
NetLogo 3.0 User Manual

Table of Contents
What is NetLogo? ..1

Features...1

Copyright Information ...3
Third party licenses..3

What's New?...7
Version 3.0 (September 14, 2005)...7
Version 2.1 (December 2004)..10
Version 2.0.2 (August 2004)..10
Version 2.0 (December 2003)..11
Version 1.3 (June 2003)...11
Version 1.2 (March 2003)..11
Version 1.1 (July 2002)..11
Version 1.0 (April 2002)...11

System Requirements ...13
System Requirements: Application..13

Windows...13
Mac OS X...13
Mac OS 8 and 9...13
Other platforms..13

System Requirements: Saved Applets..14
System Requirements: 3D View..14

Operating Systems...14
Graphics Cards..14
Fullscreen mode...15
Library Conflicts...15
Removing an old JOGL..15

Known Issues...17
Known bugs (all systems)..17
Windows−only bugs...17
Macintosh−only bugs...17
Linux/UNIX−only bugs...18
Known issues with computer HubNet..18
Unimplemented StarLogoT primitives..18

Contacting Us..19
Web Site..19
Feedback, Questions, Etc..19
Reporting Bugs..19

Sample Model: Party ...21
At a Party...21
Challenge...23
Thinking With Models...24
What's Next?..24

NetLogo 3.0 User Manual

i

Table of Contents
Tutorial #1: Models..25

Sample Model: Wolf Sheep Predation...25
Controlling the Model: Buttons...26
Adjusting Settings: Sliders and Switches...27
Gathering Information: Plots and Monitors..29

Plots...29
Monitors...29

Controlling the View...29
The Models Library..33

Sample Models..34
Curricular Models...34
Code Examples..34
HubNet Calculator & Computer Activities..34

What's Next?..34

Tutorial #2: Commands ...35
Sample Model: Traffic Basic..35
The Command Center...35
Working With Colors..38
Agent Monitors and Agent Commanders...40
What's Next?..43

Tutorial #3: Procedures ...45
Setup and Go...45
Patches and Variables...49
An Uphill Algorithm..52
Some More Details..56
What's Next?..58
Appendix: Complete Code...58

Interface Guide...61
Menus..61
Main Window...63

Interface Tab..63
Procedures Tab..69
Information Tab..71

WHAT IS IT..73

Programming Guide..75
Agents..75
Procedures...76
Variables..77
Colors...79
Ask...81
Agentsets...82
Breeds..84
Buttons...85
Synchronization...87

NetLogo 3.0 User Manual

ii

Table of Contents
Programming Guide

Lists..87
Math...90
Random Numbers..92
Turtle shapes...93
Plotting...94
Strings..97
Output..98
File I/O...98
Movies..100
Perspective..100
Turtle Pens...101

Shapes Editor Guide ...103
Getting Started...103

Importing Shapes...103
Creating and Editing Shapes...104

Tools..105
Previews...105
Overlapping Shapes...105
Undo..105
Colors...105
Other buttons...106
Shape Design...106
Keeping a Shape...106

Using Shapes in a Model...106

BehaviorSpace Guide..107
What is BehaviorSpace?..107

Why BehaviorSpace?...107
Historical Note..108

How It Works..108
Managing experiment setups...108
Creating an experiment setup..108
Running an experiment..110

Advanced usage..111
Running from the command line..111
Setting up experiments in XML..113
Controlling API...114

Conclusion...114

HubNet Guide...115
Understanding HubNet..115

NetLogo...115
HubNet Architecture...115

Computer HubNet..116
Activities...116
Requirements...116

NetLogo 3.0 User Manual

iii

Table of Contents
HubNet Guide

Starting an activity..116
HubNet Control Center...117
Troubleshooting...117
Known Limitations..118

Calculator HubNet..119
Requirements...119

Teacher workshops..119
HubNet Authoring Guide..119
Getting help..119

HubNet Authoring Guide...121
General HubNet Information..121
NetLogo Primitives...121

Setup..121
Data extraction...122
Sending data..123
Examples...124

Calculator HubNet Information...124
Saving..124

Computer HubNet Information...125
How To Make an Interface for a Client...125
View Updates on the Clients..126
Plot Updates on the Clients..127
Clicking in the View on Clients...127
Text Area for Input and Display..127

Extensions Guide ..129
Using Extensions...129

Applets...130
Writing Extensions...130

Summary..130
Tutorial...130
Extension development tips...133
Conclusion...133

Controlling Guide ..135
Example (with GUI)..135
Example (headless)...136
BehaviorSpace...137
Other Options...138
Conclusion...138

NetLogo GoGo Extension ...139
What is the Gogo Board?...139
How to get a Gogo Board?..139
Installing the GoGo Extension...139

Mac OS X...139

NetLogo 3.0 User Manual

iv

Table of Contents
NetLogo GoGo Extension

Windows...140
Linux and others...140

Using the GoGo Extension..140
Primitives...141

gogo−close...141
gogo−open...141
gogo−open?...141
gogo−ports...141
output−port−coast..142
output−port−off...142
output−port−reverse...142
output−port−[that/this]way..142
talk−to−output−ports..142
ping..143
sensor..143
set−output−port−power..144

NetLogo Sound Extension ..145
Using the Sound Extension..145
Primitives...145

drums...145
instruments...145
play−drum..146
play−note...146
start−note...146
stop−note...146
stop−instrument...146
stop−music...147

Sound names...147
Drums...147
Instruments..147
General..149
Downloading..149
Applets...149
Usage...149
Programming..149

General..150
Why is it called NetLogo?...150
What programming language was NetLogo written in?...150
How do I cite NetLogo in an academic publication?..151
How do I cite a model from the Models Library in an academic publication?................151
What license is NetLogo released under? Are there are any legal restrictions on

 use, redistribution, etc.?..151
Is the source code to NetLogo available?..151
Do you offer any workshops or other training opportunities for NetLogo?.....................151
What's the difference between StarLogo, MacStarLogo, StarLogoT, and NetLogo?....152
Has anyone built a model of <x>?..152

NetLogo 3.0 User Manual

v

Table of Contents
NetLogo Sound Extension

Are NetLogo models runs scientifically reproducible?...152
Are there any NetLogo textbooks?...152
Is NetLogo available in a Spanish version, German version, (your language here)

 version, etc.?...153
Is NetLogo compiled or interpreted?..153
Will NetLogo and NetLogo 3D remain separate?...153

Downloading..153
The download form doesn't work for me. Can I have a direct link to the software?.......154
Downloading NetLogo takes too long. Is it available any other way, such as on a

 CD?...154
I downloaded and installed NetLogo but the Models Library has few or no models

 in it. How can I fix this?...154
Can I have multiple versions of NetLogo installed at the same time?............................154
I'm on a UNIX system and I can't untar the download. Why?..154
How do I install NetLogo on Windows 2003 or Windows Server 2003?........................154

Applets...154
I tried to run one of the applets on your site, but it didn't work. What should I do?........155
Can I make my model available as an applet while keeping the code secret?..............155
Can a model saved as an applet use import−world, file−open, and other commands

 that read files?...155
Usage...155

Can I run NetLogo from a CD?..156
How do I change how many patches there are?..156
Can I use the mouse to "paint" in the view?...156
How big can my model be? How many turtles, patches, procedures, buttons, and

 so on can my model contain?...156
Can I import an image into NetLogo?..156
Can I import GIS data into NetLogo?...157
My model runs slowly. How can I speed it up?..157
I want to try HubNet. Can I?...157
Can I run a NetLogo model from the command line? Can I run it without a GUI?.........158
Can I have more than one model open at a time?...158
Can I save the contents of the view? Of the interface tab?..158
Can I make a movie of my model?...159
Does NetLogo take advantage of multiple processors?...159
Can I distribute NetLogo model runs across a cluster of computers?............................159
Can I use screen−edge−x or screen−edge−y, etc., as the minimum or maximum of

 a slider?...159
Can I change the choices in a chooser on the fly?..160
Can I divide the code for my model up into several files?..160

Programming...160
How is the NetLogo language different from the StarLogoT language? How do I

 convert my StarLogoT model to NetLogo?...160
How does the NetLogo language differ from other Logos?..160
The NetLogo world is a torus, that is, the edges of the screen are connected to

 each other, so turtles and patches "wrap around". Can I use a different world
 topology: bounded, infinite plane, sphere, etc.?..160

NetLogo 3.0 User Manual

vi

Table of Contents
NetLogo Sound Extension

How do I take the negative of a number?..161
My turtle moved forward 1, but it's still on the same patch. Why?.................................162
patch−ahead 1 is reporting the same patch my turtle is already standing on. Why?.....162
How do I give my turtles "vision"?..162
Does NetLogo have a command like StarLogo's "grab" command?.............................163
I tried to put −at after the name of a variable, for example variable−at −1 0, but

 NetLogo won't let me. Why not?...163
I'm getting numbers like 0.10000000004 and 0.799999999999 instead of 0.1 and

 0.8. Why?..163
How can I keep two turtles from occupying the same patch?..163
How can I find out if a turtle is dead?...163
How do I find out how much time has passed in my model?...164
Does NetLogo have arrays?..164
Does NetLogo have associative arrays or lookup tables?...164
How can I use different patch "neighborhoods" (circular, Von Neumann, Moore,

 etc.)?...164
Can I connect turtles with lines, to indicate connections between them?......................164
How can I convert an agentset to a list, or vice versa?..165
What if I want to "ask" an agentset in random order?..165
How does NetLogo decide when to switch from agent to agent when running code?...165

FAQ (Frequently Asked Questions) ...165

Primitives Dictionary ...167
Categories of Primitives...167

Turtle−related...167
Patch−related primitives...167
Agentset primitives...167
Color primitives..168
Control flow and logic primitives...168
World primitives..168
Perspective primitives..168
HubNet primitives...168
Input/output primitives..168
File primitives...168
List primitives...168
String primitives..169
Mathematical primitives..169
Plotting primitives...169
Movie primitives...169
System primitives...169

Built−In Variables...169
Turtles..169
Patches..169
Other..169

Keywords...169
Constants...170

NetLogo 3.0 User Manual

vii

Table of Contents
Primitives Dictionary

Mathematical Constants...170
Boolean Constants...170
Color Constants...170

A ..170
abs...170
acos...171
and...171
any?...171
Arithmetic Operators (+, *, −, /, ^, <, >, =, !=, <=, >=)...171
asin..172
ask...172
at−points..172
atan..173
autoplot?..173
auto−plot−off auto−plot−on..173

B ..173
back bk...173
beep...174
breed..174
breeds..174
but−first bf but−last bl...175

C ...175
carefully..175
ceiling...176
clear−all ca...176
clear−all−plots..176
clear−drawing cd..176
clear−output...176
clear−patches cp..177
clear−plot...177
clear−turtles ct..177
color...177
cos...178
count..178
create−turtles crt create−<BREED>...178
create−custom−turtles cct create−custom−<BREED> cct−<BREED>..........................178
create−temporary−plot−pen...179

D ...179
date−and−time...180
die..180
diffuse..180
diffuse4..180
display..181
distance..181
distance−nowrap..182
distancexy..182
distancexy−nowrap..182

NetLogo 3.0 User Manual

viii

Table of Contents
Primitives Dictionary

downhill..182
downhill4..183
dx dy..183

E ..183
empty?...184
end...184
error−message...184
every..184
exp...185
export−view export−interface export−output export−plot export−all−plots

 export−world..185
extract−hsb..186
extract−rgb...186

F ..186
face face−nowrap...187
facexy facexy−nowrap...187
file−at−end?...187
file−close..187
file−close−all..188
file−delete...188
file−exists?...188
file−open..188
file−print...189
file−read...189
file−read−characters..190
file−read−line..190
file−show..190
file−type..191
file−write...191
filter..191
first...192
floor..192
follow..192
follow−me...192
foreach...193
forward fd...193
fput...193

G ...194
globals..194

H ...194
hatch hatch−<BREED>..194
heading..195
hidden?..195
hideturtle ht..195
histogram−from..195
histogram−list...196
home..196

NetLogo 3.0 User Manual

ix

Table of Contents
Primitives Dictionary

hsb...196
hubnet−broadcast..197
hubnet−broadcast−view...197
hubnet−enter−message?...197
hubnet−exit−message?..197
hubnet−fetch−message..198
hubnet−message...198
hubnet−message−source...198
hubnet−message−tag..198
hubnet−message−waiting?..198
hubnet−reset..199
hubnet−send..199
hubnet−send−view...199
hubnet−set−client−interface...200

I ...200
if...200
ifelse...200
ifelse−value..201
import−drawing..201
import−pcolors...202
import−world..202
in−cone in−cone−nowrap...202
in−radius in−radius−nowrap...203
inspect..203
int...204
is−agent? is−agentset? is−boolean? is−list? is−number? is−patch?

 is−patch−agentset? is−string? is−turtle? is−turtle−agentset?.................................204
item..204

J ..205
jump...205

L ..205
label...205
label−color..205
last...206
left lt...206
length...206
let...206
list...207
ln..207
locals..207
log..207
loop..208
lput...208

M ...208
map..208
max..209
max−one−of...209

NetLogo 3.0 User Manual

x

Table of Contents
Primitives Dictionary

mean..209
median...209
member?..209
min...210
min−one−of..210
mod..210
modes..211
mouse−down?..211
mouse−inside?...211
mouse−xcor mouse−ycor...211
movie−cancel...212
movie−close...212
movie−grab−view movie−grab−interface...212
movie−set−frame−rate...212
movie−start..212
movie−status..213
myself...213

N ...213
n−values...213
neighbors neighbors4...214
netlogo−version..214
new−seed...214
no−display..215
no−label...215
nobody...215
not..215
nsum nsum4...216

O ...216
−of..216
one−of..216
or..217
other−turtles−here other−BREED−here...217
output−print output−show output−type output−write..217

P ..218
patch..218
patch−ahead..218
patch−at...218
patch−at−heading−and−distance...219
patch−here...219
patch−left−and−ahead patch−right−and−ahead..219
patches..220
patches−from...220
patches−own..220
pcolor...220
pen−down pd pen−erase pe pen−up pu..221
pen−mode..221
pen−size...221

NetLogo 3.0 User Manual

xi

Table of Contents
Primitives Dictionary

plabel...221
plabel−color..222
plot...222
plot−name..222
plot−pen−down ppd plot−pen−up ppu...222
plot−pen−reset...222
plotxy..223
plot−x−min plot−x−max plot−y−min plot−y−max..223
position...223
precision...223
print..224
pxcor pycor...224

R ...224
random...224
random−float..225
random−exponential random−gamma random−normal random−poisson.....................225
random−int−or−float...226
random−n−of..226
random−one−of..227
random−seed...227
read−from−string..228
reduce..228
remainder...229
remove...229
remove−duplicates...230
remove−item..230
repeat...230
replace−item..230
report..231
reset−perspective rp..231
reset−timer...231
reverse...231
rgb..231
ride...232
ride−me..232
right rt...232
round..232
run..233
runresult...233

S ..233
scale−color...233
screen−edge−x screen−edge−y...234
screen−size−x screen−size−y..234
self...234
; (semicolon)...235
sentence se..235
set..235

NetLogo 3.0 User Manual

xii

Table of Contents
Primitives Dictionary

set−current−directory...236
set−current−plot...236
set−current−plot−pen...236
set−default−shape...236
set−histogram−num−bars..237
set−plot−pen−color..237
set−plot−pen−interval...237
set−plot−pen−mode...237
set−plot−x−range set−plot−y−range..238
setxy...238
shade−of?..238
shape...239
shapes...239
show...239
showturtle st...239
shuffle..240
sin..240
size...240
sort...240
sort−by...240
sprout sprout−<BREED>...241
sqrt...241
stamp...241
standard−deviation...242
startup..242
stop..242
subject..242
sublist substring...242
subtract−headings..243
sum..243

T ..244
tan..244
timer...244
to..244
to−report...244
towards towards−nowrap...245
towardsxy towardsxy−nowrap..245
turtle...245
turtles...246
turtles−at BREED−at..246
turtles−from..246
turtles−here BREED−here...247
turtles−on BREED−on..247
turtles−own BREED−own...248
type..248

U ...248
uphill...248

NetLogo 3.0 User Manual

xiii

Table of Contents
Primitives Dictionary

uphill4...249
user−choice..249
user−choose−directory...249
user−choose−file..250
user−choose−new−file...250
user−input..250
user−message...250
user−yes−or−no?...250

V ..251
value−from...251
values−from...251
variance..251

W ...251
wait...251
watch..252
watch−me...252
while...252
who..252
with...253
with−max..253
with−min...253
without−interruption..254
word...254
wrap−color...254
write..255

X ..255
xcor..255
xor..255

Y ..255
ycor..256

? ..256
?...256

NetLogo 3.0 User Manual

xiv

What is NetLogo?
NetLogo is a programmable modeling environment for simulating natural and social phenomena. It
is particularly well suited for modeling complex systems developing over time. Modelers can give
instructions to hundreds or thousands of independent "agents" all operating concurrently. This
makes it possible to explore the connection between the micro−level behavior of individuals and the
macro−level patterns that emerge from the interaction of many individuals.

NetLogo lets students open simulations and "play" with them, exploring their behavior under
various conditions. It is also an authoring environment which enables students, teachers and
curriculum developers to create their own models. NetLogo is simple enough that students and
teachers can easily run simulations or even build their own. And, it is advanced enough to serve as
a powerful tool for researchers in many fields.

NetLogo has extensive documentation and tutorials. It also comes with a Models Library, which is a
large collection of pre−written simulations that can be used and modified. These simulations
address many content areas in the natural and social sciences, including biology and medicine,
physics and chemistry, mathematics and computer science, and economics and social psychology.
Several model−based inquiry curricula using NetLogo are currently under development.

NetLogo can also power a classroom participatory−simulation tool called HubNet. Through the use
of networked computers or handheld devices such as Texas Instruments (TI−83+) calculators, each
student can control an agent in a simulation. Follow this link for more information.

NetLogo is the next generation of the series of multi−agent modeling languages that started with
StarLogo. It builds off the functionality of our product StarLogoT and adds significant new features
and a redesigned language and user interface. NetLogo is written in Java so it can run on all major
platforms (Mac, Windows, Linux, et al). It is run as a standalone application. Individual models can
be run as Java applets inside a web browser.

Features

You can use the list below to help familiarize yourself with the features NetLogo has to offer.

System:
Cross−platform: runs on MacOS, Windows, Linux, et al♦

•

Language:
Fully programmable♦
Simple language structure♦
Language is Logo dialect extended to support agents and concurrency♦
Unlimited numbers of agents and variables♦
Many built−in primitives♦
Integer and double precision floating point math♦
Runs are exactly reproducible cross−platform♦

•

Environment:
View your model in either 2D and 3D♦
Scalable and rotatable vector shapes♦
Turtle and patch labels♦
Interface builder w/ buttons, sliders, switches, choosers, monitors, text boxes♦

•

What is NetLogo? 1

"Control strip" including speed slider♦
Powerful and flexible plotting system♦
Info area for annotating your model♦
HubNet: participatory simulations using networked devices♦
Agent monitors for inspecting and controlling agents♦
Export and import functions (export data, save and restore state of model)♦
BehaviorSpace tool used to collect data from multiple runs of a model♦
System Dynamics Modeler♦

Web:
Models can be saved as applets to be embedded in web pages (note: some features
are not available from applets, such as extensions and the 3D view)

♦
•

NetLogo 3.0 User Manual

2 What is NetLogo?

Copyright Information
Copyright 1999 by Uri Wilensky. All rights reserved.

The NetLogo software, models and documentation are distributed free of charge for use by the
public to explore and construct models. Permission to copy or modify the NetLogo software, models
and documentation for educational and research purposes only and without fee is hereby granted,
provided that this copyright notice and the original author's name appears on all copies and
supporting documentation. For any other uses of this software, in original or modified form, including
but not limited to distribution in whole or in part, specific prior permission must be obtained from Uri
Wilensky. The software, models and documentation shall not be used, rewritten, or adapted as the
basis of a commercial software or hardware product without first obtaining appropriate licenses from
Uri Wilensky. We make no representations about the suitability of this software for any purpose. It is
provided "as is" without express or implied warranty.

To reference this software in academic publications, please use: Wilensky, U. (1999). NetLogo.
http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer−Based
Modeling, Northwestern University, Evanston, IL.

The project gratefully acknowledges the support of the National Science Foundation (REPP and
ROLE Programs) −− grant numbers REC #9814682 and REC #0126227.

Third party licenses

For random number generation, NetLogo uses the MersenneTwisterFast class by Sean Luke. The
copyright for that code is as follows:

Copyright (c) 2003 by Sean Luke.
Portions copyright (c) 1993 by Michael Lecuyer.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

•

Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

•

Neither the name of the copyright owners, their employers, nor the names of its contributors
may be used to endorse or promote products derived from this software without specific
prior written permission.

•

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

Copyright Information 3

http://ccl.northwestern.edu/netlogo/

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Parts of NetLogo (specifically, the random−gamma primitive) are based on code from the Colt
library (http://hoschek.home.cern.ch/hoschek/colt/). The copyright for that code is as follows:

Copyright 1999 CERN − European Organization for Nuclear Research. Permission to use, copy,
modify, distribute and sell this software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in all copies and that both that
copyright notice and this permission notice appear in supporting documentation. CERN makes no
representations about the suitability of this software for any purpose. It is provided "as is" without
expressed or implied warranty.

NetLogo uses the MRJ Adapter library, which is Copyright (c) 2003 Steve Roy
<sroy@roydesign.net>. The library is covered by the GNU LGPL (Lesser General Public License).
The text of that license is included in the "docs" folder which accompanies the NetLogo download,
and is also available from http://www.gnu.org/copyleft/lesser.html.

NetLogo uses the Quaqua Look and Feel library, which is Copyright (c) 2003−2005 Werner
Randelshofer, http://www.randelshofer.ch/, werner.randelshofer@bluewin.ch, All Rights Reserved.
The library is covered by the GNU LGPL (Lesser General Public License). The text of that license is
included in the "docs" folder which accompanies the NetLogo download, and is also available from
http://www.gnu.org/copyleft/lesser.html .

For the system dynamics modeler, NetLogo uses the JHotDraw library, which is Copyright (c) 1996,
1997 by IFA Informatik and Erich Gamma. The library is covered by the GNU LGPL (Lesser
General Public License). The text of that license is included in the "docs" folder which accompanies
the NetLogo download, and is also available from http://www.gnu.org/copyleft/lesser.html .

For movie−making, NetLogo uses code adapted from sim.util.media.MovieEncoder.java by Sean
Luke, distributed under the MASON Open Source License. The copyright for that code is as follows:

This software is Copyright 2003 by Sean Luke. Portions Copyright 2003 by Gabriel Catalin Balan,
Liviu Panait, Sean Paus, and Dan Kuebrich. All Rights Reserved.

Developed in Conjunction with the George Mason University Center for Social Complexity

By using the source code, binary code files, or related data included in this distribution, you agree to
the following terms of usage for this software distribution. All but a few source code files in this
distribution fall under this license; the exceptions contain open source licenses embedded in the
source code files themselves. In this license the Authors means the Copyright Holders listed above,
and the license itself is Copyright 2003 by Sean Luke.

The Authors hereby grant you a world−wide, royalty−free, non−exclusive license, subject to third
party intellectual property claims:

to use, reproduce, modify, display, perform, sublicense and distribute all or any portion of the source
code or binary form of this software or related data with or without modifications, or as part of a

NetLogo 3.0 User Manual

4 Copyright Information

http://hoschek.home.cern.ch/hoschek/colt/
http://www.gnu.org/copyleft/lesser.html
http://www.randelshofer.ch/
http://www.gnu.org/copyleft/lesser.html
http://www.gnu.org/copyleft/lesser.html

larger work; and under patents now or hereafter owned or controlled by the Authors, to make, have
made, use and sell ("Utilize") all or any portion of the source code or binary form of this software or
related data, but solely to the extent that any such patent is reasonably necessary to enable you to
Utilize all or any portion of the source code or binary form of this software or related data, and not to
any greater extent that may be necessary to Utilize further modifications or combinations.

In return you agree to the following conditions:

If you redistribute all or any portion of the source code of this software or related data, it must retain
the above copyright notice and this license and disclaimer. If you redistribute all or any portion of
this code in binary form, you must include the above copyright notice and this license and disclaimer
in the documentation and/or other materials provided with the distribution, and must indicate the use
of this software in a prominent, publically accessible location of the larger work. You must not use
the Authors's names to endorse or promote products derived from this software without the specific
prior written permission of the Authors.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS, NOR THEIR EMPLOYERS, NOR GEORGE MASON
UNIVERSITY, BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

For movie−making, NetLogo uses code adapted from JpegImagesToMovie.java by Sun
Microsystems. The copyright for that code is as follows:

Copyright (c) 1999−2001 Sun Microsystems, Inc. All Rights Reserved.

Sun grants you ("Licensee") a non−exclusive, royalty free, license to use, modify and redistribute
this software in source and binary code form, provided that i) this copyright notice and license
appear on all copies of the software; and ii) Licensee does not utilize the software in a manner
which is disparaging to Sun.

This software is provided "AS IS," without a warranty of any kind. ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON−INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE
LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT,
INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

This software is not designed or intended for use in on−line control of aircraft, air traffic, aircraft
navigation or aircraft communications; or in the design, construction, operation or maintenance of
any nuclear facility. Licensee represents and warrants that it will not use or redistribute the Software
for such purposes.

NetLogo 3.0 User Manual

Copyright Information 5

For graphics rendering, NetLogo uses JOGL, a Java API for OpenGL. For more information about
JOGL, see http://jogl.dev.java.net/. The library is distributed under the BSD license:

Copyright (c) 2003 Sun Microsystems, Inc. All Rights Reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

Redistribution of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

•

Redistribution in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

•

Neither the name of Sun Microsystems, Inc. or the names of contributors may be used to endorse
or promote products derived from this software without specific prior written permission.

This software is provided "AS IS," without a warranty of any kind. ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON−INFRINGEMENT, ARE HEREBY EXCLUDED. SUN MICROSYSTEMS, INC. ("SUN") AND
ITS LICENSORS SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A
RESULT OF USING, MODIFYING OR DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES.
IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT
OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR
PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF
LIABILITY, ARISING OUT OF THE USE OF OR INABILITY TO USE THIS SOFTWARE, EVEN IF
SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You acknowledge that this software is not designed, licensed or intended for use in the design,
construction, operation or maintenance of any nuclear facility.

Sun gratefully acknowledges that this software was originally authored and developed by Kenneth
Bradley Russell and Christopher John Kline.

NetLogo 3.0 User Manual

6 Copyright Information

http://jogl.dev.java.net/

What's New?
Feedback from users is very valuable to us in designing and improving NetLogo. We'd like to hear
from you. Please send comments, suggestions, and questions to feedback@ccl.northwestern.edu,
and bug reports to bugs@ccl.northwestern.edu.

Version 3.0 (September 14, 2005)

content:
new network models: Giant Component, Preferential Attachment, Small Worlds♦
new EvoLab evolution models: Bug Hunt Camouflage, Bug Hunt Speeds♦
new NIELS electromagnetism models: Electrostatics, Conductor♦
new MaterialSim materials science model: MaterialSim Grain Growth♦
new ProbLab probability model: 9−Block Stalagmite, Central Limit Theorem, Dice
Stalagmite, Expected Value Advanced, ProbLab Genetics, Random Basic Advanced

♦

new system dynamics models: Exponential Growth, Logistic Growth, Wolf Sheep
Predation (System Dynamics), Wolf Sheep Predation (docked)

♦

new biology models: Autumn, Algae, Moths, Disease Solo, Echo♦
new physics & chemistry models: GasLab Circular Particles, DLA Alternate, DLA
Alternate Linear, Polymer Dynamics

♦

new cellular automaton model: Life Turtle−Based♦
new computer science models: Vants, Merge Sort♦
new math model: Color Fractions♦
new art models: Sound Machines, Optical Illusions♦
new games: Minesweeper, Lunar Lander♦
new code examples: Neighbors−Nowrap Example, Halo Example, Perspective
Example, 3D Shapes Example, GoGoMonitor

♦

new perspective demos section with alternate versions of Ants, Termites, Flocking,
GasLab to demo new perspective features

♦

improved sample models: Rugby (bugfix), GasLab Gas in a Box (bugfix), Vector
Fields (bugfix), Virus (bugfix), Turtles Circling (new look and controls), Pursuit (new
look), Rebellion (new look), Reactor X−Section (new look), Sand (better colors),
Virus (better colors), Shuffle Board, Traffic Basic, and most ProbLab models

♦

revamped code examples: Shape Animation Example (new look), Random Seed
Example (now demonstrates new−seed), Image Import Example (now demonstrates
import−pcolors and import−drawing)

♦

•

features:
you can now view any model in 3D (note though that the world remains 2D; for 3D
worlds, use NetLogo 3D Preview 1)

♦

new follow, ride and watch commands let you track the movements of a
particular agent

♦

new System Dynamics Modeler, found on Tools menu (includes sample models and
section in User Manual)

♦

new drawing layer on top of patches contains marks left by turtles, with their pens or
by stamping their shapes

♦

turtle pens may now vary in size; they draw in the drawing layer, rather than affecting
patch colors as before

♦

buttons take turns now (instead of interleaving their code with each other), so you
can press SETUP during GO or press GO during SETUP and the right thing happens

♦

•

What's New? 7

mailto:feedback@ccl.northwestern.edu
mailto:bugs@ccl.northwestern.edu

find and replace in Information and Procedures tabs♦
new color palette is more muted and contains colors that harmonize better with each
other

♦

the Information tab is now displayed in a more attractive (but read−only) style; use
the new Edit button to switch to the old view for editing

♦

new GoGo extension allows interfacing NetLogo to physical devices♦
added Color Swatches, a dialog which helps you choose colors for your agents, to
the Tools menu

♦

improved user interface for reporting syntax errors (no more Errors tab)♦
turtle shapes now optionally wrap around the edges of the world♦
when you pick a turtle or patch with the mouse (by right−clicking or control−clicking),
the selected turtle or patch is now highlighted

♦

substantial improvements to BehaviorSpace:
BehaviorSpace experiments can now be run headless from the command
line, using an experiment setup saved in the model or specified separately in
XML

◊

you can create multiple experiment setups and they are saved in your model
for later reuse

◊

there are now two output format options, spreadsheet and table; the latter is
new, and is more suitable for use with statistics and database software

◊

you can now use multiple reporters to measure each run; you can also use
none, which is useful if you are recording the results some other way, such as
with export−world

◊

you can now vary the world size during an experiment, by varying
screen−edge/size−x/y as if they were variables

◊

you can now vary the random seed during an experiment, by varying
random−seed as if it were a variable

◊

you can now choose to measure runs only at the end, not every tick◊
you can now vary no variables at all during an experiment; this is useful for
doing many runs with the current settings

◊

♦

language changes:
pen and drawing related changes:

turtle pens draw in the drawing layer, instead of changing patch colors as
before

◊

a turtle's pen, if it is down, now draws regardless of how the turtle moves
(even if it's with setxy or jump)

◊

a pen may also erase, using the new pen−erase (pe) command◊
the stamp command now stamps the turtle's shape on the drawing, rather
than setting the patch color (use set pcolor to set the patch color)

◊

added new commands clear−drawing (cd), import−drawing◊
added new turtle variables pen−mode and pen−size; removed old variable
pen−down?

◊

♦

new follow, watch, ride (and follow−me, watch−me, ride−me) commands
(and subject reporter) for focusing on individual agents

♦

new reset−perspective command returns the observer to the default position
and perspective.

♦

the clear−graphics command no longer exists (in old models, it is automatically
replaced with cp ct)

♦

all other commands with "graphics" in the name now use "view" instead (e.g.
export−view)

♦

new netlogo−version reporter♦

•

NetLogo 3.0 User Manual

8 What's New?

new import−pcolors and import−drawing commands read image files (in a
variety of formats) into the patch colors or drawing layer

♦

new in−cone reporter lets you give a turtle a cone of vision♦
new new−seed reporter is useful for generating numbers to use as random seeds♦
new mouse−inside? reporter tells you whether the mouse pointer is in the view♦
renamed get−and−date−time to date−and−time♦
the constant white is now defined as 9.9, not 9.9999♦

engine fixes:
fixed bug in random−n−of that favored earlier items in the list or agentset♦
fixed bug where filter/map/foreach didn't always work properly inside
run/runresult

♦

fixed bug in importing worlds where an agentset stored in a global variable could be
imported incorrectly if the import caused the world size to change

♦

the export−view and export−output commands now work even when running
headless from the command line

♦

when running headless from the command line, paths are now interpreted as relative
to the location of the model, just as in the application

♦

the rgb and hsb reporters are now better at choosing colors♦
fixed histogramming bug where sometimes a value was assigned to the bar one to
the left of the correct bar

♦

fixed bug that could cause a runtime error to be reported as happening in the wrong
place in the code or to the wrong agent

♦

fixed bug where is−turtle? and is−agent? sometimes returned true even if the
input was nobody (if a turtle died)

♦

fixed Windows−only problem where the sound extension didn't always work on some
Java VM's newer than 1.4.2_05

♦

import and export world now include the observer perspective and contents of the
output area

♦

the sizing and positioning of turtle shapes in 2D, especially very small ones, is now
more accurate, and more consistent cross−platform

♦

•

interface fixes:
right/control−clicking to pick a turtle in the 2D view is now much easier because it
takes the size and position of the turtle into account

♦

removed now useless checkbox for turning off "Exact turtle positions & sizes"♦
smaller changes in turtle heading are now visible onscreen, particularly when the
patch size is large

♦

turtle sizes 1.5 and 2.0 are now accelerated graphically in the 2D view (before, only
size 1.0 was accelerated)

♦

improved some error messages, and improved the pinpointing of runtime error
locations

♦

you can now use the keyboard shortcuts for undo and redo when editing the code in
a button or monitor

♦

fixed bug where if a chooser had lots of choices, some would disappear off the edges
of the screen

♦

fixed bug where deleting a button or monitor with a syntax error halted the model♦
in saved applets, you can now copy from an output area on all web browsers (as far
as we know)

♦

fixed bug where a generated movie file could disappear when you quit NetLogo♦
editing a slider, switch, or choice no longer halts the model (unless you change the
variable name)

♦

general miscellaneous improvements to look and feel♦

•

NetLogo 3.0 User Manual

What's New? 9

HubNet changes:
new activity: Dice Stalagmite♦
improved activity: Beer Game Alternate 2♦
in computer HubNet, the "Graphics Window" tag for receiving mouse events from
clients has changed to "View"; existing activities that use this feature must be
updated in order to work

♦

hubnet−message−waiting? sleeps, so HubNet activities don't hog the CPU♦

•

Java API changes:
controlling API can now run BehaviorSpace experiments♦
controlling API now includes new resizeWorld(), getDrawing(),
getGraphics(), halt() methods

♦

fixed bug in extensions API where the unload() method was not being called♦
the LogoList and LogoException classes have been relocated to the
org.nlogo.api package

♦

in the extensions API, the runOnce() method in the ClassManager now takes an
ExtensionManager which allows the extension to specify that it uses HubNet and
also to store an Object that is kept even across multiple loads of the extension

♦

•

system:
on Windows, bundled Java version is now 1.4.2_08 (was 1.4.2_05)♦

•

Version 2.1 (December 2004)

much larger and higher quality library of turtle shapes•
runs models "headless", with no GUI, from the command line•
editor now highlights matching parentheses and brackets•
"action keys" let buttons be triggered by keypresses•
makes Quicktime movies of models•
redesigned Command Center for greater usability•
optional "output area" in models•
greatly improved shapes editor•
easy capture of images from Interface tab•
multilevel "Undo" in editor•
new let command for easy creation of local variables•
new carefully command for trapping runtime errors•
computer HubNet:

substantially improved reliability♦
"server discovery" is now fully supported♦
you may serve multiple activities simultaneously from the same computer♦
improved client interface and Control Center♦

•

Version 2.0.2 (August 2004)

new, experimental "extensions" API lets users write new commands and reporters in Java•
NetLogo can now make sounds and music; this is done with a new, experimental sound
extension that is also an example of how to use the extensions API

•

new "controlling" API lets users control NetLogo from external Java code (such as for
automating multiple runs)

•

NetLogo 3.0 User Manual

10 What's New?

Version 2.0 (December 2003)

full support for Mac OS X; improved Linux support•
minimum Java version is now 1.4.1; Windows 95, MacOS 8, MacOS 9 no longer supported•
increased overall reliability•
improved look and feel throughout the application•
faster and more flexible graphics (labels, turtle sizes, exact turtle positions all now fast,
reliable, and flicker−free)

•

suite of primitives for reading and writing external files•
"strict math" mode now always on, for reproducible results•
export graphics window or interface tab as image file•
revamped BehaviorSpace (various improvements made; some old features are missing)•
Mersenne Twister random number generator•
many new primitives•
computer HubNet:

improved reliability; no longer alpha or beta♦
improved graphics window mirroring features and performance♦

•

Version 1.3 (June 2003)

graphics window control strip•
choosers•
strict math mode so results are identical on all platforms (requires Java 1.3 or higher)•
new primitives including run/runresult and map/foreach/filter/reduce•
some primitives now accept a variable number of inputs•

Version 1.2 (March 2003)

alpha release of computer HubNet: formerly HubNet required the TI Navigator calculator
network to operate; now you can use it over TCP/IP with networks of laptop or desktop
computers

•

new primitives and other language improvements•
display of coordinates when mousing over plots•

Version 1.1 (July 2002)

"Save as Applet" lets you embed your model in any web page•
printer support•
Procedures menu•
scrollable Interface tab•
contextual menus in Interface tab•
new primitives•

Version 1.0 (April 2002)

initial release (after a series of betas)•

NetLogo 3.0 User Manual

What's New? 11

NetLogo 3.0 User Manual

12 What's New?

System Requirements
NetLogo is designed to run on almost any type of computer, but some older or less powerful
systems are not supported. The exact requirements are summarized below. If you have any trouble
with NetLogo not working on your system, we would like to offer assistance. Please write
bugs@ccl.northwestern.edu.

System Requirements: Application

On all systems, approximately 25MB of free hard drive space is required.

Windows

Windows NT, 98, ME, 2000, or XP•
64 MB RAM (or probably more for NT/2000/XP)•

You can choose to include a suitable Java Virtual Machine when downloading NetLogo. If you want
to use a JVM that you install separately yourself, it must be version 1.4.1 or later. 1.4.2 or later is
preferred.

Windows 95 is no longer supported by the current version of NetLogo. Windows 95 users should
use NetLogo 1.3.1 instead. We will continue to support NetLogo 1.3.1.

Mac OS X

OS X version 10.2.6 or later (10.3 or later is recommended)•
128 MB RAM (256 MB RAM strongly recommended)•

On OS X, the Java Virtual Machine is supplied by Apple as part of the operating system. OS X 10.3
includes an appropriate JVM. OS X 10.2 users must install Java 1.4.1 Update 1, which is available
from Apple through Software Update.

For OS X 10.3 users, installing Java 1.4.2 Update 1 is recommended, for improved application
reliability. The update is available from Apple through Software Update.

Mac OS 8 and 9

These operating systems are no longer supported by the current version of NetLogo. MacOS 8 and
9 users should download NetLogo 1.3.1 instead. We will continue to support NetLogo 1.3.1.

Other platforms

NetLogo should work on any platform on which a Java Virtual Machine, version 1.4.1 or later, is
available and installed. Version 1.4.2 or later is preferred. If you have trouble, please contact us
(see above).

System Requirements 13

mailto:bugs@ccl.northwestern.edu

System Requirements: Saved Applets

NetLogo models saved as Java applets should work on any web browser and platform on which a
Java Virtual Machine, version 1.4.1 or later, is available. If you have trouble, please contact us (see
above).

On Mac OS X, the Internet Explorer browser does not make use of the 1.4.1 JVM, so it cannot run
saved applets. We suggest using Apple's Safari browser instead, or another web browser which
uses the newer JVM.

Note that the 3D view is not available in applets.

System Requirements: 3D View

NetLogo's 3D view is a new feature, and hasn't been tested on every configuration. Below is
information about configurations that we have tested so far.

Operating Systems

We've tested the 3D view on:

Linux 2.6.8 (Debian i386)•
Linux 2.6.8 (Debian amd64)•
Mac OS X 10.3.8, 10.4.0, and 10.4.1
note: Java 1.4.2 is required

•

Windows 2000•
Windows XP•

If you use the 3D view on an operating system that we haven't tested, we'd like to hear about it.
Please let us know at feedback@ccl.northwestern.edu. Please include the information in the
System section of About NetLogo.

Graphics Cards

We've tested the 3D view on many different graphics cards and controllers, including:

ATI Radeon 7500•
ATI Radeon 9200•
ATI Radeon 9600•
ATI Radeon 9800 XT•
ATI Radeon IGP 345•
ATI Radeon Mobility•
ATI FireGL V3100•
Intel 82830M•
nVidia GeForce MX•
nVidia GeForce FX 5200•
nVidia GeForce FX Go5650•
nVidia Quadro NVS•

NetLogo 3.0 User Manual

14 System Requirements

mailto:feedback@ccl.northwestern.edu

If you use the 3D view with a graphics card that we haven't tested, we'd like to hear about it. Please
let us know at feedback@ccl.northwestern.edu. Please include the information in the System
section of About NetLogo.

Fullscreen mode

Fullscreen mode does not work with some graphics cards and controllers, including the ATI Radeon
IGP 345 and the Intel 82845.

Some users with older computers, especially laptops, have reported that entering fullscreen mode
caused NetLogo to crash. If you experience this problem, please let us know.

Library Conflicts

NetLogo includes JOGL version 1.1.0 for the 3D View.

On Mac OS X and Windows, NetLogo uses the version of JOGL that comes with NetLogo, even if
you have a different version of JOGL on your computer. If for some reason NetLogo is unable to
find and use the correct version, it will warn you. If you get such a warning, you may need to remove
your separate JOGL installation in order for NetLogo's 3D View to work.

On a Linux machine, if NetLogo is finding the wrong version of JOGL, trying running with the
−Djava.ext.dirs= command line option, like this:

java −Djava.ext.dirs= −jar NetLogo.jar

That should fix the problem. If it doesn't, try removing your JOGL installation.

Removing an old JOGL

If NetLogo tells you you need to remove your JOGL installation, here's how to do it. You need to
remove the jogl.jar file and one or two native library files:

Remove jogl.jar from lib/ext in your Java home directory.•
On Mac OS X, remove liblogl.jnilib from /Library/Java/Extensions or
~/Library/Java/Extensions.

•

On Windows, remove jogl.dll and jogl_cg.dll from jre/bin in your Java home.•
On Linux, remove libjogl.so from your always−checked Java native libraries directory.•

NetLogo 3.0 User Manual

System Requirements 15

mailto:feedback@ccl.northwestern.edu

NetLogo 3.0 User Manual

16 System Requirements

Known Issues
If NetLogo malfunctions, please send us a bug report. See the "Contact Us" section for instructions.

Known bugs (all systems)

Integers in NetLogo must lie in the range −2147483648 to 2147483647; if you exceed this
range, instead of a runtime error occurring, you get incorrect results

•

Out−of−memory conditions are not handled gracefully•
The stop and report commands do not work properly if used inside
without−interruption (we are already working on fixing this)

•

If you use "Export World" to suspend a model run and then resume it later with "Import
World", this may change the outcome of the model run if your model involves turtles dying
and new turtles being born, because the export/import may change what who numbers get
assigned to new turtles (we are already working on fixing this)

•

"Export World" does not include the contents of plots (we are already working on fixing this)•
Extensions don't work from models saved as applets (we are already working on fixing this)•
The 3D View doesn't work on some graphics configurations; on others the 3D View works
but 3D full screen mode doesn't

•

Windows−only bugs

The "User Manual" item on the Help menu does not work on every machine (Windows 98
and ME are most likely to be affected, newer Windows versions less so)

•

On some laptops, the Procedures and Info tabs may become garbled when you scroll them.
To avoid this bug, reduce the size of the NetLogo window and/or reduce the color depth of
your monitor (e.g. change from 32−bit to 16− or 8−bit color). This is a bug in Java itself, not
in NetLogo per se. For technical details on the bug, see
http://developer.java.sun.com/developer/bugParade/bugs/4763448.html (free registration
required). NetLogo users are encouraged to visit that site and vote for Sun to fix this bug.

•

Macintosh−only bugs

On Mac OS X 10.4 only, the "Copy View" and "Copy Interface" items may not work: the
resulting image is distorted. The workaround is to use the "Export View" and "Export
Interface" items instead.

•

On versions of Mac OS X prior to 10.4, when opening a model from the Finder (by
double−clicking on it, or dragging it onto the NetLogo icon), if NetLogo is not already
running, then the model may or may not open; the bug is intermittent. (If NetLogo is already
running, the model always opens.) The bug does not occur on OS X 10.4.

•

On versions of Mac OS X prior to 10.4, it is possible for NetLogo's menus to get confused so
that the "Quit" item does not work. If this happens, you can quit NetLogo by pressing the red
close button on the left end of the NetLogo's title bar.

•

On Mac OS X 10.2 only, the "User Manual" item on the Help menu will sometimes launch a
web browser other than your default browser

•

On Mac OS X 10.2 only, opening the Models Library can trigger an error if you have
malformed fonts installed. If this happens you should determine which fonts in
/System/Library/Fonts and other font directories are causing the problem and remove them.

•

Known Issues 17

http://developer.java.sun.com/developer/bugParade/bugs/4763448.html

Linux/UNIX−only bugs

User Manual always opens in Mozilla, not your default browser. One possible workaround is
to bookmark the file docs/index.html in your favorite browser. Another workaround is to
make a symlink that's called "mozilla" (that's the command name NetLogo tries to run), but
actually runs a different browser.

•

We have discovered a problem on Linux where the "exp" reporter sometimes returns a
slightly different answer (differing only in the last decimal place) for the same input.
According to an engineer at Sun, this should only happen on Linux kernel versions 2.4.19
and earlier, but we have observed the problem on more recent kernel versions. We assume
the problem is Linux−specific and does not happen on other Unix−based systems. We are
not sure if the problem ever occurs in practice during actual NetLogo model runs, or only
occurs in the context of our testing regimen. The bug in the Sun's Java VM, and not in
NetLogo itself. We hope that only the "exp" reporter is affected, but we can't be entirely
certain of this. NetLogo users are encouraged to visit
http://developer.java.sun.com/developer/bugParade/bugs/5023712.html (free registration
required) and vote for Sun to fix this bug.

•

If NetLogo cannot find the font Lucida, menus will be illegible. This has been known to
happen on Fedora Core 3, after upgrading packages. Restarting the X Font Server (xfs) has
resolved the problem in all reported cases.

•

Known issues with computer HubNet

See the HubNet Guide for a list of known issues with computer HubNet.

Unimplemented StarLogoT primitives

The following StarLogoT primitives are not available in NetLogo. (Note that many StarLogoT
primitives, such as count−turtles−with, are intentionally not included in this list because
NetLogo allows for the same functionality with the new agentset syntax.)

maxint, minint, maxnum, minnum•
import−turtles, import−patches, import−turtles−and−patches (note that
NetLogo adds import−world, though)

•

bit, bitand, bitneg, bitor, bitset, bitstring, bitxor, make−bitarray,
rotate−left, rotate−right, shift−left, shift−right

•

camera−brightness, camera−click, camera−init, camera−set−brightness•
netlogo−directory, project−directory, project−name, project−pathname,
save−project

•

NetLogo 3.0 User Manual

18 Known Issues

http://developer.java.sun.com/developer/bugParade/bugs/5023712.html

Contacting Us
Feedback from users is very valuable to us in designing and improving NetLogo. We'd like to hear
from you.

Web Site

Our web site at ccl.northwestern.edu includes our mailing address and phone number. It also has
information about our staff and our various research activities.

Feedback, Questions, Etc.

If you have general feedback, suggestions, or questions, write to feedback@ccl.northwestern.edu.

If you need help with your model, you should also consider posting to the NetLogo users group at
http://groups.yahoo.com/group/netlogo−users/.

Reporting Bugs

If you would like to report a bug that you find in NetLogo, write to bugs@ccl.northwestern.edu.
When submitting a bug report, please try to include as much of the following information as
possible:

A complete description of the problem and how it occurred.•
The NetLogo model or code you are having trouble with. If possible, attach a complete
model.

•

Your system information: NetLogo version, OS version, Java version, and so on. This
information is available from NetLogo's "About NetLogo" menu item. In saved applets, the
same information is available by control−clicking (Mac) or right−clicking the white
background of the applet.

•

Any error messages that were displayed.•

Contacting Us 19

http://ccl.northwestern.edu/
mailto:feedback@ccl.northwestern.edu
http://groups.yahoo.com/group/netlogo-users/
mailto:bugs@ccl.northwestern.edu

NetLogo 3.0 User Manual

20 Contacting Us

Sample Model: Party
This activity is designed to get you thinking about computer modeling and how you can use it. It also
gives you some insight into the NetLogo software. We encourage beginning users to start with this
activity.

At a Party

Have you ever been at a party and noticed how people cluster in groups? You may have also
noticed that people do not stay within one group, but move throughout the party. As individuals
move around the party, the groups change. If you watched these changes over time, you would
notice patterns forming.

For example, in social settings, people tend to exhibit different behavior than when they are at work
or home. Individuals who are confident within their work environment may become shy and timid at
a social gathering. And others who are quiet and reserved at work may be the "party starter" with
friends.

The patterns may also depend on what kind of gathering it is. In some settings, people are trained
to organize themselves into mixed groups; for example, party games or school−like activities. But in
a non−structured atmosphere, people tend to group in a more random manner.

Is there any type of pattern to this kind of grouping?

Let's take a closer look at this question by using the computer to model human behavior at a party.
NetLogo's "Party" model looks specifically at the question of grouping by gender at parties: why do
groups tend to form that are mostly men, or mostly women?

Let's use NetLogo to explore this question.

What to do:

Start NetLogo.1.
Choose "Models Library" from the File menu.2.

Open the "Social Science" folder.3.
Click on the model called "Party".4.

Sample Model: Party 21

Press the "open" button.5.
Wait for the model to finish loading6.
(optional) Make the NetLogo window bigger so you can see everything.7.
Press the "setup" button.8.

In the view, you will see pink and blue lines with numbers:

These lines represent mingling groups at a party. Men are represented in blue, women in pink. The
numbers are the total number of people in each group.

Do all the groups have about the same number of people?

Do all the groups have about the same number of each sex?

Let's say you are having a party and invited 150 people. You are wondering how people will gather
together. Suppose 10 groups form at the party.

How do you think they will group?

Instead of asking 150 of your closest friends to gather and randomly group, let's have the computer
simulate this situation for us.

What to do:

Press the "go" button. (Pressing "go" again will stop the model manually.)1.
Observe the movement of people until the model stops.2.
Watch the plots to see what's happening in another way.3.

Now how many people are in each group?

Originally, you may have thought 150 people splitting into 10 groups, would result in about 15
people in each group. From the model, we see that people did not divide up evenly into the 10
groups −− instead, some groups became very small, whereas other groups became very large.
Also, the party changed over time from all mixed groups of men and women to all single−sex
groups.

What could explain this?

NetLogo 3.0 User Manual

22 Sample Model: Party

There are lots of possible answers to this question about what happens at real parties. The designer
of this simulation thought that groups at parties don't just form randomly. The groups are determined
by how the individuals at the party behave. The designer chose to focus on a particular variable,
called "tolerance":

Tolerance is defined here as the percentage of people of the opposite sex an individual is
"comfortable" with. If the individual is in a group that has a higher percentage of people of the
opposite sex than their tolerance allows, then they become "uncomfortable" and leave the group to
find another group.

For example, if the tolerance level is set at 25%, then males are only "comfortable" in groups that
are less than 25% female, and females are only "comfortable" in groups that are less than 25%
male.

As individuals become "uncomfortable" and leave groups, they move into new groups, which may
cause some people in that group to become "uncomfortable" in turn. This chain reaction continues
until everyone at the party is "comfortable" in their group.

Note that in the model, "tolerance" is not fixed. You, the user, can use the tolerance "slider" to try
different tolerance percentages and see what the outcome is when you start the model over again.

How to start over:

If the "go" button is pressed (black), then the model is still running. Press the
button again to stop it.

1.

Adjust the "tolerance" slider to a new value by dragging its red handle.2.
Press the "setup" button to reset the model.3.
Press the "go" button to start the model running again.4.

Challenge

As the host of the party, you would like to see both men and women mingling within the groups.
Adjust the tolerance slider on the side of the view to get all groups to be mixed as an end result.

To make sure all groups of 10 have both sexes, at what level should we set the tolerance?

Test your predictions on the model.

Can you see any other factors or variables that might affect the male to female ratio within each
group?

Make predictions and test your ideas within this model. Feel free to manipulate more than one
variable at a time.

As you are testing your hypotheses, you will notice that patterns are emerging from the data. For
example, if you keep the number of people at the party constant but gradually increase the

NetLogo 3.0 User Manual

Sample Model: Party 23

tolerance level, more mixed groups appear.

How high does the tolerance value have to be before you get mixed groups?

What percent tolerance tends to produce what percentage of mixing?

Thinking With Models

Using NetLogo to model situations like this party scenario allows you to experiment with a system in
a rapid and flexible way that would be difficult to do in a real world situation. Modeling also gives
you the opportunity to observe a situation or circumstance with less prejudice −− as you can
examine the underlying dynamics of a situation. You may find that as you model more and more,
many of your preconceived ideas about various phenomena will be challenged. For example, a
surprising result of the Party model is that even if tolerance is relatively high, a great deal of
separation between the sexes occurs.

This is a classic example of an "emergent" phenomenon, where a group pattern results from the
interaction of many individuals. This idea of "emergent" phenomena can be applied to almost any
subject.

What other emergent phenomena can you think of?

To see more examples and gain a deeper understanding of this concept and how NetLogo helps
learners explore it, you may wish to explore NetLogo's Models Library. It contains models that
demonstrate these ideas in systems of all kinds.

For a longer discussion of emergence and how NetLogo helps learners explore it, see "Modeling
Nature's Emergent Patterns with Multi−agent Languages" (Wilensky, 2001).

What's Next?

The section of the User Manual called Tutorial #1: Running Models goes into more detail about how
to use the other models in the Models Library.

If you want to learn how to explore the models at a deeper level, Tutorial #2: Commands will
introduce you to the NetLogo modeling language.

Eventually, you'll be ready for Tutorial #3: Procedures, where you can learn how to alter and extend
existing models to give them new behaviors, and build your own models.

NetLogo 3.0 User Manual

24 Sample Model: Party

http://ccl.northwestern.edu/uri/public_html/papers/MEE/
http://ccl.northwestern.edu/uri/public_html/papers/MEE/

Tutorial #1: Models
If you read the Sample Model: Party section, you got a brief introduction to what it's like to interact
with a NetLogo model. This section will go into more depth about the features that are available
while you're exploring the models in the Models Library.

Throughout all of the tutorials, we'll be asking you to make predictions about what the effects of
making changes to the models will be. Keep in mind that the effects are often surprising. We think
these surprises are exciting and provide excellent opportunities for learning.

Some people have found it helpful to print out the tutorials in order to work through them. When the
tutorials are printed out, there's more room on your computer screen for the NetLogo model you're
looking at.

Sample Model: Wolf Sheep Predation

We'll open one of the Sample Models and explore it in detail. Let's try a biology model: Wolf Sheep
Predation, a predator−prey population model.

Open the Models Library from the File menu.•

Choose "Wolf Sheep Predation" from the Biology section and press "Open".•

The Interface tab will fill up with lots of buttons, switches, sliders and monitors. These interface
elements allow you to interact with the model. Buttons are blue; they set up, start, and stop the
model. Sliders and switches are green; they alter model settings. Monitors and plots are beige; they
display data.

If you'd like to make the window larger so that everything is easier to see, you can use the zoom
menu at the top of the window.

When you first open the model, you will notice that the view is empty (all black). To begin the model,
you will first need to set it up.

Tutorial #1: Models 25

Press the "setup" button.•

What do you see appear in the view?

Press the "go" button to start the simulation.•

As the model is running, what is happening to the wolf and sheep populations?

Press the "go" button to stop the model.•

Controlling the Model: Buttons

When a button is pressed, the model responds with an action. A button can be a "once" button, or a
"forever" button. You can tell the difference between these two types of buttons by a symbol on the
face of the button. Forever buttons have two arrows in the bottom right corners, like this:

Once buttons don't have the arrows, like this:

Once buttons do one action and then stop. When the action is finished, the button pops back up.

Forever buttons do an action over and over again. When you want the action to stop, press the
button again. It will finish the current action, then pop back up.

Most models, including Wolf Sheep Predation, have a once button called "setup" and a forever
button called "go". Many models also have a once button called "go once" or "step once" which is
like "go" except that it advances the model by one time step instead of over and over. Using a once
button like this lets you watch the progress of the model more closely.

Stopping a forever button is the normal way to stop a model. It's safe to pause a model by stopping
a forever button, then make it go on by pressing the button again. You can also stop a model with
the "Halt" item on the Tools menu, but you should only do this if the model is stuck for some reason.
Using "Halt" may interrupt the model in the middle of an action, and as the result the model could
get confused.

If you like, experiment with the "setup" and "go" buttons in the Wolf Sheep
Predation model.

•

Do you ever get different results if you run the model several times with the same
settings?

NetLogo 3.0 User Manual

26 Tutorial #1: Models

Adjusting Settings: Sliders and Switches

The settings within a model give you an opportunity to work out different scenarios or hypotheses.
Altering the settings and then running the model to see how it reacts to those changes can give you
a deeper understanding of the phenomena being modeled. Switches and sliders give you access to
a model's settings.

Here are the switches and sliders in Wolf Sheep Predation:

Let's experiment with their effect on the behavior of the model.

Open Wolf Sheep Predation if it's not open already.•
Press "setup" and "go" and let the model run for about a 100 time−ticks.
(Note: there is a readout of the number of ticks right above the plot.)

•

Stop the model by pressing the "go" button.•

What happened to the sheep over time?

Let's take a look and see what would happen to the sheep if we change one of the
settings.

Turn the "grass?" switch on.•
Press "setup" and "go" and let the model run for a similar amount of time as
before.

•

What did this switch do to the model? Was the outcome the same as your previous
run?

Just like buttons, switches have information attached to them. Their information is set up in an on/off
format. Switches turn on/off a separate set of directions. These directions are usually not necessary
for the model to run, but might add another dimension to the model. Turning the "grass?" switch on
affected the outcome of the model. Prior to this run, the growth of the grass stayed constant. This is
not a realistic look at the predator−prey relationship; so by setting and turning on a grass growth
rate, we were able to model all three factors: sheep, wolf and grass populations.

NetLogo 3.0 User Manual

Tutorial #1: Models 27

Another type of setting is called a slider.

Sliders are a different type of setting then a switch. A switch has two values: on or off. A slider has a
range of numeric values that can be adjusted. For example, the "initial−number−sheep" slider has a
minimum value of 0 and a maximum value of 250. The model could run with 0 sheep or it could run
with 250 sheep, or anywhere in between. Try this out and see what happens. As you move the
marker from the minimum to the maximum value, the number on the right side of the slider changes;
this is the number the slider is currently set to.

Let's investigate Wolf Sheep Predation's sliders.

Read the contents of the Information tab, located above the toolbar, to learn
what each of this models' sliders represents.

•

The Information tab is extremely helpful for gaining insight into the model. Within this tab you will
find an explanation of the model, suggestions on things to try, and other information. You may want
to read the Information tab before running a model, or you might want to just start experimenting,
then look at the Information tab later.

What would happen to the sheep population if there was more initial sheep and less
initial wolves at the beginning of the simulation?

Turn the "grass?" switch off.•
Set the "initial−number−sheep" slider to 100.•
Set the "initial−number−wolves" slider to 20.•
Press "setup" and then "go".•
Let the model run for about 100 time−ticks.•

Try running the model several times with these settings.

What happened to the sheep population?

Did this outcome surprise you? What other sliders or switches can be adjusted to
help out the sheep population?

Set "initial−number−sheep" to 80 and "initial−number−wolves" to 50. (This is
close to how they were when you first opened the model.)

•

Set "sheep−reproduce" to 10.0%.•
Press "setup" and then "go".•
Let the model run for about 100 time ticks.•

What happened to the wolves in this run?

When you open a model, all the sliders and switches are on a default setting. If you open a new
model or exit the program, your changed settings will not be saved, unless you choose to save
them.

NetLogo 3.0 User Manual

28 Tutorial #1: Models

(Note: in addition to sliders and switches, some models have a third kind of setting, called a
chooser. The Wolf Sheep Predation doesn't have any of these, though.)

Gathering Information: Plots and Monitors

A purpose to modeling is to gather data on a subject or topic that would be very difficult to do in a
laboratory situation. NetLogo has two main ways of displaying data to the user: plots and monitors.

Plots

The plot in Wolf Sheep Predation contains three lines: sheep, wolves, and grass / 4. (The grass
count is divided by four so it doesn't make the plot too tall.) The lines show what's happening in the
model over time. To see which line is which, click on "Pens" in the upper right corner of the plot
window to open the plot pens legend. A key appears that indicates what each line is plotting. In this
case, it's the population counts.

When a plot gets close to becoming filled up, the horizontal axis increases in size and all of the data
from before gets squeezed into a smaller space. In this way, more room is made for the plot to
grow.

If you want to save the data from a plot to view or analyze it in another program, you can use the
"Export Plot" item on the File menu. It saves this information to your computer in a format that can
by read back by spreadsheet and database programs such as Excel. You can also export a plot by
control−clicking (Mac) or right−clicking (Windows) it and choosing "Export..." from the popup menu.

Monitors

Monitors are another method of displaying information in a model. Here are the monitors in Wolf
Sheep Predation:

The monitor labeled "time−ticks" tells us how much time has passed in the model. The other
monitors show us the population of sheep and wolves, and the amount of grass. (Remember, the
amount of grass is divided by four to keep the plot from getting too tall.)

The numbers displayed in the monitors update continuously as the model runs, whereas the plots
show you data from the whole course of the model run.

Note that NetLogo has also another kind of monitor, called "agent monitors". These will be
introduced in Tutorial #2.

Controlling the View

If you look at the view, you'll see a strip of controls along the top edge. The control strip lets you
control various aspects of the view.

NetLogo 3.0 User Manual

Tutorial #1: Models 29

Let's experiment with the effect of these controls.

Press "setup" and then "go" to start the model running.•
As the model runs, move the slider in the control strip back and forth.•

What happens?

This slider is helpful if a model is running too fast for you to see what's going on in
detail.

Move the speed slider all the way to the right again.•
Now try pressing and unpressing the red arrowhead in the control strip.•
Also try pressing and unpressing the on/off switch in the control strip.•

What happens?

The shapes button and the freeze button are useful if you're impatient and want a model to run
faster. When shapes are turned off, turtles are drawn as solid squares; it takes less work for
NetLogo to draw squares than special shapes, so the model runs faster.

The freeze button "freezes" the view. The model continues to run in the background, and plots and
monitors still update; but if you want to see what's happening, you need to unfreeze the view by
turning the switch back on. Most models run much faster when the view is frozen.

The size of the view is determined by three separate settings: Screen Edge X, Screen Edge Y, and
Patch Size. Let's take a look at what happens when we change the size of the view in the "Wolf
Sheep Predation" model.

Experiment with the three sets of black arrows on the left of the control strip.•

What happens the first time you press one of them?

What happens after that? Try all three sets of arrows.

The arrows give you a convenient way of changing the number of patches in the world. NetLogo
can't change the number of patches without starting the model over from the beginning, so that's
why it warns you the first time you press an arrow.

There are more world and view settings than there's room for in the control strip. The "Edit..." button
lets you get to the rest of the settings.

NetLogo 3.0 User Manual

30 Tutorial #1: Models

Press the "Edit..." button in the control strip.•

A dialog box will open containing all the settings for the view:

What are the current settings for Screen Edge X, Screen Edge Y, and Patch Size?

Press "cancel" to make this window go away without changing the settings.•
Place your mouse pointer next to, but still outside of, the view.•

You will notice that the pointer turns into a crosshair.

Hold down the mouse button and drag the crosshair over the view.•

The view is now selected, which you know because it is now surrounded by a gray
border.

Drag one of the square black "handles". The handles are found on the edges
and at the corners of the view.

•

Unselect the view by clicking anywhere in the white background of the
Interface tab.

•

Press the "Edit..." button again and look at the settings.•

What numbers changed?

What numbers didn't change?

The NetLogo world is a two dimensional grid of "patches". Patches are the individual squares in the
grid.

NetLogo 3.0 User Manual

Tutorial #1: Models 31

In Wolf Sheep Predation, when the "grass?" switch is on the individual patches are easily seen,
because some of them are green, while others are brown.

Think of the patches as being like square tiles in a room with a tile floor. Exactly in the middle of the
room is a tile labeled (0,0); meaning that if the room was divided in half one way and then the other
way, these two dividing lines would intersect on this tile. We now have a coordinate system that will
help us locate objects within the room:

How many tiles away is the (0,0) tile from the right side of the room?

How many tiles away is the (0,0) tile from the left side of the room?

In NetLogo, the distance the middle tile is from the right or left edge of the room this is called Screen
Edge X. And the distance the middle tile is from the top and bottom edges is called Screen Edge Y:

NetLogo 3.0 User Manual

32 Tutorial #1: Models

In these diagrams, Screen Edge X is 3 and Screen Edge Y is 2.

When you change the patch size, the number of patches (tiles) doesn't change, the patches only get
larger or smaller on the screen.

Let's look at the effect of changing Screen Edge X and Screen Edge Y.

Using the Edit dialog that is still open, change Screen Edge X to 30 and
Screen Edge Y value to 10.

•

What happened to the shape of the view?

Press the "setup" button.•

Now you can see the new patches you have created.

Edit the view again.•
Change the patch size to 20 and press "OK".•

What happened to the size of the view? Did its shape change?

Editing the view also lets you change other settings, including the font size of labels and whether
the view uses shapes. Feel free to experiment with these and other settings as well.

Once you are done exploring the Wolf Sheep Predation model, you may want to take some time just
to explore some of the other models available in the Models Library.

The Models Library

The library contains five sections: Sample Models, Curricular Models, Code Examples, HubNet
Calculator Activities, HubNet Computer Activities.

NetLogo 3.0 User Manual

Tutorial #1: Models 33

Sample Models

The Sample Models section is organized by subject area and currently contains more than 180
models. We are continuously working on adding new models to it, so come visit this section at a
later date to view the new additions to the library.

Some of the folders in Sample Models have folders inside them labeled "(unverified)". These
models are complete and functional, but are still in the process of being reviewed for content,
accuracy, and quality of code.

Curricular Models

These are models designed to be used in schools in the context of curricula developed by the CCL
at Northwestern University. Some of these are models are also listed under Sample Models; others
are unique to this section. See the info tabs of the models for more information on the curricula they
go with.

Code Examples

These are simple demonstrations of particular features of NetLogo. They'll be useful to you later
when you're extending existing models or building new ones. For example, if you wanted to put a
histogram within your model, you'd look at "Histogram Example" to find out how.

HubNet Calculator & Computer Activities

This section contains participatory simulations for use in the classroom. For more information about
HubNet, see the HubNet Guide.

What's Next?

If you want to learn how to explore models at a deeper level, Tutorial #2: Commands will introduce
you to the NetLogo modeling language.

In Tutorial #3: Procedures you can learn how to alter and extend existing models and build your
own models.

NetLogo 3.0 User Manual

34 Tutorial #1: Models

Tutorial #2: Commands
In Tutorial #1, you had the opportunity to view some of the NetLogo models, and you have
successfully navigated your way through opening and running models, pressing buttons, changing
slider and switch values, and gathering information from a model using plots and monitors. In this
section, the focus will start to shift from observing models to manipulating models. You will start to
see the inner workings of the models and be able to change how they look.

Sample Model: Traffic Basic

Go to the Models Library (File menu).•
Open up Traffic Basic, found in the "Social Science" section.•
Run the model for a couple minutes to get a feel for it.•
Consult the Information tab for any questions you may have about this model.•

In this model, you will notice one red car in a stream of blue cars. The stream of cars are all moving
in the same direction. Every so often they "pile up" and stop moving. This is modeling how traffic
jams can form without any cause such as an accident, a broken bridge, or an overturned truck. No
"centralized cause" is needed for a traffic jam to form.

You may alter the settings and observe a few runs to get a full understanding of the model.

As you are using the Traffic Basic model, have you noticed any additions you would
like to make to the model?

Looking at the Traffic Basic model, you may notice the environment is fairly simple; a black
background with a white street and number of blue cars and one red car. Changes that could be
made to the model include: changing the color and shape of the cars, adding a house or street light,
creating a stop light, or even creating another lane of traffic. Some of these suggested changes are
cosmetic and would enhance the look of the model while the others are more behavioral. We will be
focusing more on the simpler or cosmetic changes throughout most of this tutorial. (Tutorial #3 will
go into greater detail about behavioral changes, which require changing the Procedures tab.)

To make these simple changes we will be using the Command Center.

The Command Center

The Command Center is located in the Interface Tab and allows you to enter commands or
directions to the model. Commands are instructions you can give to NetLogo's agents: turtles,
patches, and the observer. (Refer to the Interface Guide for details explaining the different parts of
the Command Center.)

Tutorial #2: Commands 35

In Traffic Basic:

Press the "setup" button.•
Locate the Command Center.•
Click the mouse in the white box at the bottom of the Command Center.•
Type the text shown here:•

Press the return key.•

What happened to the View?

You may have noticed the background of the View has turned all yellow and the
street has disappeared.

Why didn't the cars turn yellow too?

Looking back at the command that was written, we asked only the patches to change
their color. In this model, the cars are represented by a different kind of agent, called
"turtles". Therefore, the cars did not received these instructions and thus did not
change.

What happened in the Command Center?

You may have noticed that the command you just typed is now displayed in the white
box in the middle of the Command Center as shown below:

Type in the white box at the bottom of the Command Center the text shown
below:

•

NetLogo 3.0 User Manual

36 Tutorial #2: Commands

Was the result what you expected?

Your View should have a yellow background with a line of brown cars in the middle:

The NetLogo world is a two dimensional world that is made up of turtles, patches and an observer.
The patches create the ground in which the turtles can move around on and the observer is a being
that oversee everything that is going on in the world. (For a detailed description and specifics about
this world, refer to the NetLogo Programming Guide.)

In the Command Center, we have the ability to give the observer a command, the turtles a
command, or the patches a command. We choose between these options by using the popup menu
located in the bottom left corner of the Command Center. You can also use the tab key on your
keyboard to cycle through the different options.

In the Command Center, click on the "O>" in the bottom left corner:•

NetLogo 3.0 User Manual

Tutorial #2: Commands 37

Choose "Turtles" from the popup menu.•
Type set color pink and press return.•
Press the tab key until you see "P>" in the bottom left corner.•
Type set pcolor white and press return.•

What does the View look like now?

Do you notice any differences between these two commands and the observer
commands from earlier?

The observer oversees the world and therefore can give a command to the patches or turtles using
ask. Like in the first example (O>ask patches [set pcolor yellow]), the observer has to
ask the patches to set their pcolor to yellow. But when a command is directly given to a group of
agents like in the second example (P>set pcolor white), you only have to give the command
itself.

Press "setup".•

What happened?

Why did the Graphic Window revert back to the old version, with the black background and white
road? Upon pressing the "setup" button, the model will reconfigure itself back to the settings
outlined in the Procedures tab. The Command Center is not often used to permanently change the
model. It is most often used as a tool to customize current models and allows for you to manipulate
the NetLogo world to further answer those "What if" questions that pop up as you are investigating
the models. (The Procedures tab is explained in the next tutorial, and in the Programming Guide.)

Now that we have familiarized ourselves with the Command Center, let's look at some more details
about how colors work in NetLogo.

Working With Colors

You may have noticed in the previous section that we used two different words for changing color:
color and pcolor.

What is the difference between color and pcolor?

Choose "Turtles" from the popup menu in the Command Center (or use the
tab key).

•

Type set color blue and press return.•

What happened to the cars?

NetLogo 3.0 User Manual

38 Tutorial #2: Commands

Think about what you did to make the cars turn blue, and try to make the patches
turn red.

If you try to ask the patches to set color red, an error message occurs:

Type set pcolor red instead and press return.•

We call color and pcolor "variables". Some commands and variables are specific to turtles and
some are specific to patches. For example, the color variable is a turtle variable, while the
pcolor variable is a patch variable.

Go ahead and practice altering the colors of the turtles and patches using the set command and
these two variables.

To be able to make more changes to the colors of turtles and patches, or shall we say cars and
backgrounds, we need to gain a little insight into how NetLogo deals with colors.

In NetLogo, all colors have a numeric value. In all of the exercises we have been using the name of
the color. This is because NetLogo recognizes 16 different color names. This does not mean that
NetLogo only recognizes 16 colors. There are many shades in between these colors that can be
used too. Here's a chart that shows the whole NetLogo color space:

NetLogo 3.0 User Manual

Tutorial #2: Commands 39

To get a color that doesn't have its own name, you just refer to it by a number instead, or by adding
or subtracting a number from a name. For example, when you type set color red, this does the
same thing as if you had typed set color 15. And you can get a lighter or darker version of the
same color by using a number that is a little larger or a little smaller, as follows.

Choose "Patches" from the popup menu in the Command Center (or use the
tab key).

•

Type set pcolor red − 2 (The spacing around the "−" is important.)•

By subtracting from red, you make it darker.

Type set pcolor red + 2•

By adding to red, you make it lighter.

You can use this technique on any of the colors listed in the chart.

Agent Monitors and Agent Commanders

In the previous activity, we used the set command to change the colors of all the cars. But if you
recall, the original model contained one red car amongst a group of blue cars. Let's look at how to
change only one car's color.

NetLogo 3.0 User Manual

40 Tutorial #2: Commands

Press "setup" to get the red car to reappear.•
If you are on a Macintosh, hold down the Control key and click on the red car.
On other operating systems, click on the red car with the right mouse button.

•

From the popup menu that appears, choose "inspect turtle 0"•

A turtle monitor for that car will appear:

Taking a closer look at this turtle monitor, we can see all of the variables that belong to the red car.
A variable is a place that holds a value that can be changed. Remember when it was mentioned
that all colors are represented in the computer as numbers? The same is true for the agents. For
example, turtles have an ID number we call their "who" number.

Let's take a closer look at the turtle monitor:

What is this turtle's who number?

What color is this turtle?

What shape is this turtle?

This turtle monitor is showing a turtle who that has a who number of 0, a color of 15 (red −− see
above chart), and the shape of a car.

There are two other ways to open a turtle monitor besides right−clicking (or control−clicking,
depending on your operating system). One way is to choose "Turtle Monitor" from the Tools menu,
then type the who number of the turtle you want to inspect into the "who" field and press return. The

NetLogo 3.0 User Manual

Tutorial #2: Commands 41

other way is to type inspect turtle 0 (or other who number) into the Command Center.

You close a turtle monitor by clicking the close box in the upper left hand corner (Macintosh) or
upper right hand corner (other operating systems).

Now that we know more about Agent Monitors, we have three ways to change an individual turtle's
color.

One way is to use the box called an Agent Commander found at the bottom of an Agent Monitor.
You type commands here, just like in the Command Center, but the commands you type here are
only done by this particular turtle.

In the Agent Commander of the Turtle Monitor for turtle 0, type set color
pink.

•

What happens in the View?

Did anything change in the Turtle Monitor?

A second way to change one turtle's color is to go directly to the color variable in the Turtle Monitor
and change the value.

Select the text to the right of "color" in the Turtle Monitor.•
Type in a new color such as green + 2.•

What happened?

The third way to change an individual turtle's or patch's color is to use the observer. Since, the
observer oversees the NetLogo world, it can give commands that affect individual turtles, as well as
groups of turtles.

In the Command Center, select "Observer" from the popup menu (or use the
tab key).

•

Type ask turtle 0 [set color blue] and press return.•

What happens?

Just as there are Turtle Monitors, there are also Patch Monitors. Patch monitors work
very similarly to Turtle Monitors.

Can you make a patch monitor and use it to change the color of a single patch?

NetLogo 3.0 User Manual

42 Tutorial #2: Commands

If you try to have the observer ask patch 0 [set pcolor blue], you'll get an error message:

To ask an individual turtle to do something, we use its who number. But patches don't have who
numbers, therefore we need to refer to them some other way.

Remember, patches are arranged on a coordinate system. Two numbers are needed to plot a point
on a graph: an x−axis value and a y−axis value. Patch locations are designated in the same way as
plotting a point.

Open a patch monitor for any patch.•

The monitor shows that for the patch in the picture, its pxcor variable is −11 and its
pycor variable is −4. If we go back to the analogy of the coordinate plane and
wanted to plot this point, the point would be found in the lower left quadrant of the
coordinate plane where x=−11 and y=−4.

To tell this particular patch to change color, use its coordinates.

Type ask patch −11 −4 [set pcolor blue] and press return.•

What are the two words in this command that "tip you off" that we are addressing a
patch?

What's Next?

At this point, you may want to take some time to try out the techniques you've learned on some of
the other models in the Models Library.

In Tutorial #3: Procedures you can learn how to alter and extend existing models and build your
own models.

NetLogo 3.0 User Manual

Tutorial #2: Commands 43

NetLogo 3.0 User Manual

44 Tutorial #2: Commands

Tutorial #3: Procedures
In Tutorial #2, you learned how to use command centers and agent monitors to inspect and modify
agents and make them do things. Now you're ready to learn about the real heart of a NetLogo
Model: the Procedures tab. This tutorial leads you through the process of building a complete
model, built up stage by stage, with every step explained along the way.

You've already been exposed to the three types of agents you can give commands to in NetLogo:
turtles, patches, and the observer. As you start to write your own procedures, it'll be helpful to keep
in mind how people usually think of these three different kinds of agents. The turtles and patches
usually don't use information about the whole world. They mostly use information about what's close
to them. The observer, on the other hand, typically uses and accesses the whole world. Also, while
patches can't move and often represent some sort of environment, turtles can move around in the
world.

Setup and Go

To start a new model, select "New" from the the File menu. Then begin making your model by
creating a once button called 'setup'.

Here's how to make the button:

Click on the button icon in the Toolbar1.
Click where you want the button to be in the empty white area of the Interface tab2.
When the dialog box for editing the properties of the button opens, type setup in the box
labeled "Code"

3.

Press "OK" to dismiss the dialog box4.

Tutorial #3: Procedures 45

Now you have a button called 'setup'. It will execute the procedure 'setup' when pressed, which
once we define it, will do just that −− set up the NetLogo world.

At this point, both the new button and the Interface tab have turned red. That's because there is no
procedure called 'setup'! If you want to see the actual error message, click on the button:

Now switch to the Procedures Tab and create the 'setup' procedure shown below. Notice that the
lines are indented different amounts. A lot of people find it very helpful to indent their code in a way
at least similar to how it's done here. It helps them keep track of where they're at inside of a
procedure and makes what they write easier for others to read as well.

One line at a time:

to setup begins defining a procedure named "setup".

ca is short for clear−all (you can also spell it out if you want). This command will blank out the
screen, initialize any variables you might have to 0, and remove all turtles. Basically, it wipes the
slate clean for a new run of the project.

crt 100 will then create 100 turtles. (crt is short for create−turtles.) If the turtles didn't move after
this command is given, each of these turtles would begin on the center patch (at location 0,0). You
would only see what looks like one turtle on the screen; they'd all be on top of each other −− lots of
turtles can share the same patch. Only the last turtle to arrive on the patch would be visible. Each of
these newly−created turtles has its own color, its own heading. All of the turtles are evenly
distributed around the circle.

ask turtles [...] tells each turtle to execute, independently, the instructions inside the brackets.
Note that crt is not inside the brackets. If the agent (observer, turtle, or patch) is not specified using
ask, the observer runs it. Here the observer runs the ask, but the turtles run the commands inside
the ask.

NetLogo 3.0 User Manual

46 Tutorial #3: Procedures

fd (random screen−edge−x) is a command that also uses "reporters". Reporters, as opposed to
commands, are instructions that report a result. Each turtle will first run the reporter random
screen−edge−x which will report a random integer at least 0 but less than 'screen−edge−x' (the
dimension from the center to the edge of the screen along the x−axis). It then takes this number,
and goes fd (short for forward) that number of steps, in the direction of its heading. The steps are
the same size as the patches.

end completes the definition of the "setup" procedure.

When you're done typing in the code, switch to the Interface tab and press your 'setup' button . You
will see the turtles quickly spread out in a rough cluster:

Notice the density distribution of the turtles in the view. Press 'setup' a couple more times, and
watch how the turtles' arrangement changes. Keep in mind that some turtles may be right on top of
each other.

Can you think of other ways to randomly distribute the turtles over the screen? Note that if a turtle
moves off the screen, it "wraps", that is, comes in the other side.

Make a forever button called 'go'. Again, begin by creating a button, but this time check the "forever"
checkbox in the edit dialog.

NetLogo 3.0 User Manual

Tutorial #3: Procedures 47

Then add its procedure to the Procedures tab:

to go
 move−turtles
end

But what is move−turtles? Is it a primitive (in other words, built−in to NetLogo), like fd is? No, it's a
procedure that you're about to write, right after the go procedure:

to move−turtles
 ask turtles [
 set heading (random 360)
 fd 1
]
end

Be careful of the spacing around the "−". In Tutorial #2 we used red − 2, with spaces, in order to
subtract two numbers, but here we want move−turtles, without spaces. The "−" combines 'move'
and 'turtles' into one word.

Line by line:

ask turtles [commands] says that each turtle should execute the commands in the brackets.

set heading (random 360) is another command that uses a reporter. First, each turtle picks a
random integer between 0 and 359 (random doesn't include the number you give it as a possible
result). Then the turtle sets its heading to the number it picked. Heading is measured in degrees,
clockwise around the circle, starting with 0 degrees at twelve o'clock (north).

fd 1: Each turtle moves forward one step in the new direction it just set its heading to.

NetLogo 3.0 User Manual

48 Tutorial #3: Procedures

Why couldn't we have just written that in go? We could, but during the course of building your
project, it's likely that you'll add many other parts. We'd like to keep go as simple as possible, so
that it is easy to understand. Eventually, it could include many other things you want to have happen
as the model runs, such as calculating something or plotting the results. Each of these
sub−procedures could have its own name.

The 'go' button you made in the Interface tab is a forever button, meaning that it will continually
execute its code until you shut it off (by clicking on it again). After you have pressed 'setup' once, to
create the turtles, press the 'go' button. Watch what happens. Turn it off, and you'll see that all
turtles stop in their tracks.

We suggest you start experimenting with other turtle commands. You might try typing turtles>
pendown into the Command Center and then pressing go. Another thing to try is changing set
heading (random 360) to rt (random 360) inside of move−turtles. ("rt" is short for "right turn".)
Also, you can try changing set heading (random 360) to lt (random 45) inside of move−turtles.
Type commands into the Command Center (like set colorred), or add them to setup, go, or
move−turtles. Note that when you enter commands in the Command Center, you must choose
turtles>, patches>, or observer> in the popup menu on the left, depending on which agents are
going to execute the commands. You can also use the tab key, which you might find more
convenient than using the popup menu. turtles>commands is identical to observer> ask turtles [
commands], and patches>commands is identical to O> ask patches [commands].

Play around. It's easy and the results are immediate and visible −− one of NetLogo's many
strengths. Regardless, the tutorial project continues...

Patches and Variables

Now we've got 100 turtles aimlessly moving around, completely unaware of anything else around
them. Let's make things a little more interesting by giving these turtles a nice background against
which to move. Go back to the 'setup' procedure. We can rewrite it as follows:

patches−own [elevation]

to setup
 ca
 setup−patches
 setup−turtles
end

The line at the top, patches−own [elevation] declares that we have a variable for the patches,
called elevation. Our 'setup−patches' procedure that we haven't defined yet will then use this
variable. We also still need to define 'setup−turtles' as well, but, for now, here's how to define
setup−patches:

to setup−patches
 ask patches
 [set elevation (random 10000)]
 diffuse elevation 1
 ask patches
 [set pcolor scale−color green elevation 1000 9000]
end

NetLogo 3.0 User Manual

Tutorial #3: Procedures 49

The setup−patches procedure sets the elevation and color of every patch. First, each patch picks a
random integer between 0 and 9999 and sets its elevation variable to that number.

We then use an observer primitive, diffuse, that smooths out the distribution of this variable over
the neighboring patches. Remember that primitives are built in procedures in NetLogo, as opposed
to procedures that you define.

Scale−color is a reporter that uses the different values of elevation to assign colors to the patches.
In this case, we're assigning different shades of green to all the patches. (Don't worry about the
numbers given to diffuse and scale−color just yet...) The larger elevation is, the lighter the shade
of green. Low values of elevation will result in darker shades.

The only part remaining in our new 'setup' that is still undefined is setup−turtles:

to setup−turtles
 crt 100
 ask turtles
 [fd (random screen−edge−x)]
end

Setup−turtles is exactly what we were doing in the old setup procedure.

After typing all of this in, press the 'setup' button back in the Interface tab. Voila! A lush NetLogo
landscape complete with turtles and green patches appears. After seeing the new 'setup' work a few
times, you may find it helpful to read through the procedure definitions again.

Here's a way for you to see what diffuse does. Return to the Procedures tab, and use a semicolon
to 'deactivate' the diffuse command like this:

NetLogo 3.0 User Manual

50 Tutorial #3: Procedures

;diffuse elevation 1

Semicolons are very useful in writing procedures. They can be used as above to save you from
having to delete code to try something else out and then having to rewrite them. Also, they can be
used to add some explanatory text to your procedures. A lot of people like to do this to make their
procedures more readable to others. Notice that all the text to the right of a semicolon becomes
gray.

Press 'setup' again −− looks different, doesn't it? This is because, as mentioned above, diffuse has
each patch share its value of elevation with all its neighbors, by having every patch reset its value of
elevation to a new value that depends on the value of elevation all around it. For further explanation
of how diffuse works, go to the Primitives Dictionary if you'd like. Also, it may help to toy with the
values being passed to it and see what happens.

We're now prepared to create some kind of dialog between the turtles and the patches. In fact, we
even have an idea for a project here. Notice that we called the patch variable 'elevation', and that
our landscape sort of looks topographical? We're going to have our turtles do what is called
'hill−climbing', where every turtle seeks to find the highest elevation it can.

In order to do this, we will learn how to write more complex instructions. Go to the Command
Center, and type O> show max values−from patches [elevation] and show min values−from
patches [elevation]. These two reporters will, respectively, search over all the patches to return to
you the highest elevation and the lowest. These commands work like this (you can read about them
in the NetLogo Primitives Dictionary):

Look up 'values−from' in the dictionary. It shows "values−from AGENTSET [expression]" and says it
returns a list. In this case, it looks at the expression (elevation) for each agent in the agentset
(patches) and returns all of these as a list of elevations.

Look up 'min' in the dictionary. It shows "min list" and says it's a reporter. So it takes the list of
elevations and reports the smallest value.

'Show' displays this value in the command center.

We will use these reporters −− max values−from patches [elevation] and min values−from
patches [elevation] −− in our model.

Just in case we end up needing the highest and lowest elevation in several places in our
procedures, let's make a shortcut. We'll do a little extra work now so that if we need these values
later, we'll have a shortcut to use. First, at the top of your code (right after the 'patches−own'
declaration), declare two global variables as such:

globals [highest ;; the highest patch elevation
 lowest] ;; the lowest patch elevation

(Notice the use of semicolons here. Although the names of the global variables are descriptive, the
semicolons allow us to describe the variables even more.)

Global variables can be used by all the agents in the model. In particular, patches can use
highest and lowest in the setup−patches procedure. We need to store the highest and lowest
elevations in these global variables once, and then everyone will have quick access to them after

NetLogo 3.0 User Manual

Tutorial #3: Procedures 51

that. Write:

to setup−patches
 ask patches
 [set elevation (random 10000)]
 diffuse elevation 1
 ask patches
 [set pcolor scale−color green elevation 1000 9000]
 set highest max values−from patches [elevation]
 set lowest min values−from patches [elevation]
 ask patches [
 if (elevation > (highest − 100))
 [set pcolor white]
 if (elevation <(lowest + 100))
 [set pcolor black]]
end

Now we have saved the highest and lowest points in our terrain and displayed them graphically.

Look at the last two commands, the if commands. Each patch, when it runs these commands,
compares its own value of elevation to our global variables highest and lowest. If the comparison
reports 'true', the patch executes the commands inside the brackets. In this case, the patch changes
its color. If the comparison reports 'false', the patch skips over the commands inside the brackets.

These ifs cause all patches whose value of elevation is NEAR to the highest (within about 1% for
our values) change their color to white, and all patches whose values are NEAR to the lowest
become black. We want this so that they'll be easier to see. You can make a couple of quick
changes here if you wish −− they won't affect the rest of the model. For example, instead of saying
'set pcolor white' and 'set pcolor black', you can say 'set pcolor blue' and 'set pcolor red' (or
whatever other colors you may wish). Also, you can change the range of 'highest peaks' and 'lowest
peaks' by changing the number 100 to some other number.

After this, create two monitors in the Interface tab with the Toolbar. (You make them just like buttons
and sliders, using the monitor icon on the Toolbar.) Name one of them highest and the other one
lowest. The reporters you'll want in each of them happen to be highest and lowest as well. (If
you want to learn more about reporters, you can look them up in the NetLogo Programming Guide).
Now every time you click 'setup' and redistribute the values of elevation, you'll know exactly what
the highest and lowest elevations are, and where they can be found.

An Uphill Algorithm

Okay. Finally we're ready to start hill−climbing. To rehash: we've got some turtles randomly spread
out from the origin; and we've got a landscape of patches, whose primary attribute is their elevation.
Lastly, we have two kinds of tools to help us understand the patch landscape: each patch has a
color, depending on its value of elevation, and we have a pair of monitors telling us what the highest
peak and lowest valley are. What we need now is for the turtles to wander around, each trying to get
to the patch that has the highest elevation.

NetLogo 3.0 User Manual

52 Tutorial #3: Procedures

Let's try a simple algorithm first. We'll assume three things: 1), that the turtles cannot see ahead
farther than just one patch; 2), that each turtle can move only one square each turn; and 3), that
turtles are blissfully ignorant of each other. Before, we had a procedure move−turtles like this:

to move−turtles
 ask turtles [
 set heading (random 360)
 fd 1
]
end

But now we don't want them to move randomly about. We want each turtle to look at the elevation of
each patch directly around it, and move to the patch with the highest elevation. If none of the
patches around it have a higher elevation than the patch it is on, it'll stay put. This new procedure
should replace 'move−turtles' inside of 'go'. Type in the following code and run it once or twice:

;; each turtle goes to the highest elevation in a radius of one
to move−to−local−max
 ask turtles [
 set heading uphill elevation
 if (elevation−of patch−ahead 1 > elevation)
 [fd 1]
]
end

Now that you've seen the uphill algorithm work in the model, let's go through the new primitives
involved. (If you haven't run the model yet since writing 'move−to−local−max', give it a try.) There
are three new primitives here: 'uphill', '−of', and 'patch−ahead'. 'uphill elevation' finds the heading
to the patch with the highest value of elevation in the patches in a one−patch radius of the turtle.
Then through the use of the command 'set heading', the turtle sets its heading to that direction.
'elevation−of patch−ahead 1' has each turtle look at the variable elevation in the patch on which the
turtle would be if it went forward 1. If the test reports true, the turtle moves itself forward 1. (The test
is necessary because if the turtle is already on the peak, we don't want it to move off it!)

Go ahead and type that in, but before you test it out by pressing the 'go' button, ask yourself this
question: what do you think will happen? Try and predict how a turtle will move, where it will go, and
how long it'll take to get there. When you're all set, press the button and see for yourself.

Surprised? Try to understand why the turtles converge to their peaks so quickly. Maybe you don't
believe the algorithm we've chosen works 'correctly'. There's a simple procedure you can make to
test it. write a procedure recolor−patches so that it says:

to recolor−patches
 ask patches
 [
 set elevation pycor
 set pcolor scale−color green elevation
 (0 − screen−edge−y) screen−edge−y
]
end

Press 'setup'. The model looks the same as it did before because recolor−patches hasn't been run
yet. Instead of making a button that calls your testing procedure, let's do something different. Type
observer>recolor−patches into the command center, the procedure gets called. Now, when you
press 'go', see that the turtles all head for the highest elevation −− the top of the screen.

NetLogo 3.0 User Manual

Tutorial #3: Procedures 53

Another common tool to see what's going on is to write turtles> pd in the Command Center. Then
each turtle traces its path with its color. This will show you where the turtle has been.

Our turtles rapidly arrive at local maxima in our landscape. Local maxima and minima abound in a
randomly generated landscape like this one. Our goal is to still get the turtles to find an 'optimal
maximum', which is one of the white patches.

Part of the problem is that our terrain is terribly lumpy. Every patch picked a random elevation, and
then we diffused these values one time. This really doesn't give us a continuous spread of elevation
across the view, as you might have noticed. We can correct this problem to an arbitrary degree by
diffusing more times. Replace the line:

 diffuse elevation 1

with:

 repeat 5 [diffuse elevation 1]

The repeat command is another way for NetLogo to loop (besides making a forever button, which
you already know how to do). Repeat takes a number (here, 5) and some commands (here, the
diffuse command), and executes the commands that number of times (here, five times). Try it out,
and look at the landscape (i.e. press 'setup' and see what you think). Then, press 'go' and watch the
turtles' behavior. (Remember that the lighter the patch, the greater the elevation.)

Obviously, fewer peaks make for an improvement in the turtles' performance. On the other hand,
maybe you feel like this is cheating −− the turtles really aren't doing any better, it's just that their
problem was made easier. True enough. If you call repeat with an even higher number (20 or so),

NetLogo 3.0 User Manual

54 Tutorial #3: Procedures

you'll end up with only a handful of peaks, as the values become more evenly distributed with every
successive call. (Watch the values in the monitors.)

In order to specify how 'smooth' you want your world to be, let's make it easier to try different
values. Maybe one time you'll want the turtles to try and 'solve a hard world', and maybe another
time you'll just want to look at an easy landscape. So we'll make a global variable named
"smoothness". Create a slider in the Interface tab and call it "smoothness" in the editing box. The
minimum can be 0, and the maximum can be 25 or so. Then change your code to:

 repeat smoothness [diffuse elevation 1]

Experiment with the turtles' performance in different terrains.

We still haven't even begun to solve the problem of getting all the turtles to the highest elevation,
though. So far we've just been getting the turtles to the highest point that's near them. If a turtle
starts off in one corner of the world on a hill and there's a mountain in a different corner, the turtle
will never find the mountain. To find the mountain, the turtle would have to go down off the hill first,
but in our model, turtles only move up. Notice that the individual turtles don't use 'highest' anywhere.
The turtles just look at elevations close to them and go the highest point they can see.

Before trying something else, it'd be nice if we could have some other, more precise method for
evaluating the turtles' performance. Fortunately, NetLogo allows us to plot data as we go along.

To make plotting work, we'll need to create a plot in the Interface tab, and set some settings in it.
Then we'll add one more procedure to the Procedures tab, which will update the plot for us.

Let's do the Procedures tab part first. Change go to call the new procedure we're about to add:

to go
 move−to−local−max
 do−plots
end

Now add the new procedure. What we're plotting is the number of turtles who've reached our
'peak−zone' (within 1% of the highest elevation) at some given time.

to do−plots
 set−current−plot "Turtles at Peaks"
 plot count turtles with
 [elevation >= (highest − 100)]
end

Note that we use the plot primitive to add the next point to a plot, but before doing that, we need to
tell NetLogo which plot we want, since later our model might have more than one plot.

Thus we're plotting the number of turtles within 100 units of our maximum elevation at some given
point in time. The plot command moves the current plot pen to the point that has x− coordinate
equal to 1 greater than the old x− coordinate and y−coordinate equal to the value given in the plot
command (in this case, the number of turtles whose elevation is within 100 of highest). Then the
plot command draws a line from the current position of the plot pen to the last point it was on.

In order for set−current−plot "Turtles at Peaks" to work, you'll have to add a plot to your
model in the Interface tab, then edit it so its name is "Turtles at Peaks", the exact same name used

NetLogo 3.0 User Manual

Tutorial #3: Procedures 55

in the code. Even one extra space will throw it off −− it must be exactly the same in both places.

Note that when you create the plot you can set the minimum and maximum values on the x and y
axes, and the color of the default plot pen (pick any color you like). You'll want to leave the
"Autoplot?" checkbox checked, so that if anything you plot exceeds the minimum and maximum
values for the axes, the axes will automatically grow so you can see all the data.

Now reset the project and run it again. You can now watch the plot be created as the model is
running. If you notice that your plot doesn't look exactly like the picture below, try to think about why
it doesn't look the same. If you think it's because 'go' remains pressed until you manually unpress it,
we'll fix that problem by the end of the tutorial. Remember that we kept "Autoplot?" on. This allows
the plot to readjust itself when it runs out of room.

You might try running the model several times under different settings (i.e. different values of
smoothness) and watch how fast the plot converges to some value, and what fraction of the turtles
make it to the top. You may want to even try the same settings several times.

Some More Details

There are a few quirks you may already have noticed. Here are some quick changes you can make.

First, we have a green landscape −− a naturally green turtle is going to be hard to see. In the ask
turtles block in 'setup−turtles', you can say:

if (shade−of? green color)
 [set color red]

Second, instead of always using 100 turtles, you can have a variable number of turtles. Make a
slider variable (say, 'number'):

NetLogo 3.0 User Manual

56 Tutorial #3: Procedures

Then, inside of setup−turtles, instead of 'crt 100', you can type:

crt number

How does using more or fewer turtles affect the success value displayed by the plot?

Third, when all the turtles have found their local maxima, wouldn't it be nice for the model to stop?
This requires a few lines of code.

Add a global variable turtles−moved? to the "globals" list:

globals [
 highest ;; maximum patch elevation
 lowest ;; minimum patch elevation
 turtles−moved? ;; so we know when to stop the model
]

•

At the end of the go procedure, add a test to see if any turtles have moved.

to go
 set turtles−moved? false
 move−to−local−max
 do−plots
 if (not turtles−moved?)
 [stop]
end

•

In move−to−local−max if a turtle moves, set turtles−moved? to true.

to move−to−local−max
 ask turtles [
 set heading uphill elevation
 if (elevation−of patch−ahead 1 > elevation)
 [
 fd 1
 set turtles−moved? true
]
]
end

•

Finally, what rules can you think of that would help turtles escape from lower peaks and all get to
the highest ones? Try writing them.

NetLogo 3.0 User Manual

Tutorial #3: Procedures 57

What's Next?

So now you have a nice framework for exploring this problem of hill−climbing, using all sorts of
NetLogo modeling features: buttons, sliders, monitors, plots, and the view. You've even written a
quick procedure to give the turtles something to do. And that's where this tutorial leaves off.

If you'd like to look at some more documentation about NetLogo, the Interface Guide section of the
manual walks you through every element of the NetLogo interface in order and explains its function.
For a detailed description and specifics about writing procedures, refer to the NetLogo Programming
Guide.

Also, You can continue with this model if you'd like, experimenting with different variables and
algorithms to see what works the best (what makes the most turtles reach the peaks).

Alternatively, you can look at other models (including the many models in the Code Examples
section of the Models Library) or even go ahead and build your own model. You don't even have to
model anything. It can be pleasant just to watch patches and turtles forming patterns, or whatever.
Hopefully you will have learned a few things, both in terms of syntax and general methodology for
model− building. The entire code that was created above is shown below.

Appendix: Complete Code

The complete model is also available in NetLogo's Models Library, in the Code Examples section.
It's called "Tutorial 3".

patches−own [elevation] ;; elevation of the patch

globals [
 highest ;; maximum patch elevation
 lowest ;; minimum patch elevation
 turtles−moved? ;; so we know when to stop the model
]

;; We also have two slider variables, 'number' and
;; 'smoothness'. 'number' determines the number of
;; turtles, and 'smoothness' determines how erratic
;; terrain becomes during diffusion of 'elevation'.

;; resets everything
to setup
 ca
 setup−patches
 setup−turtles
end

;; creates a random landscape of patch elevations
to setup−patches
 ask patches [set elevation (random 10000)]
 repeat smoothness [diffuse elevation 1]
 ask patches
 [set pcolor scale−color green elevation 1000 9000]

 set highest max values−from patches [elevation]
 set lowest min values−from patches [elevation]
 ask patches [

NetLogo 3.0 User Manual

58 Tutorial #3: Procedures

 if (elevation > (highest − 100))
 [set pcolor white]
 if (elevation <(lowest + 100))
 [set pcolor black]
]
end

;; initializes the turtles
to setup−turtles
 crt number
 ask turtles [
 if (shade−of? green color) [set color red]
 fd (random screen−edge−x)
]
end

;; RUN−TIME PROCEDURES
;; main program control
to go
 set turtles−moved? false
 move−to−local−max
 do−plots
 if (not turtles−moved?)
 [stop]
end

;; each turtle goes to the highest elevation in a radius of one
to move−to−local−max
 ask turtles [
 set heading uphill elevation
 if (elevation−of patch−ahead 1 > elevation)
 [
 fd 1
 set turtles−moved? true
]
]
end

to do−plots
 set−current−plot "Turtles at Peaks"
 plot count turtles with
 [elevation >= (highest − 100)]
end

NetLogo 3.0 User Manual

Tutorial #3: Procedures 59

NetLogo 3.0 User Manual

60 Tutorial #3: Procedures

Interface Guide
This section of the manual walks you through every element of the NetLogo interface in order and
explains its function.

In NetLogo, you have the choice of viewing models found in the Models Library, adding to existing
models, or creating your own models. The NetLogo interface was designed to meet all these needs.

The interface can be divided into two main parts: NetLogo menus, and the main NetLogo window.
The main window is divided into tabs.

Menus•
Main Window

Interface Tab
Interface Toolbar◊
Working With Interface Elements◊
View◊
Command Center◊

♦

Procedures Tab♦
Information Tab♦

•

Menus

On Macs, if you are running the NetLogo application, the menubar is located at the top of the
screen. On other platforms, the menubar is found at the top of the NetLogo window.

The functions available from the menus in the menubar are listed in the following chart.

Chart: NetLogo Menus

File
New Starts a new model.
Open Opens any NetLogo model on your computer.
Models Library A collection of demonstration models.
Save Save the current model.
Save As Save the current model using a different name.
Save As Applet Used to save a web page in HTML format that has your model

embedded in it as a Java "applet".
Print Sends the contents of the currently showing tab to your printer.
Export World Saves all variables, the current state of all turtles and patches,

the drawing and the output area to a file.
Export Plot Saves the data in a plot to a file.
Export All Plots Saves the data in all the plots to a file.
Export View Save a picture of the current view (2D or 3D) to a file (in PNG

format).

Interface Guide 61

Export Interface Save a picture of the current Interface tab. (in PNG format)
Export Output Save the contents of the output area or the output section of

the command center to a file.
Import World Load a file that was saved by Export World.
Import Patch Colors Load an image into the patches, see the import−pcolors

command.
Import Drawing Load an image into the drawing, see the import−drawing

command.
Quit Exits NetLogo. (On Macs, this item is on the NetLogo menu

instead.)
Edit

Cut Cuts out or removes the selected text and temporarily saves it
to the clipboard.

Copy Copies the selected text.
Paste Places the clipboard text where cursor is currently located.
Delete Deletes selected text.
Undo Undo last text editing action you performed.
Redo Redo last undo action you performed.
Select All Select all the text in the active window.
Find Finds a word or sequence of characters within the Information

or Procedures tabs.
Find Next Find the next occurrence of the word or sequence you last

used Find with.
Shift Left /
Shift Right

Used in the Procedures tab to change the indentation level of
code.

Comment /
Uncomment

Used in the Procedures tab to add or remove semicolons from
code (semicolons are used in NetLogo code to indicate
comments).

Tools
Halt Stops all running code, including buttons and the command

center. (Warning: since the code is interrupted in the middle of
whatever it was doing, you may get unexpected results if you
try to continue running the model without first pressing "setup"
to start the model run over.)

Globals Monitor Displays the values of all global variables.
Turtle Monitor Displays the values of all of the variables in a particular turtle.

You can can also edit the values of the turtle's variables and
issue commands to the turtle. (You can also open a turtle
monitor via the View; see the View section below.)

Patch Monitor Displays the values of all of the variables in a particular patch.
You can can also edit the values of the patch's variables and
issue commands to the patch. (You can also open a patch
monitor via the View; see the View section below.)

Hide/Show Command
Center

Makes the command center visible or invisible. (Note that the
command center can also be shown or hidden, or resized, with
the mouse.)

3D View Opens the 3D view. See the View section for more information.
Color Swatches

NetLogo 3.0 User Manual

62 Interface Guide

Opens the Color Swatches. See the Color Section of the
Programming Guide for details.

Shapes Editor Draw turtle shapes. See the Shapes Editor Guide for more
information.

BehaviorSpace Runs the model over and over with different settings. See the
BehaviorSpace Guide for more information.

System Dynamics
Modeler

Opens the System Dynamics Modeler. See the System
Dynamics Modeler Guide for more details.

HubNet Control Center Disabled if no HubNet activity is open. See the HubNet Guide
for more information.

Zoom
Larger Increase the overall screen size of the model. Useful on large

monitors or when using a projector in front of a group.
Normal Size Reset the screen size of the model to the normal size.
Smaller Decrease the overall screen size of the model.

Tabs This menu offers keyboard shortcuts for each of the tabs. (On
Macs, it's Command 1 through Command 4. On Window, it's
Control 1 through Control 4.)

Help
About NetLogo Information on the current NetLogo version the user is running.

(On Macs, this menu item is on the NetLogo menu instead.)
User Manual Opens this manual in a web browser.

Main Window

At the top of NetLogo's main window are three tabs labeled "Interface", "Information" and
"Procedures" . Only one tab at a time can be visible, but you can switch between them by clicking
on the tabs at the top of the window.

Right below the row of tabs is a toolbar containing a row of buttons. The buttons available vary from
tab to tab.

Interface Tab

The Interface tab is where you watch your model run. It also has tools you can use to inspect and
alter what's going on inside the model.

When you first open NetLogo, the Interface tab is empty except for the View, where the turtles and
patches appear, and the Command Center, which allows you to issue NetLogo commands.

Interface Toolbar

The toolbar contains buttons that let you edit, delete, and create items in the Interface tab (such as
buttons and sliders).

NetLogo 3.0 User Manual

Interface Guide 63

The buttons in the toolbar are described below.

Working With Interface Elements

Selecting: To select an interface element, drag a rectangle around it with your mouse. A gray
border will appear around the element to indicate that it is selected.

Selecting Multiple Items: You can select multiple interface elements at the same time by including
them in the rectangle you drag. If multiple elements are selected, one of them is the "key" item,
which means that if you use the "Edit" or "Delete" buttons on the Interface Toolbar, only the key
item is affected. The key item is indicated by a darker gray border than the other items.

Unselecting: To unselect all interface elements, click the mouse on the white background of the
Interface tab. To unselect an individual element, control−click (Macintosh) or right−click (other
systems) the element and choose "Unselect" from the popup menu.

Editing: To change the characteristics of an interface element, select the element, then press the
"Edit" button on the Interface Toolbar. You may also double click the element once it is selected. A
third way to edit an element is to control−click (Macintosh) or right−click (other systems) it and
choose "Edit" from the popup menu. If you use this last method, it is not necessary to select the
element first.

Moving: Select the interface element, then drag it with your mouse to its new location. If you hold
down the shift key while dragging, the element will move only straight up and down or straight left
and right.

Resizing: Select the interface element, then drag the black "handles" in the selection border.

Deleting: Select the element or elements you want to delete, then press the "Delete" button on the
Interface Toolbar. You may also delete an element by control−clicking (Macintosh) or right−clicking
(other systems) it and choosing "Delete" from the popup menu. If you use this latter method, it is not
necessary to select the element first.

To learn more about the different kinds of interface elements, refer to the chart below.

Chart: Interface Toolbar

Icon &
Name

Description

Buttons can be either once−only buttons or forever buttons. When you click on a
once button, it executes its instructions once. The forever button executes the
instructions over and over, until you click on the button again to stop the action. If you
have assigned an action key to the button, pressing the corresponding keyboard key
will act just like a button press when the button is in focus. Buttons with action keys
have a letter in the upper right corner of the button to show what the action key is. If
the input cursor is in another interface element such as the Command Center,
pressing the action key won't trigger the button. The letter in the upper right hand
corner of the button will be dimmed in this situation. To enable action keys, click in

NetLogo 3.0 User Manual

64 Interface Guide

the white background of the Interface tab.

Sliders are global variables, which are accessible by all agents. They are used in
models as a quick way to change a variable without having to recode the procedure
every time. Instead, the user moves the slider to a value and observes what happens
in the model.

Switches are a visual representation for a true/false variable. The user is asked to set
the variable to either on (true) or off (false) by flipping the switch.

Choosers let the user choose a value for a global variable from a list of choices,
presented in a drop down menu.

Monitors display the value of any expression. The expression could be a variable, a
complex expression, or a call to a reporter. Monitors automatically update several
times per second.

Plots are real−time graphs of data the model is generating.

The output area is a scrolling area of text which can be used to create a log of activity
in the model. A model may only have one output area.

Text boxes lets you add informative text labels to the Interface tab. The contents of
text boxes do not change as the model runs.

The Views

The large black square in the Interface tab is the 2D view. It's a visual representation of the NetLogo
world of turtles and patches. Initially it's all black because the patches are black and there are no
turtles yet. You can open the 3D View, another visual representation of the world, by clicking on the
"3D" button in the View Control Strip.

There are a number of settings associated with the Views. There are a few ways of changing the
settings: by using the control strip along the top edge of the View, or by editing the 2D View, as
described in the "Working With Interface Elements" section above, or pressing the "Edit..." button in
the control strip.

The 3D View has a similar control strip but it looks slightly different and as you may notice a few of
the controls are missing. However, the controls that are present work exactly the same as the 2D
View Control Strip.

The controls in the control strip work as follows:

The three sets of black arrows let you change the size of the world.•
The slider lets you control how fast the model runs −− this is valuable since some models
run so fast that it's hard to see what's going on.

•

The button with the arrowhead lets you turn turtle "shapes" on and off. If shapes are off,
turtles appear as colored squares, instead of having special shapes. The squares are less
work for the computer to draw, so turning shapes off makes models run faster.

•

NetLogo 3.0 User Manual

Interface Guide 65

The on−off switch lets you temporarily "freeze" the display. The model keeps running, but
the contents of the view don't change until you unfreeze it by flipping the switch again. Most
models run much faster when the view is frozen.

•

The 3D button switches to the 3D View (see below).•

Here are the settings for the View (accessible by editing the View, or by pressing the "Edit..." button
in the control strip):

To change the size of the 2D View adjust the "Patch Size" setting, which is measured in pixels. This
does not change the number of patches, only how large the patches appear in the 2D View (Note
that the patch size does not affect the 3D View, as you can simply make the 3D View larger by
making the window larger) .

To change the number of patches, alter the "Screen Edge X" and "Screen Edge Y" settings. (Note
that changing the numbers of patches requires rebuilding the NetLogo world; you will lose all turtles
and the values of all variables.)

The "Turtle Shapes" checkbox performs the same function as the shapes button in the control strip,
discussed above.

The "Views wrap horizontally/vertically" checkboxes indicate whether you would like the world to
appear as a torus or not. This includes wrapping shapes around the world and wrapping turtles and
patches in follow and ride modes. Note that this only affects the the visual appearance, not the
behavior of the model.

The "Smooth edges" checkbox controls the use of anti−aliasing in the 3D view only. It will make the
lines appear less jagged but it will slow down the model.

Turtle and patch monitors are easily available through the View, just control−click (Macintosh) or
right−click (other systems) on the turtle or patch you want to inspect, and choose "inspect turtle ..."
or "inspect patch ..." from the popup menu. You can also watch, follow or ride a turtle by selecting

NetLogo 3.0 User Manual

66 Interface Guide

the approriate item in the turtle submenu. (Turtle and patch monitors can also be opened from the
Tools menu or by using the inspect command.)

Some NetLogo models let you interact with the turtles and patches with your mouse by clicking and
dragging in the View.

Manipulating the 3D View

At the bottom of the window there are buttons to move the observer, or change the perspective from
which you are looking at the world.

A blue cross appears at the current focus point as you are adjusting these settings. The little blue
triangle will always point up the positive y−axis, so you can orient yourself in case you get lost. It's
easy to do!

To look at the world from a different angle, press the "rotate" button click and drag the mouse up,
down, left, or right. The observer will continue to face the same point as before (where the blue
cross is) but its position in the relation to the xy−plane will change.

To move closer or farther away from the world or the agent you are watching, following or riding,
press the "zoom" button and drag up and down along the 3D View. (Note when you are in follow or
ride mode zooming will switch you between ride and follow, since ride is just a special case of follow
where the distance at which you are following is 0)

To change the position of the observer without changing the direction it is facing select the "move"
button and drag the mouse up, down, left, and right inside the 3D View while holding down the
mouse button.

To allow the mouse position and state to be passed to the model select the "interact" button and it
will function just as the mouse does in the 2D view.

To return the observer and focus point to their default positions press the "Reset Perspective"
button (or use the reset−perspective command) .

Fullscreen Mode

To enter fullscreen mode, press the "Full Screen" button, to exit fullscreen mode, press the Esc key.

Note: Fullscreen mode doesn't work on some computers. It depends on what kind of graphics card
you have. See the System Requirements for details.

3D Shapes

NetLogo 3.0 User Manual

Interface Guide 67

Some shapes have true 3D counterparts (a 3D circle is actually a sphere) in the 3D view so they
are automatically mapped to that shape.

Shape name 3D shape
default 3D turtle shape

circle sphere

dot small sphere

square cube

triangle cone

line 3D line

cylinder 3D cylinder

line−half 3D line−half

car 3D car

All other shapes are interpreted from their 2D shapes. If a shape is a rotatable shape it is assumed
to be a top view and it is extruded as if through a cookie cutter and oriented parallel to the xy−plane,
as in Ants.

If a shape is non−rotatable it is assumed to be a side view so it is drawn always facing the observer
(and with no thickness), as in Wolf Sheep Predation.

NetLogo 3.0 User Manual

68 Interface Guide

Command Center

The Command Center allows you to issue commands directly, without adding them to the model's
procedures. (Commands are instructions you give to turtles, patches, and the observer.) This is
useful for inspecting and manipulating agents on the fly.

(Tutorial #2: Commands is an introduction to using commands in the Command Center.)

Let's take a closer look at the design of the Command Center.

You will notice there is a large display box, an agent popup menu (observer>), a "clear" button, a
button (with the double−headed arrow) to relocate the command center to the right side of the
window, and the history popup menu (in the lower right, with the little black triangle). The top large
display box temporarily stores all of the commands that are entered into the Command Center. This
area is strictly for reference; commands cannot be accessed or changed from this box. To clear this
box, click "clear" in the top right corner. To toggle between a vertical and horizontal split between
the Command Center and the model interface click the button with the double−headed arrow.

The smaller text box, below the large box, is where commands are entered. On the left of this box is
the agent popup menu, and on the right is the history popup menu.

The agent popup menu allows you to select either observer, turtles, or patches. This is an easy way
to assign an agent to a command and it is the same as writing ask turtles [...]. Note: a
quicker way to change between observer, turtles, and patches is to use the tab key on your
keyboard.

The history popup menu lists all of the commands entered that can be accessed and used again.
The up and down arrow keys on your keyboard will retrieve that last command that was written.

Note that pressing the "clear" function clears only the large display box and not the history. To clear
the history section, choose "clear history", found at the top of its popup menu.

Procedures Tab

This tab is the workspace where the code for the model is stored. Commands you only want to use
immediately go in the Command Center; commands you want to save and use later, over and over
again, are found in the Procedures tab.

NetLogo 3.0 User Manual

Interface Guide 69

To determine if the code has any errors, you may press the "Check" button. If there are any syntax
errors, the Procedures tab will turn red and the code that contains the error will be highlighted and a
comment will appear in the top box. Switching tabs also causes the code to be checked and any
errors will be shown, so if you switch tabs, pressing the Check button first isn't necessary.

To find a fragment of code in the procedures, click on the "Find" button in the Procedures Toolbar
and the Find dialog will appear.

NetLogo 3.0 User Manual

70 Interface Guide

You may enter either a word or phrase to find or a word or phrase to find and one to replace it with.
The "Ignore case" checkbox controls whether the capitalization must be the same to indicate a
match. If the "Wrap around" checkbox is checked the entire Procedures tab will be checked for the
phrase, starting at the cursor position, when it reaches the end it will return to the top, otherwise
only the area from the cursor position to the end of the Procedures tab will be searched. The "Next"
and "Previous" buttons will move down and up to find another occurrence of the search phrase.
"Replace" changes the currently selected phrase with the replace phrase and "Replace &Find"
changes the selected phrase and moves to the next occurrence. "Replace all" will change all
instances of the the find phrase in the search area with the replace phrase.

To find a particular procedure definition in your code, use the "Procedures" popup menu in the
Procedures Toolbar. The menu lists all procedures in alphabetical order.

The "Shift Left", "Shift Right", "Comment", and "Uncomment" items on the Edit menu are used in the
procedures tab to change the indentation level of your code or add and remove semicolons, which
mark comments, from sections of code.

For more information about writing procedures, read Tutorial #3: Procedures and the Programming
Guide.

Information Tab

The Information tab provides an introduction to the model and an explanation of how to use it,
things to explore, possible extensions, and NetLogo features. It is very helpful when you're first
exploring a model.

NetLogo 3.0 User Manual

Interface Guide 71

We recommend reading the Information tab before starting the model. The Information tab explains
what principle is being modeled and how the model was created. This display of the Information tab
is not editable. To edit the content of the Info tab click the "Edit" button or double click on a word
which will also scroll you to the location you clicked on and highlight the word.

You can edit the text in this view as in any text editor. However, a few different forms will be
displayed specially when you switch out of the edit view.

Information Tab Markup

Description Edit Mode View Mode

WHAT IS IT

NetLogo 3.0 User Manual

72 Interface Guide

Lines that come after
blank lines and
contain capital letters
and no lower case
letters become
section headers.

WHAT IS IT

Any line that has only
dashes is omitted.

−−−−−−−−−−−−−−−−−−−

Anything beginning
with "http://" becomes
a clickable hyperlink.

http://ccl.northwestern.edu http://ccl.northwestern.edu

E−mail addresses
become clickable
"mailto:" links.

bugs@ccl.northwestern.edu bugs@ccl.northwestern.edu

Lines that begin with
the pipe '|' (shift +
backslash '\')
become monospaced
text. This is useful for
diagrams and
complicated
formulas, among
other things.

| this is preformatted text
| you can put spaces in it

this is preformatted text
you can put spaces in it

To return to the normal view, click the edit button.

NetLogo 3.0 User Manual

Interface Guide 73

http://ccl.northwesten.edu
mailto:bugs@ccl.northwestern.edu

NetLogo 3.0 User Manual

74 Interface Guide

Programming Guide
The following material explains some important features of programming in NetLogo.

(Note: If you are already familiar with StarLogo or StarLogoT, then the material in the first four
sections may already be familiar to you.)

The Code Example models mentioned throughout can be found in the Code Examples section of
the Models Library.

Agents•
Procedures•
Variables•
Colors•
Ask•
Agentsets•
Breeds•
Synchronization•
Buttons•
Lists•
Math•
Random Numbers•
Turtle Shapes•
Plotting•
Strings•
Output•
File I/O•
Movies•
Perspective•
Turtle Pens•

Agents

The NetLogo world is made up of agents. Agents are beings that can follow instructions. Each agent
can carry out its own activity, all simultaneously.

In NetLogo, there are three types of agents: turtles, patches, and the observer. Turtles are agents
that move around in the world. The world is two dimensional and is divided up into a grid of patches.
Each patch is a square piece of "ground" over which turtles can move. The observer doesn't have a
location −− you can imagine it as looking out over the world of turtles and patches.

When NetLogo starts up, there are no turtles yet. The observer can make new turtles. Patches can
make new turtles too. (Patches can't move, but otherwise they're just as "alive" as turtles and the
observer are.)

Patches have coordinates. The patch in the center of the world has coordinates (0, 0). We call the
patch's coordinates pxcor and pycor. Just like in the standard mathematical coordinate plane,
pxcor increases as you move to the right and pycor increases as you move up.

Programming Guide 75

The total number of patches is determined by the settings screen−edge−x and screen−edge−y.
When NetLogo starts up, both screen−edge−x and screen−edge−y are 17. This means that
pxcor and pycor both range from −17 to 17, so there are 35 times 35, or 1225 patches total. (You
can change the number of patches by editing NetLogo's view.)

Turtles have coordinates too: xcor and ycor. A patch's coordinates are always integers, but a
turtle's coordinates can have decimals. This means that a turtle can be positioned at any point
within its patch; it doesn't have to be in the center of the patch.

The world of patches isn't bounded, but "wraps" −− so when a turtle moves past the edge of the
world, it disappears and reappears on the opposite edge. Every patch has the same number of
"neighbor" patches −− if you're a patch on the edge of the world, some of your "neighbors" are on
the opposite edge.

Procedures

In NetLogo, commands and reporters tell agents what to do. Commands are actions for the agents
to carry out. Reporters carry out some operation and report a result either to a command or another
reporter.

Commands and reporters built into NetLogo are called primitives. The Primitives Dictionary has a
complete list of built−in commands and reporters.

Commands and reporters you define yourself are called procedures. Each procedure has a name,
preceded by the keyword to. The keyword end marks the end of the commands in the procedure.
Once you define a procedure, you can use it elsewhere in your program.

Many commands and reporters take inputs −− values that the command or reporter uses in
carrying out its actions.

Examples: Here are two command procedures:

to setup
 ca ;; clear the screen
 crt 10 ;; make 10 new turtles
end

to go
 ask turtles
 [fd 1 ;; all turtles move forward one step
 rt random 10 ;; ...and turn a random amount
 lt random 10]
end

Note the use of semicolons to add "comments" to the program. Comments make your program
easier to read and understand.

In this program,

setup and go are user−defined commands.•
ca ("clear all"), crt ("create turtles"), ask, lt ("left turn"), and rt ("right turn") are all
primitive commands.

•

NetLogo 3.0 User Manual

76 Programming Guide

random and turtles are primitive reporters. random takes a single number as an input
and reports a random integer that is less than the input (in this case, between 0 and 9).
turtles reports the agentset consisting of all the turtles. (We'll explain about agentsets
later.)

•

setup and go can be called by other procedures or by buttons. Many NetLogo models have a once
button that calls a procedure called setup, and a forever button that calls a procedure called go.

In NetLogo, you must specify which agents −− turtles, patches, or the observer −− are to run each
command. (If you don't specify, the code is run by the observer.) In the code above, the observer
uses ask to make the set of all turtles run the commands between the square brackets.

ca and crt can only be run by the observer. fd, on the other hand, can only be run by turtles.
Some other commands and reporters, such as set, can be run by different agent types.

Here are some more advanced features you can take advantage of when defining your own
procedures.

Procedures with inputs

Your own procedures can take inputs, just like primitives do. To create a procedure that accepts
inputs, include a list of input names in square brackets after the procedure name. For example:

to draw−polygon [num−sides size]
 pd
 repeat num−sides
 [fd size
 rt (360 / num−sides)]
end

Elsewhere in the program, you could ask turtles to each draw an octagon with a side length equal to
its ID−number:

ask turtles [draw−polygon 8 who]

Reporter procedures

Just like you can define your own commands, you can define your own reporters. You must do two
special things. First, use to−report instead of to to begin your procedure. Then, in the body of
the procedure, use report to report the value you want to report.

to−report absolute−value [number]
 ifelse number >= 0
 [report number]
 [report 0 − number]
end

Variables

Variables are places to store values (such as numbers). A variable can be a global variable, a turtle
variable, or a patch variable.

NetLogo 3.0 User Manual

Programming Guide 77

If a variable is a global variable, there is only one value for the variable, and every agent can access
it. But each turtle has its own value for every turtle variable, and each patch has its own value for
every patch variable.

Some variables are built into NetLogo. For example, all turtles have a color variable, and all
patches have a pcolor variable. (The patch variable begins with "p" so it doesn't get confused with
the turtle variable.) If you set the variable, the turtle or patch changes color. (See next section for
details.)

Other built−in turtle variables including xcor, ycor, and heading. Other built−in patch variables
include pxcor and pycor. (There is a complete list here.)

You can also define your own variables. You can make a global variable by adding a switch or a
slider to your model, or by using the globals keyword at the beginning of your code, like this:

globals [clock]

You can also define new turtle and patch variables using the turtles−own and patches−own
keywords, like this:

turtles−own [energy speed]
patches−own [friction]

These variables can then be used freely in your model. Use the set command to set them. (If you
don't set them, they'll start out storing a value of zero.)

Global variables can by read and set at any time by any agent. As well, a turtle can read and set
patch variables of the patch it is standing on. For example, this code:

ask turtles [set pcolor red]

causes every turtle to make the patch it is standing on red. (Because patch variables are shared by
turtles in this way, you can't have a turtle variable and a patch variable with the same name.)

In other situations where you want an agent to read or set a different agent's variable, you put −of
after the variable name and then specify which agent you mean. Examples:

set color−of turtle 5 red
;; turtle with ID number 5 turns red
set pcolor−of patch 2 3 green
;; patch with pxcor of 2 and pycor of 3 turns green
ask turtles [set pcolor−of patch−at 1 0 blue]
;; every turtle turns the patch to its east blue
ask patches with [any? turtles−here]
 [set color−of random−one−of turtles−here yellow]
;; on every patch, a random turtle turns yellow

Local variables

A local variable is defined and used only in the context of a particular procedure or part of a
procedure. To create a local variable, use the let command. You can use this command
anywhere. If you use it at the top of a procedure, the variable will exist throughout the procedure. If
you use it inside a set of square brackets, for example inside an "ask", then it will exist only inside

NetLogo 3.0 User Manual

78 Programming Guide

those brackets.

to swap−colors [turtle1 turtle2]
 let temp color−of turtle1
 set (color−of turtle1) (color−of turtle2)
 set (color−of turtle2) temp
end

Colors

NetLogo represents colors as numbers in the range 0 to 140, with the exception of 140 itself. Below
is a chart showing the range of colors you can use in NetLogo.

The chart shows that:

Some of the colors have names. (You can use these names in your code.)•
Every named color except black and white has a number ending in 5.•
On either side of each named color are darker and lighter shades of the color.•
0 is pure black. 9.9 is pure white.•
10, 20, and so on are all so dark they appear black. 19.9, 29.9 and so on are all so light they
appear white.

•

Code Example: The color chart was made in NetLogo with the Color Chart Example
model.

NetLogo 3.0 User Manual

Programming Guide 79

You can also view a similar chart, and experiment with the colors, by opening the Color Swatches
from the Tools Menu.

When you click on any one of the color swatches (or the color buttons) that color will be displayed
against all of the other standard colors along the right edge of the dialog and black and white along
the top. In the bottom left corner the value of the currently selected color is displayed so you can
copy the color and easily insert it into your code. In the bottom right corner there are three
increment options, 1 , 0.5 , and 0.1. These numbers indicate the difference between two adjacent
swatches. When the increment is 1 there are 10 different shades in each row so when the
increment is 0.1 there are 100 different shades in each row.

Note: If you use a number outside the 0 to 140 range, NetLogo will repeatedly add or subtract 140
from the number until it is in the 0 to 140 range. For example, 25 is orange, so 165, 305, 445, and
so on are orange too, and so are −115, −255, −395, etc. This calculation is done automatically
whenever you set the turtle variable color or the patch variable pcolor. Should you need to
perform this calculation in some other context, use the wrap−color primitive.

If you want a color that's not on the chart, more can be found between the integers. For example,
26.5 is a shade of orange halfway between 26 and 27. This doesn't mean you can make any color
in NetLogo; the NetLogo color space is only a subset of all possible colors. A fixed set of discrete
hues. Starting from one of those hues, you can either decrease its brightness (darken it) or
decrease its saturation (lighten it), but you cannot decrease both brightness and saturation. Also, for
display color values are rounded to the nearest 0.1, so for example there's no visible difference
between 26.5 and 26.52.

There are a few primitives that are helpful for working with color shades. The scale−color
primitive is useful for converting numeric data into colors. And shade−of? will tell you if two colors
are "shades" of the same basic hue. For example, shade−of? orange 27 is true, because 27 is

NetLogo 3.0 User Manual

80 Programming Guide

a lighter shade of orange.

Code Example: Scale−color Example shows you how to use the scale−color
reporter.

For many models, the NetLogo color system is a convenient way of expressing colors. But
sometimes you'd like to be able to specify colors the conventional way, by specifying HSB
(hue/saturation/brightness) or RGB (red/green/blue) values. The hsb and rgb primitives let you do
this. extract−hsb and extract−hsb let you convert colors in the other direction.

Since the NetLogo color space doesn't include all hues, hsb and rgb can't always give you the
exact color you ask for, but they try to come as close as possible.

Code Example: You can use the HSB and RGB Example model to experiment with
the HSB and RGB color systems.

Ask

NetLogo uses the ask command to specify commands that are to be run by turtles or patches. All
code to be run by turtles must be located in a turtle "context". You can establish a turtle context in
any of three ways:

In a button, by choosing "Turtles" from the popup menu. Any code you put in the button will
be run by all turtles.

•

In the Command Center, by choosing "Turtles" from the popup menu. Any commands you
enter will be run by all the turtles.

•

By using ask turtles.•

The same goes for patches and the observer, except that code to be run by the observer must not
be inside any ask.

Here's an example of the use of ask syntax in a NetLogo procedure:

to setup
 ca
 crt 100 ;; create 100 turtles
 ask turtles
 [set color red ;; turn them red
 rt random−float 360 ;; give them random headings
 fd 50] ;; spread them around
 ask patches
 [if (pxcor > 0) ;; patches on the right side
 [set pcolor green]] ;; of the screen turn green
end

The models in the Models Library are full of other examples. A good place to start looking is in the
Code Examples section.

NetLogo 3.0 User Manual

Programming Guide 81

Usually, the observer uses ask to ask all turtles or all patches to run commands. You can also use
ask to have an individual turtle or patch run commands. The reporters turtle, patch, and
patch−at are useful for this technique. For example:

to setup
 ca
 crt 3 ;; make 3 turtles
 ask turtle 0 ;; tell the first one...
 [fd 1] ;; ...to go forward
 ask turtle 1 ;; tell the second one...
 [set color green] ;; ...to become green
 ask turtle 2 ;; tell the third one...
 [rt 90] ;; ...to turn right
 ask patch 2 −2 ;; ask the patch at (2,−2)
 [set pcolor blue] ;; ...to become blue
 ask turtle 0 ;; ask the first turtle
 [ask patch−at 1 0 ;; ...to ask patch to the east
 [set pcolor red] ;; ...to become red
end

Every turtle created has an ID number. The first turtle created has ID 0, the second turtle ID 1, and
so forth. The turtle primitive reporter takes an ID number as an input, and reports the turtle with
that ID number. The patch primitive reporter takes values for pxcor and pycor and reports the
patch with those coordinates. And the patch−at primitive reporter takes offsets: distances, in the x
and y directions, from the first agent. In the example above, the turtle with ID number 0 is asked to
get the patch east (and no patches north) of itself.

You can also select a subset of turtles, or a subset of patches, and ask them to do something. This
involves a concept called "agentsets". The next section explains this concept in detail.

Agentsets

An agentset is exactly what its name implies, a set of agents. An agentset can contain either turtles
or patches, but not both at once.

You've seen the turtles primitive, which reports the agentset of all turtles, and the patches
primitive, which reports the agentset of all patches.

But what's powerful about the agentset concept is that you can construct agentsets that contain only
some turtles or some patches. For example, all the red turtles, or the patches with pxcor evenly
divisible by five, or the turtles in the first quadrant that are on a green patch. These agentsets can
then be used by ask or by various reporters that take agentsets as inputs.

One way is to use turtles−here or turtles−at, to make an agentset containing only the turtles
on my patch, or only the turtles on some other particular patch. There's also turtles−on so you
can get the set of turtles standing on a given patch or set of patches, or the set of turtles standing
on the same patch as a given turtle or set of turtles.

Here are some more examples of how to make agentsets:

;; all red turtles:
turtles with [color = red]
;; all red turtles on my patch
turtles−here with [color = red]

NetLogo 3.0 User Manual

82 Programming Guide

;; patches on right side of screen
patches with [pxcor > 0]
;; all turtles less than 3 patches away
turtles in−radius 3
;; the four patches to the east, north, west, and south
patches at−points [[1 0] [0 1] [−1 0] [0 −1]]
;; shorthand for those four patches
neighbors4
;; turtles in the first quadrant that are on a green patch
turtles with [(xcor > 0) and (ycor > 0)
 and (pcolor = green)]
;; turtles standing on my neighboring four patches
turtles−on neighbors4

Once you have created an agentset, here are some simple things you can do:

Use ask to make the agents in the agentset do something•
Use any? to see if the agentset is empty•
Use count to find out exactly how many agents are in the set•

And here are some more complex things you can do:

Pick a random agent from the set using random−one−of. For example, we can make a
randomly chosen turtle turn green:

set color−of random−one−of turtles green

Or tell a randomly chosen patch to sprout a new turtle:

ask random−one−of patches [sprout 1 []]

•

Use the max−one−of or min−one−of reporters to find out which agent is the most or least
along some scale. For example, to remove the richest turtle, you could say

ask max−one−of turtles [sum assets] [die]

•

Make a histogram of the agentset using the histogram−from command.•
Use values−from to make a list of values, one for each agent in the agentset. Then use
one of NetLogo's list primitives to do something with the list. (See the "Lists" section below.)
For example, to find out how rich the richest turtle is, you could say

show max values−from turtles [sum assets]

•

Use turtles−from and patches−from reporters to make new agentsets by gathering
together the results reported by other agents.

•

This only scratches the surface −− see the Models Library for many more examples, and consult the
Primitives Guide and Primitives Dictionary for more information about all of the agentset primitives.

More examples of using agentsets are provided in the individual entries for these primitives in the
NetLogo Dictionary. In developing familiarity with programming in NetLogo, it is important to begin
to think of compound commands in terms of how each element passes information to the next one.
Agentsets are an important part of this conceptual scheme and provide the NetLogo developer with
a lot of power and flexibility, as well as being more similar to natural language.

NetLogo 3.0 User Manual

Programming Guide 83

Code Example: Ask Agentset Example

Breeds

NetLogo allows you to define different "breeds" of turtles. Once you have defined breeds, you can
go on and make the different breeds behave differently. For example, you could have breeds called
sheep and wolves, and have the wolves try to eat the sheep.

You define breeds using the breeds keyword, at the top of your model, before any procedures:

breeds [wolves sheep]

The order in which breeds are declared is also the order order in which they are layered in the view.
So breeds defined later will appear on top of breeds defined earlier; in this example, sheep will be
drawn over wolves.

When you define a breed such as sheep, an agentset for that breed is automatically created, so
that all of the agentset capabilities described above are immediately available with the sheep
agentset.

The following new primitives are also automatically available once you define a breed:
create−sheep, create−custom−sheep (cct−sheep for short), hatch−sheep,
sprout−sheep, sheep−here, and sheep−at.

Also, you can use sheep−own to define new turtle variables that only turtles of the given breed
have.

A turtle's breed agentset is stored in the breed turtle variable. So you can test a turtle's breed, like
this:

if breed = wolves [...]

Note also that turtles can change breeds. A wolf doesn't have to remain a wolf its whole life. Let's
change a random wolf into a sheep:

ask random−one−of wolves [set breed sheep]

The set−default−shape primitive is useful for associating certain turtle shapes with certain
breeds. See the section on shapes below.

Here is a quick example of using breeds:

breeds [mice frogs]
mice−own [cheese]
to setup
 ca
 create−custom−mice 50
 [set color white
 set cheese random 10]
 create−custom−frogs 50
 [set color green]

NetLogo 3.0 User Manual

84 Programming Guide

end

Code Example: Breeds and Shapes Example

Buttons

Buttons in the interface tab provide an easy way to control the model. Typically a model will have at
least a "setup" button, to set up the initial state of the world, and a "go" button to make the model
run continuously. Some models will have additional buttons that perform other actions.

A button contains some NetLogo code. That code is run when you press the button.

A button may be either a "once button", or a "forever button". You can control this by editing the
button and checking or unchecking the "Forever" checkbox. Once buttons run their code once, then
stop and pop back up. Forever buttons keep running their code over and over again, until either the
code hits the stop command, or you press the button again to stop it. If you stop the button, the
code doesn't get interrupted. The button waits until the code has finished, then pops up.

Normally, a button is labeled with the code that it runs. For example, a button that says "go" on it
usually contains the code "go", which means "run the go procedure". (Procedures are defined in the
Procedures tab; see below.) But you can also edit a button and enter a "display name" for the
button, which is a text that appears on the button instead of the code. You might use this feature if
you think the actual code would be confusing to your users.

When you put code in a button, you must also specify which agents you want to run that code. You
can choose to have the observer run the code, or all turtles, or all patches. (If you want the code to
be run by only some turtles or some patches, you could make an observer button, and then have
the observer use the ask command to ask only some of the turtles or patches to do something.)

When you edit a button, you have the option to assign an "action key". This makes that key on the
keyboard behave just like a button press. If the button is a forever button, it will stay down until the
key is pressed again (or the button is clicked). Action keys are particularly useful for games or any
model where rapid triggering of buttons is needed.

Buttons take turns

More than one button can be pressed at a time. If this happens, the buttons "take turns", which
means that only one button runs at a time. Each button runs its code all the way through while the
other buttons wait, then the next button gets its turn.

In the following examples, "setup" is a once button and "go" is a forever button.

Example #1: The user presses "setup", then presses "go" immediately, before the "setup" has
popped back up. Result: "setup" finishes before "go" starts.

Example #2: While the "go" button is down, the user presses "setup". Result: the "go" button
finishes its current iteration. Then the "setup" button runs. Then "go" starts running again.

NetLogo 3.0 User Manual

Programming Guide 85

Example #3: The user has two forever buttons down at the same time. Result: first one button runs
its code all the way through, then the other runs its code all the way through, and so on, alternating.

Buttons and view updates

When you edit a button, there is a checkbox called "Force view update after each run". Below the
checkbox is a note that reads "Checking this box produces smoother animation, but may make the
button run more slowly."

Most of the time, it's enough to know that if you prefer smooth animation check the box and if you
prefer speed uncheck it. In some models, the difference is dramatic; in others, it's hardly noticeable.
It depends on the model.

What follows is a more detailed explanation of what's really going on with this checkbox.

To understand why this option is offered, you need to understand a little about how NetLogo
updates the view. When something changes in the world, for example if a turtle moves or a patch
changes color, the change does not always immediately become visible. NetLogo would run too
slowly if changes always immediately became visible. So NetLogo waits until a certain amount of
time has passed, usually about 1/5 of a second, and then redraws the view, so that all the changes
that have happened so far become visible. This is sometimes called "skipping frames", by analogy
with movies.

Skipping frames is good because each frame takes NetLogo time to draw, so your model runs
faster if NetLogo can skip some of them. But skipping frames may be bad if the frames skipped
contained information that you wanted to see. Sometimes the way a model looks when frames are
being skipped can be misleading.

Even when the checkbox is on for a button, NetLogo will still skip frames while the code in the
button is running. Checking the box only ensures that NetLogo will draw a frame when the code is
done.

In some contexts, you may want to force NetLogo to draw a frame even in the middle of button
code. To do that, use the display command; that forces NetLogo to refresh the view immediately.

In other contexts, you may want to force NetLogo never to draw a frame in the middle of button
code, only at the end. To ensure that, put no−display at the beginning of the code and display
at the end. Note also that NetLogo will never draw on−screen when inside a
without−interruption block.

Turtle and patch forever buttons

There is a subtle difference between putting commands in a turtle or patch forever button, and
putting the same commands in an observer button that does ask turtles or ask patches. An
"ask" doesn't complete until all of the agents have finished running all of the commands in the "ask".
So the agents, as they all run the commands concurrently, can be out of sync with each other, but
they all sync up again at the end of the ask. The same isn't true of turtle and patch forever buttons.
Since ask was not used, each turtle or patch runs the given code over and over again, so they can
become (and remain) out of sync with each other.

NetLogo 3.0 User Manual

86 Programming Guide

At present, this capability is very rarely used in the models in our Models Library. A model that does
use the capability is the Termites model, in the Biology section of Sample Models. The "go" button
is a turtle forever button, so each termite proceeds independently of every other termite, and the
observer is not involved at all. This means that if, for example, you wanted to add a plot to the
model, you would need to add a second forever button (an observer forever button), and run both
forever buttons at the same time.

At present, NetLogo has no way for one forever button to start another. Buttons are only started
when you press them.

Synchronization

In both StarLogoT and NetLogo, commands are executed asynchronously; each turtle or patch
does its list of commands as fast as it can. In StarLogoT, one could make the turtles "line up" by
putting in a comma (,). At that point, the turtles would wait until all were finished before any went on.

The equivalent in NetLogo is to come to the end of an ask block. If you write it this way, the two
steps are not synced:

ask turtles
 [fd random 10
 do−calculation]

Since the turtles will take varying amounts of time to move, they'll begin "do−calculation" at different
times.

But if you write it this way, they are:

ask turtles [fd random 10]
ask turtles [do−calculation]

Here, some of the turtles will have to wait after moving until all the other turtles are done moving.
Then the turtles all begin "do−calculation" at the same time.

This latter form is equivalent to this use of the comma in StarLogoT:

fd random 10 ,
do−calculation ,

Lists

In the simplest models, each variable holds only one piece of information, usually a number or a
string. The list feature lets you store multiple pieces of information in a single variable by collecting
those pieces of information in a list. Each value in the list can be any type of value: a number, or a
string, an agent or agentset, or even another list.

Lists allow for the convenient packaging of information in NetLogo. If your agents carry out a
repetitive calculation on multiple variables, it might be easier to have a list variable, instead of
multiple number variables. Several primitives simplify the process of performing the same
computation on each value in a list.

NetLogo 3.0 User Manual

Programming Guide 87

The Primitives Dictionary has a section that lists all of the list−related primitives.

Constant Lists

You can make a list by simply putting the values you want in the list between brackets, like this: set
mylist [2 4 6 8]. Note that the individual values are separated by spaces. You can make lists
that contains numbers and strings this way, as well as lists within lists, for example [[2 4] [3
5]].

The empty list is written by putting nothing between the brackets, like this: [].

Building Lists on the Fly

If you want to make a list in which the values are determined by reporters, as opposed to being a
series of constants, use the list reporter. The list reporter accepts two other reporters, runs
them, and reports the results as a list.

If I wanted a list to contain two random values, I might use the following code:

set random−list list (random 10) (random 20)

This will set random−list to a new list of two random integers each time it runs.

To make longer lists, you can use the list reporter with more than two inputs, but in order to do
so, you must enclose the entire call in parentheses, like this:

(list 1 2 3 4 5)

For more information, see Varying Numbers of Inputs.

Some kinds of lists are most easily built using the n−values reporter, which allows you to construct a
list of a specific length by repeatedly running a given reporter. You can make a list of the same
value repeated, or all the numbers in a range, or a lot of random numbers, or many other
possibilities. See dictionary entry for details and examples.

The values−from primitive lets you construct a list from an agentset. It reports a list containing each
agent's value for the given reporter. (The reporter could be a simple variable name, or a more
complex expression −− even a call to a procedure defined using to−report.) A common idiom is

max values−from turtles [...]
sum values−from turtles [...]

and so on.

You can combine two or more lists using the sentence reporter, which concatenates lists by
combining their contents into a single, larger list. Like list, sentence normally takes two inputs,
but can accept any number of inputs if the call is surrounded by parentheses.

Changing List Items

Technically, only one command changes a list −− set. This is used in conjunction with reporters.

NetLogo 3.0 User Manual

88 Programming Guide

For example, to change the third item of a list to 10, you could use the following code:

set mylist [2 7 5 Bob [3 0 −2]]
; mylist is now [2 7 5 Bob [3 0 −2]]
set mylist replace−item 2 mylist 10
; mylist is now [2 7 10 Bob [3 0 −2]]

The replace−item reporter takes three inputs. The first input specifies which item in the list is to
be changed. 0 means the first item, 1 means the second item, and so forth.

To add an item, say 42, to the end of a list, use the lput reporter. (fput adds an item to the
beginning of a list.)

set mylist lput 42 mylist
; mylist is now [2 7 10 Bob [3 0 −2] 42]

But what if you changed your mind? The but−last (bl for short) reporter reports all the list items
but the last.

set mylist but−last mylist
; mylist is now [2 7 10 Bob [3 0 −2]]

Suppose you want to get rid of item 0, the 2 at the beginning of the list.

set mylist but−first mylist
; mylist is now [7 10 Bob [3 0 −2]]

Suppose you wanted to change the third item that's nested inside item 3 from −2 to 9? The key is to
realize that the name that can be used to call the nested list [3 0 −2] is item 3 mylist. Then the
replace−item reporter can be nested to change the list−within−a−list. The parentheses are
added for clarity.

set mylist (replace−item 3 mylist
 (replace−item 2 (item 3 mylist) 9))
; mylist is now [7 10 Bob [3 0 9]]

Iterating Over Lists

If you want to do some operation on each item in a list in turn, the foreach command and the map
reporter may be helpful.

foreach is used to run a command or commands on each item in a list. It takes an input list and a
block of commands, like this:

foreach [2 4 6]
 [crt ?
 show "created " + ? + " turtles"]
=> created 2 turtles
=> created 4 turtles
=> created 6 turtles

In the block, the variable ? holds the current value from the input list.

Here are some more examples of foreach:

NetLogo 3.0 User Manual

Programming Guide 89

foreach [1 2 3] [ask turtles [fd ?]]
;; turtles move forward 6 patches
foreach [true false true true] [ask turtles [if ? [fd 1]]]
;; turtles move forward 3 patches

map is similar to foreach, but it is a reporter. It takes an input list and another reporter. Note that
unlike foreach, the reporter comes first, like this:

show map [round ?] [1.2 2.2 2.7]
;; prints [1 2 3]

map reports a list containing the results of applying the reporter to each item in the input list. Again,
use ? to refer to the current item in the list.

Here is another example of map:

show map [? < 0] [1 −1 3 4 −2 −10]
;; prints [false true false false true true]

foreach and map won't necessarily be useful in every situation in which you want to operate on an
entire list. In some situations, you may need to use some other technique such as a loop using
repeat or while, or a recursive procedure.

The sort−by primitive uses a similar syntax to map and foreach, except that since the reporter
needs to compare two objects, the two special variables ?1 and ?2 are used in place of ?.

Here is an example of sort−by:

show sort−by [?1 < ?2] [4 1 3 2]
;; prints [1 2 3 4]

Varying Numbers of Inputs

Some commands and reporters involving lists and strings may take a varying number of inputs. In
these cases, in order to pass them a number of inputs other than their default, the primitive and its
inputs must be surrounded by parentheses. Here are some examples:

show list 1 2
=> [1 2]
show (list 1 2 3 4)
=> [1 2 3 4]
show (list)
=> []

Note that each of these special commands has a default number of inputs for which no parentheses
are required. The primitives which have this capability are list, word, sentence, map, and foreach.

Math

NetLogo supports two different kinds of math, integer and floating point.

Integers have no fractional part and may range from −2147483648 to 2147483647 (−2^31 to
2^31−1). Integer operations that exceed this range will not cause runtime errors, but will produce

NetLogo 3.0 User Manual

90 Programming Guide

incorrect answers.

Floating point numbers are numbers containing a decimal point. In NetLogo, they operate according
to the IEEE 754 standard for double precision floating point numbers. These are 64 bit numbers
consisting of one sign bit, an 11−bit exponent, and a 52−bit mantissa. See the IEEE 754 standard
for details. Any operation which produces the special quantities "infinity" or "not a number" will
cause a runtime error.

In NetLogo, integers and floating point numbers are interchangeable, in the sense that as long as
you stay within legal ranges, it is never an error to supply 3 when 3.0 is expected, or 3.0 when 3 is
expected. In fact, 3 and 3.0 are considered equal, according to the = (equals) operator. If a floating
point number is supplied in a context where an integer is expected, the fractional part is simply
discarded. So for example, crt 3.5 creates three turtles; the extra 0.5 is ignored.

Scientific notation

Very large or very small floating point numbers are displayed by NetLogo using "scientific notation".
Examples:

O> show 0.000000000001
observer: 1.0E−12
O> show 50000000000000000000.0
observer: 5.0E19

Numbers in scientific notation are distinguished by the presence of the letter E (for "exponent"). It
means "times ten to the power of", so for example, 1.0E−12 means 1.0 times 10 to the −12 power:

O> show 1.0 * 10 ^ −12
observer: 1.0E−12

You can also use scientific notation yourself in NetLogo code:

O> show 3.0E6
observer: 3000000.0
O> show 3.0E7
observer: 3.0E7
O> show 8.0E−3
observer: 0.0080
O> show 8.0E−4
observer: 8.0E−4

These examples show that numbers are displayed using scientific notation if the exponent is less
than −3 or greater than 6.

When entering a number using scientific notation, you must include the decimal point. For example,
1E8 will not be accepted. Instead you must write 1.0E8 or 1.E8:

O> show 1.0E8
observer: 1.0E8
O> show 1.E8
observer: 1.0E8
O> show 1E8
ERROR: Illegal number format

NetLogo 3.0 User Manual

Programming Guide 91

When entering a number, the letter E may be either upper or lowercase. When printing a number,
NetLogo always uses an uppercase E:

O> show 4.5e10
observer: 4.5E10

Floating point accuracy

When using floating point numbers, you should be aware that due to the limitations of the binary
representation for floating point numbers, you may get answers that are slightly inaccurate. For
example:

O> show 0.1 + 0.1 + 0.1
observer: 0.30000000000000004
O> show cos 90
observer: 6.123233995736766E−17

This is an inherent issue with floating point arithmetic; it occurs in all programming languages that
support floating point.

If you are dealing with fixed precision quantities, for example dollars and cents, a common
technique is to use only integers (cents) internally, then divide by 100 to get a result in dollars for
display.

If you must use floating point numbers, then in some situations you may need to replace a
straightforward equality test such as if x = 1 [...] with a test that tolerates slight
imprecision, for example if abs (x − 1) < 0.0001 [...].

Also, the precision primitive is handy for rounding off numbers for display purposes. NetLogo
monitors round the numbers they display to a configurable number of decimal places, too.

Random Numbers

The random numbers used by NetLogo are what is called "pseudo−random". (This is typical in
computer programming.) That means they appear random, but are in fact generated by a
deterministic process. "Deterministic" means that you get the same results every time, if you start
with the same random "seed". We'll explain in a minute what we mean by "seed".

In the context of scientific modeling, pseudo−random numbers are actually desirable. That's
because it's important that a scientific experiment be reproducible −− so anyone can try it
themselves and get the same result that you got. Since NetLogo uses pseudo−random numbers,
the "experiments" that you do with it can be reproduced by others.

Here's how it works. NetLogo's random number generator can be started with a certain seed value,
which can be any integer. Once the generator has been "seeded" with the random−seed
command, it always generates the same sequence of random numbers from then on. For example,
if you run these commands:

random−seed 137
show random 100
show random 100
show random 100

NetLogo 3.0 User Manual

92 Programming Guide

You will always get the numbers 95, 7, and 54.

Note however that you're only guaranteed to get those same numbers if you're using the same
version of NetLogo. Sometimes when we make a new version of NetLogo we change the random
number generator. For example, NetLogo 2.0 has a different generator than NetLogo 1.3 did. 2.0's
generator (which is known as the "Mersenne Twister") is faster and generates numbers that are
statistically more "random" than 1.3's (Java's built−in "linear congruential" generator).

To create a number suitable for seeding the random number generator, use the new−seed reporter.
new−seed creates a seed, evenly distributed over the space of possible seeds, based on the
current date and time. And it never reports the same number twice in in a row.

Code Example: Random Seed Example

If you don't set the random seed yourself, NetLogo sets it to a value based on the current date and
time. There is no way to find out what random seed it chose, so if you want your model run to be
reproducible, you must set the random seed yourself ahead of time.

The NetLogo primitives with "random" in their names (random, random−float, random−one−of, and
so on) aren't the only ones that use pseudo−random numbers. Some other primitives also make
random choices. For example, the sprout command creates turtles with random colors and
headings, and the downhill reporter chooses a random patch when there's a tie. These random
choices are governed by the random seed as well, so model runs can be reproducible.

Turtle shapes

In NetLogo, turtle shapes are vector shapes. They are built up from basic geometric shapes;
squares, circles, and lines, rather than a grid of pixels. Vector shapes are fully scalable and
rotatable. NetLogo caches bitmap images of vector shapes size 1, 1.5, and 2 in order to speed up
execution.

A turtle's shape is stored in its shape variable and can be set using the set command.

New turtles have a shape of "default". The set−default−shape primitive is useful for changing
the default turtle shape to a different shape, or having a different default turtle shape for each breed
of turtle.

The shapes primitive reports a list of currently available turtle shapes in the model. This is useful if,
for example, you want to assign a random shape to a turtle:

ask turtles [set shape random−one−of shapes]

Use the Shapes Editor to create your own turtle shapes, or to add shapes to your model from our
shapes library, or to transfer shapes between models. For more information, see the Shapes Editor
section of this manual.

Code Examples: Breeds and Shapes Example, Shape Animation Example

NetLogo 3.0 User Manual

Programming Guide 93

Plotting

NetLogo's plotting features let you create plots to help you understand what's going on in your
model.

Before you can plot, you need to create one or more plots in the Interface tab. Each plot should
have a unique name. You'll be using its name to refer to it in your code in the Procedures tab.

Specifying a plot

If you only have one plot in your model, then you can start plotting to it right away. But if you have
more than one plot, you have to specify which one you want to plot to. To do this, use the
set−current−plot command with the name of the plot enclosed in double quotes, like this:

set−current−plot "Distance vs. Time"

You must supply the name of the plot exactly as you typed it when you created the plot. Note that
later if you change the name of the plot, you'll also have to update the set−current−plot calls in
your model to use the new name. (Copy and paste can be helpful here.)

Specifying a pen

When you make a new plot, it just has one pen it. If the current plot only has one plot pen, then you
can start plotting to it right away.

But you can also have multiple pens in a plot. You can create additional pens by editing the plot and
using the controls in the "Plot Pens" section at the bottom of the edit dialog. Each pen should have
a unique name. You'll be using its name to refer to it in your code in the Procedures tab.

For a plot with multiple pens, you have to specify which pen you want to plot with. If you don't
specify a pen, plotting will take place with the first pen in the plot. To plot with a different pen, use
the set−current−plot−pen command with the name of the pen enclosed in double quotes, like
this:

set−current−plot−pen "distance"

Plotting points

The two basic commands for actually plotting things are plot and plotxy.

With plot you need only specify the y value you want plotted. The x value will automatically be 0
for the first point you plot, 1 for the second, and so on. (That's if the plot pen's "interval" is the
default value of 1.0; you can change the interval.)

The plot command is especially handy when you want your model to plot a new point at every
time step. Example:

to setup
 ...
 plot count turtles
end

NetLogo 3.0 User Manual

94 Programming Guide

to go
 ...
 plot count turtles
end

Note that in this example we plot from both the "setup" and "go" procedures. That's because we
want our plot to include the initial state of the system. We plot at the end of the "go" procedure, not
the beginning, because we want the plot always to be up to date after the go button stops.

If you need to specify both the x and y values of the point you want plotted, then use plotxy
instead.

Code Example: Plotting Example

Other kinds of plots

By default, NetLogo plot pens plot in line mode, so that the points you plot are connected by a line.

If you want to move the pen without plotting, you can use the plot−pen−up command (ppu for
short). After this command is issued, the plot and plotxy commands move the pen but do not
actually draw anything. Once the pen is where you want it, use plot−pen−down to put the pen
back down (ppd for short).

If you want to plot individual points instead of lines, or you want to draw bars instead of lines of or
points, you need to change the plot pen's "mode". Three modes are available: line, bar, and point.
Line is the default mode.

Normally, you change a pen's mode by editing the plot. This changes the pen's default mode. It's
also possible to change the pen's mode temporarily using the set−plot−pen−mode command.
That command takes a number as input: 0 for line, 1 for bar, 2 for point.

Histograms

A histogram is a special kind of plot that measures how frequently certain values, or values in
certain ranges, occur in a collection of numbers that arise in your model.

For example, suppose the turtles in your model have an age variable. You could create a histogram
of the distribution of ages among your turtles with the histogram−from command, like this:

histogram−from turtles [age]

If the data you want to histogram don't come from an agentset but from a list of numbers, use the
histogram−list command instead.

Note that using the histogram commands doesn't automatically switch the current plot pen to bar
mode. If you want bars, you have to set the plot pen to bar mode yourself. (As we said before, you
can change a pen's default mode by editing the plot in the Interface tab.)

The width of the bars in a histogram is controlled by the plot pen's interval. You can set a plot pen's
default interval by editing the plot in the Interface tab. You can also change the interval temporarily

NetLogo 3.0 User Manual

Programming Guide 95

with the set−plot−pen−interval command or the set−histogram−num−bars. If you use the
latter command, NetLogo will set the interval appropriately so as to fit the specified number of bars
within the plot's current x range.

Code Example: Histogram Example

Clearing and resetting

You can clear the current plot with the clear−plot command, or clear every plot in your model
with clear−all−plots. The clear−all command also clears all plots, in addition to clearing
everything else in your model.

If you only want to remove only the points that the current plot pen has drawn, use
plot−pen−reset.

When a whole plot is cleared, or when a pen is reset, that doesn't just remove the data that has
been plotted. It also restores the plot or pen to its default settings, as they were specified in the
Interface tab when the plot was created or last edited. Therefore, the effects of such commands as
set−plot−x−range and set−plot−pen−color are only temporary.

Autoplotting

By default, all NetLogo plots have the "autoplotting" feature enabled. This means that if the model
tries to plot a point which is outside the current displayed range, the range of the plot will grow along
one or both axes so that the new point is visible.

In the hope that the ranges won't have to change every time a new point is added, when the ranges
grow they leave some extra room: 25% if growing horizontally, 10% if growing vertically.

If you want to turn off this feature, edit the plot and uncheck the Autoplot checkbox. At present, it is
not possible to enable or disable this feature only on one axis; it always applies to both axes.

Temporary plot pens

Most plots can get along with a fixed number of pens. But some plots have more complex needs;
they may need to have the number of pens vary depending on conditions. In such cases, you can
make "temporary" plot pens from code and then plot with them. These pens are called "temporary"
because they vanish when the plot is cleared (by the clear−plot, clear−all−plots, or
clear−all commands).

To create a temporary plot pen, use the create−temporary−plot−pen command. Once the pen
has been created, you can use it like any ordinary pen. By default, the new pen is down, is black in
color, has an interval of 1.0, and plots in line mode. Commands are available to change all of these
settings; see the Plotting section of the Primitives Dictionary.

Conclusion

Not every aspect of NetLogo's plotting system has been explained here. See the Plotting section of
the Primitives Dictionary for information on additional commands and reporters related to plotting.

NetLogo 3.0 User Manual

96 Programming Guide

Many of the Sample Models in the Models Library illustrate various advanced plotting techniques.
Also check out the following code examples:

Code Examples: Plot Axis Example, Plot Smoothing Example

Strings

To input a constant string in NetLogo, surround it with double quotes.

The empty string is written by putting nothing between the quotes, like this: "".

Most of the list primitives work on strings as well:

butfirst "string" => "tring"
butlast "string" => "strin"
empty? "" => true
empty? "string" => false
first "string" => "s"
item 2 "string" => "r"
last "string" => "g"
length "string" => 6
member? "s" "string" => true
member? "rin" "string" => true
member? "ron" "string" => false
position "s" "string" => 0
position "rin" "string" => 2
position "ron" "string" => false
remove "r" "string" => "sting"
remove "s" "strings" => "tring"
replace−item 3 "string" "o" => "strong"
reverse "string" => "gnirts"

A few primitives are specific to strings, such as is−string?, substring, and word:

is−string? "string" => true
is−string? 37 => false
substring "string" 2 5 => "rin"
word "tur" "tle" => "turtle"

Strings can be compared using the =, !=, <, >, <=, and >= operators.

To concatenate strings, that is, combine them into a single string, you can also use the + (plus)
operator, like this:

"tur" + "tle" => "turtle"

If you need to embed a special character in a string, use the following escape sequences:

\n = newline•
\t = tab•
\" = double quote•
\\ = backslash•

NetLogo 3.0 User Manual

Programming Guide 97

Output

This section is about output to the screen. Output to the screen can also be later saved to a file
using the export−output command. If you need a more flexible method of writing data to external
files, see the next section, File I/O.

The basic commands for generating output to the screen in NetLogo are print, show, type, and
write. These commands send their output to the Command Center.

For full details on these four commands, see their entries in the Primitives Dictionary. Here is how
they are typically used:

print is useful in most situations.•
show lets you see which agent is printing what.•
type lets you print several things on the same line.•
write lets you print values in a format which can be read back in using file−read.•

A NetLogo model may optionally have an "output area" in its Interface tab, separate from the
Command Center. To send output there instead of the Command Center, use the output−print,
output−show, output−type, and output−write commands.

The output area can be cleared with the clear−output command and saved to a file with
export−output. The contents of the output area will be saved by the export−world command. The
import−world command will clear the output area and set its contents to the value in imported world
file. It should be noted that large amounts of data being sent to the output area can increase the
size of your exported worlds.

If you use output−print, output−show, output−type, output−write, clear−output, or export−output in a
model which does not have a separate output area, then the commands apply to the output portion
of the Command Center.

File I/O

In NetLogo, there is a set of primitives that give you the power to interact with outside files. They all
begin with the prefix file−.

There are two main modes when dealing with files: reading and writing. The difference is the
direction of the flow of data. When you are reading in information from a file, data that is stored in
the file flows into your model. On the other hand, writing allows data to flow out of your model and
into a file.

When a NetLogo model runs as an applet within a web browser, it will only be able to read data
from files which are in the same directory on the server as the model file. Applets cannot write to
any files.

When working with files, always begin by using the primitive file−open. This specifies which file
you will be interacting with. None of the other primitives work unless you open a file first.

The next file− primitive you use dictates which mode the file will be in until the file is closed, reading
or writing. To switch modes, close and then reopen the file.

NetLogo 3.0 User Manual

98 Programming Guide

The reading primitives include file−read, file−read−line, file−read−characters, and
file−at−end? Note that the file must exist already before you can open it for reading.

Code Examples: File Input Example

The primitives for writing are similar to the primitives that print things in the Command Center,
except that the output gets saved to a file. They include file−print, file−show, file−type,
and file−write. Note that you can never "overwrite" data. In other words, if you attempt to write
to a file with existing data, all new data will be appended to the end of the file. (If you want to
overwrite a file, use file−delete to delete it, then open it for writing.)

Code Examples: File Output Example

When you are finished using a file, you can use the command file−close to end your session
with the file. If you wish to remove the file afterwards, use the primitive file−delete to delete it.
To close multiple opened files, one needs to first select the file by using file−open before closing
it.

;; Open 3 files
file−open "myfile1.txt"
file−open "myfile2.txt"
file−open "myfile3.txt"

;; Now close the 3 files
file−close
file−open "myfile2.txt"
file−close
file−open "myfile1.txt"
file−close

Or, if you know you just want to close every file, you can use file−close−all.

Two primitives worth noting are file−write and file−read . These primitives are designed to
easily save and retrieve NetLogo constants such as numbers, lists, booleans, and strings. file−write
will always output the variable in such a manner that file−read will be able to interpret it correctly.

file−open "myfile.txt" ;; Opening file for writing
ask turtles
 [file−write xcor file−write ycor]
file−close

file−open "myfile.txt" ;; Opening file for reading
ask turtles
 [setxy file−read file−read]
file−close

Code Examples: File Input Example and File Output Example

Letting the user choose

NetLogo 3.0 User Manual

Programming Guide 99

The user−choose−directory, user−choose−file, and user−choose−new−file primitives are useful
when you want the user to choose a file or directory for your code to operate on.

Movies

This section describes how to capture a QuickTime movie of a NetLogo model.

First, use the movie−start command to start a new movie. The filename you provide should end
with .mov, the extension for QuickTime movies.

To add a frame to your movie, use either movie−grab−view or movie−grab−interface,
depending on whether you want the movie to show just the current view, or the entire Interface tab.
In a single movie, you must use only one movie−grab− primitive or the other; you can't mix them.

When you're done adding frames, use movie−close.

;; export a 30 frame movie of the view
setup
movie−start "out.mov"
movie−grab−view ;; show the initial state
repeat 30
[go
 movie−grab−view]
movie−close

By default, a movie will play back at 15 frames per second. To make a movie with a different frame
rate, call movie−set−frame−rate after movie−start but before grabbing any frames.

To check the frame rate of your movie, or to see how many frames you've grabbed, call
movie−status, which reports a string that describes the state of the current movie.

To throw away a movie and delete the movie file, call movie−cancel.

NetLogo movies are exported as uncompressed QuickTime files. To play a QuickTime movie, you
can use QuickTime Player, a free download from Apple.

Since the movies are not compressed, they can take up a lot of disk space. You will probably want
to compress your movies with third−party software. The software may give you a choice of different
kinds of compression. Some kinds of compression are lossless, while others are lossy. "Lossy"
means that in order to make the files smaller, some of the detail in the movie is lost. Depending on
the nature of your model, you may want to avoid using lossy compression, for example if the view
contains fine pixel−level detail.

Code Example: Movie Example

Perspective

The 2D and the 3D view show the world from the perspective of the observer. By default the
observer is looking down on the world from the positive z−axis at the origin. You can change the

NetLogo 3.0 User Manual

100 Programming Guide

http://www.apple.com/quicktime/download/

perspective of the obeserver by using the follow, ride and watch observer commands and
follow−me, ride−me and watch−me turtle commands. When in follow or ride mode the observer
moves with the subject agent around the world. The difference between follow and ride is only
visible in the 3D view. In the 3D view the user can change the distance behind the agent using the
mouse. When the observer is following at zero distance from the agent it is actually riding the agent.
When the observer is in watch mode it tracks the movements of one turtle without moving. In both
views you will see a spotlight appear on the subject and in the 3D view the observer will turn to face
the subject. To determine which agent is the focus you can use the subject reporter.

Code Example: Perspective Example

Turtle Pens

In past versions of NetLogo when turtles had their pen down they changed the pcolor of the patch
below them. We have improved NetLogo's support for drawing as in more traditional logos. Turtles
have, by default, a one pixel wide pen that draws (or erases) in a separate layer between the
turtles and the patches. Turtles draw in their own color. The the size of the pen is variable and can
be set using the pen−size turtle variable. Turtles can stamp an image of their current shape into
this layer using the stamp command.To remove lines and stamps turtles need only to switch to
pen−erase mode using the pe command. You can import images directly into the drawing using the
import−drawing command.

There are still some features present in many logos but not in NetLogo and some features work
differently in NetLogo.

Features that are not supported:

flood−color or fill − fill the enclosed area with the pen color•
screen−color, bgcolor or setbg − set the background color (the same effect can be achieved
by ask patches [set pcolor blue])

•

reverse−lines•
refresh mode − Some logos allow the user to back−up the movement of the turtle. NetLogo
does not track the movements of turtles

•

WINDOW and FENCE − these are anlogous to infinite plane and bounded world topologies,
which we hope to add in a future version.

•

Features that work differently:

When turtles are created in NetLogo the default mode is pen−up instead of pen−down.•
Clearing − See clear−all, clear−drawing•

NetLogo 3.0 User Manual

Programming Guide 101

NetLogo 3.0 User Manual

102 Programming Guide

Shapes Editor Guide
The Shapes Editor allows you to create and save turtle designs. NetLogo uses fully scalable and
rotatable vector shapes, which means it lets you create designs by combining basic geometric
elements, which can appear on−screen in any size or orientation.

Getting Started

To begin making shapes, choose Shapes Editor in the Tools menu. A new window will open listing
all the shapes currently in the model, beginning with default, the default shape. The Shapes Editor
allows you to edit shapes, create new shapes, and borrow shapes from a library or from another
model.

Importing Shapes

Every new model in NetLogo starts off containing a small core set of frequently used shapes. Many
more shapes are available by using the Import from library... button. This brings up a dialog where
you can select one or more shapes and bring them into your model. Select the shapes, then press
the Import button.

Similarly, you can use the Import from model... button to borrow shapes from another model.

Default shapes

Here are the shapes that are included by default in every new NetLogo model:

First row: default, airplane, arrow, box, bug, butterfly, car
Second row: circle, circle 2, cow, face happy, face neutral, face sad, fish
Third row: flag, flower, house, leaf, line, pentagon, person
Fourth row: plant, square, square 2, star, target, tree, triangle
Fifth row: triangle 2, truck, turtle, wheel, x

Shapes Editor Guide 103

Shapes library

And here are the shapes in the shapes library (including all of the default shapes, too):

Creating and Editing Shapes

Pressing the New button will make a new shape. Or, you may select an existing shape and press
Edit.

NetLogo 3.0 User Manual

104 Shapes Editor Guide

Tools

In the upper left corner of the editing window is a group of drawing tools. The arrow is the selection
tool, which selects an already drawn element.

To draw a new element, use one of the other seven tools:

The line tool draws line segments.•
The circle, square, and polygon tools come in two versions, solid and outline.•

When using the polygon tool, click the mouse to add a new segment to the polygon. When you're
done adding segments, double click.

After you draw a new element, it is selected, so you can move, delete, or reshape it if you want:

To move it, drag it with the mouse•
To delete it, press the Delete button.•
To reshape it, drag the small "handles" that appear on the element only when it is selected.•
To change its color, click on the new color.•

Previews

As you draw your shape, you will also see it in five smaller sizes in the five preview areas found
near the bottom of the editing window. The previews show your shape as it might appear in your
model, including how it looks as it rotates. The number below each preview is the size of the
preview in pixels. When you edit the view, patch size is also measured in pixels. So for example, the
preview with "20" below it shows you how your shape would look on a turtle (of size 1) on patches
of size 20 pixels.

The rotatable feature can be turned off if you want a shape that always faces the same way,
regardless of the turtle's heading.

Overlapping Shapes

New elements go on top of previous elements. You can change the layering order by selecting an
element and then using the Bring to front and Send to back buttons.

Undo

At any point you can use the Undo button to undo the edit you just performed.

Colors

Elements whose color matches the Color that changes (selected from a drop−down menu −− the
default is gray) will change color according to the value of each turtle's color variable in your model.
Elements of other colors don't change. For example, you could create cars that always have yellow
headlights and black wheels, but different body colors.

NetLogo 3.0 User Manual

Shapes Editor Guide 105

Other buttons

The "Rotate Left" and "Rotate Right" buttons rotate elements by 90 degrees. The "Flip Horizontal"
and "Flip Vertical" buttons reflect elements across the axes.

These four buttons will rotate or flip the entire shape, unless an element is selected, in which case
only that element is affected.

These buttons are especially handy in conjunction with the "Duplicate" button if you want to make
shapes that are symmetrical. For example, if you were making a butterfly, you could draw the
butterfly's left wing with the polygon tool, then duplicate the wing with the "Duplicate" button, then
turn the copy into a right wing with the "Flip Horizontal" button.

Shape Design

It's tempting to draw complicated, interesting shapes, but remember that in most models, the patch
size is so small that you won't be able to see very much detail. Simple, bold, iconic shapes are
usually best.

Keeping a Shape

When the shape is done, give it a name and press the Done button at the bottom of the editing
window. The shape and its name will now be included in the list of shapes along with the "default"
shape.

Using Shapes in a Model

In the model's code or in the command center, you can use any of the shapes that are in the model.
For example, suppose you want to create 50 turtles with the shape "rabbit". Provided there is some
shape called rabbit in this model, give this command to the observer in the command center:

O> crt 50

And then give these commands to the turtles to spread them out, then change their shape:

T> fd random 15
T> set shape "rabbit"

Voila! Rabbits! Note the use of double quotes around the shape name. Shape names are strings.

The set−default−shape command is also useful for assigning shapes to turtles.

NetLogo 3.0 User Manual

106 Shapes Editor Guide

BehaviorSpace Guide
This guide has three parts:

What is BehaviorSpace?: A general description of the tool, including the ideas and
principles behind it.

•

How It Works: Walks you through how to use the tool and highlights its most commonly
used features.

•

Advanced Usage: How to use BehaviorSpace from the command line, or from your own
Java code.

•

What is BehaviorSpace?

BehaviorSpace is a software tool integrated with NetLogo that allows you to perform experiments
with models. It runs a model many times, systematically varying the model's settings and recording
the results of each model run. This process is sometimes called "parameter sweeping". It lets you
explore the model's "space" of possible behaviors and determine which combinations of settings
cause the behaviors of interest.

Why BehaviorSpace?

The need for this type of experiment is revealed by the following observations. Models often have
many settings, each of which can take a range of values. Together they form what in mathematics is
called a parameter space for the model, whose dimensions are the number of settings, and in which
every point is a particular combination of values. Running a model with different settings (and
sometimes even the same ones) can lead to drastically different behavior in the system being
modeled. So, how are you to know which particular configuration of values, or types of
configurations, will yield the kind of behavior you are interested in? This amounts to the question of
where in its huge, multi−dimension parameter space does your model perform best?

For example, suppose you want speedy synchronization from the agents in the Fireflies model. The
model has four sliders −− number, cycle−length, flash−length and number−flashes −− that have
approximately 2000, 100, 10 and 3 possible values, respectively. That means there are 2000 * 100 *
10 * 3 = 600,000 possible combinations of slider values! Trying combinations one at a time is hardly
an efficient way to learn which one will evoke the speediest synchronization.

BehaviorSpace offers you a much better way to solve this problem. If you specify a subset of values
from the ranges of each slider, it will run the model with each possible combination of those values
and, during each model run, record the results. In doing so, it samples the model's parameter space
−− not exhaustively, but enough so that you will be able to see relationships form between different
sliders and the behavior of the system. After all the runs are over, a dataset is generated which you
can open in a different tool, such as a spreadsheet, database, or scientific visualization application,
and explore.

By enabling you to explore the entire "space" of behaviors a model can exhibit, BehaviorSpace can
be a powerful assistant to the modeler.

BehaviorSpace Guide 107

Historical Note

Old versions of NetLogo (prior to 2.0) included an earlier version of the BehaviorSpace tool. That
version was much different. It wasn't nearly as flexible in the kinds of experiments it let you set up.
But, it had facilities for display and analyzing experiment results that are missing from the current
version. With the current version, it is assumed that you will use other software to analyze your
results. We hope to re−add data display and analysis facilities to a future version of BehaviorSpace.

How It Works

To begin using BehaviorSpace, open your model, then choose the BehaviorSpace item on
NetLogo's Tools menu.

Managing experiment setups

The dialog that opens lets you create, edit, duplicate, delete, and run experiment setups.
Experiments are listed by name and how by model runs the experiment will consist of.

Experiment setups are considered part of a NetLogo model and are saved as part of the model.

To create a new experiment setup, press the "New" button.

Creating an experiment setup

In the new dialog that appears, you can specify the following information. Note that you don't always
need to specify everything; some parts can be left blank, or left with their default values, depending
on your needs.

Experiment name: If you have multiple experiments, giving them different names will help you
keep them straight.

Vary variables as follows: This is where you specify which settings you want varied, and what
values you want them to take. Variables can include sliders, switches, choosers, and any global
variables in your model.

Variables can also include screen−edge−x and screen−edge−y, and random−seed. These are
not, strictly speaking, variables, but BehaviorSpace lets you vary them as if they were. Varying
screen−edge−x/y lets you explore the effect of world size upon your model. Varying
random−seed lets you repeat runs by using a known seed for the NetLogo random number
generator. Note that you're also free to use the random−seed command in your experiment's setup
commands. For more information on random seeds, see the Random Numbers section of the
Programmer's Guide.

You may specify values either by listing the values you want used, or by specifying that you want to
try every value within a given range. For example, to give a slider named number every value from
100 to 1000 in increments of 50, you would enter:

["number" [100 50 1000]]

NetLogo 3.0 User Manual

108 BehaviorSpace Guide

Or, to give it only the values of 100, 200, 400, and 800, you would enter:

["number" 100 200 400 800]

Be careful with the brackets here. Note that there are fewer square brackets in the second example.
Including or not including this extra set of brackets is how you tell BehaviorSpace whether you are
listing individual values, or specifying a range.

Also note that the double quotes around the variable names are required.

You can vary as many settings as you want, including just one, or none at all. Any settings that you
do not vary will retain their current values. Not varying any settings is useful if you just want to do
many runs with the current settings.

What order you list the variables in determines what order the runs will be done in. All values for a
later variable will be tried before moving to the next value for an earlier variable. So for example if
you vary both x and y from 1 to 3, and x is listed first, then the order of model runs will be: x=1 y=1,
x=1 y=2, x=1 y=3, x=2 y=1, and so on.

Repetitions: Sometimes the behavior of a model can vary a lot from run to run even if the settings
don't change, if the model uses run numbers. If you want to run the model more than once at each
combination of settings, enter a higher number here than one.

Measure runs using these reporters: This is where you specify what data you want to collect from
each run. For example, if you wanted to record how the population of turtles rose and fell during
each run, you would enter:

count turtles

You can enter one reporter, or several, or none at all. If you enter several, each reporter must be on
a line by itself, for example:

count frogs
count mice
count birds

If you don't enter any reporters, the runs will still take place. This is useful if you want to record the
results yourself your own way, such as with the export−world command.

Measure runs at every tick: Normally NetLogo will measure model runs at every tick, using the
reporters you entered in the previous box. If you're doing very long model runs, you might not want
all that data. Uncheck this box if you only want to measure each run after it ends.

Setup commands: These commands will be used to begin each model run. Typically, you will enter
the name of a procedure that sets up the model, typically setup. But it is also possible to include
other commands as well.

NetLogo 3.0 User Manual

BehaviorSpace Guide 109

Go commands: These commands will be run over and over again to advance to the model to the
next "tick". Typically, this will be the name of a procedure, such as go, but you may include any
commands you like.

Stop condition: This lets you do model runs of varying length, ending each run when a certain
condition becomes true. For example, suppose you wanted each run to last until there were no
more turtles. Then you would enter:

not any? turtles

If you want the length of runs to all be of a fixed length, just leave this blank.

Final commands: These are any extra commands that you want run once, when the run ends.
Usually this is left blank, but you might use it to call the export−world command or record the
results of the run in some other way.

Time limit: This lets you set a fixed maximum length for each run. If you don't want to set any
maximum, but want the length of the runs to be controlled by the stop condition instead, enter 0.

Running an experiment

When you're done setting up your experiment, press the "OK" button, followed by the "Run" button.

You will be prompted to select the formats you would like the data from your experiment saved in.
Data is collected for each interval, run or tick, according to the setting of Measure runs at every
tick option.

Table format lists each interval in a row, with each metric in a separate column. Table data is written
to the output file as each run completes. Table format is suitable for automated processing of the
data, such as importing into a database or a statistics package.

Spreadsheet format calculates the min, mean, max, and final values for each metric, and then lists
each interval in a row, with each metric in a separate column. Spreadsheet data is more
human−readable than Table data, especially if imported into a spreadsheet application.

(Note however that spreadsheet data is not written to the results file until the experiment finishes.
Since spreadsheet data is stored in memory until the experiment is done, very large experiments
could run out of memory. And if anything interrupts the experiment, such as a runtime error, running
out of memory, or a crash or power outage, no results will be written. For long experiments, you
may want to use both spreadsheet and table formats so that if something happens you'll at least get
a table of partial results.)

After selecting your output formats, BehaviorSpace will prompt you for the name of a file to save the
results to. The default name ends in ".csv". You can change it to any name you want, but don't
leave off the ".csv" part; that indicates the file is a Comma Separated Values (CSV) file. This is a
plain−text data format that is readable by any text editor as well as by most popular spreadsheet
and database programs.

NetLogo 3.0 User Manual

110 BehaviorSpace Guide

A dialog will appear, titled "Running Experiment". In this dialog, you'll see a progress report of how
many runs have been completed so far and how much time has passed. If you entered any
reporters for measuring the runs, and if you left the "Measure runs at every tick" box checked, then
you'll see a plot of how they vary over the course of each run.

You can also watch the runs in the main NetLogo window. (If the "Running Experiment" dialog is in
the way, just move it to a different place on the screen.) The view and plots will update as the model
runs. If you don't need to see them update, then use the checkboxes in the "Running Experiment"
dialog to turn the updating off. This will make the experiment go faster.

If you want to stop your experiment before it's finished, press the "Abort" button. But note that you'll
lose any results that were generated up to that point.

When all the runs have finished, the experiment is complete.

Advanced usage

Running from the command line

It is possible to run BehaviorSpace experiments "headless", that is, from the command line, without
any graphical user interface (GUI). This is useful for automating runs on a single machine or a
cluster of machines.

No Java programming is required. Experiment setups can be created in the GUI and then run later
from the command line, or, if you prefer, you can create or edit experiment setups directly using
XML.

It is easiest if you create your experiment setup ahead of time in the GUI, so it is saved as part of
the model. To run an experiment setup saved in a model, here is an example command line:

java −Xmx512M −cp NetLogo.jar \
 org.nlogo.headless.HeadlessWorkspace \
 −−model Fire.nlogo \
 −−experiment experiment1

After the named experiment has run, the results are sent to standard output in CSV format. If you
want to send the results to a file instead, add the −−results flag and a pathname, e.g.:

java −Xmx512M −cp NetLogo.jar \
 org.nlogo.headless.HeadlessWorkspace \
 −−model Fire.nlogo \
 −−experiment experiment1 \
 −−results results.csv

When running the HeadlessWorkspace class as an application, it forces the system property
java.awt.headless to be true. This tells Java to run in headless mode, allowing NetLogo to run
on machines when a graphical display is not available.

Note the use of −Xmx to specify a maximum heap size of 512 megabytes. If you don't specify a
maximum heap size, you will get your VM's default size, which may be unusably small. (512
megabytes is an arbitrary size which should be more than large enough for most models; you can
specify a different limit if you want.)

NetLogo 3.0 User Manual

BehaviorSpace Guide 111

The −−model argument is used to specify the model file you want to open.

The −−experiment argument is used to specify the name of the experiment you want to run. (At
the time you create an experiment setup in the GUI, you assign it a name.)

Here's another example that shows some additional, optional arguments:

java −Xmx512M −cp NetLogo.jar \
 org.nlogo.headless.HeadlessWorkspace \
 −−model Fire.nlogo \
 −−experiment experiment2 \
 −−screen−edge−x 100 \
 −−screen−edge−y 100 \
 −−no−results

Note the use of the optional −−screen−edge−x and screen−edge−y arguments to specify a
different world size than that saved in the model. (It's also possible for the experiment setup to
specify values for screen−edge−x and screen−edge−y; if they are specified by the experiment
setup, then there is no need to specify them on the command line.)

Note also the use of the optional −−no−results argument to specify that no output is to be
generated. This is useful if the experiment setup generates all the output you need by some other
means, such as exporting world files or writing to a text file.

Yet another example:

java −Xmx512M −cp NetLogo.jar \
 org.nlogo.headless.HeadlessWorkspace \
 −−model Fire.nlogo \
 −−experiment experiment2 \
 −−table table−output.csv \
 −−spreadsheet spreadsheet−output.csv

The optional −−table <filename> argument specifies that output should be generated in a table
format and written to the given file as CSV data. If − is specified as the filename, than the output is
sent to the standard system output stream. Table data is written as it is generated, with each
complete run.

The optional −−spreadhseet <filename> argument specified that spreadsheet output should
be generated and written to the given file as CSV data. If − is specified as the filename, than the
output is sent to the standard system output stream. Spreadsheet data is not written out until all
runs in the experiment are finished.

Note that it is legal to specify both −−table and −−spreadsheet, and if you do, both kinds of
output file will be generated.

The default output behavior, when no output formats are specified, is to send table output to the
system standard output stream.

Here is one final example that shows how to run an experiment setup which is stored in a separate
XML file, instead of in the model file:

java −Xmx512M −cp NetLogo.jar \
 org.nlogo.headless.HeadlessWorkspace \

NetLogo 3.0 User Manual

112 BehaviorSpace Guide

 −−model Fire.nlogo \
 −−setup−file fire−setups.xml \
 −−experiment experiment3

If the XML file contains more than one experiment setup, it is necessary to use the −−experiment
argument to specify the name of the setup to use.

The next section has information on how to create standalone experiment setup files using XML.

Setting up experiments in XML

We don't yet have detailed documentation on authoring experiment setups in XML, but if you
already have some familiarity with XML, then the following pointers may be enough to get you
started.

The structure of BehaviorSpace experiment setups in XML is determined by a Document Type
Definition (DTD) file. The DTD is stored in NetLogo.jar, as system/behaviorspace.dtd. (JAR
files are also zip files, so you can extract the DTD from the JAR using Java's "jar" utility or with any
program that understands zip format.)

The easiest way to learn what setups look like in XML, though, is to author a few of them in
BehaviorSpace's GUI, save the model, and then examine the resulting .nlogo file in a text editor.
The experiment setups are stored towards the end of the .nlogo file, in a section that begins and
ends with a experiments tag. Example:

<experiments>
 <experiment name="experiment" repetitions="10" runMetricsEveryTick="true">
 <setup>setup</setup>
 <go>go</go>
 <exitCondition>not any? fires</exitCondition>
 <metric>burned−trees</metric>
 <enumeratedValueSet variable="density">
 <value value="40"/>
 <value value="0.1"/>
 <value value="70"/>
 </enumeratedValueSet>
 </experiment>
</experiments>

In this example, only one experiment setup is given, but you can put as many as you want between
the beginning and ending experiments tags.

Between looking at the DTD, and looking at examples you create in the GUI, it will hopefully be
apparent how to use the tags to specify different kind of experiments. The DTD specifies which tags
are required and which are optional, which may be repeated and which may not, and so forth.

When XML for experiment setups is included in a model file, it does not begin with any XML
headers, because not the whole file is XML, only part of it. If you keep experiment setups in their
own file, separate from the model file, then the extension on the file should be .xml not .nlogo, and
you'll need to begin the file with proper XML headers, as follows:

<?xml version="1.0" encoding="us−ascii"?>
<!DOCTYPE experiments SYSTEM "behaviorspace.dtd">

NetLogo 3.0 User Manual

BehaviorSpace Guide 113

The second line must be included exactly as shown. In the first line, you may specify a different
encoding than us−ascii, such as UTF−8, but NetLogo doesn't support non−ASCII characters in
most situations, so specifying a different encoding may be pointless.

Controlling API

If BehaviorSpace is not sufficient for your needs, a possible alternative is to use our Controlling API,
which lets you write Java code that controls NetLogo. The API lets you run BehaviorSpace
experiments from Java code, or, you can write custom code that controls NetLogo more directly to
do BehaviorSpace−like things. See the Controlling section of the User Manual for further details on
both possibilities.

Conclusion

BehaviorSpace is still under development. We'd like to hear from you about what what additional
features would be useful to you in your work. Please write us at feedback@ccl.northwestern.edu.

NetLogo 3.0 User Manual

114 BehaviorSpace Guide

mailto:feedback@ccl.northwestern.edu

HubNet Guide
This section of the User Manual introduces the HubNet system and includes instructions to set up
and run a HubNet activity.

HubNet is a technology that lets you use NetLogo to run participatory simulations in the classroom.
In a participatory simulation, a whole class takes part in enacting the behavior of a system as each
student controls a part of the system by using an individual device, such as a networked computer
or TI−83+ calculator.

For example, in the Gridlock simulation, each student controls a traffic light in a simulated city. The
class as a whole tries to make traffic flow efficiently through the city. As the simulation runs, data is
collected which can afterwards be analyzed on a computer or calculator.

For more information on participatory simulations and their learning potential, please visit the
Participatory Simulations Project web site.

Understanding HubNet

NetLogo

NetLogo is a programmable modeling environment. It comes with a large library of existing
simulations, both participatory and traditional, that you can use and modify. Content areas include
social science and economics, biology and medicine, physics and chemistry, and mathematics and
computer science. You and your students can also use it to build your own simulations. For more
about NetLogo, see the NetLogo Users Manual.

In traditional NetLogo simulations, the simulation runs according to rules that the simulation author
specifies. HubNet adds a new dimension to NetLogo by letting simulations run not just according to
rules, but by direct human participation.

Since HubNet builds upon NetLogo, we recommend that before trying HubNet for the first time, you
become familiar with the basics of NetLogo. To get started using NetLogo models, see Tutorial #1:
Running Models in the NetLogo Users Manual.

HubNet Architecture

HubNet simulations are based on a client−server architecture. The activity leader uses the NetLogo
application to run a HubNet activity. When NetLogo is running a HubNet activity, we refer to it as a
HubNet server. Participants use a client application to log in and interact with the HubNet server.

There are two types of HubNet available. With Computer HubNet, participants run the HubNet
Client application on computers connected by a regular computer network. In Calculator HubNet,
created in conjunction with Texas Instruments, participants use TI−83+ graphing calculators as
clients which communicate via the TI−Navigator system.

We hope to add support for other types of clients such as cell phones and PDA's (Personal Digital
Assistants).

HubNet Guide 115

http://ccl.northwestern.edu/partsims.html

Computer HubNet

Activities

The following activities are available in the Models Library, in the Computer HubNet Activities folder.
For many models, you will find a discussion of its educational goals and suggested ways to
incorporate it into your classroom in the Participatory Simulations Guide on the Participatory
Simulations Project web site. More information can also be found in the Information Tab in each
model.

Disease −− A disease spreads through the simulated population of students.•
Gridlock −− Students use traffic lights to control the flow of traffic through a city.•
Polling −− Ask students questions and plot their answers.•
Tragedy of the Commons −− Students work as farmers sharing a common resource.•

Requirements

To use Computer HubNet, you need a networked computer with NetLogo installed for the activity
leader, and a networked computer with NetLogo installed for each participant. We also suggest an
attached projector for the leader to project the entire simulation to the participants.

Starting an activity

You'll find the HubNet activities in NetLogo's Models Library, in the HubNet Computer Activities
folder. We suggest doing a few practice runs of an activity before trying it in front of a class.

Open a Computer HubNet model. NetLogo will prompt you to enter the name of your new HubNet
session. This is the name that participants will use to identify this activity. Enter a name and press
Start.

NetLogo will open the HubNet Control Center, which lets you interact with the HubNet server.

In each activity, you'll see a box on the screen labeled "QuickStart Instructions". This contains step
by step instructions to run the activity. Click the "Next>>>" button to advance to the next instruction.

You, as the leader, should then notify everyone that they may join. To join the activity, participants
launch the HubNet Client application and enter their name. They should see your activity listed and
can join your activity by selecting it and pressing Enter. If the activity you started is not listed the
student can enter the server address manually which can be found in the HubNet Control Center.

NetLogo 3.0 User Manual

116 HubNet Guide

http://ccl.northwestern.edu/partsims.html
http://ccl.northwestern.edu/partsims.html

HubNet Control Center

The HubNet Control Center lets you interact with the HubNet server. It displays the name, activity,
address and port number of your server. The "Mirror 2D View" checkbox controls whether the
HubNet participants can see the view on their clients, assuming there is a view in the client setup.
The "Mirror plots" checkbox controls whether participants will receive plot information.

The client list on the right displays the names of clients that are currently connected to you activity.
To remove a participant from the activity, select their name in the list and press the Kick button. To
launch your own HubNet client press the Local button, this is particularly useful when you are
debugging an activity.

The lower part of the Control Center displays messages when a participant joins or leaves the
activity. To broadcast a message to all the participants, click on the field at the bottom, type your
message and press Broadcast Message.

Troubleshooting

I started a HubNet activity, but when participants open a HubNet Client, my activity isn't
listed.

On some networks, the HubNet Client cannot automatically detect a HubNet server. Tell your
participants to manually enter the server name and port of your HubNet server, which appear in the
HubNet Control Center.

Note: The technical details on this are as follows. In order for the client to detect the server,
multicast routing must be available between them. Not all networks support multicast routing. In

NetLogo 3.0 User Manual

HubNet Guide 117

particular, networks that use the IPsec protocol typically do not support multicast. The IPsec
protocol is used on many virtual private networks (VPN's).

When a participant tries to connect to my activity, nothing happens after they click Enter.

If your computer or network has a firewall, it may be impeding the HubNet server from
communicating. Make sure that your computer and network are not blocking ports used by the
HubNet server (ports 9173 − 9180).

The view on the HubNet client is grey.

Verify that the "Mirror 2D view" checkbox in the HubNet Control Center is selected.•
Make sure that the display switch in the model is on.•
The view on the server must be exactly the same size as on the client. If you changed the
size of the view on the HubNet server, you need to restore it to its original dimensions.

•

There is no view on the HubNet client.

Some activities don't have a view on the client.

I can't quit a HubNet client.

You will have to force the client to quit. On OS X, force quit the application by selecting Force Quit...
in the Apple menu. On Windows, press Ctrl−Alt−Delete to open the Task Manager, select HubNet
Client and press End Task.

My computer went to sleep while running a HubNet activity. When I woke the computer up, I
got an error and HubNet wouldn't work anymore.

The HubNet server may stop working if the computer goes to sleep. If this happens, quit the
NetLogo application and start over. Change the settings on your computer so it won't sleep again.

My problem is not addressed on this page.

Please send us an email at feedback@ccl.northwestern.edu.

Known Limitations

If HubNet malfunctions, please send us an email at bugs@ccl.northwestern.edu.

Please note that:

HubNet has not yet been extensively tested with large numbers of clients (i.e. more than
about 25). Unexpected results may occur with more clients.

•

Out−of−memory conditions are not handled gracefully•
Sending large amounts of plotting messages to the clients can take a long time.•
NetLogo does not handle malicious clients in a robust manner (in other words, it is likely
vulnerable to denial−of−service type attacks).

•

Performance does not degrade gracefully over slow or unreliable network connections.•
If you are on a wireless network or sub−LAN, the IP address in the HubNet Control Center is•

NetLogo 3.0 User Manual

118 HubNet Guide

mailto:feedback@ccl.northwestern.edu
mailto:bugs@ccl.northwestern.edu

not always the entire IP address of the server.
Authoring new HubNet activities is more arcane and difficult than it should be.•
Computer HubNet has only been tested on LANs, and not on dial−up connections or WANs.•

Calculator HubNet

Requirements

To use Calculator HubNet, you need:

A computer with an attached projector. This computer will run NetLogo and project the
simulation for class viewing.

•

A classroom set of Texas Instruments TI−83+ graphing calculators.•
The TI−Navigator calculator network from Texas Instruments.•

NOTE: Calculator HubNet works with a prototype version of the TI−Navigator
system, and is not yet compatible with the commercially available version. To learn
more about the TI−Navigator system, please visit the Texas Instruments website.

We are actively working in partnership with Texas Instruments on integrating the new
TI−Navigator with Calculator HubNet. We expect to release a new version in the near
future.

For more information about Calculator HubNet, please refer to the Participatory Simulations Guide
which can be found on the Participatory Simulations Project web site.

Teacher workshops

For information on upcoming workshops and NetLogo and HubNet use in the classroom, please
contact us at feedback@ccl.northwestern.edu.

HubNet Authoring Guide

To learn about authoring or modifying HubNet activities, see the HubNet Authoring Guide.

Getting help

If you have any questions about Computer HubNet or Calculator HubNet, or need help getting
started, please email us at feedback@ccl.northwestern.edu.

NetLogo 3.0 User Manual

HubNet Guide 119

http://education.ti.com/us/product/tech/navigator/features/features.html
http://ccl.northwestern.edu/partsims.html
mailto:feedback@ccl.northwestern.edu
mailto:feedback@ccl.northwestern.edu

NetLogo 3.0 User Manual

120 HubNet Guide

HubNet Authoring Guide
This explains how to use NetLogo to modify the existing HubNet activities or build your own, new
HubNet activities.

General HubNet Information•
NetLogo Primitives

Setup♦
Data Extraction♦
Sending Data♦

•

Calculator HubNet Information•
Computer HubNet Information

How To Make an Interface for a Client♦
View Updates on the Clients♦
Plot Updates on the Clients♦
Clicking in the View on Clients♦
Text Area for Input and Display♦

•

General HubNet Information

If you are interested in more general information on what HubNet is or how to run HubNet activities,
you should refer to the HubNet Guide.

NetLogo Primitives

This section will introduce the set of primitives used to turn a NetLogo Model into a HubNet Activity.
These commands allow you to send data to and receive data from the clients.

Setup

In order to make a NetLogo model into a HubNet Activity, it is necessary to first indicate whether the
clients are computers or calculators and then establish a connection between the server (your
computer) and the clients (the students' calculators or computers) using the following primitives:

hubnet−set−client−interface client−type client−info
If client−type is "COMPUTER", client−info is a list containing a string with the file name and
path (relative to the model) to the file which will serve as the client's interface. This interface
will be sent to any clients that log in.

hubnet−set−client−interface "COMPUTER" ["clients/Disease client.nlogo"]
 ;; when clients log in, they will get the interface described in the file
 ;; Disease client.nlogo in the clients subdirectory of the model directory

This primitive must be called before you use any other HubNet primitives including
hubnet−reset so NetLogo knows which type of HubNet you are going to be using.

hubnet−reset
Starts up the HubNet system. HubNet must be started to use any of the other HubNet
primitives with the exception of hubnet−set−client−interface. HubNet remains
running as long as this model is open; it stops running when the model is closed or you quit
NetLogo.

HubNet Authoring Guide 121

If you are using Computer HubNet, you will be prompted for a session name. This is an
identifier to make servers discovered by the client uniquely identifiable.

These primitives are usually called from the startup procedure rather than setup of the NetLogo
model since they should only be called once in a model.

Data extraction

During the activity you will be transferring data between the HubNet clients and the server. The
following primitives allow you to extract data from the clients:

hubnet−message−waiting?
This looks for new information sent by the clients. It reports TRUE if there is new data, and
FALSE if there is not.

hubnet−fetch−message
If there is any new data sent by the clients, this retrieves the next piece of data, so that it can
be accessed by hubnet−message. This will cause an error if there is no new data from the
clients. So be sure to check for data with hubnet−message−waiting? before calling this.

hubnet−message−source
This reports the user name of the client that sent the data. This will cause an error if no data
has been fetched. So be sure to fetch the data with hubnet−fetch−message before
calling this.

hubnet−message−tag
This reports the tag that is associated with the data that was sent. For Calculator HubNet,
this will report one of the variable names set with the hubnet−set−client−interface
primitive. For Computer HubNet, this will report one of the Display Names of the interface
elements in the client interface. (See below for more information about the Computer
HubNet tags.) For both types of HubNet, this primitive will cause an error if no data has been
fetched. So be sure to fetch the data with hubnet−fetch−message before calling this.

hubnet−message
This reports the data collected by hubnet−fetch−message. This will cause an error if no
data has been fetched. So be sure to fetch the data with hubnet−fetch−message before
calling this.

There are two additional data extraction primitives that are only used in Computer HubNet models.

hubnet−enter−message?
Reports true if a new computer client just entered the simulation. Reports false otherwise.

hubnet−exit−message?
Reports true if a new computer client just exited the simulation. Reports false otherwise.

For both hubnet−enter−message? and hubnet−exit−message?, hubnet−message−source
will contain the user name of the client that just logged on or off. Also, if hubnet−message and
hubnet−message−tag are used while hubnet−enter−message? or hubnet−exit−message?
are true, a Runtime Error will be given.

Generally part of your go procedure will include checking for waiting messages and handling them.

to listen−clients
 while [hubnet−message−waiting?]
 [

NetLogo 3.0 User Manual

122 HubNet Authoring Guide

 hubnet−fetch−message
 ifelse hubnet−enter−message?
 [create−new−student]
 [
 ifelse hubnet−exit−message?
 [remove−student]
 [execute−command hubnet−message−tag]
]
]
end

Sending data

It is also possible to send data from NetLogo to the clients. For Calculator HubNet, NetLogo sends
the data to the Navigator server, and then the calculators can then access it. For Computer HubNet,
NetLogo is able to send the data directly to the clients.

The primitives for sending data to the server are:

hubnet−broadcast tag−name value
This broadcasts value from NetLogo to the variable, in the case of Calculator HubNet, or
interface element, in the case of Computer HubNet, with the name tag−name to all the
clients.

hubnet−broadcast−view
This broadcasts the current state of the 2D View in the NetLogo model to all the Computer
HubNet Clients. It does nothing for Calculator HubNet.

hubnet−send list−of−strings tag−name value
hubnet−send string tag−name value

When using Calculator HubNet this primitive acts in exactly the same manner as
hubnet−broadcast. For Computer HubNet, it has the following effects:

When string is the first input, this sends value from NetLogo to the tag tag−name on
the client that has string for a user name.

◊

When list−of−strings is the first input, this sends value from NetLogo to the tag
tag−name on all the clients that have a user name that is in the list−of−strings.

◊

All the information for the current state of the View is sent at this time, regardless of
whether the clients' Views were already up to date.

◊

Note: Sending a message to a non−existent client, using hubnet−send, generates a
hubnet−exit−message.

hubnet−send−view string
hubnet−send−view list−of−strings

For Calculator HubNet, does nothing.
For Computer HubNet, it acts as follows:

For a string, this sends the current state of the 2D View in the NetLogo model to the
Computer HubNet Client with string for its user name.

◊

For a list−of−strings, this sends the current state of the 2D View in the NetLogo
model to all the Computer HubNet clients that have a user name that is in the
list−of−strings.

◊

All the information for the current state of the view is sent at this time, regardless of
whether the clients' views were already up to date.

◊

Note: Sending the View to a non−existent client, using hubnet−send−view, generates a
hubnet−exit−message.

NetLogo 3.0 User Manual

HubNet Authoring Guide 123

When using Calculator HubNet the hubnet−send and the hubnet−broadcast primitives, take a
number, a string, a list of numbers, or a matrix (a list of lists) of numbers as the value input. When
using Computer HubNet, you may send any kind of information with the exceptions of patches,
turtles, and agentsets.

Here are some examples of using the two primitives to send various types of data that you can
send:

data type hubnet−broadcast example hubnet−send example
number hubnet−broadcast "A" 3.14 hubnet−send "jimmy" "A" 3.14

string
hubnet−broadcast "STR1"
"HI THERE"

hubnet−send ["12" "15"] "STR1"
"HI THERE"

list of numbers
hubnet−broadcast "L2" [1 2
3]

hubnet−send
hubnet−message−source "L2" [1 2
3]

matrix of
numbers

hubnet−broadcast "[A]" [[1
2] [3 4]]

hubnet−send "suzy" "[A]" [[1 2]
[3 4]]

list of strings
(only for
Computer
HubNet)

hubnet−broadcast
"user−names" [["jimmy"
"suzy"] ["bob" "george"]]

hubnet−send "teacher"
"user−names" [["jimmy" "suzy"]
["bob" "george"]]

Examples

Study the models in the "HubNet Computer Activities" and the "HubNet Calculator Activities"
sections of the Models Library to see how these primitives are used in practice in the Procedures
window. Disease is a good one with which to start.

Calculator HubNet Information

The calculators are able to send and receive the following data types from NetLogo:

Valid calculator lists, such as L1 or PLOTS•
Valid calculator matrices, such as [A] or [B]•
Valid calculator strings, such as Str1 or Str5•
Numbers, such as A or B•

The length of the list of numbers that a calculator sends depends on what information you want to
send to the NetLogo model. Further, how those numbers are interpreted by the model is also up to
you.

For more information on writing the calculator program portion of a HubNet Activity, please contact
us.

Saving

The data sent by calculators or NetLogo is saved in the order that the server receives the data.

NetLogo 3.0 User Manual

124 HubNet Authoring Guide

Computer HubNet Information

The following information is specific to Computer HubNet.

How To Make an Interface for a Client

Open a new model in NetLogo. Add any interface buttons, sliders, switches, monitors, plots,
choosers, or text boxes that you want in the Interface Tab. For buttons and monitors, you only need
to type a Display Name. Any code you write in the Code or Reporter sections will be ignored. The
Display Name you give to the interface element is the tag that is returned by the
hubnet−message−tag reporter in the NetLogo code.

For example, if in the Interface Tab of the client interface you had a button called "Move Left", a
slider called "step−size", a switch called "all−in−one−step?", and a monitor called "Location:", the
tags for these interface elements will be as follows:

interface element tag
Move Left Move Left

step−size step−size

all−in−one−step? all−in−one−step?

Location: Location:

Be aware that this causes the restriction that you can only have one interface element with a
specific name. Having more than one interface element with the same Display Name in the client
interface will cause unpredictable behavior. For instance, if we had a monitor called Milk Supply and
a plot named Milk Supply, when we send data to the client using the tag Milk Supply, the client will
just pick either the plot or the monitor to give the data to.

If you wish to have a View in the client for a model, the view in the client and the one in the NetLogo
model must have the same number of patches and the same patch size. If they do not, the view on
the client will not display information sent by the server.

If you wish to make a client without a view in the client, you will have to hand edit the file after you
have finished adding all the other interface elements in NetLogo. To do this, open the client file in a
text editor such as Notepad on Windows, or TextEdit on Macs. You should see a file that starts with
something similar to this:

; add model procedures here

@#$#@#$#@
GRAPHICS−WINDOW
321
10
636
325
17
17
9.0
1
10
0
0

NetLogo 3.0 User Manual

HubNet Authoring Guide 125

CC−WINDOW
323
339
638
459
Command Center

You should remove all the text that is in the GRAPHICS−WINDOW section and then save the file.
So that after you are done the beginning of the file should look similar to this:

; add model procedures here

@#$#@#$#@
CC−WINDOW
323
339
638
459
Command Center

For more examples, study the models and interface files in the "HubNet Computer Activities"
section of the Models Library. Disease.nlogo and Disease client.nlogo are good ones to start with.

View Updates on the Clients

Currently, there are two ways of sending the clients the View. The first way is done automatically by
NetLogo and HubNet when 2D View mirroring is enabled and the client has a View in the interface.
Whenever a patch or turtle is redrawn in the NetLogo View, it will be redrawn on all the clients.
Actually, updates are accumulated and sent out periodically (about five times a second). This
means that a lot of messages can be sent to the clients if a lot of turtles or patches are being
redrawn. It is possible to reduce the number of messages sent to the clients, and thus possibly
speed up the model, by making the View in the model not update. This can be done using the
no−display and display primitives or by toggling the display on/off switch in the View Control
Strip.

A second way of sending the clients the View is to use the hubnet−broadcast−view and
hubnet−send−view primitives. hubnet−broadcast−view and hubnet−send−view both send
the entire View to the clients instead of just the patches that need to be redrawn. This makes them
less efficient, but for some models this is feature is necessary. To send the View to the clients using
this scheme, you must use the following NetLogo code:

hubnet−broadcast−view

to send to all the logged in clients.

To just send the View to a subset of all the clients use:

hubnet−send−view user−name−list

where user−name−list is either a single string or a list of strings of the user names of clients that you
want to send it to.

NetLogo 3.0 User Manual

126 HubNet Authoring Guide

If there is no View in the clients or if the Mirror View on Clients checkbox in the HubNet Control
Center is not checked, then no view messages are sent to the clients.

NOTE: Since hubnet−broadcast−view and hubnet−send−view are
experimental primitives, their behaviors may change in a future release.

Note: Some of the View features in NetLogo are not yet implemented on the HubNet clients such as
View Wrapping and Observer Perspectives.

Plot Updates on the Clients

When a plot in the NetLogo model changes and a plot with the exact same name exists on the
clients, a message with that change is sent to the clients causing the client's plot to make the same
change. For example, let's pretend there is a HubNet model that has a plot called Milk Supply in
NetLogo and the clients. Milk Supply is the current plot in NetLogo and in the Command Center you
type:

plot 5

This will cause a message to be sent to all the clients telling them that they need to plot a point with
a y value of 5 in the next position of the plot. Notice, if you are doing a lot of plotting all at once, this
can generate a lot of plotting messages to be sent to the clients.

If there is no plot with the exact same name in the clients or if the Mirror Plots on Clients checkbox
in the HubNet Control Center is not checked, then no plot updates are sent to the clients.

Clicking in the View on Clients

If the View is included in the client, it is possible for the client to send locations in the View to
NetLogo by clicking in the client's View. The tag reported by hubnet−message−tag for client
clicks is the same as what is needed to send the View to a client, the string "View".
hubnet−message reports a two item list with the x coordinate being the first item and the y
coordinate being the second item. So for example, to turn any patch that was clicked on by the
client red, you would use the following NetLogo code:

if hubnet−message−tag = "View"
[
 ask patches with [pxcor = (round item 0 hubnet−message) and
 pycor = (round item 1 hubnet−message)]
 [set pcolor red]
]

Text Area for Input and Display

A few models use an experimental interface element in the HubNet client that allows the modeler to
display text on the client that can change throughout the run of the activity. Further, it can allow
users to send text back to the server. If you are interested in using it in an activity, please contact us
for further information.

NetLogo 3.0 User Manual

HubNet Authoring Guide 127

NetLogo 3.0 User Manual

128 HubNet Authoring Guide

Extensions Guide
NetLogo allows users to write new commands and reporters in Java and use them in their models.
This section of the User Manual introduces this facility.

The first part discusses how to use an extension in your model once you have written one, or once
someone has given you one.

The second part is intended for Java programmers interested in writing their own extensions.

Caution! The extensions facility is new in NetLogo 2.0.1 and is still in an early stage of
development. Therefore it is considered "experimental". It is likely to continue to change and grow. If
you write an extension now, it may need changes in order to continue to work in future NetLogo
versions.

Using Extensions•
Writing Extensions•

The NetLogo API Specification contains further details.

Using Extensions

NetLogo extensions have names that end in ".jar" (short for "Java Archive").

To use an extension in a model, add the __extensions keyword at the beginning of the
Procedures tab, before declaring any breeds or variables. (The keyword begins with two
underscores to indicate that it is experimental. In a future NetLogo version, it may have a different
name and syntax.)

__extensions takes one input, a list of strings. Each string contains the name of a NetLogo
extension. For example:

__extensions ["sound.jar"]

NetLogo will look for extensions in two places: the directory that holds the model, and the NetLogo
extensions folder.

So to install a NetLogo extension for use by any model, put the extension file (for example,
"sound.jar") in the "extensions" directory inside the NetLogo directory. Or, you can just keep the
extension in the same folder as the model that uses it.

You can also use extensions that are not installed in your NetLogo extensions folder by providing a
path relative to the directory that contains the model, or an absolute path:

__extensions ["lib/sound.jar"] ;; relative path
__extensions ["../../jars/sound.jar"] ;; relative path
__extensions ["c:\\myfiles\\sound.jar"] ;; absolute Windows path
__extensions ["/Users/me/sound.jar"] ;; absolute Mac/Unix path

You may also use an extension which is stored on an Internet server instead of your local computer.

Extensions Guide 129

Just use the URL where you have stored the extension. For example:

__extensions ["http://yourdomain.net/jars/sound.jar"]

Using __extensions tells NetLogo to find and open the specified extension and makes the
custom commands and reporters found in the extension available to the current model. You can use
these commands and reporters just as if they were built−in NetLogo primitives.

To use more than one extension, list each extension seperately. For example,

__extensions ["sound.jar" "speech.jar"]

Some extensions depend on additional files. Check the instructions that come with the extension to
see if you need to keep any other files with the extension.

Applets

Models saved as applets (using "Save as Applet" on NetLogo's File menu) cannot make use of
extensions. (We plan to fix this in a future release.)

Writing Extensions

We assume you have experience programming in Java.

Summary

A NetLogo extension is a JAR that contains:

one or more classes that implementation org.nlogo.api.Primitive,•
a main class that implements org.nlogo.api.ClassManager, and•
a NetLogo extension manifest file.•

The manifest file must contain three tags:

Extension−Name, the name of the extension.•
Class−Manager, the fully−qualified name of a class implementing
org.nlogo.api.ClassManager.

•

NetLogo−Version, the version of NetLogo for which this JAR is intended. If a user opens
the extension with a different version of NetLogo, a warning message is issued.

•

Tutorial

Let's write an extension that provides a single reporter called first−n−integers.

first−n−integers will take a single numeric input n and report a list of the integers 1 through n.
(Of course, you could easily do this just in NetLogo; it's only an example.)

NetLogo 3.0 User Manual

130 Extensions Guide

1. Write primitives

A command performs an action; a reporter reports a value. To create a new command or reporter,
create a class that implements the interface org.nlogo.api.Command or
org.nlogo.api.Reporter, which extend org.nlogo.api.Primitive. In most cases, you
can extend the abstract class org.nlogo.api.DefaultReporter or
org.nlogo.api.DefaultCommand.

DefaultReporter requires that we implement:

Object report (Argument args[], Context context)
 throws ExtensionException;

Since our reporter takes an argument, we also implement:

Syntax getSyntax();

Here's the implementation of our reporter, in a file called IntegerList.java:

import org.nlogo.api.*;

public class IntegerList extends DefaultReporter
{
 // take one number as input, report a list
 public Syntax getSyntax() {
 return Syntax.reporterSyntax(
 new int[] {Syntax.TYPE_NUMBER}, Syntax.TYPE_LIST
);
 }

 public Object report(Argument args[], Context context)
 throws ExtensionException
 {
 // create a NetLogo list for the result
 LogoList list = new LogoList();

 // use typesafe helper method from
 // org.nlogo.api.Argument to access argument
 int n = args[0].getIntegerValue();

 if (n < 0) {
 // signals a NetLogo runtime error to the modeler
 throw new ExtensionException
 ("input must be positive");
 }

 // populate the list
 for (int i = 1; i <= n; i++) {
 list.add(new Integer(i));
 }
 return list;
 }
}

Notice:

To access arguments, use org.nlogo.api.Argument's typesafe helper methods, such•

NetLogo 3.0 User Manual

Extensions Guide 131

as getIntegerValue().
Throw org.nlogo.api.ExtensionException to signal a NetLogo runtime error to the
modeler.

•

A Command is just like a Reporter, except that reporters implement Object report(...) while
commands implement void perform(...).

2. Write a ClassManager

Each extension must include, in addition to any number of command and reporter classes, a class
that implements the interface org.nlogo.api.ClassManager. The ClassManager tells NetLogo
which primitives are part of this extension. In simple cases, extend the abstract class
org.nlogo.api.DefaultClassManager, which provides empty implementations of the
methods from ClassManager that you aren't likely to need.

Here's the class manager for our example extension, SampleExtension.java:

import org.nlogo.api.*;

public class SampleExtension extends DefaultClassManager {
 public void load(PrimitiveManager primitiveManager) {
 primitiveManager.addPrimitive
 ("first−n−integers", new IntegerList());
 }
}

addPrimitive() tells NetLogo that our reporter exists and what its name is.

3. Write a Manifest

The extension must also include a manifest. The manifest is a text file which tells NetLogo the name
of the extension and the location of the ClassManager.

The manifest must contain three tags:

Extension−Name, the name of the extension.•
Class−Manager, the fully−qualified name of a class implementing
org.nlogo.api.ClassManager.

•

NetLogo−Version, the version of NetLogo for which this JAR is intended. If a version
mismatch is detected when a JAR is imported, a warning message will be issued, and the
user will have the opportunity to cancel. If the user chooses to continue, NetLogo will
attempt to import the JAR anyway, which of course may fail.

•

Here's a manifest for our example extension, manifest.txt:

Extension−Name: example
Class−Manager: SampleExtension
NetLogo−Version: 2.0.2

4. Create a JAR

To create an extension JAR, first compile your classes as usual. Make sure NetLogo.jar (from
the NetLogo distribution) is in your classpath. For example:

NetLogo 3.0 User Manual

132 Extensions Guide

$ javac −classpath NetLogo.jar IntegerList.java SampleExtension.java

Then create a JAR containing the resulting class files and the manifest. For example:

$ jar cvfm example.jar manifest.txt IntegerList.class SampleExtension.class

For information about manifest files, JAR files and Java tools, see java.sun.com.

5. Use your extension in a model

To use our example extension, put the extension JAR in the NetLogo extensions folder, or in the
same directory as the model that will use the extension. At the top of the Procedures tab write:

__extensions ["example.jar"]

Now you can use first−n−integers just like it was a built−in NetLogo reporter. For example,
select the Interface tab and type in the Command Center:

O> show first−n−integers 5
observer: [1 2 3 4 5]

Extension development tips

Debugging extensions

There are special NetLogo primitives to help you as you develop and debug your extension. Like
the extensions facility itself, these are considered experimental and will be changed at a later date.
(That's why they have underscores in their name.)

print __dump−extensions prints information about loaded extensions•
print __dump−extension−prims prints information about loaded extension primitives•
__reload−extensions forces NetLogo to reload all extensions the next time you compile
your model. Without this command, changes in your extension JAR will not take effect until
you open a model or restart NetLogo.

•

Third party JARs

If your extension depends on code stored in a separate JAR, copy the extra JARs into the
"extensions" directory of the NetLogo installation. Whenever an extension is imported, NetLogo
makes all the JARs in this folder available to the extension.

If you plan to distribute your extension to other NetLogo users, make sure to provide installation
instructions that describe which files should be copied to their extensions directory.

Conclusion

Don't forget to consult the NetLogo API Specification for full details on these classes, interfaces, and
methods.

Note that there is no way for the modeler to get a list of commands and reporters provided by an
extension, so it's important that you provide adequate documentation.

NetLogo 3.0 User Manual

Extensions Guide 133

http://java.sun.com/

The extensions facility is considered experimental. This initial API doesn't include everything you
might expect. Some facilities exist but are not yet documented. If you don't see a capability you
want, please let us know. Do not hesitate to contact us at feedback@ccl.northwestern.edu with
questions, as we may be able to find a workaround or provide additional guidance where our
documentation is thin.

Hearing from users of this API will also allow us to appropriately focus our efforts for future releases.
We are committed to making NetLogo flexible and extensible, and we very much welcome your
feedback.

NetLogo 3.0 User Manual

134 Extensions Guide

mailto:feedback@ccl.northwestern.edu

Controlling Guide
NetLogo can be invoked from another Java program and controlled by that program. For example,
you might want to call NetLogo from a small program that does something simple like automate a
series of model runs.

This section of the User Manual introduces this facility for Java programmers. We'll assume that you
know the Java language and related tools and practices.

Note: The controlling facility is considered "experimental". It is likely to continue to change and
grow. Code you write now that uses it may need changes in order to continue to work in future
NetLogo versions.

Example (with GUI)•
Example (headless)•
BehaviorSpace•
Other Options•
Conclusion•

The NetLogo API Specification contains further details.

Example (with GUI)

Here is a small but complete program that starts the full NetLogo application, opens a model, moves
a slider, sets the random seed, runs the model for 50 ticks, and then prints a result:

import org.nlogo.app.App;
import org.nlogo.compiler.CompilerException;
import java.awt.EventQueue;

public class Example1 {
 public static void main(String[] argv) {
 App.main(argv);
 try {
 EventQueue.invokeAndWait
 (new Runnable()
 { public void run() {
 try {
 App.app.open
 ("models/Sample Models/Earth Science/"
 + "Fire.nlogo");
 }
 catch(java.io.IOException ex) {
 ex.printStackTrace();
 }
 } });
 App.app.command("set density 62");
 App.app.command("random−seed 0");
 App.app.command("setup");
 App.app.command("repeat 50 [go]");
 System.out.println
 (App.app.report("burned−trees"));
 }
 catch(Exception ex) {
 ex.printStackTrace();

Controlling Guide 135

 }
 }
}

In order to compile and run this, NetLogo.jar (from the NetLogo distribution) must be in the
classpath.

Note the use of EventQueue.invokeAndWait to ensure that a method is called from the right
thread. This is because most of the methods on the App class may only be called some certain
threads. Most of the methods may only be called from the AWT event queue thread; but a few
methods, such as commmand(), may only be called from threads other than the AWT event queue
thread (such as, in this example, the main thread).

Rather than continuing to discuss this example in full detail, we refer you to the NetLogo API
Specification, which documents all of the ins and outs of the classes and methods used above.
Additional methods are available as well.

Example (headless)

The example code in this case is very similar to the previous example, but with methods on an
instance of the HeadlessWorkspace class substituted for static methods on App.

import org.nlogo.headless.HeadlessWorkspace;
import org.nlogo.compiler.CompilerException;

public class Example2 {
 public static void main(String[] argv) {
 HeadlessWorkspace workspace =
 new HeadlessWorkspace() ;
 try {
 workspace.open
 ("models/Sample Models/Earth Science/"
 + "Fire.nlogo");
 workspace.command("set density 62");
 workspace.command("random−seed 0");
 workspace.command("setup");
 workspace.command("repeat 50 [go]") ;
 System.out.println
 (workspace.report("burned−trees"));
 workspace.dispose();
 }
 catch(Exception ex) {
 ex.printStackTrace();
 }
 }
}

In order to compile and run this, either NetLogo.jar or NetLogoLite.jar (from the NetLogo
distribution) must be in your classpath. (The latter jar is smaller, but is only capable of headless
operation, not full GUI operation.) When running in a context that does not support a graphical
display, the system property java.awt.headless must be true, to force Java to run in headless
mode; HeadlessWorkspace automatically sets this property for you.

Since there is no GUI, NetLogo primitives which send output to the command center or output area
now go to standard output instead. export−world can still be used to save the model's state.

NetLogo 3.0 User Manual

136 Controlling Guide

export−view works for writing an image file with a snapshot of the (otherwise invisible) 2D view.
The report() method is useful for getting results out of the model and into your Java code.

You can make multiple instances of HeadlessWorkspace and they will operate independently on
separate threads without interfering with each other.

When running headless, there are some restrictions:

Plotting primitives are non−functional. (However, calling them will not produce any ill effects.)•
The movie−* primitives are not available; trying to use them will cause a Java exception.•
user−* primitives which query the user for input, such as user−yes−or−no will cause a
Java exception.

•

Sliders, switches, and choosers do not enforce constraints on the values they accept. For
example, in the full NetLogo application, if you try to set a switch to a value other than true or
false, the switch will not accept the new value. Similarly, a chooser enforces that its value is
a valid choice, and a slider enforces that its value is permitted by its minimum, maximum,
and increment. When running headless, none of these checks occur.

•

We plan to lift these restrictions in a future version of NetLogo.

The NetLogo API Specification contains further details.

BehaviorSpace

The Controlling API supports running BehaviorSpace experiments headless. (It does not support
running them in BehaviorSpace's GUI, although you can write your own BehaviorSpace−like Java
code to run your own BehaviorSpace−like experiments if you want.)

Note that it is definitely not necessary to use the API to do headless BehaviorSpace runs. Headless
BehaviorSpace is supported directly from the command line with no Java programming at all
required. See the BehaviorSpace Guide for instructions.

In most cases, the command line support will be enough, without needing to use the API. In some
situations, though, you may want additional flexibility afforded by the API.

The HeadlessWorkspace has four methods for running experiments: three variants of
runExperiment, plus runExperimentFromModel.

runExperimentFromModel is used when the experiment setup is already stored in the model file.

The two forms of runExperiment that take File arguments are used when the experiment setup
is stored in a standalone XML file, separate from the model file. If the file contains only one setup,
you only need to pass in the File object. If the file contains multiple setups, you must also pass in
a String object holding the experiment name.

The form of runExperiment that takes only a String argument (and an argument to specify the
output format) is used to pass the XML for the experiment setup directly.

All of these methods take a PrintWriter as a destination for the results. If you just want to send them
to standard output, you can pass new java.io.PrintWriter(System.out).

NetLogo 3.0 User Manual

Controlling Guide 137

The BehaviorSpace Guide explains how to specify experiment setups in XML.

The NetLogo API Specification contains further details on the HeadlessWorkspace class and its
methods.

Other Options

When your program controls NetLogo using the App class, the entire NetLogo application is
present, including tabs, menubar, and so forth. This arrangement is suitable for controlling or
"scripting" a NetLogo model, but not ideal for embedding a NetLogo model in a larger application.

We also have a separate, similar API which allows embedding only parts of NetLogo, such as only
the tabs (not the whole window), or only the contents of the Interface tab. At present, this additional
API is not documented. If you are interested in using it, please contact us at
feedback@ccl.northwestern.edu.

Conclusion

Don't forget to consult the NetLogo API Specification for full details on these classes and methods.

As mentioned before, the controlling facility is considered experimental. This initial API doesn't
necessarily include everything you might expect. Some facilities exist, but are not yet documented.
So if you don't see the capability you want, contact us; we may be able to help you do you what you
want. Please do not hesitate to contact us at feedback@ccl.northwestern.edu with questions, as we
may be able to find a workaround or provide additional guidance where our documentation is thin.

NetLogo 3.0 User Manual

138 Controlling Guide

mailto:feedback@ccl.northwestern.edu
mailto:feedback@ccl.northwestern.edu

NetLogo GoGo Extension

What is the Gogo Board?

The GoGo Board extension lets you connect NetLogo to the physical world, using sensors, motors,
light bulbs, LEDs, relays and other devices. The NetLogo GoGo Extension provides primitives to
communicate with a GoGo board via a serial interface.

A GoGo Board is an open source, easy−to−build, low cost, general purpose board especially
designed to be used in educational projects. It was created by Arnan Sipitakiat at the MIT Media
Lab. A GoGo Board has 8 sensor ports and 4 output ports, and also a connector for add−on boards
(such as a display or a wireless communication module). Using the Gogo Board extension, NetLogo
models can interact with the physical world in two ways. First, it can gather data from the
environment, such as temperature, ambient light, or user input. This information can be used by the
model to change or calibrate its behavior. Secondly, it can control output devices − NetLogo could
control motors, toys, remote controlled cars, electrical appliances, light bulbs, and automated
laboratory equipment.

How to get a Gogo Board?

The GoGo Board is not a commercial product, and thus cannot be bought at stores. To get a GoGo
Board, you have to build one yourself or ask someone to do it for you. The board was especially
designed to be easy and cheap to build, even if you don't have electronics skills. The main resource
about the GoGo Board is the website www.gogoboard.org, where you will find step−by−step
instructions on how to buy components, design the printed circuit board, and assemble it. The
GoGo Board mailing list is gogoboard@yahoogroups.com.

Installing the GoGo Extension

The GoGo Board needs to communicate with the computer in some way, and to do so it uses the
serial port. The choice of this port instead of a USB port was motivated by the board's low cost
principle: the components needed to build a USB compatible board would be more expensive. If
your computer does not have a serial port, you need to purchase a USB−to−Serial adapter, which
can be easily found in computer stores with prices ranging from US$ 15 to US$ 30 (if you have a
Mac or Linux machine, make sure the adapter is compatible with your platform). To communicate
with the GoGo Board through the serial port, the GoGo Extension uses Sun Microsystem's Java
Communications API. In each platform (PC, Mac, Linux), the procedures for installing the software
needed to enable serial communication are slighly different.

Mac OS X

There is no official implementation of the Java Communications API for OS X, but the RXTX project
provides an open−source implementation. You can download the RXTX installer for OS X from
SourceForge. Be sure to follow all the directions in the installer to create lock file directories and
make sure your user is in the appropriate groups to use the lock files.

There are several commercial implementations of the Java Communications API for OS X which
have not been tested with the GoGo extension, but, in theory, should work. Please contact us if you

NetLogo GoGo Extension 139

http://www.gogoboard.org
http://www.media.mit.edu/%7Earnans
http://www.gogoboard.org
mailto:gogoboard@yahoogroups.com
http://java.sun.com/products/javacomm/index.jsp
http://java.sun.com/products/javacomm/index.jsp
http://www.rxtx.org
http://prdownloads.sourceforge.net/jmri/JavaCommInstaller2.hqx?download

succesfully use them, or run into problems trying.

Windows

Sun provides an implementation of the Java Communications API for Windows, which you can
download.

Once downloaded, extract the files into a temporary directory. Several files need to be copied into
your Java Runtime Environment, or JRE, installation. If you are using the version of NetLogo which
comes with its own Java VM, then your JRE installation is in the jre subdirectory of the NetLogo
folder. Otherwise, it is in a directory like c:\j2sdk1.4. The files comm.jar and
javax.comm.properties must be copied into the lib folder of the JRE installation. The files
win32comm.dll must be copied to the bin folder of the JRE installation. The file
PlatformSpecific has more detailed instructions.

Linux and others

There is no official implementation of the Java Communications API for Linux. You can use the
RXTX implementation. Kevin Hester has written some installation instructions.

Using the GoGo Extension

The GoGo Extensions comes pre−installed. To use the extension in your model, add a line to the
top of your procedures tab:

__extensions ["gogo.jar"]

After loading the extension, see what ports are available by typing the following into the command
center:

show gogo−ports

You can open the serial port the GoGo Board is connected to with the gogo−open command, and
see if the board is responding with the ping reporter.

On Windows:

gogo−open "COM1"
show ping

On Linux:

gogo−open "/dev/ttyS01"
show ping

For more information on NetLogo extensions, see the Extensions Guide.

Please note that the NetLogo extensions facility is under development and is still considered
experimental, so the syntax is likely to change in a future version of NetLogo. Models saved as
applets (using "Save as Applet" on NetLogo's File menu) cannot make use of extensions. (We plan
to fix this in a future release.)

NetLogo 3.0 User Manual

140 NetLogo GoGo Extension

http://java.sun.com/products/javacomm/downloads/index.html
http://www.rxtx.org
http://www.geeksville.com/~kevinh/linuxcomm.html

For examples that use the GoGo extension, see the GoGo section under Code Examples in
NetLogo's Models Library.

Primitives

gogo−open gogo−open gogo−open? gogo−ports output−port−coast output−port−off
output−port−reverse output−port−[that|this]way ping sensor set−output−port−power
talk−to−output−ports

gogo−close

gogo−close

Close the connection to the GoGo Board.

See also gogo−open and gogo−open?.

gogo−open

gogo−open port−name

Open a connection to the GoGo Board connected to serial port named port−name. See gogo−ports
for more information about port names.

If the GoGo Board is not responding, or you attempt to open a port without a GoGo Board
connected to it, an error will be generated.

Example:

gogo−open "COM1"

See also gogo−open and gogo−close.

gogo−open?

gogo−open?

Reports true if there is a connection to a GoGo board open. Reports false otherwise.

gogo−ports

gogo−ports

Reports a list of serial port names which a GoGo Board may be connected to. On certain
computers, you might get a list of two or three different serial ports. In that case, try to open each of
them until the connection is successful.

NetLogo 3.0 User Manual

NetLogo GoGo Extension 141

output−port−coast

output−port−coast

Turns off the power of the active ports. When attached to motors, does not apply a braking force as
output−port−off does. Therefore, the motor will gradually slow down before stopping completely.
This will have the same effect as output−port−off on most output devices other than motors. The
output−ports effected by this command are determined by the talk−to−output−ports command.

The following code will will turn on output port a for 1 second, and then stop the motor gradually:

talk−to−output−ports ["a"]
output−port−on
wait 1
output−port−coast

output−port−off

output−port−off

Turns off power to the output ports. If using motors, a braking force is applied. The output ports
effected by this command are determined by the talk−to−output−ports command.

output−port−reverse

output−port−reverse

Reverses the direction of the output ports. The output ports effected by this command are
determined by the talk−to−output−ports command.

output−port−[that/this]way

output−port−thatway

output−port−thisway

Apply power to the output port in a given direction. Output ports can be powered in two directions,
arbitrarily called thisway and thatway. The output−ports effected by the command are determined by
the talk−to−output−ports command. Note that this is different from output−port−reverse because
thisway and thatway will always be the same direction provided the connector's polarity is the same.

talk−to−output−ports

talk−to−output−ports output−portlist

This command will set the corresponding output ports as active. They will be the ones affected by
the commands such as output−port−on and output−port−off. The user can talk to one or multiple
ports at the same time. Output ports are typically connected to motors, but you could also use
bulbs, LEDs and relays. Output ports are identified by one letter names: "a", "b", "c", and "d".

NetLogo 3.0 User Manual

142 NetLogo GoGo Extension

Examples:

;; talk to all output−ports
talk−to−output−ports ["a" "b" "c" "d"]
;; will give power to all output−ports
output−port−on

;; talk to output−ports A and D
talk−to−output−ports ["a" "d"]
;; will turn off output−ports A and D.
;; The other output−ports will keep
;; their current state
output−port−off

talk−to−output−ports ["c" "b"]
;; turn off remaining output−ports
output−port−off

ping

ping

Checks the status of GoGo board. This is mostly used to make sure the board is connected to the
correct serial port. It reports true if the GoGo Board responds to a diagnostic message, and false
otherwise.

Example:

show ping

sensor

sensor sensor

Reports the value of the sensor named sensor as a number. Sensors are named by numbers 1 to 8.
Value ranges between 0−1023. 1023 is returned when there is no sensor attached to the port
(highest resistance), or when the sensor is an open state. Zero is returned when the sensor is short
circuited (no resistance).

Examples:

show sensor 1
;; will show the value of sensor 1

foreach [1 2 3 4 5 6 7 8]
 [show (word "Sensor " ? " = " sensor ?)]
;; will show the value of all sensors in the Command Center

if sensor 1 < 500 [ask turtles [fd 10]]
;; will move all turtles 10 steps forward if sensor 1's value is less than 500.

forever [if sensor 1 < 500 [ask turtles [fd 10]]]
;; will continuously check sensor 1's value and
;; move all turtles 10 steps forward every time
;; that the sensor value is less than 500.

NetLogo 3.0 User Manual

NetLogo GoGo Extension 143

set−output−port−power

set−output−port−power power−level

Sets the power level of the active output ports. power−level is a number between 0 (off) and 7
(full−power). The output−ports effected by those command are determined by the
talk−to−output−ports command. Note that for many practical applications it is more efficient to use
mechanical devices, such as gears and pulleys, to control the torque of motors.

Example:

talk−to−motors ["a" "b" "c" "d"]
set−motor−power 4
;; will lower the power of all output ports by half of the full power .

NetLogo 3.0 User Manual

144 NetLogo GoGo Extension

NetLogo Sound Extension
The NetLogo Sound Extension provides primitives to add sound to NetLogo models.

The extension simulates a 128−key electronic keyboard with 47 drums and 128 melodic
instruments, as provided by General MIDI Level 1 specification.

It supports 15 polyphonic instrument channels and a single percussion channel. Using more than 15
different melodic instruments simultaneously in a model will cause some sounds to be lost or cut off.

The pitch of a melodic instrument is specified by a key number. The keys on the keyboard are
numbered consecutively from 0 to 127, where 0 is the left−most key. Middle C is key number 60.

The loudness of an instrument is specified by a velocity, which represents the force with which the
keyboard key is depressed. Velocity ranges from 0 to 127, where 64 is the standard velocity. A
higher velocity results in a louder sound.

Using the Sound Extension

The sound extension comes pre−installed. To use the extension in your model, add a line to the top
of your procedures tab:

__extensions ["sound.jar"]

For more information on NetLogo extensions, see the Extensions Guide. Please note that the
NetLogo extensions facility is under development and is still considered experimental, so the syntax
is likely to change in a future version of NetLogo. Models saved as applets (using "Save as Applet"
on NetLogo's File menu) cannot make use of extensions. (We plan to fix this in a future release.)

For examples that use the sound extension, see the Sound section under Code Examples in the
NetLogo Models Library.

Primitives

drums instruments play−drum play−note start−note stop−note stop−instrument stop−music

drums

drums

Reports a list of the names of the 47 drums for use with "play−drum".

instruments

instruments

Reports a list of the names of the 128 instruments for use with "play−note", "start−note" and
"stop−note".

NetLogo Sound Extension 145

http://www.midi.org/about-midi/gm/gm1_spec.shtml

play−drum

play−drum drum velocity

Plays a drum.

play−drum "ACOUSTIC SNARE" 64

play−note

play−note instrument keynumber velocity duration

Plays a note for a specified duration, in seconds.

;; play a trumpet at middle C for two seconds
play−note "TRUMPET" 60 64 2

start−note

start−note instrument keynumber velocity

Starts a note.

The note will continue until "stop−note", "stop−instrument" or "stop−music" is called.

;; play a violin at middle C
start−note "VIOLIN" 60 64

;; play a C−major scale on a xylophone
foreach [60 62 64 65 67 69 71 72] [
 start−note "XYLOPHONE" ? 65
 wait 0.2
 stop−note "XYLOPHONE" ?
]

stop−note

stop−note instrument keynumber

Stops a note.

;; stop a violin note at middle C
stop−note "VIOLIN" 60

stop−instrument

stop−instrument instrument

Stops all notes of an instrument.

;; stop all cello notes
stop−instrument "CELLO"

NetLogo 3.0 User Manual

146 NetLogo Sound Extension

stop−music

stop−music

Stops all notes.

Sound names

Drums

35. Acoustic Bass Drum 59. Ride Cymbal 2
36. Bass Drum 1 60. Hi Bongo
37. Side Stick 61. Low Bongo
38. Acoustic Snare 62. Mute Hi Conga
39. Hand Clap 63. Open Hi Conga
40. Electric Snare 64. Low Conga
41. Low Floor Tom 65. Hi Timbale
42. Closed Hi Hat 66. Low Timbale
43. Hi Floor Tom 67. Hi Agogo
44. Pedal Hi Hat 68. Low Agogo
45. Low Tom 69. Cabasa
47. Open Hi Hat 70. Maracas
47. Low Mid Tom 71. Short Whistle
48. Hi Mid Tom 72. Long Whistle
49. Crash Cymbal 1 73. Short Guiro
50. Hi Tom 74. Long Guiro
51. Ride Cymbal 1 75. Claves
52. Chinese Cymbal 76. Hi Wood Block
53. Ride Bell 77. Low Wood Block
54. Tambourine 78. Mute Cuica
55. Splash Cymbal 79. Open Cuica
56. Cowbell 80. Mute Triangle
57. Crash Cymbal 2 81. Open Triangle
58. Vibraslap

Instruments

Piano Reed
1. Acoustic Grand Piano 65. Soprano Sax
2. Bright Acoustic Piano 66. Alto Sax
3. Electric Grand Piano 67. Tenor Sax
4. Honky−tonk Piano 68. Baritone Sax
5. Electric Piano 1 69. Oboe
6. Electric Piano 2 70. English Horn
7. Harpsichord 71. Bassoon
8. Clavi 72. Clarinet

Chromatic Percussion Pipe
9. Celesta 73. Piccolo
10. Glockenspiel 74. Flute
11. Music Box 75. Recorder
12. Vibraphone 76. Pan Flute
13. Marimba 77. Blown Bottle
14. Xylophone 78. Shakuhachi
15. Tubular Bells 79. Whistle
16. Dulcimer 80. Ocarina

Organ Synth Lead

NetLogo 3.0 User Manual

NetLogo Sound Extension 147

17. Drawbar Organ 81. Square Wave
18. Percussive Organ 82. Sawtooth Wave
19. Rock Organ 83. Calliope
20. Church Organ 84. Chiff
21. Reed Organ 85. Charang
22. Accordion 86. Voice
23. Harmonica 87. Fifths
24. Tango Accordion 88. Bass and Lead

Guitar Synth Pad
25. Nylon String Guitar 89. New Age
26. Steel Acoustic Guitar 90. Warm
27. Jazz Electric Guitar 91. Polysynth
28. Clean Electric Guitar 92. Choir
29. Muted Electric Guitar 93. Bowed
30. Overdriven Guitar 94. Metal
31. Distortion Guitar 95. Halo
32. Guitar harmonics 96. Sweep

Bass Synth Effects
33. Acoustic Bass 97. Rain
34. Fingered Electric Bass 98. Soundtrack
35. Picked Electric Bass 99. Crystal
36. Fretless Bass 100. Atmosphere
37. Slap Bass 1 101. Brightness
38. Slap Bass 2 102. Goblins
39. Synth Bass 1 103. Echoes
40. Synth Bass 2 104. Sci−fi

Strings Ethnic
41. Violin 105. Sitar
42. Viola 106. Banjo
43. Cello 107. Shamisen
44. Contrabass 108. Koto
45. Tremolo Strings 109. Kalimba
47. Pizzicato Strings 110. Bag pipe
47. Orchestral Harp 111. Fiddle
48. Timpani 112. Shanai

Ensemble Percussive
49. String Ensemble 1 113. Tinkle Bell
50. String Ensemble 2 114. Agogo
51. Synth Strings 1 115. Steel Drums
52. Synth Strings 2 116. Woodblock
53. Choir Aahs 117. Taiko Drum
54. Voice Oohs 118. Melodic Tom
55. Synth Voice 119. Synth Drum
56. Orchestra Hit 120. Reverse Cymbal

Brass Sound Effects
57. Trumpet 121. Guitar Fret Noise
58. Trombone 122. Breath Noise
59. Tuba 123. Seashore
60. Muted Trumpet 124. Bird Tweet
61. French Horn 125. Telephone Ring
62. Brass Section 126. Helicopter
63. Synth Brass 1 127. Applause
64. Synth Brass 2 128. Gunshot

NetLogo 3.0 User Manual

148 NetLogo Sound Extension

FAQ (Frequently Asked Questions)
Feedback from users is very valuable to us in designing and improving NetLogo. We'd like to hear
from you. Please send comments, suggestions, and questions to feedback@ccl.northwestern.edu,
and bug reports to bugs@ccl.northwestern.edu.

General

Why is it called NetLogo?•
What programming language was NetLogo written in?•
How do I cite NetLogo in an academic publication?•
How do I cite a model from the Models Library in an academic publication?•
What license is NetLogo released under? Are there are any legal restrictions on use,
redistribution, etc.?

•

Is the source code to NetLogo available?•
Do you offer any workshops or other training opportunities for NetLogo?•
What's the difference between StarLogo, MacStarLogo, StarLogoT, and NetLogo?•
Has anyone built a model of <x>?•
Are NetLogo models runs scientifically reproducible?•
Are there any NetLogo textbooks?•
Is NetLogo available in a Spanish version, German version, (your language here)
version, etc.?

•

Is NetLogo compiled or interpreted?•
Will NetLogo and NetLogo 3D remain separate?•

Downloading

The download form doesn't work for me. Can I have a direct link to the software?•
Downloading NetLogo takes too long. Is it available any other way, such as on a CD?•
I downloaded and installed NetLogo but the Models Library has few or no models in it.
How can I fix this?

•

Can I have multiple versions of NetLogo installed at the same time?•
I'm on a UNIX system and I can't untar the download. Why?•
How do I install NetLogo on Windows 2003?•

Applets

I tried to run one of the applets on your site, but it didn't work. What should I do?•
Can I make my model available as an applet while keeping the code secret?•
Can a model saved as an applet use import−world, file−open, and other
commands that read files?

•

Usage

Can I run NetLogo from a CD?•
How do I change the number of patches?•
Can I use the mouse to "paint" in the view?•
How big can my model be? How many turtles, patches, procedures, buttons, and so
on can my model contain?

•

FAQ (Frequently Asked Questions) 149

mailto:feedback@ccl.northwestern.edu
mailto:bugs@ccl.northwestern.edu

Can I import an image into NetLogo?•
Can I import GIS data into NetLogo?•
My model runs slowly. How can I speed it up?•
I want to try HubNet. Can I?•
Can I run a NetLogo model from the command line? Can I run it without a GUI?•
Can I have more than one model open at a time?•
Can I copy or save a picture of the view?•
Can I make a movie of my model?•
Does NetLogo support multiple processors?•
Can I distribute NetLogo model runs across a cluster of computers?•
Can I use screen−edge−x or screen−edge−y, etc., as the minimum or maximum of a
slider?

•

Can I change the choices in a chooser on the fly?•
Can I divide the code for my model up into several files?•

Programming

How is the NetLogo language different from the StarLogoT language? How do I
convert my StarLogoT model to NetLogo?

•

How does the NetLogo language differ from other Logos?•
The NetLogo world is a torus, that is, the edges of the screen are connected to each
other, so turtles and patches "wrap around". Can I use a different world topology:
bounded, infinite plane, sphere, etc.?

•

How do I take the negative of a number?•
My turtle moved forward 1, but it's still on the same patch. Why?•
patch−ahead 1 is reporting the same patch my turtle is already standing on. Why?•
How do I give my turtles "vision"?•
Does NetLogo have a command like StarLogo's "grab" command?•
I tried to put −at after the name of a variable, for example variable−at −1 0, but
NetLogo won't let me. Why not?

•

I'm getting numbers like 0.10000000004 and 0.799999999999 instead of 0.1 and 0.8.
Why?

•

How can I use different patch "neighborhoods" (circular, Von Neumann, Moore, etc.)?•
Can I connect turtles with lines, to indicate connections between them?•
How can I keep two turtles from occupying the same patch?•
How can I find out if a turtle is dead?•
How do I find out how much time has passed in my model?•
Does NetLogo have arrays?•
Does NetLogo have associative arrays or lookup tables?•
How can I convert an agentset to a list, or vice versa?•
What if I want to "ask" an agentset in random order?•
How does NetLogo decide when to switch from agent to agent when running code?•

General

Why is it called NetLogo?

The "Logo" part is because NetLogo is a dialect of the Logo language.

NetLogo 3.0 User Manual

150 FAQ (Frequently Asked Questions)

"Net" is meant to evoke the decentralized, interconnected nature of the phenomena you can model
with NetLogo. It also refers to HubNet, the networked participatory simulation environment included
in NetLogo.

What programming language was NetLogo written in?

NetLogo is written entirely in Java (version 1.4.1).

How do I cite NetLogo in an academic publication?

NetLogo itself: Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for
Connected Learning and Computer−Based Modeling, Northwestern University. Evanston, IL.

HubNet: Wilensky, U. & Stroup, W., 1999. HubNet. http://ccl.northwestern.edu/netlogo/hubnet.html.
Center for Connected Learning and Computer−Based Modeling, Northwestern University. Evanston,
IL.

How do I cite a model from the Models Library in an academic
publication?

Wilensky, U. (year). Name of Model. URL of model. Center for Connected Learning and
Computer−Based Modeling, Northwestern University. Evanston, IL.

To determine the URL for a model, visit our web−based version of the Models Library and click on
the name of the model. An example model URL is:
http://ccl.northwestern.edu/netlogo/models/PepperedMoths.

To determine the year, open the model from the NetLogo application and look in the copyright
information at the bottom of the Procedures tab.

What license is NetLogo released under? Are there are any legal
restrictions on use, redistribution, etc.?

The license is given in the "Copyright" section of the NetLogo User Manual, as well as in the
application's about box and the README file accompanying the download.

A quick summary of the license is that use is unrestricted, including commercial use, but there are
some restrictions on redistribution and/or modification (unless you contact Uri Wilensky to arrange
different terms).

We are in the process of reevaluating the language of the license in response to user feedback. In
the future, we intend to send out a revised license.

Is the source code to NetLogo available?

At present, no. We are evaluating how best to distribute NetLogo when it is in a more mature state.
Making the source available is one possibility.

NetLogo 3.0 User Manual

FAQ (Frequently Asked Questions) 151

http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/hubnet.html
http://ccl.northwestern.edu/netlogo/models/
http://ccl.northwestern.edu/netlogo/models/PepperedMoths

We do understand, however, that it is important that NetLogo not be a closed and non−extensible
platform. That is not our intention for the product. So, for example, NetLogo includes APIs so that
NetLogo can be controlled from external Java code and users can write new commands and
reporters in Java. (See "Controlling" and "Extensions" in the User Manual.)

Do you offer any workshops or other training opportunities for NetLogo?

We offer workshops from time to time. If a workshop has been scheduled, we will announce it on
the NetLogo home page and on the netlogo−users group. If interested in this type of opportunity,
please contact us at feedback@ccl.northwestern.edu.

What's the difference between StarLogo, MacStarLogo, StarLogoT, and
NetLogo?

The original StarLogo was developed at the MIT Media Lab in 1989−1990 and ran on a massively
parallel supercomputer called the Connection Machine. A few years later (1994), a simulated
parallel version was developed for the Macintosh computer. That version eventually became
MacStarLogo. StarLogoT (1997), developed at the Center for Connected Learning and
Computer−Based Modeling (CCL), is essentially an extended version of MacStarLogo with many
additional features and capabilities.

Since then two multi−platform Java−based multi−agent Logos have been developed: NetLogo (from
the CCL) and a Java−based version of StarLogo (from MIT).

The NetLogo language and environment differ in many respects from MIT StarLogo's. Both
languages were inspired by the original StarLogo, but were redesigned in different ways. NetLogo's
design was driven by the need to revise and expand the language so it is easier to use and more
powerful, and by the need to support the HubNet architecture. NetLogo incorporates almost all of
the extended functionality of our earlier StarLogoT, as well as a great many newer features.

Has anyone built a model of <x>?

The best place to ask this question is on the NetLogo Users Group.

You should also check the Community Models section of our Models Library web page.

Are NetLogo models runs scientifically reproducible?

Yes. NetLogo's agent scheduling algorithms are deterministic, and NetLogo always uses Java's
"strict math" library, which gives bit−for−bit identical results regardless of platform. But keep the
following cautions in mind:

If your model uses random numbers, then in order to get reproducible behavior, you must
use the random−seed command to set the random seed in advance, so that your model will
receive the exact same sequence of random numbers every time.

•

If your model uses the every or wait commands in such a way that affects the outcome of
the model, then you may get different results on different computers, or even on the same
computer, since the model may run at a different speed. (Such models are rare. These two
commands are common, but using them in a way that affects the outcome is not.)

•

NetLogo 3.0 User Manual

152 FAQ (Frequently Asked Questions)

mailto:feedback@ccl.northwestern.edu
http://ccl.northwestern.edu/cm/starlogoT/
http://groups.yahoo.com/group/netlogo-users/
http://ccl.northwestern.edu/netlogo/models/

In order to reproduce model runs exactly, you must be using the exact same version of
NetLogo. The details of the agent scheduling mechanism and the random number generator
may change between NetLogo versions, and other changes (bugfixes in the engine,
language changes, and so forth) may also affect the behavior of your model. (Then again,
they may not.)

•

We have expended every effort to make NetLogo model runs fully reproducible, but of
course this can never truly be an iron−clad guarantee, due to the possibility of random
hardware failure, and also due to the possibility of human error in the design of: your model,
NetLogo, your Java VM, your hardware, and so on.

•

Are there any NetLogo textbooks?

We at the CCL have hoped to write several NetLogo textbooks for quite some time. These could be
aimed at different audiences, such as: middle school, high school, undergraduate course in
modeling or complexity, practical guide for interested adults.

Unfortunately, we have not yet been able to find the time to make these happen. If people from the
user community would like to collaborate on such a venture, please let us know. We would welcome
it.

Is NetLogo available in a Spanish version, German version, (your
language here) version, etc.?

At present, NetLogo is available only in English.

We plan to eventually make it possible for users to produce their own foreign−language "packs" for
NetLogo and share them with each other. In order to do this, we need to separate all of the English
text from the rest of the source code, so that is separately editable. We're not sure when this will
happen.

Is NetLogo compiled or interpreted?

Short answer: interpreted, but we are working on a compiler.

Long answer: NetLogo does include a compiler, but the compiler does not produce native code, or
even Java byte code. It produces a custom intermediate representation that can be interpreted
more efficiently than the original code. However, we are working on a new compiler that will
generate Java byte code. Once that is done, NetLogo will qualify as compiled, not interpreted. Since
Java virtual machines have "just−in−time" compilers that in turn compile Java byte code all the way
to native code, the new compiler should substantially improve the speed of NetLogo. We are not
sure when the new compiler will be done.

Will NetLogo and NetLogo 3D remain separate?

No. The split is temporary. Eventually a single unified version of NetLogo will support both 2D and
3D modeling. We will be sure to design the 3D world support in such a way that it doesn't get in the
way when you are building 2D models.

Models built in NetLogo 3D Preview 1 may require some small changes in order to run in the

NetLogo 3.0 User Manual

FAQ (Frequently Asked Questions) 153

eventual unified version.

Downloading

The download form doesn't work for me. Can I have a direct link to the
software?

Please write us at bugs@ccl.northwestern.edu and we'll either fix the problem with the form, or
provide you with an alternate method of downloading the software.

Downloading NetLogo takes too long. Is it available any other way, such
as on a CD?

At present, no. If this is a problem for you, contact us at feedback@ccl.northwestern.edu.

I downloaded and installed NetLogo but the Models Library has few or
no models in it. How can I fix this?

So far, users reporting this problem all used the "without VM" download option for Windows.
Uninstall NetLogo and try the "with VM" download instead.

Even if the "with VM" download fixes it for you, please contact us at bugs@ccl.northwestern.edu so
we can find out more details about your setup. We'd like to fix this in a future version, but to
troubleshoot it we need help from users.

Can I have multiple versions of NetLogo installed at the same time?

Yes. When you install NetLogo, the folder that is created contains has the version number in its
name, so multiple versions can coexist.

On Windows systems, whichever version you installed last will be the version that opens when you
double click a model file in Windows Explorer. On Macs, you can control what version opens via
"Get Info" in the Finder.

I'm on a UNIX system and I can't untar the download. Why?

Some of the files in the tarball have very long pathnames, too long for the standard tar format. You
must use the GNU version of tar instead (or another program which understands the GNU tar
extensions). On some systems, the GNU version of tar is available under the name "gnutar". You
can find out if you are already using the GNU version by typing tar −−version and seeing if the
output says "tar (GNU tar)".

How do I install NetLogo on Windows 2003 or Windows Server 2003?

On these operating systems, the NetLogo installer might not work unless you change some settings
in the installer, as follows:

Locate the installer and right−click on it.1.

NetLogo 3.0 User Manual

154 FAQ (Frequently Asked Questions)

mailto:bugs@ccl.northwestern.edu
mailto:feedback@ccl.northwestern.edu
mailto:bugs@ccl.northwestern.edu

Select Properties2.
Select Compatibility tab3.
Check "Run this program in compatibility mode for:"4.
Select Windows XP5.
Click OK6.
Run the installer.7.

Applets

I tried to run one of the applets on your site, but it didn't work. What
should I do?

Current versions of NetLogo require that your web browser support Java 1.4.1 or higher. Here's how
to get the right Java:

If you're on Windows 98 or newer, you need to download the Java browser plugin from
http://www.java.com/en/download/windows_manual.jsp.

•

If you're on Mac OS X, you need OS X 10.2.6 or higher. If you're on OS X 10.2, you also
need Java 1.4.1 Update 1, which is available through Software Update. OS X 10.3 already
has the right Java. You must also use a web browser that supports Java 1.4. Internet
Explorer does not work; Safari does.

•

If you're on Windows 95, MacOS 8, or MacOS 9, running models over the web is no longer
supported; you must download the NetLogo 1.3.1 application and run the models that way
instead.

•

If you're on Linux or another Unix, you will need version 1.4.1 or higher of the Sun Java
Runtime Environment. It is available for download at http://www.java.com/. Check your
browser's home page for information about installing the Java plugin.

•

If you think you have the right browser and plugin, but it still doesn't work, check your browser's
preferences to make sure that Java is enabled.

Can I make my model available as an applet while keeping the code
secret?

No. In order for the applet to operate, the model file must be accessible also.

When you use "Save as applet" on the File menu, the HTML page generated contains a link where
the user can download the model file. If you want, you can remove that link. Doing so will make it
harder for the user to access the model file, but not impossible.

Can a model saved as an applet use import−world, file−open, and
other commands that read files?

Yes, but only to read files that are stored in the same directory on your web server as the HTML and
model files. Applets cannot read files on the user's computer, only the web server.

NetLogo 3.0 User Manual

FAQ (Frequently Asked Questions) 155

http://www.java.com/en/download/windows_manual.jsp
http://www.java.com/

Usage

Can I run NetLogo from a CD?

Yes. NetLogo runs fine on a read−only file system.

How do I change how many patches there are?

A quick method is to use the three sets of black arrows in the upper left corner of the 2D view.

Another method is as follows. Select the 2D view by dragging a rectangle around it with the mouse.
Click the "Edit" button in the Toolbar. A dialog will appear in which you may enter new values for
"Screen Edge X" and "Screen Edge Y". (You can also right−click [Windows] or control−click [Mac]
on the 2D view to edit it, or select it then double−click.)

Can I use the mouse to "paint" in the view?

NetLogo does not have a built−in set of painting tools for painting in the view. But with only a few
lines of code, you can add painting capability to your model. To see how it's done, look at Mouse
Example, in the Code Examples section of the Models Library. The same techniques can be used to
let the user interact with your model using the mouse in other ways, too.

Another possibility is to use a special drawing model such as the Drawing Tool model by James
Steiner which is available from http://ccl.northwestern.edu/netlogo/models/community/.

A third possibility is to create an image in another program and import it. See the answer to Can I
import a graphic into NetLogo?.

How big can my model be? How many turtles, patches, procedures,
buttons, and so on can my model contain?

We have tested NetLogo with models that use hundreds of megabytes of RAM and they work fine.
We haven't tested models that use gigabytes of RAM, though. Theoretically it should work, but you
might hit some limits that are inherent in the underlying Java VM and/or operating system (either
designed−in limits, or bugs).

The NetLogo engine has no fixed limits on size. On Macintosh and Windows operating systems,
though, by default NetLogo ships with a 512 megabyte ceiling on how much total RAM it can use.
(On other operating systems the ceiling is determined by your Java VM.)

Here's how to raise the limit if you need to:

Windows: Edit this section of the "NetLogo.lax" file in the NetLogo folder:

LAX.NL.JAVA.OPTION.JAVA.HEAP.SIZE.MAX
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
allow the heap to get huge
lax.nl.java.option.java.heap.size.max=536870912

Note: this might not help on some Windows 98 or Windows ME systems.

•

NetLogo 3.0 User Manual

156 FAQ (Frequently Asked Questions)

http://ccl.northwestern.edu/netlogo/models/community/

Macintosh: Edit the Contents/Info.plist file in the NetLogo application package. (You can
reach this file by control−clicking the application in the Finder and choosing "Show Package
Contents" from the popup menu.) The relevant section is this; the second number is the
ceiling:

<key>VMOptions</key>
<string>−XX:+PrintJavaStackAtFatalState −Xms16M −Xmx512M</string>

Note that (at least as of Mac OS X 10.3), the maximum possible heap size for any Java
program is two gigabytes.

•

Other: Java VMs from Sun let you set the ceiling on the command line as follows. If you are
using a VM from a different vendor, the method may be different.

java −Xmx512M −jar NetLogo.jar

•

Can I import an image into NetLogo?

Yes, using the import−pcolors and import−drawing commands. See Image Import Example
(in the Code Examples section of the Models Library).

Can I import GIS data into NetLogo?

One simple way is to use import−pcolors, but that only works for importing maps that are
images, not maps in other formats.

We do not have built−in support for reading common GIS formats. However, a number of our users
are working with GIS data succesfully using NetLogo code that reads GIS data using our file I/O
primitives such as file−open.

It is also possible to use external software to convert GIS data into a format that is easier to read
from NetLogo than the original format. This has been discussed on the NetLogo Users Group
several times. We encourage users interested in using NetLogo for GIS applications to share their
questions and experiences with the group.

My model runs slowly. How can I speed it up?

Here's some ways to make it run faster without changing the code:

Edit the forever buttons in your model and turn off the "Force view update after each run"
checkbox. This allows the view to skip frames, which may speed up models which are
graphics−intensive. (See the Buttons section of the Programming Guide for a discussion of
this.)

•

Use the freeze switch in the view control strip, or the no−display command, to freeze the
view temporarily. For example:

to go
 no−display
 ...
 ...
 display
end

•

NetLogo 3.0 User Manual

FAQ (Frequently Asked Questions) 157

http://groups.yahoo.com/group/netlogo-users/

If you use this technique, you should turn off the "Force view update" checkbox, since the
display command already forces a view update.
If your model is using all available RAM on your computer, then installing more RAM should
help. If your hard drive makes a lot of noise while your model is running, you probably need
more RAM.

•

Use turtle size 1, 1.5, or 2 as these sizes are cached by NetLogo.•

In many cases, though, if you want your model to run faster, you may need to make some changes
to the code. Usually the most obvious opportunity for speedup is that you're doing too many
computations that involve all the turtles or all the patches. Often this can be reduced by reworking
the model so that it does less computation per time step. If you need help with this, if you contact us
at feedback@ccl.northwestern.edu we may be able to help if you can send us your model or give us
some idea of how it works. The members of the NetLogo Users Group may be able to help as well.

I want to try HubNet. Can I?

Yes. There are two types of HubNet available. With Computer HubNet, participants run the HubNet
Client application on computers connected by a regular computer network. In Calculator HubNet,
created in conjunction with Texas Instruments, participants use TI−83+ graphing calculators and the
TI−Navigator Classroom Learning System.

Note that Calculator HubNet works with a prototype version of the TI−Navigator system, and is not
yet compatible with the commercially available TI−Navigator. We are actively working in partnership
with Texas Instruments on integrating the new TI−Navigator with Calculator HubNet, which we
expect to release in the near future.

For more information on HubNet, see the HubNet Guide.

Can I run a NetLogo model from the command line? Can I run it without a
GUI?

Yes.

If you set up your model run or runs as a BehaviorSpace experiment, then you can run the
experiment from the command line. No additional programming is required. See the BehaviorSpace
section of the User Manual for details.

If you don't use the BehaviorSpace method, then you can still run NetLogo from the command line
and/or with no GUI, using our Controlling API. Some light Java programming is required. See the
"Controlling" section of the User Manual for details and sample code.

Can I have more than one model open at a time?

One instance of NetLogo can only have one model open at a time. (We plan to change this in a
future version.)

You can have multiple models open by opening multiple instances of NetLogo, though. On Windows
and Linux, simply start the application again. On Macs, you'll need to duplicate the application in the
Finder, then open the copy. (This will use only a very small amount of additional disk space, since
most of NetLogo is actually in the NetLogo.jar file, which is stored outside the application "bundle.")

NetLogo 3.0 User Manual

158 FAQ (Frequently Asked Questions)

mailto:feedback@ccl.northwestern.edu
http://groups.yahoo.com/group/netlogo-users/
http://education.ti.com
http://education.ti.com/us/product/tech/navigator/features/features.html

Can I save the contents of the view? Of the interface tab?

Yes, using "Export View" on the File menu, or by right−clicking (on Mac, control−clicking) the view,
or using the export−view command. Both methods work for either the 2D and 3D view, whichever
is currently active.

You can also use "Export Interface" or the export−interface command to save an image of the
entire interface tab.

Can I make a movie of my model?

Yes. See the Movie section of the Programming Guide. Also see Movie Example, in the Code
Examples section of the Models Library.

Does NetLogo take advantage of multiple processors?

Not for a single model run, no. The NetLogo engine is single threaded and we expect it to remain
so.

You can take advantage of multiple processors to do multiple model runs concurrently, though, in
either of two ways:

By having multiple copies of NetLogo open, in separate Java virtual machines; see this
answer for instructions.

•

By writing Java code that uses the Controlling API to do "headless" model runs from the
command line. This is currently the only possible way to do multiple concurrent model runs
within a single Java virtual machine. See the "Controlling" section of the User Manual.

•

In a future version of NetLogo, we hope to improve the support for multiple processors as follows:

Allow multiple models to be open simultaneously, each running in a different thread and
hence on a different processor.

•

Modify the BehaviorSpace tool to optionally do multiple model runs in parallel in a
configurable number of separate threads, so the runs would be spread across available
processors

•

Can I distribute NetLogo model runs across a cluster of computers?

Many of the same comments in the previous answer apply. It is not possible to split a single model
run across multiple computers, but you can have each machine in a cluster doing one or more
separate, independent model runs. To do this you'll need to write some Java code, using our
Controlling API. See the "Controlling" section of the User Manual. We know of a number of users
who are already using NetLogo on clusters; you might be able to share techniques with others on
the NetLogo Users Group.

We don't have any plans to make it possible to split a single model run across multiple computers.

NetLogo 3.0 User Manual

FAQ (Frequently Asked Questions) 159

http://groups.yahoo.com/group/netlogo-users/

Can I use screen−edge−x or screen−edge−y, etc., as the minimum or
maximum of a slider?

At present, no. In a future version of NetLogo, we plan to support this.

Can I change the choices in a chooser on the fly?

At present, no. In a future version of NetLogo, we plan to support this.

Can I divide the code for my model up into several files?

At present, no. In a future version of NetLogo, we plan to support this.

Programming

How is the NetLogo language different from the StarLogoT language?
How do I convert my StarLogoT model to NetLogo?

We don't have a document that specifically summarizes the differences between these two
programs. If you have built models in StarLogoT before, then we suggest reading the Programming
Guide section of this manual to learn about NetLogo, particularly the sections on "Ask" and
"Agentsets". Looking at some of the sample models and code examples in the Models Library may
help as well.

NetLogo 1.3.1 includes a StarLogoT model converter; you just open the model from the File menu
and NetLogo will attempt to convert it. The converter doesn't do all that great a job though, so the
result will very likely require additional changes before it will work. Note also that the model
converter is no longer included in current versions of NetLogo, so if you have models you want to
use it on, you will have to use NetLogo 1.3.1 to do the converting, then open the model in a current
version.

If you need any help converting your StarLogo or StarLogoT model to NetLogo, please feel free to
seek help on the NetLogo Users Group. You may also ask us for help at
feedback@ccl.northwestern.edu.

How does the NetLogo language differ from other Logos?

There is no standard definition of Logo; it is a loose family of languages. We believe that NetLogo
shares enough syntax, vocabulary, and features with other Logos to earn the Logo name.

Still, NetLogo differs in some respects from most other Logos. The most important differences are
as follows.

Surface differences:

The precedence of mathematical operators is different. Infix math operators (like +, *, etc.)
have lower precedence than reporters with names. For example, in many Logos, if you write
sin x + 1, it will be interpreted as sin (x + 1). NetLogo, on the other hand, interprets

•

NetLogo 3.0 User Manual

160 FAQ (Frequently Asked Questions)

http://groups.yahoo.com/group/netlogo-users/
mailto:feedback@ccl.northwestern.edu

it the way most other programming languages would, and the way the same expression
would be interpreted in standard mathematical notation, namely as (sin x) + 1.
The and and or reporters are special forms, not ordinary functions, and they "short circuit",
that is, they only evaluate their second input if necessary.

•

Procedures can only be defined in the Procedures tab, not interactively in the Command
Center.

•

Reporter procedures, that is, procedures that "report" (return) a value, must be defined with
to−report instead of to. The command to report a value from a reporter procedure is
report, not output.

•

When defining a procedure, the inputs to the procedure must be enclosed in square
brackets, e.g. to square [x].

•

Variable names are always used without any punctuation: always foo, never :foo or "foo.
To make this work, instead of a make command taking a quoted argument we supply a set
special form which does not evaluate its first input.

•

The last three differences are illustrated in the following procedure definitions:

most Logos NetLogo
to square :x
output :x * :x
end

to−report square [x]
report x * x
end

Deeper differences:

NetLogo is lexically scoped, not dynamically scoped.•
NetLogo has no "word" data type (what Lisp calls "symbols"). Eventually, we may add one,
but since it is seldom requested, it may be that the need doesn't arise much in agent−based
modeling. We do have strings. In most situations where traditional Logo would use words,
we simply use strings instead.

•

Control structures such as if and while are special forms, not ordinary functions. You
can't define your own special forms, so you can't define your own control structures.

•

As in most Logos, functions as values are not supported. Most Logos provide similar if less
general functionality, though, by allowing passing and manipulation of fragments of source
code in list form. NetLogo's capabilities in this area are presently limited. A few of our
built−in special forms use UCBLogo−style ``templates'' to accomplish a similar purpose, for
example, sort−by [length ?1 < length ?2] string−list. In some
circumstances, using run and runresult instead is workable, but unlike most Logos they
operate on strings, not lists.

•

Of course, the NetLogo language also contains many additional features not found in most other
Logos, most importantly agents and agentsets.

The NetLogo world is a torus, that is, the edges of the screen are
connected to each other, so turtles and patches "wrap around". Can I
use a different world topology: bounded, infinite plane, sphere, etc.?

Torus is the only topology directly supported by NetLogo, but you can often simulate a different
topology without too much extra effort.

NetLogo 3.0 User Manual

FAQ (Frequently Asked Questions) 161

If you want the world to be a bounded rectangle, you may need to add some code to your model to
enforce this. Often a helpful technique is to turn the edge patches a different color, so turtles can
easily detect when they "hit" the edge. Also, there are "no−wrap" versions of primitives such as
"distance" and "towards"; these should help.

If you want your turtles to move over an infinite plane, you can simulate this by having the turtles
keep track of their position on the infinite plane, then hide the turtle when it goes "out of bounds".
The Random Walk 360 model in the Models Library shows you how to code this.

Simulating a spherical or other topology might be difficult; we haven't seen a model that does this.
(If you have one, please send it in!)

How do I take the negative of a number?

Any of these ways:

(− x)
−1 * x
0 − x

With the first way, the parentheses are required.

My turtle moved forward 1, but it's still on the same patch. Why?

Moving forward 1 is only guaranteed to take a turtle to a new patch if the turtle's heading is a
multiple of 90 (that is, exactly north, south, east, or west).

It's because the turtle might not be standing in the center of a patch. It might be near a corner. For
example, suppose your turtle is close to the southwest corner of a patch and is facing northeast.
The length of the patch diagonal is 1.414... (the square root of two), so "fd 1" will leave the turtle
near the northeast corner of the same patch.

If you don't want to have to think about these issues, one possibility is to write your model in such a
way that your turtles always come to rest on patch centers.

A turtle is on a patch center when its xcor and ycor are multiples of 1.0.

patch−ahead 1 is reporting the same patch my turtle is already
standing on. Why?

See previous answer. It's the same issue.

This might not be the meaning of "ahead" you were expecting. With patch−ahead, you must
specify the distance ahead that you want to look. If you want to know the next patch a turtle would
cross into if it moved forward continuously, it is possible to find that out. See Next Patch Example, in
the Code Examples section of the Models Library.

NetLogo 3.0 User Manual

162 FAQ (Frequently Asked Questions)

How do I give my turtles "vision"?

You can use in−radius to let a turtle see a circular area around it.

Several primitives let the turtle "look" at specific points. The patch−ahead primitive is useful for
letting a turtle see what is directly in front of it. If you want the turtle to look in another direction
besides straight ahead, try patch−left−and−ahead and patch−right−and−ahead.

If you want the turtle to have a full "cone" of vision, use the in−cone primitive.

You can also find out the next patch a turtle would cross into if it moved forward continuously. See
Next Patch Example, in the Code Examples section of the Models Library.

Does NetLogo have a command like StarLogo's "grab" command?

We don't have such a command. You can use the without−interruption primitive to arrange
exclusive interaction between agents. For example:

turtles−own [mate]
to setup
 ask turtles [set mate nobody]
end
to find−mate ;; turtle procedure
 without−interruption
 [if mate = nobody
 [let candidate random−one−of other−turtles−here
 with [mate = nobody]
 if candidate != nobody
 [set mate candidate
 set mate−of candidate self]]]
end

Using without−interruption ensures that while a turtle is choosing a mate, all other agents are
"frozen". This makes it impossible for two turtles to choose the same mate.

I tried to put −at after the name of a variable, for example variable−at
−1 0, but NetLogo won't let me. Why not?

This syntax was supported by StarLogoT and some beta versions of NetLogo, but was removed
from NetLogo 1.0. Instead, for a patch variable write e.g. pcolor−of patch−at −1 0, and for a
turtle variable write e.g. color−of one−of turtles−at −1 0.

I'm getting numbers like 0.10000000004 and 0.799999999999 instead of
0.1 and 0.8. Why?

See the "Math" section of the Programming Guide in the User Manual for a discussion of this issue.

How can I keep two turtles from occupying the same patch?

See One Turtle Per Patch Example, in the Code Examples section of the Models Library.

NetLogo 3.0 User Manual

FAQ (Frequently Asked Questions) 163

How can I find out if a turtle is dead?

When a turtle dies, it turns into nobody. nobody is a special value used in NetLogo used to
indicate the absence of a turtle or patch. So for example:

if turtle 0 != nobody [...]

You could also use is−turtle?:

if is−turtle? turtle 0 [...]

How do I find out how much time has passed in my model?

NetLogo does not automatically keep track of this. If you want to keep track of the passage of time,
add a global variable to your model with a name like "clock" or "steps". In your setup procedure, set
the variable to 0. In your go procedure, increment the variable. Many of the models in the Models
Library use this technique.

The reason NetLogo doesn't automatically keep track of this is that NetLogo is very flexible about
letting you make buttons that do anything that you want them to. NetLogo has no one way of
knowing which of your buttons should advance the clock and which shouldn't.

Does NetLogo have arrays?

What NetLogo calls "lists" are actually implemented internally as arrays, so they have some of the
performance characteristics of arrays. For example, random access (using the item reporter) takes
constant time. However, they're immutable arrays (they cannot be altered except by making a copy
and altering the copy), so replace−item is linear time, not constant−time (because the whole
array is copied).

For most purposes, the performance differences between lists and arrays doesn't matter; it only
matters if you're dealing with very long lists.

In a future version of NetLogo we plan to change our lists to be ordinary singly linked lists as in
other Logo (and Lisp) implementations. At the same time, we will also provide real, mutable arrays
as a separate data type.

Does NetLogo have associative arrays or lookup tables?

No, but you can use lists to accomplish the same thing, though less efficiently. See:

http://groups.yahoo.com/group/netlogo−users/message/2344•
http://groups.yahoo.com/group/netlogo−users/message/2346•
http://groups.yahoo.com/group/netlogo−users/message/2354•

How can I use different patch "neighborhoods" (circular, Von Neumann,
Moore, etc.)?

The in−radius primitives lets you access circular neighborhoods of any radius.

NetLogo 3.0 User Manual

164 FAQ (Frequently Asked Questions)

http://groups.yahoo.com/group/netlogo-users/message/2344
http://groups.yahoo.com/group/netlogo-users/message/2346
http://groups.yahoo.com/group/netlogo-users/message/2354

The neighbors primitive gives you a Moore neighborhood of radius 1, and the neighbors4
primitive gives you a Von Neumann neighborhood of radius 1.

If you want a Moore or Von Neumann neighborhood of a different radius, or a different kind of
neighborhood altogether, you can define it yourself, using the at−points primitive and/or other
techniques. If the neighborhoods do not change over time, then the most efficient way to use them
is to compute the neighborhoods only once, ahead of time, and store them in agentsets. See this
URL for a discussion and example code:
http://groups.yahoo.com/group/netlogo−users/message/377.

Can I connect turtles with lines, to indicate connections between them?

Yes. See Network Example, in the Code Examples section of the Models Library.

We plan to support this more directly in a future version of NetLogo.

How can I convert an agentset to a list, or vice versa?

Here's how to convert an agentset to a list of agents:

values−from <agentset> [self]

And here's how to convert a list of agents to an agentset:

turtles/patches with [member? self <list>]

For a discussion of the whole issue of agentsets versus lists of agents, see:

http://groups.yahoo.com/group/netlogo−users/message/652•
http://groups.yahoo.com/group/netlogo−users/message/655•
http://groups.yahoo.com/group/netlogo−users/message/656•

What if I want to "ask" an agentset in random order?

This is possible, but the code for it is a bit awkward:

foreach shuffle values−from <agentset> [self]
 [ask ?
 [...]]

First, values−from converts the agentset into a list of agents. Then, shuffle randomizes the
order of that list. Finally, foreach is used to walk through the list, asking each agent in term. The
question mark is used with foreach to refer to the current item in the list.

We plan to support this more directly in a future version of NetLogo.

How does NetLogo decide when to switch from agent to agent when
running code?

If you ask turtles, or ask a whole breed, the turtles are scheduled for execution in ascending

NetLogo 3.0 User Manual

FAQ (Frequently Asked Questions) 165

http://groups.yahoo.com/group/netlogo-users/message/377
http://groups.yahoo.com/group/netlogo-users/message/652
http://groups.yahoo.com/group/netlogo-users/message/655
http://groups.yahoo.com/group/netlogo-users/message/656

order by ID number. If you ask patches, the patches are scheduled for execution by row: left to
right within each row, and starting with the top row.

If you ask a different agentset besides the set of all turtles or patches or a breed, then the execution
order will vary according to how the agentset was constructed. The execution order is chosen
deterministically and reproducibly, though, and will remain the same if you ask the same agentset
multiple times.

In a future version of NetLogo, we plan to add an option for randomized scheduling.

Once scheduled, an agent's "turn" ends only once it performs an action that affects the state of the
world, such as moving, or creating a turtle, or changing the value of a global, turtle, or patch
variable. (Setting a local variable doesn't count.)

To prolong an agent's "turn", use the without−interruption command. (The command blocks
inside some commands, such as cct and hatch, have an implied without−interruption
around them.)

NetLogo's scheduling mechanism is completely deterministic. Given the same code and the same
initial conditions, the same thing will always happen, if you are using the same version of NetLogo.

In general, we suggest you write your NetLogo code so that it does not depend on a particular
scheduling mechanism. We make no guarantees that the scheduling algorithm will remain the same
in future versions.

NetLogo 3.0 User Manual

166 FAQ (Frequently Asked Questions)

Primitives Dictionary
Alphabetical: A B C D E F G H I J L M N O P R S T U V W X Y ?

Categories: Turtle − Patch − Agentset − Color − Control/Logic − World − Perspective
Input/Output − Files − List − String − Math − Plotting − Movie − System − HubNet

Special: Variables − Keywords − Constants

Categories of Primitives

This is an approximate grouping. Remember that a turtle−related primitive might still be called by
patches or observers, and vice versa. To see which agent (turtles, patches, observer) can actually
run each command, consult each individual entry in the dictionary.

Turtle−related

back (bk) BREED−at BREED−here BREED−on clear−turtles (ct) create−BREED
create−custom−BREED create−custom−turtles (cct) create−turtles (crt) die distance
distance−nowrap distancexy distancexy−nowrap downhill downhill4 dx dy face face−nowrap facexy
facexy−nowrap forward (fd) hatch hatch−BREED hideturtle (ht) home inspect is−turtle? jump left (lt)
myself no−label nobody −of other−turtles−here other−BREED−here patch−ahead
patch−at−heading−and−distance patch−here patch−left−and−ahead patch−right−and−ahead
pen−down (pd) pen−erase (pe) pen−up (pu) right (rt) self set−default−shape setxy shapes
showturtle (st) sprout sprout−BREED stamp subject subtract−headings towards towards−nowrap
towardsxy towardsxy−nowrap turtle turtles turtles−at turtles−from turtles−here turtles−on
turtles−own uphill value−from

Patch−related primitives

clear−patches (cp) diffuse diffuse4 distance distance−nowrap distancexy distancexy−nowrap
import−pcolors inspect is−patch? myself neighbors neighbors4 no−label nobody nsum nsum4 −of
patch patch−at patch−ahead patch−at−heading−and−distance patch−here patch−left−and−ahead
patch−right−and−ahead patches patches−from patches−own self sprout sprout−BREED subject
value−from

Agentset primitives

any? ask at−points BREED−at BREED−here BREED−on count histogram−from in−cone
in−cone−nowrap in−radius in−radius−nowrap is−agent? is−agentset? is−patch−agentset?
is−turtle−agentset? max−one−of min−one−of neighbors neighbors4 one−of other−turtles−here
other−BREED−here patches patches−from random−n−of random−one−of turtles with with−max
with−min turtles−at turtles−from turtles−here turtles−on values−from

Primitives Dictionary 167

Color primitives

color extract−hsb extract−rgb hsb import−pcolors pcolor rgb scale−color shade−of? wrap−color

Control flow and logic primitives

and carefully end error−message foreach if ifelse ifelse−value let loop map not or repeat report run
runresult ; (semicolon) set stop startup to to−report wait while without−interruption xor

World primitives

clear−all (ca) clear−drawing (cd) clear−patches (cp) clear−turtles (ct) display import−drawing
import−pcolors no−display no−label screen−edge−x screen−edge−y screen−size−x screen−size−y

Perspective primitives

follow follow−me reset−perspective (rp) ride ride−me subject watch watch−me

HubNet primitives

hubnet−broadcast hubnet−broadcast−view hubnet−enter−message? hubnet−exit−message?
hubnet−fetch−message hubnet−message hubnet−message−source hubnet−message−tag
hubnet−message−waiting? hubnet−reset hubnet−send hubnet−send−view
hubnet−set−client−interface

Input/output primitives

beep clear−output date−and−time export−view export−interface export−output export−plot
export−all−plots export−world import−drawing import−pcolors import−world mouse−down?
mouse−inside? mouse−xcor mouse−ycor output−print output−show output−type output−write print
read−from−string reset−timer set−current−directory show timer type user−choice
user−choose−directory user−choose−file user−choose−new−file user−input user−message
user−yes−or−no? write

File primitives

file−at−end? file−close file−close−all file−delete file−exists? file−open file−print file−read
file−read−characters file−read−line file−show file−type file−write user−choose−directory
user−choose−file user−choose−new−file

List primitives

but−first but−last empty? filter first foreach fput is−list? item last length list lput map member?
modes n−values position random−n−of random−one−of reduce remove remove−duplicates
remove−item replace−item reverse sentence shuffle sort sort−by sublist values−from

NetLogo 3.0 User Manual

168 Primitives Dictionary

String primitives

Operators (+, <, >, =, !=, <=, >=) but−first but−last empty? first is−string? item last length member?
position remove remove−item read−from−string replace−item reverse substring word

Mathematical primitives

Arithmetic Operators (+, *, −, /, ^, <, >, =, !=, <=, >=) abs acos asin atan ceiling cos e exp floor int ln
log max mean median min mod modes new−seed pi precision random random−exponential
random−float random−gamma random−int−or−float random−normal random−poisson random−seed
remainder round sin sqrt standard−deviation subtract−headings sum tan variance

Plotting primitives

autoplot? auto−plot−off auto−plot−on clear−all−plots clear−plot create−temporary−plot−pen
export−plot export−all−plots histogram−from histogram−list plot plot−name plot−pen−down (ppd)
plot−pen−reset plot−pen−up (ppu) plot−x−max plot−x−min plot−y−max plot−y−min plotxy ppd ppu
set−current−plot set−current−plot−pen set−histogram−num−bars set−plot−pen−color
set−plot−pen−interval set−plot−pen−mode set−plot−x−range set−plot−y−range

Movie primitives

movie−cancel movie−close movie−grab−view movie−grab−interface movie−set−frame−rate
movie−start movie−status

System primitives

netlogo−version

Built−In Variables

Turtles

breed color heading hidden? label label−color pen−down? shape size who xcor ycor

Patches

pcolor plabel plabel−color pxcor pycor

Other

?

Keywords

breeds end globals patches−own to to−report turtles−own

NetLogo 3.0 User Manual

Primitives Dictionary 169

Constants

Mathematical Constants

e = 2.718281828459045
pi = 3.141592653589793

Boolean Constants

false
true

Color Constants

black = 0.0
gray = 5.0
white = 9.9
red = 15.0
orange = 25.0
brown = 35.0
yellow = 45.0
green = 55.0
lime = 65.0
turquoise = 75.0
cyan = 85.0
sky = 95.0
blue = 105.0
violet = 115.0
magenta = 125.0
pink = 135.0

See the Colors section of the Programming Guide for more details.

A

abs

abs number

Reports the absolute value of number.

show abs −7
=> 7
show abs 5
=> 5

NetLogo 3.0 User Manual

170 Primitives Dictionary

acos

acos number

Reports the arc cosine (inverse cosine) of the given number. The input must be in the range −1.0 to
1.0. The result is in degrees, and lies in the range 0.0 to 180.0.

and

condition1 and condition2

Reports true if both condition1 and condition2 are true.

Note that if condition1 is false, then condition2 will not be run (since it can't affect the result).

if (pxcor > 0) and (pycor > 0)
 [set pcolor blue] ;; the upper−right quadrant of
 ;; patches turn blue

any?

any? agentset

Reports true if the given agentset is non−empty, false otherwise.

Equivalent to "count agentset > 0", but arguably more readable.

if any? turtles with [color = red]
 [show "at least one turtle is red!"]

Note: "nobody" is not an agentset. You only get nobody back in situations where you were
expecting a single agent, not a whole agentset. If any? gets nobody as input, an error results.

See also nobody.

Arithmetic Operators (+, *, −, /, ^, <, >, =, !=, <=, >=)

All of these operators take two inputs, and all act as "infix operators" (going between the two inputs,
as in standard mathematical use). NetLogo correctly supports order of operations for infix operators.

The operators work as follows: + is addition, * is multiplication, − is subtraction, / is division, ^ is
exponentiation, < is less than, > is greater than, = is equal to, != is not equal to, <= is less than or
equal, >= is greater than or equal.

Note that the subtraction operator (−) always takes two inputs unless you put parentheses around it,
in which case it can take one input. For example, to take the negative of x, write (− x), with the
parentheses.

All of the comparison operators also work on strings, and the addition operator (+) also functions as
a string concatenation operator (see example below).

NetLogo 3.0 User Manual

Primitives Dictionary 171

If you are not sure how NetLogo will interpret your code, you should insert parentheses.

show 5 * 6 + 6 / 3
=> 32
show 5 * (6 + 6) / 3
=> 20
show "tur" + "tle"
=> "turtle"

asin

asin number

Reports the arc sine (inverse sine) of the given number. The input must be in the range −1.0 to 1.0.
The result is in degrees, and lies in the range −90.0 to 90.0.

ask

ask agentset [commands]
ask agent [commands]

Takes a list of commands that will be run by the specified agent or agentset.

ask turtles [fd 1]
 ;; all turtles move forward one step
ask patches [set pcolor red]
 ;; all patches turn red
ask turtle 4 [rt 90]
 ;; only the turtle with id 4 turns right

at−points

agentset at−points [[x1 y1] [x2 y2] ...]

Reports a subset of the given agentset that includes only the agents on the patches the given
distances away from the calling agent. The distances are specified as a list of two−item lists, where
the two items are the x and y offsets.

If the caller is the observer, then the points are measured relative to the origin, in other words, the
points are taken as absolute patch coordinates.

If the caller is a turtle, the points are measured relative to the turtle's exact location, and not from the
center of the patch under the turtle.

ask turtles at−points [[2 4] [1 2] [10 15]]
[fd 1] ;; only the turtles on the patches at the
 ;; distances (2,4), (1,2) and (10,15),
 ;; relative to the caller, move

NetLogo 3.0 User Manual

172 Primitives Dictionary

atan

atan x y

Reports the arc tangent, in degrees (from 0 to 360), of x divided by y.

When y is 0: if x is positive, it reports 90; if x is negative, it reports 270; if x is zero, you get an error.

Note that this version of atan is designed to conform to the geometry of the NetLogo world, where a
heading of 0 is straight up, 90 is to the right, and so on clockwise around the circle. (Normally in
geometry an angle of 0 is right, 90 is up, and so on, counterclockwise around the circle, and atan
would be defined accordingly.)

show atan 1 −1
=> 135.0
show atan −1 1
=> 315.0

autoplot?

autoplot?

Reports true if auto−plotting is on for the current plot, false otherwise.

auto−plot−off
auto−plot−on

auto−plot−off
auto−plot−on

This pair of commands is used to control the NetLogo feature of auto−plotting in the current plot.
Auto−plotting will automatically update the x and y axes of the plot whenever the current pen
exceeds these boundaries. It is useful when wanting to display all plotted values in the current plot,
regardless of the current plot ranges.

B

back
bk

back number

The turtle moves backward by number steps. (If number is negative, the turtle moves forward.)

Turtles using this primitive can move a maximum of one unit per time increment. So bk 0.5 and bk
1 both take one unit of time, but bk 3 takes three.

See also forward, jump.

NetLogo 3.0 User Manual

Primitives Dictionary 173

beep

beep

Emits a beep. Note that the beep is emitted immediately, so several beep commands in succession
will only produce a single audible sound.

Example:

beep ;; emits one beep

repeat 3 [beep] ;; emits 3 beeps at the exact same time,
 ;; so you only hear one sound

repeat 3 [beep wait 0.1] ;; produces 3 beeps in succession,
 ;; seperated by 1/10th of a second

breed

breed

This is a built−in turtle variable. It holds the agentset of all turtles of the same breed as this turtle.
(For turtles that do not have any particular breed, this is the turtles agentset of all turtles.) You can
set this variable to change a turtle's breed.

See also breeds.

Example:

breeds [cats dogs]
;; turtle code:
if breed = cats [show "meow!"]
set breed dogs
show "woof!"

breeds

breeds [breed1 breed2 ...]

This keyword, like the globals, turtles−own, and patches−own keywords, can only be used at the
beginning of a program, before any function definitions. It defines breeds and their associated
agentsets.

Any turtle of the given breed:

is part of the agentset named by the breed name•
has its breed built−in variable set to that agentset•

Most often, the agentset is used in conjunction with ask to give commands to only the turtles of a
particular breed.

NetLogo 3.0 User Manual

174 Primitives Dictionary

The order in which breeds are declared is also the order in which they are drawn in the 2D view. So
breeds defined later will appear on top of breeds defined earlier.

breeds [mice frogs]
to setup
 ca
 create−mice 50
 ask mice [set color white]
 create−frogs 50
 ask frogs [set color green]
 show breed−of one−of mice ;; prints mice
 show breed−of one−of frogs ;; prints frogs
end

See also globals, patches−own, turtles−own, <BREED>−own, create−<BREED>,
create−custom−<BREED>, <BREED>−at, <BREED>−here.

but−first
bf
but−last
bl

but−first list
but−first string
but−last list
but−last string

When used on a list, but−first reports all of the list items of list except the first, and but−last reports
all of the list items of list except the last.

On strings, but−first and but−last report a shorter string omitting the first or last character of the
original string.

;; mylist is [2 4 6 5 8 12]
set mylist but−first mylist
;; mylist is now [4 6 5 8 12]
set mylist but−last mylist
;; mylist is now [4 6 8]
show but−first "string"
;; prints "tring"
show but−last "string"
;; prints "strin"

C

carefully

carefully [commands1] [commands2]

Runs commands1. If a runtime error occurs inside commands1, NetLogo won't stop and alert the
user that an error occurred. It will suppress the error and run commands2 instead.

NetLogo 3.0 User Manual

Primitives Dictionary 175

The error−message reporter can be used in commands2 to find out what error was suppressed in
commands1. See error−message.

Note: both sets of commands run without interruption (as with the without−interruption command).

carefully [show 1 / 1] [print error−message]
=> 1
carefully [show 1 / 0] [print error−message]
=> division by zero

ceiling

ceiling number

Reports the smallest integer greater than or equal to number.

show ceiling 4.5
=> 5
show ceiling −4.5
=> −4

clear−all
ca

clear−all

Resets all global variables to zero, and calls clear−turtles, clear−patches, clear−drawing,
clear−all−plots, and clear−output.

clear−all−plots

clear−all−plots

Clears every plot in the model. See clear−plot for more information.

clear−drawing
cd

clear−drawing

Clears all lines and stamps drawn by turtles.

clear−output

NetLogo 3.0 User Manual

176 Primitives Dictionary

clear−output

Clears all text from the model's output area, if it has one. Otherwise does nothing.

clear−patches
cp

clear−patches

Clears the patches by resetting all patch variables to their default initial values, including setting
their color to black.

clear−plot

clear−plot

In the current plot only, resets all plot pens, deletes all temporary plot pens, resets the plot to its
default values (for x range, y range, etc.), and resets all permanent plot pens to their default values.
The default values for the plot and for the permanent plot pens are set in the plot Edit dialog, which
is displayed when you edit the plot. If there are no plot pens after deleting all temporary pens, that is
to say if there are no permanent plot pens, a default plot pen will be created with the following initial
settings:

Pen: down•
Color: black•
Mode: 0 (line mode)•
Name: "default"•
Interval: 1.0•

See also clear−all−plots.

clear−turtles
ct

clear−turtles

Kills all turtles.

See also die.

color

NetLogo 3.0 User Manual

Primitives Dictionary 177

color

This is a built−in turtle variable. It holds the color of the turtle. You can set this variable to make the
turtle change color.

See also pcolor.

cos

cos number

Reports the cosine of the given angle. Assumes the angle is given in degrees.

show cos 180
=> −1.0

count

count agentset

Reports the number of agents in the given agentset.

show count turtles
;; prints the total number of turtles
show count patches with [pcolor = red]
;; prints the total number of red patches

create−turtles
crt
create−<BREED>

create−turtles number
create−<BREED> number

Creates number new turtles . New turtles start at position (0, 0), are created with the 14 primary
colors, and have headings from 0 to 360, evenly spaced.

crt 100
ask turtles [fd 10] ;; makes an evenly spaced circle

If the create−<BREED> form is used, the new turtles are created as members of the given breed.

create−custom−turtles
cct
create−custom−<BREED>
cct−<BREED>

NetLogo 3.0 User Manual

178 Primitives Dictionary

create−custom−turtles number [commands]
create−custom−<BREED> number [commands]

Creates number new turtles (of the given breed, if specified). New turtles start at position (0, 0).
New turtles are created with the 14 primary colors and have headings from 0 to 360, evenly spaced.

The new turtles immediately run commands. This is useful for giving the new turtles a different
color, heading, or whatever.

breeds [canaries snakes]
to setup
 ca
 create−custom−canaries 50
 [set color yellow]
 create−custom−snakes 50
 [set color green]
end

Note: While the commands are running, no other agents are allowed to run any code (as with the
without−interruption command). This ensures that the new turtles cannot interact with any other
agents until they are fully initialized. In addition, no screen updates take place until the commands
are done. This ensures that the new turtles are never drawn on−screen until they are fully initialized.

create−temporary−plot−pen

create−temporary−plot−pen string

A new temporary plot pen with the given name is created in the current plot and set to be the
current pen.

Few models will want to use this primitive, because all temporary pens disappear when clear−plot or
clear−all−plots are called. The normal way to make a pen is to make a permanent pen in the plot's
Edit dialog.

If a temporary pen with that name already exists in the current plot, no new pen is created, and the
existing pen is set to the the current pen. If a permanent pen with that name already exists in the
current plot, you get a runtime error.

The new temporary plot pen has the following initial settings:

Pen: down•
Color: black•
Mode: 0 (line mode)•
Interval: 1.0•

See: clear−plot, clear−all−plots, and set−current−plot−pen.

D

NetLogo 3.0 User Manual

Primitives Dictionary 179

date−and−time

date−and−time

Reports a string containing the current date and time. The format is shown below. All fields are fixed
width, so they are always at the same locations in the string. The potential resolution of the clock is
milliseconds. (Whether you get resolution that high in practice may vary from system to system,
depending on the capabilities of the underlying Java Virtual Machine.)

show date−and−time
=> "01:19:36.685 PM 19−Sep−2002"

die

die

The turtle dies.

if xcor > 20 [die]

;; all turtles with xcor greater than 20 die

See also: ct

diffuse

diffuse patch−variable number

Tells each patch to share (number * 100) percent of the value of patch−variable with its eight
neighboring patches. number should be between 0 and 1.

Note that this is an observer command only, even though you might expect it to be a patch
command. (The reason is that it acts on all the patches at once −− patch commands act on
individual patches.)

diffuse chemical 0.5
;; each patch diffuses 50% of its variable
;; chemical to its neighboring 8 patches. Thus,
;; each patch gets 1/8 of 50% of the chemical
;; from each neighboring patch.)

diffuse4

diffuse4 patch−variable number

Like diffuse, but only diffuses to the four neighboring patches (to the north, south, east, and west),
not to the diagonal neighbors.

NetLogo 3.0 User Manual

180 Primitives Dictionary

diffuse4 chemical 0.5
;; each patch diffuses 50% of its variable
;; chemical to its neighboring 4 patches. Thus,
;; each patch gets 1/4 of 50% of the chemical
;; from each neighboring patch.)

display

display

Causes the current view to be updated immediately.

Also undoes the effect of the no−display command, so that if display updates were suspended by
that command, they will resume.

no−display
ask turtles [jump 10 set color blue set size 5]
display
;; turtles move, change color, and grow, with none of
;; their intermediate states visible to the user, only
;; their final state

Even if no−display was not used, "display" can still be useful, because ordinarily NetLogo is free to
skip some screen updates, so that fewer total updates take place, so that models run faster. This
command lets you force a view update, so whatever changes have taken place in the world are
visible to the user.

ask turtles [set color red]
display
ask turtles [set color blue]
;; turtles turn red, then blue; use of "display" forces
;; red turtles to appear briefly

There is exception to the "immediately" rule: if the command is used by an agent that is running
"without interruption" (such as via the without−interruption command, inside a procedure defined
using to−report, or inside a command such as hatch, sprout, or cct), then the view update takes
place once the agent is done running without interruption.

Note that display and no−display operate independently of the switch in the view control strip that
freezes the view.

See also no−display.

distance

distance agent

Reports the distance from this agent to the given turtle or patch.

The distance to or a from a patch is measured from the center of the patch.

NetLogo 3.0 User Manual

Primitives Dictionary 181

Unlike "distance−nowrap", turtles and patches use the wrapped distance (around the edges of the
screen) if that distance is shorter than the on−screen distance.

distance−nowrap

distance−nowrap agent

Reports the distance from this agent to the given turtle or patch.

The distance to or a from a patch is measured from the center of the patch.

Unlike "distance", this always reports the on−screen distance, never a distance that would require
wrapping around the edges of the screen.

distancexy

distancexy xcor ycor

Reports the distance from this agent to the point (xcor, ycor).

The distance from a patch is measured from the center of the patch.

Unlike "distancexy−nowrap", the wrapped distance (around the edges of the screen) is used if that
distance is shorter than the on−screen distance.

if (distancexy 0 0) > 10
 [set color green]
;; all turtles more than 10 units from
;; the center of the screen turn green.

distancexy−nowrap

distancexy−nowrap xcor ycor

Reports the distance from this agent to the point (xcor, ycor).

The distance from a patch is measured from the center of the patch.

Unlike "distancexy", this always reports the on−screen distance, never a distance that would require
wrapping around the edges of the screen.

downhill

downhill patch−variable

NetLogo 3.0 User Manual

182 Primitives Dictionary

Reports the turtle heading (between 0 and 359 degrees) in the direction of the minimum value of the
variable patch−variable, of the patches in a one−patch radius of the turtle. (This could be as many
as eight or as few as five patches, depending on the position of the turtle within its patch.)

If there are multiple patches that have the same smallest value, a random one of those patches will
be selected.

If the patch is located directly to the north, south, east, or west of the patch that the turtle is currently
on, a multiple of 90 degrees is reported. However, if the patch is located to the northeast, northwest,
southeast, or southwest of the patch that the turtle is currently on, the direction the turtle would need
to reach the nearest corner of that patch is reported.

See also downhill4, uphill, uphill4.

downhill4

downhill4 patch−variable

Reports the turtle heading (between 0 and 359 degrees) as a multiple of 90 degrees in the direction
of the minimum value of the variable patch−variable, of the four patches to the north, south, east,
and west of the turtle. If there are multiple patches that have the same least value, a random patch
from those patches will be selected.

See also downhill, uphill, uphill4.

dx
dy

dx
dy

Reports the x−increment or y−increment (the amount by which the turtle's xcor or ycor would
change) if the turtle were to take one step forward in its current heading.

Note: dx is simply the sine of the turtle's heading, and dy is simply the cosine. (If this is the reverse
of what you expected, it's because in NetLogo a heading of 0 is north and 90 is east, which is the
reverse of how angles are usually defined in geometry.)

Note: In earlier versions of NetLogo, these primitives were used in many situations where the new
patch−ahead primitive is now more appropriate.

E

NetLogo 3.0 User Manual

Primitives Dictionary 183

empty?

empty? list
empty? string

Reports true if the given list or string is empty, false otherwise.

Note: the empty list is written []. The empty string is written "".

end

end

Used to conclude a procedure. See to and to−report.

error−message

error−message

Reports a string describing the error that was suppressed by carefully.

This reporter can only be used in the second block of a carefully command.

See also carefully.

every

every number [commands]

Runs the given commands at most every number seconds.

By itself, every doesn't make commands run over and over again. You need to use every inside a
loop, or inside a forever button, if you want the commands run over and over again. every only limits
how often the commands run.

More technically, its exact behavior is as follows. When an agent reaches an "every", it checks a
timer to see if the given amount of time has passed since the last time the same agent ran the
commands in the "every" in the same context. If so, it runs the commands; otherwise they are
skipped and execution continues.

Here, "in the same context" means during the same ask (or button press or command typed in the
Command Center). So it doesn't make sense to write ask turtles [every 0.5 [...]],
because when the ask finishes the turtles will all discard their timers for the "every". The correct
usage is shown below.

every 0.5 [ask turtles [fd 1]]
;; twice a second the turtles will move forward 1
every 2 [set index index + 1]
;; every 2 seconds index is incremented

NetLogo 3.0 User Manual

184 Primitives Dictionary

See also wait.

exp

exp number

Reports the value of e raised to the number power.

Note: This is the same as e ^ number.

export−view
export−interface
export−output
export−plot
export−all−plots
export−world

export−view filename
export−interface filename
export−output filename
export−plot plotname filename
export−all−plots filename
export−world filename

export−view writes the current contents of the current view to an external file given by the string
filename. The file is saved in PNG (Portable Network Graphics) format, so it is recommended to
supply a filename ending in ".png".

export−interface is similar, but for the whole interface tab.

export−output writes the contents of the model's output area to an external file given by the string
filename. (If the model does not have a separate output area, the output portion of the Command
Center is used.)

export−plot writes the x and y values of all points plotted by all the plot pens in the plot given by the
string plotname to an external file given by the string filename. If a pen is in bar mode (mode 0) and
the y value of the point plotted is greater than 0, the upper−left corner point of the bar will be
exported. If the y value is less than 0, then the lower−left corner point of the bar will be exported.

export−all−plots writes every plot in the current model to an external file given by the string
filename. Each plot is identical in format to the output of export−plot.

export−world writes the values of all variables, both built−in and user−defined, including all
observer, turtle, and patch variables, the drawing, and the contents of the output area if one exists,
to an external file given by the string filename. (The result file can be read back into NetLogo with
the import−world primitive.)

export−plot, export−all−plots and export−world save files in in plain−text, "comma−separated

NetLogo 3.0 User Manual

Primitives Dictionary 185

values" (.csv) format. CSV files can be read by most popular spreadsheet and database programs
as well as any text editor.

If the file already exists, it is overwritten.

If you wish to export to a file in a location other than the model's location, you should include the full
path to the file you wish to export. (Use the forward−slash "/" as the folder separator.)

Note that the functionality of these primitives is also available directly from NetLogo's File menu.

export−world "fire.csv"
;; exports the state of the model to the file fire.csv
;; located in the NetLogo folder
export−plot "Temperature" "c:/My Documents/plot.csv"
;; exports the plot named
;; "Temperature" to the file plot.csv located in
;; the C:\My Documents folder
export−all−plots "c:/My Documents/plots.csv"
;; exports all plots to the file plots.csv
;; located in the C:\My Documents folder

extract−hsb

extract−hsb color

Reports a list of three values in the range 0.0 to 1.0 representing the hue, saturation and brightness,
respectively, of the given NetLogo color in the range 0 to 140.

show extract−hsb red
=> [0.0 1.0 1.0]
show extract−hsb cyan
=> [0.5 1.0 1.0]

See also hsb, rgb, extract−rgb.

extract−rgb

extract−rgb color

Reports a list of three values in the range 0.0 to 1.0 representing the levels of red, green, and blue,
respectively, of the given NetLogo color in the range 0 to 140.

show extract−rgb red
=> [1.0 0.0 0.0]
show extract−rgb cyan
=> [0.0 1.0 1.0]

See also rgb, hsb, extract−hsb.

F

NetLogo 3.0 User Manual

186 Primitives Dictionary

face
face−nowrap

face agent
face−nowrap agent

Set the caller's heading towards agent.

If the wrapped distance (around the edges of the screen) is shorter than the on−screen distance,
face will use the heading of the wrapped path. face−nowrap never uses the wrapped path.

If the caller and the agent are at the exact same position, the caller's heading won't change.

facexy
facexy−nowrap

facexy number number
facexy−nowrap number number

Set the caller's heading towards the point (x,y).

If the wrapped distance (around the edges of the screen) is shorter than the on−screen distance,
facexy will use the heading of the wrapped path. facexy−nowrap never uses the wrapped path.

If the caller is on the point (x,y), the caller's heading won't change.

file−at−end?

file−at−end?

Reports true when there are no more characters left to read in from the current file (that was opened
previously with file−open). Otherwise, reports false.

file−open "myfile.txt"
print file−at−end?
=> false ;; Can still read in more characters
print file−read−line
=> This is the last line in file
print file−at−end
=> true ;; We reached the end of the file

See also file−open, file−close−all.

file−close

NetLogo 3.0 User Manual

Primitives Dictionary 187

file−close

Closes a file that has been opened previously with file−open.

Note that this and file−close−all are the only ways to restart to the beginning of an opened file or to
switch between file modes.

If no file is open, does nothing.

See also file−close−all, file−open.

file−close−all

file−close−all

Closes all files (if any) that have been opened previously with file−open.

See also file−close, file−open.

file−delete

file−delete string

Deletes the file specified as string

string must be an existing file with writable permission by the user. Also, the file cannot be open.
Use the command file−close to close an opened file before deletion.

Note that the string can either be a file name or an absolute file path. If it is a file name, it looks in
whatever the current directory is. This can be changed using the command set−current−directory. It
is defaulted to the model's directory.

file−exists?

file−exists? string

Reports true if string is the name of an existing file on the system. Otherwise it reports false.

Note that the string can either be a file name or an absolute file path. If it is a file name, it looks in
whatever the current directory is. This can be changed using the command set−current−directory. It
defaults to to the model's directory.

file−open

file−open string

This command will interpret string as a path name to a file and open the file. You may then use the
reporters file−read, file−read−line, and file−read−characters to read in from the file, or file−write,
file−print, file−type, or file−show to write out to the file.

NetLogo 3.0 User Manual

188 Primitives Dictionary

Note that you can only open a file for reading or writing but not both. The next file i/o primitive you
use after this command dictates which mode the file is opened in. To switch modes, you need to
close the file using file−close.

Also, the file must exist when opening a file in reading mode. When opening a file in writing mode,
all new data will be appended to the end of the original file. If there is no original file, a new blank file
will be created in its place (The user needs to have writable permission in the file's directory).

Note that the string can either be a file name or an absolute file path. If it is a file name, it looks in
whatever the current directory is. This can be changed using the command set−current−directory. It
is defaulted to the model's directory.

file−open "myfile−in.txt"
print file−read−line
=> First line in file ;; File is in reading mode
file−open "C:\\NetLogo\\myfile−out.txt"
;; assuming Windows machine
file−print "Hello World" ;; File is in writing mode

See also file−close.

file−print

file−print value

Prints value to an opened file, followed by a carriage return.

The calling agent is not printed before the value, unlike file−show.

Note that this command is the file i/o equivalent of print, and file−open needs to be called before this
command can be used.

See also file−show, file−type, and file−write.

file−read

file−read

This reporter will read in the next constant from the opened file and interpret it as if it had been
typed in the Command Center. It reports the resulting value. The result may be a number, list,
string, boolean, or the special value nobody.

Whitespace separates the constants. Each call to file−read will skip past both leading and trailing
whitespace.

Note that strings need to have quotes around them. Use the command file−write to have quotes
included.

Also note that the file−open command must be called before this reporter can be used, and there
must be data remaining in the file. Use the reporter file−at−end? to determine if you are at the end
of the file.

NetLogo 3.0 User Manual

Primitives Dictionary 189

file−open "myfile.data"
print file−read + 5
;; Next value is the number 1
=> 6
print length file−read
;; Next value is the list [1 2 3 4]
=> 4

See also file−open and file−write.

file−read−characters

file−read−characters number

Reports the given number of characters from an opened file as a string. If there are fewer than that
many characters left, it will report all of the remaining characters.

Note that it will return every character including newlines and spaces.

Also note that the file−open command must be called before this reporter can be used, and there
must be data remaining in the file. Use the reporter file−at−end? to determine if you are at the end
of the file.

file−open "myfile.txt"
print file−read−characters 8
;; Current line in file is "Hello World"
=> Hello Wo

See also file−open.

file−read−line

file−read−line

Reads the next line in the file and reports it as a string. It determines the end of the file by a carriage
return, an end of file character or both in a row. It does not return the line terminator characters.

Also note that the file−open command must be called before this reporter can be used, and there
must be data remaining in the file. Use the reporter file−at−end? to determine if you are at the end
of the file.

file−open "myfile.txt"
print file−read−line
=> Hello World

See also file−open.

file−show

NetLogo 3.0 User Manual

190 Primitives Dictionary

file−show value

Prints value to an opened file, preceded by the calling agent, and followed by a carriage return. (The
calling agent is included to help you keep track of what agents are producing which lines of output.)
Also, all strings have their quotes included similar to file−write.

Note that this command is the file i/o equivalent of show, and file−open needs to be called before
this command can be used.

See also file−print, file−type, and file−write.

file−type

file−type value

Prints value to an opened file, not followed by a carriage return (unlike file−print and file−show). The
lack of a carriage return allows you to print several values on the same line.

The calling agent is not printed before the value. unlike file−show.

Note that this command is the file i/o equivalent of type, and file−open needs to be called before this
command can be used.

See also file−print, file−show, and file−write.

file−write

file−write value

This command will output value, which can be a number, string, list, boolean, or nobody to an
opened file not followed by a carriage return (unlike file−print and file−show).

The calling agent is not printed before the value, unlike file−show. Its output will also includes
quotes around strings and is prepended with a space. It will output the value in such a manner that
file−read will be able to interpret it.

Note that this command is the file i/o equivalent of write, and file−open needs to be called before
this command can be used.

file−open "locations.txt"
ask turtles
 [file−write xcor file−write ycor]

See also file−print, file−show, and file−type.

filter

NetLogo 3.0 User Manual

Primitives Dictionary 191

filter [reporter] list

Reports a list containing only those items of list for which the boolean reporter is true −− in other
words, the items satisfying the given condition.

In reporter, use ? to refer to the current item of list.

show filter [? < 3] [1 3 2]
=> [1 2]
show filter [first ? != "t"] ["hi" "there" "everyone"]
=> ["hi" "everyone"]

See also map, reduce, ?.

first

first list
first string

On a list, reports the first (0th) item in the list.

On a string, reports a one−character string containing only the first character of the original string.

floor

floor number

Reports the largest integer less than or equal to number.

show floor 4.5
=> 4
show floor −4.5
=> −5

follow

follow turtle

Similar to ride, but, in the 3D view, the view is behind and above turtle.

See also follow−me, ride, reset−perspective, watch, subject.

follow−me

follow−me

Asks the observer to follow the calling turtle.

NetLogo 3.0 User Manual

192 Primitives Dictionary

See also follow.

foreach

foreach list [commands]
(foreach list1 ... listn [commands])

With a single list, runs commands for each item of list. In commands, use ? to refer to the current
item of list.

foreach [1.1 2.2 2.6] [show ? + " −> " + round ?]
=> 1.1 −> 1
=> 2.2 −> 2
=> 2.6 −> 3

With multiple lists, runs commands for each group of items from each list. So, they are run once for
the first items, once for the second items, and so on. All the lists must be the same length. In
commands, use ?1 through ?n to refer to the current item of each list.

Some examples make this clearer:

(foreach [1 2 3] [2 4 6]
 [show "the sum is: " + (?1 + ?2)])
=> "the sum is: 3"
=> "the sum is: 6"
=> "the sum is: 9"
(foreach list (turtle 1) (turtle 2) [3 4]
 [ask ?1 [fd ?2]])
;; turtle 1 moves forward 3 patches
;; turtle 2 moves forward 4 patches

See also map, ?.

forward
fd

forward number

The turtle moves forward by number steps. (If number is negative, the turtle moves backward.)

Turtles using this primitive can move a maximum of one unit per time increment. So fd 0.5 and fd
1 both take one unit of time, but fd 3 takes three.

See also jump.

fput

fput item list

Adds item to the beginning of a list and reports the new list.

NetLogo 3.0 User Manual

Primitives Dictionary 193

;; suppose mylist is [5 7 10]
set mylist fput 2 mylist
;; mylist is now [2 5 7 10]

G

globals

globals [var1 var2 ...]

This keyword, like the breeds, <BREED>−own, patches−own, and turtles−own keywords, can only
be used at the beginning of a program, before any function definitions. It defines new global
variables. Global variables are "global" because they are accessible by all agents and can be used
anywhere in a model.

Most often, globals is used to define variables or constants that need to be used in many parts of
the program.

H

hatch
hatch−<BREED>

hatch number [commands]
hatch−<BREED> number [commands]

This turtle creates number new turtles, each identical to its parent, and asks the new turtles to run
commands. You can use the commands to give the new turtles different colors, headings, or
whatever.

If the hatch−<BREED> form is used, the new turtles are created as members of the given breed.
Otherwise, the new turtles are the same breed as their parent.

Note: While the commands are running, no other agents are allowed to run any code (as with the
without−interruption command). This ensures that the new turtles cannot interact with any other
agents until they are fully initialized. In addition, no screen updates take place until the commands
are done. This ensures that the new turtles are never drawn on−screen in an only partly initialized
state.

hatch 1 [lt 45 fd 1]
;; this turtle creates one new turtle,
;; and the child turns and moves away
hatch−sheep 1 [set color black]
;; this turtle creates a new turtle
;; of the sheep breed

NetLogo 3.0 User Manual

194 Primitives Dictionary

heading

heading

This is a built−in turtle variable. It indicates the direction the turtle is facing. This is a number greater
than or equal to 0 and less than 360. 0 is north, 90 is east, and so on. You can set this variable to
make a turtle turn.

See also right, left, dx, dy.

Example:

set heading 45 ;; turtle is now facing northeast
set heading heading + 10 ;; same effect as "rt 10"

hidden?

hidden?

This is a built−in turtle variable. It holds a boolean (true or false) value indicating whether the turtle
is currently hidden (i.e., invisible). You can set this variable to make a turtle disappear or reappear.

See also hideturtle, showturtle.

Example:

set hidden? not hidden?
;; if turtle was showing, it hides, and if it was hiding,
;; it reappears

hideturtle
ht

hideturtle

The turtle makes itself invisible.

Note: This command is equivalent to setting the turtle variable "hidden?" to true.

See also showturtle.

histogram−from

histogram−from agentset [reporter]

Draws a histogram showing the frequency distribution of the values reported when all agents in the
agentset run the given reporter. The heights of the bars in the histogram represent the numbers of

NetLogo 3.0 User Manual

Primitives Dictionary 195

agents with values in those ranges.

Before the histogram is drawn, first any previous points drawn by the current plot pen are removed.

The reporter should report a numeric value. Any non−numeric values reported are ignored.

The histogram is drawn on the current plot using the current plot pen and pen color. Use
set−plot−x−range to control the range of values to be histogrammed, and set the pen interval (either
directly with set−plot−pen−interval, or indirectly via set−histogram−num−bars) to control how many
bars that range is split up into.

Be sure that if you want the histogram drawn with bars that the current pen is in bar mode (mode 1).

As of NetLogo 2.0.2, for histogramming purposes the plot's X range is not considered to include the
maximum X value. Values equal to the maximum X will fall outside of the histogram's range.

histogram−from turtles [color]
;; draws a histogram showing how many turtles there are
;; of each color

Note: using this primitive amounts to the same thing as writing: histogram−list values−from
agentset [reporter], but is more efficient.

histogram−list

histogram−list list

Histograms the values in the given list, after first removing any previous points drawn by the current
plot pen.

See histogram−from, above, for more information.

home

home

The calling turtles moves to the origin (0,0). Equivalent to setxy 0 0.

hsb

hsb hue saturation brightness

Reports a number in the range 0 to 140, not including 140 itself, that represents the given color,
specified in the HSB spectrum, in NetLogo's color space.

All three values should be in the range 0.0 to 1.0.

The color reported may be only an approximation, since the NetLogo color space does not include
all possible colors. (It contains only certain discrete hues, and for each hue, either saturation or

NetLogo 3.0 User Manual

196 Primitives Dictionary

brightness may vary, but not both −− at least one of the two is always 1.0.)

show hsb 0 0 0
=> 0.0 ;; (black)
show hsb 0.5 1.0 1.0
=> 85.0 ;; (cyan)

See also extract−hsb, rgb, extract−rgb.

hubnet−broadcast

hubnet−broadcast tag−name value

This broadcasts value from NetLogo to the variable, in the case of Calculator HubNet, or interface
element, in the case of Computer HubNet, with the name tag−name to the clients.

See the HubNet Authoring Guide for details and instructions.

hubnet−broadcast−view

hubnet−broadcast−view

This broadcasts the current state of the 2D view in the NetLogo model to all the Computer HubNet
Clients. It does nothing for Calculator HubNet.

Note: This is an experimental primitive and its behavior may change in a future version.

See the HubNet Authoring Guide for details and instructions.

hubnet−enter−message?

hubnet−enter−message?

Reports true if a new computer client just entered the simulation. Reports false otherwise.
hubnet−message−source will contain the user name of the client that just logged on.

See the HubNet Authoring Guide for details and instructions.

hubnet−exit−message?

hubnet−exit−message?

Reports true if a computer client just exited the simulation. Reports false otherwise.
hubnet−message−source will contain the user name of the client that just logged off.

See the HubNet Authoring Guide for details and instructions.

NetLogo 3.0 User Manual

Primitives Dictionary 197

hubnet−fetch−message

hubnet−fetch−message

If there is any new data sent by the clients, this retrieves the next piece of data, so that it can be
accessed by hubnet−message, hubnet−message−source, and hubnet−message−tag. This will
cause an error if there is no new data from the clients.

See the HubNet Authoring Guide for details.

hubnet−message

hubnet−message

Reports the message retrieved by hubnet−fetch−message.

See the HubNet Authoring Guide for details.

hubnet−message−source

hubnet−message−source

Reports the name of the client that sent the message retrieved by hubnet−fetch−message.

See the HubNet Authoring Guide for details.

hubnet−message−tag

hubnet−message−tag

Reports the tag that is associated with the data that was retrieved by hubnet−fetch−message. For
Calculator HubNet, this will report one of the variable names set with the
hubnet−set−client−interface primitive. For Computer HubNet, this will report one of the Display
Names of the interface elements in the client interface.

See the HubNet Authoring Guide for details.

hubnet−message−waiting?

hubnet−message−waiting?

This looks for a new message sent by the clients. It reports true if there is one, and false if there is
not.

See the HubNet Authoring Guide for details.

NetLogo 3.0 User Manual

198 Primitives Dictionary

hubnet−reset

hubnet−reset

Starts up the HubNet system. HubNet must be started to use any of the other hubnet primitives with
the exception of hubnet−set−client−interface.

See the HubNet Authoring Guide for details.

hubnet−send

hubnet−send string tag−name value

hubnet−send list−of−strings tag−name value

For Calculator HubNet, this primitive acts in exactly the same manner as hubnet−broadcast. (We
plan to change this in a future version of NetLogo.)

For Computer HubNet, it acts as follows:

For a string, this sends value from NetLogo to the tag tag−name on the client that has string for its
user name.

For a list−of−strings, this sends value from NetLogo to the tag tag−name on all the clients that have
a user name that is in the list−of−strings.

Sending a message to a non−existent client, using hubnet−send, generates a
hubnet−exit−message.

See the HubNet Authoring Guide for details.

hubnet−send−view

hubnet−send−view string

hubnet−send−view list−of−strings

For Calculator HubNet, does nothing.

For Computer HubNet, it acts as follows:

For a string, this sends the current state of the 2D view in the NetLogo model to the Computer
HubNet Client with string for its user name.

For a list−of−strings, this sends the current state of the view in the NetLogo model to all the
Computer HubNet Clients that have a user name that is in the list−of−strings.

Sending the 2D view to a non−existent client, using hubnet−send−view, generates a
hubnet−exit−message.

NetLogo 3.0 User Manual

Primitives Dictionary 199

Note: This is an experimental primitive and its behavior may change in a future version.

See the HubNet Authoring Guide for details.

hubnet−set−client−interface

hubnet−set−client−interface client−type client−info

If client−type is "COMPUTER", client−info is a list containing a string with the file name and path
(relative to the model) to the file which will serve as the client's interface. This interface will be sent
to any clients that log in.

hubnet−set−client−interface
 "COMPUTER"
 ["clients/Disease client.nlogo"]
;; when clients log in, they will will get the
;; interface described in the file
;; clients/Disease client.nlogo, relative to
;; the location of the model

Future versions of HubNet will support other client types. Even for Computer HubNet, the meaning
of the second input to this command may change.

See the HubNet Authoring Guide for details.

I

if

if condition [commands]

Reporter must report a boolean (true or false) value.

If condition reports true, runs commands.

The reporter may report a different value for different agents, so some agents may run commands
and others don't.

if xcor > 0[set color blue]
;; turtles on the right half of the screen
;; turn blue

ifelse

ifelse reporter [commands1] [commands2]

Reporter must report a boolean (true or false) value.

If reporter reports true, runs commands1.

If reporter reports false, runs commands2.

NetLogo 3.0 User Manual

200 Primitives Dictionary

The reporter may report a different value for different agents, so some agents may run commands1
while others run commands2.

ask patches
 [ifelse pxcor > 0
 [set pcolor blue]
 [set pcolor red]]
;; the left half of the screen turns red and
;; the right half turns blue

ifelse−value

ifelse−value reporter [reporter1] [reporter2]

Reporter must report a boolean (true or false) value.

If reporter reports true, the result is the value of reporter1.

If reporter reports false, the result is the value of reporter2.

This can be used when a conditional is needed in the context of a reporter, where commands (such
as ifelse) are not allowed.

ask patches
 [set pcolor
 ifelse−value (pxcor > 0)
 [blue]
 [red]]
;; the left half of the screen turns red and
;; the right half turns blue
show n−values 10 [ifelse−value (? < 5) [0] [1]]
=> [0 0 0 0 0 1 1 1 1 1]
show reduce [ifelse−value (?1 > ?2) [?1] [?2]]
 [1 3 2 5 3 8 3 2 1]
=> 8

import−drawing

import−drawing filename

Reads an image file into the drawing, scaling it to the size of the world, while retaining the original
aspect ratio of the image. The image is centered in the drawing. The old drawing is not cleared first.

Agents cannot sense the drawing, so they cannot interact with or process images imported by
import−drawing. If you need agents to sense an image, use import−pcolors.

The following image file formats are supported: BMP, JPG, GIF, and PNG. If the image format
supports transparency (alpha), that information will be imported as well.

NetLogo 3.0 User Manual

Primitives Dictionary 201

import−pcolors

import−pcolors filename

Reads an image file, scales it to the same dimensions as the patch grid while maintaining the
original aspect ratio of the image, and transfers the resulting pixel colors to the patches. The image
is centered in the patch grid. The resulting patch colors may be distorted, since the NetLogo color
space does not include all possible colors. (See the Color section of the Programming Guide.)
import−pcolors may be slow for some images, particularly when you have many patches and a large
image with many different colors.

Since import−pcolors sets the pcolor of patches, agents can sense the image. This is useful if
agents need to analyze, process, or otherwise interact with the image. If you want to simply display
a static backdrop, without color distortion, see import−drawing.

The following image file formats are supported: BMP, JPG, GIF, and PNG. If the image format
supports transparency (alpha), then all fully transparent pixels will be ignored. (Partially transparent
pixels will be treated as opaque.)

import−world

import−world filename

Reads the values of all variables for a model, both built−in and user−defined, including all observer,
turtle, and patch variables, from an external file named by the given string. The file should be in the
format used by the export−world primitive.

Note that the functionality of this primitive is also directly available from NetLogo's File menu.

When using import−world, to avoid errors, perform these steps in the following order:

Open the model from which you created the export file.1.
Press the Setup button, to get the model in a state from which it can be run.2.
Import the file.3.
If you want, press Go button to continue running the model from the point where it left off.4.

If you wish to import a file from a location other than the model's location, you may include the full
path to the file you wish to import. See export−world for an example.

in−cone
in−cone−nowrap

agentset in−cone distance angle
agentset in−cone−nowrap distance angle

This reporter lets you give a turtle a "cone of vision" in front of itself. The cone is defined by the two

NetLogo 3.0 User Manual

202 Primitives Dictionary

inputs, the vision distance (radius) and the view angle. The view angle may range from 0 to 360 and
is centered around the turtle's current heading. (If the angle is 360, then in−cone is equivalent to
in−radius.)

in−cone reports an agentset that includes only those agents from the original agentset that fall in the
cone.

The distance to a patch is measured from the center of the patch.

in−cone allows its distance measurements to wrap around the edge of the world; in−cone−nowrap
does not.

ask turtles
 [ask patches in−cone 3 60
 [set pcolor red]]
;; each turtle makes a red "splotch" of patches in a 60 degree
;; cone of radius 3 ahead of itself

in−radius
in−radius−nowrap

agentset in−radius number
agentset in−radius−nowrap number

Reports an agentset that includes only those agents from the original agentset whose distance from
the caller is less than or equal to number.

The distance to or a from a patch is measured from the center of the patch.

in−radius allows its distance measurements to wrap around the edge of the screen;
in−radius−nowrap does not.

ask turtles
 [ask patches in−radius 3
 [set pcolor red]]
;; each turtle makes a red "splotch" around itself

inspect

inspect agent

Opens an agent monitor for the given agent (turtle or patch).

inspect patch 2 4
;; an agent monitor opens for that patch
inspect random−one−of sheep
;; an agent monitor opens for a random turtle from
;; the "sheep" breed

NetLogo 3.0 User Manual

Primitives Dictionary 203

int

int number

Reports the integer part of number −− any fractional part is discarded.

show int 4.7
=> 4
show int −3.5
=> −3

is−agent?
is−agentset?
is−boolean?
is−list?
is−number?
is−patch?
is−patch−agentset?
is−string?
is−turtle?
is−turtle−agentset?

is−agent? value
is−agentset? value
is−boolean? value
is−list? value
is−number? value
is−patch? value
is−patch−agentset? value
is−string? value
is−turtle? value
is−turtle−agentset? value

Reports true if value is of the given type, false otherwise.

item

item index list
item index string

On lists, reports the value of the item in the given list with the given index.

On strings, reports the character in the given string at the given index.

Note that the indices begin from 0, not 1. (The first item is item 0, the second item is item 1, and so
on.)

;; suppose mylist is [2 4 6 8 10]

NetLogo 3.0 User Manual

204 Primitives Dictionary

show item 2 mylist
=> 6
show item 3 "my−shoe"
=> "s"

J

jump

jump number

Turtles move forward by number units all at once, without the amount of time passing depending on
the distance.

This command is useful for synchronizing turtle movements. The command forward 15 takes 15
times longer to run than forward 1, but jump 15 runs in the same amount of time as forward 1.

Note: When turtles jump, they do not step on any of the patches along their path.

L

label

label

This is a built−in turtle variable. It may hold a value of any type. The turtle appears in the view with
the given value "attached" to it as text. You can set this variable to add, change, or remove a turtle's
label.

See also no−label, label−color, plabel, plabel−color.

Example:

ask turtles [set label who]
;; all the turtles now are labeled with their
;; id numbers
ask turtles [set label no−label]
;; all turtles now are not labeled

label−color

label−color

This is a built−in turtle variable. It holds a number greater than or equal to 0 and less than 140. This
number determines what color the turtle's label appears in (if it has a label). You can set this
variable to change the color of a turtle's label.

NetLogo 3.0 User Manual

Primitives Dictionary 205

See also no−label, label, plabel, plabel−color.

Example:

ask turtles [set label−color red]
;; all the turtles now have red labels

last

last list
last string

On a list, reports the last item in the list.

On a string, reports a one−character string containing only the last character of the original string.

left
lt

left number

The turtle turns left by number degrees. (If number is negative, it turns right.)

length

length list
length string

Reports the number of items in the given list, or the number of characters in the given string.

let

let variable value

Creates a new local variable and gives it the given value. A local variable is one that exists only
within the enclosing block of commands.

If you want to change the value afterwards, use set.

Example:

let prey random−one−of sheep−here
if prey != nobody
 [ask prey [die]]

NetLogo 3.0 User Manual

206 Primitives Dictionary

list

list value1 value2
(list value1 ... valuen)

Reports a list containing the given items. The items can be of any type, produced by any kind of
reporter.

show list (random 10) (random 10)
=> [4 9] ;; or similar list
show (list 5)
=> [5]
show (list (random 10) 1 2 3 (random 10))
=> [4 1 2 3 9] ;; or similar list

ln

ln number

Reports the natural logarithm of number, that is, the logarithm to the base e (2.71828...).

See also e, log.

locals

locals [Vax1 var2 ...]

NOTE: This keyword should not be used in new models. Please use the let command instead.
"locals" is included only for backwards compatibility with NetLogo version 2.0 and earlier. It will not
necessarily continue to be supported in future versions of NetLogo.

Locals is a keyword used to declare "local" variables in a procedure, that is, variables that are
usable only within that procedure. It must appear at the beginning of the procedure, before any
commands.

See also let.

log

log number base

Reports the logarithm of number in base base.

show log 64 2
=> 6

See also ln.

NetLogo 3.0 User Manual

Primitives Dictionary 207

loop

loop [commands]

Runs the list of commands forever, or until the current procedure exits through use of the stop
command or the report command.

Note: In most circumstances, you should use a forever button in order to repeat something forever.
The advantage of using a forever button is that the user can click the button to stop the loop.

lput

lput value list

Adds value to the end of a list and reports the new list.

;; suppose mylist is [2 7 10 "Bob"]
set mylist lput 42 mylist
;; mylist now is [2 7 10 "Bob" 42]

M

map

map [reporter] list
(map [reporter] list1 ... list2)

With a single list, the given reporter is run for each item in the list, and a list of the results is
collected and reported.

In reporter, use ? to refer to the current item of list.

show map [round ?] [1.1 2.2 2.7]
=> [1 2 3]
show map [? * ?] [1 2 3]
=> [1 4 9]

With multiple lists, the given reporter is run for each group of items from each list. So, it is run once
for the first items, once for the second items, and so on. All the lists must be the same length.

In reporter, use ?1 through ?n to refer to the current item of each list.

Some examples make this clearer:

show (map [?1 + ?2] [1 2 3] [2 4 6])
=> [3 6 9]
show (map [?1 + ?2 = ?3] [1 2 3] [2 4 6] [3 5 9])
=> [true false true]

See also foreach, ?.

NetLogo 3.0 User Manual

208 Primitives Dictionary

max

max list

Reports the maximum number value in the list. It ignores other types of items.

show max values−from turtles [xcor]
;; prints the x coordinate of the turtle which is
;; farthest right on the screen

max−one−of

max−one−of agentset [reporter]

Reports the agent in the agentset that has the highest value for the given reporter. If there is a tie
this command returns one random agent with the highest value. If you want all such agents, use
with−max instead.

show max−one−of patches [count turtles−here]

;; prints the first patch with the most turtles on it

See also with−max

mean

mean list

Reports the statistical mean of the numeric items in the given list. Ignores non−numeric items. The
mean is the average, i.e., the sum of the items divided by the total number of items.

show mean values−from turtles [xcor]
;; prints the average of all the turtles' x coordinates

median

median list

Reports the statistical median of the numeric items of the given list. Ignores non−numeric items. The
median is the item that would be in the middle if all the items were arranged in order. (If two items
would be in the middle, the median is the average of the two.)

show median values−from turtles [xcor]
;; prints the median of all the turtles' x coordinates

member?

member? value list
member? string1 string2

For a list, reports true if the given value appears in the given list, otherwise reports false.

NetLogo 3.0 User Manual

Primitives Dictionary 209

For a string, reports true or false depending on whether string1 appears anywhere inside string2 as
a substring.

show member? 2 [1 2 3]
=> true
show member? 4 [1 2 3]
=> false
show member? "rin" "string"
=> true

See also position.

min

min list

Reports the minimum number value in the list. It ignores other types of items.

show min values−from turtles [xcor]
;; prints the lowest x−coordinate of all the turtles

min−one−of

min−one−of agentset [reporter]

Reports a random agent in the agentset that reports the lowest value for the given reporter. If there
is a tie, this command returns one random agent that meets the condition. If you want all such
agents use with−min instead.

show min−one−of turtles [xcor + ycor]
;; reports the first turtle with the smallest sum of
;; coordinates

See also with−min

mod

number1 mod number2

Reports number1 modulo number2: that is, the residue of number1 (mod number2). mod is is
equivalent to the following NetLogo code:

number1 − (floor (number1 / number2)) * number2

Note that mod is "infix", that is, it comes between its two inputs.

show 62 mod 5
=> 2
show −8 mod 3
=> 1

See also remainder. mod and remainder behave the same for positive numbers, but differently for

NetLogo 3.0 User Manual

210 Primitives Dictionary

negative numbers.

modes

modes list

Reports a list of the most common item or items in list.

The input list may contain any NetLogo values.

If the input is an empty list, reports an empty list.

show modes [1 2 2 3 4]
=> [2]
show modes [1 2 2 3 3 4]
=> [2 3]
show modes [[1 2 [3]] [1 2 [3]] [2 3 4]]
=> [[1 2 [3]]
show modes values−from turtles [pxcor]
;; shows which columns of patches have the most
;; turtles on them

mouse−down?

mouse−down?

Reports true if the mouse button is down, false otherwise.

Note: If the mouse pointer is outside of the current view , mouse−down? will always report false.

mouse−inside?

mouse−inside?

Reports true if the mouse pointer is inside the current view, false otherwise.

mouse−xcor
mouse−ycor

mouse−xcor
mouse−ycor

Reports the x or y coordinate of the mouse in the 2D view. The value is in terms of turtle
coordinates, so it is a floating−point number. If you want patch coordinates, use round
mouse−xcor and round mouse−ycor.

Note: If the mouse is outside of the 2D view, reports the value from the last time it was inside.

;; to make the mouse "draw" in red:
if mouse−down?
 [set pcolor−of patch−at mouse−xcor mouse−ycor red]

NetLogo 3.0 User Manual

Primitives Dictionary 211

movie−cancel

movie−cancel

Cancels the current movie.

movie−close

movie−cancel

Stops the recording of the current movie.

movie−grab−view
movie−grab−interface

movie−grab−view
movie−grab−interface

Adds an image of the current view or the interface panel to the current movie.

;; make a 20−step movie of the current view
setup
movie−start "out.mov"
repeat 20
[movie−grab−view
 go]
movie−close

movie−set−frame−rate

movie−set−frame−rate frame−rate

Sets the frame rate of the current movie. Must be called after movie−start, but before
movie−grab−area,

See also movie−status, movie−set−frame−rate,

movie−start

movie−start filename

Creates a new movie. filename specifies a new QuickTime file where the movie will be saved, so it
should end with ".mov".

See also movie−grab−view, movie−grab−interface, movie−cancel, movie−status,
movie−set−frame−rate, movie−close.

NetLogo 3.0 User Manual

212 Primitives Dictionary

movie−status

movie−status

Reports a string describing the current movie.

print movie−status
=> No movie.
movie−start
print movie−status
=> 0 frames; Framerate = 15.0.
movie−grab−view
print movie−status
1 frames; Framerate = 15.0; Size = 315x315.

myself

myself

"self" and "myself" are very different. "self" is simple; it means "me". "myself" means "the turtle or
patch who asked me to do what I'm doing right now."

When an agent has been asked to run some code, using myself in that code reports the agent
(turtle or patch) that did the asking.

myself is most often used in conjunction with −of to read or set variables in the asking agent.

myself can be used within blocks of code not just in the ask command, but also hatch, sprout,
values−from, value−from, turtles−from, patches−from, histogram−from, with, min−one−of, and
max−one−of.

ask turtles
 [ask patches in−radius 3
 [set pcolor color−of myself]]
;; each turtle makes a colored "splotch" around itself

See the "Myself Example" code example for more examples.

See also self.

N

n−values

n−values size [reporter]

Reports a list of length size containing values computed by repeatedly running reporter.

In reporter, use ? to refer to the number of the item currently being computed, starting from zero.

show n−values 5 [1]

NetLogo 3.0 User Manual

Primitives Dictionary 213

=> [1 1 1 1 1]
show n−values 5 [?]
=> [0 1 2 3 4]
show n−values 3 [turtle ?]
=> [(turtle 0) (turtle 1) (turtle 2)]
show n−values 5 [? * ?]
=> [0 1 4 9 16]

See also reduce, filter, ?.

neighbors
neighbors4

neighbors
neighbors4

Reports an agentset containing the 8 surrounding patches (neighbors) or 4 surrounding patches
(neighbors4).

show sum values−from neighbors [count turtles−here]
 ;; prints the total number of turtles on the eight
 ;; patches around the calling turtle or patch
ask neighbors4 [set pcolor red]
 ;; turns the four neighboring patches red

netlogo−version

netlogo−version

Reports a string containing the version number of the NetLogo you are running.

show netlogo−version
=> "3.0"

new−seed

new−seed

Reports a number suitable for seeding the random number generator.

The numbers reported by new−seed are based on the current date and time in milliseconds and lie
in the range −2147483648 to 2147483647.

new−seed never reports the same number twice in succession. (This is accomplished by waiting a
millisecond if the seed for the current millisecond was already used.)

See also random−seed.

NetLogo 3.0 User Manual

214 Primitives Dictionary

no−display

no−display

Turns off all updates to the current view until the display command is issued. This has two major
uses.

One, you can control when the user sees screen updates. You might want to change lots of things
on the screen behind the user's back, so to speak, then make them visible to the user all at once.

Two, your model will run faster when view updating is off, so if you're in a hurry, this command will
let you get results faster. (Note that normally you don't need to use no−display for this, since you
can also use the on/off switch in view control strip to freeze the view.)

Note that display and no−display operate independently of the switch in the view control strip that
freezes the view.

See also display.

no−label

no−label

This is a special value used to remove labels from turtles and patches.

When you set a turtle's label to no−label, or a patch's plabel to no−label, then a label will no longer
be drawn on top of the turtle or patch.

See also label, label−color, plabel, plabel−color.

nobody

nobody

This is a special value which some primitives such as turtle, random−one−of, max−one−of, etc.
report to indicate that no agent was found. Also, when a turtle dies, it becomes equal to nobody.

Note: Empty agentsets are not equal to nobody. If you want to test for an empty agentset, use any?.
You only get nobody back in situations where you were expecting a single agent, not a whole
agentset.

set other random−one−of other−turtles−here
if other != nobody
 [set color−of other red]

not

NetLogo 3.0 User Manual

Primitives Dictionary 215

not boolean

Reports true if boolean is false, otherwise reports false.

if not (color = blue) [fd 10]
;; all non−blue turtles move forward 10 steps

nsum
nsum4

nsum patch−variable
nsum4 patch−variable

For each patch, reports the sum of the values of patch−variable in the 8 surrounding patches
(nsum) or 4 surrounding patches (nsum4).

Note that nsum/nsum4 are equivalent to the combination of the sum, values−from, and
neighbors/neighbors4 primitives:

sum values−from neighbors [var]
 ;; does the same thing as "nsum var"
sum values−from neighbors4 [var]
 ;; does the same thing as "nsum4 var"

Therefore nsum and nsum4 are included as separate primitives mainly for backwards compatibility
with older versions of NetLogo, which did not have the neighbors and neighbors4 primitives.

See also neighbors, neighbors4.

O

−of

VARIABLE−of agent

Reports the value of the VARIABLE of the given agent. Can also be used to set the value of the
variable.

show pxcor−of random−one−of patches
;; prints the value of a random patch's pxcor variable
set color−of random−one−of turtles red
;; a randomly chosen turtle turns red
ask turtles [set pcolor−of (patch−at −1 0) red]
;; each turtle turns the patch on its left red

one−of

NetLogo 3.0 User Manual

216 Primitives Dictionary

one−of agentset

If given a turtle agentset, reports the turtle in the set with the lowest numbered ID.

If given a patch agentset, reports the patch in the set with the highest pycor and, if a tie−breaker is
needed, with the lowest pxcor.

If the agentset is empty, reports nobody.

See also random−one−of.

or

boolean1 or boolean2

Reports true if either boolean1 or boolean2, or both, is true.

Note that if condition1 is true, then condition2 will not be run (since it can't affect the result).

if (pxcor > 0) or (pycor > 0) [set pcolor red]
;; patches turn red except in lower−left quadrant

other−turtles−here
other−BREED−here

other−turtles−here
other−BREED−here

Reports an agentset consisting of all turtles on the calling turtle's patch (not including the caller
itself). If a breed is specified, only turtles with the given breed are included.

;; suppose I am one of 10 turtles on the same patch
show count other−turtles−here
=> 9

Example using breeds:

breeds [cats dogs]
show count other−dogs−here
;; prints the number of dogs (that are not me) on my patch

See also turtles−here.

output−print
output−show
output−type
output−write

NetLogo 3.0 User Manual

Primitives Dictionary 217

output−print value
output−show value
output−type value
output−write value

These commands are the same as the print, show, type, and write commands except that value is
printed in the model's output area, instead of in the Command Center. (If the model does not have a
separate output area, then the Command Center is used.)

P

patch

patch pxcor pycor

Given two integers, reports the single patch with the given pxcor and pycor. (The coordinates are
the actual coordinates; they are not computed relative to the calling agent, as with patch−at.) pxcor
and pycor must be integers.

ask (patch 3 −4) [set pcolor green]
;; patch with pxcor of 3 and pycor of −4 turns green

See also patch−at.

patch−ahead

patch−ahead distance

Reports the single patch that is the given distance "ahead" of the calling turtle, that is, along the
turtle's current heading.

set pcolor−of (patch−ahead 1) green
;; turns the patch 1 in front of the calling turtle
;; green; note that this might be the same patch
;; the turtle is standing on

See also patch−at, patch−left−and−ahead, patch−right−and−ahead,
patch−at−heading−and−distance.

patch−at

patch−at dx dy

Reports the single patch at (dx, dy) from the caller, that is, dx patches east and dy patches north of
the caller. (If the caller is the observer, the given offsets are computed from the origin.)

ask patch−at 1 −1 [set pcolor green]
;; if caller is the observer, turn the patch
;; at (1, −1) green
;; if caller is a turtle or patch, turns the

NetLogo 3.0 User Manual

218 Primitives Dictionary

;; patch just southeast of the caller green

See also patch, patch−ahead, patch−left−and−ahead, patch−right−and−ahead,
patch−at−heading−and−distance.

patch−at−heading−and−distance

patch−at−heading−and−distance heading distance

patch−at−heading−and−distance reports the single patch that is the given distance from the calling
turtle or patch, along the given absolute heading. (In contrast to patch−left−and−ahead and
patch−right−and−ahead, the calling turtle's current heading is not taken into account.)

set pcolor−of (patch−at−heading−and−distance −90 1) green
;; turns the patch 1 to the west of the calling patch
;; green

See also patch, patch−at, patch−left−and−ahead, patch−right−and−ahead.

patch−here

patch−here

patch−here reports the patch under the turtle.

Note that this reporter isn't available to a patch because a patch can just say "self".

patch−left−and−ahead
patch−right−and−ahead

patch−left−and−ahead angle distance
patch−right−and−ahead angle distance

Reports the single patch that is the given distance from the calling turtle, in the direction turned left
or right the given angle (in degrees) from the turtle's current heading.

(If you want to find a patch in a given absolute heading, rather than one relative to the current
turtle's heading, use patch−at−heading−and−distance instead.)

set pcolor−of (patch−right−and−ahead 30 1) green
;; the calling turtle "looks" 30 degrees right of its
;; current heading at the patch 1 unit away, and turns
;; that patch green; note that this might be the same
;; patch the turtle is standing on

See also patch, patch−at, patch−at−heading−and−distance.

NetLogo 3.0 User Manual

Primitives Dictionary 219

patches

patches

Reports the agentset consisting of all patches.

patches−from

patches−from agentset [reporter]

Reports a patch agentset made by gathering together all the patches reported by reporter for each
agent in agentset.

For each agent, the reporter must report a patch agentset, a single patch, or nobody.

patches−from turtles [patch−here]
 ;; reports the set of all patches with turtles on them;
 ;; if there are many more patches than turtles, this will
 ;; run much faster than "patches with [any? turtles−here]"

See also turtles−from.

patches−own

patches−own [var1 var2 ...]

This keyword, like the globals, breeds, <BREED>−own, and turtles−own keywords, can only be
used at the beginning of a program, before any function definitions. It defines the variables that all
patches can use.

All patches will then have the given variables and be able to use them.

All patch variables can also be directly accessed by any turtle standing on the patch.

See also globals, turtles−own, breeds, <BREED>−own.

pcolor

pcolor

This is a built−in patch variable. It holds the color of the patch. You can set this variable to make the
patch change color.

All patch variables can be directly accessed by any turtle standing on the patch.

See also color.

NetLogo 3.0 User Manual

220 Primitives Dictionary

pen−down
pd
pen−erase
pe
pen−up
pu

pen−down
pen−erase
pen−up

The turtle changes modes between drawing lines, removing lines or neither. The lines will always be
displayed on top of the patches and below the turtles. To change the color of the pen set the color
of the turtle using set color.

Note: When a turtle's pen is down, all movement commands cause lines to be drawn, including
jump and setxy.

Note: These commands are equivalent to setting the turtle variable "pen−mode" to "down" , "up",
and "erase".

pen−mode

This is a built−in turtle variable. It holds the state of the turtle's pen. You set the variable to draw
lines, erase lines or stop either of these actions.

pen−size

This is a built−in turtle variable. It holds the width of the line, in pixels, that the turtle will draw (or
erase) when the pen is down (or erasing).

plabel

plabel

This is a built−in patch variable. It may hold a value of any type. The patch appears in the view with
the given value "attached" to it as text. You can set this variable to add, change, or remove a
patch's label.

All patch variables can be directly accessed by any turtle standing on the patch.

See also no−label, plabel−color, label, label−color.

NetLogo 3.0 User Manual

Primitives Dictionary 221

plabel−color

plabel−color

This is a built−in patch variable. It holds a number greater than or equal to 0 and less than 140. This
number determines what color the patch's label appears in (if it has a label). You can set this
variable to change the color of a patch's label.

All patch variables can be directly accessed by any turtle standing on the patch.

See also no−label, plabel, label, label−color.

plot

plot number

Increments the x−value of the plot pen by plot−pen−interval, then plots a point at the updated
x−value and a y−value of number. (The first time the command is used on a plot, the point plotted
has an x−value of 0.)

plot−name

plot−name

Reports the name of the current plot (a string).

plot−pen−down
ppd
plot−pen−up
ppu

plot−pen−down
plot−pen−up

Puts down (or up) the current plot−pen, so that it draws (or doesn't). (By default, all pens are down
initially.)

plot−pen−reset

plot−pen−reset

Clears everything the current plot pen has drawn, moves it to (0,0), and puts it down. If the pen is a
permanent pen, the color and mode are reset to the default values from the plot Edit dialog.

NetLogo 3.0 User Manual

222 Primitives Dictionary

plotxy

plotxy number1 number2

Moves the current plot pen to the point with coordinates (number1, number2). If the pen is down, a
line, bar, or point will be drawn (depending on the pen's mode).

plot−x−min
plot−x−max
plot−y−min
plot−y−max

plot−x−min
plot−x−max
plot−y−min
plot−y−max

Reports the minimum or maximum value on the x or y axis of the current plot.

These values can be set with the commands set−plot−x−range and set−plot−y−range. (Their default
values are set from the plot Edit dialog.)

position

position item list
position string1 string2

On a list, reports the first position of item in list, or false if it does not appear.

On strings, reports the position of the first appearance string1 as a substring of string2, or false if it
does not appear.

Note: The positions are numbered beginning with 0, not with 1.

;; suppose mylist is [2 7 4 7 "Bob"]
show position 7 mylist
=> 1
show position 10 mylist
=> false
show position "rin" "string"
=> 2

See also member?.

precision

precision number places

Reports number rounded to places decimal places.

NetLogo 3.0 User Manual

Primitives Dictionary 223

If places is negative, the rounding takes place to the left of the decimal point.

show precision 1.23456789 3
=> 1.235
show precision 3834 −3
=> 4000

print

print value

Prints value in the Command Center, followed by a carriage return.

The calling agent is not printed before the value, unlike show.

See also show, type, and write.

See also output−print.

pxcor
pycor

pxcor
pycor

These are built−in patch variables. They hold the x and y coordinate of the patch. They are always
integers. You cannot set these variables, because patches don't move.

pxcor is greater than or equal to (− screen−edge−x) and less than or equal to screen−edge−x;
similarly for pycor and screen−edge−y.

All patch variables can be directly accessed by any turtle standing on the patch.

See also xcor, ycor.

R

random

random number

If number is positive, reports a random integer greater than or equal to 0, but strictly less than
number.

If number is negative, reports a random integer less than or equal to 0, but strictly greater than
number.

If number is zero, the result is always 0 as well.

NetLogo 3.0 User Manual

224 Primitives Dictionary

Note: In versions of NetLogo prior to version 2.0, this primitive reported a floating point number if
given a floating point input. This is no longer the case. If you want a floating point answer, you must
now use random−float instead.

show random 3
;; prints 0, 1, or 2
show random −3
;; prints 0, −1, or −2
show random 3.0
;; prints 0, 1, or 2
show random 3.5
;; prints 0, 1, 2, or 3

See also random−float.

random−float

random−float number

If number is positive, reports a random floating point number greater than or equal to 0.0 but strictly
less than number.

If number is negative, reports a random floating point number less than or equal to 0.0, but strictly
greater than number.

If number is zero, the result is always 0.0.

show random−float 3
;; prints a number at least 0.0 but less than 3.0,
;; for example 2.589444906014774
show random−float 2.5
;; prints a number at least 0.0 but less than 2.5,
;; for example 1.0897423196760796

random−exponential
random−gamma
random−normal
random−poisson

random−exponential mean
random−gamma alpha lambda
random−normal mean standard−deviation
random−poisson mean

Reports an accordingly distributed random number with the mean and, in the case of the normal
distribution, the standard−deviation.

random−exponential reports an exponentially distributed random floating point number.

random−gamma reports a gamma−distributed random floating point number as controlled by the
floating point alpha and lambda parameters. Both inputs must be greater than zero. (Note: for
results with a given mean and variance, use inputs as follows: alpha = mean * mean / variance;

NetLogo 3.0 User Manual

Primitives Dictionary 225

lambda = 1 / (variance / mean).)

random−normal reports a normally distributed random floating point number.

random−poisson reports a Poisson−distributed random integer.

show random−exponential 2
;; prints an exponentially distributed random floating
;; point number with a mean of 2
show random−normal 10.1 5.2
;; prints a normally distributed random floating point
;; number with a mean of 10.1 and a standard deviation
;; of 5.2
show random−poisson 3.4
;; prints a Poisson−distributed random integer with a
;; mean of 3.4

random−int−or−float

random−int−or−float number

NOTE: This primitive should not be used in new models. It is included only for backwards
compatibility with NetLogo 1.x. It will not necessarily continue to be supported in future versions of
NetLogo.

When a NetLogo 1.x model is read into NetLogo 2.0 or higher, all uses of the "random" primitive are
automatically converted to "random−int−or−float" instead, because the meaning of "random" has
changed. It used to sometimes return an integer and sometimes a floating point number; now it
always returns an integer. This primitive mimics the old behavior, as follows:

If number is positive, reports a random number greater than or equal to 0 but strictly less than
number.

If number is negative, the number reported is less than or equal to 0, but strictly greater than
number.

If number is zero, the result is always zero as well.

If number is an integer, reports a random integer.

If number is floating point (has a decimal point), reports a floating point number.

show random−int−or−float 3
;; prints 0, 1, or 2
show random−int−or−float 5.0
;; prints a number at least 0.0 but less than 5.0,
;; for example 4.686596634174661

random−n−of

NetLogo 3.0 User Manual

226 Primitives Dictionary

random−n−of size agentset

From an agentset, reports an agentset of size size randomly chosen from the input set.

From an list, reports a list of size size randomly chosen from the input set. The items in the result
appear in the same order that they appeared in the input list. (If you want them in random order, use
shuffle on the result.)

It is an error for size to be greater than the size of the input.

ask random−n−of 50 patches [set pcolor green]
;; 50 randomly chosen patches turn green

See also random−one−of.

random−one−of

random−one−of agentset
random−one−of list

From an agentset, reports a random agent. If the agentset is empty, reports nobody.

From a list, reports a random list item. It is an error for the list to be empty.

ask random−one−of patches [set pcolor green]
;; a random patch turns green
set pcolor−of random−one−of patches green
;; another way to say the same thing
ask patches with [any? turtles−here]
 [show random−one−of turtles−here]
;; for each patch containing turtles, prints one of
;; those turtles

;; suppose mylist is [1 2 3 4 5 6]
show random−one−of mylist
;; prints a value randomly chosen from the list

See also one−of and random−n−of.

random−seed

random−seed number

Sets the seed of the pseudo−random number generator to the integer part of number. The seed
may be any integer in the range supported by NetLogo (−2147483648 to 2147483647).

See the Random Numbers section of the Programming Guide for more details.

random−seed 47823
show random 100
=> 57
show random 100
=> 91
random−seed 47823

NetLogo 3.0 User Manual

Primitives Dictionary 227

show random 100
=> 57
show random 100
=> 91

read−from−string

read−from−string string

Interprets the given string as if it had been typed in the Command Center, and reports the resulting
value. The result may be a number, list, string, or boolean value, or the special value "nobody".

Useful in conjunction with the user−input primitive for converting the user's input into usable form.

show read−from−string "3" + read−from−string "5"
=> 8
show length read−from−string "[1 2 3]"
=> 3
crt read−from−string user−input "Make how many turtles?"
;; the number of turtles input by the user
;; are created

reduce

reduce [reporter] list

Reduces a list from left to right using reporter, resulting in a single value. This means, for example,
that reduce [?1 + ?2] [1 2 3 4] is equivalent to (((1 + 2) + 3) + 4). If list has a single item,
that item is reported. It is an error to reduce an empty list.

In reporter, use ?1 and ?2 to refer to the two objects being combined.

Since it can be difficult to develop an intuition about what reduce does, here are some simple
examples which, while not useful in themselves, may give you a better understanding of this
primitive:

show reduce [?1 + ?2] [1 2 3]
=> 6
show reduce [?1 − ?2] [1 2 3]
=> −4
show reduce [?2 − ?1] [1 2 3]
=> 2
show reduce [?1] [1 2 3]
=> 1
show reduce [?2] [1 2 3]
=> 3
show reduce [sentence ?1 ?2] [[1 2] [3 [4]] 5]
=> [1 2 3 [4] 5]
show reduce [fput ?2 ?1] (fput [] [1 2 3 4 5])
=> [5 4 3 2 1]

Here are some more useful examples:

;; find the longest string in a list
to−report longest−string [strings]

NetLogo 3.0 User Manual

228 Primitives Dictionary

 report reduce
 [ifelse−value (length ?1 >= length ?2) [?1] [?2]]
 strings
end

show longest−string ["hi" "there" "!"]
=> "there"

;; count the number of occurrences of an item in a list
to−report occurrences [x xs]
 report reduce
 [ifelse−value (?2 = x) [?1 + 1] [?1]] (fput 0 xs)
end

show occurrences 1 [1 2 1 3 1 2 3 1 1 4 5 1]
=> 6

;; evaluate the polynomial, with given coefficients, at x
to−report eval−polynomial [coeffs x]
 report reduce [(x * ?1) + ?2] coeffs
end

;; evaluate 3x^2 + 2x + 1 at x = 4
show eval−polynomial [3 2 1] 4
=> 57

remainder

remainder number1 number2

Reports the remainder when number1 is divided by number2. This is equivalent to the following
NetLogo code:

number1 − (int (number1 / number2)) * number2

show remainder 62 5
=> 2
show remainder −8 3
=> −2

See also mod. mod and remainder behave the same for positive numbers, but differently for
negative numbers.

remove

remove item list
remove string1 string2

For a list, reports a copy of list with all instances of item removed.

For strings, reports a copy of string2 with all the appearances of string1 as a substring removed.

set mylist [2 7 4 7 "Bob"]
set mylist remove 7 mylist
;; mylist is now [2 4 "Bob"]
show remove "na" "banana"

NetLogo 3.0 User Manual

Primitives Dictionary 229

=> "ba"

remove−duplicates

remove−duplicates list

Reports a copy of list with all duplicate items removed. The first of each item remains in place.

set mylist [2 7 4 7 "Bob" 7]
set mylist remove−duplicates mylist
;; mylist is now [2 7 4 "Bob"]

remove−item

remove−item index list
remove−item index string

For a list, reports a copy of list with the item at the given index removed.

For strings, reports a copy of string2 with the character at the given index removed.

Note that the indices begin from 0, not 1. (The first item is item 0, the second item is item 1, and so
on.)

set mylist [2 7 4 7 "Bob"]
set mylist remove−item 2 mylist
;; mylist is now [2 7 7 "Bob"]
show remove−item 3 "banana"
=> "banna"

repeat

repeat number [commands]

Runs commands number times.

pd repeat 36 [fd 1 rt 10]
;; the turtle draws a circle

replace−item

replace−item index list value
replace−item index string1 string2

On a list, replaces an item in that list. index is the index of the item to be replaced, starting with 0.
(The 6th item in a list would have an index of 5.) Note that "replace−item" is used in conjunction with
"set" to change a list.

Likewise for a string, but the given character of string1 removed and the contents of string2 spliced
in instead.

NetLogo 3.0 User Manual

230 Primitives Dictionary

show replace−item 2 [2 7 4 5] 15
=> [2 7 15 5]
show replace−item 1 "sat" "lo"
=> "slot"

report

report value

Immediately exits from the current to−report procedure and reports value as the result of that
procedure. report and to−report are always used in conjunction with each other. See to−report for a
discussion of how to use them.

reset−perspective
rp

reset−perspective

The observer stops watching, following, or riding any turtles (or patches). (If it wasn't watching,
following, or riding anybody, nothing happens.) In the 3D view, the observer also returns to its
default position (above the origin, looking straight down).

See also follow, ride, watch.

reset−timer

reset−timer

Resets the global clock to zero. See also timer.

reverse

reverse list
reverse string

Reports a reversed copy of the given list or string.

show mylist
;; mylist is [2 7 4 "Bob"]
set mylist reverse mylist
;; mylist now is ["Bob" 4 7 2]
show reverse "string"
=> "gnirts"

rgb

rgb red green blue

Reports a number in the range 0 to 140, not including 140 itself, that represents the given color,
specified in the RGB spectrum, in NetLogo's color space.

NetLogo 3.0 User Manual

Primitives Dictionary 231

All three inputs should be in the range 0.0 to 1.0.

The color reported may be only an approximation, since the NetLogo color space does not include
all possible colors. (See hsb for a description of what parts of the HSB color space NetLogo colors
cover; this is difficult to characterize in RGB terms.)

show rgb 0 0 0
=> 0.0 ;; black
show rgb 0 1.0 1.0
=> 85.0 ;; cyan

See also extract−rgb, hsb, and extract−hsb.

ride

ride turtle

Set the perspective to turtle.

Every time turtle moves the observer also moves. Thus, in the 2D View the turtle will stay at the
center of the view. In the 3D view it is as if looking through the eyes of the turtle. If the turtle dies,
the view will return to the default position.

See also reset−perspective, watch, follow, subject.

ride−me

ride−me

Asks the observer to ride the calling turtle.

See also ride.

right
rt

right number

The turtle turns right by number degrees. (If number is negative, it turns left.)

round

round number

Reports the integer nearest to number.

NetLogo 3.0 User Manual

232 Primitives Dictionary

If the decimal portion of number is exactly .5, the number is rounded in the positive direction.

Note that rounding in the positive direction is not always how rounding is done in other software
programs. (In particular, it does not match the behavior of StarLogoT, which always rounded
numbers ending in 0.5 to the nearest even integer.) The rationale for this behavior is that it matches
how turtle coordinates relate to patch coordinates in NetLogo. For example, if a turtle's xcor is −4.5,
then it is on the boundary between a patch whose pxcor is −4 and a patch whose pxcor is −5, but
the turtle must be considered to be in one patch or the other, so the turtle is considered to be in the
patch whose pxcor is −4, because we round towards the positive numbers.

show round 4.2
=> 4
show round 4.5
=> 5
show round −4.5
=> −4

run

run string

This agent interprets the given string as a sequence of one or more NetLogo commands and runs
them.

The code runs in the agent's current context, which means it has access to the values of local
variables, "myself", and so on.

See also runresult.

runresult

runresult string

This agent interprets the given string as a NetLogo reporter and runs it, reporting the result
obtained.

The code runs in the agent's current context, which means it has access to the values of local
variables, "myself", and so on.

See also run.

S

scale−color

scale−color color number range1 range2

Reports a shade of color proportional to number.

NetLogo 3.0 User Manual

Primitives Dictionary 233

If range1 is less than range2, then the larger the number, the lighter the shade of color. But if
range2 is less than range1, the color scaling is inverted.

If number is less than range1, then the darkest shade of color is chosen.

If number is greater than range2, then the lightest shade of color is chosen.

Note: for color shade is irrelevant, e.g. green and green + 2 are equivalent, and the same spectrum
of colors will be used.

ask turtles [set color scale−color red age 0 50]
;; colors each turtle a shade of red proportional
;; to its value for the age variable

screen−edge−x
screen−edge−y

screen−edge−x
screen−edge−y

These reporters give the maximum x−coordinate and maximum y−coordinate (respectively) of the
world.

screen−edge−x and −y are the "half−width" and "half−height" of the NetLogo world −− the distances
from the origin to the edges. screen−size is the same as ((2 * screen−edge) + 1).

Note: You can set the size of the world only by editing the current view −− these are reporters which
cannot be set.

cct 100 [setxy (random−float screen−edge−x)
 (random−float screen−edge−y)]
;; distributes 100 turtles randomly in the
;; first quadrant

screen−size−x
screen−size−y

screen−size−x
screen−size−y

These reporters give the total width and height of the NetLogo world.

Screen−size is the same as ((2 * screen−edge) + 1).

self

self

Reports this turtle or patch.

NetLogo 3.0 User Manual

234 Primitives Dictionary

"self" and "myself" are very different. "self" is simple; it means "me". "myself" means "the turtle or
patch who asked me to do what I'm doing right now."

ask turtles with [self != myself]
 [die]
;; this turtle kills all other turtles

See also myself.

; (semicolon)

; comments

After a semicolon, the rest of the line is ignored. This is useful for adding "comments" to your code
−− text that explains the code to human readers. Extra semicolons can be added for visual effect.

NetLogo's Edit menu has items that let you comment or uncomment whole sections of code.

sentence
se

sentence value1 value2
(sentence value1 ... valuen)

Makes a list out of the values. If any value is a list, its items are included in the result directly, rather
than being included as a sublist. Examples make this clearer:

show sentence 1 2
=> [1 2]
show sentence [1 2] 3
=> [1 2 3]
show sentence 1 [2 3]
=> [1 2 3]
show sentence [1 2] [3 4]
=> [1 2 3 4]
show sentence [[1 2]] [[3 4]]
=> [[1 2] [3 4]]
show (sentence [1 2] 3 [4 5] (3 + 3) 7)
=> [1 2 3 4 5 6 7]

set

set variable value

Sets variable to the given value.

Variable can be any of the following:

An global variable declared using "globals"•
The global variable associated with a slider, switch, or chooser•
A variable belonging to the calling agent•
If the calling agent is a turtle, a variable belonging to the patch under the turtle.•

NetLogo 3.0 User Manual

Primitives Dictionary 235

An expression of the form VARIABLE−of agent•
A local variable created by the let command•

set−current−directory

set−current−directory string

Sets the current directory that is used by the primitives file−delete, file−exists?, and file−open.

The current directory is not used if the above commands are given an absolute file path. This is
defaulted to the user's home directory for new models, and is changed to the model's directory
when a model is opened.

Note that in Windows file paths the backslash needs to be escaped within a string by using another
backslash "C:\\"

The change is temporary and is not saved with the model.

Note: in applets, this command has no effect, since applets are only allowed to read files from the
same directory on the server where the model is stored.

set−current−directory "C:\\NetLogo"
;; Assume it is a Windows Machine
file−open "myfile.txt"
;; Opens file "C:\\NetLogo\\myfile.txt"

set−current−plot

set−current−plot plotname

Sets the current plot to the plot with the given name (a string). Subsequent plotting commands will
affect the current plot.

set−current−plot−pen

set−current−plot−pen penname

The current plot's current pen is set to the pen named penname (a string). If no such pen exists in
the current plot, a runtime error occurs.

set−default−shape

set−default−shape turtles string
set−default−shape breed string

Specifies a default initial shape for all turtles, or for a particular breed. When a turtle is created, or it
changes breeds, it shape is set to the given shape.

NetLogo 3.0 User Manual

236 Primitives Dictionary

The specified breed must be either turtles or a breed defined by the breeds keyword, and the
specified string must be the name of a currently defined shape.

In new models, the default shape for all turtles is "default".

Note that specifying a default shape does not prevent you from changing an individual turtle's shape
later; turtles don't have to be stuck with their breed's default shape.

create−turtles 1 ;; new turtle's shape is "default"
create−cats 1 ;; new turtle's shape is "default"

set−default−shape turtles "circle"
create−turtles 1 ;; new turtle's shape is "circle"
create−cats 1 ;; new turtle's shape is "circle"

set−default−shape cats "cat"
set−default−shape dogs "dog"
create−cats 1 ;; new turtle's shape is "cat"
ask cats [set breed dogs]
 ;; all cats become dogs, and automatically
 ;; change their shape to "dog"

See also shape.

set−histogram−num−bars

set−histogram−num−bars integer

Set the current plot pen's plot interval so that, given the current x range for the plot, there would be
integer number of bars drawn if the histogram−from or histogram−list commands were called.

See also histogram−from.

set−plot−pen−color

set−plot−pen−color number

Sets the color of the current plot pen to number.

set−plot−pen−interval

set−plot−pen−interval number

Tells the current plot pen to move a distance of number in the x direction during each use of the plot
command. (The plot pen interval also affects the behavior of the histogram−from and histogram−list
commands.)

set−plot−pen−mode

NetLogo 3.0 User Manual

Primitives Dictionary 237

set−plot−pen−mode number

Sets the mode the current plot pen draws in to number. The allowed plot pen modes are:

0 (line mode) the plot pen draws a line connecting two points together.•
1 (bar mode): the plot pen draws a bar of width plot−pen−interval with the point plotted as
the upper (or lower, if you are plotting a negative number) left corner of the bar.

•

2 (point mode): the plot pen draws a point at the point plotted. Points are not connected.•

The default mode for new pens is 0 (line mode).

set−plot−x−range
set−plot−y−range

set−plot−x−range min max
set−plot−y−range min max

Sets the minimum and maximum values of the x or y axis of the current plot.

The change is temporary and is not saved with the model. When the plot is cleared, the ranges will
revert to their default values as set in the plot's Edit dialog.

setxy

setxy x y

The turtle sets its x−coordinate to x and its y−coordinate to y.

Equivalent to set xcor x set ycor y, except it happens in one time step instead of two.

setxy 0 0
;; turtle moves to the middle of the center patch

shade−of?

shade−of? color1 color2

Reports true if both colors are shades of one another, false otherwise.

show shade−of? blue red
=> false
show shade−of? blue (blue + 1)
=> true
show shade−of? gray white
=> true

NetLogo 3.0 User Manual

238 Primitives Dictionary

shape

shape

This is a built−in turtle variable. It holds a string that is the name of the turtle's current shape. You
can set this variable to change a turtle's shape. New turtles have the shape "default" unless the a
different shape has been specified using set−default−shape.

Example:

ask turtles [set shape "wolf"]
;; assumes you have made a "wolf"
;; shape in NetLogo's Shapes Editor

See also set−default−shape, shapes.

shapes

shapes

Reports a list of strings containing all of the turtle shapes in the model.

New shapes can be created, or imported from the shapes library or from other models, in the
Shapes Editor.

show shapes
=> ["default" "airplane" "arrow" "box" "bug" ...
ask turtles [set shape random−one−of shapes]

show

show value

Prints value in the Command Center, preceded by the calling agent, and followed by a carriage
return. (The calling agent is included to help you keep track of what agents are producing which
lines of output.) Also, all strings have their quotes included similar to write.

See also print, type, and write.

See also output−show.

showturtle
st

showturtle

The turtle becomes visible again.

NetLogo 3.0 User Manual

Primitives Dictionary 239

Note: This command is equivalent to setting the turtle variable "hidden?" to false.

See also hideturtle.

shuffle

shuffle list

Reports a new list containing the same items as the input list, but in randomized order.

show shuffle [1 2 3 4 5]
=> [5 2 4 1 3]
show shuffle [1 2 3 4 5]
=> [1 3 5 2 4]

sin

sin number

Reports the sine of the given angle. Assumes angle is given in degrees.

show sin 270
=> −1.0

size

size

This is a built−in turtle variable. It holds a number that is the turtle's apparent size. The default size
is 1.0, which means that the turtle is the same size as a patch. You can set this variable to change a
turtle's size.

sort

sort list

Reports a new list containing the same items as the input list, but in ascending order.

If there is at least one number in the list, the list is sorted in numerically ascending order and any
non−numeric items of the input list are discarded.

If there are no numbers, but at least one string in the list, the list is sorted in alphabetically
ascending order and any non−string items are discarded.

sort−by

NetLogo 3.0 User Manual

240 Primitives Dictionary

sort−by [reporter] list

Reports a new list containing the same items as the input list, in a sorted order defined by the
boolean (true or false) reporter.

In reporter, use ?1 and ?2 to refer to the two objects being compared. reporter should be true if ?1
comes strictly before ?2 in the desired sort order, and false otherwise.

show sort−by [?1 < ?2] [3 1 4 2]
=> [1 2 3 4]
show sort−by [?1 > ?2] [3 1 4 2]
=> [4 3 2 1]
show sort−by [length ?1 < length ?2] ["zzz" "z" "zz"]
=> ["z" "zz" "zzz"]

sprout
sprout−<BREED>

sprout number [commands]
sprout−<BREED> number [commands]

Creates number new turtles on the current patch. The new turtles have random colors and
orientations, and they immediately run commands. This is useful for giving the new turtles different
colors, headings, or whatever.

If the sprout−<BREED> form is used, the new turtles are created as members of the given breed.

sprout 1 [set color red]
sprout−sheep 1 [set color black]

Note: While the commands are running, no other agents are allowed to run any code (as with the
without−interruption command). This ensures that the new turtles cannot interact with any other
agents until they are fully initialized. In addition, no screen updates take place until the commands
are done. This ensures that the new turtles are never drawn on−screen until they are fully initialized.

sqrt

sqrt number

Reports the square root of number.

stamp

stamp

The calling turtle leaves an image of its shape in the drawing at its current location.

Note: The shapes made by stamp may not be pixel−for−pixel identical from computer to computer.

NetLogo 3.0 User Manual

Primitives Dictionary 241

standard−deviation

standard−deviation list

Reports the unbiased statistical standard deviation of a list of numbers. Ignores other types of items.

show standard−deviation [1 2 3 4 5 6]
=> 1.8708286933869707
show standard−deviation values−from turtles [energy]
;; prints the standard deviation of the variable "energy"
;; from all the turtles

startup

startup

User−defined procedure which, if it exists, will be called when a model is first loaded.

to startup
 setup
end

stop

stop

The calling agent exits immediately from the enclosing procedure, ask, or ask−like construct (cct,
hatch, sprout). Only the current procedure stops, not all execution for the agent.

Note: stop can be used to stop a forever button. If the forever button directly calls a procedure, then
when that procedure stops, the button stops. (In a turtle or patch forever button, the button won't
stop until every turtle or patch stops −− a single turtle or patch doesn't have the power to stop the
whole button.)

subject

subject

Reports the turtle (or patch) that the observer is currently watching, following, or riding. Reports
nobody if there is no such turtle (or patch).

See also watch, follow, ride.

sublist
substring

NetLogo 3.0 User Manual

242 Primitives Dictionary

sublist list position1 position2
substring string position1 position2

Reports just a section of the given list or string, ranging between the first position (inclusive) and the
second position (exclusive).

Note: The positions are numbered beginning with 0, not with 1.

show sublist [99 88 77 66] 1 3
=> [88 77]
show substring "turtle" 1 4
=> "urt"

subtract−headings

subtract−headings heading1 heading2

Computes the difference between the given headings, that is, the number of degrees in the smallest
angle by which heading2 could be rotated to produce heading1. A positive answer means a
clockwise rotation, a negative answer counterclockwise. The result is always in the range −180 to
180, but is never exactly −180.

Note that simply subtracting the two headings using the − (minus) operator wouldn't work. Just
subtracting corresponds to always rotating clockwise from heading2 to heading1; but sometimes the
counterclockwise rotation is shorter. For example, the difference between 5 degrees and 355
degrees is 10 degrees, not −350 degrees.

show subtract−headings 80 60
=> 20
show subtract−headings 60 80
=> −20
show subtract−headings 5 355
=> 10
show subtract−headings 355 5
=> −10
show subtract−headings 180 0
=> 180
show subtract−headings 0 180
=> 180

sum

sum list

Reports the sum of the items in the list.

show sum values−from turtles [energy]
;; prints the total of the variable "energy"
;; from all the turtles

NetLogo 3.0 User Manual

Primitives Dictionary 243

T

tan

tan number

Reports the tangent of the given angle. Assumes the angle is given in degrees.

timer

timer

Reports how many seconds have passed since the command reset−timer was last run (or since
NetLogo started). The potential resolution of the clock is milliseconds. (Whether you get resolution
that high in practice may vary from system to system, depending on the capabilities of the
underlying Java Virtual Machine.)

to

to procedure−name
to procedure−name [input1 input2 ...]

Used to begin a command procedure.

to setup
 ca
 crt 500
end

to circle [radius]
 cct 100 [fd radius]
end

to−report

to−report procedure−name
to−report procedure−name [input1 input2 ...]

Used to begin a reporter procedure.

The body of the procedure should use report to report a value for the procedure. See report.

to−report average [a b]
 report (a + b) / 2
end

to−report absolute−value [number]
 ifelse number >= 0
 [report number]
 [report (− number)]
end

NetLogo 3.0 User Manual

244 Primitives Dictionary

to−report first−turtle?
 report who = 0 ;; reports true or false
end

towards
towards−nowrap

towards agent
towards−nowrap agent

Reports the heading from this agent to the given agent.

If the wrapped distance (around the edges of the screen) is shorter than the on−screen distance,
towards will report the heading of the wrapped path. towards−nowrap never uses the wrapped path.

Note: asking for the heading from an agent to itself, or an agent on the same location, will cause a
runtime error.

towardsxy
towardsxy−nowrap

towardsxy x y
towardsxy−nowrap x y

Reports the heading from the turtle or patch towards the point (x,y).

If the wrapped distance (around the edges of the screen) is shorter than the on−screen distance,
towardsxy will report the heading of the wrapped path. towardsxy−nowrap never uses the wrapped
path.

Note: asking for the heading to the point the agent is already standing on will cause a runtime error.

turtle

turtle number

Reports the turtle with the given ID number, or nobody if there is no such turtle. number must be an
integer.

set color−of turtle 5 red
;; turtle with id number 5 turns red
ask turtle 5 [set color red]
;; another way to do the same thing

NetLogo 3.0 User Manual

Primitives Dictionary 245

turtles

turtles

Reports the agentset consisting of all turtles.

show count turtles
;; prints the number of turtles

turtles−at
BREED−at

turtles−at dx dy
BREED−at dx dy

Reports an agentset containing the turtles on the patch (dx, dy) from the caller (including the caller
itself if it's a turtle). If the caller is the observer, dx and dy are calculated from the origin (0,0).

;; suppose I have 40 turtles at the origin
show count turtles−at 0 0
=> 40

If the name of a breed is substituted for "turtles", then only turtles of that breed are included.

breeds [cats dogs]
create−custom−dogs 5 [setxy 2 3]
show count dogs−at 2 3
=> 5

turtles−from

turtles−from agentset [reporter]

Reports a turtle agentset made by gathering together all the turtles reported by reporter for each
agent in agentset.

For each agent, the reporter must report a turtle agentset, a single turtle, or nobody.

turtles−from patches [random−one−of turtles−here]
 ;; reports a turtle set containing one turtle from
 ;; each patch (that has any turtles on it)
turtles−from neighbors [turtles−here]
 ;; if run by a turtle or patch, reports the set of
 ;; all turtles on the neighboring eight patches; note that
 ;; this could be written more concisely using turtles−on,
 ;; like this:
 ;; turtles−on neighbors

See also patches−from, turtles−on.

NetLogo 3.0 User Manual

246 Primitives Dictionary

turtles−here
BREED−here

turtles−here
BREED−here

Reports an agentset containing all the turtles on the caller's patch (including the caller itself if it's a
turtle).

ca
crt 10
ask turtle 0 [show count turtles−here]
=> 10

If the name of a breed is substituted for "turtles", then only turtles of that breed are included.

breeds [cats dogs]
create−cats 5
create−dogs 1
ask dogs [show count cats−here]
=> 5

See also other−turtles−here.

turtles−on
BREED−on

turtles−on agent
turtles−on agentset
BREED−on agent
BREED−on agentset

Reports an agentset containing all the turtles that are on the given patch or patches, or standing on
the same patch as the given turtle or turtles.

ask turtles [
 if not any? turtles−on patch−ahead 1
 [fd 1]
]
ask turtles [
 if not any? turtles−on neighbors [
 die−of−loneliness
]
]

If the name of a breed is substituted for "turtles", then only turtles of that breed are included.

See also turtles−from.

NetLogo 3.0 User Manual

Primitives Dictionary 247

turtles−own
BREED−own

turtles−own [var1 var2 ...]
BREED−own [var1 var2 ...]

The turtles−own keyword, like the globals, breed, <BREED>−own, and patches−own keywords, can
only be used at the beginning of a program, before any function definitions. It defines the variables
belonging to each turtle.

If you specify a breed instead of "turtles", only turtles of that breed have the listed variables. (More
than one breed may list the same variable.)

breeds [cats dogs hamsters]
turtles−own [eyes legs] ;; applies to all breeds
cats−own [fur kittens]
hamsters−own [fur cage]
dogs−own [hair puppies]

See also globals, patches−own, breeds, <BREED>−own.

type

type value

Prints value in the Command Center, not followed by a carriage return (unlike print and show). The
lack of a carriage return allows you to print several values on the same line.

The calling agent is not printed before the value. unlike show.

type 3 type " " print 4
=> 3 4

See also print, show, and write.

See also output−type.

U

uphill

uphill patch−variable

Reports the turtle heading (between 0 and 359 degrees) in the direction of the maximum value of
the variable patch−variable, of the patches in a one−patch radius of the turtle. (This could be as
many as eight or as few as five patches, depending on the position of the turtle within its patch.)

If there are multiple patches that have the same greatest value, a random one of those patches will
be selected.

NetLogo 3.0 User Manual

248 Primitives Dictionary

If the patch is located directly to the north, south, east, or west of the patch that the turtle is currently
on, a multiple of 90 degrees is reported. However, if the patch is located to the northeast, northwest,
southeast, or southwest of the patch that the turtle is currently on, the direction the turtle would need
to reach the nearest corner of that patch is reported.

See also uphill4, downhill, downhill4.

uphill4

uphill4 patch−variable

Reports the turtle heading (between 0 and 359 degrees) as a multiple of 90 degrees in the direction
of the maximum value of the variable patch−variable, of the four patches to the north, south, east,
and west of the turtle. If there are multiple patches that have the same greatest value, a random
patch from those patches will be selected.

See also uphill, downhill, downhill4.

user−choice

user−choice value list−of−choices

Opens a dialog with value displayed as the message and a button corresponding to each item in
list−of−choices.

Reports the item in list−of−choices that is associated with the button the user presses.

value may be of any type, but is typically a string.

if "yes" = (user−choice
 "Set up the model?"
 ["no" "yes"])
 [setup]

user−choose−directory

user−choose−directory

Opens a dialog that allows the user to choose an existing directory on the system.

It reports a string with the absolute path or false if the user cancels.

set−current−directory user−choose−directory
;; Assumes the user will choose a directory

NetLogo 3.0 User Manual

Primitives Dictionary 249

user−choose−file

user−choose−file

Opens a dialog that allows the user to choose an existing file on the system.

It reports a string with the absolute file path or false if the user cancels.

file−open user−choose−file
;; Assumes the user will choose a file

user−choose−new−file

user−choose−new−file

Opens a dialog that allows the user to choose a new file on the system.

It reports a string with the absolute file path or false if the user cancels.

Note that no file is ever created or overwritten with this reporter.

file−open user−choose−new−file
;; Assumes the user will choose a file

user−input

user−input value

Reports the string that a user types into an entry field in a dialog with title value.

value may be of any type, but is typically a string.

show user−input "What is your name?"

user−message

user−message value

Opens a dialog with value displayed as the message.

value may be of any type, but is typically a string.

user−message "There are " + count turtles + " turtles."

user−yes−or−no?

user−yes−or−no? value

Reports true or false based on the user's response to value.

NetLogo 3.0 User Manual

250 Primitives Dictionary

value may be of any type, but is typically a string.

if user−yes−or−no? "Set up the model?"
 [setup]

V

value−from

value−from agent [reporter]

Reports the value of the reporter for the given agent (turtle or patch).

show value−from (turtle 5) [who * who]
=> 25
show value−from (patch 0 0) [count turtles in−radius 3]
;; prints the number of turtles located within a
;; three−patch radius of the origin

values−from

values−from agentset [reporter]

Reports a list that contains the value of the reporter for each agent in the agentset.

ca
crt 4
show values−from turtles [who]
=> [0 1 2 3]
show values−from turtles [who * who]
=> [0 1 4 9]

variance

variance list

Reports the sample variance of a list of numbers. Ignores other types of items.

The sample variance is the sum of the squares of the deviations of the numbers from their mean,
divided by one less than the number of numbers in the list.

show variance [2 7 4 3 5]
=> 3.7

W

wait

NetLogo 3.0 User Manual

Primitives Dictionary 251

wait number

Wait the given number of seconds. (You can use floating−point numbers to specify fractions of
seconds.) Note that you can't expect complete precision; the agent will never wait less than the
given amount, but might wait slightly more.

repeat 10 [fd 1 wait 0.5]

See also every.

watch

watch agent

Puts a spotlight on agent. In the 3D view the observer will also turn to face the subject.

See also follow, subject, reset−perspective, watch−me.

watch−me

watch−me

Asks the observer to watch the calling agent.

See also watch.

while

while [reporter] [commands]

If reporter reports false, exit the loop. Otherwise run commands and repeat.

The reporter may have different values for different agents, so some agents may run commands a
different number of times than other agents.

while [any? other−turtles−here]
 [fd 1]
;; turtle moves until it finds a patch that has
;; no other turtles on it

who

who

This is a built−in turtle variable. It holds the turtle's id number (an integer greater than or equal to
zero). You cannot set this variable; a turtle's id number never changes.

NetLogo 3.0 User Manual

252 Primitives Dictionary

When NetLogo starts, or after you use the clear−all or clear−turtles commands, new turtles are
created with ids in order, starting at 0. If a turtle dies, though, a new turtle may eventually be
assigned the same id number that was used by the dead turtle.

Example:

show values−from (turtles with [color = red]) [who]
;; prints a list of the id numbers of all red turtles
;; in the Command Center
ca
cct 100
 [ifelse who <50
 [set color red]
 [set color blue]]
;; turtles 0 through 49 are red, turtles 50
;; through 99 are blue

You can use the turtle reporter to retrieve a turtle with a given id number. See also turtle.

with

agentset with [reporter]

Takes two inputs: on the left, an agentset (usually "turtles" or "patches"). On the right, a boolean
reporter. Reports a new agentset containing only those agents that reported true −− in other words,
the agents satisfying the given condition.

show count patches with [pcolor = red]
;; prints the number of red patches

with−max

agentset with−max [reporter]

Takes two inputs: on the left, an agentset (usually "turtles" or "patches"). On the right, a reporter.
Reports a new agentset containing all agents reporting the maximum value of the given reporter.

show count patches with−max [pxcor]
;; prints the number of patches on the right edge

See also max−one−of

with−min

agentset with−min [reporter]

Takes two inputs: on the left, an agentset (usually "turtles" or "patches"). On the right, a reporter.
Reports a new agentset containing only those agents that have the minimum value of the given
reporter.

show count patches with−min [pycor]
;; prints the number of patches on the bottom edge

NetLogo 3.0 User Manual

Primitives Dictionary 253

See also min−one−of

without−interruption

without−interruption [commands]

The agent runs all the commands in the block without allowing other agents to "interrupt". That is,
other agents are put "on hold" and do not execute any commands until the commands in the block
are finished.

crt 5
ask turtles
 [without−interruption
 [type 1 fd 1 type 2]]
=> 1212121212
;; because each turtle will output 1 and move,
;; then output 2. however:
ask turtles
 [type 1 fd 1 type 2]
=> 1111122222
;; because each turtle will output 1 and move,
;; then output 2

word

word value1 value2
(word value1 ... valuen)

Concatenates the inputs together and reports the result as a string.

show word "tur" "tle"
=> "turtle"
word "a" 6
=> "a6"
set directory "c:\\foo\\fish\\"
show word directory "bar.txt"
=> "c:\foo\fish\bar.txt"
show word [1 54 8] "fishy"
=> "[1 54 8]fishy"
show (word "a" "b" "c" 1 23)
=> "abc123"

wrap−color

wrap−color number

wrap−color checks whether number is in the NetLogo color range of 0 to 140 (not including 140
itself). If it is not, wrap−color "wraps" the numeric input to the 0 to 140 range.

The wrapping is done by repeatedly adding or subtracting 140 from the given number until it is in
the 0 to 140 range. (This is the same wrapping that is done automatically if you assign an
out−of−range number to the color turtle variable or pcolor patch variable.)

show wrap−color 150

NetLogo 3.0 User Manual

254 Primitives Dictionary

=> 10
show wrap−color −10
=> 130

write

write value

This command will output value, which can be a number, string, list, boolean, or nobody to the
Command Center not followed by a carriage return (unlike print and show).

The calling agent is not printed before the value, unlike show. Its output will also includes quotes
around strings and is prepended with a space.

write "hello world"
=> "hello world"

See also print, show, and type.

See also output−write.

X

xcor

xcor

This is a built−in turtle variable. It holds the current x coordinate of the turtle. This is a floating point
number, not an integer. You can set this variable to change the turtle's location.

This variable is always greater than or equal to (− screen−edge−x) and strictly less than
screen−edge−x.

See also setxy, ycor, pxcor, pycor,

xor

boolean1 xor boolean2

Reports true if either boolean1 or boolean2 is true, but not when both are true.

if (pxcor > 0) xor (pycor > 0)
 [set pcolor blue]
;; upper−left and lower−right quadrants turn blue

Y

NetLogo 3.0 User Manual

Primitives Dictionary 255

ycor

ycor

This is a built−in turtle variable. It holds the current y coordinate of the turtle. This is a floating point
number, not an integer. You can set this variable to change the turtle's location.

This variable is always greater than or equal to (− screen−edge−y) and strictly less than
screen−edge−y.

See also setxy, xcor, pxcor, pycor,

?

?

?, ?1, ?2, ...

These are special local variables. They hold the current inputs to a reporter or command block for
certain primitives (for example, the current item of a list being visited by foreach or map).

? is always equivalent to ?1.

You may not set these variables, and you may not use them except with certain primitives, currently
foreach, map, reduce, filter, sort−by, and n−values. See those entries for example usage.

NetLogo 3.0 User Manual

256 Primitives Dictionary

	Table of Contents
	What is NetLogo?
	Features

	Copyright Information
	Third party licenses

	What's New?
	Version 3.0 (September 14, 2005)
	Version 2.1 (December 2004)
	Version 2.0.2 (August 2004)
	Version 2.0 (December 2003)
	Version 1.3 (June 2003)
	Version 1.2 (March 2003)
	Version 1.1 (July 2002)
	Version 1.0 (April 2002)

	System Requirements
	System Requirements: Application
	Windows
	Mac OS X
	Mac OS 8 and 9
	Other platforms

	System Requirements: Saved Applets
	System Requirements: 3D View
	Operating Systems
	Graphics Cards
	Fullscreen mode
	Library Conflicts
	Removing an old JOGL

	Known Issues
	Known bugs (all systems)
	Windows-only bugs
	Macintosh-only bugs
	Linux/UNIX-only bugs
	Known issues with computer HubNet
	Unimplemented StarLogoT primitives

	Contacting Us
	Web Site
	Feedback, Questions, Etc.
	Reporting Bugs

	Sample Model: Party
	At a Party
	Challenge
	Thinking With Models
	What's Next?

	Tutorial #1: Models
	Sample Model: Wolf Sheep Predation
	Controlling the Model: Buttons
	Adjusting Settings: Sliders and Switches
	Gathering Information: Plots and Monitors
	Plots
	Monitors

	Controlling the View
	The Models Library
	Sample Models
	Curricular Models
	Code Examples
	HubNet Calculator & Computer Activities

	What's Next?

	Tutorial #2: Commands
	Sample Model: Traffic Basic
	The Command Center
	Working With Colors
	Agent Monitors and Agent Commanders
	What's Next?

	Tutorial #3: Procedures
	Setup and Go
	Patches and Variables
	An Uphill Algorithm
	Some More Details
	What's Next?
	Appendix: Complete Code

	Interface Guide
	Menus
	Main Window
	Interface Tab
	Procedures Tab
	Information Tab

	WHAT IS IT

	Programming Guide
	Agents
	Procedures
	Variables
	Colors
	Ask
	Agentsets
	Breeds
	Buttons
	Synchronization
	Lists
	Math
	Random Numbers
	Turtle shapes
	Plotting
	Strings
	Output
	File I/O
	Movies
	Perspective
	Turtle Pens

	Shapes Editor Guide
	Getting Started
	Importing Shapes

	Creating and Editing Shapes
	Tools
	Previews
	Overlapping Shapes
	Undo
	Colors
	Other buttons
	Shape Design
	Keeping a Shape

	Using Shapes in a Model

	BehaviorSpace Guide
	What is BehaviorSpace?
	Why BehaviorSpace?
	Historical Note

	How It Works
	Managing experiment setups
	Creating an experiment setup
	Running an experiment

	Advanced usage
	Running from the command line
	Setting up experiments in XML
	Controlling API

	Conclusion

	HubNet Guide
	Understanding HubNet
	NetLogo
	HubNet Architecture

	Computer HubNet
	Activities
	Requirements
	Starting an activity
	HubNet Control Center
	Troubleshooting
	Known Limitations

	Calculator HubNet
	Requirements

	Teacher workshops
	HubNet Authoring Guide
	Getting help

	HubNet Authoring Guide
	General HubNet Information
	NetLogo Primitives
	Setup
	Data extraction
	Sending data
	Examples

	Calculator HubNet Information
	Saving

	Computer HubNet Information
	How To Make an Interface for a Client
	View Updates on the Clients
	Plot Updates on the Clients
	Clicking in the View on Clients
	Text Area for Input and Display

	Extensions Guide
	Using Extensions
	Applets

	Writing Extensions
	Summary
	Tutorial
	Extension development tips
	Conclusion

	Controlling Guide
	Example (with GUI)
	Example (headless)
	BehaviorSpace
	Other Options
	Conclusion

	NetLogo GoGo Extension
	What is the Gogo Board?
	How to get a Gogo Board?
	Installing the GoGo Extension
	Mac OS X
	Windows
	Linux and others

	Using the GoGo Extension
	Primitives
	gogo-close
	gogo-open
	gogo-open?
	gogo-ports
	output-port-coast
	output-port-off
	output-port-reverse
	output-port-[that/this]way
	talk-to-output-ports
	ping
	sensor
	set-output-port-power

	NetLogo Sound Extension
	Using the Sound Extension
	Primitives
	drums
	instruments
	play-drum
	play-note
	start-note
	stop-note
	stop-instrument
	stop-music

	Sound names
	Drums
	Instruments

	General
	Why is it called NetLogo?
	What programming language was NetLogo written in?
	How do I cite NetLogo in an academic publication?
	How do I cite a model from the Models Library in an academic publication?
	What license is NetLogo released under? Are there are any legal restrictions on use, redistribution, etc.?
	Is the source code to NetLogo available?
	Do you offer any workshops or other training opportunities for NetLogo?
	What's the difference between StarLogo, MacStarLogo, StarLogoT, and NetLogo?
	Has anyone built a model of <x>?
	Are NetLogo models runs scientifically reproducible?
	Are there any NetLogo textbooks?
	Is NetLogo available in a Spanish version, German version, (your language here) version, etc.?
	Is NetLogo compiled or interpreted?
	Will NetLogo and NetLogo 3D remain separate?

	Downloading
	The download form doesn't work for me. Can I have a direct link to the software?
	Downloading NetLogo takes too long. Is it available any other way, such as on a CD?
	I downloaded and installed NetLogo but the Models Library has few or no models in it. How can I fix this?
	Can I have multiple versions of NetLogo installed at the same time?
	I'm on a UNIX system and I can't untar the download. Why?
	How do I install NetLogo on Windows 2003 or Windows Server 2003?

	Applets
	I tried to run one of the applets on your site, but it didn't work. What should I do?
	Can I make my model available as an applet while keeping the code secret?
	Can a model saved as an applet use import-world, file-open, and other commands that read files?

	Usage
	Can I run NetLogo from a CD?
	How do I change how many patches there are?
	Can I use the mouse to "paint" in the view?
	How big can my model be? How many turtles, patches, procedures, buttons, and so on can my model contain?
	Can I import an image into NetLogo?
	Can I import GIS data into NetLogo?
	My model runs slowly. How can I speed it up?
	I want to try HubNet. Can I?
	Can I run a NetLogo model from the command line? Can I run it without a GUI?
	Can I have more than one model open at a time?
	Can I save the contents of the view? Of the interface tab?
	Can I make a movie of my model?
	Does NetLogo take advantage of multiple processors?
	Can I distribute NetLogo model runs across a cluster of computers?
	Can I use screen-edge-x or screen-edge-y, etc., as the minimum or maximum of a slider?
	Can I change the choices in a chooser on the fly?
	Can I divide the code for my model up into several files?

	Programming
	How is the NetLogo language different from the StarLogoT language? How do I convert my StarLogoT model to NetLogo?
	How does the NetLogo language differ from other Logos?
	The NetLogo world is a torus, that is, the edges of the screen are connected to each other, so turtles and patches "wrap around". Can I use a different world topology: bounded, infinite plane, sphere, etc.?
	How do I take the negative of a number?
	My turtle moved forward 1, but it's still on the same patch. Why?
	patch-ahead 1 is reporting the same patch my turtle is already standing on. Why?
	How do I give my turtles "vision"?
	Does NetLogo have a command like StarLogo's "grab" command?
	I tried to put -at after the name of a variable, for example variable-at -1 0, but NetLogo won't let me. Why not?
	I'm getting numbers like 0.10000000004 and 0.799999999999 instead of 0.1 and 0.8. Why?
	How can I keep two turtles from occupying the same patch?
	How can I find out if a turtle is dead?
	How do I find out how much time has passed in my model?
	Does NetLogo have arrays?
	Does NetLogo have associative arrays or lookup tables?
	How can I use different patch "neighborhoods" (circular, Von Neumann, Moore, etc.)?
	Can I connect turtles with lines, to indicate connections between them?
	How can I convert an agentset to a list, or vice versa?
	What if I want to "ask" an agentset in random order?
	How does NetLogo decide when to switch from agent to agent when running code?

	Agentset primitives
	Color primitives
	Control flow and logic primitives
	World primitives
	Perspective primitives
	HubNet primitives
	Input/output primitives
	File primitives
	List primitives
	String primitives
	Mathematical primitives
	Plotting primitives
	Movie primitives
	System primitives

