot)) = η(f + fRB(tra)) ,

where f refers to the degrees of freedom in the system (see equation (3.11)), σ is the system target
energy (see equation (3.57)), H is the conserved quantity of the ensemble (if there is such defined),
Ekin (!includes RB COM kinetic energy too) and Erot are respectively the kinetic and rotational

93

c©STFC Section 3.6

energies of the system, pmass is the barostat mass, and η and η are the barostat friction coefficient

or matrix of coefficients respectively.

There are two slight technicalities with the Evans and Andersen ensembles that are worth men-
tioning.

Since both the translational and rotational velocities contribute towards temperature, equation
(3.24), showing the derivation of the thermostat friction in the Evans ensemble by imposing a
Gaussian constraint on the system’s instantaneous temperature, changes to:

d

dt
T = 0 ∝ d

dt

1

2

FP∑
i

miv
2
i +

1

2

RB∑
j

MjV
2
j +

1

2

RB∑
j

ω̂T
j · Îj · ω̂j

 = 0


FP∑
i

vi(t) · f i(t) +
RB∑
j

V j(t) · F j(t) +
RB∑
j

ω̂j(t) · τ̂(t)

−
χ(t)


FP∑
i

miv
2
i (t) +

RB∑
j

MjV
2
j (t) +

RB∑
j

ω̂T
j (t) · Îj · ω̂j(t)

 = 0 (3.205)

χ(t) =

{∑FP
i vi(t) · f i(t) +

∑RB
j V j(t) · F j(t) +

∑RB
j ω̂j(t) · τ̂(t)

}
2 [Ekin(t) + Erot(t)]

,

where where T is the instantaneous temperature defined in equation (3.10) and Ekin in the final
expression contains both the kinetic contribution form the free particles and the RBs’ COMs.

In the case of the Andersen ensemble, if a Poisson selected particle constitutes a RB then the whole
RB is Poisson selected. Poisson selected RBs’ translational and angular velocities together with
Poisson selected FPs’ velocities sample the same Gaussian distribution isokinetically (Boltzmann
distribution), where the isokineticity to target temperature is dependent upon the total of the
Poisson selected FPs’ and RBs’ degrees of freedom.

94

Chapter 4

Construction and Execution

Scope of Chapter

This chapter describes how to compile a working version of DL POLY 4 and run it.

95

c©STFC Section 4.1

4.1 Constructing DL POLY 4: an Overview

4.1.1 Constructing the Standard Versions

DL POLY 4 was designed as a package of useful subroutines rather than a single program, which
means that users are to be able to construct a working simulation program of their own design
from the subroutines available, which is capable of performing a specific simulation. However, we
recognise that many, perhaps most, users will be content with creating a standard version that
covers all of the possible applications and for this reason we have only provided the necessary tools
to assemble such a version. The method of creating the standard version is described in detail in
this chapter, however a brief step-by-step description follows.

1. DL POLY 4 is supplied as a UNIX compressed file (tarred and gzipped). This must uncom-
pressed and un-tared to create the DL POLY 4 directory (Section 1.4).

2. In the build subdirectory you will find the required DL POLY 4 makefiles (see Section 4.2.1
and Appendix C, where the main Makefiles are listed). This must be copied into the subdirec-
tory containing the relevant source code. In most cases this will be the source subdirectory.

3. The chosen makefile is executed with an appropriate keyword (Section 4.2.1) which selects for
specific platforms. For DL POLY 4 compilation in parallel mode (a FORTRAN90 compiler
and an MPI implementation for the specific machine architecture are required) in many
cases the user (sometimes with help from the administrator of their platform) will have to
create their own keyword entry in the makefile due to the large variety of (i) software needed
for the compilation of DL POLY 4 and (ii) places where it could be installed (PATHS). To
facilitate the user with the construction of their own keyword entry, examples are provided
in the makefiles. In the case when users use a makefile for DL POLY 4 compilation in serial
mode they will have to provide a valid PATH to the FORTRAN90 compiler on their specific
platform.

4. The makefile produces the executable version of the code, which as a default will be named
DLPOLY.Z and located in the execute subdirectory.

5. DL POLY also has a Java GUI. The files for this are stored in the subdirectory java. Com-
pilation of this is simple and requires running the javac compiler and the jar utility. Details
for these procedures are provided in the GUI manual [21].

6. To run the executable for the first time you require the files CONTROL, FIELD and CONFIG
(and possibly TABLE - if you have tabulated van der Walls potentials, TABEAM - if you
have tabulated metal potentials and REFERENCE - if defect detection is opted for). These
must be present in the directory from which the program is executed. (See Section 5.1 for
the description of the input files.)

7. Executing the program will produce the files OUTPUT, STATIS, REVCON and REVIVE
(and optionally HISTORY, RDFDAT, ZDNDAT, MSDTMP, REFERENCE, DEFECTS) in
the executing directory. (See Section 5.2 for the description of the output files.)

This simple procedure is enough to create a standard version to run most simulations. There may
however be some difficulty with array sizes. DL POLY 4 contains features which allocate arrays
after scanning the input files for a simulation. Sometimes these initial estimates are insufficient for
a long simulation when, for example, the system volume changes markedly during the simulation or

96

c©STFC Section 4.1

when a system is artificially constructed to have a non-uniform density. Usually, simply restarting
the program will cure the problem, but sometimes, especially when the local atom density is a
way higher than the global one or there is a sort of clustering in the system undergoes and the
distribution of bonded-like interactions is far from uniform, it may be necessary to amend the array
sizes in accordance with the error message obtained. A way to trigger lengthening of the density
dependent global arrays the user may use the densvar option in the CONTROL (Section 5.1.1)
file. However, lengthening these array will require a larger amount of memory resources from the
execution machine for the simulation, which it may not be able to provide. See Section 6.2.2 for
more insight on the DL POLY 4 source code structure.

4.1.2 Constructing Non-standard Versions

In constructing a non-standard DL POLY 4 simulation program, the first requirement is for the user
to write a program to function as the root segment. The root segment /VV/dl poly is placed in
the source directory and contains the set-up and close-down calls for a molecular dynamics simula-
tion. It is the routine that first opens the OUTPUT file (Section 5.2), which provides the summary
of the job. The root program calls the “molecular dynamics cycle” routines /LFV/md lfv or
/LFV/md vv implementing the VV and LFV depending on which integrator has been specified
for the simulation. These routines contain major routines required to perform the simulation, con-
trol the normal “molecular dynamics cycle” and monitor the cpu and memory usage. They also
bring about a controlled termination of the program; if the cpu usage approaches the allotted job
time within a pre-set closure time and/or if the memory usage approaches the allocated limit for
density dependent arrays. Users are recommended to study the forementioned root drives as a
model for other implementations of the package they may wish to construct. The dependencies
and calling hierarchies of all the DL POLY 4 subroutines can be found in the Section 6.2.2.

Should additional functionality be added to DL POLY 4 by the user, the set bounds routine (and
its support subroutines) may need modifying to allow specification of the dimensions of any new
arrays.

Any molecular dynamics simulation performs five different kinds of operation: initialisation; forces
calculation; integration of the equations of motion; calculation of system properties; and job ter-
mination. It is worth considering these operations in turn and to indicate which DL POLY 4
routines are available to perform them. We do not give a detailed description, but provide only a
guide. Readers are recommended to examine the different routines described in the DL POLY 4
User Manual for further details (particularly regarding further dependencies i.e. additional routines
that may be called).

The following outline assumes a system containing flexible molecules held together by rigid bonds.

Initialisation requires firstly that the program determine what platform resources are made avail-
able to the specific simulation job. This is done by the DL POLY 4 routine map domains in
domains module that attempts to allocate and map the resources (nodes in parallel) in com-
pliance with the DD strategy. map domains, is called within the routine set bounds, which
also sets the necessary limits for various simulation array sizes and all global variables as de-
clared in setup module to convenient values based on rough scan through the CONFIG, CON-
TROL, FIELD and optionally TABLE and TABEAM (Section 5.1) files. The routine also calls the
read config routine to obtain atomic positions and optionally velocities and forces the CONFIG
file. After allocation of all necessary simulation arrays and variables (with compulsory initiali-
sation to ”zero” value), the job control information is required; this is obtained by the routine
read control, which reads the CONTROL file. The description of the system to be simu-

97

c©STFC Section 4.2

lated: the types of atoms and molecules present and the intermolecular forces, are obtained by
the read field routine, which reads the FIELD file. The system init routine is called next
to initialise various simulation arrays and variables intact with the data so far and detects if the
job is a restart of previous simulation run. If so it reads the REVOLD (Section 5.1.5) to supply
some arrays and variables with the necessary values as saved from the previous job. The domain
halo is constructed strait after by the routine set halo particles. After gathering all these
data, bookkeeping and exclusion arrays are created for the intramolecular and site related inter-
actions (core shell, constraint and tether units) by build book intra and build excl intra
routines. Lastly, the thermodynamic properties of the system are checked and set intact by the
set temperature routine (which also generates the initial velocities if required to do so).

The calculation of the pair-like forces is carried out in the two body forces routine and rep-
resents the main part of any simulation. For calculation of the two-body contributions to the
atomic forces, the Verlet neighbour list is constructed by link cell pairs routine using link-cell
lists. Special measures are taken so that the lsit excludes: (i) pairs of atoms that are both in
frozen state as well as (ii) pairs in which one of the atoms has the other in its exclusion list.
The last is build by build excl intra where the specification of bonded-like interactions in the
FIELD file are processed. Various other subroutines are then called to calculate specific contri-
butions by different interactions. For example; vdw forces for the short-range (van der Waals)
forces (Section 2.3.1), metal lrc, metal ld compute and metal forces for the metal inter-
actions (Section 2.3.2), and ewald spme forces, ewald real forces, ewald frozen forces
and ewald excl forces for the Coulombic forces (Section 2.4).

Higher order intermolecular, site related and intramolecular forces require the routines;
tersoff forces, three body forces, four body forces,
core shell forces or core shell relax, tethers forces,
bonds forces, angles forces, dihedrals forces and inversions forces.
The routines;
external field apply and external field correct, are required if the simulated system has
an external force field (e.g. electrostatic field) operating.

To help with equilibration simulations, routines such as cap forces, zero k optimise and min-
imise relax are sometimes required to reduce the magnitude of badly equilibrated forces and to
steer the MD system towards an equlibrium state.

Integration of the equations of motion is handled by one of the routines listed and described in
Chapter 3.

As mentioned elsewhere, DL POLY 4 does not contain many routines for computing system prop-
erties during a simulation. Radial distributions may be calculated however, by using the routines
rdf collect, rdf excl collect and rdf compute. Similarly, Z-density distribution may be
calculated by using the routines z density collect and z density compute. Ordinary ther-
modynamic quantities are calculated by the routine statistics collect, which also writes the
STATIS file (Section 5.2.11). Routine trajectory write writes the HISTORY (Section 5.2.1)
file for later (postmortem) analysis. Routine defects write writes the DEFECTS (Section 5.2.3)
file for later (postmortem) analysis. Routine msd write writes the MSDTMP (Section 5.2.2) file
for later (postmortem) analysis. Routine rsd write writes the RSDDAT (Section 5.2.4) file for
later (postmortem) analysis.

Job termination is handled by the routine statistics result which writes the final summaries in
the OUTPUT file and dumps the restart files REVIVE and REVCON (Sections 5.2.8 and 5.2.7
respectively).

98

c©STFC Section 4.2

4.2 Compiling and Running DL POLY 4

4.2.1 Compiling the Source Code

When you have obtained DL POLY 4 from Daresbury Laboratory and unpacked it, your next task
will be to compile it. To aid compilation three general makefiles have been provided in the sub-
directory build. These are “Makefile MPI” - for compiling a parallel version of DL POLY 4, and
“Makefile SRL1” and “Makefile SRL2” - for compiling a serial versions (see Appendix C). After
choosing what the default compilation is to be, the appropriate makefile is to be copied as “Makefile”
in the sub-directory source. The general DL POLY 4 makefile will build an executable with the full
range of functionality - sufficient for the test cases and for most users’ requirements. In most cases,
the user will have to modify few entries in the specification part of their makefile to match the
location of certain software on their system architecture. Note that only FORTRAN90 compiler
is required for successful build of DL POLY 4 in serial mode, and only FORTRAN90 and MPI
implementation - for DL POLY 4 in parallel mode. Should the user add additional functionality
to the code, major changes of the makefile may be required!

In UNIX environment the compilation of the program is initiated by typing the command:

make target

where target is the specification of the required machine. For many computer systems this is all
that is required to compile a working version of DL POLY 4. (To determine which targets are
already defined in the makefile, examine it or type the command make without a nominated target
- it will produce a list of known targets.)

The full specification of the make command is as follows

make <TARGET= . . . > < EX=. . . > < BINROOT=. . . >

where some (or all) of the keywords may be omitted. The keywords and their uses are described
below. Note that keywords may also be set in the UNIX environment (e.g. with the “setenv”
command in a TCSH-shell, or “export” in BASH-shell).

4.2.1.1 Keywords in the Makefiles

1. TARGET
The TARGET keyword indicates which kind of computer the code is to be compiled for. This
must be specified - there is no default value. Valid targets can be listed by the makefile if
the command make is typed, without arguments. The list frequently changes as more targets
are added and redundant ones removed. Users are encouraged to extend the makefile for
themselves, using existing targets as examples.

2. EX
The EX keyword specifies the executable name. The default name for the executable is
“DLPOLY.Z”.

3. BINROOT
The BINROOT keyword specifies the directory in which the executable is to be stored. The
default setting is “../execute”.

99

c©STFC Section 4.2

4.2.1.2 Modifying the Makefiles

1. Changing the FORTRAN90 compiler and MPI implementation
To specify the FORTRAN90 compiler in a target platform, the user must type the full path
to the executable in FC=“...” and all appropriate options (as defined in the relevant FOR-
TRAN90 manual) and the path to the MPI implementation in FCFLAGS=“...”. The same
must be done for the linker: the path to the executable in LD=“...” and the appropriate
options and the path to the MPI implementation in LDFLAGS=“...”.

2. Adding new functionality
To include a new subroutine in the code simply add subroutine.o to the list of object names
in the makefile (‘OBJ ALL”). Note that there is a hierarchal order of adding file names in
the “OBJ MOD” list whereas such order does not exist in the “OBJ ALL” list. Therefore,
should dependence exist between routines listed in the “OBJ ALL” list, it must be explicitly
declared in the makefile.

4.2.1.3 Note on the Interpolation Scheme

In DL POLY 4 two-body-like contributions (van der Waals, metal and real space Ewald summa-
tion) to energy and force are evaluated by interpolation of tables constructed at the beginning of
execution. The DL POLY 4 interpolation scheme is based on a 3-point linear interpolation in r.
Note that a 5-point linear interpolation in r is ised in DL POLY 4 for interpolation of the EAM
(metal) forces from EAM table data (TABEAM).

The number of grid points (mxgrid) required for interpolation in r to give good energy conservation
in a simulation is:

mxgrid = Max(mxgrid, 1000, Int(rcut/0.01 + 0.5) + 4) ,

where rcut is the main cutoff beyond which the contributions from the short-range-like interactions
are negligible.

4.2.2 Running

To run the DL POLY 4 executable (DLPOLY.Z) you will initially require three to six input data
files, which you must create in the execute sub-directory, (or whichever sub-directory you keep the
executable program). The first of these is the CONTROL file (Section 5.1.1), which indicates to
DL POLY 4 what kind of simulation you want to run, how much data you want to gather and
for how long you want the job to run. The second file you need is the CONFIG file (Section
5.1.2). This contains the atom positions and, depending on how the file was created (e.g. whether
this is a configuration created from ‘scratch’ or the end point of another run), the velocities and
forces also. The third file required is the FIELD file (Section 5.1.3), which specifies the nature of
the intermolecular interactions, the molecular topology and the atomic properties, such as charge
and mass. Sometimes you may require a fourth file: TABLE (Section 5.1.6), which contains short
ranged potential and force arrays for functional forms not available within DL POLY 4 (usually
because they are too complex e.g. spline potentials) and/or a fifth file TABEAM (Section 5.1.7),
which contains metal potential arrays for non-analytic or too complex functional forms and/or a
sixth file: REFERENCE (Section 5.1.4), which is similar to the CONFIG file and contains the
”perfect” crystalline structure of the system.

100

c©STFC Section 4.2

Examples of input files are found in the data sub-directory, which can be copied into the execute
subdirectory using the select macro found in the execute sub-directory.

A successful run of DL POLY 4 will generate several data files, which appear in the execute sub-
directory. The most obvious one is the file OUTPUT (Section 5.2.6), which provides an effective
summary of the job run: the input information; starting configuration; instantaneous and rolling-
averaged thermodynamic data; minimisation information, final configurations; radial distribution
functions (RDFs); Z-density profiles and job timing data. The OUTPUT file is human readable.
Also present will be the restart files REVIVE (Section 5.2.8) and REVCON (Section 5.2.7). RE-
VIVE contains the accumulated data for a number of thermodynamic quantities and RDFs, and is
intended to be used as the input file for a following run. It is not human readable. The REVCON
file contains the restart configuration i.e. the final positions, velocities and forces of the atoms
when the run ended and is human readable. The STATIS file (Section 5.2.11) contains a catalogue
of instantaneous values of thermodynamic and other variables, in a form suitable for temporal or
statistical analysis. Finally, the HISTORY file (Section 5.2.1) provides a time ordered sequence of
configurations to facilitate further analysis of the atomic motions. By default this file is formatted
(human readable) but with little effort from the user it can be generated unformatted. You may
move these output files back into the data sub-directory using the store macro found in the execute
sub-directory.

Lastly, DL POLY 4 may also create the files RDFDAT, ZDNDAT, MSDTMP, RSDDAT, and
DEFECTS containing the RDF, Z-density, individual means square displacement and temperature,
RSD and defects data respectively. They are all human readable files.

4.2.3 Parallel I/O

Many users that have suffered loss of data in the OUTPUT, especially running in parallel and when
an error occurs on parallel architectures. In such circumstances the OUTPUT may be empty or
incomplete, despite being clear that the actual simulation has progressed well beyond what has
been printed in OUTPUT. Ultimately, this is due to OS’s I/O buffers not being flushed as a default
by the particular OS when certain kind of errors occurs, especially MPI related. The safest way
to avoid loss of information in such circumstances is to write the OUTPUT data to the default
output channel (”the screen”). There is an easy way to do this in DL POLY 4, which is to use the
l scr keyword in the CONTROL file. The batch daemon will then place the output in the standard
output file, which can then be of use to the user, or alternatively on many batch systems the output
can be redirected into another file, allowing an easier following of the job progress over time. This
latter technique is also useful on interactive systems where simply printing to the screen could lead
to large amounts of output. However, such situations could be easily avoided by redirecting the
output using the ”>” symbol, for instance: ”mpirun -n 4 DLPOLY.Z > OUTPUT”.

It is also worth noting that the use of large batch and buffer numbers can speed up enormously
the performance of the parallel I/O, for example putting in CONTROL (see Section 5.1.1):

io read mpiio 128 10000000 1000000

io write mpiio 512 10000000 1000000

at large processor count jobs (over 1000). However, this help comes at a price as larger batches
and buffers also requires more memory. So at smaller processor counts the job will abort at the
point of trying to use some of the allocated arrays responsible for these.

More information about DL POLY 4 parallel I/O can be found in the following references [67, 68,
69].

101

c©STFC Section 4.2

4.2.4 Restarting

The best approach to running DL POLY 4 is to define from the outset precisely the simulation
you wish to perform and create the input files specific to this requirement. The program will then
perform the requested simulation, but may terminate prematurely through error, inadequate time
allocation or computer failure. Errors in input data are your responsibility, but DL POLY 4 will
usually give diagnostic messages to help you sort out the trouble. Running out of job time is
common and provided you have correctly specified the job time variables (using the close time
and job time directives - see Section 5.1.1) in the CONTROL file, DL POLY 4 will stop in a
controlled manner, allowing you to restart the job as if it had not been interrupted.

To restart a simulation after normal termination you will again require the original CONTROL
file (augment it to include the restart directive and/or extend the length and duration of the new
targeted MD run), the FIELD (and TABLE and/or TABEAM) file, and a CONFIG file, which is
the exact copy of the REVCON file created by the previous job. You will also require a new file:
REVOLD (Section 5.1.5), which is an exact copy of the previous REVIVE file. If you attempt to
restart DL POLY 4 without this additional file available, the job will most probably fail. Note
that DL POLY 4 will append new data to the existing STATIS and HISTORY files if the run is
restarted, other output files will be overwritten.

In the event of machine failure, you should be able to restart the job in the same way from the
surviving REVCON and REVIVE files, which are dumped at regular intervals to meet just such an
emergency. In this case check carefully that the input files are intact and use the HISTORY and
STATIS files with caution - there may be duplicated or missing records. The reprieve processing
capabilities of DL POLY 4 are not foolproof - the job may crash while these files are being written
for example, but they can help a great deal. You are advised to keep backup copies of these files,
noting the times they were written, to help you avoid going right back to the start of a simulation.

You can also extend a simulation beyond its initial allocation of timesteps, provided you still have
the REVCON and REVIVE files. These should be copied to the CONFIG and REVOLD files
respectively and the directive timesteps adjusted in the CONTROL file to the new total number
of steps required for the simulation. For example if you wish to extend a 10000 step simulation
by a further 5000 steps use the directive timesteps 15000 in the CONTROL file and include the
restart directive.

Further to the full restart option, there is an alternative restart scale directive that will reset
the temperature at start or restart noscale that will keep the current kinetics intact. /bf Note
that these two options are not correct restarts but rather modified starts as they make no use of
REVOLD file and will reset internal accumulators to zero at start.

Note that all these options are mutually exclusive!

If none of the restart options is specified velocities are generated anew with Gaussian distribution
of the target kinetic energy based on the provided temperature in the CONTROL file.

4.2.5 Optimising the Starting Structure

The preparation of the initial structure of a system for a molecular dynamics simulation can be
difficult. It is quite likely that the structure created does not correspond to one typical of the
equilibrium state for the required state point, for the given force field employed. This can make
the simulation unstable in the initial stages and can even prevent it from proceeding.

For this reason DL POLY 4 has available a selection of structure relaxation methods. Broadly

102

c©STFC Section 4.2

speaking, these are energy minimisation algorithms, but their role in DL POLY 4 is not to provide
users with true structural optimisation procedures capable of finding the ground state structure.
They are simply intended to help users improve the quality of the starting structure prior to a
statistical dynamical simulation, which implies usage during the equilibration period only!

The available algorithms are:

1. ‘Zero’ temperature molecular dynamics. This is equivalent to a dynamical simulation at low
temperature. At each time step the molecules move in the direction of the computed forces
(and torques), but are not allowed to acquire a velocity larger than that corresponding to a
temperature of 10 Kelvin. The subroutine that performs this procedure is zero k optimise.

2. Conjugate Gradients Method (CGM) minimisation. This is nominally a simple minimisa-
tion of the system configuration energy using the conjugate gradients method [58]. The
algorithm coded into DL POLY 4 is an adaptation that allows for rotation and translation
of rigid bodies. Rigid (constraint) bonds however are treated as stiff harmonic springs - a
strategy which we find does allow the bonds to converge within the accuracy required by
SHAKE. The subroutine that performs this procedure is minimise relax which makes use
of, minimise module.

3. ‘Programmed’ energy minimisation, involving both MD and CGM. This method combines
the two as minimisation is invoked by user-defined intervals of (usually low temperature)
dynamics, in a cycle of minimisation - dynamics - minimisation etc., which is intended to
help the structure relax from overstrained conditions (see Section 5.1.1). When using the
programmed minimisation DL POLY 4 writes (and rewrites) the file CFGMIN 5.2.5, which
represents the lowest energy structure found during the programmed minimisation. CFGMIN
is written in CONFIG file format (see section 5.1.2) and can be used in place of the original
CONFIG file.

It should be noted that none of these algorithms permit the simulation cell to change shape. It
is only the atomic structure that is relaxed. After which it is assumed that normal molecular
dynamics will commence from the final structure.

Notes on the Minimisation Procedures

1. The zero temperature dynamics is really dynamics conducted at 10 Kelvin. However, the
dynamics has been modified so that the velocities of the atoms are always directed along the
force vectors. Thus the dynamics follows the steepest descent to the (local) minimum. From
any given configuration, it will always descend to the same minimum.

2. The conjugate gradient procedure has been adapted to take account of the possibilities of
constraint bonds and rigid bodies being present in the system. If neither of these is present,
the conventional unadapted procedure is followed.

(a) In the case of rigid bodies, atomic forces are resolved into molecular forces and torques.
The torques are subsequently transformed into an equivalent set of atomic forces which
are perpendicular both to the instantaneous axis of rotation (defined by the torque
vector) and to the cylindrical radial displacement vector of the atom from the axis.
These modified forces are then used in place of the original atomic forces in the conjugate
gradient scheme. The atomic displacement induced in the conjugate gradient algorithm
is corrected to maintain the magnitude of the radial position vector, as required for
circular motion.

103

c©STFC Section 4.2

(b) With regard to constraint bonds, these are replaced by stiff harmonic bonds to permit
minimisation. This is not normally recommended as a means to incorporate constraints
in minimisation procedures as it leads to ill conditioning. However, if the constraints in
the original structure are satisfied, we find that provided only small atomic displacements
are allowed during relaxation it is possible to converge to a minimum energy structure.
Furthermore, provided the harmonic springs are stiff enough, it is possible afterwards to
satisfy the constraints exactly by further optimising the structure using the stiff springs
alone, without having a significant affect on the overall system energy.

(c) Systems with independent constraint bonds and rigid bodies may also be minimised by
these methods.

3. Of the three minimisation strategies available in DL POLY 4, only the programmed minimiser
is capable of finding more than one minimum without the user intervening.

4. Finally, we emphasise once again that the purpose of the minimisers in DL POLY 4 is to
help improve the quality of the starting structure and we believe they are adequate for that
purpose. We do not recommend them as general molecular structure optimisers. They may
however prove useful for relaxing crystal structures to 0 Kelvin for the purpose of identifying
a true crystal structure.

4.2.6 Simulation Efficiency and Performance

Although the DL POLY 4 underlining parallelisation strategy (DD and link-cells, see Section 6.1.1)
is extremely efficient, it cannot always provide linear parallelisation speed gain with increasing pro-
cessor count for a fixed size system. Nevertheless, it will always provide speedup of the simulation
(i.e. there still is a sufficient speed gain in simulations when the number of nodes used in parallel is
increased). The simplest explanation why this is is that increasing the processor count for a fixed
size system decreases not only the work- and memory-load per processor but also the ratio size of
domain to size of halo (both in counts of link cells). When this ratio falls down to values close to
one and below, the time DL POLY 4 spends on inevitable communication (MPI messages across
neighbouring domains to refresh the halo data) increases with respect to and eventually becomes
prevalent to the time DL POLY 4 spends on numeric calculations (integration and forces). In such
regimes, the overall DL POLY 4 efficiency falls down since processors spend more time on staying
idle while communicating than on computing.

It is important that the user recognises when DL POLY 4 becomes vulnerable to decreased effi-
ciency and what possible measures could be taken to avoid this. DL POLY 4 calculates and reports
the major and secondary link-cell algorithms (Mx ·My ·Mz) employed in the simulations immedi-
ately after execution. Mx (analogously for My and Mz) is the integer number of the ratio of the
width of the system domains in x-direction (i.e. perpendicular to the (y,z) plane) to the major and
secondary (coming from three- and/or four-body and/or Tersoff interactions) short-range cutoffs
specified for the system:

Mx = Nint

[
Wx/Px

cutoff

]
Wx = MD box width ⊥ plane(y, z) (4.1)

Px = #(nodes)x−direction ,

where x, y and z represent the directions along the MD cell lattice vectors. Every domain (node) of
the MD cell is loaded with (Mx+2)·(My+2)·(Mz+2) link-cells of whichMx ·My ·Mz belong to that

104

c©STFC Section 4.3

domain and the rest are a halo image of link-cells forming the surface of the immediate neighbouring
domains. In this respect, if we define performance efficiency as minimising communications with
respect to maximising computation (minimising the halo volume with respect to the node volume),
best performance efficiency will require Mx ≈My ≈Mz ≈M and M � 1. The former expression
is a necessary condition and only guarantees good communication distribution balancing. Whereas
the latter, is a sufficient condition and guarantees prevalence of computation over communications.

DL POLY 4 issues a built-in warning when a link-cell algorithms has a dimension less than four (i.e.
less than four link-cells per domain in given direction). A useful rule of thumb is that parallelisation
speed-up inefficiency is expected when the ratio

R =
Mx ·My ·Mz

(Mx + 2) · (My + 2) · (Mz + 2)−Mx ·My ·Mz
(4.2)

is close to or drops below one. In such cases there are three strategies for improving the situation
that can be used singly or in combination. As obvious from equation (4.2) these are: (i) decrease
the number of nodes used in parallel, (ii) decrease the cutoff and (iii) increase system size. It is
crucial to note that increased parallelisation efficiency remains even when the link-cell algorithm is
used inefficiently. However, DL POLY 4 will issue an error message and cease execution if it detects
it cannot fit a link-cell per domain as this is the minimum the DL POLY 4 link-cell algorithm can
work with - (1 · 1 · 1) corresponding to ratio R = 1/26.

It is worth outlining in terms of the O(computation ; communication) function what the rough
scaling performance is like of the most computation and communication intensive parts of DL POLY 4
in an MD timestep.

(a) Domain hallo re-construction in set halo particles, metal ld set halo and
defects reference set halo - O (N/P ; N/R))

(b) Verlet neighbourlist construction by link-cells in link cell pairs - O (N/P ; 0), may take
up to 40% of the time per timestep

(c) Calculation of k-space contributions to energy and forces from SMPE by ewald spme forces
(depends on parallel fft which depends on gpfa module) -O (N log N ; (N log P)/P),
may take up to 40% of the time per timestep

(d) Particle exchange between domains, involving construction and connection of new out of do-

main topology when bonded-like interactions exist, by relocate particles -O
(
N ; (P/N)1/3

)
(e) Iterative bond and PMF constraint solvers:

constraints shake vv, constraints rattle vv, constraints shake lfv

and pmf shake vv, pmf rattle vv, pmf shake lfv - O
(
N ; (P/N)1/3

)
where N is the number of particles, P = Px + Py + Pz the total number of domains in the MD
cell and the rest of the quantities are as defined in equations (4.2-4.2).

Performance may also affected by the fluctuations in the inter-node communication, due to un-
avoidable communication traffic when a simulation job does not have exclusive use of all machine
resources. Such effects may worsen the performance much, especially when the average calculation
time is of the same magnitude as or less than the average communication time (i.e. nodes spend
more time communicating rather than computing).

105

c©STFC Section 4.3

4.3 A Guide to Preparing Input Files

The CONFIG file and the FIELD file can be quite large and unwieldy particularly if a polymer
or biological molecule is involved in the simulation. This section outlines the paths to follow
when trying to construct files for such systems. The description of the DL POLY 4 force field in
Chapter 2 is essential reading. The various utility routines mentioned in this section are described
in greater detail in the DL POLY Classic User Manual. Many of these have been incorporated into
the DL POLY 4 Graphical User Interface [21] and may be conveniently used from there.

4.3.1 Inorganic Materials

The utility genlat can be used to construct the CONFIG file for relatively simple lattice structures.
Input is interactive. The FIELD file for such systems are normally small and can be constructed
by hand. Otherwise, the input of force field data for crystalline systems is particularly simple,
if no angular forces are required (notable exceptions to this are zeolites and silicate glasses - see
below). Such systems require only the specification of the atomic types and the necessary pair
forces. The reader is referred to the description of the DL POLY 4 FIELD file for further details
(Section 5.1.3).

DL POLY 4 can simulate zeolites and silicate (or other) glasses. Both these materials require the
use of angular forces to describe the local structure correctly. In both cases the angular terms
are included as three-body terms, the forms of which are described in Chapter 2. These terms are
entered into the FIELD file with the pair potentials.

An alternative way of handling zeolites is to treat the zeolite framework as a kind of macromolecule
(see below). Specifying all this is tedious and is best done computationally: what is required is to
determine the nearest image neighbours of all atoms and assign appropriate bond and valence angle
potentials. What must be avoided at all costs is specifying the angle potentials without specifying
bond potentials. In this case DL POLY 4 will automatically cancel the non-bonded forces between
atoms linked via valence angles and the system will collapse. The advantage of this method is that
the calculation is likely to be faster than using three-body forces. This method is not recommended
for amorphous systems.

4.3.2 Macromolecules

Simulations of proteins are best tackled using the package DLPROTEIN [70] which is an adap-
tation of DL POLY specific to protein modelling. However, you may simulate proteins and other
macromolecules with DL POLY 4 if you wish. This is described below.

If you select a protein structure from a SEQNET file (e.g. from the Brookhaven database), use
the utility proseq to generate the file CONFIG. This will then function as input for DL POLY 4.
Some caution is required here however, as the protein structure may not be fully determined and
atoms may be missing from the CONFIG file.

If you have the “edit.out” file produced by AMBER for your molecule use this as the CON-
NECT DAT input file for the utility ambforce. ambforce will produce the DL POLY 4 FIELD
and CONFIG files for your molecule.

If you do not have the “edit.out” file things are a little more tricky, particularly in coming up with
appropriate partial charges for atomic sites. However, there are a series of utilities that will at least
produce the CONNECT DAT file for use with ambforce. We now outline these utilities and the
order in which they should be used.

106

c©STFC Section 4.3

If you have a structure from the Cambridge Structural database (CSDB) then use the utility
fraccon to take fractional coordinate data and produce a CONNECT DAT and “ambforce.dat”
file for use with ambforce. Note that you will need to modify fraccon to get the AMBER names
correct for sites in your molecule. The version of fraccon supplied with DL POLY 4 is specific
to the valinomycin molecule.

If you require an all atom force field and the database file does not contain hydrogen positions then
use the utility fracfill in place of fraccon. fraccon produces an output file HFILL which
should then be used as input for the utility hfill. The hfill utility fills out the structure with
the missing hydrogens. (Note that you may need to know what the atomic charges are in some
systems, for example the AMBER charges from the literature.)

Note: with minor modifications the utilities fracfill and fraccon can be used on structures
from databases other than the Cambridge structural database.

4.3.3 Adding Solvent to a Structure

The utility wateradd adds water from an equilibrated configuration of 256 SPC water molecules
at 300 K to fill out the MD cell. The utility solvadd fills out the MD box with single-site solvent
molecules from a fcc lattice. The FIELD files will then need to be edited to account for the solvent
molecules added to the file.

Hint: to save yourself some work in entering the non-bonded interactions variables involving solvent
sites to the FIELD file put two bogus atoms of each solvent type at the end of the CONNECT DAT
file (for AMBER force-fields) the utility ambforce will then evaluate all the non-bonded variables
required by DL POLY 4. Remember to delete the bogus entries from the CONFIG file before
running DL POLY 4.

4.3.4 Analysing Results

DL POLY 4 is not designed to calculate every conceivable property you might wish from a sim-
ulation. Apart from some obvious thermodynamic quantities and radial distribution functions,
it does not calculate anything beyond the atomic trajectories. You must therefore be prepared
to post-process the HISTORY file if you want other information. There are some utilities in the
DL POLY 4 package to help with this, but the list is far from exhaustive. In time, we hope to have
many more. Our users are invited to submit code to the DL POLY 4public library to help with
this.

The utilities available are described in the DL POLY Classic User Manual. Users should also be
aware that many of these utilities are incorporated into the DL POLY Graphical User Interface
[21].

4.3.5 Choosing Ewald Sum Variables

4.3.5.1 Ewald sum and SPME

This section outlines how to optimise the accuracy of the Smoothed Particle Mesh Ewald sum
parameters for a given simulation..

As a guide to beginners DL POLY 4 will calculate reasonable parameters if the ewald precision
directive is used in the CONTROL file (see Section 5.1.1). A relative error (see below) of 10−6 is
normally sufficient so the directive

107

c©STFC Section 4.3

ewald precision 1d-6

will make DL POLY 4 evaluate its best guess at the Ewald parameters α, kmaxa, kmaxb and kmaxc,
or their doubles if ewald rather than spme is specified. (The user should note that this represents
an estimate, and there are sometimes circumstances where the estimate can be improved upon.
This is especially the case when the system contains a strong directional anisotropy, such as a
surface.) These four parameters may also be set explicitly by the ewald sum directive in the
CONTROL file. For example the directive

ewald sum 0.35 6 6 8

which is equvalent to

spme sum 0.35 12 12 16

would set α = 0.35 Å−1, kmaxa = 12, kmaxb = 12 and kmaxc = 161. The quickest check on the
accuracy of the Ewald sum is to compare the coulombic energy (U) and virial (W) in a short
simulation. Adherence to the relationship U = −W, shows the extent to which the Ewald sum is
correctly converged. These variables can be found under the columns headed eng cou and vir cou

in the OUTPUT file (see Section 5.2.6).

The remainder of this section explains the meanings of these parameters and how they can be
chosen. The Ewald sum can only be used in a three dimensional periodic system. There are five
variables that control the accuracy: α, the Ewald convergence parameter; rcut the real space force
cutoff; and the kmaxa, kmaxb and kmaxc integers that specify the dimensions of the SPME charge
array (as well as FFT arrays). The three integers effectively define the range of the reciprocal
space sum (one integer for each of the three axis directions). These variables are not independent,
and it is usual to regard one of them as pre-determined and adjust the others accordingly. In this
treatment we assume that rcut (defined by the cutoff directive in the CONTROL file) is fixed for
the given system.

The Ewald sum splits the (electrostatic) sum for the infinite, periodic, system into a damped real
space sum and a reciprocal space sum. The rate of convergence of both sums is governed by α.
Evaluation of the real space sum is truncated at r = rcut so it is important that α be chosen so
that contributions to the real space sum are negligible for terms with r > rcut. The relative error
(ε) in the real space sum truncated at rcut is given approximately by

ε ≈ erfc(α rcut)/rcut ≈ exp[−(α rcut)
2]/rcut (4.3)

The recommended value for α is 3.2/rcut or greater (too large a value will make the reciprocal
space sum very slowly convergent). This gives a relative error in the energy of no greater than
ε = 4×10−5 in the real space sum. When using the directive ewald precision DL POLY 4 makes
use of a more sophisticated approximation:

erfc(x) ≈ 0.56 exp(−x2)/x (4.4)

to solve recursively for α, using equation 4.3 to give the first guess.

The relative error in the reciprocal space term is approximately

ε ≈ exp(−k2max/4α
2)/k2max (4.5)

1Important note: As the SPME method substitues the standard Ewald the values of kmaxa, kmaxb and kmaxc

are the double of those in the prescription of the standard Ewald since they specify the sides of a cube, not a radius
of convergence.

108

c©STFC Section 4.4

where

kmax =
2π

L

kmax

2
(4.6)

is largest k-vector considered in reciprocal space, L is the width of the cell in the specified direction
and kmax is an integer.

For a relative error of 4× 10−5 this means using kmax ≈ 6.2 α. kmax is then

kmax > 6.4 L/rcut. (4.7)

In a cubic system, rcut = L/2 implies kmax = 14. In practice the above equation slightly over
estimates the value of kmax required, so optimal values need to be found experimentally. In the
above example kmax = 10 or 12 would be adequate.

If you wish to set the Ewald parameters manually (via the ewald sum or spme sum directives)
the recommended approach is as follows. Preselect the value of rcut, choose a working a value of
α of about 3.2/rcut and a large value for the kmax (say 20 20 20 or more). Then do a series of ten
or so single step simulations with your initial configuration and with α ranging over the value you
have chosen plus and minus 20%. Plot the Coulombic energy (-W) versus α. If the Ewald sum is
correctly converged you will see a plateau in the plot. Divergence from the plateau at small α is
due to non-convergence in the real space sum. Divergence from the plateau at large α is due to
non-convergence of the reciprocal space sum. Redo the series of calculations using smaller kmax

values. The optimum values for kmax are the smallest values that reproduce the correct Coulombic
energy (the plateau value) and virial at the value of α to be used in the simulation. Note that one
needs to specify the three integers (kmaxa, kmaxb, kmaxc) referring to the three spatial directions,
to ensure the reciprocal space sum is equally accurate in all directions. The values of kmaxa, kmaxb
and kmaxc must be commensurate with the cell geometry to ensure the same minimum wavelength
is used in all directions. For a cubic cell set kmaxa = kmaxb = kmaxc. However, for example, in a
cell with dimensions 2A = 2B = C, (ie. a tetragonal cell, longer in the c direction than the a and
b directions) use 2kmaxa = 2kmaxb = kmaxc.

If the values for the kmax used are too small, the Ewald sum will produce spurious results. If values
that are too large are used, the results will be correct but the calculation will consume unnecessary
amounts of cpu time. The amount of cpu time increases proportionally to kmaxa× kmaxb× kmaxc.

It is worth noting that the working values of the k-vectors may be larger than their original
values depending on the actual processor decomposition. This is to satisfy the requirement that
the k-vector/FFT transform down each direction per domain is a multiple of 2, 3 and 5 only,
which is due to the GPFA code (single 1D FFT) which the DaFT implementation relies on. This
allowes for greater flexiblity than the power of 2 multiple restriction in DL POLY 4 predicessor,
DL POLY 3. As a consequence, however, execution on different processor decompositions may lead
to different working lengths of the k-vectors/FFT transforms and therefore slightly different SPME
forces/energies whithin the same level of SPME/Ewald precision/accuracy specified. Note that
although the number of processors along a dimension of the DD grid may be any number, numbers
that have a large prime as a factor will lead to inefficient performance!

4.4 Warning and Error Processing

4.4.1 The DL POLY 4 Internal Warning Facility

DL POLY 4 contains a number of various in-built checks scattered throughout the package which
detect a range of possible inconsistencies or errors. In all cases, such a check fails the subroutine

109

c©STFC Section 4.4

warning is called, resulting in an appropriate message that identifies the inconsistency. In some
cases an inconsistency is resolved by DL POLY 4 supplying a default value or DL POLY 4 assuming
a priority of one directive over the another (in clash of mutually exclusive directives). However, in
other cases this cannot be done and controlled termination of the program execution is called by
the subroutine error. In any case appropriate diagnostic message is displayed notifying the user
of the nature of the problem.

4.4.2 The DL POLY 4 Internal Error Facility

DL POLY 4 contains a number of in-built error checks scattered throughout the package which
detect a wide range of possible errors. In all cases, when an error is detected the subroutine error
is called, resulting in an appropriate message and termination of the program execution (either
immediately, or after some additional processing). In some case, if the cause for error is considered
to be mendable it is corrected and the subroutine warning results in an appropriate message.

Users intending to insert new error checks should ensure that all error checks are performed con-
currently on all nodes, and that in circumstances where a different result may obtain on different
nodes, a call to the global status routine gcheck is made to set the appropriate global error flag
on all nodes. Only after this is done, a call to subroutine error may be made. An example of
such a procedure might be:

Logical :: safe

safe = (test condition)

Call gcheck(safe)

If (.not.safe) Call error(message number)

In this example it is assumed that the logical operation test condition will result in the answer
.true. if it is safe for the program to proceed, and .false. otherwise. The call to error requires
the user to state the message number is an integer which used to identify the appropriate message
to be printed.

A full list of the DL POLY 4 error messages and the appropriate user action can be found in
Appendix D of this document.

110

Chapter 5

Data Files

Scope of Chapter

This chapter describes all the input and output files for DL POLY 4, examples of which are to be
found in the data sub-directory.

111

c©STFC Section 5.1

5.1 The INPUT Files

CONFIG

CONTROL

FIELD

TABLE*

TABEAM*

REFERENCE*

REVOLD*

OUTPUT

REVCON

HISTORY*

DEFECTS*

MSDTMP*

STATIS

CFGMIN*

RDFDAT*

REVIVE

ZDNDAT*

RSDDAT*

Figure 5.1: DL POLY 4 input (left) and output (right) files. Note: files marked with an asterisk
are non-mandatory.

DL POLY 4 requires seven input files named CONTROL, CONFIG, FIELD, TABLE, TABEAM,
REFERENCE and REVOLD. The first three files are mandatory, whereas TABLE and TABEAM
are only used to input certain kinds of pair or metal potentials, and may not always be required.
REFERENCE is required only if defect detection is switched on in CONTROL. REVOLD is re-
quired only if the job represents a continuation of a previous job. In the following sections we
describe the form and content of these files.

5.1.1 The CONTROL File

The CONTROL file is read by the subroutine read control and defines the control variables for
running a DL POLY 4 job. (It is also read by the subroutine scan control in the set bounds
routine.) It makes extensive use of directives and keywords. Directives are character strings
that appear as the first entry on a data record (or line) and which invoke a particular operation or
provide numerical parameters. Also associated with each directive may be one or more keywords,
which may qualify a particular directive by, for example, adding extra options. Directives can

112

c©STFC Section 5.1

appear in any order in the CONTROL file, except for the finish directive which marks the end of
the file. Some of the directives are mandatory (for example the timestep directive that defines
the timestep), others are optional.

This way of constructing the file is very convenient, but it has inherent dangers. It is, for example,
quite easy to specify contradictory directives, or invoke algorithms that do not work together. By
large DL POLY 4 tries to sort out these difficulties and print helpful error messages, but it does
not claim to be fully foolproof. Another common mistake is to specify more than once a directive
that has no contradictory, disabling, altering or antagonistic directives - then the one specified last
will be used as a control directive (for example densvar, equil, steps, press, mxshak, shake,
...). Fortunately, in most cases the CONTROL file will be small and easy to check visually. It is
important to think carefully about a simulation beforehand and ensure that DL POLY 4 is being
asked to do something that is physically reasonable. It should also be remembered that the present
capabilities the package may not allow the simulation required and it may be necessary for you
yourself to add new features.

An example CONTROL file appears below. The directives and keywords appearing are described
in the following section. The exapmle lists all possible and not mutually excluding directives in a
particular order. Although this order is not mandatory, it is highly recommended.

TITLE RECORD: DL_POLY_4 SAFE ORDER OF CONTROL DIRECTIVES

SYSTEM REPLICATION & IMPACT OPTION

nfold 10 10 10

impact 1 2000 7.5 1.0 2.0 3.0

DENSITY VARIATION ARRAY BOOST

densvar 10 %

INDEX AND VERIFICATION BYPASS AND NO TOPOLOGY REPORTING

no index

no strict

no topology

INTERACTIONS BYPASS

no electostatics

no vdw

DIRECT CALCULATION OF VDW/METAL INTERACTIONS INSTEAD OF

EVALUATION BY SPLINING OVER TABULATED VALUES IN MEMORY

vdw direct

metal direct

FORCE-SHIFT VDW INTERACTIONS SO THAT ENERGY AND FORCE

CONTRIBUTIONS FALL SMOOTHLY TO ZERO WHEN APPROACHING R_CUT

vdw shift

RANDOM NUMBER GENERATOR SEEDING

seed 100 200

I/O READ: METHOD, READER COUNT, BATCH & BUFFER SIZES

113

c©STFC Section 5.1

io read mpiio 2 2000000 20000

I/O WRITE: METHOD, TYPE, WRITER COUNT, BATCH & BUFFER SIZES

io write mpiio sorted 8 2000000 20000

SLAB SIMULATION PARALLEL CONTROL

slab

RESTART OPTIONS

restart noscale

dump 1000 steps

SYSTEM TARGET TEMPERATURE AND PRESSURE

temperature 300.0 Kelvin

pressure 0.001 k-atmospheres

SYSTEM CUTOFFS AND ELECTROSTATICS

cutoff 10.0 Angstroms

rvdw 8.0 Angstroms

exclude

epsilon 1.0

ewald precision 1.0e-6

ewald evaluate 4

RELAXED SHELL MODEL TOLERANCE

rlxtol 1.0 force

CONSTRANTS ITERATION LENGTH and TOLERANCE

mxshak 250 cycles

shake 1.0e-4

INTEGRATION FLAVOUR, ENSEMBLE AND PSEUDO THERMOSTAT

integration velocity verlet

ensemble nst hoover 0.5 0.5

pseudo langevin 2.0 150.0

INTEGRATION TIMESTEP

variable timestep 0.001 pico-seconds

mindis 0.03 Angstroms

maxdis 0.10 Angstroms

mxstep 0.005 pico-seconds

SUMULATION & EQUILIBRATION LENGTH

steps 10000 steps

equilibration 1000 steps

EQUILIBRATION DIRECTIVES

zero

cap 2000 kT/Angstrom

114

c©STFC Section 5.1

scale 5 steps

regauss 3 steps

minimise force 20 1.0

optimise energy 0.001

STATISTICS

collect

stack 50 deep

stats 10 steps

OUTPUT

print 2 steps

HISTORY

replay

trajectory 20 30 0

DEFECTS TRAJECTORY - DEFECTS

defects 40 15 0.75

DISPLACEMENTS TRAJECTORY - RSDDAT

displacements 70 10 0.25

MSDTMP

msdtmp 1000 100

RDF & Z-DENSITY

binsize 0.05 Angstroms

rdf 7 steps

print rdf

zden 7 steps

print zden

EXECUTION TIME

job time 1000 seconds

close time 10 seconds

FINISH

finish

5.1.1.1 The CONTROL File Format

The file is free-formatted and not case-sensitive. Every line is treated as a command sentence
(record). Commented records (beginning with a #) and blank lines are not processed and may be
added to aid legibility (see example above). Records must be limited in length to 100 characters.
Records are read in words (directives and additional keywords and numbers), as a word must
not exceed 40 characters in length. Words are recognised as such by separation by one or more
space characters. Additional annotation is not recommended but may be added onto a directive
line after the last control word in it.

115

c©STFC Section 5.1

• The first record in the CONTROL file is a header (up to 100 characters long) to aid identifi-
cation of the file.

• The last record is a finish directive, which marks the end of the input data.

Between the header and the finish directive, a wide choice of control directives may be inserted.
These are described below.

5.1.1.2 The CONTROL File Directives

The directives available are as follows:

directive: meaning:

binsize f set the bin size for radial and z-density distribution functions to
f Å (if 10−5 Å ≤ f ≤ rcut/4 or undefined, f defaults to 0.05 Å)

cap (forces) f cap forces during equilibration period, f is maximum
cap in units of kBT/Å (default f = 1000 kBT/Å)

close time f set job closure time to f seconds

collect include equilibration data in overall statistics

coulomb calculate electrostatic forces using direct Coulomb sum

cutoff f set required long-ranged interactions cutoff, rcut, to f Å

defects i j f write defects trajectory file, DEFECTS, with controls:
i = start timestep for dumping defects configurations

(default i = 0)
j = timestep interval between configurations (default j = 1)
f = site-interstitial cutoff (default f = Min [0.75, rcut/3] Å,
Min [0.3, rcut/3] Å ≤ f ≤ Min [1.2, rcut/2] Å)

densvar f allow for local variation of ≈ f % in the system density
of (i) particles and (ii) any present bonded-like entities (very
useful for extremely non-equilibrium simulations, default f = 0)

distance calculate electrostatic forces using Coulomb sum with
distance dependent dielectric

displacements i j f write displacements trajectory file, RSDDAT, with controls:
i = start timestep for dumping displacements configurations

(default i = 0)
j = timestep interval between configurations (default j = 1)
f = displacement qualifying cutoff (default f = 0.15 Å)

dump n set restart data dump interval to n steps (default n = 1000)

116

c©STFC Section 5.1

ensemble nve select NVE ensemble (default ensemble)

ensemble nvt evans select NVEkin ensemble, type Evans with
Gaussian constraints thermostat

ensemble nvt langevin f select NVT ensemble, type Langevin with thermostat
relaxation speed (friction) constant f in ps−1

ensemble nvt andersen f1 f2 select NVT ensemble, type Andersen with f1, f2 as the
thermostat relaxation time in ps and softness (0 ≤ f2 ≤ 1)

ensemble nvt berendesen f select NVT ensemble, type Berendsen with thermostat
relaxation constant f in ps

ensemble nvt hoover f select NVT ensemble, type Nose-Hoover with thermostat
relaxation constant f in ps

ensemble nvt gst f1 f2 select NVT ensemble, type Gentle Stochastic with thermostat
relaxation constant f1 in ps and Langevin friction f1 in ps−1

ensemble npt langevin f1 f2 select NPT ensemble, type Langevin, with f1, f2 as the
thermostat and barostat relaxation speed (friction) constants in ps−1

ensemble npt berendsen f1 f2 select NPT ensemble, type Berendsen with f1, f2 as the
thermostat and barostat relaxation times in ps

ensemble npt hoover f1 f2 select NPT ensemble, type Nose-Hoover, with f1, f2 as the
athermostat and barostat relaxation times in ps

ensemble npt mtk f1 f2 select NPT ensemble, type Martyna-Tuckerman-Klein with
f1, f2 as the thermostat and barostat relaxation times in ps

ensemble nst langevin f1 f2 select NσT ensemble, type Langevin with f1, f2 as the
thermostat and barostat relaxation speed (friction) constants in ps−1

ensemble nst berendsen f1 f2 select NσT ensemble, type Berendsen with f1, f2 as
the thermostat and barostat relaxation times in ps

ensemble nst hoover f1 f2 select NσT ensemble, type Nose-Hoover with f1, f2 as
the thermostat and barostat relaxation times in ps

ensemble nst mtk f1 f2 select NσT ensemble, type Martyna-Tuckerman-Klein with
f1, f2 as the thermostat and barostat relaxation times in ps

ensemble nst Q f1f2 area select NPnAT ensemble, type Q (i.e. lang, ber,
hoover or mtk), with f1, f2 as the thermostat
and barostat relaxation times in ps

ensemble nst Q f1f2 tension γ select NPnγT ensemble, type Q (i.e. lang, ber,

117

c©STFC Section 5.1

hoover or mtk), with f1, f2 as the thermostat
and barostat relaxation times in ps and set required
simulation (target/external) surface tension to γ dyn/cm

ensemble nst Q f1f2 tens γ semi select the same NPnγT ensemble as above but with
the ”semi-anisotropic constraint” so that the
MD cell changes isotropically in the (x, y) plane

ensemble nst Q f1f2 orthorhombic select the NPT anisotropic ensemble for the orthorhombic
MD cell (”orthorhombic constraint” - equivalent to the
NPnγT ensemble when γ = 0: NPnγ = 0T)

ensemble nst Q f1f2 orth semi select the same NPnγ = 0T ensemble as above but with the
”semi-anisotropic constraint” so that the MD cell changes
isotropically in the (x, y) plane (”semi-orthorhombic
constraint” - equivalent to the NPnγ = 0T semi ensemble)

epsilon (constant) f set relative dielectric constant to f (default f = 1.0)

equilibration (steps) n equilibrate system for the first n timesteps (default n = 0)

ewald evaluate (every) n evaluate the k-space contributions to the Ewald sum
once every n timesteps (1 ≤ n ≤ 10, activated when n ≥ 2,
n < 1 or undefined defaults to n = 1, n > 10 defaults to n = 4)

ewald precision f calculate electrostatic forces using Ewald sum with
automatic parameter optimisation
(10−20 ≤ f ≤ 0.5, default f = 10−20)

ewald (sum) α k1 k2 k3 calculate electrostatic forces using Ewald sum with
α = Ewald convergence parameter in Å−1

k1 = is the maximum k-vector index in x-direction
k2 = is the maximum k-vector index in y-direction
k3 = is the maximum k-vector index in z-direction

exclude switch on extended coulombic exclusion affecting intra-molecular
interactions such as: chemical bonds and bond angles; as well as
bond constraints between ions that have shells and cores

finish close the CONTROL file (last data record)

impact i j E x y z initiate impact on the particle with index i (i ≥ 1) at timestep
j (i ≥ 0) with energy E (E ≥ 0) in kilo-eV and direction
vector x y z from the Cartesian origin (centre) of the MD box
(defaults: i = 1, j = 0, E = 0, x = 1, y = 1, z = 1)

integrator string set the type of Verlet integrator, where string can only be
leapfrog or velocity, as the later is the default

118

c©STFC Section 5.1

io read method j k l e set the the general I/O read interface to:
method :: mpiio for MPI-I/O, direct for parallel direct access
FORTRAN I/O or master for traditional master I/O or netcdf
for netCDF I/O provided DL POLY 4 is compiled in a
netCDF-enabled mode (default mpiio)

j, reader count :: 1 ≤ j ≤ job size

(default j = 2Int[Log{Min(job size,2
√
job size)}/Log(2)])

is the designated number of processes to
carry out I/O read operations simultaneously

NOTE that k is not applicable for the master method
k, batch size :: 1 ≤ k ≤ 10, 000, 000 (default 2, 000, 000)
is the maximum number of particle entities in a batch, i.e.
multiples of (species,index,r,v,f ,etc.), transmitted between
I/O groups (= I/O readers) for domain distribution purposes

l, buffer size :: 100 ≤ l ≤ 100, 000 (default 20, 000)
is the maximum number of ASCII line records read in a batch

NOTE that e is not applicable for the master method
e, parallel error check :: Y es (default N)

io write method rp type j k l e set the the general I/O write interface to:
method :: mpiio for MPI-I/O, direct for parallel direct access
FORTRAN I/O or master for traditional master I/O or netcdf
for netCDF I/O provided DL POLY 4 is compiled in a
netCDF-enabled mode (default mpiio)
WARRNING: direct is not a platfotm portable
solution (as it fails on LUSTRE but works on GPFS)

NOTE that rp is only applicable for the netcdf method
rp, real precision :: 32bit or amber for 32-bit (float),
otherwise 64-bit (double) is defaulted if unspecified

type :: sorted or unsorted (DD scrambled) by global index output
(default sorted)

j, writer count :: 1 ≤ j ≤ job size

(default j = 2Int[Log{Min(job size,8
√
job size)}/Log(2)])

is the designated number of processes to
carry out I/O write operations simultaneously

NOTE that k is not applicable for the master method
k, batch size :: 1 ≤ k ≤ 10, 000, 000 (default 2, 000, 000)
is the maximum number of particle entities in a batch, i.e.
multiples of (species,index,r,v,f ,etc.), transmitted between
I/O groups (= I/O writers) for global sorting purposes

l, buffer size :: 100 ≤ l ≤ 100, 000 (default 20, 000)
is the maximum number of ASCII line records written in a batch

NOTE that e is not applicable for the master method
e, parallel error check :: Y es (default N)

job time f set job time to f seconds

maxdis f set maximum distance allowed in variable timestep (control)
to f Å(default f = 0.10 Å)

119

c©STFC Section 5.1

metal direct enforces the direct calculation of metal interactions defined
by explicit potential forms, i.e. it will not work for metal
alloy systems using the EAM (TABEAM)

mindis f set minimum distance allowed in variable timestep (control)
to f Å(default f = 0.03 Å)

minimise string n f minimise the instantaneous system configuration every
n steps during equilibration (with respect to the last
equilibration step) using conjugate gradient method (CGM)
with respect to the criterion, string, and tolerance, f ,
where this criterion can only be force (1 ≤ f ≤ 1000,
default f = 50) or energy (0 < f ≤ 0.01, default
f = 0.005) or distance (maximum absolute displacement in
Å, 10−6 ≤ f ≤ 0.1, default f = 0.005); the lowest string
CGM minimised configuration during equlibration is saved
in a file, CFGMIN which has the same format as CONFIG

msdtmp i j write MSDTMP file, containing particles’ individual
√
MSD

(in Å) and Tmean (in Kelvin), with controls:
i = start timestep for dumping configurations (default i = 0)
j = timestep interval between configurations (default j = 1)

multiple (timestep) n act exactly the same as ewald evaluate (every) n

mxquat n set FIQA iterations limit to n (default n = 100)

mxshak n set shake/rattle iterations limit to n (default n = 250)

mxstep f set maximum timestep value in variable timestep (control) to f
ps (no default f = 0.0 ps but if not opted sets to Huge(1.0))

nfold i j k option to create matching CONFIG i j k and FIELD i j k
for a volumetrically expanded version of the current system
(CONFIG and FIELD) by replicating CONFIG’s contents
(i, j, k) times along the MD cell lattice vectors
while preserving FIELD’s topology template intact

no elec ignore electrostatics in simulation

no index ignore particles’ indices as read from the CONFIG file
and set particles’ indexing by order of reading,
this option assumes that the FIELD topology description
matches the crystallographic sites from the CONFIG file by
their order of reading rather than by their actual indexing

no strict (i) abort strict checks such as; on existence of well defined

120

c©STFC Section 5.1

system cutoff, on contiguity of particles’ indices when
connecting CONFIG (crystallographic listing) to FIELD
(topology), on IO when io mpiio/direct sorted is selected, etc.,
(ii) abort display of warnings, non-leading to error messages
and of iteration cycles in minimisation/relaxation routines,
(iii) assume safe defaults for the general simulation cutoff,
temperature, pressure and job times

no topology skip detailed topology reporting during read of FIELD in OUTPUT
(no FIELD replication), useful for large bio-chemcal simulations

no vdw ignore short range (non-bonded) interactions in simulation

optimise string f minimise the system configuration at start during equilibration
using conjugate gradient method (CGM) with respect to the
criterion, string, and tolerance, f , where the criterion can only
be force (1 ≤ f ≤ 1000, default f = 50) or energy
(0 < f ≤ 0.01, default f = 0.005) or distance (maximum
absolute displacement in Å) (10−6 ≤ f ≤ 0.1, default
f = 0.005); the CGM minimised configuration is saved
in a file, CFGMIN which has the same format as CONFIG

pressure f set required system pressure to f katms
(target pressure for constant pressure ensembles)

print (every) n print system data every n timesteps

print rdf print radial distribution functions

print zden print Z-density profile

pseudo string f1 f2 attach a pseudo thermal bath with a thermostat of type
string, where string can only be langevin or direct
(if neither is specified both are applied in order
langevin→direct), f1 is the thickness of the thermostat
layers, attached on the inside of the MD cell boundaries,
in units of Å (default f1 = 2 Å), f2 is the
thermostat temperature in Kelvin (f2 ≥ 1), which
when unspecified defaults to the system target temperature

quaternion (tolerance) f set quaternion tolerance to f (default 10−8)

rdf (sampling) (every) f calculate and collect radial distribution functions
every f timesteps (default f = 1)

reaction (field) calculate electrostatic forces using reaction field electrostatics

reaction (field) damp α calculate electrostatic forces using reaction field electrostatics
with Fennell [52] damping (Ewald-like convergence)

121

c©STFC Section 5.1

parameter α in Å−1

regauss (every) n resample the instantaneous system momenta distribution
every n steps during equilibration
(with respect to the last equilibration step)

replay abort simulation and replay HISTORY to recalculate structural
properties such as RDFs, z-density profiles, defects and
displacements trajectories (execution halts if no property is specified)

restart restart job from end point of previous run
(i.e. continue current simulation, REVOLD required)

restart noscale restart job from previous run without scaling
system temperature (i.e. begin a new simulation from
older run without temperature reset, REVOLD is not used)

restart scale restart job from previous run with scaling
system temperature (i.e. begin a new simulation from
older run with temperature reset, REVOLD is not used)

rlxtol f set tolerance for relaxed shell model to f
(default f = 1 in D Å ps−2)

rvdw (cutoff) f set required short-ranged interactions cutoff to f Å

scale (temperature) (every) n rescale system temperature every n steps during equilibration
(with respect to the last equilibration step,
(atomic velocities are scaled collectively)

seed n1 n2 seed control to the random number generator used in the
generation of gaussian distributions and stochastic processes

shake (tolerance) f set shake/rattle tolerance to f (default f = 10−6)

shift calculate electrostatic forces using force-shifted Coulomb sum

shift damp α calculate electrostatic forces using force-shifted Coulomb sum
with Fennell [52] damping (Ewald-like convergence)
parameter α in Å−1

slab limits the number of processors in z-direction to 2
for slab simulations

spme evaluate (every) n act exactly the same as ewald evaluate (every) n

spme precision f act exactly the same as ewald precision f

spme (sum) α k1 k2 k3 calculate electrostatic forces using Ewald sum with

122

c©STFC Section 5.1

α = Ewald convergence parameter in Å−1

k1 = is twice the maximum k-vector index in x-direction
k2 = is twice the maximum k-vector index in y-direction
k3 = is twice the maximum k-vector index in z-direction

stack (size) n set rolling average stack to n timesteps

stats (every) n accumulate statistics data every n timesteps

steps n run simulation for n timesteps (default n = 0,
corresponding to a ”dry” run)

temperature f set required simulation temperature to f Kelvin
(target temperature for constant temperature ensembles)

trajectory i j k write HISTORY file with controls:
i = start timestep for dumping configurations (default i = 0)
j = timestep interval between configurations (default j = 1)
k = data level (default k = 0, see Table 5.1)

timestep f set timestep to f ps

variable timestep f variable timestep, start with timestep of f ps

vdw direct enforces the direct calculation of van der Waals interactions
defined by explicit potential forms, i.e. it will not work for
systems using tabulated potentials (TABLE)

vdw shift applies a force-shifting procedure to all van der Waals
potentials (except the shifted-force n-m potential) so
that the VDW interactions’s energy and force contributions
fall to zero smoothly for distances aproaching rcut

zden (sampling) (every) f calculate and collect the Z-density profile
every f timesteps (default f = 1)

zero perform zero temperature MD run (reset target system
temperature 10 Kelvin)

Note that in some cases additional keywords, shown in brackets “(...)”, may also be supplied in
the directives, or directives may be used in a long form. However, it is strongly recommended that
the user uses only the bold part of these directives.

5.1.1.3 Further Comments on the CONTROL File

1. A number of the directives (or their mutually exclusive alternatives) are mandatory:

(a) cut: specifying the short range forces cutoff. It is compulsory in all circumstances
as all DL POLY 4 algorithms are directly or indirectly dependent on it.

123

c©STFC Section 5.1

Table 5.1: Internal Trajectory/Defects File Key

keytrj meaning

0 coordinates only in file
1 coordinates and velocities in file
2 coordinates, velocities and forces in file

(b) temp or zero: specifying the system temperature (not mutually exclusive but if temp
has to preceed zero in CONTROL if zero is needed. Use only one instance of these
in CONTROL! If a ”dry run” is performed (see below) these can be omitted.

(c) timestep or variable timestep: specifying the simulation timestep. Use only one
instance of these in CONTROL! If a ”dry run” is performed (see below) and a
timestep length is not supplied a default one of 0.001 ps is provided.

(d) ewald/spme sum/precision or coul or shift or distan or reaction or no elec:
specifying the required coulombic forces option. Apart from no elec the rest of the
directives are mutually exclusive from one another. If none is specified then none
is applied!

2. Some directives are optional. If not specified DL POLY 4 will take default values if necessary.
(The defaults are specified above in the list of directives.) However fail-safe DL POLY 4 is,
not always will it assume a default value for certain parameters. To enable DL POLY 4 to
be even more liberal in the fail-safe features, users are recommended to use no strict option.

3. The steps and equilibration directives have a default of zero. If not used or used with their
default values a ”dry run” is performed. This includes force generation and system dump
(REVCON and REVIVE) and, depending on the rest of the options, may include; veloc-
ity generation, force capping, application of the CGM minimiser, application of the pseudo
thermostat, and dumps of HISTORY, DEFECTS, RDFDAT, ZDNDAT and MSDTMP.Note
that, since no actual dynamics is to be performed, the temperature and pressure directives
do not play any role and are therefore not necessary.

4. If the CGM minimiser, minimise, is specified with zero frequency, it is only applied at
timestep zero if equilibration ≥ steps (i.e. optimise structure at start only!). This is
equvalent to using the optimise directive. In this way it can be used as a configuration
optimiser at the beginning of the equlibration period or when a ”dry run” (steps = 0) is
performed (i.e. equilibrate without any actual dynamics!).

5. The variable timestep (or also timestep variable) option requires the user to specify
an initial guess for a reasonable timestep for the system (in picoseconds). The simulation
is unlikely to retain this as the operational timestep however, as the latter may change in
response to the dynamics of the system. The option is used in conjunction with the default
values ofmaxdis (0.10 Å) andmindis (0.03 Å), which can also be optionally altered if used as
directives (note the rule that maxdis > 2.5 mindis applies). Also, an additional mxstep (in
ps) control can be applied. These serve as control values in the variable timestep algorithm,
which calculates the greatest distance a particle has travelled in any timestep during the
simulation. If the maximum distance is exceeded, the timestep variable is halved and the
step repeated. If the greatest move is less than the minimum allowed, the timestep variable
is doubled and the step repeated provided it does not exceed the user specified mxstep. If it
does then it scales to mxstep and the step is repeated. In this way the integration timestep
self-adjusts in response to the dynamics of the system.

124

c©STFC Section 5.1

6. The job time and close time directives are required to ensure a controlled close down
procedure when a job runs out of time. The time specified by the job time directive indicates
the total time allowed for the job. (This must obviously be set equal to the time specified to
the operating system when the job is submitted.) The close time directive represents the
time DL POLY 4 will require to write and close all the data files at the end of processing.
This means the effective processing time limit is equal to the job time minus the close time.
Thus when DL POLY 4 reaches the effective job time limit it begins the close down procedure
with enough time in hand to ensure the files are correctly written. In this way you may be
sure the restart files etc. are complete when the job terminates. Note that setting the close
time too small will mean the job will crash before the files have been finished. If it is set too
large DL POLY 4 will begin closing down too early. How large the close time needs to be to
ensure safe close down is system dependent and a matter of experience. It generally increases
with increasing simulation system size.

7. The starting options for a simulation are governed by the keyword restart. If this is not
specified in the control file, the simulation will start as new. When specifed, it will continue a
previous simulation (restart) provided all needed restart files are in place and not corrupted.
If they are not in place or are found corrupted, it will start a new simulation without initial
temperature scaling of the previous configuration (restart noscale). Internally these options
are handled by the integer variable keyres, which is explained in Table 5.2.

Table 5.2: Internal Restart Key

keyres meaning

0 start new simulation from CONFIG file
and assign velocities from Gaussian distribution

1 continue current simulation
2 start new simulation from CONFIG file

and rescale velocities to desired temperature
3 start new simulation from CONFIG file

and do not rescale velocities

8. The various ensemble options (i.e. nve , nvt evans , nvt andersen , nvt langevin , nvt
berendsen , nvt hoover , npt langevin , npt berendsen , npt hoover , npt mtk , nst
langevin , nst berendsen , nst hoover , nst mtk) are mutually exclusive, though none
is mandatory (the default is the NVE ensemble). These options are handled internally by
the integer variable keyens. The meaning of this variable is explained in Table 5.3. The nst
keyword is also used in the NσT ensembles extension to NPnAT and NPnγT ones. Note that
these semi-isotropic ensembles are only correct for infinite interfaces placed perpendicularly
to the z axis! This means that the interface is homogenious (unbroken) and continuous in
the (x,y) plane of the MD cell, which assumes that that two of the cell vectors have a cross
product only in the z direction. (For example, if the MD box is defined by its lattice vectors
(a, b, c) then a × b = ±(0, 0, 1).) It is the users’ responsibility to ensure this holds for their
model system.

9. The zero directive, enables a ”zero temperature” optimisation. The target temperature of
the simulation is reset to 10 Kelvin and a crude energy minimiser:

vi ←


0 : vi · f i < 0

f
i

vi · f
i

f
i
· f

i

: vi · f i ≥ 0
(5.1)

125

c©STFC Section 5.1

Table 5.3: Internal Ensemble Key

keyens meaning

0 Microcanonical ensemble (NVE)
1 Evans NVT ensemble (NVEkin)

10 Langevin NVT ensemble
11 Berendsen NVT ensemble
12 Nosé-Hoover NVT ensemble
20 Langevin NPT ensemble
21 Berendsen NPT ensemble
22 Nosé-Hoover NPT ensemble
23 Martyna-Tuckerman-Klein NPT ensemble
30 Langevin NσT ensemble
31 Berendsen NσT ensemble
32 Nosé-Hoover NσT ensemble
33 Martyna-Tuckerman-Klein NσT ensemble

is used to help the system relax before each integration of the equations of motion (measures
are taken to conserve the MD cell momentum). This must not be thought of as a true energy
minimization method. Note that this optimisation is applied irrespectively of whether the
simulation runs in equilibration or statistical mode.

The algorithm is developed in the DL POLY 4 routine zero k optimise.

10. The impact i j E x y z directive will not be activated if the particle index is beyond the
one of the last particle. The option will fail in a controlled manner at application time if the
particle is found to be in a frozen state or the shell of an ion or part of a rigid body. During
application the center of mass momentum is re-zeroed to prevent any drifts. The user must
take care to have the impact initiated after any possible equlibration. Otherwise, the system
will be thermostated and the impact energy disipated during the equlibration.

11. The pseudo option is intended to be used in highly non-equilibrium simulations when users
are primarily interested in the structural changes in the core of the simulated system as the
the MD cell boundaries of the system are coupled to a thermal bath.

The thermal bath can be used with two types of temperature scaling algorithms - (i) Langevin
(stochastic thermostat) and (ii) Direct (direct thermostat). If no type is specified then the
Langevin temperature control algorithm is applied first followed the Direct one. The user
is also required to specify the width of the pseudo thermostat, f1 (in Å), which must be
larger than 2 Å and less than or equal to a quarter of minimum width of the MD cell. The
thermostat is an f1 Å thick buffer layer attached on the inside at the MD cell boundaries.

The temperature of the bath is specified by the user, T = f2 (in Kelvin), which must
be larger than 1 Kelvin. If none is supplied by the user, T defaults to the system target
temperature.

• pseudo langevin

The stochasticity of the Langevin thermostat emulates an infinite environment around
the MD cell, providing a means for “natural” heat exchange between the MD system and
the heath bath thus aiding possible heat build up in the system. In this way the instan-
taneous temperature of the system is driven naturally towards the bath temperature.

126

c©STFC Section 5.1

Every particle within the thermostat buffer layer is coupled to a viscous background and
a stochastic heat bath, such that

dri(t)

dt
= vi(t)

dvi(t)

dt
=

f
i
(t) +Ri(t)

mi
− χ(t) vi(t) , (5.2)

where χ(t) is the friction parameter from the dynamics in the the MD cell and R(t) is
stochastic force with zero mean that satisfies the fluctuation-dissipation theorem:〈

Rα
i (t) R

β
j (t

′)
〉
= 2 χ(t) mi kBT δij δαβ δ(t− t′) , (5.3)

where superscripts denote Cartesian indices, subscripts particle indices, kB is the Boltz-
mann constant, T the bath temperature and mi the particle’s mass. The algorithm is
implemented in routine pseudo and has two stages:

– Generate random forces on all particles within the thermostat. Here, care must be
exercised to prevent introduction of non-zero net force when the random forces are
added to the system force field.

– Rescale the kinetic energy of the thermostat bath so that particles within have
Gaussian distributed kinetic energy with respect to the target temperature and
determine the (Gaussian constraint) friction within the thermostat:

χ(t) =Max

(
0,

∑
i[
~fi(t) + ~Ri(t)] · ~vi(t)∑

imi ~v2i (t)

)
. (5.4)

Care must be exercised to prevent introduction of non-zero net momentum. (Users
are reminded to use for target temperature the temperature at which the original
system was equilibrated in order to avoid simulation instabilities.)

The effect of this algorithm is to relax the buffer region of the system on a local scale and
to effectively dissipate the incoming excess kinetic energy from the rest of the system,
thus emulating an infinite-like environment surrounding the MD cell. The thermostat
width matters as the more violent the events on the inside of the MD cell, the bigger
width may be needed in order to ensure safe dissipation of the excess kinetic energy.

• pseudo direct

The Direct thermostat is the simplest possible model allowing for heat exchange between
the MD system and the heath bath. All (mass, non-frozen) particles within the bath
have their kinetic energy scaled to 1.5 kBT at the end of each time step during the
simulation. Care is exercised to prevent introduction of non-zero net momentum when
scaling velocities. (Users are reminded to use for target temperature the temperature
at which the original system was equilibrated in order to avoid simulation instabilities.)
Due to the “unphysical” nature of this temperature control the thermostat width does
not matter to the same extent as in the case of the Langevin thermostat.

Note that embedding a thermostat in the MD cell walls is bound to produce wrong ensem-
ble averages, and instantaneous pressure and stress build-ups at the thermostat boundary.
Therefore, ensembles lose their meaning as such and so does the conserved quantity for true
ensembles. If the pseudo thermostat option is specified without any type of temperature con-
trol in CONTROL then both types will be applied in the order Langevin→Direct at each time
step during the simulation.

127

c©STFC Section 5.1

The algorithms are developed in the DL POLY 4 routines pseudo vv and pseudo lfv re-
spectively.

12. The defects option will trigger reading of REFERENCE (see Section 5.1.4), which defines a
reference MD cell with particles’ positions defining the crystalline lattice sites. If REFER-
ENCE is not found the simulation will either
(i) halt if the simulation has been restarted, i.e. is a continuation of an old one - the restart
option is used in CONTROL and the REVOLD (see Section 5.1.5) file has been provided.
or
(ii) recover using CONFIG (see Section 5.1.2) if it is a new simulation run, i.e restart option
is not used in CONTROL or REVOLD has not been provided.

The actual defect detection is based on comparison of the simulated MD cell to the reference
MD cell based on a user defined site-interstitial cutoff, Rdef ,

Min [0.3, rcut/3] Å ≤ Rdef ≤ Min [1.2, rcut/2] Å (5.5)

with a default value of Min [0.75, rcut/3] Å. (If the supplied value exceeds the limits the
simulation execution will halt). If a particle, p, is located in the vicinity of a site, s, defined
by a sphere with its centre at this site and a radius, Rdef , then the particle is a first hand
claimee of s, and the site is not vacant. Otherwise, the site is presumed vacant and the
particle is presumed a general interstitial. If a site, s, is claimed and another particle, p′, is
located within the sphere around it, then p′ becomes an interstitial associated with s. After
all particles and all sites are considered, it is clear which sites are vacancies. Finally, for
every claimed site, distances between the site and its first hand claimee and interstitials are
compared and the particle with the shortest one becomes the real claimee. If a first hand
claimee of s is not the real claimee it becomes an interstitial associated with s. At this stage
it is clear which particles are interstitials. The sum of interstitials and vacancies gives the
total number of defects in the simulated MD cell.

Frozen particles and particles detected to be shells of polarisable ions are not considered in
the defect detection.

Note that the algorithm cannot be applied safely if Rdef is larger than half the shortest
interatomic distance within the reference MD cell since a particle may; (i) claim more than
one site, (ii) be an interstitial associated with more than one site, or both (i) and (ii). On
the other hand, low values of Rdef are likely to lead to slight overestimation of defects.

If the simulation and reference MD cell have the same number of atoms then the total number
of interstitials is always equal to the total number of defects.

13. The displacements option will trigger dump of atom displacements based on a qualifying
cutoff in a trajectory like manner. Dsiplacemets of atoms from their original position at the
end of equlibration (the start of statistics), t = 0 , is carried out at each timestep.

14. The tolerance for relaxed shell model rlxtol, is a last resort option to aid shell relaxation
of systems with very energetic and/or rough potential surface. Users are advised to use it
with caution, should there really need be, as the use of high values may result in physically
incorrect dynamics.

15. The difference between the directives ewald and spme is only in the ewald/spme sum
directive, in which the ewald sum specifies the indices of the maximum k-vector, whereas
the spme sum the dimensions of the 3D charge array (which are exactly twice the maximum
k-vector indices). Note that in either case, DL POLY 4 will carry out the SPME coulombic
evaluation.

128

c©STFC Section 5.1

16. The force selection directives ewald/spme sum/precision, reaction, coul, shift, dist, no
elec are handled internally by the integer variable keyfce. See Table 5.4 for an explanation
of this variable. Note that all these options with the exception of the last, no elec, are
mutually exclusive.

Table 5.4: Electrostatics Key

keyfce meaning

Electrostatics are evaluated as follows:

0 Ignore electrostatic interactions
2 SPM Ewald summation
4 Coulomb sum with distance dependent dielectric
6 Standard truncated Coulomb sum
8 Force-shifted Coulomb sum
10 Reaction field electrostatics

17. ewald evaluate or multiple are not mutually exclusive and it is the first instance of these
in CONTROL that is read and applied in the following simulation.

18. The choice of reaction field electrostatics (directive reaction) relies on the specification of
the relative dielectric constant external to the cavity. This is specified by the eps directive.

19. The directive ewald/spme evaluate is only triggered when ewald/spme sum/precision is
present. It sets an infrequent evaluation of the k-space contributions to the Ewald summation.
Although this option decreases the simulation cost it also inherently decreases the accuracy
of the dynamics. Note that the usage of this feature may lead to inacuarte or even wrong
and unphysical dynamics as the less frequent the evaluation, the greater the inacuarcy.

20. DL POLY 4 uses two different potential cutoffs. These are as follows:

(a) rcut - the universal cutoff set by cutoff. It applies to the real space part of the electro-
statics calculations and to the van der Waals potentials if no other cutoff is applied.

(b) rvdw - the user-specified cutoff for the van der Waals potentials set by rvdw. If not
specified its value defaults to rcut.

21. Constraint algorithms in DL POLY 4, SHAKE/RATTLE (see Section 3.2), use default iter-
ation precision of 10−6 and limit of iteration cycles of 250. Users may experience that during
optimisation of a new built system containing constraints simulation may fail prematurely
since a constraint algorithm failed to converge. In such cases directives mxshak (to increase)
and shake (to decrease) may be used to decrease the strain in the system and stablise the
simulation numerics until equilibration is achieved.

22. DL POLY 4’s DD strategy assumes that the local (per domain/node or link cell) density of
various system entities (i.e. atoms, bonds, angles, etc.) does not vary much during a simula-
tion and some limits for these are assumed empirically. This may not the case in extremely
non-equilibrium simulations, where the assumed limits are prone to be exceeded or in some
specific systems where these do not hold from the start. A way to tackle such circumstances
and avoid simulations crash (by controlled termination) is to use the densvar f option. In the
set bounds subroutine DL POLY 4 makes assumptions at the beginning of the simulation
and corrects the lengths of bonded-like interaction lists arrays (mxshl, mxcons, mxteth,

mxbond, mxangl, mxdihd, mxinv) as well as the lengths of link-cell (mxlist) and domain

129

c©STFC Section 5.1

(mxatms) lists arrays when the option is activated with f > 0. Greater values of f will cor-
respond to allocation bigger global arrays and larger memory consumption by DL POLY 4
during the simulation. Note that this option may demand more memory than available on
the computer architecture. In such cases DL POLY 4 will terminate with an array allocation
failure message.

23. As a default, DL POLY 4 does not store statistical data during the equilibration period. If
the directive collect is used, equilibration data will be incorporated into the overall statistics.

24. io action [options] controls how I/O is performed by DL POLY 4. The options can help the
performance of I/O operations within DL POLY 4 for potentially large files during the run.
The form of the command depends on the value of action, which may take the value either
read or write. In general, this command should only be used for tuning the I/O subsystem
in DL POLY 4 for large runs. For small to average sized systems the built-in defaults usually
suffice.

(a) io read method [options]

With action set to read the io command controls how the reading of large files is
performed. method controls how the disk is accessed. Possible values are mpiio, in
which case MPI-I/O is used, direct, which uses parallel FORTRAN direct access files,
and master which performs all I/O through a master processor, or netcdf for netCDF I/O
provided DL POLY 4 is compiled in a netCDF-enabled mode. mpiio is the recommended
method, and for large systems master should be avoided. Available options depend on
which method is to be used, and all are optional in each case. Where numerical values
are to be supplied specifying 0 or a negative numbers indicates that DL POLY 4 will
resort to the default value. The possible options are:

• io read mpiio|direct|netcdf [j [k [l [e]]]]
j specifies the number of processors that shall access the disk. k specifies the maxi-
mum number of particles that the reading processors shall deal with at any one time.
Large values give good performance, but may results in an unacceptable memory
overhead. l specifies the maximum number of particles that the reading processors
shall read from the disk in one I/O transaction. Large values give good performance,
but may results in an unacceptable memory overhead. e accepts Y es only to switch
global error checking performed by the I/O subsystem, the default is No.

• io read master [l]
l specifies the maximum number of particles that the reading process shall read
from the disk in one I/O transaction. Large values give good performance, but may
results in an unacceptable memory overhead.

(b) io write method [rp] type [options]

With action set to write the io command controls how the writing of large files is per-
formed. method controls how the disk is accessed. Possible values are mpiio, in which
case MPI-I/O is used, direct, which uses parallel FORTRAN direct access files, and
master which performs all I/O through a master processor, or netcdf for netCDF I/O
provided DL POLY 4 is compiled in a netCDF-enabled mode. mpiio is the recommended
method, and for large systems master should be avoided and also THE DIRECT OP-
TION IS NOT STRICTLY PORTABLE, and so may cause problems on some machines.
rp is an optional specification, only applicable to netcdf method for opting the binary
precision for real numbers. It only takes 32bit or amber for 32-bit (float) precision, other-
wise 64-bit (double) precision is defaulted. type controls the ordering of the particles on

130

c©STFC Section 5.1

output. Possible values are sorted and unsorted. sorted ensures that the ordering of the
particles the default - sequential, ascending. Whereas unsorted uses the natural internal
ordering of DL POLY 4 which changes during the simulation. The recommended and
default value is sorted. If none is specified DL POLY 4 defaultes to the sorted type of
I/O. It should be noted that the overhead of the sorted otion compared to the unsorted
is usually very small. Available options depend on which method is to be used, and
all are optional in each case. Where numerical values are to be supplied specifying 0
or a negative numbers indicates that DL POLY 4 will resort to the default value. The
possible options are:

• io write mpiio|direct|netcdf [rp] sort|unsort [j [k [l [e]]]]
j specifies the number of processors that shall access the disk. k specifies the maxi-
mum number of particles that the writing processors shall deal with at any one time.
Large values give good performance, but may results in an unacceptable memory
overhead. l specifies the maximum number of particles that the writing processors
shall write to the disk in one I/O transaction. Large values give good performance,
but may results in an unacceptable memory overhead. e accepts Y es only to switch
global error checking performed by the I/O subsystem, the default is No.

• io write master sort|unsort [l]
l specifies the maximum number of particles that the writing process shall write
to the disk in one I/O transaction. Large values give good performance, but may
results in an unacceptable memory overhead.

Users are advised to study the example CONTROL files appearing in the data sub-directory to see
how different files are constructed.

5.1.2 The CONFIG File

The CONFIG file contains the dimensions of the unit cell, the key for periodic boundary condi-
tions and the atomic labels, coordinates, velocities and forces. This file is read by the subroutine
read config (optionally by scan config) in the set bounds routine. The first few records of
a typical CONFIG file are shown below:

IceI structure 6x6x6 unit cells with proton disorder

2 3 276

26.988000000000000 0.000000000000000 0.000000000000000

-13.494000000000000 23.372293600000000 0.000000000000000

0.000000000000000 0.000000000000000 44.028000000000000

OW 1

-2.505228382 -1.484234330 -7.274585343

0.5446573999 -1.872177437 -0.7702718106

3515.939287 13070.74357 4432.030587

HW 2

-1.622622646 -1.972916834 -7.340573742

1.507099154 -1.577400769 4.328786484

7455.527553 -4806.880540 -1255.814536

HW 3

-3.258494716 -2.125627191 -7.491549620

2.413871957 -4.336956694 2.951142896

131

c©STFC Section 5.1

-7896.278327 -8318.045939 -2379.766752

OW 4

0.9720599243E-01 -2.503798635 -3.732081894

1.787340483 -1.021777575 0.5473436377

9226.455153 9445.662860 5365.202509

etc.

5.1.2.1 The CONFIG File Format

The file is free-formatted and not case sensitive. Every line is treated as a command sentence
(record). However, line records are limited to 72 characters in length. Records are read in words,
as a word must not exceed 40 characters in length. Words are recognised as such by separation by
one or more space characters. The first record in the CONFIG file is a header (up to 72 characters
long) to aid identification of the file. Blank and commented lines are not allowed.

5.1.2.2 Definitions of Variables in the CONFIG File

record 1
header a72 title line

record 2
levcfg integer CONFIG file key. See Table 5.5 for permitted values
imcon integer Periodic boundary key. See Table 5.6 for permitted values
megatm integer Optinal, total number of particles (crystalographic entities)

record 3 omitted if imcon = 0
cell(1) real x component of a cell vector
cell(2) real y component of a cell vector
cell(3) real z component of a cell vector

record 4 omitted if imcon = 0
cell(4) real x component of b cell vector
cell(5) real y component of b cell vector
cell(6) real z component of b cell vector

record 5 omitted if imcon = 0
cell(7) real x component of c cell vector
cell(8) real y component of c cell vector
cell(9) real z component of c cell vector

Note that record 2 may contain more information apart from the mandatory as listed above.
If the file has been produced by DL POLY 4 then it also contains other items intended to help
possible parallel I/O reading.

Subsequent records consists of blocks of between 2 and 4 records depending on the value of the
levcfg variable. Each block refers to one atom. The atoms do not need to be listed sequentially
in order of increasing index. Within each block the data are as follows:

record i
atmnam a8 atom name
index integer atom index

132

c©STFC Section 5.1

record ii
xxx real x coordinate
yyy real y coordinate
zzz real z coordinate

record iii included only if levcfg > 0
vxx real x component of velocity
vyy real y component of velocity
vzz real x component of velocity

record iv included only if levcfg > 1
fxx real x component of force
fyy real y component of force
fzz real z component of force

Note that on record i only the atom name is strictly mandatory, any other items are not read
by DL POLY 4 but may be added to aid alternative uses of the file, for example the DL POLY 4
Graphical User Interface[21].

Table 5.5: CONFIG File Key (record 2)

levcfg meaning

0 coordinates included in file
1 coordinates and velocities included in file
2 coordinates, velocities and forces included in file

Table 5.6: Periodic Boundary Key (record 2)

imcon meaning

0 no periodic boundaries
1 cubic boundary conditions
2 orthorhombic boundary conditions
3 parallelepiped boundary conditions
6 x-y parallelogram boundary conditions with

no periodicity in the z direction

5.1.2.3 Further Comments on the CONFIG File

The CONFIG file has the same format as the output file REVCON (Section 5.2.7). When restarting
from a previous run of DL POLY 4 (i.e. using the restart, restart noscale or restart scale
directives in the CONTROL file - above), the CONFIG file must be replaced by the REVCON file,
which is renamed as the CONFIG file. The copy macro in the execute sub-directory of DL POLY 4
does this for you.

The CONFIG file has the same format as the optional output file CFGMIN, which is only produced
when the minimise (optimise) option has been used during an equilibration simulation or a ”dry
run”.

133

c©STFC Section 5.1

5.1.3 The FIELD File

The FIELD file contains the force field information defining the nature of the molecular forces.
This information explicitly includes the (site) topology of the system which sequence must be
matched (implicitly) in the crystallographic description of the system in the CONFIG file. The
FIELD file is read by the subroutine read field. (It is also read by the subroutine scan field
in the set bounds routine.) Excerpts from a force field file are shown below. The example is the
antibiotic Valinomycin in a cluster of 146 water molecules.

Valinomycin Molecule with 146 SPC Waters

UNITS kcal

MOLECULES 2

Valinomycin

NUMMOLS 1

ATOMS 168

O 16.0000 -0.4160 1

OS 16.0000 -0.4550 1

" " " "

" " " "

HC 1.0080 0.0580 1

C 12.0100 0.4770 1

BONDS 78

harm 31 19 674.000 1.44900

harm 33 31 620.000 1.52600

" " " " "

" " " " "

harm 168 19 980.000 1.33500

harm 168 162 634.000 1.52200

CONSTRAINTS 90

20 19 1.000017

22 21 1.000032

" " "

" " "

166 164 1.000087

167 164 0.999968

ANGLES 312

harm 43 2 44 200.00 116.40

harm 69 5 70 200.00 116.40

" " " " " "

" " " " " "

harm 18 168 162 160.00 120.40

harm 19 168 162 140.00 116.60

DIHEDRALS 371

harm 1 43 2 44 2.3000 180.00

harm 31 43 2 44 2.3000 180.00

" " " " " " "

" " " " " " "

cos 149 17 161 16 10.500 180.00

134

c©STFC Section 5.1

cos 162 19 168 18 10.500 180.00

FINISH

SPC Water

NUMMOLS 146

ATOMS 3

OW 16.0000 -0.8200

HW 1.0080 0.4100

HW 1.0080 0.4100

CONSTRAINTS 3

1 2 1.0000

1 3 1.0000

2 3 1.63299

FINISH

VDW 45

C C lj 0.12000 3.2963

C CT lj 0.08485 3.2518

" " " " "

" " " " "

" " " " "

OW OS lj 0.15100 3.0451

OS OS lj 0.15000 2.9400

CLOSE

5.1.3.1 The FIELD File Format

The file is free-formatted and not case-sensitive. Every line is treated as a command sentence
(record). Commented records (beginning with a #) and blank lines are not processed and may be
added to aid legibility (see example above). Records must be limited in length to 100 characters.
Records are read in words, as a word must not exceed 40 characters in length. Words are recognised
as such by separation by one or more space characters. The contents of the file are variable and
are defined by the use of directives. Additional information is associated with the directives.

5.1.3.2 Definitions of Variables in the FIELD File

The file divides into three sections: general information, molecular descriptions, and non-bonded
interaction descriptions, appearing in that order in the file.

General information

The first viable record in the FIELD file is the title. The second is the units directive. Both of
these are mandatory.

record 1
header a100 field file header

record 2
units a40 Unit of energy used for input and output

The energy units on the units directive are described by additional keywords:

135

c©STFC Section 5.1

a. eV, for electron-Volts

b. kcal/mol, for k-calories per mol

c. kJ/mol, for k-Joules per mol

d. Kelvin/Boltzmann, for Kelvin per Boltzmann

e. internal, for DL POLY internal units (10 Joules per mol).

If no units keyword is entered, DL POLY internal units are assumed for both input and output. The
units directive only affects the input and output interfaces, all internal calculations are handled
using DL POLY units. System input and output energies are read in units per MD cell.

Note that all energy bearing potential parameters are read in terms of the specified energy units.
If such a parameter depends on an angle then the dependence is read in terms of radians although
the following angle in the parameter sequence is read in terms of degrees.

Molecular details

It is important for the user to understand that there is an organisational correspondence between
the FIELD file and the CONFIG file described above. It is required that the order of specification
of molecular types and their atomic constituents in the FIELD file follows the order of indices in
which they appear in the CONFIG file. Failure to adhere to this common sequence will be detected
by DL POLY 4 and result in premature termination of the job. It is therefore essential to work
from the CONFIG file when constructing the FIELD file. It is not as difficult as it sounds!

The entry of the molecular details begins with the mandatory directive:

molecules n

where n is an integer specifying the number of different types of molecule appearing in the FIELD
file. Once this directive has been encountered, DL POLY 4 enters the molecular description envi-
ronment in which only molecular description keywords and data are valid.

Immediately following the molecules directive, are the records defining individual molecules:

1. name-of-molecule
which can be any character string up to 100 characters in length. (Note: this is not a
directive, just a simple character string.)

2. nummols n
where n is the number of times a molecule of this type appears in the simulated system. The
molecular data then follow in subsequent records:

3. atoms n
where n indicates the number of atoms in this type of molecule. A number of records follow,
each giving details of the atoms in the molecule i.e. site names, masses and charges. Each
record carries the entries:

sitnam a8 atomic site name
weight real atomic site mass
chge real atomic site charge
nrept integer repeat counter
ifrz integer ‘frozen’ atom (if ifrz > 0)

136

c©STFC Section 5.1

The integer nrept need not be specified if the atom/site is not frozen (in which case a value
of 1 is assumed.) A number greater than 1 specified here indicates that the next (nrept - 1)
entries in the CONFIG file are ascribed the atomic characteristics given in the current record.
The sum of the repeat numbers for all atoms in a molecule should equal the number specified
by the atoms directive.

4. shell n
where n is the number of core-shell units. Each of the subsequent n records contains:

index 1 (i) integer site index of core
index 2 (j) integer site index of shell
spring (k) real force constant of core-shell spring

The spring potential is

U(r) =
1

2
k r2ij , (5.6)

with the force constant k entered in units of engunit×Å−2, where engunit is the energy unit
specified in the units directive.

Note that the atomic site indices referred to above are indices arising from numbering each
atom in the molecule from 1 to the number specified in the atoms directive for this molecule.
This same numbering scheme should be used for all descriptions of this molecule, including the
constraints, pmf, rigid, teth, bonds, angles, dihedrals and inversions entries described
below. DL POLY 4 will itself construct the global indices for all atoms in the systems.

This directive (and associated data records) need not be specified if the molecule contains no
core-shell units.

5. constraints n
where n is the number of constraint bonds in the molecule. Each of the following n records
contains:

index 1 integer first atomic site index
index 2 integer second atomic site index
bondlength real constraint bond length

This directive (and associated data records) need not be specified if the molecule contains
no constraint bonds. See the note on the atomic indices appearing under the shell directive
above.

6. pmf b
where b is the potential of mean force bondlength (Å). There follows the definitions of two
PMF units:

(a) pmf unit n1
where n1 is the number of sites in the first unit. The subsequent n1 records provide the
site indices and weighting. Each record contains:

index integer atomic site index
weight real site weighting

137

c©STFC Section 5.1

(b) pmf unit n2
where n2 is the number of sites in the second unit. The subsequent n2 records provide
the site indices and weighting. Each record contains:

index integer atomic site index
weight real site weighting

This directive (and associated data records) need not be specified if no PMF constraints are
present. See the note on the atomic indices appearing under the shell directive.

Note that if a site weighting is not supplied DL POLY 4 will assume it is zero. However,
DL POLY 4 detects that all sites in a PMF unit have zero weighting then the PMF unit sites
will be assigned the masses of the original atomic sites.

The PMF bondlength applies to the distance between the centres of the two PMF units. The
centre, ~Ri, of each unit is given by

Ri =

∑ni
j=1wj ~rj∑nj

j=1wj
, (5.7)

where rj is a site position and wj the site weighting.

Note that the PMF constraint is intramolecular. To define a constraint between two molecules,
the molecules must be described as part of the same DL POLY 4 “molecule”. DL POLY 4
allows only one type of PMF constraint per system. The value of nummols for this molecule
determines the number of PMF constraint in the system.

Note that in DL POLY 4 PMF constraints are handeled in every available ensemble.

7. rigid n
where n is the number of basic rigid units in the molecule. It is followed by at least n records,
each specifying the sites in a rigid unit:

m integer number of sites in rigid unit
site 1 integer first site atomic index
site 2 integer second site atomic index
site 3 integer third site atomic index
.. .. etc.
site m integer m’th site atomic index

Up to 15 sites can be specified on the first record. Additional records can be used if necessary.
Up to 16 sites are specified per record thereafter.

This directive (and associated data records) need not be specified if the molecule contains no
rigid units. See the note on the atomic indices appearing under the shell directive above.

8. teth n
where n is the number of tethered atoms in the molecule. It is followed n records specifying
the tehered sites in the molecule:

tether key a4 potential key, see Table 5.7
index 1 (i) integer atomic site index
variable 1 real potential parameter, see Table 5.7
variable 2 real potential parameter, see Table 5.7

138

c©STFC Section 5.1

The meaning of these variables is given in Table 5.7.

This directive (and associated data records) need not be specified if the molecule contains
no flexible chemical bonds. See the note on the atomic indices appearing under the shell
directive above.

Table 5.7: Tethering Potentials

key potential type Variables (1-3) functional form

harm Harmonic k U(r) = 1
2 k (ri − rt=0

i)2

rhrm Restraint k rc U(r) = 1
2 k (ri − rt=0

i)2 : |ri − rt=0
i | ≤ rc

U(r) = 1
2 k r

2
c + k rc(|ri − rt=0

i | − rc) : |ri − rt=0
i | > rc

quar Quartic k k′ k′′ U(r) = k
2 (ri − rt=0

i)2 + k′

3 (ri − rt=0
i)3

+k′′

4 (ri − rt=0
i)4

9. bonds n
where n is the number of flexible chemical bonds in the molecule. Each of the subsequent n
records contains:

bond key a4 potential key, see Table 5.8
index 1 (i) integer first atomic site index in bond
index 2 (j) integer second atomic site index in bond
variable 1 real potential parameter, see Table 5.8
variable 2 real potential parameter, see Table 5.8
variable 3 real potential parameter, see Table 5.8
variable 4 real potential parameter, see Table 5.8

The meaning of these variables is given in Table 5.8.

This directive (and associated data records) need not be specified if the molecule contains
no flexible chemical bonds. See the note on the atomic indices appearing under the shell
directive above.

10. angles n
where n is the number of valence angle bonds in the molecule. Each of the n records following
contains:

angle key a4 potential key, see Table 5.9
index 1 (i) integer first atomic site index
index 2 (j) integer second atomic site index (central site)
index 3 (k) integer third atomic site index
variable 1 real potential parameter, see Table 5.9
variable 2 real potential parameter, see Table 5.9
variable 3 real potential parameter, see Table 5.9
variable 4 real potential parameter, see Table 5.9

139

c©STFC Section 5.1

Table 5.8: Chemical Bond Potentials

key potential type Variables (1-4) functional form

harm Harmonic k r0 U(r) = 1
2 k (rij − r0)2

-hrm

mors Morse E0 r0 k U(r) = E0 [{1− exp(−k (rij − r0))}2 − 1]
-mrs

12-6 12-6 A B U(r) =

(
A
r12ij

)
−
(

B
r6ij

)
-126

lj Lennard-Jones ε σ U(r) = 4ε

[(
σ
rij

)12
−
(

σ
rij

)6]
-lj

rhrm Restraint k r0 rc U(r) = 1
2 k (rij − r0)2 : |rij − r0| ≤ rc

-rhm U(r) = 1
2 k r

2
c + k rc(|rij − r0| − rc) : |rij − r0| > rc

quar Quartic k r0 k′ k′′ U(r) = k
2 (rij − r0)2 + k′

3 (rij − r0)3
-qur +k′′

4 (rij − r0)4

buck Buckingham A ρ C U(r) = A exp
(
− rij

ρ

)
− C

r6ij

-bck

coul Coulomb k U(r) = k · UElectrostatics(rij)
(
= k

4πε0ε
qiqj
rij

)
-cul

fene Shifted∗ FENE k Ro ∆ U(r) = −0.5 k Ro ln

[
1−

(
rij−∆
R2

o

)2]
: rij < Ro +∆

-fne U(r) =∞ : rij ≥ Ro +∆

∗ Note: ∆ defaults to zero if |∆| > 0.5 Ro or if it is not specified in the FIELD file.
Note: Bond potentials with a dash (-) as the first character of the keyword, do not contribute to
the excluded atoms list (see Section 2). In this case DL POLY 4 will also calculate the non-bonded
pair potentials between the described atoms, unless these are deactivated by another potential
specification.

140

c©STFC Section 5.1

The meaning of these variables is given in Table 5.9.

This directive (and associated data records) need not be specified if the molecule contains no
angular terms. See the note on the atomic indices appearing under the shell directive above.

11. dihedrals n
where n is the number of dihedral interactions present in the molecule. Each of the following
n records contains:

dihedral key a4 potential key, see Table 5.10
index 1 (i) integer first atomic site index
index 2 (j) integer second atomic site index (central site)
index 3 (k) integer third atomic site index
index 4 (l) integer fourth atomic site index
variable 1 real first potential parameter, see Table 5.10
variable 2 real second potential parameter, see Table 5.10
variable 3 real third potential parameter, see Table 5.10
variable 4 real 1-4 electrostatic interaction scale factor
variable 5 real 1-4 van der Waals interaction scale factor
variable 6 real fourth potential parameter, see Table 5.10
variable 7 real fifth potential parameter, see Table 5.10

The meaning of the variables 1-3,6-7 is given in Table 5.10. The variables 4 and 5 specify the
scaling factor for the 1-4 electrostatic and van der Waals non-bonded interactions respectively.

This directive (and associated data records) need not be specified if the molecule contains no
dihedral angle terms. See the note on the atomic indices appearing under the shell directive
above.

12. inversions n
where n is the number of inversion interactions present in the molecule. Each of the following
n records contains:

inversion key a4 potential key, see Table 5.11
index 1 (i) integer first atomic site index (central site)
index 2 (j) integer second atomic site index
index 3 (k) integer third atomic site index
index 4 (l) integer fourth atomic site index
variable 1 real potential parameter, see Table 5.11
variable 2 real potential parameter, see Table 5.11
variable 3 real potential parameter, see Table 5.11

The meaning of the variables 1-2 is given in Table 5.11.

This directive (and associated data records) need not be specified if the molecule contains no
inversion angle terms. See the note on the atomic indices appearing under the shell directive
above.

Note that the calcite potential is not dependent on an angle φ, but on a displacement u. See
section 2.2.8 for details.

141

c©STFC Section 5.1

Table 5.9: Valence Angle Potentials

key potential type Variables (1-4) functional form†

harm Harmonic k θ0 U(θ) = k
2 (θ − θ0)2

-hrm

quar Quartic k θ0 k′ k′′ U(θ) = k
2 (θ − θ0)2 + k′

3 (θ − θ0)
3 + k′′

4 (θ − θ0)4
-qur

thrm Truncated harmonic k θ0 ρ U(θ) = k
2 (θ − θ0)2 exp[−(r8ij + r8ik)/ρ

8]

-thm

shrm Screened harmonic k θ0 ρ1 ρ2 U(θ) = k
2 (θ − θ0)2 exp[−(rij/ρ1 + rik/ρ2)]

-shm

bvs1 Screened Vessal [36] k θ0 ρ1 ρ2 U(θ) = k
8(θ−π)2

{[
(θ0 − π)2 − (θ − π)2

]2}×
-bv1 exp[−(rij/ρ1 + rik/ρ2)]

bvs2 Truncated Vessal [37] k θ0 a ρ U(θ) = k (θ − θ0)2 [θa(θ + θ0 − 2π)2

-bv2 +a
2π

a−1(θ0 − π)3] exp[−(r8ij + r8ik)/ρ
8]

hcos Harmonic Cosine k θ0 U(θ) = k
2 (cos(θ)− cos(θ0))

2

-hcs

cos Cosine A δ m U(θ) = A [1 + cos(m θ − δ)]
-cos

mmsb MM3 stretch-bend [38] A θ0 roij rojk U(θ) = A (θ − θ0) (rij − roij) (rik − roik)
-msb

mmsb Compass [39] A roij rojk U(θ) = A (rij − roij) (rik − roik)
-msb stretch-stretch

mmsb Compass [39] A θ0 roij U(θ) = A (θ − θ0) (rij − roij)
-msb stretch-bend

mmsb Compass [39] A B C θ0 U(θ) = A (rij − roij) (rik − roik) + (θ − θ0)×
-msb all terms roij rojk [B (rij − roij) + C (rik − roik)]

†θ is the i-j-k angle.
Note: valence angle potentials with a dash (-) as the first character of the keyword, do not
contribute to the excluded atoms list (see Section 2). In this case DL POLY 4 will calculate the
non-bonded pair potentials between the described atoms.

142

c©STFC Section 5.1

Table 5.10: Dihedral Angle Potentials

key potential type Variables (1-3,6-7) functional form‡

cos Cosine A δ m U(φ) = A [1 + cos(mφ− δ)]

harm Harmonic k φ0 U(φ) = k
2 (φ− φ0)2

hcos Harmonic cosine k φ0 U(φ) = k
2 (cos(φ)− cos(φ0))

2

cos3 Triple cosine A1 A2 A3 U(φ) = 1
2 {A1 (1 + cos(φ)) +

A2 (1− cos(2φ)) +
A3 (1 + cos(3φ))}

ryck Ryckaert-Bellemans [41] A U(φ) = A {a+ b cos(φ) + c cos2(φ) +
d cos3(φ) + e cos4(φ) + f cos5(φ)}

rbf Fluorinated Ryckaert- A U(φ) = A {a+ b cos(φ) + c cos2(φ) +
Bellemans [42] d cos3(φ) + e cos4(φ) + f cos5(φ)) +

g exp(−h(φ− π)2))}

opls OPLS torsion A0 A1 A2 U(φ) = A0 +
1
2 {A1 (1 + cos(φ− φ0)) +

A3 φ0 A2 (1− cos(2(φ− φ0))) +
A3 (1 + cos(3(φ− φ0)))}

‡φ is the i-j-k-l dihedral angle.

Table 5.11: Inversion Angle Potentials

key potential type Variables (1-3) functional form‡

harm Harmonic k φ0 U(φ) = k
2 (φ− φ0)2

hcos Harmonic cosine k φ0 U(φ) = k
2 (cos(φ)− cos(φ0))

2

plan Planar A U(φ) = A [1− cos(φ)]

xpln Extended planar k m φ0 U(φ) = k
2 [1− cos(m φ− φ0)]

calc Calcite A B U(u) = Au2 +Bu4

‡φ is the i-j-k-l inversion angle.

143

c©STFC Section 5.1

13. finish
This directive is entered to signal to DL POLY 4 that the entry of the details of a molecule
has been completed.

The entries for a second molecule may now be entered, beginning with the name-of-molecule
record and ending with the finish directive.

The cycle is repeated until all the types of molecules indicated by the molecules directive
have been entered.

The user is recommended to look at the example FIELD files in the data directory to see how
typical FIELD files are constructed.

Non-bonded Interactions

Non-bonded interactions are identified by atom types as opposed to specific atomic indices. The
following different types of non-bonded potentials are available in DL POLY 4; vdw - van der
Waals pair, metal - metal, tersoff - Tersoff, tbp - three-body and fbp - four-body. Each of these
types is specified by a specific keyword as described bellow.

1. vdw n
where n is the number of pair potentials to be entered. It is followed by n records, each
specifying a particular pair potential in the following manner:

atmnam 1 a8 first atom type
atmnam 2 a8 second atom type
key a4 potential key, see Table 5.12
variable 1 real potential parameter, see Table 5.12
variable 2 real potential parameter, see Table 5.12
variable 3 real potential parameter, see Table 5.12
variable 4 real potential parameter, see Table 5.12
variable 5 real potential parameter, see Table 5.12

The variables pertaining to each potential are described in Table 5.12.

Note that any pair potential not specified in the FIELD file, will be assumed to be zero.

2. metal n
where n is the number of metal potentials to be entered. It is followed by n records, each
specifying a particular metal potential in the following manner:

atmnam 1 a8 first atom type
atmnam 2 a8 second atom type
key a4 potential key, see Table 5.13
variable 1 real potential parameter, see Table 5.13
variable 2 real potential parameter, see Table 5.13
variable 3 real potential parameter, see Table 5.13
variable 4 real potential parameter, see Table 5.13
variable 5 real potential parameter, see Table 5.13
variable 6 real potential parameter, see Table 5.13

144

c©STFC Section 5.1

Table 5.12: Pair Potentials

key potential type Variables (1-5) functional form

tab Tabulation tabulated potential

12-6 12-6 A B U(r) =
(

A
r12

)
−
(
B
r6

)
lj Lennard-Jones ε σ U(r) = 4ε

[(
σ
r

)12 − (σr)6]
nm n-m Eo n m r0 U(r) = Eo

(n−m)

[
m
(
ro
r

)n − n (ror)m]
buck Buckingham A ρ C U(r) = A exp

(
− r

ρ

)
− C

r6

bhm Born-Huggins A B σ C D U(r) = A exp[B(σ − r)]− C
r6
− D

r8

-Meyer

hbnd 12-10 H-bond A B U(r) =
(

A
r12

)
−
(

B
r10

)
snm Shifted force† Eo n m r0 rc

‡ U(r) = αEo
(n−m)×

n-m [45]
[
mβn

{(
ro
r

)n − (1
γ

)n}
− nβm

{(
ro
r

)m − (1
γ

)m}]
+nmαEo

(n−m)

(
r−γro
γro

){(
β
γ

)n
−
(
β
γ

)m}
mors Morse E0 r0 k U(r) = E0[{1− exp(−k(r − r0))}2 − 1]

wca Shifted∗ Weeks- ε σ ∆ U(r) = 4ε

[(
σ

r−∆

)12
−
(

σ
r−∆

)6]
+ ε : rij < 2

1
6 σ +∆

Chandler-Anderson U(r) = 0 : rij ≥ 2
1
6 σ +∆

† Note: in this formula the terms α, β and γ are compound expressions involving the variables
Eo, n,m, r0 and rc. See Section 2.3.1 for further details.
‡ Note: rc defaults to the general van der Waals cutoff (rvdw or rcut) if it is set to zero or not
specified in the FIELD file.
∗ Note: ∆ defaults to zero if |∆| > 0.5 σ or it is not specified in the FIELD file.

145

c©STFC Section 5.1

variable 7 real potential parameter, see Table 5.13
variable 8 real potential parameter, see Table 5.13
variable 9 real potential parameter, see Table 5.13

The variables pertaining to each potential are described in Table 5.13.

Table 5.13: Metal Potential

key potential type Variables (1-5,6-9) functional form

eam EAM tabulated potential

fnsc Finnis-Sinclair c0 c1 c2 c A Ui(r) =
1
2

∑
j 6=i

(rij − c)2(c0 + c1rij + c2r
2
ij)−A

√
ρi

d β ρi =
∑
j 6=i

[
(rij − d)2 + β

(rij−d)3

d

]
exfs Extended c0 c1 c2 c3 c4 Ui(r) =

1
2

∑
j 6=i

(rij − c)2(c0 + c1rij + c2r
2
ij + c3r

3
ij + c4r

4
ij)

Finnis-Sinclair c A d B −A√ρi , ρi =
∑
j 6=i

[
(rij − d)2 +B2(rij − d)4

]

stch Sutton-Chen ε a n m c Ui(r) = ε

[
1
2

∑
j 6=i

(
a
rij

)n
− c√ρi

]
ρi =

∑
j 6=i

(
a
rij

)m
gupt Gupta A r0 p B qij Ui(r) =

1
2

∑
j 6=i

A exp
(
−p rij−r0

r0

)
−B√ρi

ρi =
∑
j 6=i

exp
(
−2qij rij−r0

r0

)

3. rdf n
where n is the number of RDF pairs to be entered. It is followed by n records, each specifying
a particular RDF pair in the following manner:

atmnam 1 a8 first atom type
atmnam 2 a8 second atom type

By default in DL POLY Classic and DL POLY 4 every vdw and met potential specifies an
RDF pair. If the control option rdf f is specified in the CONTROL file then all pairs de-
fined in vdw and/or met potentials sections will also have their RDF calculated. The user
has two choices to enable the calculation of RDFs in systems with force fields that do not
have vdw and/or met potentials: (i) to define fictitious potentials with zero contributions
or (ii) to use rdf n option - which not only provides a neater way for specification of RDF
pairs but also better memory efficiency since DL POLY 4 will not allocate (additional) po-
tential arrays for fictitious interactions that will not be used. (This option is not available in
DL POLY Classic.)

146

c©STFC Section 5.1

Note that rdf and vdw/met are not complementary - i.e. if the former is used in FILED
none of the pairs defined by the latter will be considered for RDF calculations.

The selected RDFs are calculated in the rdf collect and rdf excl collect by collect-
ing distance information from all two-body pairs as encountered in the Verlet neighbour
list created in the link cell pairs routine within the two body forces routine. In the
construction of the Verlet neighbour list, pairs of particles (part of the exclusion list) are
excluded. The exclusion list contains particles that are part of:

• core-shell units

• bond constraints

• chemical bonds, that are NOT distance restraints

• valence angles, that are NOT distance restraints

• dihedrals

• inversions

• frozen particles

RDF pairs containing type(s) of particles that fall in this list will be polluted. However, there
are many ways to overcome such effects.

4. tersoff n
where n is the number of specified Tersoff potentials. It is followed by 2n records specifying n
particular Tersoff single atom type parameters and n(n+ 1)/2 records specifying cross atom
type parameters in the following manner:

potential 1 : record 1
atmnam a8 atom type
key a4 potential key, see Table 5.14
variable 1 real potential parameter, see Table 5.14
variable 2 real potential parameter, see Table 5.14
variable 3 real potential parameter, see Table 5.14
variable 4 real potential parameter, see Table 5.14
variable 5 real cutoff range for this potential (Å) 5.14

potential 1 : record 2
variable 6 real potential parameter, see Table 5.14
variable 7 real potential parameter, see Table 5.14
variable 8 real potential parameter, see Table 5.14
variable 9 real potential parameter, see Table 5.14
variable 10 real potential parameter, see Table 5.14
variable 11 real potential parameter, see Table 5.14
...
...

potential n : record 2n− 1
...

potential n : record 2n
...

cross term 1 : record 2n+ 1
atmnam 1 a8 first atom type
atmnam 2 a8 second atom type

147

c©STFC Section 5.1

variable a real potential parameter, see Table 5.14
variable b real potential parameter, see Table 5.14
variable c real potential parameter, see Table 5.14
...
...

cross term n(n+ 1)/2 : record 2n+ n(n+ 1)/2
...

The variables pertaining to each potential are described in Table 5.14.

Note that the fifth variable is the range at which the particular tersoff potential is truncated.
The distance is in Å.

Table 5.14: Tersoff Potential

key potential type Variables (1-5,6-11,a-c) functional form

ters Tersoff A a B b R Potential form
(single) S β η c d h as shown in

Section
(cross) χ ω δ 2.3.3

5. tbp n
where n is the number of three-body potentials to be entered. It is followed by n records,
each specifying a particular three-body potential in the following manner:

atmnam 1 (i) a8 first atom type
atmnam 2 (j) a8 second (central) atom type
atmnam 3 (k) a8 third atom type
key a4 potential key, see Table 5.15
variable 1 real potential parameter, see Table 5.15
variable 2 real potential parameter, see Table 5.15
variable 3 real potential parameter, see Table 5.15
variable 4 real potential parameter, see Table 5.15
variable 5 real cutoff range for this potential (Å)

The variables pertaining to each potential are described in Table 5.15.

Note that the fifth variable is the range at which the three body potential is truncated. The
distance is in Å, measured from the central atom.

6. fbp n
where n is the number of four-body potentials to be entered. It is followed by n records, each
specifying a particular four-body potential in the following manner:

atmnam 1 (i) a8 first (central) atom type
atmnam 2 (j) a8 second atom type
atmnam 3 (k) a8 third atom type

148

c©STFC Section 5.1

Table 5.15: Three-body Potentials

key potential type Variables (1-4) functional form†

harm Harmonic k θ0 U(θ) = k
2 (θ − θ0)2

thrm Truncated harmonic k θ0 ρ U(θ) = k
2 (θ − θ0)2 exp[−(r8ij + r8ik)/ρ

8]

shrm Screened harmonic k θ0 ρ1 ρ2 U(θ) = k
2 (θ − θ0)2 exp[−(rij/ρ1 + rik/ρ2)]

bvs1 Screened Vessal [36] k θ0 ρ1 ρ2 U(θ) = k
8(θ−θ0)2

{[
(θ0 − π)2 − (θ − π)2

]2}×
exp[−(rij/ρ1 + rik/ρ2)]

bvs2 Truncated Vessal [37] k θ0 a ρ U(θ) = k (θ − θ0)2 [θa(θ − θ0)2(θ + θ0 − 2π)2

+a
2π

a−1(θ0 − π)3] exp[−(r8ij + r8ik)/ρ
8]

hbnd H-bond [19] Dhb Rhb U(θ) = Dhb cos4(θ)×
[5(Rhb/rjk)

12 − 6(Rhb/rjk)
10]

†θ is the i-j-k angle.

atmnam 4 (l) a8 fourth atom type
key a4 potential key, see Table 5.16
variable 1 real potential parameter, see Table 5.16
variable 2 real potential parameter, see Table 5.16
variable 3 real cutoff range for this potential (Å)

The variables pertaining to each potential are described in Table 5.16.

Note that the third variable is the range at which the four-body potential is truncated. The
distance is in Å, measured from the central atom.

Table 5.16: Four-body Potentials

key potential type Variables (1-2) functional form‡

harm Harmonic k φ0 U(φ) = k
2 (φ− φ0)2

hcos Harmonic cosine k φ0 U(φ) = k
2 (cos(φ)− cos(φ0))

2

plan Planar A U(φ) = A [1− cos(φ)]

‡φ is the i-j-k-l four-body angle.

149

c©STFC Section 5.1

5.1.3.3 External Field

The presence of an external field is flagged by the directive:

extern

The following line in the FIELD file must contain another directive indicating what type of field
is to be applied, followed by the field parameters. The variables pertaining to each field potential
are described in Table 5.17.

Note: only one type of field can be applied at a time.

Note that external force parameters are read in terms of the specified energy units and the general
DL POLY units so that the two sides of the equation defining the field are balanced.

Table 5.17: External Fields

key potential type Variables (1-4) functional form†

elec Electric Field Ex Ey Ez F = q E

oshr Oscillating Shear A n F x = A cos(2nπ z/Lz)

shrx Continuous Shear A z0 vx = A
2
|z|
z : |z| > z0

grav Gravitational Field Gx Gy Gz F = m G

magn Magnetic Field Hx Hy Hz F = q (v ×H)

sphr Containing Sphere A R0 n Rcut F = A (R0 − r)−n : r > Rcut

zbnd Repulsive Wall A z0 p F = A (z0 − z) : p z > p z0

5.1.3.4 Closing the FIELD File

The FIELD file must be closed with the directive:

close
which signals the end of the force field data. Without this directive DL POLY 4 will abort.

5.1.4 The REFERENCE File

The REFERENCE has the same format and structure as CONFIG (see Section 5.1.2) file with
the exception that imcon MUST BE 6= 0. REFERENCE may contain more or less particles than
CONFIG does and may have particles whith identities that are not defined in FIELD (see Section
5.1.3). The positions of these particles are used to define the crystalline lattice sites to whitch the
particles in CONFIG compare during simulation when the defect detection option, defects, is used.
REFERENCE is read by the subroutine defects reference read.

150

c©STFC Section 5.1

5.1.5 The REVOLD File

This file contains statistics arrays from a previous job. It is not required if the current job is not
a continuation of a previous run (i.e. if the restart directive is not present in the CONTROL file
- see above). The file is unformatted and therefore not human readable. DL POLY 4 normally
produces the file REVIVE (see Section 5.2.8) at the end of a job which contains the statistics data.
REVIVE should be copied to REVOLD before a continuation run commences. This may be done
by the copy macro supplied in the execute sub-directory of DL POLY 4.

5.1.5.1 Format

The REVOLD file is unformatted. All variables appearing are written in native working precision
(see Section 4.3.5) real representation. Nominally, integer quantities (e.g. the timestep number
nstep) are represented by the nearest real number. The contents are as follows (the dimensions
of array variables are given in brackets, in terms of parameters from the setup module file - see
Section 6.2.8).

record 1:
nstep timestep of final configuration
numacc number of configurations used in averages
numrdf number of configurations used in RDF averages
numzdn number of configurations used in Z-density averages
time elapsed simulation time
tmst elapsed simulation before averages were switched on
chit thermostat related quantity (first)
chip barostat related quantity
cint thermostat related quantity (second)

record 2:
eta scaling factors for simulation cell matrix elements (9)

record 3:
stpval instantaneous values of thermodynamic variables (mxnstk)

record 4:
sumval average values of thermodynamic variables (mxnstk)

record 5:
ssqval fluctuation (squared) of thermodynamic variables (mxnstk)

record 6:
zumval running totals of thermodynamic variables (mxnstk)

record 7:
ravval rolling averages of thermodynamic variables (mxnstk)

record 8:
stkval stacked values of thermodynamic variables (mxstak×mxnstk)

record 9:
strcon constraint bond stress (9)

record 10:
strpmf PMF constraint stress (9)

record 11:
stress atomic stress (9)

record 12: (Optional)
rdf RDF array (mxgrdf×mxrdf)

151

c©STFC Section 5.1

record 13: (Optional)
zdens Z-density array (mxgrdf×mxatyp)

5.1.5.2 Further Comments

Note that different versions of DL POLY 4 may have a different order of the above parameters or
include more or less such. Therefore a different versions of DL POLY 4 may render any existing
REVOLD file unreadable by the code.

5.1.6 The TABLE File

The TABLE file provides an alternative way of reading in the short range potentials - in tabular
form. This is particularly useful if an analytical form of the potential does not exist or is too
complicated to specify in the vdw generate subroutine. The table file is read by the subroutine
vdw table read (see Chapter 6).

The option of using tabulated potentials is specified in the FIELD file (see above). The specific
potentials that are to be tabulated are indicated by the use of the tab keyword on the record
defining the short range potential (see Table 5.12).

5.1.6.1 The TABLE File Format

The file is free-formatted but blank and commented lines are not allowed.

5.1.6.2 Definitions of Variables

record 1
header a100 file header

record 2
delpot real mesh resolution in Å (delpot = cutpot

ngrid−4)

cutpot real cutoff used to define tables in Å
ngrid integer number of grid points in tables

The subsequent records define each tabulated potential in turn, in the order indicated by the
specification in the FIELD file. Each potential is defined by a header record and a set of data
records with the potential and force tables.

header record:
atom 1 a8 first atom type
atom 2 a8 second atom type

potential data records: (number of data records = Int((ngrid+3)/4))
data 1 real data item 1
data 2 real data item 2
data 3 real data item 3
data 4 real data item 4

force data records: (number of data records = Int((ngrid+3)/4))

152

c©STFC Section 5.1

data 1 real data item 1
data 2 real data item 2
data 3 real data item 3
data 4 real data item 4

5.1.6.3 Further Comments

It should be noted that the number of grid points in the TABLE file should not be less than the
number of grid points DL POLY 4 is expecting. (This number is given by the parameter mxgrid
calculated in the setup module file - see Section 4.2.1.3 and 6.2.8.) DL POLY 4 will re-interpolate
the tables if ngrid>mxgrid, but will abort if ngrid<mxgrid.

The potential and force tables are used to fill the internal arrays vvdw and gvdw respectively (see
Section 2.3.1). The contents of force arrays are derived from the potential via the formula:

G(r) = −r ∂
∂r
U(r) . (5.8)

Note, this is not the same as the true force.

During simulation, interactions beyond distance Min(rcut, cutpot) are discarded.

5.1.7 The TABEAM File

The TABEAM file contains the tabulated potential functions (no explicit analytic form) describing
the EAMmetal interactions in the MD system. This file is read by the subroutinemetal table read
(see Chapter 6).

The EAM potential for an n component metal alloy requires the specification of n electron density
functions (one for each atom type) and n embedding functions (again one for each atom type) and
n(n+1)/2 cross pair potential functions. This makes n(n+5)/2 functions in total. Note that the
option of using EAM interactions must also be explicitly declared in the FIELD file so that for the
n component alloy there are n(n+ 1)/2 cross pair potential (eam) keyword entries in FIELD (see
above). (Note that all metal interactions must be of the same type!)

5.1.7.1 The TABEAM File Format

The file is free-formatted but blank and commented lines are not allowed.

5.1.7.2 Definitions of Variables

record 1
header a100 file header

record 2
numpot integer number of potential functions in file

The subsequent records define the n(n + 5)/2 functions for an n component alloy - n electron
density functions (one for each atom type) - density keyword, n embedding functions (again one
for each atom type) - embeding keyword, and n(n + 1)/2 cross pair potential functions - pairs

153

c©STFC Section 5.2

keyword. The functions may appear in any random order in TABEAM as their identification is
based on their unique keyword, defined first in the function’s header record. The header record is
followed by predefined number of data records as a maximum of four data per record are
read in - allowing for incompletion of the very last record.

header record:
keyword a4 type of EAM function: dens, embed or pair
atom 1 a8 first atom type
atom 2 a8 second atom type - only specified for pair potential functions
ngrid integer number of function data points to read in
limit 1 real lower interpolation limit in Å for dens and pair

or in density units for embed
limit 2 real upper interpolation limit in Å for dens and pair

or in density units for embed
function data records: (number of data records = Int((ngrid+3)/4))
data 1 real data item 1
data 2 real data item 2
data 3 real data item 3
data 4 real data item 4

5.1.7.3 Further Comments

The tabled data are used to fill the internal arrays gmet, fmet and vmet respectively (see Sec-
tion 2.3.2). The force arrays are generated from these (by the metal table derivatives rou-
tine) using a five point interpolation precedure. During simulation, interactions beyond distance
Min(rcut, limit2) are discarded, whereas interactions at distances shorter than limit 1 will cause
the simulation to abort. The simulation will also abort if any local density exceeds the limits for
the embedding function.

5.2 The OUTPUT Files

DL POLY 4 produces up to ten output files: HISTORY, DEFECTS, MSDTMP, CFGMIN, OUT-
PUT, REVCON, REVIVE, RDFDAT, ZDNDAT and STATIS. These respectively contain: an
incremental dump file of all atomic coordinates, velocities and forces; an incremental dump file of
atomic coordinates of defected particles (interstitials) and sites (vacancies); an incremental dump
file of of individual atomic mean square displacement and temperature; a dump file of all atomic
coordinates of a minimised structure; an incremental summary file of the simulation; a restart
(final) configuration file; a restart (final) statistics accumulators file; a radial distribution data file;
Z-density data file and a statistical history file.

5.2.1 The HISTORY File

The HISTORY file is the dump file of atomic coordinates, velocities and forces. Its principal
use is for off-line analysis. The file is written by the subroutine trajectory write. The control
variables for this file are ltraj, nstraj, istraj and keytrj which are created internally, based on
information read from the traj directive in the CONTROL file (see Section 5.1.1). The HISTORY
file will be created only if the directive traj appears in the CONTROL file.

154

c©STFC Section 5.2

The HISTORY file can become very large, especially if it is formatted. For serious simulation work
it is recommended that the file be written to a scratch disk capable of accommodating a large
data file. Alternatively, the file may be written in netCDF format instead of in ASCII (users must
change ensure this functionality is available), which has the additional advantage of speed.

The HISTORY has the following structure:

record 1
header a72 file header

record 2
keytrj integer trajectory key (see Table 5.1) in last frame
imcon integer periodic boundary key (see Table 5.6) in last frame
megatm integer number of atoms in simulation cell in last frame
frame integer number configuration frames in file
records integer number of records in file

For timesteps greater than nstraj the HISTORY file is appended at intervals specified by the traj
directive in the CONTROL file, with the following information for each configuration:

record i
timestep a8 the character string “timestep”
nstep integer the current time-step
megatm integer number of atoms in simulation cell (again)
keytrj integer trajectory key (again)
imcon integer periodic boundary key (again)
tstep real integration timestep (ps)
time real elapsed simulation time (ps)

record ii
cell(1) real x component of a cell vector
cell(2) real y component of a cell vector
cell(3) real z component of a cell vector

record iii
cell(4) real x component of b cell vector
cell(5) real y component of b cell vector
cell(6) real z component of b cell vector

record iv
cell(7) real x component of c cell vector
cell(8) real y component of c cell vector
cell(9) real z component of c cell vector

This is followed by the configuration for the current timestep. i.e. for each atom in the system the
following data are included:

record a
atmnam a8 atomic label
iatm integer atom index
weight real atomic mass (a.m.u.)
charge real atomic charge (e)

155

c©STFC Section 5.2

rsd real displacement from position at t = 0 (Å)
record b
xxx real x coordinate
yyy real y coordinate
zzz real z coordinate

record c only for keytrj > 0
vxx real x component of velocity
vyy real y component of velocity
vzz real z component of velocity

record d only for keytrj > 1
fxx real x component of force
fyy real y component of force
fzz real z component of force

Thus the data for each atom is a minimum of two records and a maximum of 4.

5.2.2 The MSDTMP File

The MSDTMP file is the dump file of individual atomic mean square displacements (square roots
in Å) and mean square temperature (square roots in Kelvin). Its principal use is for off-line
analysis. The file is written by the subroutine msd write. The control variables for this file are
l msd, nstmsd, istmsd which are created internally, based on information read from themsdtmp
directive in the CONTROL file (see Section 5.1.1). The MSDTMP file will be created only if the
directive msdtmp appears in the CONTROL file.

The MSDTMP file can become very large, especially if it is formatted. For serious simulation work
it is recommended that the file be written to a scratch disk capable of accommodating a large data
file.

The MSDTMP has the following structure:

record 1
header a52 file header

record 2
megatm integer number of atoms in simulation cell in last frame
frame integer number configuration frames in file
records integer number of records in file

For timesteps greater than nstmsd the MSDTMP file is appended at intervals specified by the
msdtmp directive in the CONTROL file, with the following information for each configuration:

record i
timestep a8 the character string “timestep”
nstep integer the current time-step
megatm integer number of atoms in simulation cell (again)
tstep real integration timestep (ps)
time real elapsed simulation time (ps)

156

c©STFC Section 5.2

This is followed by the configuration for the current timestep. i.e. for each atom in the system the
following data are included:

record a
atmnam a8 atomic label
iatm integer atom index√
MSD(t) real square root of the atomic mean square displacements (in Å)

Tmean real atomic mean temperature (in Kelvin)

5.2.3 The DEFECTS File

The DEFECTS file is the dump file of atomic coordinates of defects (see Section 5.1.4). Its princi-
pal use is for off-line analysis. The file is written by the subroutine defects write. The control
variables for this file are ldef, nsdef, isdef and rdef which are created internally, based on in-
formation read from the defects directive in the CONTROL file (see Section 5.1.1). The DEFECTS
file will be created only if the directive defects appears in the CONTROL file.

The DEFECTS file may become very large, especially if it is formatted. For serious simulation
work it is recommended that the file be written to a scratch disk capable of accommodating a large
data file.

The DEFECTS has the following structure:

record 1
header a72 file header

record 2
rdef real site-interstitial cutoff (Å) in last frame
frame integer number configuration frames in file
records integer number of records in file

For timesteps greater than nsdef the DEFECTS file is appended at intervals specified by the
defects directive in the CONTROL file, with the following information for each configuration:

record i
timestep a8 the character string “timestep”
nstep integer the current time-step
tstep real integration timestep (ps)
time real elapsed simulation time (ps)
imcon integer periodic boundary key (see Table 5.6)
rdef real site-interstitial cutoff (Å)

record ii
defects a7 the character string “defects”
ndefs integer the total number of defects
interstitials a13 the character string “interstitials”
ni integer the total number of interstitials
vacancies a9 the character string “vacancies”
nv integer the total number of vacancies

record iii
cell(1) real x component of a cell vector

157

c©STFC Section 5.2

cell(2) real y component of a cell vector
cell(3) real z component of a cell vector

record iv
cell(4) real x component of b cell vector
cell(5) real y component of b cell vector
cell(6) real z component of b cell vector

record v
cell(7) real x component of c cell vector
cell(8) real y component of c cell vector
cell(9) real z component of c cell vector

This is followed by the ni interstitials for the current timestep, as each interstitial has the following
data lines:

record a
atmnam a10 i atomic label from CONFIG
iatm integer atom index from CONFIG

record b
xxx real x coordinate
yyy real y coordinate
zzz real z coordinate

This is followed by the nv vacancies for the current timestep, as each vacancy has the following
data lines:

record a
atmnam a10 v atomic label from REFERENCE
iatm integer atom index from REFERENCE

record b
xxx real x coordinate from REFERENCE
yyy real y coordinate from REFERENCE
zzz real z coordinate from REFERENCE

5.2.4 The RSDDAT File

The RSDDAT file is the dump file of atomic coordinates of atoms that are displaced from their
original position at t = 0 farther than a preset cutoff. Its principal use is for off-line analysis. The
file is written by the subroutine rsd write. The control variables for this file are lrsd, nsrsd,

isrsd and rrsd which are created internally, based on information read from the displacements
directive in the CONTROL file (see Section 5.1.1). The RSDDAT file will be created only if the
directive defects appears in the CONTROL file.

The RSDDAT file may become very large, especially if it is formatted. For serious simulation work
it is recommended that the file be written to a scratch disk capable of accommodating a large data
file.

The RSDDAT has the following structure:

158

c©STFC Section 5.2

record 1
header a72 file header

record 2
rdef real displacement qualifying cutoff (Å) in last frame
frame integer number configuration frames in file
records integer number of records in file

For timesteps greater than nsrsd the RSDDAT file is appended at intervals specified by the dis-
placements directive in the CONTROL file, with the following information for each configuration:

record i
timestep a8 the character string “timestep”
nstep integer the current time-step
tstep real integration timestep (ps)
time real elapsed simulation time (ps)
imcon integer periodic boundary key (see Table 5.6)
rrsd real displacement qualifying cutoff (Å)

record ii
displacements a13 the character string “displacements”
nrsd integer the total number of displacements

record iii
cell(1) real x component of a cell vector
cell(2) real y component of a cell vector
cell(3) real z component of a cell vector

record iv
cell(4) real x component of b cell vector
cell(5) real y component of b cell vector
cell(6) real z component of b cell vector

record v
cell(7) real x component of c cell vector
cell(8) real y component of c cell vector
cell(9) real z component of c cell vector

This is followed by the nrsd displacements for the current timestep, as each atom has the following
data lines:

record a
atmnam a10 atomic label from CONFIG
iatm integer atom index from CONFIG
ratm real atom displacement from its position at t = 0

record b
xxx real x coordinate
yyy real y coordinate
zzz real z coordinate

159

c©STFC Section 5.2

5.2.5 The CFGMIN File

The CFGMIN file only appears if the user has selected the programmed minimisation option (di-
rective minimise (or optimise) in the CONTROL file). Its contents have the same format as the
CONFIG file (see section 5.1.2), but contains only atomic position data and will never contain ei-
ther velocity or force data (i.e. parameter levcfg is always zero). In addition, three extra numbers
appear on the end of the second line of the file:

1. an integer indicating the number of minimisation cycles required to obtain the structure,

2. the configuration energy of the minimised configuration expressed in DL POLY 4 units 1.3.7,
and

3. the configuration energy of the initial structure expressed in DL POLY 4 units 1.3.7.

5.2.6 The OUTPUT File

The job output consists of 7 sections: Header; Simulation control specifications; Force field specifi-
cation; System specification; Summary of the initial configuration; Simulation progress; Sample of
the final configuration; Summary of statistical data; and Radial distribution functions and Z-density
profile. These sections are written by different subroutines at various stages of a job. Creation of
the OUTPUT file always results from running DL POLY 4. It is meant to be a human readable
file, destined for hardcopy output.

5.2.6.1 Header

Gives the DL POLY 4 version number, the number of processors in use, the link-cell algorithm in
use and a title for the job as given in the header line of the input file CONTROL. This part of the
file is written from the subroutines dl poly , set bounds and read control.

5.2.6.2 Simulation Control Specifications

Echoes the input from the CONTROL file. Some variables may be reset if illegal values were
specified in the CONTROL file. This part of the file is written from the subroutine read control.

5.2.6.3 Force Field Specification

Echoes the FIELD file. A warning line will be printed if the system is not electrically neutral. This
warning will appear immediately before the non-bonded short-range potential specifications. This
part of the file is written from the subroutine read field.

5.2.6.4 System Specification

Echoes system name, periodic boundary specification, the cell vectors and volume, some initial esti-
mates of long-ranged corrections the energy and pressure (if appropriate), some concise information
on topology and degrees of freedom break-down list. This part of the file is written from the subrou-
tines scan config, check config, system init, report topology and set temperature.

160

c©STFC Section 5.2

5.2.6.5 Summary of the Initial Configuration

This part of the file is written from the main subroutine dl poly . It states the initial configuration
of (a maximum of) 20 atoms in the system. The configuration information given is based on the
value of levcfg in the CONFIG file. If levcfg is 0 (or 1) positions (and velocities) of the 20 atoms
are listed. If levcfg is 2 forces are also written out.

5.2.6.6 Simulation Progress

This part of the file is written by the DL POLY 4 root segment dl poly . The header line is
printed at the top of each page as:

--

step eng_tot temp_tot eng_cfg eng_src eng_cou eng_bnd eng_ang eng_dih eng_tet

time(ps) eng_pv temp_rot vir_cfg vir_src vir_cou vir_bnd vir_ang vir_con vir_tet

cpu (s) volume temp_shl eng_shl vir_shl alpha beta gamma vir_pmf press

--

The labels refer to :

line 1
step MD step number
eng tot total internal energy of the system
temp tot system temperature (in Kelvin)
eng cfg configurational energy of the system
eng src configurational energy due to short-range potential contributions
eng cou configurational energy due to electrostatic potential
eng bnd configurational energy due to chemical bond potentials
eng ang configurational energy due to valence angle and three-body potentials
eng dih configurational energy due to dihedral inversion and four-body potentials
eng tet configurational energy due to tethering potentials

line 2
time(ps) elapsed simulation time (in pico-seconds) since the beginning of the job
eng pv enthalpy of system
temp rot rotational temperature (in Kelvin)
vir cfg total configurational contribution to the virial
vir src short range potential contribution to the virial
vir cou electrostatic potential contribution to the virial
vir bnd chemical bond contribution to the virial
vir ang angular and three-body potentials contribution to the virial
vir con constraint bond contribution to the virial
vir tet tethering potential contribution to the virial

line 3
cpu (s) elapsed cpu time (in seconds) since the beginning of the job
volume system volume (in Å3)
temp shl core-shell temperature (in Kelvin)
eng shl configurational energy due to core-shell potentials
vir shl core-shell potential contribution to the virial

161

c©STFC Section 5.2

alpha angle between b and c cell vectors (in degrees)
beta angle between c and a cell vectors (in degrees)
gamma angle between a and b cell vectors (in degrees)
vir pmf PMF constraint contribution to the virial
press pressure (in kilo-atmospheres)

Note: The total internal energy of the system (variable tot energy) includes all contributions to
the energy (including system extensions due to thermostats etc.). It is nominally the conserved
variable of the system, and is not to be confused with conventional system energy, which is a sum
of the kinetic and configuration energies.

The interval for printing out these data is determined by the directive print in the CONTROL
file. At each time-step that printout is requested the instantaneous values of the above statistical
variables are given in the appropriate columns. Immediately below these three lines of output the
rolling averages of the same variables are also given. The maximum number of time-steps used to
calculate the rolling averages is controlled by the directive stack in file CONTROL (see above)
and listed as parameter mxstak in the setup module file (see Section 6.2.2). The default value is
mxstak = 100.

Energy Units

The energy unit for the energy and virial data appearing in the OUTPUT is defined by the units
directive appearing in the FIELD file. System energies are therefore read in units per MD cell.

Pressure Units

The unit of pressure is katms, irrespective of what energy unit is chosen.

5.2.6.7 Sample of Final Configuration

The positions, velocities and forces of the 20 atoms used for the sample of the initial configuration
(see above) are given. This is written by the main subroutine dl poly.

5.2.6.8 Summary of Statistical Data

This portion of the OUTPUT file is written from the subroutine statistics result. The number
of time-steps used in the collection of statistics is given. Then the averages over the production
portion of the run are given for the variables described in the previous section. The root mean
square variation in these variables follow on the next two lines. The energy and pressure units are
as for the preceding section.

Also provided in this section are estimates of the diffusion coefficient and the mean square displace-
ment for the different atomic species in the simulation. These are determined from a single time
origin and are therefore approximate. Accurate determinations of the diffusion coefficients can be
obtained using the msd utility program, which processes the HISTORY file (see DL POLY Classic
User Manual).

If an NPT (NσT) simulation is performed the OUTPUT file also provides the mean pressure (stress
tensor) and mean simulation cell vectors. In case when extended NσT ensembles are used then

162

c©STFC Section 5.2

further mean (x, y) plain area and mean surface tension are also displayed in the OUTPUT file.

5.2.6.9 Radial Distribution Functions

If both calculation and printing of radial distribution functions have been requested (by selecting
directives rdf and print rdf in the CONTROL file) radial distribution functions are printed out.
This is written from the subroutine rdf compute. First the number of time-steps used for the
collection of the histograms is stated. Then each pre-requested function is given in turn. For each
function a header line states the atom types (‘a’ and ‘b’) represented by the function. Then r, g(r)
and n(r) are given in tabular form. Output is given from 2 entries before the first non-zero entry
in the g(r) histogram. n(r) is the average number of atoms of type ‘b’ within a sphere of radius r
around an atom of type ‘a’. Note that a readable version of these data is provided by the RDFDAT
file (below).

5.2.6.10 Z-density Profile

If both calculation and printing of Z-density profiles has been requested (by selecting directives
zden and print zden in the CONTROL file Z-density profiles are printed out as the last part of
the OUTPUT file. This is written by the subroutine z density compute. First the number of
time-steps used for the collection of the histograms is stated. Then each function is given in turn.
For each function a header line states the atom type represented by the function. Then z, ρ(z)
and n(z) are given in tabular form. Output is given from Z = [−L/2, L/2] where L is the length of
the MD cell in the Z direction and ρ(z) is the mean number density. n(z) is the running integral
from −L/2 to z of (xy cell area)× ρ(s) ds. Note that a readable version of these data is provided
by the ZDNDAT file (below).

5.2.7 The REVCON File

This file is formatted and written by the subroutine revive. REVCON is the restart configuration
file. The file is written every ndump time steps in case of a system crash during execution and at
the termination of the job. A successful run of DL POLY 4 will always produce a REVCON file,
but a failed job may not produce the file if an insufficient number of timesteps have elapsed. ndump
is controlled by the directive dump in file CONTROL (see above) and listed as parameter ndump
in the setup module file (see Section 6.2.2). The default value is ndump = 1000. REVCON is
identical in format to the CONFIG input file (see Section 5.1.2). REVCON should be renamed
CONFIG to continue a simulation from one job to the next. This is done for you by the copy macro
supplied in the execute directory of DL POLY 4.

5.2.8 The REVIVE File

This file is unformatted and written by the subroutine system revive. It contains the accumu-
lated statistical data. It is updated whenever the file REVCON is updated (see previous section).
REVIVE should be renamed REVOLD to continue a simulation from one job to the next. This is
done by the copy macro supplied in the execute directory of DL POLY 4. In addition, to continue
a simulation from a previous job the restart keyword must be included in the CONTROL file.

The format of the REVIVE file is identical to the REVOLD file described in Section 5.1.5.

163

c©STFC Section 5.2

5.2.9 The RDFDAT File

This is a formatted file containing em Radial Distribution Function (RDF) data. Its contents are
as follows:

record 1
cfgname a72 configuration name

record 2
ntprdf integer number of different RDF pairs tabulated in file
mxgrdf integer number of grid points for each RDF pair

There follow the data for each individual RDF, i.e. ntprdf times. The data supplied are as follows:

first record
atname 1 a8 first atom name
atname 2 a8 second atom name

following records (mxgrdf records)
radius real interatomic distance (Å)
g(r) real RDF at given radius

Note the RDFDAT file is optional and appears when the print rdf option is specified in the
CONTROL file.

5.2.10 The ZDNDAT File

This is a formatted file containing the Z-density data. Its contents are as follows:

record 1
cfgname a72 configuration name

record 2
ntpatm integer number of unique atom types profiled in file
mxgrdf integer number of grid points in the Z-density function

There follow the data for each individual Z-density function, i.e. ntpatm times. The data supplied
are as follows:

first record
atname a8 unique atom name

following records (mxgrdf records)
z real distance in z direction (Å)
ρ(z) real Z-density at given height z

Note the ZDNDAT file is optional and appears when the print rdf option is specified in the
CONTROL file.

164

c©STFC Section 5.2

5.2.11 The STATIS File

The file is formatted, with integers as “i10” and reals as “e14.6”. It is written by the subroutine
statistics collect. It consists of two header records followed by many data records of statistical
data.

record 1
cfgname a72 configuration name

record 2
string a8 energy units

Data records
Subsequent lines contain the instantaneous values of statistical variables dumped from the array
stpval. A specified number of entries of stpval are written in the format “(1p,5e14.6)”. The
number of array elements required (determined by the parameter mxnstk in the setup module
file) is

mxnstk ≥ 27 + ntpatm (number of unique atomic sites) +

9 (stress tensor elements) +

9 (if constant pressure simulation requested) + 2 ∗mxatdm (if msdtmp option is used)

The STATIS file is appended at intervals determined by the stats directive in the CONTROL file.
The energy unit is as specified in the FIELD file with the units directive, and are compatible with
the data appearing in the OUTPUT file. The contents of the appended information is:

record i
nstep integer current MD time-step
time real elapsed simulation time
nument integer number of array elements to follow

record ii stpval(1) – stpval(5)
engcns real total extended system energy

(i.e. the conserved quantity)
temp real system temperature
engcfg real configurational energy
engsrc real short range potential energy
engcpe real electrostatic energy

record iii stpval(6) – stpval(10)
engbnd real chemical bond energy
engang real valence angle and 3-body potential energy
engdih real dihedral, inversion, and 4-body potential energy
engtet real tethering energy
enthal real enthalpy (total energy + PV)

record iv stpval(11) – stpval(15)
tmprot real rotational temperature
vir real total virial
virsrc real short-range virial
vircpe real electrostatic virial
virbnd real bond virial

record v stpval(16) – stpval(20)

165

c©STFC Section 5.2

virang real valence angle and 3-body virial
vircon real constraint bond virial
virtet real tethering virial
volume real volume
tmpshl real core-shell temperature

record vi stpval(21) – stpval(25)
engshl real core-shell potential energy
virshl real core-shell virial
alpha real MD cell angle α
beta real MD cell angle β
gamma real MD cell angle γ

record vii stpval(26) – stpval(27)
virpmf real PMF constraint virial
press real pressure

the next ntpatm entries
amsd(1) real mean squared displacement of first atom types
amsd(2) real mean squared displacement of second atom types
...
amsd(ntpatm) real mean squared displacement of last atom types

the next 9 entries for the stress tensor
stress(1) real xx component of stress tensor
stress(2) real xy component of stress tensor
stress(3) real xz component of stress tensor
stress(4) real yx component of stress tensor
... real ...
stress(9) real zz component of stress tensor

the next 9 entries - if a NPT or NσT simulation is undertaken
cell(1) real x component of a cell vector
cell(2) real y component of a cell vector
cell(3) real z component of a cell vector
cell(4) real x component of b cell vector
... real ...
cell(9) real z component of c cell vector

166

Chapter 6

The DL POLY 4 Parallelisation and
Source Code

Scope of Chapter

This chapter we discuss the DL POLY 4 parallelisation strategy, describe the principles used in
the DL POLY 4 modularisation of the source code and list the file structure found in the source
subdirectory.

167

c©STFC Section 6.1

6.1 Parallelisation

DL POLY 4 is a distributed parallel molecular dynamics package based on the Domain Decom-
position parallelisation strategy [2, 3, 9, 10, 5, 6]. In this section we briefly outline the basic
methodology. Users wishing to add new features DL POLY 4 will need to be familiar with the
underlying techniques as they are described in the above references.

6.1.1 The Domain Decomposition Strategy

The Domain Decomposition (DD) strategy [2, 3, 5] is one of several ways to achieve parallelisation
in MD. Its name derives from the division of the simulated system into equi-geometrical spatial
blocks or domains, each of which is allocated to a specific processor of a parallel computer. I.e.
the arrays defining the atomic coordinates ri, velocities vi and forces f

i
, for all N atoms in the

simulated system, are divided in to sub-arrays of approximate size N/P , where P is the number of
processors, and allocated to specific processors. In DL POLY 4 the domain allocation is handled
by the routine domains module and the decision of approximate sizes of various bookkeeping
arrays in set bounds. The division of the configuration data in this way is based on the location
of the atoms in the simulation cell, such a geometric allocation of system data is the hallmark of
DD algorithms. Note that in order for this strategy to work efficiently, the simulated system must
possess a reasonably uniform density, so that each processor is allocated almost an equal portion of
atom data (as much as possible). Through this approach the forces computation and integration of
the equations of motion are shared (reasonably) equally between processors and to a large extent
can be computed independently on each processor. The method is conceptually simple though
tricky to program and is particularly suited to large scale simulations, where efficiency is highest.

The DD strategy underpinning DL POLY 4 is based on the link cell algorithm of Hockney and
Eastwood [71] as implemented by various authors (e.g. Pinches et al. [9] and Rapaport [10]).
This requires that the cutoff applied to the interatomic potentials is relatively short ranged. In
DL POLY 4 the link-cell list is build by the routine link cell pairs. As with all DD algorithms,
there is a need for the processors to exchange ‘halo data’, which in the context of link-cells means
sending the contents of the link cells at the boundaries of each domain, to the neighbouring pro-
cessors, so that each may have all necessary information to compute the pair forces acting on the
atoms belonging to its allotted domain. This in DL POLY 4 is handled by the set halo particles
routine.

Systems containing complex molecules present several difficulties. They often contain ionic species,
which usually require Ewald summation methods [22, 72], and intra-molecular interactions in ad-
dition to inter-molecular forces. Intramolecular interactions are handled in the same way as in
DL POLY Classic, where each processor is allocated a subset of intramolecular bonds to deal with.
The allocation in this case is based on the atoms present in the processor’s domain. The SHAKE
and RATTLE algorithms [61, 23] require significant modification. Each processor must deal with
the constraint bonds present in its own domain, but it must also deal with bonds it effectively shares
with its neighbouring processors. This requires each processor to inform its neighbours whenever it
updates the position of a shared atom during every SHAKE (RATTLE VV1) cycle (RATTLE VV2
updates the velocities), so that all relevant processors may incorporate this update into its own
iterations. In the case of the DD strategy the SHAKE (RATTLE) algorithm is simpler than for the
Replicated Data method of DL POLY Classic, where global updates of the atom positions (merging
and splicing) are required [73]. The absence of the merge requirement means that the DD tailored
SHAKE and RATTLE are less communications dependent and thus more efficient, particularly
with large processor counts.

168

c©STFC Section 6.1

The DD strategy is applied to complex molecular systems as follows:

1. Using the atomic coordinates ri, each processor calculates the forces acting between the atoms
in its domain - this requires additional information in the form of the halo data, which must
be passed from the neighbouring processors beforehand. The forces are usually comprised of:

(a) All common forms of non-bonded atom-atom (van der Waals) forces

(b) Atom-atom (and site-site) coulombic forces

(c) Metal-metal (local density dependent) forces

(d) Tersoff (local density dependent) forces (for hydro-carbons) [17]

(e) Three-body valence angle and hydrogen bond forces

(f) Four-body inversion forces

(g) Ion core-shell polarasation

(h) Tether forces

(i) Chemical bond forces

(j) Valence angle forces

(k) Dihedral angle (and improper dihedral angle) forces

(l) Inversion angle forces

(m) External field forces.

2. The computed forces are accumulated in atomic force arrays f
i
independently on each pro-

cessor

3. The force arrays are used to update the atomic velocities and positions of all the atoms in
the domain

4. Any atom which effectively moves from one domain to another, is relocated to the neighbour-
ing processor responsible for that domain.

It is important to note that load balancing (i.e. equal and concurrent use of all processors) is an
essential requirement of the overall algorithm. In DL POLY 4 this is accomplished quite naturally
through the DD partitioning of the simulated system. Note that this will only work efficiently if
the density of the system is reasonably uniform. There are no load balancing algorithms
in DL POLY 4 to compensate for a bad density distribution.

6.1.2 Distributing the Intramolecular Bonded Terms

The intramolecular terms in DL POLY 4 are managed through bookkeeping arrays which list all
atoms (sites) involved in a particular interaction and point to the appropriate arrays of parameters
that define the potential. Distribution of the forces calculations is accomplished by the following
scheme:

1. Every atom (site) in the simulated system is assigned a unique ‘global’ index number from 1
to N .

2. Every processor maintains a list of the local indices of the atoms in its domain. (This is the
local atom list.)

169

c©STFC Section 6.1

3. Every processor also maintains a sorted (in ascending order) local list of global atom indices
of the atoms in its domain. (This is the local sorted atom list.)

4. Every intramolecular bonded term Utype in the system has a unique index number itype: from
1 to Ntype where type represents a bond, angle, dihedral, or inversion. Also attached there
with unique index numbers are core-shell units, bond constraint units, PMF constraint units,
rigid body units and tethered atoms, their definition by site rather than by chemical type.

5. On each processor a pointer array keytype(ntype, itype) carries the indices of the specific atoms
involved in the potential term labelled itype . The dimension ntype will be 1 if the term
represents a tether, 1, 2 for a core-shell unit or a bond constraint unit or a bond, 1, 2, 3 for
a valence angle and 1, 2, 3, 4 for a dihedral or an inversion, 1, .., nPMF unit1 or 2 +1 for a PMF
constraint unit, or −1, 0, 1, .., nRB unit for a rigid body unit.

6. Using the key array, each processor can identify the global indices of the atoms in the bond
term and can use this in conjunction with the local sorted atoms list and a binary search
algorithm to find the atoms in local atom list.

7. Using the local atom identity, the potential energy and force can be calculated.

It is worth mentioning that although rigid body units are not bearing any potential parameters,
their definition requires that their topology is distributed in the same manner as the rest of the
intra-molecular like interactions.

Note that, at the start of a simulation DL POLY 4 allocates individual bonded interactions to spe-
cific processors, based on the domains of the relevant atoms (DL POLY 4 routine build book intra).
This means that each processor does not have to handle every possible bond term to find those
relevant to its domain. Also this allocation is updated as atoms move from domain to domain i.e.
during the relocation process that follows the integration of the equations of motion (DL POLY 4
routine relocate particles). Thus the allocation of bonded terms is effectively dynamic, chang-
ing in response to local changes.

6.1.3 Distributing the Non-bonded Terms

DL POLY 4 calculates the non-bonded pair interactions using the link cell algorithm due to Hock-
ney and Eastwood [71]. In this algorithm a relatively short ranged potential cutoff (rcut) is assumed.
The simulation cell is logically divided into so-called link cells, which have a width not less than (or
equal to) the cutoff distance. It is easy to determine the identities of the atoms in each link cell.
When the pair interactions are calculated it is already known that atom pairs can only interact if
they are in the same link cell, or are in link cells that share a common face. Thus using the link
cell ‘address’ of each atom, interacting pairs are located easily and efficiently via the ‘link list’ that
identifies the atoms in each link cell. So efficient is this process that the link list can be recreated
every time step at negligible cost.

For reasons, partly historical, the link list is used to construct a Verlet neighbour list [22]. The
Verlet list records the indices of all atoms within the cutoff radius (rcut) of a given atom. The use
of a neighbour list is not strictly necessary in the context of link-cells, but it has the advantage
here of allowing a neat solution to the problem of ‘excluded’ pair interactions arising from the
intramolecular terms and frozen atoms (see below).

In DL POLY 4, the neighbour list is constructed simultaneously on each node, using the DD adap-
tation of the link cell algorithm to share the total burden of the work reasonably equally between

170

c©STFC Section 6.1

nodes. Each node is thus responsible for a unique set of non-bonded interactions and the neighbour
list is therefore different on each node.

A feature in the construction of the Verlet neighbour list for macromolecules is the concept of
excluded atoms, which arises from the need to exclude certain atom pairs from the overall list. Which
atom pairs need to be excluded is dependent on the precise nature of the force field model, but as a
minimum atom pairs linked via extensible bonds or constraints and atoms (grouped in pairs) linked
via valence angles are probable candidates. The assumption behind this requirement is that atoms
that are formally bonded in a chemical sense, should not participate in non-bonded interactions.
(However, this is not a universal requirement of all force fields.) The same considerations are needed
in dealing with charged excluded atoms.

The modifications necessary to handle the excluded and frozen atoms are as follows. A distributed
excluded atoms list is constructed by the DL POLY 4 routine build excl intra at the start of the
simulation and is then used in conjunction with the Verlet neighbour list builder link cell pairs
to ensure that excluded interactions are left out of the pair force calculations. Note that, completely
frozen pairs of atoms are excluded in the same manner. The excluded atoms list is updated during
the atom relocation process described above (DL POLY 4 routine exchange particles).

Once the neighbour list has been constructed, each node of the parallel computer may pro-
ceed independently to calculate the pair force contributions to the atomic forces (see routine
two body forces).

The potential energy and forces arising from the non-bonded interactions, as well as metal and Ter-
soff interactions are calculated using interpolation tables. These are generated in the following rou-
tines: vdw generate, metal generate, metal table derivatives and tersoff generate.

6.1.4 Modifications for the Ewald Sum

For systems with periodic boundary conditions DL POLY 4 employs the Ewald Sum to calculate
the coulombic interactions (see Section 2.4.5). It should be noted that DL POLY 4 uses only the
Smoothed Particle Mesh (SPME) form of the Ewald sum.

Calculation of the real space component in DL POLY 4 employs the algorithm for the calculation of
the non-bonded interactions outlined above, since the real space interactions are now short ranged
(implemented in ewald real forces routine).

The reciprocal space component is calculated using Fast Fourier Transform (FFT) scheme of the
SMPE method [55, 74] as discussed in Section 2.4.5. The parallelisation of this scheme is entirely
handled within the DL POLY 4 by the 3D FFT routine parallel fft, (using gpfa module)
which is known as the Daresbury advanced Fourier Transform, due to I.J. Bush [75]. This routine
distributes the SPME charge array over the processors in a manner that is completely commensurate
with the distribution of the configuration data under the DD strategy. As a consequence the
FFT handles all the necessary communication implicit in a distributed SPME application. The
DL POLY 4 subroutine ewald spme forces perfoms the bulk of the FFT operations and charge
array construction, while spme forces calculates the forces.

Other routines required to calculate the Ewald sum include ewald module,
ewald excl forces,
ewald frozen forces and spme container.

171

c©STFC Section 6.1

6.1.5 Metal Potentials

The simulation of metals (2.3.2) by DL POLY 4 makes use of density dependent potentials. The
dependence on the atomic density presents no difficulty however, as this class of potentials can
be resolved into pair contributions. This permits the use of the distributed Verlet neighbour list
as outlined above. DL POLY 4 implements these potentials in various subroutines with names
beginning with metal .

6.1.6 Tersoff, Three-Body and Four-Body Potentials

DL POLY 4 can calculate Tersoff, three-body and four-body interactions. Although some of these
interactions have similar terms to some intramolecular ones (three-body to the bond angle and
four-body to inversion angle), these are not dealt with in the same way as the normal bonded
interactions. They are generally very short ranged and are most effectively calculated using a link-
cell scheme [71]. No reference is made to the Verlet neighbour list nor the excluded atoms list. It
follows that atoms involved these interactions can interact via non-bonded (pair) forces and ionic
forces also. Note that contributions from frozen pairs of atoms to these potentials are excluded. The
calculation of the Tersoff three-body and four-body terms is distributed over processors on the basis
of the domain of the central atom in them. DL POLY 4 implements these potentials in the following
routines tersoff forces, tersoff generate, three body forces and four body forces.

6.1.7 Globally Summed Properties

The final stage in the DD strategy, is the global summation of different (by terms of potentials)
contributions to energy, virial and sterss, which must be obtained as a global sum of the contributing
terms calculated on all nodes.

The DD strategy does not require a global summation of the forces, unlike the Replicated Data
method used in DL POLY Classic, which limits communication overheads and provides smooth
parallelisation to large processor counts.

6.1.8 The Parallel (DD tailored) SHAKE and RATTLE Algorithms

The essentials of the DD tailored SHAKE and RATTLE algorithms (see Section 3.2) are as follows:

1. The bond constraints acting in the simulated system are allocated between the processors,
based on the location (i.e. domain) of the atoms involved.

2. Each processor makes a list of the atoms bonded by constraints it must process. Entries are
zero if the atom is not bonded.

3. Each processor passes a copy of the array to the neighbouring processors which manage the
domains in contact with its own. The receiving processor compares the incoming list with its
own and keeps a record of the shared atoms and the processors which share them.

4. In the first stage of the algorithms, the atoms are updated through the usual Verlet algorithm,
without regard to the bond constraints.

5. In the second (iterative) stage of the algorithms, each processor calculates the incremental
correction vectors for the bonded atoms in its own list of bond constraints. It then sends

172

c©STFC Section 6.1

specific correction vectors to all neighbours that share the same atoms, using the information
compiled in step 3.

6. When all necessary correction vectors have been received and added the positions of the
constrained atoms are corrected.

7. Steps 5 and 6 are repeated until the bond constraints are converged.

8. Finally, the change in the atom positions from the previous time step is used to calculate the
atomic velocities.

The compilation of the list of constrained atoms on each processor, and the circulation of the list
(items 1 - 3 above) is done at the start of the simulation, but thereafter it needs only to be done
every time a constraint bond atom is relocated from one processor to another. In this respect
DD-SHAKE and DD-RATTLE resemble every other intramolecular term.

Since the allocation of constraints is based purely on geometric considerations, it is not practical
to arrange for a strict load balancing of the DD-SHAKE and DD-RATTLE algorithms. For many
systems, however, this deficiency has little practical impact on performance.

6.1.9 The Parallel Rigid Body Implementation

The essentials of the DD tailored RB algorithms (see Section 3.6) are as follows:

1. Every processor works out a list of all local and halo atoms that are qualified as free (zero
entry) or as members of a RB (unit entry.

2. The rigid body units in the simulated system are allocated between the processors, based on
the location (i.e. domain) of the atoms involved.

3. Each processor makes a list of the RB and their constituting atoms that are fully or partially
owned by the processors domain.

4. Each processor passes a copy of the array to the neighbouring processors which manage the
domains in contact with its own. The receiving processor compares the incoming list with its
own and keeps a record of the shared RBs and RBs’ constituent atoms, and the processors
which share them. Note that a RB can be shared between up to eight domains!

5. The dynamics of each RB is calculated in full on each domain but domains only update
{r, v, f} of RB atoms which they own. Note that a site/atom belongs to one and only one
domain at a time (no sharing) !

6. Strict bookkeeping is necessary to avoid multiple counting of kinetic properties. {r, v, v}
updates are necessary for halo parts (particles) of partially shared RBs. For all domains the
kinetic contributions from each fully or partially present RB are evaluated in full and then
waited with the ratio - number of RB’s sites local to the domain to total RB’s sites, and then
globally summed.

The compilation of the lists in items 1 - 3 above and their circulation of the list is done at the start
of the simulation, but thereafter these need updating on a local level every time a RB site/atom
is relocated from one processor to another. In this respect RBs topology transfer resembles every
other intramolecular term.

173

c©STFC Section 6.2

Since the allocation of RBs is based purely on geometric considerations, it is not practical to arrange
for a strict load balancing. For many systems, however, this deficiency has little practical impact
on performance.

6.2 Source Code

6.2.1 Modularisation Principles

Modules in DL POLY 4 are constructed to define parameters and variables (scalars and arrays)
and/or develop methods that share much in common. The division is far from arbitrary and
module interdependence is reduced to minimum. However, some dependencies exist which leads to
the following division by groups in hierarchical order:

• precision module:: kinds f90

The precision module defines the working precision wp of all real variables and parameters in
DL POLY 4. By default it is set to 64-bit (double) precision. If the precision is changed, the
user must check whether the specific platform supports it and make sure it is allowed for in
the MPI implementation. If all is OK then the code must be recompiled.

• MPI module:: mpi module

The MPI module implements all MPI functional calls used in DL POLY 4. It is only used
when DL POLY 4 is to be compiled in serial mode.

• communication module:: comms module (mpi module)

The communication module defines MPI related parameters and develops MPI related func-
tions and subroutines such as: initialisation and exit; global synchronisation, sum, maximum
and minimum; node ID and number of nodes; simulation time. It is dependent on kinds f90
and on mpi module if MPI is emulated for DL POLY 4 compilation in serial mode. The
mpi module implements all MPI functional calls used in DL POLY 4.

• global parameters module:: setup module

The global parameters module holds all important global variables and parameters (see
above). It is dependent on kinds f90.

• parse module:: parse module

The parse module develops several methods used to deal with textual input: get line

strip blanks lower case get word word 2 real. Depending on the method dependencies
on kinds f90 comms module setup module domains module are found.

• development module:: development module

The development module contains several methods used to help with testing and debug-
ging DL POLY 4. Depending on the method dependencies on kinds f90 comms module
setup module domains module are found.

• I/O module:: io module

The I/O module contains all important global variables that define the I/O methods and
types used in the package and contains basic routines essential for the I/O in DL POLY 4.
It is dependent on kinds f90.

174

c©STFC Section 6.2

• domains module:: domains module

The domains module defines DD parameters and maps the available computer resources on
a DD grid. The module does not depend on previous modules but its mapping subroutine is
dependent on kinds f90 and comms module.

• site module:: site module

The site module defines all site related arrays (FIELD) and is dependent on kinds f90 only.
However, it also develops an allocation method that is dependent on setup module.

• configuration module:: config module

The configuration module defines all configuration related arrays (CONFIG) and is dependent
on kinds f90 only. However, it also develops an allocation method that is dependent on
setup module.

• defects module:: defects module

The defects module defines all defects and configuration related arrays (REFERENCE) and
is dependent on kinds f90 only. However, it also develops an allocation method that is
dependent on setup module.

• inter-molecular interactions modules:: vdw module metal module
tersoff module three body module four body module

The intermolecular modules define all variables and potential arrays needed for the calculation
of the particular interaction in the DL POLY 4 scope. They depend on kinds f90. Their
allocation methods depend on setup module.

• intra-molecular and site-related interactions modules:: core shell module
constraints module pmf module rigid bodies module tethers module
bonds module angles module dihedrals module inversions module

These modules define all variables and potential arrays needed for the calculation of the
particular interaction in the DL POLY 4 scope. They depend on kinds f90. Their allocation
methods depend on setup module.

• external field module:: external field module

This module defines all variables and potential arrays needed for the application of an exter-
nal field in the DL POLY 4 scope. It depends on kinds f90 and its allocation method on
setup module.

• langevin module:: langevin module

This module defines all variables and arrays needed for the application of NPT and NσT
Langevin routines in the DL POLY 4 scope. It depends on kinds f90 and its allocation
method on setup module.

• minimise module:: minimise module

This module defines all variables and arrays needed for the application of a Conjugate Gra-
dient Method minimisation routine in the DL POLY 4 scope. It depends on kinds f90 and
its allocation method on setup module.

• ewald module:: ewald module

This module defines all variables and arrays needed for the refreshment of SPME k-space
driven properties in the DL POLY 4 scope when an infrequent SPME option is opted for in
CONTROL. It depends on kinds f90 and its allocation method on setup module.

175

c©STFC Section 6.2

• msd module:: msd module

This module globalises a CONTROL variable.

• statistics module:: statistics module

This module defines all variables and arrays needed for the statistical accountancy of a simula-
tion in DL POLY 4. It depends on kinds f90 and its allocation method on setup module.

• kinetic module:: kinetic module

The kinetic module contains a collection of routines for the calculation of various kinetic
properties. It is dependent on kinds f90.

6.2.2 File Structure

Generally, the DL POLY 4 file structure can be divided into four groups as follows:

• module files in the source directory::

kinds f90 comms module setup module
parse module development module io module
domains module
site module config module defects module
vdw module metal module tersoff module
three body module four body module
core shell module
constraints module pmf module
rigid bodies module
tethers module
bonds module angles module dihedrals module inversions module

external field module langevin module minimise module
ewald module msd module statistics module

kinetic module gpfa module parallel fft

• general files in the source directory::

warning error scan control io
numeric container spme container quaternions container
scan field read config parallel scan config scan control read config
set bounds
read control
vdw generate vdw table read vdw direct fs generate
metal generate metal table read metal table derivatives
tersoff generate dihedrals 14 check read field
check config scale config write config
trajectory write system expand
rigid bodies tags rigid bodies coms rigid bodies widths
rigid bodies setup
tag legend report topology pass shared units build book intra
build excl intra

176

c©STFC Section 6.2

scale temperature update shared units
core shell quench constraints tags constraints quench
pmf coms pmf tags pmf vcoms pmf quench
rigid bodies quench
set temperature
vdw lrcmetal lrc system init
export atomic data set halo particles
rigid bodies stress
read history
defects reference read defects reference read parallel
defects reference write
defects reference export defects reference set halo
defects link cells defects1 write defects write
msd write rsd write
impact core shell on top
deport atomic data pmf units set compress book intra
relocate particles
link cell pairs
metal ld collect eam metal ld collect fst
metal ld export metal ld set halo
metal ld compute
exchange grid ewald spme forces
metal forces vdw forces ewald real forces
coul dddp forces coul cp forces coul fscp forces
coul rfp forces rdf collect rdf excl collect ewald excl forces
ewald frozen forces two body forces
tersoff forces three body forces four body forces
core shell forces tethers forces
intra coul bonds forces angles forces
inversions forces dihedrals 14 vdw dihedrals forces
external field apply external field correct
langevin forces
constraints pseudo bonds pmf pseudo bonds
rigid bodies split torque rigid bodies move minimise relax
core shell relax zero k optimise
nvt e0 scl nvt e1 scl nvt b0 scl nvt b1 scl

xscale core shell kinetic regauss temperature

z density collect statistics collect
system revive
rdf compute z density compute statistics result
dl poly

• VV specific files in the source/VV directory::

pseudo vv
constraints shake vv pmf shake vv
constraints rattle pmf rattle
nvt h0 scl nvt g0 scl npt h0 scl nst h0 scl

177

c©STFC Section 6.2

nve 0 vv nvt e0 vv
nvt l0 vv nvt a0 vv nvt b0 vv nvt h0 vv nvt g0 vv
npt l0 vv npt b0 vv npt h0 vv npt m0 vv
nst l0 vv nst b0 vv nst h0 vv nst m0 vv
nvt h1 scl nvt g1 scl npt h1 scl nst h1 scl
nve 1 vv nvt e1 vv
nvt l1 vv nvt a1 vv nvt b1 vv nvt h1 vv nvt g1 vv
npt l1 vv npt b1 vv npt h1 vv npt m1 vv
nst l1 vv nst b1 vv nst h1 vv nst m1 vv
md vv

• LFV specific files in the source/LFV directory::

pseudo lfv
constraints shake lfv pmf shake lfv
nve 0 lfv nvt e0 lfv
nvt l0 lfv nvt a0 lfv nvt b0 lfv nvt h0 lfv nvt g0 lfv
npt l0 lfv npt b0 lfv npt h0 lfv npt m0 lfv
nst l0 lfv nst b0 lfv nst h0 lfv nst m0 lfv
nvt l1 lfv nvt a1 lfv nvt b1 lfv nvt h1 lfv nvt g1 lfv
npt l1 lfv npt b1 lfv npt h1 lfv npt m1 lfv
nst l1 lfv nst b1 lfv nst h1 lfv nst m1 lfv
md lfv

• SERIAL specific files in the source/SERIAL directory::

mpif.h mpi module ewald spme forc~s

The files in each group are listed in hierarchal order as closely as possible. The further down the list
the file, the more dependent it is on the files listed above it. The same hierarchal order is followed
in the makefiles (see Appendix C).

It is worth noting that the files replay history.f90 md vv.f90 md lfv mpif.h are in fact
inclusion files rather than strict FORTRAN90 type of files. Should this prove to be a prob-
lem and a compiler cannot handle this, then they can be incorporated directly in the routines
where they are used, i.e. replay history.f90 md vv.f90 md lfv in dl poly.f90 and mpif.h
in comms module.f90, and then compilation should be attempted.

6.2.3 Module Files

The DL POLY 4 module files contain all global variables (scalars and arrays) and parameters as
well as some general methods and generic functions intrinsically related to the purpose or/and
contents of the specific module. The file-names and the methods or/and functions developed in
them have self-explanatory names. More information of their purpose can be found in their headers.

The rest of files in DL POLY 4 are dependent on the module files in various ways. The dependency
relation to a module file is explicitly stated in the declaration part of the code.

6.2.4 General Files

The DL POLY 4 general files are common to both MPI and SERIAL version of the code. In
most cases, they have self-explanatory names as their order is matched as closely as possible to

178

c©STFC Section 6.2

that occurring in the main segment of the code - dl poly. Only the first five files are exception
of that rule; warning and error are important reporting subroutines that have call points at
various places in the code, and numeric container, and spme container are containers of
simple functions and subroutines related in some way to their purpose in the code.

6.2.5 VV and LFV Specific Files

These implement the specific integration scheme as file-names are finished with the flavour they
develop if they have a counterpart implementing the same algorithm but in the alternative flavour.
Names are self-explanatory.

6.2.6 SERIAL Specific Files

These implement an emulation of some general MPI calls used in DL POLY 4 source code when
compiling in serial mode as well as some modified counterparts of the general files changed to allow
for faster and/or better memory optimised serial execution. Names are self-explanatory.

6.2.7 Comments on MPI Handling

Only a few files make explicit calls to MPI routines:
comms module io module
read config parallel read config write config
vdw table read check config
system expand system init
pass shared units update shared units
export atomic data read history deport atomic data
metal ld export parallel fft exchange grid
defects reference write
defects reference read parallel defects reference read
defects reference export defects write defects1 write
trajectory write msd write rsd write system revive.
The rest of the files that use MPI functionality in any way make implicit calls via generic functions
developed in comms module.

6.2.8 Comments on setup module

The most important module, by far, is setup module, which holds the most important global
parameters and variables (some of which serve as “parameters” for global array bounds, set in
set bounds). A brief account of these is given below:

parameter value function

pi 3.1415926535897932 π constant
sqrpi 1.7724538509055160 2

√
π constant

rt2 1.4142135662373095 2
√
2 constant

rt3 1.7320508075688772 2
√
3 constant

r4pie0 138935.4835 electrostatics conversion factor to internal units, i.e. 1
4πεo

boltz 0.831451115 Boltzmann constant in internal units

179

c©STFC Section 6.2

prsunt 0.163882576 conversion factor for pressure from internal units to katms

nread 5 main input channel
nconf 11 configuration file input channel
nfield 12 force field input channel
ntable 13 tabulated potentials file input channel
nrefdt 14 reference configuration input channel
nrite 6 main output channel
nstats 21 statistical data file output channel
nrest 22 output channel accumulators restart dump file
nhist 23 trajectory history file channel
ndefdt 24 output channel for defects data file
nrdfdt 25 output channel for RDF data
nzdfdt 26 output channel for Z-density data file

seed(1:2) variable pair of seeds for the random number generator
lseed variable logical swich on/off indicator for seeding

mxsite variable max number of molecular sites
mxatyp variable max number of unique atomic types
mxtmls variable max number of unique molecule types
mxexcl variable max number of excluded interactions per atom
mxspl variable SPME FFT B-spline order
kmaxa variable SPME FFT amended array dimension (a direction)
kmaxb variable SPME FFT amended array dimension (b direction)
kmaxc variable SPME FFT amended array dimension (c direction)
kmaxa1 variable SPME FFT original array dimension (a direction)
kmaxb1 variable SPME FFT original array dimension (b direction)
kmaxc1 variable SPME FFT original array dimension (c direction)
mxtshl variable max number of specified core-shell unit types in system
mxshl variable max number of core-shell units per node
mxfshl variable max number of related core-shell units (1+1)
mxtcon variable max number of specified bond constraints in system
mxcons variable max number of constraint bonds per a node
mxfcon variable max number of related constraint units (6+1)
mxlshp variable max number of shared particles per node

Max(2 mxshl
2 , 2 mxcons

2 , mxlrgd ∗ mxrgd
2)

mxproc variable number of neighbour nodes in DD hypercube (26)
mxtpmf(1:2) variable max number of specified particles in a PMF unit (1:2)
mxpmf variable max number of PMF constraints per a node
mxfpmf variable max number of related PMF units (1+1)
mxtrgd variable max number of types RB units
mxrgd variable max number of RB units per node
mxlrgd variable max number of constituent particles of an RB unit
mxfrgd variable max number of related RB units (1+1)
mxtteth variable max number of specified tethered potentials in system
mxteth variable max number of tethered atoms per node
mxftet variable max number of related tether units (1+1)
mxpteth variable max number of parameters for tethered potentials (3)

180

c©STFC Section 6.2

mxtbnd variable max number of specified chemical bond potentials in system
mxbond variable max number of chemical bonds per node
mxfbnd variable max number of related chemical bonds (1+(6*(6+1))/2)
mxpbnd variable max number of parameters for chemical bond potentials (4)
mxtang variable max number of specified bond angle potentials in system
mxangl variable max number of bond angles per node
mxfang variable max number of related bond angles (1+(6*(6+1))/2)
mxpang variable max number of parameters for bond angle potentials (6)
mxtdih variable max number of specified dihedral angle potentials in system
mxdihd variable max number of dihedral angles per node
mxfdih variable max number of related dihedral angles (1+((6-2)6*(6+1))/2)
mxpdih variable max number of parameters for dihedral angle potentials (7)
mxtinv variable max number of specified inversion angle potentials in system
mxinv variable max number of inversion angles per node
mxfinv variable max number of related inversion angles (1+(6*(6+1))/4)
mxpinv variable max number of parameters for inversion angle potentials (3)
mxgrid variable max number of grid points in potential arrays
mxrdf variable max number of pairwise RDF in system
mxgrdf variable number of grid points for RDF and Z-density
mxvdw variable max number of van der Waals potentials in system
mxpvdw variable max number of van der Waals potential parameters (5)
mxmet variable max number of metal potentials in system
mxpmet variable max number of metal potential parameters (9)
mxter variable max number of Tersoff potentials in system
mxpter variable max number of Tersoff potential parameters (11)
mxtbp variable max number of three-body potentials in system
mx2tbp variable array dimension of three-body potential parameters
mxptbp variable max number of three-body potential parameters (5)
mxfbp variable max number of four-body potentials in system
mx2fbp variable array dimension of four-body potential parameters
mxpfbp variable max number of four-body potential parameters (3)
mxpfld variable max number of external field parameters (5)
mxstak variable dimension of stack arrays for rolling averages
mxnstk variable max number of stacked variables
mxlist variable max number of atoms in the verlet list on a node
mxcell variable max number of link cells per node
mxatms variable max number of local+halo atoms per node
mxatms variable max number of local atoms per node
mxbuff variable max dimension of the principle transfer buffer

zero plus variable the machime representation of +0 at working precision
half minus variable the machime representation of +0.5 at working precision

engunit variable the system energy unit

181

Chapter 7

Examples

Scope of Chapter

This chapter describes the standard test cases for DL POLY 4, the input and output files for which
are in the data sub-directory.

182

c©STFC Section 7.1

7.1 Test Cases

Because of the size of the data files for the DL POLY 4 standard test cases, they are not shipped in
the standard download of the DL POLY 4 source. Instead users are requested to download them
from the CCP5 FTP server as follows:

FTP site : ftp.dl.ac.uk

Username : anonymous

Password : your email address

Directory: ccp5/DL_POLY/DL_POLY_4.0/DATA

Files : test_X.tar.gz

where ‘ X’ stands for the test case number.

Remember to use the BINARY data option when transferring these files.

Unpack the files in the ‘data’ subdirectory using firstly ‘gunzip’ to uncompress them and then ‘tar
-xf’ to create the ‘TEST X’ directory.

These are provided so that you may check that your version of DL POLY 4 is working correctly.
All the jobs are of a size suitable to test the code in parallel execution. They not not be suitable
for a single processor computer. The files are stored in compressed format. The test cases can be
run by typing

select n

from the execute directory, where n is the number of the test case. The select macro will copy the
appropriate CONTROL, CONFIG, and FIELD files to the execute directory ready for execution.
The output file OUTPUT may be compared with the file supplied in the data directory.

It should be noted that the potentials and the simulation conditions used in the following test
cases are chosen to demonstrate functionality only. They are not necessarily appropriate for
serious simulation of the test systems.

7.1.1 Test Case 1 and 2: Sodium Chloride

These are a 27,000 and 216,000 ion systems respectively with unit electric charges on sodium and
chlorine. Simulation at 500 K with a NVT Berendsen ensemble. The SPME method is used to
calculate the Coulombic interactions.

7.1.2 Test Case 3 and 4: DPMC in Water

These systems consist of 200 and 1,600 DMPC molecules in 9379 and 75032 water molecules
respectively. Simulation at 300 K using NVE ensemble with SPME and RATTLE algorithm for
the constrained motion. Total system size is 51737 and 413896 atoms respectively.

7.1.3 Test Case 5 and 6: KNaSi2O5

Potassium Sodium disilicate glass (NaKSi2O5) using two and three-body potentials. Some of the
two-body potentials are read from the TABLE file. Simulation at 1000 K using NVT Nosé-Hoover
ensemble with SPME. Cubic periodic boundaries are in use. System size is 69120 and 552960 ions
respectively.

183

c©STFC Section 7.1

7.1.4 Test Case 7 and 8: Gramicidin A molecules in Water

These systems consist of 8 and 16 gramicidin A molecules in aqueous solution (32,096 and 256,768
water molecules) with total number of atoms 99,120 and 792,960 respectively. Simulation at 300 K
using NPT Berendsen ensemble with SPME and SHAKE/RATTLE algorithm for the constrained
motion.

7.1.5 Test Case 9 and 10: SiC with Tersoff Potentials

These systems consist of 74,088 and 343,000 atoms respectively. Simulation at 300 K using NPT
Nosé-Hoover ensemble with Tersoff forces and no electrostatics.

7.1.6 Test Case 11 and 12: Cu3Au alloy with Sutton-Chen (metal) Potentials

These systems consist of 32,000 and 256,000 atoms respectively. Simulation at 300 K using NVT
Nosé-Hoover ensemble with Sutton-Chen forces and no electrostatics.

7.1.7 Test Case 13 and 14: lipid bilayer in water

These systems consist of 12,428 and 111,852 atoms respectively. Simulation at 300 K using NVT
Berendsen ensemble with SPME and SHAKE/RATTLE algorithm for the constrained motion.

7.1.8 Test Case 15 and 16: relaxed and adiabatic shell model MgO

These systems consist of 8,000 (4,000 shells) and 64,000 (32,000 shells) atoms respectively. Simula-
tion at 3000 K using NPT Berendsen ensemble with SPME. FIELD and CONTROL files for each
shell model are provided separately.

7.1.9 Test Case 17 and 18: Potential of mean force on K+ in water MgO

These systems consist of 13,500 (500 PMFs) and 53,248 (2,048 PMFs) atoms respectively. Simu-
lation at 300 K using NPT Berendsen ensemble with SPME and SHAKE/RATTLE algorithm for
the constrained motion.

7.1.10 Test Case 19 and 20: Cu3Au alloy with Gupta (metal) Potentials

These systems consist of 32,000 and 256,000 atoms respectively. Simulation at 300 K using NVT
Nosé-Hoover ensemble with Gupta forces and no electrostatics.

7.1.11 Test Case 21 and 22: Cu with EAM (metal) Potentials

These systems consist of 32,000 and 256,000 atoms respectively. Simulation at 300 K using NPT
Berendsen ensemble with EAM tabulated forces and no electrostatics.

184

c©STFC Section 7.1

7.1.12 Test Case 23 and 24: Al with Sutton-Chen (metal) Potentials

These systems consist of 32,000 and 256,000 atoms respectively. Simulation at 300 K using NVT
Evans ensemble with Sutton-Chen forces and no electrostatics.

7.1.13 Test Case 25 and 26: Al with EAM (metal) Potentials

These systems consist of 32,000 and 256,000 atoms respectively. Simulation at 300 K using NVT
Evans ensemble with EAM tabulated forces and no electrostatics.

7.1.14 Test Case 27 and 28: NiAl alloy with EAM (metal) Potentials

These systems consist of 27,648 and 221,184 atoms respectively. Simulation at 300 K using NVT
Evans ensemble with EAM tabulated forces and no electrostatics.

7.1.15 Test Case 29 and 30: Fe with Finnis-Sincair (metal) Potentials

These systems consist of 31,250 and 250,000 atoms respectively. Simulation at 300 K using NPT
Berendsen ensemble with Finnis-Sinclair forces and no electrostatics.

7.1.16 Test Case 31 and 32: Ni with EAM (metal) Potentials

These systems consist of 32,000 and 256,000 atoms respectively. Simulation at 300 K using NPT
Berendsen ensemble with EAM tabulated forces and no electrostatics.

7.1.17 Test Case 33 and 34: SPC IceVII water with constraints

These systems consist of 11,664 (34,992 atoms) and 93,312 (279,936 atoms) water molecules re-
spectively. Simulation at 25 K using NVE ensemble with CGM force minimisation and SPME
electrostatics. Both constraint bond and rigid body dynamics cases are available.

7.1.18 Test Case 35 and 36: NaCl molecules in SPC water represented as
CBs+RBs

These systems consist of 64 (512) NaCl ion pairs with 4,480 (35,840) water molecules represented
by constraint bonds and 4,416 (35,328) water molecules represented by ridig bodies. Totalling
26,816 (214,528) atoms. Simulation at 295 K using NPT Berendsen ensemble with CGM energy
minimisation and SPME electrostatics.

7.1.19 Test Case 37 and 38: TIP4P water: RBs with a massless charged site

These systems consist of 7,263 and 58,104 TIP4P rigid body water molecules totaling 29,052 and
232,416 particles respectively. Simulation at 295 K using NPT Berendsen ensemble with CGM
energy minimisation and SPME electrostatics.

185

c©STFC Appendix

7.1.20 Test Case 39 and 40: Ionic liquid dimethylimidazolium chloride

These systems consist of 44,352 and 354,816 ions respectively. Simulation at 400 K using NPT
Berendsen ensemble, using both particle and rigid body dynamics with SPME electrostatics.

7.1.21 Test Case 41 and 42: Calcite nano-particles in TIP3P water

In this case 600 and 4,800 molecules of calcium carbonate in the calcite structure form 8 and 64
nano-particles which are suspended in 6,904 and 55,232 water molecules represented by a flexible 3-
centre TIP3P model. Simulation with SPME electrostatics at 310 K and 1 atmosphere maintained
in a Hoover NPT ensemble. These systems consist of 23,712 and 189,696 ions respectively.

7.2 Benchmark Cases

DL POLY 4 benchmark test cases are avaliable to download them from the CCP5 FTP server as
follows:

FTP site : ftp.dl.ac.uk

Username : anonymous

Password : your email address

Directory: ccp5/DL_POLY/DL_POLY_4.0/BENCH

The DL POLY 4 authors provide these on an ”AS IS” terms. For more information refer to the
README.txt file within.

186

Appendix A

DL POLY 4 Periodic Boundary
Conditions

Introduction

DL POLY 4 is designed to accommodate a number of different periodic boundary conditions, which
are defined by the shape and size of the simulation cell. Briefly, these are as follows (which also
indicates the IMCON flag defining the simulation cell type in the CONFIG file - see 5.1.2):

1. None e.g. isolated polymer in space (imcon = 0)
2. Cubic periodic boundaries (imcon = 1)
3. Orthorhombic periodic boundaries (imcon = 2)
4. Parallelepiped periodic boundaries (imcon = 3)
5. Slab (X,Y periodic; Z non-periodic) (imcon = 6)

We shall now look at each of these in more detail. Note that in all cases the cell vectors and the
positions of the atoms in the cell are to be specified in Angstroms (Å).

No periodic boundary (imcon = 0)

Simulations requiring no periodic boundaries are best suited to in vacuuo simulations, such as
the conformational study of an isolated polymer molecule. This boundary condition is not recom-
mended for studies in a solvent, since evaporation is likely to be a problem.

Note this boundary condition have to be used with caution. DL POLY 4 is not naturally suited to
carry out efficient calculations on systems with great fluctuation of the local density in space, as is
the case for clusters in vacuum. The parallelisation and domain decomposition is therefore limited
to eight domains (maximum of two in each direction in space).

This boundary condition should not used with the SPM Ewald summation method.

Cubic periodic boundaries (imcon = 1)

The cubic MD cell is perhaps the most commonly used in simulation and has the advantage of great
simplicity. In DL POLY 4 the cell is defined with the principle axes passing through the centres of
the faces. Thus for a cube with sidelength D, the cell vectors appearing in the CONFIG file should
be: (D,0,0); (0,D,0); (0,0,D). Note the origin of the atomic coordinates is the centre of the cell.

187

c©STFC Appendix A

Z

X

Y

Figure A.1: The cubic MD cell

Orthorhombic periodic boundaries (imcon = 2)

Z

X

Y

Figure A.2: The orthorhomic MD cell

The orthorhombic cell is also a common periodic boundary, which closely resembles the cubic cell
in use. In DL POLY 4 the cell is defined with principle axes passing through the centres of the
faces. For an orthorhombic cell with sidelengths D (in X-direction), E (in Y-direction) and F (in
Z-direction), the cell vectors appearing in the CONFIG file should be: (D,0,0); (0,E,0); (0,0,F).
Note the origin of the atomic coordinates is the centre of the cell.

Parallelepiped periodic boundaries (imcon = 3)

Z

X

Y

Figure A.3: The parallelepiped MD cell

188

c©STFC Appendix A

The parallelepiped (e.g. monoclinic or triclinic) cell is generally used in simulations of crystalline
materials, where its shape and dimension is commensurate with the unit cell of the crystal. Thus
for a unit cell specified by three principal vectors a, b, c, the MD cell is defined in the DL POLY 4
CONFIG file by the vectors (La1,La2,La3), (Mb1,Mb2,Mb3), (Nc1,Nc2,Nc3), in which L,M,N are
integers, reflecting the multiplication of the unit cell in each principal direction. Note that the
atomic coordinate origin is the centre of the MD cell.

Slab boundary conditions (imcon = 6)

Slab boundaries are periodic in the X- and Y-directions, but not in the Z-direction. They are
particularly useful for simulating surfaces. The periodic cell in the XY plane can be any paral-
lelogram. The origin of the X,Y atomic coordinates lies on an axis perpendicular to the centre
of the parallelogram. The origin of the Z coordinate is where the user specifies it. However, it is
recommended that it is in the middle of the slab. Domain decomposition division across Z axis is
limited to 2.

If the XY parallelogram is defined by vectors A and B, the vectors required in the CONFIG file are:
(A1,A2,0), (B1,B2,0), (0,0,D), where D is any real number (including zero). If D is nonzero, it will
be used by DL POLY to help determine a ‘working volume’ for the system. This is needed to help
calculate RDFs etc. (The working value of D is in fact taken as one of: 3×cutoff; or 2×max abs(Z
coordinate)+cutoff; or the user specified D, whichever is the larger.)

The surface in a system with charges can also be modelled with DL POLY 4 if periodicity is allowed
in the Z-direction. In this case slabs of ions well-separated by vacuum zones in the Z-direction can
be handled with imcon = 1, 2 or 3.

189

Appendix B

DL POLY 4 Macros

Introduction

Macros are simple executable files containing standard UNIX commands. A number of the are
supplied with DL POLY 4 and are found in the execute sub-directory. These are not guaranteed
to be immaculate but with little adaptation they can become a useful tool to a researcher. The
available macros are as follows:

• cleanup

• copy

• gopoly

• gui

• select

• store

The function of each of these is described below. It is worth noting that most of these functions
could be performed by the DL POLY Java GUI [21].

cleanup

cleanup removes several standard data files from the execute sub-directory. It contains the UNIX
commands:

rm OUTPUT STATIS REVCON REVOLD REVIVE RDFDAT ZDNDAT DEFECTS gopoly.*

and removes the files OUTPUT, REVCON, REVOLD, STATIS, REVIVE, DEFECTS and gopoly.*
(all variants). It is useful for cleaning the sub-directory up after a run. (Useful data should be
stored elsewhere however!)

copy

copy invokes the UNIX commands:

190

c©STFC Appendix B

mv CONFIG CONFIG.OLD

mv REVCON CONFIG

mv REVIVE REVOLD

which collectively prepare the DL POLY 4 files in the execute sub-directory for the continuation of
a simulation. It is always a good idea to store these files elsewhere in addition to using this macro.

gopoly

gopoly is used to submit a DL POLY 4 job to the HPCx, which operates a LOAD-LEVELER job
queuing system. It invokes the following script:

#@ shell = /usr/bin/tcsh

#

#@ job_type = parallel

#@ job_name = gopoly

#

#@ cpus = 32

#

#@ node_usage = not_shared

#@ network.MPI = csss,shared,US

#

#@ wall_clock_limit = 00:30:00

#@ account_no = my_account

#

#@ output = $(job_name).$(schedd_host).$(jobid).out

#@ error = $(job_name).$(schedd_host).$(jobid).err

#@ notification = never

#

#@ bulkxfer = yes

#@ data_limit = 850000000

#@ stack_limit = 10000000

#

#@ queue

#

ENVIRONMENT SETTINGS

#

setenv MP_EAGER_LIMIT 65536

setenv MP_SHARED_MEMORY yes

setenv MEMORY_AFFINITY MCM

setenv MP_TASK_AFFINITY MCM

setenv MP_SINGLE_THREAD yes

#

poe ./DLPOLY.Z

Using LOADLEVELLER, the job is submitted by the UNIX command:

llsubmit gopoly

191

c©STFC Appendix B

where llsubmit is a local command for submission to the IBM SP4 cluster. The number of re-
quired nodes and the job time are indicated in the above script.

gui

gui is a macro that starts up the DL POLY 4 Java GUI. It invokes the following UNIX commands:

java -jar ../java/GUI.jar $1 &

In other words the macro invokes the Java Virtual Machine which executes the instructions in the
Java archive file GUI.jar, which is stored in the java subdirectory of DL POLY 4. (Note: Java
1.3.0 or a higher version is required to run the GUI.)

select

select is a macro enabling easy selection of one of the test cases. It invokes the UNIX commands:

cp ../data/TEST$1/CONTROL CONTROL

cp ../data/TEST$1/FIELD FIELD

cp ../data/TEST$1/CONFIG CONFIG

cp ../data/TEST$1/TABLE TABLE

cp ../data/TEST$1/TABEAM TABEAM

cp ../data/TEST$1/REFERENCE REFERENCE

select requires one argument (an integer) to be specified:

select n

where n is test case number, which ranges from 1 to 18.

This macro sets up the required input files in the execute sub-directory to run the n-th test case.
The last three copy commands may not be necessary in most cases.

store

The store macro provides a convenient way of moving data back from the execute sub-directory to
the data sub-directory. It invokes the UNIX commands:

mkdir ../data/TEST$1

cp CONTROL ../data/TEST$1/CONTROL

cp FIELD ../data/TEST$1/FIELD

cp CONFIG ../data/TEST$1/CONFIG

cp TABLE ../data/TEST$1/TABLE

cp TABEAM ../data/TEST$1/TABEAM

cp REFERENCE ../data/TEST$1/REFERENCE

mv OUTPUT ../data/TEST$1/OUTPUT

mv STATIS ../data/TEST$1/STATIS

mv REVCON ../data/TEST$1/REVCON

192

c©STFC Appendix B

mv REVIVE ../data/TEST$1/REVIVE

mv HISTORY ../data/TEST$1/HISTORY

mv DEFECTS ../data/TEST$1/DEFECTS

mv RSDDAT ../data/TEST$1/RSDDAT

mv RDFDAT ../data/TEST$1/RDFDAT

mv ZDNDAT ../data/TEST$1/ZDNDAT

chmod -R a-w ../data/TEST$1

which first creates a new DL POLY data/TEST.. sub-directory and then moves the standard
DL POLY 4 output data files into it.

store requires one argument:

store n

where n is a unique string or number to label the output data in the data/TESTn sub-directory.

Note that store sets the file access to read-only. This is to prevent the store macro overwriting
existing data without your knowledge.

193

Appendix C

DL POLY 4 Makefiles

Makefile DEV

Master makefile for DL_POLY_4.03 (developer version)

#

Author - I.T.Todorov june 2012

#

#

Define default settings

#===

SHELL=/bin/sh

.SUFFIXES:

.SUFFIXES: .f90 .o

BINROOT=../execute

EX=DLPOLY.Z

EXE=$(BINROOT)/$(EX)

TYPE=master

FC=undefined

LD=undefined

Define object files

#===

OBJ_MOD = \

kinds_f90.o comms_module.o setup_module.o \

parse_module.o development_module.o netcdf_modul~.o io_module.o \

domains_module.o \

site_module.o config_module.o defects_module.o defects1_module.o \

vdw_module.o metal_module.o tersoff_module.o \

three_body_module.o four_body_module.o \

core_shell_module.o \

194

c©STFC Appendix C

constraints_module.o pmf_module.o \

rigid_bodies_module.o \

tethers_module.o \

bonds_module.o angles_module.o dihedrals_module.o inversions_module.o \

\

external_field_module.o langevin_module.o minimise_module.o \

ewald_module.o msd_module.o statistics_module.o \

\

kinetic_module.o gpfa_module.o parallel_fft.o \

OBJ_ALL = \

warning.o error.o scan_control_io.o \

numeric_container.o spme_container.o quaternions_container.o \

scan_field.o read_config_parallel.o scan_config.o scan_control.o read_config.o \

set_bounds.o \

read_control.o \

vdw_generate.o vdw_table_read.o vdw_direct_fs_generate.o \

metal_generate.o metal_table_read.o metal_table_derivatives.o \

tersoff_generate.o dihedrals_14_check.o read_field.o \

check_config.o scale_config.o write_config.o \

trajectory_write.o system_expand.o \

rigid_bodies_tags.o rigid_bodies_coms.o rigid_bodies_widths.o \

rigid_bodies_setup.o \

tag_legend.o report_topology.o pass_shared_units.o build_book_intra.o \

build_excl_intra.o \

scale_temperature.o update_shared_units.o \

core_shell_quench.o constraints_tags.o constraints_quench.o \

pmf_coms.o pmf_tags.o pmf_vcoms.o pmf_quench.o \

rigid_bodies_quench.o \

set_temperature.o \

vdw_lrc.o metal_lrc.o system_init.o \

export_atomic_data.o set_halo_particles.o \

rigid_bodies_stress.o \

read_history.o \

defects_reference_read.o defects_reference_read_parallel.o \

defects_reference_write.o \

defects_reference_export.o defects_reference_set_halo.o \

defects_link_cells.o defects1_write.o defects_write.o \

msd_write.o rsd_write.o \

impact.o core_shell_on_top.o \

deport_atomic_data.o pmf_units_set.o compress_book_intra.o \

relocate_particles.o \

link_cell_pairs.o \

metal_ld_collect_eam.o metal_ld_collect_fst.o \

metal_ld_export.o metal_ld_set_halo.o \

metal_ld_compute.o \

exchange_grid.o ewald_spme_forces.o \

metal_forces.o vdw_forces.o ewald_real_forces.o \

coul_dddp_forces.o coul_cp_forces.o coul_fscp_forces.o \

195

c©STFC Appendix C

coul_rfp_forces.o rdf_collect.o rdf_excl_collect.o ewald_excl_forces.o \

ewald_frozen_forces.o two_body_forces.o \

tersoff_forces.o three_body_forces.o four_body_forces.o \

core_shell_forces.o tethers_forces.o \

intra_coul.o bonds_forces.o angles_forces.o \

inversions_forces.o dihedrals_14_vdw.o dihedrals_forces.o \

external_field_apply.o external_field_correct.o \

langevin_forces.o \

constraints_pseudo_bonds.o pmf_pseudo_bonds.o \

rigid_bodies_split_torque.o rigid_bodies_move.o minimise_relax.o \

core_shell_relax.o zero_k_optimise.o \

nvt_e0_scl.o nvt_e1_scl.o nvt_b0_scl.o nvt_b1_scl.o \

\

pseudo_vv.o \

constraints_shake_vv.o pmf_shake_vv.o \

constraints_rattle.o pmf_rattle.o \

nvt_h0_scl.o nvt_g0_scl.o npt_h0_scl.o nst_h0_scl.o \

nve_0_vv.o nvt_e0_vv.o \

nvt_l0_vv.o nvt_a0_vv.o nvt_b0_vv.o nvt_h0_vv.o nvt_g0_vv.o \

npt_l0_vv.o npt_b0_vv.o npt_h0_vv.o npt_m0_vv.o \

nst_l0_vv.o nst_b0_vv.o nst_h0_vv.o nst_m0_vv.o \

nvt_h1_scl.o nvt_g1_scl.o npt_h1_scl.o nst_h1_scl.o \

nve_1_vv.o nvt_e1_vv.o \

nvt_l1_vv.o nvt_a1_vv.o nvt_b1_vv.o nvt_h1_vv.o nvt_g1_vv.o \

npt_l1_vv.o npt_b1_vv.o npt_h1_vv.o npt_m1_vv.o \

nst_l1_vv.o nst_b1_vv.o nst_h1_vv.o nst_m1_vv.o \

\

pseudo_lfv.o \

constraints_shake_lfv.o pmf_shake_lfv.o \

nve_0_lfv.o nvt_e0_lfv.o \

nvt_l0_lfv.o nvt_a0_lfv.o nvt_b0_lfv.o nvt_h0_lfv.o nvt_g0_lfv.o \

npt_l0_lfv.o npt_b0_lfv.o npt_h0_lfv.o npt_m0_lfv.o \

nst_l0_lfv.o nst_b0_lfv.o nst_h0_lfv.o nst_m0_lfv.o \

nve_1_lfv.o nvt_e1_lfv.o \

nvt_l1_lfv.o nvt_a1_lfv.o nvt_b1_lfv.o nvt_h1_lfv.o nvt_g1_lfv.o \

npt_l1_lfv.o npt_b1_lfv.o npt_h1_lfv.o npt_m1_lfv.o \

nst_l1_lfv.o nst_b1_lfv.o nst_h1_lfv.o nst_m1_lfv.o \

\

xscale.o core_shell_kinetic.o regauss_temperature.o \

\

z_density_collect.o statistics_collect.o \

system_revive.o \

rdf_compute.o z_density_compute.o statistics_result.o \

dl_poly.o

Define Velocity Verlet files

#===

FILES_VV = \

196

c©STFC Appendix C

pseudo_vv.f90 \

constraints_shake_vv.f90 pmf_shake_vv.f90 \

constraints_rattle.f90 pmf_rattle.f90 \

nvt_h0_scl.f90 nvt_g0_scl.f90 npt_h0_scl.f90 nst_h0_scl.f90 \

nve_0_vv.f90 nvt_e0_vv.f90 \

nvt_l0_vv.f90 nvt_a0_vv.f90 nvt_b0_vv.f90 nvt_h0_vv.f90 nvt_g0_vv.f90 \

npt_l0_vv.f90 npt_b0_vv.f90 npt_h0_vv.f90 npt_m0_vv.f90 \

nst_l0_vv.f90 nst_b0_vv.f90 nst_h0_vv.f90 nst_m0_vv.f90 \

nvt_h1_scl.f90 nvt_g1_scl.f90 npt_h1_scl.f90 nst_h1_scl.f90 \

nve_1_vv.f90 nvt_e1_vv.f90 \

nvt_l1_vv.f90 nvt_a1_vv.f90 nvt_b1_vv.f90 nvt_h1_vv.f90 nvt_g1_vv.f90 \

npt_l1_vv.f90 npt_b1_vv.f90 npt_h1_vv.f90 npt_m1_vv.f90 \

nst_l1_vv.f90 nst_b1_vv.f90 nst_h1_vv.f90 nst_m1_vv.f90 \

md_vv.f90

Define LeapFrog Verlet files

#===

FILES_LFV = \

pseudo_lfv.f90 \

constraints_shake_lfv.f90 pmf_shake_lfv.f90 \

nve_0_lfv.f90 nvt_e0_lfv.f90 \

nvt_l0_lfv.f90 nvt_a0_lfv.f90 nvt_b0_lfv.f90 nvt_h0_lfv.f90 nvt_g0_lfv.f90 \

npt_l0_lfv.f90 npt_b0_lfv.f90 npt_h0_lfv.f90 npt_m0_lfv.f90 \

nst_l0_lfv.f90 nst_b0_lfv.f90 nst_h0_lfv.f90 nst_m0_lfv.f90 \

nve_1_lfv.f90 nvt_e1_lfv.f90 \

nvt_l1_lfv.f90 nvt_a1_lfv.f90 nvt_b1_lfv.f90 nvt_h1_lfv.f90 nvt_g1_lfv.f90 \

npt_l1_lfv.f90 npt_b1_lfv.f90 npt_h1_lfv.f90 npt_m1_lfv.f90 \

nst_l1_lfv.f90 nst_b1_lfv.f90 nst_h1_lfv.f90 nst_m1_lfv.f90 \

md_lfv.f90

Examine targets manually

#===

all:

@echo

@echo "You MUST specify or choose a permissive target platform!"

@echo

@echo "The available, permissive targets are displayed below:"

@echo

@echo "hpc || lake || newton || dirac || franklin ||"

@echo "hpcx || hpcx-debug || BGL || BGP ||"

@echo "hector || hector-pgi-debug ||"

@echo "hector-gnu || hector-gnu-debug ||"

@echo "hector-cray || hector-cray-debug ||"

@echo "hector-pathscale || hector-pathscale-debug ||"

@echo "hector-X2 || hector-X2-debug"

@echo

@echo "Please examine this Makefile’s targets for details!"

197

c©STFC Appendix C

@echo "If no target suits your system then create your own"

@echo "using the advice in generic target template provided"

@echo "in this Makefile under the entry ’uknown_platform:’."

@echo

Fetch the Velocity Verlet subroutines

#===

$(FILES_VV):

$(MAKE) links_vv

links_vv:

@for file in ${FILES_VV} ; do \

echo linking to $$file ; \

rm -f $$file ; \

ln -s VV/$$file $$file ; \

done

Fetch the LeapFrog Verlet subroutines

#===

$(FILES_LFV):

$(MAKE) links_lfv

links_lfv:

@for file in ${FILES_LFV} ; do \

echo linking to $$file ; \

rm -f $$file ; \

ln -s LFV/$$file $$file ; \

done

Clean up the source directory

#===

clean:

rm -f $(OBJ_MOD) $(OBJ_ALL) $(FILES_VV) $(FILES_LFV) *.mod

Generic target template

#===

uknown_platform:

$(MAKE) LD="path to FORTRAN90 Linker-loaDer" \

LDFLAGS="appropriate flags for LD (MPI libraries)" \

FC="path to FORTRAN90 compiler" \

FCFLAGS="appropriate flags for FC (MPI include)" \

EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

System specific targets follow:

#===

198

c©STFC Appendix C

#================== Cambridge HPC - darwin (Woodcrest) ==============

hpc:

$(MAKE) LD="mpif90 -o" LDFLAGS="-O3" \

FC="mpif90 -c" FCFLAGS="-O3" \

EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

#================== Beowulf Linux ifort + mpich ======================

lake:

$(MAKE) LD="/opt/intel/compiler70/ia32/bin/ifc -v -o" \

LDFLAGS="-O3 -xW -prec_div -L/opt/mpich-intel/lib -lmpich \

-L/opt/intel/compiler70/ia32/lib/ -lPEPCF90" \

FC="/opt/intel/compiler70/ia32/bin/ifc -c" \

FCFLAGS="-O3 -xW -prec_div -I/opt/mpich-intel/include" \

EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

#================== Linux efc SGI ALTIX + parallel FFT ==============

newton:

$(MAKE) LD="ifort -o" LDFLAGS="-tpp2 -ip -O3 -lmpi -lguide" \

FC="ifort -c" FCFLAGS="-O3 -tpp2 -ip -w" \

EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

#================== Beowulf Linux pgf90 + myrinet / mpich ============

dirac:

$(MAKE) LD="/usr/local/mpich-gm-pgroup121-7b/bin/mpif90 -v -o" \

LDFLAGS="-O3 -L/usr/local/mpich-gm-pgroup121-7b/lib -lmpich -lfmpich \

-lmpichf90 -L/usr/local/gm/binary/lib -lgm -L/usr/local/lib" \

FC="/usr/local/mpich-gm-pgroup121-7b/bin/mpif90 -c" \

FCFLAGS="-fast -Knoieee -Mdalign -O3" \

EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

#================== Franklin (SUNfire cluster) =======================

#setenv HPCF_MPI yes

franklin:

$(MAKE) LD="/opt/SUNWhpc/bin/mpf90 -o" \

LDFLAGS="-stackvar -fsimple=1 -xO3 -xarch=v9b -DHPCF_MPI -lmpi \

-xlic_lib=sunperf" \

FC="/opt/SUNWhpc/bin/mpf90 -c" \

FCFLAGS="-stackvar -fsimple=1 -xO3 -xarch=v9b -xchip=ultra \

-xlic_lib=sunperf -xalias=actual -fpover -ftrap=%none \

-fnonstd -libmil -dalign -I/opt/SUNWhpc/HPC5.0/include/v9" \

EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

#================== HPCx SP5 ===

hpcx:

$(MAKE) LD="mpxlf90_r -o" LDFLAGS="-O3 -q64 -qmaxmem=-1" \

FC="mpxlf90_r -qsuffix=f=f90 -c" \

FCFLAGS="-O3 -q64 -qmaxmem=-1 -qarch=pwr5 -qtune=pwr5 -qnosave" \

EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

199

c©STFC Appendix C

#================== HPCx SP5 - DEBUG =================================

hpcx-debug:

$(MAKE) LD="mpxlf90_r -o" LDFLAGS="-g -C -q64 -O0 -lessl -lhmd" \

FC="mpxlf90_r -qsuffix=f=f90 -c" \

FCFLAGS="-g -C -q64 -O0 -qarch=pwr5 -qtune=pwr5 -qnosave" \

EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

#================== BG/L ===

BGL:

$(MAKE) LD="/bgl/BlueLight/ppcfloor/bglsys/bin/mpixlf95 -o" \

LDFLAGS="-O3 -qhot -qarch=440d -qtune=440" \

FC="/bgl/BlueLight/ppcfloor/bglsys/bin/mpixlf95 -c" \

FCFLAGS="-O3 -qhot -qarch=440d -qtune=440" \

EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

#================== BG/P ===

BGP:

$(MAKE) LD="/bgsys/drivers/ppcfloor/comm/bin/mpixlf2003_r -o" \

LDFLAGS="-O3 -qhot -qarch=450d -qtune=450 -qmaxmem=128000" \

FC="/bgsys/drivers/ppcfloor/comm/bin/mpixlf2003_r -c" \

FCFLAGS="-O3 -qhot -qarch=450d -qtune=450 -qmaxmem=128000" \

EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

#================== CRAY XT3/6 pgi compilers (default) ===============

hector:

$(MAKE) LD="ftn -o" \

LDFLAGS="-O3" \

FC="ftn -c" \

FCFLAGS="-O3" \

EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

#================== CRAY XT3/6 pgi compilers - DEBUG =================

hector-pgi-debug:

$(MAKE) LD="ftn -o" \

LDFLAGS="-O0 -W -Wall -pedantic -std=f2003 -g -fbounds-check \

-fbacktrace -finit-real=nan -finit-integer=999999" \

FC="ftn -c" \

FCFLAGS="-O0 -W -Wall -pedantic -std=f2003 -g -fbounds-check \

-fbacktrace -finit-real=nan -finit-integer=999999" \

EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

#================== CRAY XT3/6 gnu compilers =========================

hector-gnu:

$(MAKE) LD="ftn -o" \

LDFLAGS="-O3 -Wall -pedantic -g" \

FC="ftn -c" \

FCFLAGS="-O3 -Wall -pedantic -g" \

EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

200

c©STFC Appendix C

#================== CRAY XT3/6 gnu compilers - DEBUG =================

hector-gnu-debug:

$(MAKE) LD="ftn -o" \

LDFLAGS="-O3 -Wall -Wextra -pedantic -g -fbounds-check -fbacktrace \

-finit-integer=-9999 -finit-real=nan -std=f2003 \

-pedantic -ffpe-trap=invalid,zero,overflow -fdump-core" \

FC="ftn -c" \

FCFLAGS="-O3 -Wall -Wextra -pedantic -g -fbounds-check -fbacktrace \

-finit-integer=-9999 -finit-real=nan -std=f2003 \

-pedantic -ffpe-trap=invalid,zero,overflow -fdump-core" \

EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

#================== CRAY XT3/6 cray compilers ========================

hector-cray:

$(MAKE) LD="ftn -o" \

LDFLAGS="-O3 -en" \

FC="ftn -c" \

FCFLAGS="-O3 -en" \

EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

#================== CRAY XT3/6 cray compilers - DEBUG ================

hector-cray-debug:

$(MAKE) LD="ftn -o" \

LDFLAGS="-O3 -en -G2" \

FC="ftn -c" \

FCFLAGS="-O3 -en -G2" \

EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

#================== CRAY XT3/6 pathscale compilers ===================

hector-pathscale:

$(MAKE) LD="ftn -o" \

LDFLAGS="-byteswapio -O3" \

FC="ftn -c" \

FCFLAGS="-byteswapio -O3" \

EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

#================== CRAY XT3/6 pathscale compilers - DEBUG ===========

hector-pathscale-debug:

$(MAKE) LD="ftn -o" \

LDFLAGS="-byteswapio -O0 -g -ffortran-bounds-check" \

FC="ftn -c" \

FCFLAGS="-byteswapio -O0 -g -ffortran-bounds-check" \

EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

#================== CRAY X2 ==

hector-X2:

$(MAKE) LD="ftn -o" \

LDFLAGS="-O3 -Ofp3 -Ocache2 -rm " \

201

c©STFC Appendix C

FC="ftn -c" \

FCFLAGS="-O3 -Ofp3 -Ocache2 -rm " \

EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

#================== CRAY X2 - DEBUG ==================================

hector-X2-debug:

$(MAKE) LD="ftn -o" \

LDFLAGS="-G0 -O0 -rm " \

FC="ftn -c" \

FCFLAGS="-G0 -O0 -rm " \

EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

Default code

#===

master: message check $(OBJ_MOD) $(OBJ_ALL)

$(LD) $(EXE) $(LDFLAGS) $(OBJ_MOD) $(OBJ_ALL)

Message

message:

@echo "DL_POLY_4 compilation in MPI mode"

@echo

@echo "’Use mpi_module’ must change to ’Use mpi’ in ’comms_module.f90’"

@echo

Check that a platform has been specified

check:

@if test "${FC}" = "undefined"; then \

echo; echo "*** FORTRAN90 compiler unspecified!"; \

echo; echo "*** Please edit your Makefile entries!"; \

echo; exit 99; \

fi; \

\

if test "${LD}" = "undefined"; then \

echo; echo "*** FORTRAN90 Linker-loaDer unspecified!"; \

echo; echo "*** Please edit your Makefile entries!"; \

echo; exit 99; \

fi; \

\

mkdir -p $(BINROOT) ; touch dl_poly.f90

Declare rules

#===

.f90.o:

$(FC) $(FCFLAGS) $*.f90

Declare dependencies

#===

202

c©STFC Appendix C

angles_forces.o: angles_module.o comms_module.o config_module.o kinds_f90.o \

setup_module.o

angles_module.o: kinds_f90.o setup_module.o

bonds_forces.o: bonds_module.o comms_module.o config_module.o kinds_f90.o \

setup_module.o

bonds_module.o: kinds_f90.o setup_module.o

build_book_intra.o: angles_module.o bonds_module.o comms_module.o \

config_module.o constraints_module.o core_shell_module.o \

dihedrals_module.o inversions_module.o pmf_module.o \

rigid_bodies_module.o setup_module.o site_module.o tethers_module.o

build_excl_intra.o: angles_module.o bonds_module.o comms_module.o \

config_module.o constraints_module.o core_shell_module.o \

dihedrals_module.o inversions_module.o kinds_f90.o \

rigid_bodies_module.o setup_module.o

check_config.o: comms_module.o config_module.o kinds_f90.o setup_module.o \

site_module.o

comms_module.o: kinds_f90.o

compress_book_intra.o: comms_module.o config_module.o kinds_f90.o \

setup_module.o

config_module.o: kinds_f90.o setup_module.o

constraints_module.o: kinds_f90.o setup_module.o

constraints_pseudo_bonds.o: comms_module.o config_module.o \

constraints_module.o kinds_f90.o setup_module.o

constraints_quench.o: comms_module.o config_module.o constraints_module.o \

kinds_f90.o setup_module.o

constraints_rattle.o: comms_module.o config_module.o constraints_module.o \

kinds_f90.o setup_module.o

constraints_shake_lfv.o: comms_module.o config_module.o constraints_module.o \

kinds_f90.o setup_module.o

constraints_shake_vv.o: comms_module.o config_module.o constraints_module.o \

kinds_f90.o setup_module.o

constraints_tags.o: comms_module.o config_module.o constraints_module.o \

kinds_f90.o setup_module.o

core_shell_forces.o: comms_module.o config_module.o core_shell_module.o \

kinds_f90.o setup_module.o

core_shell_kinetic.o: comms_module.o config_module.o core_shell_module.o \

kinds_f90.o

core_shell_module.o: kinds_f90.o setup_module.o

core_shell_on_top.o: comms_module.o config_module.o core_shell_module.o \

setup_module.o

core_shell_quench.o: comms_module.o config_module.o core_shell_module.o \

kinds_f90.o setup_module.o

core_shell_relax.o: comms_module.o config_module.o core_shell_module.o \

kinds_f90.o kinetic_module.o setup_module.o statistics_module.o

coul_cp_forces.o: config_module.o kinds_f90.o setup_module.o

coul_dddp_forces.o: config_module.o kinds_f90.o setup_module.o

coul_fscp_forces.o: comms_module.o config_module.o kinds_f90.o setup_module.o

coul_rfp_forces.o: comms_module.o config_module.o kinds_f90.o setup_module.o

203

c©STFC Appendix C

defects1_module.o: kinds_f90.o setup_module.o

defects1_write.o: comms_module.o config_module.o defects1_module.o \

io_module.o kinds_f90.o parse_module.o setup_module.o site_module.o

defects_link_cells.o: comms_module.o domains_module.o kinds_f90.o \

setup_module.o

defects_module.o: kinds_f90.o setup_module.o

defects_reference_export.o: comms_module.o domains_module.o kinds_f90.o \

setup_module.o

defects_reference_read.o: comms_module.o config_module.o domains_module.o \

io_module.o kinds_f90.o parse_module.o setup_module.o site_module.o

defects_reference_read_parallel.o: comms_module.o domains_module.o \

io_module.o kinds_f90.o parse_module.o setup_module.o

defects_reference_set_halo.o: comms_module.o config_module.o domains_module.o \

kinds_f90.o setup_module.o

defects_reference_write.o: comms_module.o config_module.o io_module.o \

kinds_f90.o setup_module.o

defects_write.o: comms_module.o config_module.o defects1_module.o \

defects_module.o io_module.o kinds_f90.o parse_module.o \

setup_module.o site_module.o

deport_atomic_data.o: angles_module.o bonds_module.o comms_module.o \

config_module.o constraints_module.o core_shell_module.o \

dihedrals_module.o domains_module.o ewald_module.o \

inversions_module.o kinds_f90.o langevin_module.o minimise_module.o \

msd_module.o pmf_module.o rigid_bodies_module.o setup_module.o \

statistics_module.o tethers_module.o

development_module.o: comms_module.o kinds_f90.o parse_module.o \

setup_module.o

dihedrals_14_check.o: kinds_f90.o setup_module.o

dihedrals_14_vdw.o: kinds_f90.o setup_module.o vdw_module.o

dihedrals_forces.o: comms_module.o config_module.o dihedrals_module.o \

kinds_f90.o setup_module.o vdw_module.o

dihedrals_module.o: kinds_f90.o setup_module.o

dl_poly.o: angles_module.o bonds_module.o comms_module.o config_module.o \

constraints_module.o core_shell_module.o development_module.o \

dihedrals_module.o external_field_module.o four_body_module.o \

inversions_module.o io_module.o kinds_f90.o kinetic_module.o \

langevin_module.o metal_module.o msd_module.o parse_module.o \

pmf_module.o rigid_bodies_module.o setup_module.o site_module.o \

statistics_module.o tersoff_module.o tethers_module.o \

three_body_module.o vdw_module.o md_lfv.f90 md_vv.f90 \

replay_history.f90

domains_module.o: comms_module.o kinds_f90.o

error.o: comms_module.o setup_module.o

ewald_excl_forces.o: config_module.o ewald_module.o kinds_f90.o \

setup_module.o

ewald_frozen_forces.o: comms_module.o config_module.o ewald_module.o \

kinds_f90.o setup_module.o

ewald_module.o: config_module.o kinds_f90.o setup_module.o

ewald_real_forces.o: comms_module.o config_module.o kinds_f90.o \

204

c©STFC Appendix C

setup_module.o

ewald_spme_forces.o: comms_module.o config_module.o domains_module.o \

ewald_module.o kinds_f90.o parallel_fft.o setup_module.o

exchange_grid.o: comms_module.o domains_module.o kinds_f90.o setup_module.o

export_atomic_data.o: comms_module.o config_module.o domains_module.o \

kinds_f90.o setup_module.o

external_field_apply.o: comms_module.o config_module.o core_shell_module.o \

external_field_module.o kinds_f90.o rigid_bodies_module.o \

setup_module.o

external_field_correct.o: config_module.o external_field_module.o kinds_f90.o \

rigid_bodies_module.o

external_field_module.o: kinds_f90.o setup_module.o

four_body_forces.o: comms_module.o config_module.o domains_module.o \

four_body_module.o kinds_f90.o setup_module.o

four_body_module.o: kinds_f90.o setup_module.o

gpfa_module.o: kinds_f90.o

impact.o: comms_module.o config_module.o core_shell_module.o kinds_f90.o \

kinetic_module.o rigid_bodies_module.o

intra_coul.o: kinds_f90.o setup_module.o

inversions_forces.o: comms_module.o config_module.o inversions_module.o \

kinds_f90.o setup_module.o

inversions_module.o: kinds_f90.o setup_module.o

io_module.o: comms_module.o kinds_f90.o netcdf_modul~.o

kinetic_module.o: comms_module.o config_module.o kinds_f90.o \

rigid_bodies_module.o setup_module.o

langevin_forces.o: comms_module.o config_module.o kinds_f90.o setup_module.o \

site_module.o

langevin_module.o: kinds_f90.o setup_module.o

link_cell_pairs.o: comms_module.o config_module.o development_module.o \

domains_module.o kinds_f90.o setup_module.o

metal_forces.o: config_module.o kinds_f90.o metal_module.o setup_module.o

metal_generate.o: kinds_f90.o metal_module.o setup_module.o site_module.o

metal_ld_collect_eam.o: config_module.o kinds_f90.o metal_module.o \

setup_module.o

metal_ld_collect_fst.o: config_module.o kinds_f90.o metal_module.o \

setup_module.o

metal_ld_compute.o: comms_module.o config_module.o kinds_f90.o metal_module.o \

setup_module.o

metal_ld_export.o: comms_module.o config_module.o domains_module.o \

kinds_f90.o setup_module.o

metal_ld_set_halo.o: comms_module.o config_module.o kinds_f90.o \

setup_module.o

metal_lrc.o: comms_module.o config_module.o kinds_f90.o metal_module.o \

setup_module.o site_module.o

metal_module.o: kinds_f90.o setup_module.o

metal_table_derivatives.o: kinds_f90.o setup_module.o

metal_table_read.o: comms_module.o kinds_f90.o metal_module.o parse_module.o \

setup_module.o site_module.o

minimise_module.o: kinds_f90.o setup_module.o

205

c©STFC Appendix C

minimise_relax.o: comms_module.o config_module.o kinds_f90.o \

minimise_module.o rigid_bodies_module.o setup_module.o

msd_write.o: comms_module.o config_module.o io_module.o kinds_f90.o \

parse_module.o setup_module.o site_module.o statistics_module.o

netcdf_modul~.o: kinds_f90.o

npt_b0_lfv.o: comms_module.o config_module.o kinds_f90.o kinetic_module.o \

setup_module.o site_module.o

npt_b0_vv.o: comms_module.o config_module.o kinds_f90.o kinetic_module.o \

setup_module.o site_module.o

npt_b1_lfv.o: comms_module.o config_module.o domains_module.o kinds_f90.o \

kinetic_module.o rigid_bodies_module.o setup_module.o site_module.o

npt_b1_vv.o: comms_module.o config_module.o domains_module.o kinds_f90.o \

kinetic_module.o rigid_bodies_module.o setup_module.o site_module.o

npt_h0_lfv.o: comms_module.o config_module.o kinds_f90.o kinetic_module.o \

setup_module.o site_module.o

npt_h0_scl.o: config_module.o kinds_f90.o setup_module.o

npt_h0_vv.o: comms_module.o config_module.o kinds_f90.o kinetic_module.o \

setup_module.o site_module.o

npt_h1_lfv.o: comms_module.o config_module.o domains_module.o kinds_f90.o \

kinetic_module.o rigid_bodies_module.o setup_module.o site_module.o

npt_h1_scl.o: config_module.o kinds_f90.o rigid_bodies_module.o \

setup_module.o

npt_h1_vv.o: comms_module.o config_module.o domains_module.o kinds_f90.o \

kinetic_module.o rigid_bodies_module.o setup_module.o site_module.o

npt_l0_lfv.o: comms_module.o config_module.o kinds_f90.o kinetic_module.o \

langevin_module.o setup_module.o site_module.o

npt_l0_vv.o: comms_module.o config_module.o kinds_f90.o kinetic_module.o \

langevin_module.o setup_module.o site_module.o

npt_l1_lfv.o: comms_module.o config_module.o domains_module.o kinds_f90.o \

kinetic_module.o langevin_module.o rigid_bodies_module.o \

setup_module.o site_module.o

npt_l1_vv.o: comms_module.o config_module.o domains_module.o kinds_f90.o \

kinetic_module.o langevin_module.o rigid_bodies_module.o \

setup_module.o site_module.o

npt_m0_lfv.o: comms_module.o config_module.o kinds_f90.o kinetic_module.o \

setup_module.o site_module.o

npt_m0_vv.o: comms_module.o config_module.o kinds_f90.o kinetic_module.o \

setup_module.o site_module.o

npt_m1_lfv.o: comms_module.o config_module.o domains_module.o kinds_f90.o \

kinetic_module.o rigid_bodies_module.o setup_module.o site_module.o

npt_m1_vv.o: comms_module.o config_module.o domains_module.o kinds_f90.o \

kinetic_module.o rigid_bodies_module.o setup_module.o site_module.o

nst_b0_lfv.o: comms_module.o config_module.o kinds_f90.o kinetic_module.o \

setup_module.o site_module.o

nst_b0_vv.o: comms_module.o config_module.o kinds_f90.o kinetic_module.o \

setup_module.o site_module.o

nst_b1_lfv.o: comms_module.o config_module.o domains_module.o kinds_f90.o \

kinetic_module.o rigid_bodies_module.o setup_module.o site_module.o

nst_b1_vv.o: comms_module.o config_module.o domains_module.o kinds_f90.o \

206

c©STFC Appendix C

kinetic_module.o rigid_bodies_module.o setup_module.o site_module.o

nst_h0_lfv.o: comms_module.o config_module.o kinds_f90.o kinetic_module.o \

setup_module.o site_module.o

nst_h0_scl.o: config_module.o kinds_f90.o kinetic_module.o setup_module.o

nst_h0_vv.o: comms_module.o config_module.o kinds_f90.o kinetic_module.o \

setup_module.o site_module.o

nst_h1_lfv.o: comms_module.o config_module.o domains_module.o kinds_f90.o \

kinetic_module.o rigid_bodies_module.o setup_module.o site_module.o

nst_h1_scl.o: config_module.o kinds_f90.o kinetic_module.o \

rigid_bodies_module.o setup_module.o

nst_h1_vv.o: comms_module.o config_module.o domains_module.o kinds_f90.o \

kinetic_module.o rigid_bodies_module.o setup_module.o site_module.o

nst_l0_lfv.o: comms_module.o config_module.o kinds_f90.o kinetic_module.o \

langevin_module.o setup_module.o site_module.o

nst_l0_vv.o: comms_module.o config_module.o kinds_f90.o kinetic_module.o \

langevin_module.o setup_module.o site_module.o

nst_l1_lfv.o: comms_module.o config_module.o domains_module.o kinds_f90.o \

kinetic_module.o langevin_module.o rigid_bodies_module.o \

setup_module.o site_module.o

nst_l1_vv.o: comms_module.o config_module.o domains_module.o kinds_f90.o \

kinetic_module.o langevin_module.o rigid_bodies_module.o \

setup_module.o site_module.o

nst_m0_lfv.o: comms_module.o config_module.o kinds_f90.o kinetic_module.o \

setup_module.o site_module.o

nst_m0_vv.o: comms_module.o config_module.o kinds_f90.o kinetic_module.o \

setup_module.o site_module.o

nst_m1_lfv.o: comms_module.o config_module.o domains_module.o kinds_f90.o \

kinetic_module.o rigid_bodies_module.o setup_module.o site_module.o

nst_m1_vv.o: comms_module.o config_module.o domains_module.o kinds_f90.o \

kinetic_module.o rigid_bodies_module.o setup_module.o site_module.o

numeric_container.o: comms_module.o config_module.o kinds_f90.o \

setup_module.o

nve_0_lfv.o: comms_module.o config_module.o kinds_f90.o kinetic_module.o \

setup_module.o site_module.o

nve_0_vv.o: comms_module.o config_module.o kinds_f90.o kinetic_module.o \

setup_module.o site_module.o

nve_1_lfv.o: comms_module.o config_module.o domains_module.o kinds_f90.o \

kinetic_module.o rigid_bodies_module.o setup_module.o site_module.o

nve_1_vv.o: comms_module.o config_module.o domains_module.o kinds_f90.o \

kinetic_module.o rigid_bodies_module.o setup_module.o site_module.o

nvt_a0_lfv.o: comms_module.o config_module.o core_shell_module.o kinds_f90.o \

kinetic_module.o setup_module.o site_module.o

nvt_a0_vv.o: comms_module.o config_module.o core_shell_module.o kinds_f90.o \

kinetic_module.o setup_module.o site_module.o

nvt_a1_lfv.o: comms_module.o config_module.o core_shell_module.o \

domains_module.o kinds_f90.o kinetic_module.o rigid_bodies_module.o \

setup_module.o site_module.o

nvt_a1_vv.o: comms_module.o config_module.o core_shell_module.o \

domains_module.o kinds_f90.o kinetic_module.o rigid_bodies_module.o \

207

c©STFC Appendix C

setup_module.o site_module.o

nvt_b0_lfv.o: comms_module.o config_module.o kinds_f90.o kinetic_module.o \

setup_module.o site_module.o

nvt_b0_scl.o: config_module.o kinds_f90.o kinetic_module.o setup_module.o

nvt_b0_vv.o: comms_module.o config_module.o kinds_f90.o kinetic_module.o \

setup_module.o site_module.o

nvt_b1_lfv.o: comms_module.o config_module.o domains_module.o kinds_f90.o \

kinetic_module.o rigid_bodies_module.o setup_module.o site_module.o

nvt_b1_scl.o: config_module.o kinds_f90.o kinetic_module.o \

rigid_bodies_module.o setup_module.o

nvt_b1_vv.o: comms_module.o config_module.o domains_module.o kinds_f90.o \

kinetic_module.o rigid_bodies_module.o setup_module.o site_module.o

nvt_e0_lfv.o: comms_module.o config_module.o kinds_f90.o kinetic_module.o \

setup_module.o site_module.o

nvt_e0_scl.o: comms_module.o config_module.o kinds_f90.o setup_module.o

nvt_e0_vv.o: comms_module.o config_module.o kinds_f90.o kinetic_module.o \

setup_module.o site_module.o

nvt_e1_lfv.o: comms_module.o config_module.o domains_module.o kinds_f90.o \

kinetic_module.o rigid_bodies_module.o setup_module.o site_module.o

nvt_e1_scl.o: comms_module.o config_module.o kinds_f90.o \

rigid_bodies_module.o setup_module.o

nvt_e1_vv.o: comms_module.o config_module.o domains_module.o kinds_f90.o \

kinetic_module.o rigid_bodies_module.o setup_module.o site_module.o

nvt_g0_lfv.o: comms_module.o config_module.o kinds_f90.o kinetic_module.o \

langevin_module.o setup_module.o site_module.o

nvt_g0_scl.o: config_module.o kinds_f90.o kinetic_module.o setup_module.o

nvt_g0_vv.o: comms_module.o config_module.o kinds_f90.o kinetic_module.o \

langevin_module.o setup_module.o site_module.o

nvt_g1_lfv.o: comms_module.o config_module.o domains_module.o kinds_f90.o \

kinetic_module.o langevin_module.o rigid_bodies_module.o \

setup_module.o site_module.o

nvt_g1_scl.o: config_module.o kinds_f90.o kinetic_module.o \

rigid_bodies_module.o setup_module.o

nvt_g1_vv.o: comms_module.o config_module.o domains_module.o kinds_f90.o \

kinetic_module.o langevin_module.o rigid_bodies_module.o \

setup_module.o site_module.o

nvt_h0_lfv.o: comms_module.o config_module.o kinds_f90.o kinetic_module.o \

setup_module.o site_module.o

nvt_h0_scl.o: config_module.o kinds_f90.o kinetic_module.o setup_module.o

nvt_h0_vv.o: comms_module.o config_module.o kinds_f90.o kinetic_module.o \

setup_module.o site_module.o

nvt_h1_lfv.o: comms_module.o config_module.o domains_module.o kinds_f90.o \

kinetic_module.o rigid_bodies_module.o setup_module.o site_module.o

nvt_h1_scl.o: config_module.o kinds_f90.o kinetic_module.o \

rigid_bodies_module.o setup_module.o

nvt_h1_vv.o: comms_module.o config_module.o domains_module.o kinds_f90.o \

kinetic_module.o rigid_bodies_module.o setup_module.o site_module.o

nvt_l0_lfv.o: comms_module.o config_module.o kinds_f90.o kinetic_module.o \

setup_module.o site_module.o

208

c©STFC Appendix C

nvt_l0_vv.o: comms_module.o config_module.o kinds_f90.o kinetic_module.o \

setup_module.o site_module.o

nvt_l1_lfv.o: comms_module.o config_module.o domains_module.o kinds_f90.o \

kinetic_module.o rigid_bodies_module.o setup_module.o site_module.o

nvt_l1_vv.o: comms_module.o config_module.o domains_module.o kinds_f90.o \

kinetic_module.o rigid_bodies_module.o setup_module.o site_module.o

parallel_fft.o: comms_module.o gpfa_module.o kinds_f90.o setup_module.o

parse_module.o: comms_module.o kinds_f90.o setup_module.o

pass_shared_units.o: comms_module.o config_module.o domains_module.o \

kinds_f90.o rigid_bodies_module.o setup_module.o

pmf_coms.o: comms_module.o config_module.o kinds_f90.o pmf_module.o \

setup_module.o

pmf_module.o: kinds_f90.o setup_module.o

pmf_pseudo_bonds.o: comms_module.o config_module.o kinds_f90.o pmf_module.o \

setup_module.o

pmf_quench.o: comms_module.o config_module.o kinds_f90.o pmf_module.o \

setup_module.o

pmf_rattle.o: comms_module.o config_module.o kinds_f90.o pmf_module.o \

setup_module.o

pmf_shake_lfv.o: comms_module.o config_module.o kinds_f90.o pmf_module.o \

setup_module.o

pmf_shake_vv.o: comms_module.o config_module.o kinds_f90.o pmf_module.o \

setup_module.o

pmf_tags.o: config_module.o kinds_f90.o pmf_module.o setup_module.o

pmf_units_set.o: comms_module.o config_module.o pmf_module.o setup_module.o

pmf_vcoms.o: comms_module.o config_module.o kinds_f90.o pmf_module.o \

setup_module.o

pseudo_lfv.o: comms_module.o config_module.o core_shell_module.o kinds_f90.o \

kinetic_module.o rigid_bodies_module.o setup_module.o site_module.o

pseudo_vv.o: comms_module.o config_module.o core_shell_module.o kinds_f90.o \

kinetic_module.o rigid_bodies_module.o setup_module.o site_module.o

quaternions_container.o: comms_module.o config_module.o kinds_f90.o \

rigid_bodies_module.o setup_module.o

rdf_collect.o: config_module.o kinds_f90.o setup_module.o site_module.o \

statistics_module.o

rdf_compute.o: comms_module.o config_module.o kinds_f90.o setup_module.o \

site_module.o statistics_module.o

rdf_excl_collect.o: config_module.o kinds_f90.o setup_module.o site_module.o \

statistics_module.o

read_config.o: comms_module.o config_module.o domains_module.o io_module.o \

kinds_f90.o parse_module.o setup_module.o

read_config_parallel.o: comms_module.o config_module.o domains_module.o \

io_module.o kinds_f90.o parse_module.o setup_module.o

read_control.o: comms_module.o config_module.o defects1_module.o \

development_module.o kinds_f90.o langevin_module.o metal_module.o \

parse_module.o setup_module.o vdw_module.o

read_field.o: angles_module.o bonds_module.o comms_module.o config_module.o \

constraints_module.o core_shell_module.o dihedrals_module.o \

external_field_module.o four_body_module.o inversions_module.o \

209

c©STFC Appendix C

kinds_f90.o metal_module.o parse_module.o pmf_module.o \

rigid_bodies_module.o setup_module.o site_module.o \

statistics_module.o tersoff_module.o tethers_module.o \

three_body_module.o vdw_module.o

read_history.o: comms_module.o config_module.o domains_module.o io_module.o \

kinds_f90.o parse_module.o setup_module.o site_module.o

regauss_temperature.o: comms_module.o config_module.o kinds_f90.o \

kinetic_module.o rigid_bodies_module.o setup_module.o

relocate_particles.o: angles_module.o bonds_module.o comms_module.o \

config_module.o constraints_module.o core_shell_module.o \

dihedrals_module.o domains_module.o inversions_module.o kinds_f90.o \

pmf_module.o rigid_bodies_module.o setup_module.o site_module.o \

tethers_module.o

report_topology.o: angles_module.o bonds_module.o comms_module.o \

constraints_module.o core_shell_module.o dihedrals_module.o \

inversions_module.o pmf_module.o rigid_bodies_module.o setup_module.o \

site_module.o tethers_module.o

rigid_bodies_coms.o: comms_module.o config_module.o kinds_f90.o \

rigid_bodies_module.o setup_module.o

rigid_bodies_module.o: kinds_f90.o setup_module.o

rigid_bodies_move.o: config_module.o kinds_f90.o rigid_bodies_module.o \

setup_module.o

rigid_bodies_quench.o: comms_module.o config_module.o kinds_f90.o \

rigid_bodies_module.o setup_module.o

rigid_bodies_setup.o: comms_module.o config_module.o kinds_f90.o \

rigid_bodies_module.o setup_module.o site_module.o

rigid_bodies_split_torque.o: comms_module.o config_module.o kinds_f90.o \

rigid_bodies_module.o setup_module.o

rigid_bodies_stress.o: comms_module.o config_module.o kinds_f90.o \

rigid_bodies_module.o setup_module.o

rigid_bodies_tags.o: comms_module.o config_module.o rigid_bodies_module.o \

setup_module.o

rigid_bodies_widths.o: comms_module.o config_module.o kinds_f90.o \

rigid_bodies_module.o setup_module.o

rsd_write.o: comms_module.o config_module.o io_module.o kinds_f90.o \

parse_module.o setup_module.o site_module.o statistics_module.o

scale_config.o: config_module.o development_module.o kinds_f90.o

scale_temperature.o: comms_module.o config_module.o kinds_f90.o \

kinetic_module.o rigid_bodies_module.o setup_module.o

scan_config.o: comms_module.o io_module.o kinds_f90.o parse_module.o \

setup_module.o

scan_control.o: comms_module.o kinds_f90.o msd_module.o parse_module.o \

setup_module.o

scan_control_io.o: comms_module.o config_module.o io_module.o kinds_f90.o \

parse_module.o setup_module.o

scan_field.o: comms_module.o kinds_f90.o metal_module.o parse_module.o \

setup_module.o vdw_module.o

set_bounds.o: comms_module.o config_module.o domains_module.o kinds_f90.o \

msd_module.o setup_module.o

210

c©STFC Appendix C

set_halo_particles.o: comms_module.o config_module.o domains_module.o \

kinds_f90.o rigid_bodies_module.o setup_module.o site_module.o

set_temperature.o: comms_module.o config_module.o core_shell_module.o \

kinds_f90.o kinetic_module.o rigid_bodies_module.o setup_module.o \

site_module.o

setup_module.o: kinds_f90.o

site_module.o: kinds_f90.o setup_module.o

spme_container.o: comms_module.o kinds_f90.o setup_module.o

statistics_collect.o: comms_module.o config_module.o kinds_f90.o msd_module.o \

setup_module.o site_module.o statistics_module.o

statistics_module.o: kinds_f90.o setup_module.o

statistics_result.o: comms_module.o config_module.o kinds_f90.o msd_module.o \

setup_module.o site_module.o statistics_module.o

system_expand.o: angles_module.o bonds_module.o comms_module.o \

config_module.o constraints_module.o core_shell_module.o \

dihedrals_module.o inversions_module.o io_module.o kinds_f90.o \

parse_module.o rigid_bodies_module.o setup_module.o site_module.o

system_init.o: comms_module.o config_module.o development_module.o \

kinds_f90.o langevin_module.o metal_module.o setup_module.o \

site_module.o statistics_module.o vdw_module.o

system_revive.o: comms_module.o config_module.o development_module.o \

kinds_f90.o langevin_module.o setup_module.o statistics_module.o

tag_legend.o: setup_module.o

tersoff_forces.o: comms_module.o config_module.o domains_module.o kinds_f90.o \

setup_module.o tersoff_module.o

tersoff_generate.o: kinds_f90.o setup_module.o tersoff_module.o

tersoff_module.o: kinds_f90.o setup_module.o

tethers_forces.o: comms_module.o config_module.o kinds_f90.o setup_module.o \

statistics_module.o tethers_module.o

tethers_module.o: kinds_f90.o setup_module.o

three_body_forces.o: comms_module.o config_module.o domains_module.o \

kinds_f90.o setup_module.o three_body_module.o

three_body_module.o: kinds_f90.o setup_module.o

trajectory_write.o: comms_module.o config_module.o io_module.o kinds_f90.o \

parse_module.o setup_module.o statistics_module.o

two_body_forces.o: comms_module.o config_module.o ewald_module.o kinds_f90.o \

metal_module.o setup_module.o statistics_module.o vdw_module.o

update_shared_units.o: comms_module.o domains_module.o kinds_f90.o \

setup_module.o

vdw_direct_fs_generate.o: kinds_f90.o setup_module.o vdw_module.o

vdw_forces.o: comms_module.o config_module.o kinds_f90.o setup_module.o \

vdw_module.o

vdw_generate.o: kinds_f90.o setup_module.o vdw_module.o

vdw_lrc.o: comms_module.o config_module.o kinds_f90.o setup_module.o \

site_module.o vdw_module.o

vdw_module.o: kinds_f90.o setup_module.o

vdw_table_read.o: comms_module.o kinds_f90.o parse_module.o setup_module.o \

site_module.o vdw_module.o

warning.o: comms_module.o kinds_f90.o setup_module.o

211

c©STFC Appendix C

write_config.o: comms_module.o config_module.o io_module.o kinds_f90.o \

setup_module.o

xscale.o: comms_module.o config_module.o kinds_f90.o kinetic_module.o \

rigid_bodies_module.o setup_module.o statistics_module.o

z_density_collect.o: config_module.o kinds_f90.o setup_module.o site_module.o \

statistics_module.o

z_density_compute.o: comms_module.o config_module.o kinds_f90.o \

setup_module.o site_module.o statistics_module.o

zero_k_optimise.o: comms_module.o config_module.o kinds_f90.o \

kinetic_module.o rigid_bodies_module.o setup_module.o

212

c©STFC Appendix C

Makefile MPI

Master makefile for DL_POLY_4.03 (parallel version)

#

Author - I.T.Todorov june 2012

#

#

Define default settings

#===

SHELL=/bin/sh

.SUFFIXES:

.SUFFIXES: .f90 .o

BINROOT=../execute

EX=DLPOLY.Z

EXE=$(BINROOT)/$(EX)

TYPE=master

FC=undefined

LD=undefined

Define object files

#===

OBJ_MOD = \

kinds_f90.o comms_module.o setup_module.o \

parse_module.o development_module.o netcdf_modul~.o io_module.o \

domains_module.o \

site_module.o config_module.o defects_module.o defects1_module.o \

vdw_module.o metal_module.o tersoff_module.o \

three_body_module.o four_body_module.o \

core_shell_module.o \

constraints_module.o pmf_module.o \

rigid_bodies_module.o \

tethers_module.o \

bonds_module.o angles_module.o dihedrals_module.o inversions_module.o \

\

external_field_module.o langevin_module.o minimise_module.o \

ewald_module.o msd_module.o statistics_module.o \

\

kinetic_module.o gpfa_module.o parallel_fft.o \

OBJ_ALL = \

warning.o error.o scan_control_io.o \

numeric_container.o spme_container.o quaternions_container.o \

scan_field.o read_config_parallel.o scan_config.o scan_control.o read_config.o \

213

c©STFC Appendix C

set_bounds.o \

read_control.o \

vdw_generate.o vdw_table_read.o vdw_direct_fs_generate.o \

metal_generate.o metal_table_read.o metal_table_derivatives.o \

tersoff_generate.o dihedrals_14_check.o read_field.o \

check_config.o scale_config.o write_config.o \

trajectory_write.o system_expand.o \

rigid_bodies_tags.o rigid_bodies_coms.o rigid_bodies_widths.o \

rigid_bodies_setup.o \

tag_legend.o report_topology.o pass_shared_units.o build_book_intra.o \

build_excl_intra.o \

scale_temperature.o update_shared_units.o \

core_shell_quench.o constraints_tags.o constraints_quench.o \

pmf_coms.o pmf_tags.o pmf_vcoms.o pmf_quench.o \

rigid_bodies_quench.o \

set_temperature.o \

vdw_lrc.o metal_lrc.o system_init.o \

export_atomic_data.o set_halo_particles.o \

rigid_bodies_stress.o \

read_history.o \

defects_reference_read.o defects_reference_read_parallel.o \

defects_reference_write.o \

defects_reference_export.o defects_reference_set_halo.o \

defects_link_cells.o defects1_write.o defects_write.o \

msd_write.o rsd_write.o \

impact.o core_shell_on_top.o \

deport_atomic_data.o pmf_units_set.o compress_book_intra.o \

relocate_particles.o \

link_cell_pairs.o \

metal_ld_collect_eam.o metal_ld_collect_fst.o \

metal_ld_export.o metal_ld_set_halo.o \

metal_ld_compute.o \

exchange_grid.o ewald_spme_forces.o \

metal_forces.o vdw_forces.o ewald_real_forces.o \

coul_dddp_forces.o coul_cp_forces.o coul_fscp_forces.o \

coul_rfp_forces.o rdf_collect.o rdf_excl_collect.o ewald_excl_forces.o \

ewald_frozen_forces.o two_body_forces.o \

tersoff_forces.o three_body_forces.o four_body_forces.o \

core_shell_forces.o tethers_forces.o \

intra_coul.o bonds_forces.o angles_forces.o \

inversions_forces.o dihedrals_14_vdw.o dihedrals_forces.o \

external_field_apply.o external_field_correct.o \

langevin_forces.o \

constraints_pseudo_bonds.o pmf_pseudo_bonds.o \

rigid_bodies_split_torque.o rigid_bodies_move.o minimise_relax.o \

core_shell_relax.o zero_k_optimise.o \

nvt_e0_scl.o nvt_e1_scl.o nvt_b0_scl.o nvt_b1_scl.o \

\

pseudo_vv.o \

214

c©STFC Appendix C

constraints_shake_vv.o pmf_shake_vv.o \

constraints_rattle.o pmf_rattle.o \

nvt_h0_scl.o nvt_g0_scl.o npt_h0_scl.o nst_h0_scl.o \

nve_0_vv.o nvt_e0_vv.o \

nvt_l0_vv.o nvt_a0_vv.o nvt_b0_vv.o nvt_h0_vv.o nvt_g0_vv.o \

npt_l0_vv.o npt_b0_vv.o npt_h0_vv.o npt_m0_vv.o \

nst_l0_vv.o nst_b0_vv.o nst_h0_vv.o nst_m0_vv.o \

nvt_h1_scl.o nvt_g1_scl.o npt_h1_scl.o nst_h1_scl.o \

nve_1_vv.o nvt_e1_vv.o \

nvt_l1_vv.o nvt_a1_vv.o nvt_b1_vv.o nvt_h1_vv.o nvt_g1_vv.o \

npt_l1_vv.o npt_b1_vv.o npt_h1_vv.o npt_m1_vv.o \

nst_l1_vv.o nst_b1_vv.o nst_h1_vv.o nst_m1_vv.o \

\

pseudo_lfv.o \

constraints_shake_lfv.o pmf_shake_lfv.o \

nve_0_lfv.o nvt_e0_lfv.o \

nvt_l0_lfv.o nvt_a0_lfv.o nvt_b0_lfv.o nvt_h0_lfv.o nvt_g0_lfv.o \

npt_l0_lfv.o npt_b0_lfv.o npt_h0_lfv.o npt_m0_lfv.o \

nst_l0_lfv.o nst_b0_lfv.o nst_h0_lfv.o nst_m0_lfv.o \

nve_1_lfv.o nvt_e1_lfv.o \

nvt_l1_lfv.o nvt_a1_lfv.o nvt_b1_lfv.o nvt_h1_lfv.o nvt_g1_lfv.o \

npt_l1_lfv.o npt_b1_lfv.o npt_h1_lfv.o npt_m1_lfv.o \

nst_l1_lfv.o nst_b1_lfv.o nst_h1_lfv.o nst_m1_lfv.o \

\

xscale.o core_shell_kinetic.o regauss_temperature.o \

\

z_density_collect.o statistics_collect.o \

system_revive.o \

rdf_compute.o z_density_compute.o statistics_result.o \

dl_poly.o

Define Velocity Verlet files

#===

FILES_VV = \

pseudo_vv.f90 \

constraints_shake_vv.f90 pmf_shake_vv.f90 \

constraints_rattle.f90 pmf_rattle.f90 \

nvt_h0_scl.f90 nvt_g0_scl.f90 npt_h0_scl.f90 nst_h0_scl.f90 \

nve_0_vv.f90 nvt_e0_vv.f90 \

nvt_l0_vv.f90 nvt_a0_vv.f90 nvt_b0_vv.f90 nvt_h0_vv.f90 nvt_g0_vv.f90 \

npt_l0_vv.f90 npt_b0_vv.f90 npt_h0_vv.f90 npt_m0_vv.f90 \

nst_l0_vv.f90 nst_b0_vv.f90 nst_h0_vv.f90 nst_m0_vv.f90 \

nvt_h1_scl.f90 nvt_g1_scl.f90 npt_h1_scl.f90 nst_h1_scl.f90 \

nve_1_vv.f90 nvt_e1_vv.f90 \

nvt_l1_vv.f90 nvt_a1_vv.f90 nvt_b1_vv.f90 nvt_h1_vv.f90 nvt_g1_vv.f90 \

npt_l1_vv.f90 npt_b1_vv.f90 npt_h1_vv.f90 npt_m1_vv.f90 \

nst_l1_vv.f90 nst_b1_vv.f90 nst_h1_vv.f90 nst_m1_vv.f90 \

md_vv.f90

215

c©STFC Appendix C

Define LeapFrog Verlet files

#===

FILES_LFV = \

pseudo_lfv.f90 \

constraints_shake_lfv.f90 pmf_shake_lfv.f90 \

nve_0_lfv.f90 nvt_e0_lfv.f90 \

nvt_l0_lfv.f90 nvt_a0_lfv.f90 nvt_b0_lfv.f90 nvt_h0_lfv.f90 nvt_g0_lfv.f90 \

npt_l0_lfv.f90 npt_b0_lfv.f90 npt_h0_lfv.f90 npt_m0_lfv.f90 \

nst_l0_lfv.f90 nst_b0_lfv.f90 nst_h0_lfv.f90 nst_m0_lfv.f90 \

nve_1_lfv.f90 nvt_e1_lfv.f90 \

nvt_l1_lfv.f90 nvt_a1_lfv.f90 nvt_b1_lfv.f90 nvt_h1_lfv.f90 nvt_g1_lfv.f90 \

npt_l1_lfv.f90 npt_b1_lfv.f90 npt_h1_lfv.f90 npt_m1_lfv.f90 \

nst_l1_lfv.f90 nst_b1_lfv.f90 nst_h1_lfv.f90 nst_m1_lfv.f90 \

md_lfv.f90

Examine targets manually

#===

all:

@echo

@echo "You MUST specify or choose a permissive target platform!"

@echo

@echo "The available, permissive targets are displayed below:"

@echo

@echo "hpc || lake || newton || dirac || franklin ||"

@echo "hpcx || hpcx-debug || BGL || BGP ||"

@echo "hector || hector-pgi-debug ||"

@echo "hector-gnu || hector-gnu-debug ||"

@echo "hector-cray || hector-cray-debug ||"

@echo "hector-pathscale || hector-pathscale-debug ||"

@echo "hector-X2 || hector-X2-debug"

@echo

@echo "Please examine this Makefile’s targets for details!"

@echo "If no target suits your system then create your own"

@echo "using the advice in generic target template provided"

@echo "in this Makefile under the entry ’uknown_platform:’."

@echo

Fetch the Velocity Verlet subroutines

#===

$(FILES_VV):

$(MAKE) links_vv

links_vv:

@for file in ${FILES_VV} ; do \

echo linking to $$file ; \

216

c©STFC Appendix C

rm -f $$file ; \

ln -s VV/$$file $$file ; \

done

Fetch the LeapFrog Verlet subroutines

#===

$(FILES_LFV):

$(MAKE) links_lfv

links_lfv:

@for file in ${FILES_LFV} ; do \

echo linking to $$file ; \

rm -f $$file ; \

ln -s LFV/$$file $$file ; \

done

Clean up the source directory

#===

clean:

rm -f $(OBJ_MOD) $(OBJ_ALL) $(FILES_VV) $(FILES_LFV) *.mod

Generic target template

#===

uknown_platform:

$(MAKE) LD="path to FORTRAN90 Linker-loaDer" \

LDFLAGS="appropriate flags for LD (MPI libraries)" \

FC="path to FORTRAN90 compiler" \

FCFLAGS="appropriate flags for FC (MPI include)" \

EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

System specific targets follow:

#===

#================== Cambridge HPC - darwin (Woodcrest) ==============

hpc:

$(MAKE) LD="mpif90 -o" LDFLAGS="-O3" \

FC="mpif90 -c" FCFLAGS="-O3" \

EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

#================== Beowulf Linux ifort + mpich ======================

lake:

$(MAKE) LD="/opt/intel/compiler70/ia32/bin/ifc -v -o" \

LDFLAGS="-O3 -xW -prec_div -L/opt/mpich-intel/lib -lmpich \

-L/opt/intel/compiler70/ia32/lib/ -lPEPCF90" \

FC="/opt/intel/compiler70/ia32/bin/ifc -c" \

FCFLAGS="-O3 -xW -prec_div -I/opt/mpich-intel/include" \

EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

217

c©STFC Appendix C

#================== Linux efc SGI ALTIX + parallel FFT ==============

newton:

$(MAKE) LD="ifort -o" LDFLAGS="-tpp2 -ip -O3 -lmpi -lguide" \

FC="ifort -c" FCFLAGS="-O3 -tpp2 -ip -w" \

EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

#================== Beowulf Linux pgf90 + myrinet / mpich ============

dirac:

$(MAKE) LD="/usr/local/mpich-gm-pgroup121-7b/bin/mpif90 -v -o" \

LDFLAGS="-O3 -L/usr/local/mpich-gm-pgroup121-7b/lib -lmpich -lfmpich \

-lmpichf90 -L/usr/local/gm/binary/lib -lgm -L/usr/local/lib" \

FC="/usr/local/mpich-gm-pgroup121-7b/bin/mpif90 -c" \

FCFLAGS="-fast -Knoieee -Mdalign -O3" \

EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

#================== Franklin (SUNfire cluster) =======================

#setenv HPCF_MPI yes

franklin:

$(MAKE) LD="/opt/SUNWhpc/bin/mpf90 -o" \

LDFLAGS="-stackvar -fsimple=1 -xO3 -xarch=v9b -DHPCF_MPI -lmpi \

-xlic_lib=sunperf" \

FC="/opt/SUNWhpc/bin/mpf90 -c" \

FCFLAGS="-stackvar -fsimple=1 -xO3 -xarch=v9b -xchip=ultra \

-xlic_lib=sunperf -xalias=actual -fpover -ftrap=%none \

-fnonstd -libmil -dalign -I/opt/SUNWhpc/HPC5.0/include/v9" \

EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

#================== HPCx SP5 ===

hpcx:

$(MAKE) LD="mpxlf90_r -o" LDFLAGS="-O3 -q64 -qmaxmem=-1" \

FC="mpxlf90_r -qsuffix=f=f90 -c" \

FCFLAGS="-O3 -q64 -qmaxmem=-1 -qarch=pwr5 -qtune=pwr5 -qnosave" \

EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

#================== HPCx SP5 - DEBUG =================================

hpcx-debug:

$(MAKE) LD="mpxlf90_r -o" LDFLAGS="-g -C -q64 -O0 -lessl -lhmd" \

FC="mpxlf90_r -qsuffix=f=f90 -c" \

FCFLAGS="-g -C -q64 -O0 -qarch=pwr5 -qtune=pwr5 -qnosave" \

EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

#================== BG/L ===

BGL:

$(MAKE) LD="/bgl/BlueLight/ppcfloor/bglsys/bin/mpixlf95 -o" \

LDFLAGS="-O3 -qhot -qarch=440d -qtune=440" \

FC="/bgl/BlueLight/ppcfloor/bglsys/bin/mpixlf95 -c" \

FCFLAGS="-O3 -qhot -qarch=440d -qtune=440" \

EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

218

c©STFC Appendix C

#================== BG/P ===

BGP:

$(MAKE) LD="/bgsys/drivers/ppcfloor/comm/bin/mpixlf2003_r -o" \

LDFLAGS="-O3 -qhot -qarch=450d -qtune=450 -qmaxmem=128000" \

FC="/bgsys/drivers/ppcfloor/comm/bin/mpixlf2003_r -c" \

FCFLAGS="-O3 -qhot -qarch=450d -qtune=450 -qmaxmem=128000" \

EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

#================== CRAY XT3/6 pgi compilers (default) ===============

hector:

$(MAKE) LD="ftn -o" \

LDFLAGS="-O3" \

FC="ftn -c" \

FCFLAGS="-O3" \

EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

#================== CRAY XT3/6 pgi compilers - DEBUG =================

hector-pgi-debug:

$(MAKE) LD="ftn -o" \

LDFLAGS="-O0 -W -Wall -pedantic -std=f2003 -g -fbounds-check \

-fbacktrace -finit-real=nan -finit-integer=999999" \

FC="ftn -c" \

FCFLAGS="-O0 -W -Wall -pedantic -std=f2003 -g -fbounds-check \

-fbacktrace -finit-real=nan -finit-integer=999999" \

EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

#================== CRAY XT3/6 gnu compilers =========================

hector-gnu:

$(MAKE) LD="ftn -o" \

LDFLAGS="-O3 -Wall -pedantic -g" \

FC="ftn -c" \

FCFLAGS="-O3 -Wall -pedantic -g" \

EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

#================== CRAY XT3/6 gnu compilers - DEBUG =================

hector-gnu-debug:

$(MAKE) LD="ftn -o" \

LDFLAGS="-O3 -Wall -Wextra -pedantic -g -fbounds-check -fbacktrace \

-finit-integer=-9999 -finit-real=nan -std=f2003 \

-pedantic -ffpe-trap=invalid,zero,overflow -fdump-core" \

FC="ftn -c" \

FCFLAGS="-O3 -Wall -Wextra -pedantic -g -fbounds-check -fbacktrace \

-finit-integer=-9999 -finit-real=nan -std=f2003 \

-pedantic -ffpe-trap=invalid,zero,overflow -fdump-core" \

EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

#================== CRAY XT3/6 cray compilers ========================

hector-cray:

219

c©STFC Appendix C

$(MAKE) LD="ftn -o" \

LDFLAGS="-O3 -en" \

FC="ftn -c" \

FCFLAGS="-O3 -en" \

EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

#================== CRAY XT3/6 cray compilers - DEBUG ================

hector-cray-debug:

$(MAKE) LD="ftn -o" \

LDFLAGS="-O3 -en -G2" \

FC="ftn -c" \

FCFLAGS="-O3 -en -G2" \

EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

#================== CRAY XT3/6 pathscale compilers ===================

hector-pathscale:

$(MAKE) LD="ftn -o" \

LDFLAGS="-byteswapio -O3" \

FC="ftn -c" \

FCFLAGS="-byteswapio -O3" \

EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

#================== CRAY XT3/6 pathscale compilers - DEBUG ===========

hector-pathscale-debug:

$(MAKE) LD="ftn -o" \

LDFLAGS="-byteswapio -O0 -g -ffortran-bounds-check" \

FC="ftn -c" \

FCFLAGS="-byteswapio -O0 -g -ffortran-bounds-check" \

EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

#================== CRAY X2 ==

hector-X2:

$(MAKE) LD="ftn -o" \

LDFLAGS="-O3 -Ofp3 -Ocache2 -rm " \

FC="ftn -c" \

FCFLAGS="-O3 -Ofp3 -Ocache2 -rm " \

EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

#================== CRAY X2 - DEBUG ==================================

hector-X2-debug:

$(MAKE) LD="ftn -o" \

LDFLAGS="-G0 -O0 -rm " \

FC="ftn -c" \

FCFLAGS="-G0 -O0 -rm " \

EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

Default code

#===

220

c©STFC Appendix C

master: message check $(OBJ_MOD) $(OBJ_ALL)

$(LD) $(EXE) $(LDFLAGS) $(OBJ_MOD) $(OBJ_ALL)

Message

message:

@echo "DL_POLY_4 compilation in MPI mode"

@echo

@echo "’Use mpi_module’ must change to ’Use mpi’ in ’comms_module.f90’"

@echo

Check that a platform has been specified

check:

@if test "${FC}" = "undefined"; then \

echo; echo "*** FORTRAN90 compiler unspecified!"; \

echo; echo "*** Please edit your Makefile entries!"; \

echo; exit 99; \

fi; \

\

if test "${LD}" = "undefined"; then \

echo; echo "*** FORTRAN90 Linker-loaDer unspecified!"; \

echo; echo "*** Please edit your Makefile entries!"; \

echo; exit 99; \

fi; \

\

mkdir -p $(BINROOT) ; touch dl_poly.f90

Declare rules

#===

.f90.o:

$(FC) $(FCFLAGS) $*.f90

Declare dependencies

#===

$(OBJ_ALL): $(OBJ_MOD)

221

c©STFC Appendix C

Makefile SRL1

Master makefile for DL_POLY_4.03 (serial version 1)

#

Author - I.T.Todorov june 2012

#

#

Define default settings

#===

SHELL=/bin/sh

.SUFFIXES:

.SUFFIXES: .f90 .o

BINROOT=../execute

EX=DLPOLY.Z

EXE=$(BINROOT)/$(EX)

TYPE=master

FC=undefined

LD=undefined

Define object files

#===

OBJ_MOD = \

kinds_f90.o mpi_module.o comms_module.o setup_module.o \

parse_module.o development_module.o netcdf_modul~.o io_module.o \

domains_module.o \

site_module.o config_module.o defects_module.o defects1_module.o \

vdw_module.o metal_module.o tersoff_module.o \

three_body_module.o four_body_module.o \

core_shell_module.o \

constraints_module.o pmf_module.o \

rigid_bodies_module.o \

tethers_module.o \

bonds_module.o angles_module.o dihedrals_module.o inversions_module.o \

\

external_field_module.o langevin_module.o minimise_module.o \

ewald_module.o msd_module.o statistics_module.o \

\

kinetic_module.o

OBJ_ALL = \

warning.o error.o scan_control_io.o \

numeric_container.o spme_container.o quaternions_container.o \

scan_field.o read_config_parallel.o scan_config.o scan_control.o read_config.o \

222

c©STFC Appendix C

set_bounds.o \

read_control.o \

vdw_generate.o vdw_table_read.o vdw_direct_fs_generate.o \

metal_generate.o metal_table_read.o metal_table_derivatives.o \

tersoff_generate.o dihedrals_14_check.o read_field.o \

check_config.o scale_config.o write_config.o \

trajectory_write.o system_expand.o \

rigid_bodies_tags.o rigid_bodies_coms.o rigid_bodies_widths.o \

rigid_bodies_setup.o \

tag_legend.o report_topology.o pass_shared_units.o build_book_intra.o \

build_excl_intra.o \

scale_temperature.o update_shared_units.o \

core_shell_quench.o constraints_tags.o constraints_quench.o \

pmf_coms.o pmf_tags.o pmf_vcoms.o pmf_quench.o \

rigid_bodies_quench.o \

set_temperature.o \

vdw_lrc.o metal_lrc.o system_init.o \

export_atomic_data.o set_halo_particles.o \

rigid_bodies_stress.o \

read_history.o \

defects_reference_read.o defects_reference_read_parallel.o \

defects_reference_write.o \

defects_reference_export.o defects_reference_set_halo.o \

defects_link_cells.o defects1_write.o defects_write.o \

msd_write.o rsd_write.o \

impact.o core_shell_on_top.o \

deport_atomic_data.o pmf_units_set.o compress_book_intra.o \

relocate_particles.o \

link_cell_pairs.o \

metal_ld_collect_eam.o metal_ld_collect_fst.o \

metal_ld_export.o metal_ld_set_halo.o \

metal_ld_compute.o \

ewald_spme_forc~s.o \

metal_forces.o vdw_forces.o ewald_real_forces.o \

coul_dddp_forces.o coul_cp_forces.o coul_fscp_forces.o \

coul_rfp_forces.o rdf_collect.o rdf_excl_collect.o ewald_excl_forces.o \

ewald_frozen_forces.o two_body_forces.o \

tersoff_forces.o three_body_forces.o four_body_forces.o \

core_shell_forces.o tethers_forces.o \

intra_coul.o bonds_forces.o angles_forces.o \

inversions_forces.o dihedrals_14_vdw.o dihedrals_forces.o \

external_field_apply.o external_field_correct.o \

langevin_forces.o \

constraints_pseudo_bonds.o pmf_pseudo_bonds.o \

rigid_bodies_split_torque.o rigid_bodies_move.o minimise_relax.o \

core_shell_relax.o zero_k_optimise.o \

nvt_e0_scl.o nvt_e1_scl.o nvt_b0_scl.o nvt_b1_scl.o \

\

pseudo_vv.o \

223

c©STFC Appendix C

constraints_shake_vv.o pmf_shake_vv.o \

constraints_rattle.o pmf_rattle.o \

nvt_h0_scl.o nvt_g0_scl.o npt_h0_scl.o nst_h0_scl.o \

nve_0_vv.o nvt_e0_vv.o \

nvt_l0_vv.o nvt_a0_vv.o nvt_b0_vv.o nvt_h0_vv.o nvt_g0_vv.o \

npt_l0_vv.o npt_b0_vv.o npt_h0_vv.o npt_m0_vv.o \

nst_l0_vv.o nst_b0_vv.o nst_h0_vv.o nst_m0_vv.o \

nvt_h1_scl.o nvt_g1_scl.o npt_h1_scl.o nst_h1_scl.o \

nve_1_vv.o nvt_e1_vv.o \

nvt_l1_vv.o nvt_a1_vv.o nvt_b1_vv.o nvt_h1_vv.o nvt_g1_vv.o \

npt_l1_vv.o npt_b1_vv.o npt_h1_vv.o npt_m1_vv.o \

nst_l1_vv.o nst_b1_vv.o nst_h1_vv.o nst_m1_vv.o \

\

pseudo_lfv.o \

constraints_shake_lfv.o pmf_shake_lfv.o \

nve_0_lfv.o nvt_e0_lfv.o \

nvt_l0_lfv.o nvt_a0_lfv.o nvt_b0_lfv.o nvt_h0_lfv.o nvt_g0_lfv.o \

npt_l0_lfv.o npt_b0_lfv.o npt_h0_lfv.o npt_m0_lfv.o \

nst_l0_lfv.o nst_b0_lfv.o nst_h0_lfv.o nst_m0_lfv.o \

nve_1_lfv.o nvt_e1_lfv.o \

nvt_l1_lfv.o nvt_a1_lfv.o nvt_b1_lfv.o nvt_h1_lfv.o nvt_g1_lfv.o \

npt_l1_lfv.o npt_b1_lfv.o npt_h1_lfv.o npt_m1_lfv.o \

nst_l1_lfv.o nst_b1_lfv.o nst_h1_lfv.o nst_m1_lfv.o \

\

xscale.o core_shell_kinetic.o regauss_temperature.o \

\

z_density_collect.o statistics_collect.o \

system_revive.o \

rdf_compute.o z_density_compute.o statistics_result.o \

dl_poly.o

Define MPI-SERIAL files

#===

FILES_SERIAL = mpi_module.f90 mpif.h ewald_spme_forc~s.f90

Define Velocity Verlet files

#===

FILES_VV = \

pseudo_vv.f90 \

constraints_shake_vv.f90 pmf_shake_vv.f90 \

constraints_rattle.f90 pmf_rattle.f90 \

nvt_h0_scl.f90 nvt_g0_scl.f90 npt_h0_scl.f90 nst_h0_scl.f90 \

nve_0_vv.f90 nvt_e0_vv.f90 \

nvt_l0_vv.f90 nvt_a0_vv.f90 nvt_b0_vv.f90 nvt_h0_vv.f90 nvt_g0_vv.f90 \

npt_l0_vv.f90 npt_b0_vv.f90 npt_h0_vv.f90 npt_m0_vv.f90 \

nst_l0_vv.f90 nst_b0_vv.f90 nst_h0_vv.f90 nst_m0_vv.f90 \

nvt_h1_scl.f90 nvt_g1_scl.f90 npt_h1_scl.f90 nst_h1_scl.f90 \

224

c©STFC Appendix C

nve_1_vv.f90 nvt_e1_vv.f90 \

nvt_l1_vv.f90 nvt_a1_vv.f90 nvt_b1_vv.f90 nvt_h1_vv.f90 nvt_g1_vv.f90 \

npt_l1_vv.f90 npt_b1_vv.f90 npt_h1_vv.f90 npt_m1_vv.f90 \

nst_l1_vv.f90 nst_b1_vv.f90 nst_h1_vv.f90 nst_m1_vv.f90 \

md_vv.f90

Define LeapFrog Verlet files

#===

FILES_LFV = \

pseudo_lfv.f90 \

constraints_shake_lfv.f90 pmf_shake_lfv.f90 \

nve_0_lfv.f90 nvt_e0_lfv.f90 \

nvt_l0_lfv.f90 nvt_a0_lfv.f90 nvt_b0_lfv.f90 nvt_h0_lfv.f90 nvt_g0_lfv.f90 \

npt_l0_lfv.f90 npt_b0_lfv.f90 npt_h0_lfv.f90 npt_m0_lfv.f90 \

nst_l0_lfv.f90 nst_b0_lfv.f90 nst_h0_lfv.f90 nst_m0_lfv.f90 \

nve_1_lfv.f90 nvt_e1_lfv.f90 \

nvt_l1_lfv.f90 nvt_a1_lfv.f90 nvt_b1_lfv.f90 nvt_h1_lfv.f90 nvt_g1_lfv.f90 \

npt_l1_lfv.f90 npt_b1_lfv.f90 npt_h1_lfv.f90 npt_m1_lfv.f90 \

nst_l1_lfv.f90 nst_b1_lfv.f90 nst_h1_lfv.f90 nst_m1_lfv.f90 \

md_lfv.f90

Examine targets manually

#===

all:

@echo

@echo "You MUST specify or choose a permissive target platform!"

@echo

@echo "The available, permissive targets are displayed below:"

@echo

@echo "win || win-debug"

@echo

@echo "Please examine this Makefile’s targets for details!"

@echo "If no target suits your system then create your own"

@echo "using the advice in generic target template provided"

@echo "in this Makefile under the entry ’uknown_platform:’."

@echo

Fetch MPI-SERIAL subroutines

#===

$(FILES_SERIAL):

$(MAKE) links_serial

links_serial:

@for file in ${FILES_SERIAL} ; do \

echo linking to $$file ; \

rm -f $$file ; \

225

c©STFC Appendix C

ln -s SERIAL/$$file $$file ; \

done

Fetch the Velocity Verlet subroutines

#===

$(FILES_VV):

$(MAKE) links_vv

links_vv:

@for file in ${FILES_VV} ; do \

echo linking to $$file ; \

rm -f $$file ; \

ln -s VV/$$file $$file ; \

done

Fetch the LeapFrog Verlet subroutines

#===

$(FILES_LFV):

$(MAKE) links_lfv

links_lfv:

@for file in ${FILES_LFV} ; do \

echo linking to $$file ; \

rm -f $$file ; \

ln -s LFV/$$file $$file ; \

done

Clean up the source directory

#===

clean:

rm -f $(OBJ_MOD) $(OBJ_ALL) $(FILES_VV) $(FILES_LFV) $(FILES_SERIAL) *.mod

Generic target template

#===

uknown_platform:

$(MAKE) LD="path to FORTRAN90 Linker-loaDer" \

LDFLAGS="appropriate flags for LD" \

FC="path to FORTRAN90 compiler" \

FCFLAGS="appropriate flags for FC" \

EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

System specific targets follow:

#===

#====================== Generic f95 compilers ========================

win:

226

c©STFC Appendix C

$(MAKE) LD="f95 -o" \

LDFLAGS="-O3" \

FC="f95 -c" \

FCFLAGS="-O3" \

EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

#====================== Generic f95 compilers - DEBUG ================

win-debug:

$(MAKE) LD="f95 -o" \

LDFLAGS="-O0 -C=all -C=undefined" \

FC="f95 -c" \

FCFLAGS="-O0 -C=all -C=undefined" \

EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

Default code

#===

master: message check $(OBJ_MOD) $(OBJ_ALL)

$(LD) $(EXE) $(LDFLAGS) $(OBJ_MOD) $(OBJ_ALL)

Message

message:

@echo "DL_POLY_4 compilation in SRL1 mode"

@echo

@echo "’Use mpi’ must change to ’Use mpi_module’ in ’comms_module.f90’"

@echo

Check that a platform has been specified

check:

@if test "${FC}" = "undefined"; then \

echo; echo "*** FORTRAN90 compiler unspecified!"; \

echo; echo "*** Please edit your Makefile entries!"; \

echo; exit 99; \

fi; \

\

if test "${LD}" = "undefined"; then \

echo; echo "*** FORTRAN90 Linker-loaDer unspecified!"; \

echo; echo "*** Please edit your Makefile entries!"; \

echo; exit 99; \

fi; \

\

mkdir -p $(BINROOT) ; touch dl_poly.f90

Declare rules

#===

.f90.o:

$(FC) $(FCFLAGS) $*.f90

227

c©STFC Appendix C

Declare dependencies

#===

$(OBJ_ALL): $(OBJ_MOD)

228

c©STFC Appendix C

Makefile SRL2

Master makefile for DL_POLY_4.03 (serial version 2)

#

Author - I.T.Todorov june 2012

#

#

Define default settings

#===

SHELL=/bin/sh

.SUFFIXES:

.SUFFIXES: .f90 .o

BINROOT=../execute

EX=DLPOLY.Z

EXE=$(BINROOT)/$(EX)

TYPE=master

FC=undefined

LD=undefined

Define object files

#===

OBJ_MOD = \

kinds_f90.o mpi_module.o comms_module.o setup_module.o \

parse_module.o development_module.o netcdf_modul~.o io_module.o \

domains_module.o \

site_module.o config_module.o defects_module.o defects1_module.o \

vdw_module.o metal_module.o tersoff_module.o \

three_body_module.o four_body_module.o \

core_shell_module.o \

constraints_module.o pmf_module.o \

rigid_bodies_module.o \

tethers_module.o \

bonds_module.o angles_module.o dihedrals_module.o inversions_module.o \

\

external_field_module.o langevin_module.o minimise_module.o \

ewald_module.o msd_module.o statistics_module.o \

\

kinetic_module.o gpfa_module.o parallel_fft.o \

OBJ_ALL = \

warning.o error.o scan_control_io.o \

numeric_container.o spme_container.o quaternions_container.o \

scan_field.o read_config_parallel.o scan_config.o scan_control.o read_config.o \

229

c©STFC Appendix C

set_bounds.o \

read_control.o \

vdw_generate.o vdw_table_read.o vdw_direct_fs_generate.o \

metal_generate.o metal_table_read.o metal_table_derivatives.o \

tersoff_generate.o dihedrals_14_check.o read_field.o \

check_config.o scale_config.o write_config.o \

trajectory_write.o system_expand.o \

rigid_bodies_tags.o rigid_bodies_coms.o rigid_bodies_widths.o \

rigid_bodies_setup.o \

tag_legend.o report_topology.o pass_shared_units.o build_book_intra.o \

build_excl_intra.o \

scale_temperature.o update_shared_units.o \

core_shell_quench.o constraints_tags.o constraints_quench.o \

pmf_coms.o pmf_tags.o pmf_vcoms.o pmf_quench.o \

rigid_bodies_quench.o \

set_temperature.o \

vdw_lrc.o metal_lrc.o system_init.o \

export_atomic_data.o set_halo_particles.o \

rigid_bodies_stress.o \

read_history.o \

defects_reference_read.o defects_reference_read_parallel.o \

defects_reference_write.o \

defects_reference_export.o defects_reference_set_halo.o \

defects_link_cells.o defects1_write.o defects_write.o \

msd_write.o rsd_write.o \

impact.o core_shell_on_top.o \

deport_atomic_data.o pmf_units_set.o compress_book_intra.o \

relocate_particles.o \

link_cell_pairs.o \

metal_ld_collect_eam.o metal_ld_collect_fst.o \

metal_ld_export.o metal_ld_set_halo.o \

metal_ld_compute.o \

exchange_grid.o ewald_spme_forces.o \

metal_forces.o vdw_forces.o ewald_real_forces.o \

coul_dddp_forces.o coul_cp_forces.o coul_fscp_forces.o \

coul_rfp_forces.o rdf_collect.o rdf_excl_collect.o ewald_excl_forces.o \

ewald_frozen_forces.o two_body_forces.o \

tersoff_forces.o three_body_forces.o four_body_forces.o \

core_shell_forces.o tethers_forces.o \

intra_coul.o bonds_forces.o angles_forces.o \

inversions_forces.o dihedrals_14_vdw.o dihedrals_forces.o \

external_field_apply.o external_field_correct.o \

langevin_forces.o \

constraints_pseudo_bonds.o pmf_pseudo_bonds.o \

rigid_bodies_split_torque.o rigid_bodies_move.o minimise_relax.o \

core_shell_relax.o zero_k_optimise.o \

nvt_e0_scl.o nvt_e1_scl.o nvt_b0_scl.o nvt_b1_scl.o \

\

pseudo_vv.o \

230

c©STFC Appendix C

constraints_shake_vv.o pmf_shake_vv.o \

constraints_rattle.o pmf_rattle.o \

nvt_h0_scl.o nvt_g0_scl.o npt_h0_scl.o nst_h0_scl.o \

nve_0_vv.o nvt_e0_vv.o \

nvt_l0_vv.o nvt_a0_vv.o nvt_b0_vv.o nvt_h0_vv.o nvt_g0_vv.o \

npt_l0_vv.o npt_b0_vv.o npt_h0_vv.o npt_m0_vv.o \

nst_l0_vv.o nst_b0_vv.o nst_h0_vv.o nst_m0_vv.o \

nvt_h1_scl.o nvt_g1_scl.o npt_h1_scl.o nst_h1_scl.o \

nve_1_vv.o nvt_e1_vv.o \

nvt_l1_vv.o nvt_a1_vv.o nvt_b1_vv.o nvt_h1_vv.o nvt_g1_vv.o \

npt_l1_vv.o npt_b1_vv.o npt_h1_vv.o npt_m1_vv.o \

nst_l1_vv.o nst_b1_vv.o nst_h1_vv.o nst_m1_vv.o \

\

pseudo_lfv.o \

constraints_shake_lfv.o pmf_shake_lfv.o \

nve_0_lfv.o nvt_e0_lfv.o \

nvt_l0_lfv.o nvt_a0_lfv.o nvt_b0_lfv.o nvt_h0_lfv.o nvt_g0_lfv.o \

npt_l0_lfv.o npt_b0_lfv.o npt_h0_lfv.o npt_m0_lfv.o \

nst_l0_lfv.o nst_b0_lfv.o nst_h0_lfv.o nst_m0_lfv.o \

nve_1_lfv.o nvt_e1_lfv.o \

nvt_l1_lfv.o nvt_a1_lfv.o nvt_b1_lfv.o nvt_h1_lfv.o nvt_g1_lfv.o \

npt_l1_lfv.o npt_b1_lfv.o npt_h1_lfv.o npt_m1_lfv.o \

nst_l1_lfv.o nst_b1_lfv.o nst_h1_lfv.o nst_m1_lfv.o \

\

xscale.o core_shell_kinetic.o regauss_temperature.o \

\

z_density_collect.o statistics_collect.o \

system_revive.o \

rdf_compute.o z_density_compute.o statistics_result.o \

dl_poly.o

Define MPI-SERIAL files

#===

FILES_SERIAL = mpi_module.f90 mpif.h

Define Velocity Verlet files

#===

FILES_VV = \

pseudo_vv.f90 \

constraints_shake_vv.f90 pmf_shake_vv.f90 \

constraints_rattle.f90 pmf_rattle.f90 \

nvt_h0_scl.f90 nvt_g0_scl.f90 npt_h0_scl.f90 nst_h0_scl.f90 \

nve_0_vv.f90 nvt_e0_vv.f90 \

nvt_l0_vv.f90 nvt_a0_vv.f90 nvt_b0_vv.f90 nvt_h0_vv.f90 nvt_g0_vv.f90 \

npt_l0_vv.f90 npt_b0_vv.f90 npt_h0_vv.f90 npt_m0_vv.f90 \

nst_l0_vv.f90 nst_b0_vv.f90 nst_h0_vv.f90 nst_m0_vv.f90 \

nvt_h1_scl.f90 nvt_g1_scl.f90 npt_h1_scl.f90 nst_h1_scl.f90 \

231

c©STFC Appendix C

nve_1_vv.f90 nvt_e1_vv.f90 \

nvt_l1_vv.f90 nvt_a1_vv.f90 nvt_b1_vv.f90 nvt_h1_vv.f90 nvt_g1_vv.f90 \

npt_l1_vv.f90 npt_b1_vv.f90 npt_h1_vv.f90 npt_m1_vv.f90 \

nst_l1_vv.f90 nst_b1_vv.f90 nst_h1_vv.f90 nst_m1_vv.f90 \

md_vv.f90

Define LeapFrog Verlet files

#===

FILES_LFV = \

pseudo_lfv.f90 \

constraints_shake_lfv.f90 pmf_shake_lfv.f90 \

nve_0_lfv.f90 nvt_e0_lfv.f90 \

nvt_l0_lfv.f90 nvt_a0_lfv.f90 nvt_b0_lfv.f90 nvt_h0_lfv.f90 nvt_g0_lfv.f90 \

npt_l0_lfv.f90 npt_b0_lfv.f90 npt_h0_lfv.f90 npt_m0_lfv.f90 \

nst_l0_lfv.f90 nst_b0_lfv.f90 nst_h0_lfv.f90 nst_m0_lfv.f90 \

nve_1_lfv.f90 nvt_e1_lfv.f90 \

nvt_l1_lfv.f90 nvt_a1_lfv.f90 nvt_b1_lfv.f90 nvt_h1_lfv.f90 nvt_g1_lfv.f90 \

npt_l1_lfv.f90 npt_b1_lfv.f90 npt_h1_lfv.f90 npt_m1_lfv.f90 \

nst_l1_lfv.f90 nst_b1_lfv.f90 nst_h1_lfv.f90 nst_m1_lfv.f90 \

md_lfv.f90

Examine targets manually

#===

all:

@echo

@echo "You MUST specify or choose a permissive target platform!"

@echo

@echo "The available, permissive targets are displayed below:"

@echo

@echo "win || win-debug"

@echo

@echo "Please examine this Makefile’s targets for details!"

@echo "If no target suits your system then create your own"

@echo "using the advice in generic target template provided"

@echo "in this Makefile under the entry ’uknown_platform:’."

@echo

Fetch MPI-SERIAL subroutines

#===

$(FILES_SERIAL):

$(MAKE) links_serial

links_serial:

@for file in ${FILES_SERIAL} ; do \

echo linking to $$file ; \

rm -f $$file ; \

232

c©STFC Appendix C

ln -s SERIAL/$$file $$file ; \

done

Fetch the Velocity Verlet subroutines

#===

$(FILES_VV):

$(MAKE) links_vv

links_vv:

@for file in ${FILES_VV} ; do \

echo linking to $$file ; \

rm -f $$file ; \

ln -s VV/$$file $$file ; \

done

Fetch the LeapFrog Verlet subroutines

#===

$(FILES_LFV):

$(MAKE) links_lfv

links_lfv:

@for file in ${FILES_LFV} ; do \

echo linking to $$file ; \

rm -f $$file ; \

ln -s LFV/$$file $$file ; \

done

Clean up the source directory

#===

clean:

rm -f $(OBJ_MOD) $(OBJ_ALL) $(FILES_VV) $(FILES_LFV) $(FILES_SERIAL) *.mod

Generic target template

#===

uknown_platform:

$(MAKE) LD="path to FORTRAN90 Linker-loaDer" \

LDFLAGS="appropriate flags for LD" \

FC="path to FORTRAN90 compiler" \

FCFLAGS="appropriate flags for FC" \

EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

System specific targets follow:

#===

#====================== Generic f95 compilers ========================

win:

233

c©STFC Appendix C

$(MAKE) LD="f95 -o" \

LDFLAGS="-O3" \

FC="f95 -c" \

FCFLAGS="-O3" \

EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

#====================== Generic f95 compilers - DEBUG ================

win-debug:

$(MAKE) LD="f95 -o" \

LDFLAGS="-O0 -C=all -C=undefined" \

FC="f95 -c" \

FCFLAGS="-O0 -C=all -C=undefined" \

EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

Default code

#===

master: message check $(OBJ_MOD) $(OBJ_ALL)

$(LD) $(EXE) $(LDFLAGS) $(OBJ_MOD) $(OBJ_ALL)

Message

message:

@echo "DL_POLY_4 compilation in SRL2 mode"

@echo

@echo "’Use mpi’ must change to ’Use mpi_module’ in ’comms_module.f90’"

@echo

Check that a platform has been specified

check:

@if test "${FC}" = "undefined"; then \

echo; echo "*** FORTRAN90 compiler unspecified!"; \

echo; echo "*** Please edit your Makefile entries!"; \

echo; exit 99; \

fi; \

\

if test "${LD}" = "undefined"; then \

echo; echo "*** FORTRAN90 Linker-loaDer unspecified!"; \

echo; echo "*** Please edit your Makefile entries!"; \

echo; exit 99; \

fi; \

\

mkdir -p $(BINROOT) ; touch dl_poly.f90

Declare rules

#===

.f90.o:

$(FC) $(FCFLAGS) $*.f90

234

c©STFC Appendix C

Declare dependencies

#===

$(OBJ_ALL): $(OBJ_MOD)

235

Appendix D

DL POLY 4 Error Messages and User
Action

Introduction

In this appendix we document the error messages encoded in DL POLY 4 and the recommended
user action. The correct response is described as the standard user response in the appropriate
sections below, to which the user should refer before acting on the error encountered.

The reader should also be aware that some of the error messages listed below may be either disabled
in, or absent from, the public version of DL POLY 4. Note that the wording of some of the messages
may have changed over time, usually to provide more specific information. The most recent wording
appears below.

The Standard User Response

DL POLY 4 uses FORTRAN90 dynamic array allocation to set the array sizes at run time. This
means that a single executable may be compiled to over all the likely uses of the code. It is not
foolproof however. Sometimes an estimate of the required array sizes is difficult to obtain and the
calculated value may be too small. For this reason DL POLY 4 retains array dimension checks and
will terminate when an array bound error occurs.

When a dimension error occurs, the standard user response is to edit the DL POLY 4
subroutine set bounds. Locate where the variable defining the array dimension is fixed and
increase accordingly. To do this you should make use of the dimension information that DL POLY 4
prints in the OUTPUT file prior to termination. If no information is supplied, simply doubling
the size of the variable will usually do the trick. If the variable concerned is defined in one of the
support subroutines scan config, scan field, scan control you will need to insert a new line
in set bounds to redefine it - after the relevant subroutine has been called! Finally the code must
be recompiled, as in this case it will only be necessary to recompile set bounds and not the whole
code.

236

c©STFC Appendix D

The DL POLY 4 Error Messages

Message 1: error - word 2 real failure

The semantics in some of the INPUT files is wrong. DL POLY 4 has tried to read a number but
the has found a word in non-number format.

Action:

Look into your INPUT files and correct the semantics where appropriate and resubmit. DL POLY 4
will have printed out in the OUTPUT file what the found non-uniform word is.

Message 2: error - too many atom types in FIELD (scan field)

This error arises when DL POLY 4 scans the FIELD file and discovers that there are too many
different types of atoms in the system (i.e. the number of unique atom types exceeds the 1000).

Action:

Increase the number of allowed atom types (mmk) in scan field, recompile and resubmit.

Message 3: error - unknown directive found in CONTROL file

This error most likely arises when a directive is misspelt in the CONTROL file.

Action:

Locate the erroneous directive in the CONTROL file and correct error and resubmit.

Message 4: error - unknown directive found in FIELD file

This error most likely arises when a directive is misspelt or is encountered in an incorrect location
in the FIELD file, which can happen if too few or too many data records are included.

Action:

Locate the erroneous directive in the FIELD file and correct error and resubmit.

Message 5: error - unknown energy unit requested

The DL POLY 4 FIELD file permits a choice of units for input of energy parameters. These may
be: electron-Volts (eV); k-calories per mol (kcal/mol); k-Joules per mol (kJ/mol); Kelvin per
Boltzmann (Kelvin/Boltzmann); or the DL POLY 4 internal units, 10 Joules per mol (internal).
There is no default value. Failure to specify any of these correctly, or reference to other energy
units, will result in this error message. See documentation of the FIELD file.

Action:

Correct energy keyword on units directive in FIELD file and resubmit.

Message 6: error - energy unit not specified

A units directive is mandatory in the FIELD file. This error indicates that DL POLY 4 has failed
to find the required record.

237

c©STFC Appendix D

Action:

Add units directive to FIELD file and resubmit.

Message 8: error - ewald precision must be a POSITIVE real number

Ewald precision must be a positive non-zero real number. For example 10e-5 is accepted as a
standard.

Action:

Put a correct number at the ”ewald precision” directive in the CONTROL file and resubmit.

Message 10: error - too many molecule types specified

This should never happen! This indicates an erroneous FIELD file or corrupted DL POLY 4
executable. Unlike DL POLY Classic, DL POLY 4 does not have a set limit on the number of kinds
of molecules it can handle in any simulation (this is not the same as the number of molecules).

Action:

Examine FIELD for erroneous directives, correct and resubmit.

Message 11: error - duplicate molecule directive in FIELD file

The number of different types of molecules in a simulation should only be specified once. If
DL POLY 4 encounters more than one molecules directive, it will terminate execution.

Action:

Locate the extra molecule directive in the FIELD file and remove and resubmit.

Message 12: error - unknown molecule directive in FIELD file

Once DL POLY 4 encounters the molecules directive in the FIELD file, it assumes the following
records will supply data describing the intramolecular force field. It does not then expect to
encounter directives not related to these data. This error message results if it encounters a unrelated
directive. The most probable cause is incomplete specification of the data (e.g. when the finish
directive has been omitted.)

Action:

Check the molecular data entries in the FIELD file, correct and resubmit.

Message 13: error - molecule species not specified

This error arises when DL POLY 4 encounters non-bonded force data in the FIELD file, before
the molecular species have been specified. Under these circumstances it cannot assign the data
correctly, and therefore terminates.

Action:

Make sure the molecular data appears before the non-bonded forces data in the FIELD file and
resubmit.

238

c©STFC Appendix D

Message 14: error - too many unique atom types specified

This should never happen! This error most likely arises when the FIELD file or/and DL POLY 4
executable are corrupted.

Action:

Recompile the program or recreate the FIELD file. If neither of these works, send the problem to
us.

Message 15: error - duplicate vdw potential specified

In processing the FIELD file, DL POLY 4 keeps a record of the specified short range pair potentials
as they are read in. If it detects that a given pair potential has been specified before, no attempt
at a resolution of the ambiguity is made and this error message results. See specification of FIELD
file.

Action:

Locate the duplication in the FIELD file, rectify and resubmit.

Message 16: error - strange exit from FIELD file processing

This should never happen! It simply means that DL POLY 4 has ceased processing the FIELD
data, but has not reached the end of the file or encountered a close directive. Probable cause:
corruption of the DL POLY 4 executable or of the FIELD file. We would be interested to hear of
other reasons!

Action:

Recompile the program or recreate the FIELD file. If neither of these works, send the problem to
us.

Message 17: error - strange exit from CONTROL file processing

See notes on message 16 above.

Message 18: error - duplicate three-body potential specified

DL POLY 4 has encountered a repeat specification of a three-body potential in the FIELD file.

Action:

Locate the duplicate entry, remove and resubmit job.

Message 19: error - duplicate four-body potential specified

A 4-body potential has been duplicated in the FIELD file.

Action:

Locate the duplicated four-body potential, remove and resubmit job.

239

c©STFC Appendix D

Message 20: error - too many molecule sites specified

This should never happen! This error most likely arises when the FIELD file or/and DL POLY 4
executable are corrupted.

Action:

Recompile the program or recreate the FIELD file. If neither of these works, send the problem to
us.

Message 21: error - molecule contains more atoms/sites than declared

The molecule contains more atom/site entries that it declares in the beginning.

Action:

Recreate or correct the erroneous entries in the FIELD file and try again.

Message 22: error - unsuitable radial increment in TABLE file

This arises when the tabulated potentials presented in the TABLE file have an increment that is
greater than that used to define the other potentials in the simulation. Ideally the increment should
be rcut/(mxgrid − 4), where rcut is the potential cutoff for the short range potentials and mxgrid

is the parameter defining the length of the interpolation arrays. An increment less than this is
permissible however.

Action:

The tables must be recalculated with an appropriate increment.

Message 23: error - incompatible FIELD and TABLE file potentials

This error arises when the specification of the short range potentials is different in the FIELD and
TABLE files. This usually means that the order of specification of the potentials is different. When
DL POLY 4 finds a change in the order of specification, it assumes that the user has forgotten to
enter one.

Action:

Check the FIELD and TABLE files. Make sure that you correctly specify the pair potentials in the
FIELD file, indicating which ones are to be presented in the TABLE file. Then check the TABLE
file to make sure all the tabulated potentials are present in the order the FIELD file indicates.

Message 24: error - end of file encountered in TABLE or TABEAM file

This means the TABLE or TABEAM file is incomplete in some way: either by having too few
potentials included, or the number of data points is incorrect.

Action:

Examine the TABLE file contents and regenerate it if it appears to be incomplete. If it look intact,
check that the number of data points specified is what DL POLY 4 is expecting.

240

c©STFC Appendix D

Message 25: error - wrong atom type found in CONFIG file

On reading the input file CONFIG, DL POLY 4 performs a check to ensure that the atoms specified
in the configuration provided are compatible with the corresponding FIELD file. This message
results if they are not or the parallel reading wrongly assumed that CONFIG complies with the
DL POLY 3/4 style.

Action:

The possibility exists that one or both of the CONFIG or FIELD files has incorrectly specified the
atoms in the system. The user must locate the ambiguity, using the data printed in the OUTPUT
file as a guide, and make the appropriate alteration. If the reason is in the parallel reading then
produce a new CONFIG using a serial reading and continue working with it.

Message 26: error - neutral group option now redundant

DL POLY 4 does not have the neutral group option.

Action:

Use the Ewald sum option. (It’s better anyway.)

Message 27: error - rigid body option now redundant

DL POLY 4 does not have a rigid body option.

Action:

Consider using DL POLY Classic instead.

Message 28: error - wrongly indexed atom entries found in CONFIG file

DL POLY 4 has detected that the atom indices in the CONFIG file do not form a contnual and/or
non-repeating group of indices.

Action:

Make sure the CONFIG file is complies with the DL POLY 4 standards. You may use the no index
option in the CONTROL file to override the crystalographic sites’ reading from the CONFIG file
from reading by index to reading by order of the atom entries with consecutive incremental indexing.
Using this option assumes that the FIELD topology description matches the crystalographic sites
(atoms entries) in the CONFIG file by order (consecutively).

Message 30: error - too many chemical bonds specified

This should never happen! This error most likely arises when the FIELD file or/and DL POLY 4
executable are corrupted.

Action:

Recompile the program or recreate the FIELD file. If neither of these works, send the problem to
us.

241

c©STFC Appendix D

Message 31: error - too many chemical bonds per domain

DL POLY 4 limits the number of chemical bond units in the system to be simulated (actually, the
number to be processed by each node) and checks for the violation of this. Termination will result
if the condition is violated.

Action:

Use densvar option in CONTROL to increase mxbond (alternatively, increase it by hand in
set bounds and recompile) and resubmit.

Message 32: error - coincidence of particles in core-shell unit

DL POLY 4 has found a fault in the definition of a core-shell unit in the FIELD file. The same
particle has been assigned to the core and shell sites.

Action:

Correct the erroneous entry in FIELD and resubmit.

Message 33: error - coincidence of particles in constraint bond unit

DL POLY 4 has found a fault in the definition of a constraint bond unit in the FIELD file. The
same particle has been assigned to the both sites.

Action:

Correct the erroneous entry in FIELD and resubmit.

Message 34: error - length of constraint bond unit >= real space cutoff (rcut)

DL POLY 4 has found a constraint bond unit length (FIELD) larger than the real space cutoff
(rcut) (CONTROL).

Action:

Increase cutoff in CONTROL or decrease the constraint bondlength in FIELD and resubmit. For
small system consider using DL POLY Classic.

Message 35: error - coincidence of particles in chemical bond unit

DL POLY 4 has found a faulty chemical bond in FIELD (defined between the same particle).

Action:

Correct the erroneous entry in FIELD and resubmit.

Message 36: error - only one *bonds* directive per molecule is allowed

DL POLY 4 has found more than one bonds entry per molecule in FIELD.

Action:

Correct the erroneous part in FIELD and resubmit.

242

c©STFC Appendix D

Message 38: error - transfer array exceeded in metal ld export

This should never happen!

Action:

Consider using densvar option in CONTROL for extremely non-equilibrium simulations. Alterna-
tively, increase mxbuff in set bounds recompile and resubmit. Send the problem to us if this is
persistent.

Correct the erroneous entry in FIELD and resubmit.

Message 39: error - density array exceeded in metal ld export

This should never happen!

Action:

You might consider using densvar option in CONTROL. Send the problem to us if this is persistent.

Message 40: error - too many bond constraints specified

This should never happen!

Action:

Recompile the program or recreate the FIELD file. If neither of these works, send the problem to
us.

Message 41: error - too many bond constraints per domain

DL POLY 4 limits the number of bond constraint units in the system to be simulated (actually,
the number to be processed by each node) and checks for the violation of this. Termination will
result if the condition is violated.

Action:

Use densvar option in CONTROL to increase mxcons (alternatively, increase it by hand in
set bounds and recompile) and resubmit.

Message 42: error - undefined direction passed to deport atomic data

This should never happen!

Action:

Send the problem to us.

Message 43: error - deport atomic data outgoing transfer buffer exceeded

This may happen in extremely non-equilibrium simulations or usually when the potential in use do
not hold the system stable.

Action:

243

c©STFC Appendix D

Consider using densvar option in CONTROL for extremely non-equilibrium simulations. Alterna-
tively, increase mxbuff in set bounds recompile and resubmit.

Message 44: error - deport atomic data incoming transfer buffer exceeded

Action:

See Message 43

Message 45: error - too many atoms in CONFIG file or per domain

This can happen in circumstances when indeed the CONFIG file has more atoms listed than defined
in FIELD, or when one of the domains (managed by an MPI process) has higher particle density
than the system average and contains more particles than allowed by the default based on the
system.

Action:

Check if CONFIG and FIELD numbers of particles match. Try executing on various number of
processors. Try using the densvar option in CONTROL to increase mxatms (alternatively, increase
it by hand in set bounds and recompile) and resubmit. Send the problem to us if this is persistent.

Message 46: error - undefined direction passed to export atomic data

This should never happen!

Action:

Send the problem to us.

Message 47: error - undefined direction passed to metal ld export

This should never happen!

Action:

Send the problem to us.

Message 48: error - transfer buffer too small in vdw table read or metal table read

Action:

Standard user response. Increase mxbuff in set bounds recompile and resubmit.

Message 49: error - frozen shell (core-shell) unit specified

The DL POLY 4 option to freeze the location of an atom (i.e. hold it permanently in one position)
is not permitted for the shells in core-shell units.

Action:

Remove the frozen atom option from the FIELD file. Consider using a non-polarisable atom instead.

244

c©STFC Appendix D

Message 50: error - too many bond angles specified

This should never happen! This error most likely arises when the FIELD file or/and DL POLY 4
executable are corrupted.

Action:

Recompile the program or recreate the FIELD file. If neither of these works, send the problem to
us.

Message 51: error - too many bond angles per domain

DL POLY 4 limits the number of valence angle units in the system to be simulated (actually, the
number to be processed by each node) and checks for the violation of this. Termination will result
if the condition is violated.

Action:

Use densvar option in CONTROL to increase mxangl (alternatively, increase it by hand in
set bounds and recompile) and resubmit.

Message 52: error - end of FIELD file encountered

This message results when DL POLY 4 reaches the end of the FIELD file, without having read
all the data it expects. Probable causes: missing data or incorrect specification of integers on the
various directives.

Action:

Check FIELD file for missing or incorrect data, correct and resubmit.

Message 53: error - end of CONTROL file encountered

This message results when DL POLY 4 reaches the end of the CONTROL file, without having read
all the data it expects. Probable cause: missing finish directive.

Action:

Check CONTROL file, correct and resubmit.

Message 54: error - outgoing transfer buffer exceeded in export atomic data

This may happen in extremely non-equilibrium simulations or usually when the potential in use do
not hold the system stable.

Action:

Consider using densvar option in CONTROL for extremely non-equilibrium simulations. Alterna-
tively, increase mxbuff in set bounds recompile and resubmit.

Message 55: error - end of CONFIG file encountered

This error arises when DL POLY 4 attempts to read more data from the CONFIG file than is
actually present. The probable cause is an incorrect or absent CONFIG file, but it may be due to

245

c©STFC Appendix D

the FIELD file being incompatible in some way with the CONFIG file.

Action:

Check contents of CONFIG file. If you are convinced it is correct, check the FIELD file for
inconsistencies.

Message 56: error - atomic coordinate array exceeded in export atomic data

This may happen in extremely non-equilibrium simulations or usually when the potential in use do
not hold the system stable.

Action:

Consider using densvar option in CONTROL for extremely non-equilibrium simulations. Alterna-
tively, increase mxatms in set bounds recompile and resubmit.

Message 57: error - too many core-shell units specified

This should never happen!

Action:

Recompile the program or recreate the FIELD file. If neither of these works, send the problem to
us.

Message 58: error - number of atoms in system not conserved

Either and an atom has been lost in transfer between nodes/domains or your FIELD is ill defined
with respect to what is supplied in CONFIG/HISTORY.

Action:

If this error is issued at start before timestep zero in a simulation then it is either your FIELD file is
ill defined or that your CONFIG file (or the first frame of your HISTRORY being replayed). Check
out for mistyped number or identities of molecules, atoms, etc. in FIELD and for mangled/blank
lines in CONFIG/HISTORY, or a blank line(s) at the end of CONFIG or missing FOF (End Of
File) character in CONFIG. If this error is issued after timestep zero in a simulation that is not
replaying HISTORY then it is big trouble and you should report that to the authors. If it is during
replaying HISTORY then your HISTORY file has corrupted frames and you must correct it before
trying again.

Message 59: error - too many core-shell units per domain

DL POLY 4 limits the number of core-shell units in the system to be simulated (actually, the
number to be processed by each node) and checks for the violation of this. Termination will result
if the condition is violated.

Action:

Use densvar option in CONTROL to increase mxshl (alternatively, increase it by hand in set bounds
and recompile) and resubmit.

246

c©STFC Appendix D

Message 60: error - too many dihedral angles specified

This should never happen!

Action:

Recompile the program or recreate the FIELD file. If neither of these works, send the problem to
us.

Message 61: error - too many dihedral angles per domain

DL POLY 4 limits the number of dihedral angle units in the system to be simulated (actually, the
number to be processed by each node) and checks for the violation of this. Termination will result
if the condition is violated.

Action:

Use densvar option in CONTROL to increase mxdihd (alternatively, increase it by hand in
set bounds and recompile) and resubmit.

Message 62: error - too many tethered atoms specified

This should never happen!

Action:

Recompile the program or recreate the FIELD file. If neither of these works, send the problem to
us.

Message 63: error - too many tethered atoms per domain

DL POLY 4 limits the number of tethered atoms in the system to be simulated (actually, the
number to be processed by each node) and checks for the violation of this. Termination will result
if the condition is violated.

Action:

Use densvar option in CONTROL to increase mxteth (alternatively, increase it by hand in
set bounds and recompile) and resubmit.

Message 64: error - incomplete core-shell unit found in build book intra

This should never happen!

Action:

Report problem to authors.

Message 65: error - too many excluded pairs specified

This should never happen! This error arises when DL POLY 4 is identifying the atom pairs that
cannot have a pair potential between them, by virtue of being chemically bonded for example
(see subroutine build excl intra). Some of the working arrays used in this operation may be
exceeded, resulting in termination of the program.

247

c©STFC Appendix D

Action:

Contact authors.

Message 66: error - coincidence of particles in bond angle unit

DL POLY 4 has found a fault in the definition of a bond angle in the FIELD file.

Action:

Correct the erroneous entry in FIELD and resubmit.

Message 67: error - coincidence of particles in dihedral unit

DL POLY 4 has found a fault in the definition of a dihedral unit in the FIELD file.

Action:

Correct the erroneous entry in FIELD and resubmit.

Message 68: error - coincidence of particles in inversion unit

DL POLY 4 has found a fault in the definition of a inversion unit in the FIELD file.

Action:

Correct the erroneous entry in FIELD and resubmit.

Message 69: error - too many link cells required in three body forces

This should not happen! The calculation of three-body forces in DL POLY 4 is handled by the link
cell algorithm. This error arises if the required number of link cells exceeds the permitted array
dimension in the code.

Action:

Consider using densvar option in CONTROL for extremely non-equilibrium simulations. Alterna-
tively, increase mxcell in set bounds recompile and resubmit.

Message 70: error - constraint quench failure

When a simulation with bond constraints is started, DL POLY 4 attempts to extract the kinetic
energy of the constrained atom-atom bonds arising from the assignment of initial random velocities.
If this procedure fails, the program will terminate. The likely cause is a badly generated initial
configuration.

Action:

Some help may be gained from increasing the cycle limit, by using the directive mxshak in the
CONTROL file. You may also consider reducing the tolerance of the SHAKE iteration using the
directive shake in the CONTROL file. However it is probably better to take a good look at the
starting conditions!

248

c©STFC Appendix D

Message 71: error - too many metal potentials specified

This should never happen!

Action:

Report to authors.

Message 72: error - too many tersoff potentials specified

This should never happen!

Action:

Report to authors.

Message 73: error - too many inversion potentials specified

This should never happen!

Action:

Report to authors.

Message 74: error - unidentified atom in tersoff potential list

This shows that DL POLY 4 has encountered and erroneous entry for Tersoff potentials in FIELD.

Action:

Correct FIELD and resubmit.

Message 76: error - duplicate tersoff potential specified

This shows that DL POLY 4 has encountered and erroneous entry for Tersoff potentials in FIELD.

Action:

Correct FIELD and resubmit.

Message 77: error - too many inversion angles per domain

DL POLY 4 limits the number of inversion units in the system to be simulated (actually, the
number to be processed by each node) and checks for the violation of this. Termination will result
if the condition is violated.

Action:

Use densvar option in CONTROL to increase mxinv (alternatively, increase it by hand in set bounds
and recompile) and resubmit.

Message 78: error - too many link cells required in tersoff forces

This should not happen! The calculation of Tersoff forces in DL POLY 4 is handled by the link
cell algorithm. This error arises if the required number of link cells exceeds the permitted array

249

c©STFC Appendix D

dimension in the code.

Action:

Consider using densvar option in CONTROL for extremely non-equilibrium simulations. Alterna-
tively, increase mxcell in set bounds recompile and resubmit.

Message 79: error - tersoff potential cutoff undefined

This shows that DL POLY 4 has encountered and erroneous entry for Tersoff potentials in FIELD.

Action:

Correct FIELD and resubmit.

Message 80: error - too many pair potentials specified

This should never happen!

Action:

Report to authors.

Message 81: error - unidentified atom in pair potential list

This shows that DL POLY 4 has encountered and erroneous entry for vdw or metal potentials in
FIELD.

Action:

Correct FIELD and resubmit.

Message 82: error - calculated pair potential index too large

This should never happen! In checking the vdw and metal potentials specified in the FIELD file
DL POLY 4 calculates a unique integer indices that henceforth identify every specific potential
within the program. If this index becomes too large, termination of the program results.

Action:

Report to authors.

Message 83: error - too many three-body potentials specified

This should never happen!

Action:

Report to authors.

Message 84: error - unidentified atom in three-body potential list

This shows that DL POLY 4 has encountered and erroneous entry at tbp definition in FIELD.

Action:

Correct FIELD and resubmit.

250

c©STFC Appendix D

Message 85: error - required velocities not in CONFIG file

If the user attempts to start up a DL POLY 4 simulation with any type of restart directive
(see description of CONTROL file,) the program will expect the CONFIG file to contain atomic
velocities as well as positions. Termination results if these are not present.

Action:

Either replace the CONFIG file with one containing the velocities, or if not available, remove the
restart ... directive altogether and let DL POLY 4 create the velocities for itself.

Message 86: error - calculated three-body potential index too large

This should never happen! DL POLY 4 has a permitted maximum for the calculated index for any
three-body potential in the system (i.e. as defined in the FIELD file). If there are m distinct types
of atom in the system, the index can possibly range from 1 to (m2 ∗ (m − 1))/2. If the internally
calculated index exceeds this number, this error report results.

Action:

Report to authors.

Message 87: error - too many link cells required in four body forces

This should not happen! The calculation of four-body forces in DL POLY 4 is handled by the link
cell algorithm. This error arises if the required number of link cells exceeds the permitted array
dimension in the code.

Action:

Consider using densvar option in CONTROL for extremely non-equilibrium simulations. Alterna-
tively, increase mxcell in set bounds recompile and resubmit.

Message 88: error - legend array exceeded in build book intra

The second dimension of a legend array has been exceeded.

Action:

If you have an intra-molecular (like) interaction present in abundance in your model that you
suspect is driving this out of bound error increase its legend bound value, mxfinteraction, at the
end of scan field, recompile and resubmit. If the error persists contact authors.

Message 89: error - too many four-body potentials specified

This should never happen!

Action:

Report to authors.

251

c©STFC Appendix D

Message 91: error - unidentified atom in four-body potential list

The specification of a four-body potential in the FIELD file has referenced an atom type that is
unknown.

Action:

Locate the errant atom type in the four-body potential definition in the FIELD file and correct.
Make sure this atom type is specified by an atoms directive earlier in the file.

Message 92: error - specified metal potentials have different types

The specified metal interactions in the FIELD file are referencing more than one generic type of
metal potentials. Only one such type is allowed in the system.

Action:

Locate the errant metal type in the metal potential definition in the FIELD file and correct. Make
sure only one metal type is specified for all relevan atom interactions in the file.

Message 93: error - PMFs mixing with rigid bodies not allowed

Action:

Correct FIELD and resubmit.

Message 95: error - error - rcut > minimum of all half-cell widths

In order for the minimum image convention to work correctly within DL POLY 4, it is necessary to
ensure that the major cutoff applied to the pair interactions does not exceed half the perpendicular
width of the simulation cell. (The perpendicular width is the shortest distance between opposing
cell faces.) Termination results if this is detected. In NVE and NVT simulations this can only
happen at the start of a simulation, but in NPT and NσT, it may occur at any time.

Action:

Supply a cutoff that is less than half the cell width. If running constant pressure calculations, use
a cutoff that will accommodate the fluctuations in the simulation cell. Study the fluctuations in
the OUTPUT file to help you with this.

Message 96: error - incorrect atom totals in metal ld set halo

This should never happen!

Action:

Big trouble. Report to authors.

Message 97: error - constraints mixing with rigid bodies not allowed

Action:

Correct FIELD and resubmit.

252

c©STFC Appendix D

Message 99: error - cannot have shells as part of a constraint, rigid body or tether

Action:

Correct FIELD and resubmit.

Message 100: error - core-shell unit separation > rcut (the system cutoff)

This could only happen if FIELD and CONFIG do not match each other or CONFIG is damaged.

Action:

Regenerate CONFIG (and FIELD) and resubmit.

Message 101: error - calculated four-body potential index too large

This should never happen! DL POLY 4 has a permitted maximum for the calculated index for any
four-body potential in the system (i.e. as defined in the FIELD file). If there are m distinct types
of atom in the system, the index can possibly range from 1 to (m2 ∗ (m + 1) ∗ (m + 2))/6. If the
internally calculated index exceeds this number, this error report results.

Action:

Report to authors.

Message 102: error - rcut < 2*rcter (maximum cutoff for tersoff potentials)

The nature of the Tersoff interaction requires they have at least twice shorter cutoff than the
standard pair interctions (or the major system cutoff).

Action:

Decrease Tersoff cutoffs in FIELD or increase cutoff in CONTROL and resubmit.

Message 103: error - parameter mxlshp exceeded in pass shared units

Various algorithms (constraint and core-shell ones) require that information about ‘shared’ atoms
be passed between nodes. If there are too many such atoms, the arrays holding the information
will be exceeded and DL POLY 4 will terminate execution.

Action:

Use densvar option in CONTROL to increase mxlshp (alternatively, increase it by hand in
set bounds and recompile) and resubmit.

Message 104: error - arrays listme and lstout exceeded in pass shared units

This should not happen! Dimensions of indicated arrays have been exceeded.

Action:

Consider using densvar option in CONTROL for extremely non-equilibrium simulations.

253

c©STFC Appendix D

Message 105: error - shake algorithm (constraints shake) failed to converge

The SHAKE algorithm for bond constraints is iterative. If the maximum number of permitted iter-
ations is exceeded, the program terminates. Possible causes include: a bad starting configuration;
too large a time step used; incorrect force field specification; too high a temperature; inconsistent
constraints (over-constraint) etc..

Action:

You may try to increase the limit of iteration cycles in the constraint subroutines by using the direc-
tive mxshak and/or decrease the constraint precision by using the directive shake in CONTROL.
But the trouble may be much more likely to be cured by careful consideration of the physical system
being simulated. For example, is the system stressed in some way? Too far from equilibrium?

Message 106: error - neighbour list array too small in link cell pairs

Construction of the Verlet neighbour list in subroutine link cell pairs non-bonded (pair) force
has exceeded the neighbour list array dimensions.

Action:

Consider using densvar option in CONTROL for extremely non-equilibrium simulations or increase
by hand mxlist in set bounds.

Message 107: error - too many pairs for rdf look up specified

This should never happen! A possible reason is corruption in FIELD or/and DL POLY 4 exe-
cutable.

Action:

Reconstruct FIELD, recompile afresh DL POLY 4 and resubmit. If the problem persists get in
touch with DL POLY 4 authors.

Message 108: error - unidentified atom in rdf look up list

During reading of RDF look up pairs in FIELD DL POLY 4 has found an unlisted previously atom
type.

Action:

Correct FIELD by either defining the new atom type or changing it to an already defined one in
the erroneous line. Resubmit.

Message 109: error - calculated pair rdf index too large

This should never happen! In checking the RDF pairs specified in the FIELD file DL POLY 4
calculates a unique integer index that henceforth identify every RDF pair within the program. If
this index becomes too large, termination of the program results.

Action:

Report to authors.

254

c©STFC Appendix D

Message 108: error - duplicate rdf look up pair specified

During reading of RDF look up pairs in FIELD DL POLY 4 has found a duplicate entry in the
list.

Action:

Delete the duplicate line and resubmit.

Message 111: error - bond constraint unit separation > rcut (the system cutoff)

This should never happen! DL POLY 4 has not been able to find an atom in a processor domain
or its bordering neighbours.

Action:

Probable cause: link cells too small. Use larger potential cutoff. Contact DL POLY 4 authors.

Message 112: error - only one *constraints* directive per molecule is allowed

DL POLY 4 has found more than one constraints entry per molecule in FIELD.

Action:

Correct the erroneous part in FIELD and resubmit.

Message 113: error - intramolecular bookkeeping arrays exceeded in deport atomic data

One or more bookkeeping arrays for site-related interactions have been exceeded.

Action:

Consider using densvar option in CONTROL for extremely non-equilibrium simulations. Alter-
natively, you will need to print extra diagnostic data from the deport atomic data subroutine
to find which boded-like contribution has exceeded its assumed limit and then correct for it in
set bounds, recompile and resubmit.

Message 114: error - legend array exceeded in deport atomic data

The array legend has been exceeded.

Action:

Try increasing parameter mxfix in set bounds, recompile and resubmit. Contact DL POLY 4
authors if the problem persists.

Message 115: error - transfer buffer exceeded in update shared units

The transfer buffer has been exceeded.

Action:

Consider increasing parameter mxbuff in set bounds, recompile and resubmit. Contact DL POLY 4
authors if the problem persists.

255

c©STFC Appendix D

Message 116: error - incorrect atom transfer in update shared units

An atom has become misplaced during transfer between nodes.

Action:

This happens when the simulation is very numerically unstable. Consider carefully the physical
grounds of your simulation, i.e. are you using the adiabatic shell model for accounting polarisation
with too big a timestep or too large control distances for the variable timestep, is the ensemble
type NPT or NσT and the system target temperature too close to the melting temperature?

Message 118: error - construction error in pass shared units

This should not happen.

Action:

Report to authors.

Message 120: error - invalid determinant in matrix inversion

DL POLY 4 occasionally needs to calculate matrix inverses (usually the inverse of the matrix of
cell vectors, which is of size 3 × 3). For safety’s sake a check on the determinant is made, to prevent
inadvertent use of a singular matrix.

Action:

Locate the incorrect matrix and fix it - e.g. are cell vectors correct?

Message 122: error - FIELD file not found

DL POLY 4 failed to find a FIELD file in your directory.

Action:

Supply a valid FIELD file before you start a simulation

Message 124: error - CONFIG file not found

DL POLY 4 failed to find a CONFIG file in your directory.

Action:

Supply a valid CONFIG file before you start a simulation

Message 126: error - CONTROL file not found

DL POLY 4 failed to find a CONTROL file in your directory.

Action:

Supply a valid CONTROL file before you start a simulation

256

c©STFC Appendix D

Message 128: error - chemical bond unit separation > rcut (the system cutoff)

This could only happen if FIELD and CONFIG do not match each other or if CONFIG is ill
defined.

Action:

Regenerate CONFIG (and FIELD) and resubmit.

Message 130: error - bond angle unit diameter > rcut (the system cutoff)

This could only happen if FIELD and CONFIG do not match each other or if CONFIG is ill
defined.

Action:

Regenerate CONFIG (and FIELD) and resubmit.

Message 132: error - dihedral angle unit diameter > rcut (the system cutoff)

This could only happen if FIELD and CONFIG do not match each other or if CONFIG is ill
defined.

Action:

Regenerate CONFIG (and FIELD) and resubmit.

Message 134: error - inversion angle unit diameter > rcut (the system cutoff)

This could only happen if FIELD and CONFIG do not match each other or if CONFIG is ill
defined.

Action:

Regenerate CONFIG (and FIELD) and resubmit.

Message 141: error - duplicate metal potential specified

During reading of metal potentials (pairs of atom types) in FIELD DL POLY 4 has found a dupli-
cate pair of atoms in the list.

Action:

Delete one of the duplicate entries and resubmit.

Message 145: error - no two-body like forces specified

This error arises when there are no two-body like interactions specified in FIELD and CONTROL.
I.e. none of the following interactions exists or if does, it has been switched off; any coulombic,
vdw, metal, tersoff. In DL POLY 4 expects that particles will be kept apparat, stay separated and
never go through each other due to one of the fore-specified interactions.

Action:

Users must alone take measures to prevent such outcome.

257

c©STFC Appendix D

Message 150: error - unknown van der waals potential selected

DL POLY 4 checks when constructing the interpolation tables for the short ranged potentials that
the potential function requested is one which is of a form known to the program. If the requested
potential form is unknown, termination of the program results. The most probable cause of this is
the incorrect choice of the potential keyword in the FIELD file.

Action:

Read the DL POLY 4 documentation and find the potential keyword for the potential desired.

Message 151: error - unknown EAM keyword in TABEAM

DL POLY 4 checks when constructing the interpolation tables for the EAM metal potentials that
the potential function requested is one which is of a form known to the program. If the requested
potential form is unknown, termination of the program results. The most probable cause of this is
the incorrect choice of the potential keyword in the FIELD file.

Message 170: error - too many variables for statistics array

This error means the statistics arrays appearing in subroutine statistics collect are too small.
This should never happen!

Action:

Contact DL POLY 4 authors.

Message 200: error - rdf/z-density buffer array too small in system revive

This error indicates that a global summation buffer array in subroutine system revive is too
small, i.e mxbuff < mxgrdf. This should never happen!

Action:

Contact DL POLY 4 authors.

Message 210: error - only one *angles* directive per molecule is allowed

DL POLY 4 has found more than one angles entry per molecule in FIELD.

Action:

Correct the erroneous part in FIELD and resubmit.

Message 220: error - only one *dihedrals* directive per molecule is allowed

DL POLY 4 has found more than one dihedrals entry per molecule in FIELD.

Action:

Correct the erroneous part in FIELD and resubmit.

258

c©STFC Appendix D

Message 230: error - only one *inversions* directive per molecule is allowed

DL POLY 4 has found more than one inversions entry per molecule in FIELD.

Action:

Correct the erroneous part in FIELD and resubmit.

Message 240: error - only one *tethers* directive per molecule is allowed

DL POLY 4 has found more than one tethers entry per molecule in FIELD.

Action:

Correct the erroneous part in FIELD and resubmit.

Message 300: error - incorrect boundary condition for link-cell algorithms

The use of link cells in DL POLY 4 implies the use of appropriate boundary conditions. This
error results if the user specifies octahedral or dodecahedral boundary conditions, which are only
available in DL POLY Classic.

Action:

Correct your boundary condition or consider using DL POLY Classic.

Message 305: error - too few link cells per dimension for many-body and tersoff forces
subroutines.

The link cells algorithms for many-body and tersoff forces in DL POLY 4 cannot work with less
than 27 link cells. Depending on the cell size and the chosen cut-off, DL POLY 4 may decide that
this minimum cannot be achieved and terminate. This should never happen!

Action:

Decrease many-body and tersoff potentials cutoffs or/and number of nodes or/and increase system
size.

Message 307: error - link cell algorithm violation

DL POLY 4 does not like what you are asking it to do. Probable cause: the cutoff is too large to
use link cells in this case.

Action:

Rethink the simulation model; reduce the cutoff or/and number of nodes or/and increase system
size.

Message 308: error - link cell algorithm in contention with SPME sum precision

DL POLY 4 does not like what you are asking it to do. Probable cause: you ask for SPME precision
that is not achievable by the current settings of the link cell algorithm.

Action:

259

c©STFC Appendix D

Rethink the simulation model; reduce number of nodes or/and SPME sum precision or/and increase
cutoff.

Message 321: error - LFV quaternion integrator failed

This indicates unstable integration but may be due to many reasons.

Action:

Rethink the simulation model. Increase mxquat in CONTROL and resubmit or use VV integration
to check system stability.

Message 340: error - invalid integration option requested

DL POLY 4 has detected an incompatibility in the simulation instructions, namely that the re-
quested integration algorithm is not compatible with the physical model. It may be possible to
override this error trap, but it is up to the user to establish if this is sensible.

Action:

This is a non-recoverable error, unless the user chooses to override the restriction.

Message 350: error - too few degrees of freedom

This error can arise if a small system is being simulated and the number of constraints applied is
too large.

Action:

Simulate a larger system or reduce the number of constraints.

Message 360: error - degrees of freedom distribution problem

This should never happen for a dynamically sensical system. This error arises if a model system
contains one or more free, zero mass particles. Zero mass (mass-less) particles/sites are only allowed
for shells in core-shell units and as part of rigid bodies (mass-less but charged RB sites).

Action:

Inspect your FIELD to find and correct the erroneous entries, and try again.

Message 380: error - simulation temperature not specified or < 1 K

DL POLY 4 has failed to find a temp directive in the CONTROL file.

Action:

Place a temp directive in the CONTROL file, with the required temperature specified.

Message 381: error - simulation timestep not specified

DL POLY 4 has failed to find a timestep directive in the CONTROL file.

Action:

260

c©STFC Appendix D

Place a timestep directive in the CONTROL file, with the required timestep specified.

Message 382: error - simulation cutoff not specified

DL POLY 4 has failed to find a cutoff directive in the CONTROL file.

Action:

Place a cutoff directive in the CONTROL file, with the required forces cutoff specified.

Message 387: error - system pressure not specified

The target system pressure has not been specified in the CONTROL file. Applies to NPT simula-
tions only.

Action:

Insert a press directive in the CONTROL file specifying the required system pressure.

Message 390: error - npt/nst ensemble requested in non-periodic system

A non-periodic system has no defined volume, hence the NPT algorithm cannot be applied.

Action:

Either simulate the system with a periodic boundary, or use another ensemble.

Message 392: error - too many link cells requested

The number of link cells required for a given simulation exceeds the number allowed for by the
DL POLY 4 arrays. Probable cause: your system has expanded unacceptably much to DL POLY 4.
This may not be physically sensible!

Action:

Consider using densvar option in CONTROL for extremely non-equilibrium simulations. Alterna-
tively, increase mxcell in set bounds recompile and resubmit.

Message 402: error - van der waals not specified

The user has not set any cutoff in CONTROL, (rvdw) - the van der Waals potentials cutoff is
needed in order for DL POLY 4 to proceed.

Action:

Supply a cutoff value for the van der Waals terms in the CONTROL file using the directive rvdw,
and resubmit job.

Message 410: error - cell not consistent with image convention

The simulation cell vectors appearing in the CONFIG file are not consistent with the specified
image convention.

Action:

261

c©STFC Appendix D

Locate the variable imcon in the CONFIG file and correct to suit the cell vectors.

Message 414: error - conflicting ensemble options in CONTROL file

DL POLY 4 has found more than one ensemble directive in the CONTROL file.

Action:

Locate extra ensemble directives in CONTROL file and remove.

Message 416: error - conflicting force options in CONTROL file

DL POLY 4 has found incompatible directives in the CONTROL file specifying the electrostatic
interactions options.

Action:

Locate the conflicting directives in the CONTROL file and correct.

Message 430: error - integration routine not available

A request for a non-existent ensemble has been made or a request with conflicting options that
DL POLY 4 cannot deal with.

Action:

Examine the CONTROL and FIELD files and remove inappropriate specifications.

Message 432: error - undefined tersoff potential

This shows that DL POLY 4 has encountered an unfamiliar entry for Tersoff potentials in FIELD.

Action:

Correct FIELD and resubmit.

Message 433: error - rcut must be specified for the Ewald sum precision

When specifying the desired precision for the Ewald sum in the CONTROL file, it is also necessary
to specify the real space cutoff rcut.

Action:

Place the cut directive before the ewald precision directive in the CONTROL file and rerun.

Message 436: error - unrecognised ensemble

An unknown ensemble option has been specified in the CONTROL file.

Action:

Locate ensemble directive in the CONTROL file and amend appropriately.

262

c©STFC Appendix D

Message 440: error - undefined angular potential

A form of angular potential has been requested which DL POLY 4 does not recognise.

Action:

Locate the offending potential in the FIELD file and remove. Replace with one acceptable to
DL POLY 4 if this is possible. Alternatively, you may consider defining the required potential in
the code yourself. Amendments to subroutines read field and angles forces will be required.

Message 442: error - undefined three-body potential

A form of three-body potential has been requested which DL POLY 4 does not recognise.

Action:

Locate the offending potential in the FIELD file and remove. Replace with one acceptable to
DL POLY 4 if this is reasonable. Alternatively, you may consider defining the required potential
in the code yourself. Amendments to subroutines read field and three body forces will be
required.

Message 443: error - undefined four-body potential

DL POLY 4 has been requested to process a four-body potential it does not recognise.

Action:

Check the FIELD file and make sure the keyword is correctly defined. Make sure that subroutine
three body forces contains the code necessary to deal with the requested potential. Add the
code required if necessary, by amending subroutines read field and three body forces.

Message 444: error - undefined bond potential

DL POLY 4 has been requested to process a bond potential it does not recognise.

Action:

Check the FIELD file and make sure the keyword is correctly defined. Make sure that subroutine
bonds forces contains the code necessary to deal with the requested potential. Add the code
required if necessary, by amending subroutines read field and bonds forces.

Message 445: error - r 14 > rcut in dihedrals forces

The 1-4 coulombic scaling for a dihedral angle bonding cannot be performed since the 1-4 distance
has exceeded the system short range interaction cutoff, rcut, in subroutine dihedral forces.

Action:

To prevent this error occurring again increase rcut.

Message 446: error - undefined electrostatic key in dihedral forces

The subroutine dihedral forces has been requested to process a form of electrostatic potential
it does not recognise.

263

c©STFC Appendix D

Action:

The error arises because the integer key keyfrc has an inappropriate value (which should not
happen in the standard version of DL POLY 4). Check that the FIELD file correctly specifies
the potential. Make sure the version of dihedral forces does contain the potential you are
specifying. Report the error to the authors if these checks are correct.

Action:

To prevent this error occurring again increase rvdw.

Message 447: error - only one *shells* directive per molecule is allowed

DL POLY 4 has found more than one shells entry per molecule in FIELD.

Action:

Correct the erroneous part in FIELD and resubmit.

Message 448: error - undefined dihedral potential

A form of dihedral potential has been requested which DL POLY 4 does not recognise.

Action:

Locate the offending potential in the FIELD file and remove. Replace with one acceptable to
DL POLY 4 if this is reasonable. Alternatively, you may consider defining the required potential
in the code yourself. Amendments to subroutines read field and dihedral forces (and its
variants) will be required.

Message 449: error - undefined inversion potential

A form of inversion potential has been encountered which DL POLY 4 does not recognise.

Action:

Locate the offending potential in the FIELD file and remove. Replace with one acceptable to
DL POLY 4 if this is reasonable. Alternatively, you may consider defining the required potential
in the code yourself. Amendments to subroutines read field and inversions forces will be
required.

Message 450: error - undefined tethering potential

A form of tethering potential has been requested which DL POLY 4 does not recognise.

Action:

Locate the offending potential in the FIELD file and remove. Replace with one acceptable to
DL POLY 4 if this is reasonable. Alternatively, you may consider defining the required potential in
the code yourself. Amendments to subroutines read field and tethers forces will be required.

Message 451: error - three-body potential cutoff undefined

The cutoff radius for a three-body potential has not been defined in the FIELD file.

264

c©STFC Appendix D

Action:

Locate the offending three-body force potential in the FIELD file and add the required cutoff.
Resubmit the job.

Message 452: error - undefined vdw potential

A form of vdw potential has been requested which DL POLY 4 does not recognise.

Action:

Locate the offending potential in the FIELD file and remove. Replace with one acceptable to
DL POLY 4 if this is reasonable. Alternatively, you may consider defining the required poten-
tial in the code yourself. Amendments to subroutines read field, vdw generate* and dihe-
drals 14 vdw will be required.

Message 453: error - four-body potential cutoff undefined

The cutoff radius for a four-body potential has not been defined in the FIELD file.

Action:

Locate the offending four-body force potential in the FIELD file and add the required cutoff.
Resubmit the job.

Message 454: error - unknown external field

A form of external field potential has been requested which DL POLY 4 does not recognise.

Action:

Locate the offending potential in the FIELD file and remove. Replace with one acceptable to
DL POLY 4 if this is reasonable. Alternatively, you may consider defining the required potential
in the code yourself. Amendments to subroutines read field and external field apply will
be required.

Message 461: error - undefined metal potential

A form of metal potential has been requested which DL POLY 4 does not recognise.

Action:

Locate erroneous entry in the FIELD file and correct the potental interaction to one of the allowed
ones for metals in DL POLY 4.

Message 462: error - thermostat friction constant must be > 0

A zero or negative value for the thermostat friction constant has been encountered in the CONTROL
file.

Action:

Locate the ensemble directive in the CONTROL file and assign a positive value to the time
constant.

265

c©STFC Appendix D

Message 463: error - barostat friction constant must be > 0

A zero or negative value for the barostat friction constant has been encountered in the CONTROL
file.

Action:

Locate the ensemble directive in the CONTROL file and assign a positive value to the time
constant.

Message 464: error - thermostat relaxation time constant must be > 0

A zero or negative value for the thermostat relaxation time constant has been encountered in the
CONTROL file.

Action:

Locate the ensemble directive in the CONTROL file and assign a positive value to the time
constant.

Message 466: error - barostat relaxation time constant must be > 0

A zero or negative value for the barostat relaxation time constant has been encountered in the
CONTROL file.

Action:

Locate the ensemble directive in the CONTROL file and assign a positive value to the time
constant.

Message 467: error - rho must not be zero in valid buckingham potential

User specified vdw type buckingham potential has a non-zero force and zero rho constants. Only
both zero or both non-zero are allowed.

Action:

Inspect the FIELD file and change the values in question appropriately.

Message 468: error - r0 too large for snm potential with current cutoff

The specified location (r0) of the potential minimum for a shifted n-m potential exceeds the specified
potential cutoff. A potential with the desired minimum cannot be created.

Action:

To obtain a potential with the desired minimum it is necessary to increase the van der Waals
cutoff. Locate the rvdw directive in the CONTROL file and reset to a magnitude greater than
r0. Alternatively adjust the value of r0 in the FIELD file. Check that the FIELD file is correctly
formatted.

266

c©STFC Appendix D

Message 470: error - n < m in definition of n-m potential

The specification of a n-m potential in the FIELD file implies that the exponent m is larger than
exponent n. (Not all versions of DL POLY 4 are affected by this.)

Action:

Locate the n-m potential in the FIELD file and reverse the order of the exponents. Resubmit the
job.

Message 471: error - rcut < 2*rctbp (maximum cutoff for three-body potentials)

The cutoff for the pair interactions is smaller than twice that for the three-body interactions. This
is a bookkeeping requirement for DL POLY 4.

Action:

Either use a smaller three-body cutoff, or a larger pair potential cutoff.

Message 472: error - rcut < 2*rcfbp (maximum cutoff for four-body potentials)

The cutoff for the pair interactions is smaller than twice that for the four-body interactions. This
is a bookkeeping requirement for DL POLY 4.

Action:

Either use a smaller four-body cutoff, or a larger pair potential cutoff.

Message 474: error - conjugate gradient mimimiser cycle limit exceeded

The conjugate gradient minimiser exceeded the iteration limit (100 for the relaxed shell model,
1000 for the configuration minimiser).

Action:

Decrease the respective convergence criterion. Alternatively, you may try to increase the limit
by hand in core shell relax or in minimise relax respectively and recompile. However, it
is unlikely that such measures will cure the problem as it is more likely to lay in the physical
description of the system being simulated. For example, are the core-shell spring constants well
defined? Is the system being too far from equilibrium?

Message 476: error - shells MUST all HAVE either zero or non-zero masses

The polarisation of ions is accounted via a core-shell model as the shell dynamics is either relaxed
- shells have no mass, or adiabatic - all shells have non-zero mass.

Action:

Choose which model you would like to use in the simulated system and adapt the shell masses in
FIELD to comply with your choice.

267

c©STFC Appendix D

Message 478: error - shake algorithms (constraints & pmf) failed to converge

Your system has both bond and PMF constraints. SHAKE (RATTLE VV1) is done by combined
application of both bond and PMF constraints SHAKE (RATTLE VV1) in an iterative manner
until the PMF constraint virial converges to a constant. No such convergence is achieved.

Action:

See Message 515.

Message 480: error - PMF constraint length > minimum of all half-cell widths

The specified PMF length has exceeded the minimum of all half-cell widths.

Action:

Specify shorter PMF length or increase MD cell dimensions.

Message 484: error - only one potential of mean force permitted

Only one potential of mean force is permitted in FIELD.

Action:

Correct the erroneous entries in FIELD.

Message 486: error - only one of the PMF units is permitted to have frozen atoms

Only one of the PMF units is permitted to have frozen atoms.

Action:

Correct the erroneous entries in FIELD.

Message 488: error - too many PMF constraints per domain

This should not happen.

Action:

Is the use of PMF constraints in your system physically sound?

Message 490: error - local PMF constraint not found locally

This should not happen.

Action:

Is your system physically sound, is your system equilibrated?

Message 492: error - a diameter of a PMF unit > minimum of all half cell widths

The diameter of a PMF unit has exceeded the minimum of all half-cell widths.

Action:

268

c©STFC Appendix D

Consider the physical concept you are trying to imply in the simulation. Increase MD cell dimen-
sions.

Message 494: error - overconstrained PMF units

PMF units are oveconstrained.

Action:

DL POLY 4 algorithms cannot handle overconstrained PMF units. Decrease the number of con-
straints on the PMFs.

Message 497: error - pmf quench failure

Action:

See Message 515

Message 498: error - shake algorithm (pmf shake) failed to converge

Action:

See Message 515

Message 499: error - rattle algorithm (pmf rattle) failed to converge

Action:

See Message 515

Message 500: error - PMF unit of zero length is not permitted

PMF unit of zero length is found in FIELD. PMF units are either a single atom or a group of atoms
usually forming a chemical molecule.

Action:

Correct the erroneous entries in FIELD.

Message 501: error - coincidence of particles in PMF unit

A PMF unit must be constituted of non-repeating particles!

Action:

Correct the erroneous entries in FIELD.

Message 502: error - PMF unit member found to be present more than once

A PMF unit is a group of unique (distingushed) atoms/sites. No repetition of a site is allowed in
a PMF unit.

Action:

269

c©STFC Appendix D

Correct the erroneous entries in FIELD.

Message 504: error - cutoff too large for TABLE file

The requested cutoff exceeds the information in the TABLE file.

Action:

Reduce the value of the vdw cutoff (rvdw) in the CONTROL file or reconstruct the TABLE file.

Message 505: error - EAM metal densities or pair crossfunctions out of range

The resulting densities or pair crossfunctions are not defined in the TABEAM file.

Action:

Recreate a TABEAM file with wider interval of defined densities and pair cross functions.

Message 506: error - EAM metal densities out of range

The resulting densities are not defined in the TABEAM file.

Action:

Recreate a TABEAM file with wider range of densities.

Message 507: error - metal density embedding out of range

In the case of EAM type of metal interactions this indicates that the electron density of a particle
in the system has exceeded the limits for which the embedding function for this particle’s type is
defined (as supplied in TABEAM. In the case of Finnis-Sinclair type of metal interactions, this
indicates that the density has become negative.

Action:

Reconsider the physical sanity and validity of the metal interactions in your system and this type
of simulation. You MUST change the interactions’ parameters and/or the way the physical base
of your investigation is handled in MD terms.

Message 508: error - EAM metal interaction entry in TABEAM unspecified in FIELD

The specified EAM metal interaction entry found in TABEAM is not specified in FIELD.

Action:

For N metal atom types there are (5N +N2)/2 EAM functions in the TABEAM file. One density
(N) and one embedding (N) function for each atom type and (N+N2)/2 cross-interaction functions.
Fix the table entries and resubmit.

Message 509: error - duplicate entry for a pair interaction detected in TABEAM

A duplicate cross-interaction function entry is detected in the TABEAM file.

Action:

270

c©STFC Appendix D

Remove all duplicate entries in the TABEAM file and resubmit.

Message 510: error - duplicate entry for a density function detected in TABEAM

A duplicate density function entry is detected in the TABEAM file.

Action:

Remove all duplicate entries in the TABEAM file and resubmit.

Message 511: error - duplicate entry for an embedding function detected in TABEAM

A duplicate embedding function entry is detected in the TABEAM file.

Action:

Remove all duplicate entries in the TABEAM file and resubmit.

Message 513: error - particle assigned to non-existent domain in read config

This can only happen if particle coordinates do not match the cell parameters in CONFIG. Prob-
ably, due to negligence or numerical inaccuracy inaccuracy in generation of big supercell from a
small one.

Action:

Make sure lattice parameters and particle coordinates marry each other. Increase accuracy when
generating a supercell.

Message 514: error - allowed image conventions are: 0, 1, 2, 3 and 6

DL POLY 4 has found unsupported boundary condition specified in CONFIG.

Action:

Correct your boundary condition or consider using DL POLY Classic.

Message 515: error - rattle algorithm (constraints rattle) failed to converge

The RATTLE algorithm for bond constraints is iterative. If the maximum number of permit-
ted iterations is exceeded, the program terminates. Possible causes include: incorrect force field
specification; too high a temperature; inconsistent constraints (over-constraint) etc..

Action:

You may try to increase the limit of iteration cycles in the constraint subroutines by using the direc-
tive mxshak and/or decrease the constraint precision by using the directive shake in CONTROL.
But the trouble may be much more likely to be cured by careful consideration of the physical system
being simulated. For example, is the system stressed in some way? Too far from equilibrium?

Message 517: error - allowed configuration information levels are: 0, 1 and 2

DL POLY 4 has found an erroneous configuration information level, l : 0.le.l.le.2, (i) for the tra-
jectory option in CONTROL or (ii) in the header of CONFIG.

271

c©STFC Appendix D

Action:

Correct the error in CONFIG and rerun.

Message 518: error - control distances for variable timestep not intact

DL POLY 4 has found the control distances for the variable timestep algorithm to be in contention
with each other.

Action:

mxdis MUST BE > 2.5× mndis. Correct in CONTROL and rerun.

Message 519: error - REVOLD is incompatible or does not exist

Either REVOLD does not exist or its formatting is incompatible.

Action:

Change the restart option in CONTROL and rerun.

Message 520: error - domain decomposition failed

A DL POLY 4 check during the domain decomposition mapping has been violated. The number
of nodes allowed for imcon = 0 is only 1,2,4 and 8! The number of nodes allowed for imcon = 6
is restricted to 2 along the z direction! The number of nodes should not be a prime number since
these are not factorisable/decomposable!

Action:

You must ensure DL POLY 4 execution on a number of processors that complies with the advise
above.

Message 530: error - pseudo thermostat thickness MUST comply with: 2 Angs <= thick-
ness < a quarter of the minimum MD cell width

DL POLY 4 has found a check violated while reading CONTROL.

Action:

Correct accordingly in CONTROL and resubmit.

Message 540: error - pseudo thermostat MUST only be used in bulk simulations, i.e.
imcon MUST be 1, 2 or 3

DL POLY 4 has found a check violated while reading CONTROL.

Action:

Correct accordingly in CONTROL nve or in CONFIG (imcon) and resubmit.

Message 551: error - REFERENCE not found !!!

The defect detection option is used in conjunction with restart but no REFERENCE file is
found.

272

c©STFC Appendix D

Action:

Supply a REFERENCE configuration.

Message 552: error - REFERENCE must contain cell parameters !!!

REFERENCE MUST contain cell parameters i.e. image convention MUST be imcon = 1, 2, 3 or
6.

Action:

Supply a properly formatted REFERENCE configuration.

Message 553: error - REFERENCE is inconsistent !!!

An atom has been lost in transfer between nodes. This should never happen!

Action:

Big trouble. Report problem to authors immediately.

Message 554: error - REFERENCE’s format different from CONFIG’s !!!

REFERENCE complies to the same rules as CONFIG with the exception that image convention
MUST be imcon = 1, 2, 3 or 6.

Action:

Supply a properly formatted REFERENCE configuartion.

Message 555: error - particle assigned to non-existent domain in defects read reference

Action:

See Message 513

Message 556: error - too many atoms in REFERENCE file

Action:

See Message 45

Message 557: error - undefined direction passed to defects reference export

Action:

See Message 42

Message 558: error - outgoing transfer buffer exceeded in defects reference export

Action:

See Message 54

273

c©STFC Appendix D

Message 559: error - coordinate array exceeded in defects reference export

Action:

See Message 56

Message 560: error - rdef found to be > half the shortest interatomic distance in
REFERENCE

The defect detection option relies on a cutoff, rdef, to define the vicinity around a site (defined in
REFERENCES) in which a particle can claim to occupy the site. Evidently, rdef MUST be < half
the shortest interatomic distance in REFERENCE.

Action:

Decrease the value of rdef at directive defect in CONTROL.

Message 570: error - unsupported image convention (0) for system expansion option
nfold

System expansion is possible only for system with periodicity on their boundaries.

Action:

Change the image convention in CONFIG to any other suitable periodic boundary condition.

Message 580: error - replay (HISTORY) option can only be used for structural prop-
erty recalculation

No structural property has been specified for this option to activate itself.

Action:

In CONTROL specify properties for recalculation (RDFs,z-density profiles, defect detection) or
alternatively remove the option.

Message 585: error - end of file encountered in HISTORY file

This means that the HISTORY file is incomplete in some way: Either should you abort the replay
(HISTORY) option or provide a fresh HISTORY file before restart.

Action:

In CONTROL specify properties for recalculation (RDFs,z-density profiles, defect detection) or
alternatively remove the option.

Message 590: error - uknown minimisation type, only ”force”, ”energy” and ”dis-
tance” are recognised

Configuration minimisation can take only these three criteria.

Action:

In CONTROL specify the criterion you like followed by the needed arguments.

274

c©STFC Appendix D

Message 600: error - ”impact” option specified more than once in CONTROL

Only one instance of the ”impact” option is allowed in CONTROL.

Action:

Remove any extra instances of the ”impact” option in CONTROL.

Message 610: error - ”impact” applied on particle that is either frozen, or the shell of
a core-shell unit or part of a RB

It is the user’s responsibility to ensure that impact is initiated on a ”valid” particle.

Action:

In CONTROL remove the ”impact” directive or correct the particle identity in it so that it complies
with the requirements.

Message 620: error - duplicate or mixed intra-molecular entries specified in FIELD

The FIELD parser has detected an inconsistency in the description of bonding interactions. It is the
user’s responsibility to ensure that no duplicate or mixed-up intra-molecular entries are specified
in FIELD.

Action:

Look at the preceding warning message in OUTPUT and find out which entry of what intra-
molecular-like interaction is at fault. Correct the bonding description and try running again.

Message 625: error - only one *rigid* directive per molecule is allowed

DL POLY 4 has found more than one rigids entry per molecule in FIELD.

Action:

Correct the erroneous part in FIELD and resubmit.

Message 630: error - too many rigid body units specified

This should never happen! This indicates an erroneous FIELD file or corrupted DL POLY 4
executable. Unlike DL POLY Classic DL POLY 4 does not have a set limit on the number of rigid
body types it can handle in any simulation (this is not the same as the total number of RBs in the
system or per domain).

Action:

Examine FIELD for erroneous directives, correct and resubmit.

Message 632: error - rigid body unit MUST have at least 2 sites

This is likely to be a corrupted FIELD file.

Action:

Examine FIELD for erroneous directives, correct and resubmit.

275

c©STFC Appendix D

Message 634: error - rigid body unit MUST have at least one non-massless site

No RB dynamics is possible if all sites of a body are massless as no rotational inertia can be defined!

Action:

Examine FIELD for erroneous directives, correct and resubmit.

Message 638: error - coincidence of particles in rigid body unit

This indicates a corrupted FIELD file as all members of a RB unit must be destinguishable from
one another.

Action:

Examine FIELD for erroneous directives, correct and resubmit.

Message 640: error - too many rigid body units per domain

DL POLY 4 limits the number of rigid body units in the system to be simulated (actually, the
number to be processed by each node) and checks for the violation of this. Termination will result
if the condition is violated.

Action:

Use densvar option in CONTROL to increase mxrgd (alternatively, increase it by hand in set bounds
and recompile) and resubmit.

Message 642: error - rigid body unit diameter > rcut (the system cutoff)

DL POLY 4 domain decomposition limits the size of a RB to a largest diagonal < system cutoff.
I.e. the largest RB type is still within a linked cell volume.

Action:

Increase cutoff.

Message 644: error - overconstrained rigid body unit

This is a very unlikely message which usually indicates a corrupted FIELD file or unphysically
overconstrained system.

Action:

Decrease constraint on the system. Examine FIELD for erroneous directives, if any, correct and
resubmit.

Message 646: error - overconstrained constraint unit

This is a very unlikely message which usually indicates a corrupted FIELD file or unphysically
overconstrained system.

Action:

Decrease constraint on the system. Examine FIELD for erroneous directives, if any, correct and
resubmit.

276

c©STFC Appendix D

Message 648:error - quaternion setup failed

This error indicates that the routine rigid bodies setup has failed in reproducing all the atomic
positions in rigid units from the centre of mass and quaternion vectors it has calculated.

Action:

Check the contents of the CONFIG file. DL POLY 4 builds its local body description of a rigid
unit type from the first occurrence of such a unit in the CONFIG file. The error most likely occurs
because subsequent occurrences were not sufficiently similar to this reference structure. If the
problem persists increase the value of tol in rigid bodies setup and recompile. If problems still
persist double the value of dettest in rigid bodies setup and recompile. If you still encounter
problems contact the authors.

Message 650:error - failed to find principal axis system

This error indicates that the routine rigid bodies setup has failed to find the principal axis for
a rigid unit.

Action:

This is an unlikely error. DL POLY 4 should correctly handle linear, planar and 3-dimensional
rigid units. There is the remote possibility that the unit has all of its mass-bearing particles frozen
while some of the massless are not or the unit has just one mass-bearing particle. Another, more
likely, possibility, in case of linear molecules is that the precision of the coordinates of these linear
molecules’ constituentsi, as produced by the user, is not good enough, which leads DL POLY 4 to
accepting it as non-linear while, in fact, it is and then failing at the current point. It is quite possible,
despite considered as wrong practice, that the user defined system of linear RBs is, in fact, generated
from a system of CBs (3 per RB) which has not been run in a high enough SHAKE/RATTLE
tolerance accuracy (10̂-8 and higher may be needed). Check the definition of the rigid unit in the
CONFIG file, if sensible report the error to the authors.

Message 655: error - FENE bond breaking failure

A FENE type bond was broken.

Action:

Examine FIELD for erroneous directives, if any, correct and resubmit.

Message 1000: error - working precision mismatch between FORTRAN90 and MPI
implementation

DL POLY 4 has failed to match the available modes of MPI precision for real numbers to the
defined in sc kinds f90 FORTRAN90 working precision wp for real numbers. wp is a precompile
parameter.

Action:

This simply mean that wp must have been changed from its original value to something else and the
new value is not matched by the mpi wp variable in comms module. It is the user’s responsibility
to ensure that wp and mpi wp are compliant. Make the necessary corrections to sc kinds f90 and/or
comms module.

277

c©STFC Appendix D

Message 1001: error - allocation failure in comms module − > gcheck vector

DL POLY 4 has failed to find available memory to allocate an array or arrays, i.e. there is lack of
sufficient memory (per node) on the execution machine.

Action:

This may simply mean that your simulation is too large for the machine you are running on.
Consider this before wasting time trying a fix. Try using more processing nodes if they are available.
If this is not an option investigate the possibility of increasing the heap size for your application.
Talk to your systems support people for advice on how to do this.

Message 1002: error - deallocation failure in comms module − > gcheck vector

DL POLY 4 has failed to deallocate an array or arrays, i.e. to free memory that is no longer in
use.

Action:

Talk to your systems support people for advice on how to manage this.

Message 1003: error - allocation failure in comms module − > gisum vector

Action:

See Message 1001

Message 1004: error - deallocation failure in comms module − > gisum vector

Action:

See Message 1002

Message 1005: error - allocation failure in comms module − > grsum vector

Action:

See Message 1001

Message 1006: error - deallocation failure in comms module − > grsum vector

Action:

See Message 1002

Message 1007: error - allocation failure in comms module − > gimax vector

Action:

See Message 1001

278

c©STFC Appendix D

Message 1008: error - deallocation failure in comms module − > gimax vector

Action:

See Message 1002

Message 1009: error - allocation failure in comms module − > grmax vector

Action:

See Message 1001

Message 1010: error - deallocation failure in comms module − > grmax vector

Action:

See Message 1002

Message 1011: error - allocation failure in parse module − > get record

Action:

See Message 1001

Message 1012: error - deallocation failure in parse module − > get record

Action:

See Message 1002

Message 1013: error - allocation failure in angles module − > allocate angles arrays

Action:

See Message 1001

Message 1014: error - allocation failure in bonds module − > allocate bonds arrays

Action:

See Message 1001

Message 1015: error - allocation failure in core shell module − >
allocate core shell arrays

Action:

See Message 1001

Message 1016: error - allocation failure in statistics module − > allocate statitics arrays

Action:

279

c©STFC Appendix D

See Message 1001

Message 1017: error - allocation failure in tethers module − > allocate tethers arrays

Action:

See Message 1001

Message 1018: error - allocation failure in constraints module − >
allocate constraints arrays

Action:

See Message 1001

Message 1019: error - allocation failure in external field module − >
allocate external field arrays

Action:

See Message 1001

Message 1020: error - allocation failure in dihedrals module − > allocate dihedrals arrays

Action:

See Message 1001

Message 1021: error - allocation failure in inversions module − > allocate inversion arrays

Action:

See Message 1001

Message 1022: error - allocation failure in vdw module − > allocate vdw arrays

Action:

See Message 1001

Message 1023: error - allocation failure in metal module − > allocate metal arrays

Action:

See Message 1001

Message 1024: error - allocation failure in three body module − >
allocate three body arrays

Action:

See Message 1001

280

c©STFC Appendix D

Message 1025: error - allocation failure in config module − > allocate config arrays

Action:

See Message 1001

Message 1026: error - allocation failure in site module − > allocate site arrays

Action:

See Message 1001

Message 1027: error - allocation failure in tersoff module − > alocate tersoff arrays

Action:

See Message 1001

Message 1028: error - deallocation failure in angles module − > deallocate angles arrays

Action:

See Message 1002

Message 1029: error - deallocation failure in bonds module − > deallocate bonds arrays

Action:

See Message 1002

Message 1030: error - deallocation failure in core shell module − >
deallocate core shell arrays

Action:

See Message 1002

Message 1031: error - deallocation failure in tethers module − >
deallocate tethers arrays

Action:

See Message 1002

Message 1032: error - deallocation failure in constraints module − >
deallocate constraints arrays

Action:

See Message 1002

281

c©STFC Appendix D

Message 1033: error - deallocation failure in dihedrals module − >
deallocate dihedrals arrays

Action:

See Message 1002

Message 1034: error - deallocation failure in inversions module − >
deallocate inversions arrays

Action:

See Message 1002

Message 1035: error - allocation failure in defects module − > allocate defects arrays

Action:

See Message 1001

Message 1036: error - allocation failure in pmf module − > allocate pmf arrays

Action:

See Message 1001

Message 1037: error - deallocation failure in pmf module − > deallocate pmf arrays

Action:

See Message 1002

Message 1038: error - allocation failure in minimise module − > allocate minimise arrays

Action:

See Message 1001

Message 1039: error - deallocation failure in minimise module − >
deallocate minimise arrays

Action:

See Message 1002

Message 1040: error - allocation failure in ewald module − > ewald allocate kall arrays

Action:

See Message 1001

282

c©STFC Appendix D

Message 1041: error - allocation failure in langevin module − >
langevin allocate arrays

Action:

See Message 1001

Message 1042: error - allocation failure in rigid bodies module − >
allocate rigid bodies arrays

Action:

See Message 1001

Message 1043: error - deallocation failure in rigid bodies module − >
deallocate rigid bodies arrays

Action:

See Message 1002

Message 1044: error - allocation failure in comms module − > gimin vector

Action:

See Message 1001

Message 1045: error - deallocation failure in comms module − > gimin vector

Action:

See Message 1002

Message 1046: error - allocation failure in comms module − > grmin vector

Action:

See Message 1001

Message 1047: error - deallocation failure in comms module − > grmin vector

Action:

See Message 1002

Message 1048: error - error - allocation failure in comms module − > grsum matrix

Action:

See Message 1001

283

c©STFC Appendix D

Message 1049: error - deallocation failure in comms module − > grsum matrix

Action:

See Message 1002

Message 1050: error - sorted I/O base communicator not set

Possible corruption if io module. This should never happen!

Action:

Make sure you have a clean copy of DL POLY 4, compiled without any suspicious warning messages.
Contact authors if the problem persists.

Message 1053: error - sorted I/O allocation error

Your I/O buffer (and possibly batch) size is too big.

Action:

Decrease the value of the I/O buffer (and possibly batch) size in CONTROL and restart your job.

Message 1056: error - unkown write option given to sorted I/O

This should never happen!

Action:

Contact authors if the problem persists.

Message 1059: error - unknown write level given to sorted I/O

This should never happen!

Action:

Contact authors if the problem persists.

Message 1061: error - allocation failure in vdw module − > allocate vdw table arrays

Action:

See Message 1001

Message 1063: error - allocation failure in vdw module − > allocate vdw direct fs arrays

Action:

See Message 1001

Message 1069: error - allocation failure in metal module − > allocate metal table arrays

Action:

284

c©STFC Appendix D

See Message 1001

Message 1070: error - allocation failure in ewald module − > ewald allocate kfrz arrays

Action:

See Message 1001

285

Appendix E

DL POLY 4 README

DL_POLY_4.03

============

The source is in fully self-contained free formatted FORTRAN90+MPI2

code (specifically FORTRAN90 + TR15581 + MPI1 + MPI-I/O only). The

available NetCDF functionality makes the extended code dependent upon

it. The non-extended code complies with the NAGWare f95 and FORCHECK

f90 standards with exception of the FORTRAN2003 feature TR15581, which

is very rarely unavailable in the nowadays FORTRAN95 compilers.

This version supports ALL features that are available in the

standard DL_POLY_Classic version with the exceptions of:

(1) RIDGID BODIES linked by constraint bonds (CB) or

potential of mean field (PMF) constraints.

(2) Truncated octahedral (imcon = 4), Rhombic Dodecahedral

(imcon = 5) and Hexagonal Prism (imcon = 7) periodic boundary

conventions.

(3) Classic Ewald and Hautman-Klein Ewald Coulomb evaluations.

(4) Temperature Accelerated Dynamics, Hyper-Dynamics and

solvation energies.

No previous DL_POLY_3/4 feature is deprecated. ALL NEW features are

documented in the "DL_POLY_4 User Manual".

Reference:

Thank you for using the DL_POLY_4 package in your work. Please,

acknowledge our efforts by including the following reference when

publishing data obtained using DL_POLY_4: "I.T. Todorov, W. Smith,

K. Trachenko & M.T. Dove, J. Mater. Chem., 16, 1611-1618 (2006)".

Warnings:

(1) DL_POLY_4 can produce index ordered REVCON, HISTORY and MSDTMP

files which are restartable by DL_POLY_Classic. Although such

286

c©STFC Appendix E

printed outputs look unscrambled, the actual printing process

is not. Unscrambled printing is slightly more expensive than

natural (scrambled) printing. The cost time-wise is little,

< 1%, but HD space-wise is approximately 20%. This is due to

the necessary addition of blanks at the end of data record,

included to align the (ASCII) lines of output files (human

readable) to a constant length. Printing scrambled outputs

is optional. Note that these too have blanks aligned records.

The parallel I/O ensures (i) writing speeds of 10^5 to 10^6

particle per second with optimal number of writers and (ii)

reading speeds of 10^4 to 10^5 particles per second per reader.

For more information on I/O options consult the user manual.

(2) REVIVE files produced by different versions are not compatible.

Furthermore, restarting runs across different sub-versions

may not be possible.

(3) The DL_POLY_4 parallel performance and efficiency are considered

very-good-to-excellent as long as (i) all CPU cores are loaded

with no less than 500 particles each and (ii) the major linked

cells algorithm has no dimension less than 4.

(4) Although DL_POLY_4 can be compiled in a serial mode, users are

advised to consider DL_POLY_Classic as a suitable alternative to

DL_POLY_4 when simulations are likely to be serial jobs for

systems containing < 500 particles-per-processor. In such

circumstances, with both codes compiled in serial mode, the

difference in performance, measured by the time-per-timestep

ratio [DL_POLY_Classic(t)-DL_POLY_4(t)]/DL_POLY_Classic(t),

varies in the range -5:+5%. This variation depends strongly on

the system force-field complexity and very weakly on the system

size.

Integration Defaults:

The default ensemble is NVE.

The default integration scheme is Trotter derived Velocity Verlet

(VV), although Leapfrog Verlet (LFV) is also available. VV is

considered superior (to LFV) since:

(1) Integration can be developed in symplectic manner for certain

ensembles, such as: NVE, NVEk (NVT Evans) as well as all

Nose-Hoover ensembles (NVT, & NPT & NsT when there is no

external field applied on the system, otherwise they do not

conserve the phase space volume) and MTK ensembles (NPT & NsT).

(2) All ensemble variables are updated synchronously and

thermodynamic quantities and estimators are exact at the every

step, whereas in LFV particle velocities and thermostat and

barostat friction velocities are half an integration time-step

behind the rest of the ensemble variables and due to this

certain estimators are approximated at full timestep.

(3) It offers better numerical stability and faster convergence

287

c©STFC Appendix E

when (i) constraint solvers (CB/PMF: RATTLE/VV versus SHAKE/LFV)

are involved and/or (ii) RB dynamics is integrated.

The LFV integration may take less cpu time than the VV one for the

certain ensembles - type of system (CB/PMF/RB) and type of ensemble

dependent. Usually, LFV is slightly faster than VV when CB/PMF/RB

are present in the system. The relative performance between the LVF

and VV integration (per timestep) is observed to vary in the limits

*** [LFV(t)-VV(t)]/VV(t) = -5:+5% ***. However, the VV algorithms

treat CB/PMF/RB entities in more precise (symplectic) manner than

the LFV ones and thus not only have better numerical stability but

also produce more accurate dynamics.

Makefiles:

From within the ‘source’ directory the user may compile the code by

selecting the appropriate Makefile from the ‘build’ directory:

"cp ../build/Makefile_MPI Makefile" (for parallel execution MPI is needed)

or

"cp ../build/Makefile_SRLx Makefile" (for serial execution - no MPI needed)

Note that in ‘comms_module.f90’ it is crucial that line 13 reads as:

‘Use mpi_module’ for serial compilation and

‘Use mpi’ for parallel compilation (which is the default)

If the parallel OS environment, you are compiling on, is not fully F90

compatible then the ‘Use mpi’ entry in ‘comms_module.f90’ will be

interpreted as erroneous. This is easily overcome by commenting out

‘Use mpi’ and uncommenting "Include ’mpif.h’" just after ‘Implicit None’.

If there is an ‘entry’ in the Makefile for the particular combination

of architecture, compiler & MPI library, then the user may

instantiate the compilation by:

"make ‘entry’"

If there is not a suitable entry, the user should advise with a

computer scientist or the administrator of the particular machine.

The necessary components for the source compilation are:

(1) a FORTRAN90 compliant compiler (if the full PATH to it is not

passed to the DEFAULT ENVIRONMENT PATH, then it MUST be

explicitly supplied in the Makefile)

(2) MPI2 (or MPI1 + MPI-I/O) libraries COMPILED for the architecture

and the targeted compiler (if the full PATH to these is not

passed to the DEFAULT ENVIRONMENT PATH, then it MUST be

288

c©STFC Appendix E

explicitly supplied in the Makefile)

(3) a MAKE command (Makefile interpreter in the system SHELL)

Note that (2) is not necessary for compilation in SERIAL mode!

By default, if compilation is successful, an executable (build) will

be placed in "../execute" directory (at the same level as the

directory where the code is compiled). Should it not exist one will

be created automatically. The build can then be moved, renamed, etc.

and used as the user wishes. However, when executed, the program will

look for input files in the directory of execution!

Serial Compilation on Windows:

The best way to get around it is to install cygwin on the system

(http://www.cygwin.com/) to emulate a UNIX/Linux like environment and

then use the "make" command. During cygwin installation make sure that

make and gfortran are included in the install. A potential problem

for Windows based FORTRAN compilers, you may encounter, is that the

compiler may not pick symbolic links. To resolve this, you will

have to use hard linking in the Makefile.

Compiling with NetCDF functionality:

The targeted Makefile needs the following substitution within before

attempting compilation:

"netcdf_modul~.o -> netcdf_module.o"

Note that suitable entry may need to be created within the Makefile

so that it matches the particular combination of architecture,

compiler, MPI library & netCDF library.

Contacts at STFC Daresbury Laboratory:

Dr. I.T. Todorov :: ilian.todorov@stfc.ac.uk

289

c©STFC Appendix E

290

Bibliography

[1] Smith, W., and Forester, T., 1996, J. Molec. Graphics, 14, 136. 2

[2] Todorov, I., and Smith, W., 2004, Phil. Trans. R. Soc. Lond. A, 362, 1835. 2, 168

[3] Todorov, I., Smith, W., Trachenko, K., and Dove, M., 2006, J. Mater. Chem., 16, 1611–1618.
2, 168

[4] Smith, W., 1987, Molecular Graphics, 5, 71. 2

[5] Smith, W., 1991, Comput. Phys. Commun., 62, 229. 2, 4, 168

[6] Smith, W., 1993, Theoretica. Chim. Acta., 84, 385. 2, 4, 168

[7] Smith, W., and Forester, T. R., 1994, Comput. Phys. Commun., 79, 52. 2

[8] Smith, W., and Forester, T. R., 1994, Comput. Phys. Commun., 79, 63. 2, 4, 59

[9] Pinches, M. R. S., Tildesley, D., and Smith, W., 1991, Molecular Simulation, 6, 51. 2, 4, 168

[10] Rapaport, D. C., 1991, Comput. Phys. Commun., 62, 217. 2, 4, 168

[11] Daw, M. S., and Baskes, M. I., 1984, Phys. Rev. B, 29, 6443. 3, 29

[12] Foiles, S. M., Baskes, M. I., and Daw, M. S., 1986, Chem. Phys. Lett., 33, 7983. 3, 29

[13] Finnis, M. W., and Sinclair, J. E., 1984, Philos. Mag. A, 50, 45. 3, 29, 30

[14] Sutton, A. P., and Chen, J., 1990, Philos. Mag. Lett., 61, 139. 3, 30

[15] Rafii-Tabar, H., and Sutton, A. P., 1991, Philos. Mag. Lett., 63, 217. 3, 30, 37

[16] Todd, B. D., and Lynden-Bell, R. M., 1993, Surf. Science, 281, 191. 3, 30

[17] Tersoff, J., 1989, Phys. Rev. B, 39, 5566. 3, 37, 169

[18] van Gunsteren, W. F., and Berendsen, H. J. C. 1987, Groningen Molecular Simulation (GRO-
MOS) Library Manual. BIOMOS, Nijenborgh, 9747 Ag Groningen, The Netherlands. Standard
GROMOS reference. 3, 12

[19] Mayo, S., Olafson, B., and Goddard, W., 1990, J. Phys. Chem., 94, 8897. 3, 12, 40, 41, 149

[20] Weiner, S. J., Kollman, P. A., Nguyen, D. T., and Case, D. A., 1986, J. Comp. Chem., 7, 230.
3, 12

[21] Smith, W., 2003, Daresbury Laboratory. 4, 9, 96, 106, 107, 133, 190

291

c©STFC Bibliography

[22] Allen, M. P., and Tildesley, D. J. 1989, Computer Simulation of Liquids. Oxford: Clarendon
Press. 4, 46, 54, 57, 60, 168, 170

[23] Andersen, H. C., 1983, J. Comput. Phys., 52, 24. 4, 57, 168

[24] Fincham, D., 1992, Molecular Simulation, 8, 165. 4, 91

[25] Miller, T., Eleftheriou, M., Pattnaik, P., Ndirango, A., Newns, D., and Martyna, G., 2002, J.
Chem. Phys., 116, 8649. 4, 91, 92

[26] Evans, D. J., and Morriss, G. P., 1984, Computer Physics Reports, 1, 297. 4, 56, 60

[27] Adelman, S. A., and Doll, J., 1976, J. Chem. Phys., 64, 2375. 4, 56, 60

[28] Andersen, H. C., 1979, J. Chem. Phys., 72, 2384. 4, 56, 60

[29] Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W., DiNola, A., and Haak, J. R., 1984,
J. Chem. Phys., 81, 3684. 4, 56, 60, 71

[30] Hoover, W. G., 1985, Phys. Rev., A31, 1695. 4, 56, 60, 67, 69, 71

[31] Quigley, D., and Probert, M., 2004, J. Chem Phys., 120, 11432. 4, 56, 71, 72

[32] Martyna, G., Tuckerman, M., Tobias, D., and Klein, M., 1996, Molec. Phys., 87, 1117. 4, 56,
71, 86, 92

[33] Warner, H. R. J., 1972, ind. Eng. Chem. Fundam., 11, 379. 14

[34] Bird, R. B. e. a. 1977, Dynamics of Polymeric Liquids, volume 1 and 2. Wiley, New York. 14

[35] Grest, G. S., and Kremer, K., 1986, Phys. Rev. A, 33, 3628. 14

[36] Vessal, B., 1994, J. Non-Cryst. Solids, 177, 103. 16, 18, 40, 142, 149

[37] Smith, W., Greaves, G. N., and Gillan, M. J., 1995, J. Chem. Phys., 103, 3091. 16, 18, 41,
142, 149

[38] Allinger, N. L., Yuh, Y. H., and Lii, J.-H., 1998, J. Am. Chem. Soc., 111, 8551. 17, 18, 142

[39] Sun, H., 1998, J. Phys. Chem. B, 102(38), 7338–7364. 17, 18, 142

[40] Smith, W., 1993, CCP5 Information Quarterly, 39, 14. 18, 21, 24

[41] Ryckaert, J. P., and Bellemans, A., 1975, Chem. Phys. Lett., 30, 123. 19, 143

[42] Schmidt, M. E., Shin, S., and Rice, S. A. Molecular dynamics studies of langmuir monolayers
of f(cf2)11cooh. volume 104, page 2101, 1996. 19, 143

[43] Rohl, A. L., Wright, K., and Gale, J. D., 2003, Amer. Mineralogist, 88, 921. 25

[44] Raiteri, P., and Gale, J., 2010, J. Am. Chem. Soc., 132, 17623–17634. 25

[45] Clarke, J. H. R., Smith, W., and Woodcock, L. V., 1986, J. Chem. Phys., 84, 2290. 27, 145

[46] Weeks, J. D., Chandler, D., and Anderson, H. C., 1971, J. Chem. Phys., 54, 5237. 28

[47] J., F., 1952, Philos. Mag., 43, 153. 30

292

c©STFC Bibliography

[48] Dai, X. D., Kong, Y., Li, J. H., and Liu, B. X., 2006, J. Phys.: Condens. Matter, 18, 45274542.
30

[49] Cleri, F., and Rosato, F., 1993, Phys. Rev. B, 48, 22. 31

[50] Johnson, R. A., 1989, Phys. Rev. B, 39, 12556. 37

[51] Eastwood, J. W., Hockney, R. W., and Lawrence, D. N., 1980, Comput. Phys. Commun., 19,
215. 40, 41, 42

[52] Fennell, C. J., and Gezelter, D. J., 2006, J. Chem. Phys., 124, 234104. 44, 46, 121, 122

[53] Neumann, M., 1985, J. Chem. Phys., 82, 5663. 45

[54] Fuchs, K., 1935, Proc. R. Soc., A, 151, 585. 47, 49

[55] Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., and Pedersen, L. G., 1995, J.
Chem. Phys., 103, 8577. 48, 171

[56] Fincham, D., and Mitchell, P. J., 1993, J. Phys. Condens. Matter, 5, 1031. 50

[57] Lindan, P. J. D., and Gillan, M. J., 1993, J. Phys. Condens. Matter, 5, 1019. 50, 51

[58] Shewchuk, J. R. August 4, 1994, An Introduction to the Conjugate Gradient Method Without
the Agonizing Pain, Edition 1 1/4. School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA 15213. 51, 103

[59] Leimkuhler, G., Noorizadeh, E., and Theil, F., 2009, J. Stat. Phys., 135, 261–277. 56, 60, 69

[60] Ikeguchi, M., 2004, J. Comp. Chemi., 25, 529–541. 56, 77, 80, 85, 87, 88

[61] Ryckaert, J. P., Ciccotti, G., and Berendsen, H. J. C., 1977, J. Comput. Phys., 23, 327. 57,
168

[62] McCammon, J. A., and Harvey, S. C. 1987, Dynamics of Proteins and Nucleic Acids. Cam-
bridge: University Press. 60

[63] Izaguirre, J. A. Langevin stabilisation of multiscale mollified dynamics. In Brandt A.,
Binder K., B. J., editor, Multiscale Computational Methods in Chemistry and Physics, vol-
ume 117 of NATO Science Series: Series III - Computer and System Sciences, pages 34–47.
IOS Press, Amsterdam, 2001. 60, 62, 63

[64] Samoletov, A., Chaplain, M., and Dettmann, C., 2007, J. Stat. Phys., 128, 13211336. 60, 69

[65] Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, Molec. Phys., 78, 533. 80

[66] Martyna, G., Tobias, D., and Klein, M., 1994, J. Chem. Phys., 101, 4177. 80, 88

[67] Todorov, I., Bush, I., and Porter, A., 2009, Parallel Scientific Computing and Optimization.
Springer Optimization and Its Applications, ISSN 1931-6828, 27. 101

[68] Todorov, I., Bush, I., and Smith, W., 2008, Cray User Group 2008. 101

[69] Bush, I., Todorov, I., and Smith, W., 2010, Cray User Group 2010. 101

[70] Melchionna, S., and Cozzini, S., 1998, University of Rome. 106

293

c©STFC Bibliography

[71] Hockney, R. W., and Eastwood, J. W. 1981, Computer Simulation Using Particles. McGraw-
Hill International. 168, 170, 172

[72] Smith, W., 1992, Comput. Phys. Commun., 67, 392. 168

[73] Smith, W., and Fincham, D., 1993, Molecular Simulation, 10, 67. 168

[74] Bush, I. J., Todorov, I. T., and Smith, W., 2006, Computer Physics Communication, 175,
323. 171

[75] Bush, I. J., 2000, Daresbury Laboratory. 171

294

Index

DL POLY 4 software licence, 10

algorithm, 4, 54, 113
FIQA, 4, 91
NOSQUISH, 4, 91, 92
RATTLE, 4, 57, 58, 168, 172, 271
SHAKE, 4, 57, 59, 168, 172, 254
Verlet, 4, 29, 54, 56–59, 171, 172
Verlet neighbour list, 170

AMBER, 3, 12, 106, 107
angular momentum, 91
angular restraints, 18
angular velocity, 91

barostat, 4, 93, 117, 118, 266
Berendsen, 77
Nosé-Hoover, 80, 86

boundary conditions, 3, 42, 187
cubic, 133

CCP5, 2, 9
constraints

bond, 2, 4, 13, 57–60, 89, 137, 161, 170–172,
243, 248, 254, 271

Gaussian, 46, 47, 60
PMF, 13, 59, 60, 138, 162, 170

direct Coulomb sum, 42, 44, 116, 129
distance dependant dielectric, 44, 45, 116, 129
distance restraints, 15
dlpoly2, 5
DLPROTEIN, 106
Dreiding, 12

ensemble, 4, 262
Andersen NVT, 4, 56, 125
Berendsen NσT, 4, 56, 117, 125, 126
Berendsen NPT, 4, 56, 117, 125, 126
Berendsen NVT, 4, 56, 117, 125, 126
canonical, 60
Evans NVT, 4, 56, 117, 125, 126
Gentle Stochastic NVT, 56, 117
Langevin NσT, 4, 56, 117, 125, 126

Langevin NPT, 4, 56, 117, 125, 126
Langevin NVT, 4, 56, 117, 125, 126
Martyna-Tuckerman-Klein NσT, 125
Martyna-Tuckerman-Klein NσT, 4, 56, 117,

126
Martyna-Tuckerman-Klein NPT, 4, 56, 117,

125, 126
microcanonical, see ensemble,NVE
Nosé-Hoover NσT, 4, 56, 117, 125, 126
Nosé-Hoover NPT, 4, 56, 117, 125, 126
Nosé-Hoover NVT, 4, 56, 117, 125, 126
NVE, 4, 56, 60, 117, 125, 126

equations of motion
Euler, 52, 91
rigid body, 91

error messages, 110, 236
Ewald

optimisation, 107, 108
SPME, 48, 107, 118, 122, 128, 129
summation, 46, 47, 100, 108, 124, 129, 168,

171, 262

force field, 3, 12, 13, 21, 107, 171, 238, 254, 271
AMBER, 3, 12
DL POLY, 3, 12
Dreiding, 3, 12, 40, 41
GROMOS, 3, 12

force-shifted Coulomb sum, 43, 122, 129
FORTRAN90, 5, 6, 99, 100, 178, 236
FTP, 9

Graphical User Interface, 9, 106, 107, 133
GROMOS, 3, 12

Java GUI, 4, 9

licence, 2
long-ranged corrections

metal, 34
van der Waals, 29

minimisation, 102
conjugate gradients, 103

295

c©STFC Index

programmed, 103
zero temperature, 103

parallelisation, 4, 97, 168
Domain Decomposition, 4
intramolecular terms, 169, 170

polarisation, 49, 50
shell model, 3, 12, 42, 50–52, 169, 170, 246

potential
bond, 3, 106, 140, 161, 169, 172, 242, 263
bonded, 171, 172
calcite, 25, 26
chemical bond, 3, 12, 13, 15, 20, 21, 41, 50,

169–171
dihedral, 3, 12, 19–23, 141, 143, 161, 169,

170, 247, 264
EAM, 153
electrostatics, 3, 7, 13, 15, 18, 21, 42, 116,

118, 121, 122, 128, 129, 161, 169, 263
external field, 3, 12, 51, 52, 169
four-body, 3, 12, 27, 41, 42, 144, 149, 161,

169, 239, 251, 252, 263, 265
improper dihedral, 3, 12, 21, 22, 169
intermolecular, 98
intramolecular, 27, 41, 98
inversion, 3, 12, 22–24, 41, 42, 143, 169, 170,

249, 264
metal, 3, 13, 27, 29, 98, 100, 144, 169, 171,

252
non-bonded, 3, 13, 106, 107, 121, 135, 140,

142, 144, 169–171, 238
tabulated, 152, 240
Tersoff, 3, 12, 27, 37, 40, 144, 148, 169, 171,

249
tether, 3, 12, 26, 161, 169, 170, 247, 264
tethered, 52
three-body, 3, 12, 13, 16, 27, 40, 41, 106,

144, 148, 161, 169, 239, 248, 251, 264
valence angle, 3, 12, 13, 16, 17, 21, 23, 40,

41, 106, 139, 142, 161, 169–171, 245
van der Waals, 13, 15, 18, 21, 98, 100, 129,

141, 144, 261

quaternions, 4, 91

reaction field, 45, 46, 121, 129
rigid body, 2, 4, 55, 89, 90, 170, 276
rigid bond, see constraints,bond

stress tensor, 15, 18, 21, 24, 26, 29, 33, 40–46,
50, 52, 59, 71

sub-directory, 190–193
bench, 8
build, 8
data, 8
execute, 8
java, 8
public, 8
source, 8
utility, 8

thermostat, 4, 52, 93, 117, 118, 265, 266
Nosé-Hoover, 80, 86

units
DL POLY, 7, 162
energy, 135
pressure, 7, 81, 121, 162
temperature, 123

user registration, 10

Verlet neighbour list, 98, 170, 172, 254

WWW, iii, 2, 9, 10

296

	THE DL_POLY_4 USER MANUAL
	About DL_POLY_4
	Disclaimer
	Acknowledgements
	Manual Notation

	Contents
	List of Tables
	List of Figures
	Introduction
	The DL_POLY Package
	Functionality
	Molecular Systems
	Force Field
	Boundary Conditions
	Java Graphical User Interface
	Algorithms
	DL_POLY_Classic features incompatible or unavalable in DL_POLY_4

	Programming Style
	Programming Language
	Modularisation and Intent
	Memory Management
	Target Platforms
	Internal Documentation
	FORTRAN90 Parameters and Arithmetic Precision
	Units
	Error Messages

	Directory Structure
	The source Sub-directory
	The utility Sub-directory
	The data Sub-directory
	The bench Sub-directory
	The execute Sub-directory
	The build Sub-directory
	The public Sub-directory
	The java Sub-directory

	Obtaining the Source Code
	OS and Hardware Specific Ports
	Other Information

	Force Fields
	Introduction to the DL_POLY_4 Force Field
	The Intramolecular Potential Functions
	Bond Potentials
	Distance Restraints
	Valence Angle Potentials
	Angular Restraints
	Dihedral Angle Potentials
	Improper Dihedral Angle Potentials
	Inversion Angle Potentials
	The Calcite Four-Body Potential
	Tethering Forces

	The Intermolecular Potential Functions
	Short Ranged (van der Waals) Potentials
	Metal Potentials
	Tersoff Potential
	Three-Body Potentials
	Four-Body Potentials

	Long Ranged Electrostatic (coulombic) Potentials
	Direct Coulomb Sum
	Force-Shifted Coulomb Sum
	Coulomb Sum with Distance Dependent Dielectric
	Reaction Field
	Smoothed Particle Mesh Ewald

	Polarisation Shell Models
	Dynamical (Adiabatic Shells)
	Relaxed (Massless Shells)

	External Fields
	Treatment of Frozen Atoms, Rigid Body and Core-Shell Units

	Integration Algorithms
	Introduction
	Bond Constraints
	Potential of Mean Force (PMF) Constraints and the Evaluation of Free Energy
	Thermostats
	Evans Thermostat (Gaussian Constraints)
	Langevin Thermostat
	Andersen Thermostat
	Berendsen Thermostat
	Nosé-Hoover Thermostat
	Gentle Stochastic Thermostat

	Barostats
	Instantaneous pressure and stress
	Langevin Barostat
	Berendsen Barostat
	Nosé-Hoover Barostat
	Martyna-Tuckerman-Klein Barostat

	Rigid Bodies and Rotational Integration Algorithms
	Description of Rigid Body Units
	Integration of the Rigid Body Equations of Motion
	Thermostats and Barostats coupling to the Rigid Body Equations of Motion

	Construction and Execution
	Constructing DL_POLY_4: an Overview
	Constructing the Standard Versions
	Constructing Non-standard Versions

	Compiling and Running DL_POLY_4
	Compiling the Source Code
	Running
	Parallel I/O
	Restarting
	Optimising the Starting Structure
	Simulation Efficiency and Performance

	A Guide to Preparing Input Files
	Inorganic Materials
	Macromolecules
	Adding Solvent to a Structure
	Analysing Results
	Choosing Ewald Sum Variables

	Warning and Error Processing
	The DL_POLY_4 Internal Warning Facility
	The DL_POLY_4 Internal Error Facility

	Data Files
	The INPUT Files
	The CONTROL File
	The CONFIG File
	The FIELD File
	The REFERENCE File
	The REVOLD File
	The TABLE File
	The TABEAM File

	The OUTPUT Files
	The HISTORY File
	The MSDTMP File
	The DEFECTS File
	The RSDDAT File
	The CFGMIN File
	The OUTPUT File
	The REVCON File
	The REVIVE File
	The RDFDAT File
	The ZDNDAT File
	The STATIS File

	The DL_POLY_4 Parallelisation and Source Code
	Parallelisation
	The Domain Decomposition Strategy
	Distributing the Intramolecular Bonded Terms
	Distributing the Non-bonded Terms
	Modifications for the Ewald Sum
	Metal Potentials
	Tersoff, Three-Body and Four-Body Potentials
	Globally Summed Properties
	The Parallel (DD tailored) SHAKE and RATTLE Algorithms
	The Parallel Rigid Body Implementation

	Source Code
	Modularisation Principles
	File Structure
	Module Files
	General Files
	VV and LFV Specific Files
	SERIAL Specific Files
	Comments on MPI Handling
	Comments on setup_module

	Examples
	Test Cases
	Test Case 1 and 2: Sodium Chloride
	Test Case 3 and 4: DPMC in Water
	Test Case 5 and 6: KNaSi2O5
	Test Case 7 and 8: Gramicidin A molecules in Water
	Test Case 9 and 10: SiC with Tersoff Potentials
	Test Case 11 and 12: Cu3Au alloy with Sutton-Chen (metal) Potentials
	Test Case 13 and 14: lipid bilayer in water
	Test Case 15 and 16: relaxed and adiabatic shell model MgO
	Test Case 17 and 18: Potential of mean force on K+ in water MgO
	Test Case 19 and 20: Cu3Au alloy with Gupta (metal) Potentials
	Test Case 21 and 22: Cu with EAM (metal) Potentials
	Test Case 23 and 24: Al with Sutton-Chen (metal) Potentials
	Test Case 25 and 26: Al with EAM (metal) Potentials
	Test Case 27 and 28: NiAl alloy with EAM (metal) Potentials
	Test Case 29 and 30: Fe with Finnis-Sincair (metal) Potentials
	Test Case 31 and 32: Ni with EAM (metal) Potentials
	Test Case 33 and 34: SPC IceVII water with constraints
	Test Case 35 and 36: NaCl molecules in SPC water represented as CBs+RBs
	Test Case 37 and 38: TIP4P water: RBs with a massless charged site
	Test Case 39 and 40: Ionic liquid dimethylimidazolium chloride
	Test Case 41 and 42: Calcite nano-particles in TIP3P water

	Benchmark Cases

	Appendices
	DL_POLY_4 Periodic Boundary Conditions
	DL_POLY_4 Macros
	DL_POLY_4 Makefiles
	DL_POLY_4 Error Messages and User Action
	DL_POLY_4 README
	Bibliography
	Index

