| ntroduction

CSIM+ is aprocess-oriented discrete-event simulation package for use with C programs. It is
implemented as alibrary of routines which implement all of the necessary operations. The end
result is a convenient tool which programmers can use to create simulation programs.

A CSIM program models a system as a collection of CSIM processes which interact with each
other by using the CSIM structures. The purpose of modeling a system isto produce estimates of
time and performance. The model maintains simulated time, so that the model can yield insight into
the dynamic behavior of the modeled system.

This document provides a description of:

® CSIM structures (objects) and the statements that manipul ate them
® Reports available from CSIM
® |nformation on compiling, executing and debugging CSIM programs.

CSIM Objects

Every CSIM object isimplemented in the same manner. For each CSIM structure, the program
must have a declaration, which is a pointer to an object (an instance of the structure). Before an
object can be used, it must beinitialized by the constructor function for that kind of object. These
serve the same functions as object declarations and constructors.

The structures provided in CSIM are as follows:

® Processes - the active entities that request service at facilities, wait for events, etc. (i.e.
processes deal with all of the other structuresin thislist)

Facilities - queues and serversreserved or used by processes

Storages - resources which can be partially allocated to processes

Events - used to synchronize process activities

Mailboxes - used for inter-process communications

Data collection structures - used to collect data during the execution of a model
Process classes - used to segregate statistics for reporting purposes

Streams - streams of random numbers

It is the processes which mimic the behavior of active entities in the ssimulated system.

Syntax Notes

® All parameters are required.
® Whenever a parameter isincluded within double quotes (e.g. "name"), it can also be passed as
apointer to a character array which contains the string.

Constants, which are represented by names that are entirely in capital letters, are defined in the
header file, "csim.h".

Simulation Time

Time is an important concept in any performance model. CSIM maintains a simulation clock whose
value isthe current time in the model. This simulation timeis distinctly different than the cpu time
used in executing the model or the "real world" time of the person running the model. Simulation
time starts at zero and then advances unevenly, jJumping between times at which the state of the
model changes. It isimpossible to make time move backwards during a simulation run.

The simulation clock is implemented as a double precision floating point variable in CSIM. For
most models there is no need to worry that the ssmulation clock will overflow or that round-off
error will impact the accuracy of the clock.

The simulation clock is used extensively within CSIM to schedule events and to update

performance statistics. CSIM processes may retrieve the current time for their own purposes and
may indirectly cause time to advance by performing certain operations.

Choosing a Time Unit

The CSIM simulation clock has no predefined unit of time. It is the responsibility of the modeler to
choose an appropriate time unit and to consistently specify all amounts of time in that unit. All
performance statistics reported by CSIM should also be interpreted as being in that chosen time
unit.

A good time unit might be close to the granularity of the smallest time periods in the model. For
example, if the smallest time periods being modeled are on the order of tens of milliseconds, an
appropriate time unit might be either milliseconds or seconds. Using microseconds or minutes as
the time unit would produce performance statistics that are either very large or very small numbers.
Most numbers appearing in CSIM performance reports are printed with up to six digits to the left of
the decimal point and six digits to the right of the decimal point. A time unit should be chosen to

avoid numbers so large that they overflow their fields or so small that interesting digits are not
visible.

Retrieving the Current Time

There are two equivalent ways to retrieve the current value of the ssmulation clock. Oneisto call
the simtime function.

Prototype: doubl e sintime (void)
Example: x = sintinme ();
The other is to reference the variable clock.

Example: x = cl ock;

Delaying for an Amount of Time

A CSIM process can delay for a specified amount of simulation time by calling the hold function.

Prototype: voi d hol d (doubl e anmount _of _ti nme)

Example: hol d (1.0);

If there are other processes waiting to run, the calling process will be suspended. Otherwise, time
will immediately advance by the specified amount.

Caution: It isacommon mistake to call hold with the wrong type of parameter, such as an integer
value.

A process can delay until a specified time by calling hold with a parameter value equal to the
specified time minus the current time. To make a simulation begin with a clock value other than
zero, simply call hold at the beginning of the sim function with an amount of time equal to the
desired initial time.

Calling the hold function with a zero amount of time might at first seem to be meaningless. But, it
causes the running process to relinquish control to any other process that is waiting to run at the

same simulation time. This can be used to affect the order of execution of processes that have
activities scheduled for the same simulation time.

Advancing Time

Thereis no way for a program to directly assign a value to the simulation clock. The smulation
clock advances as a side effect of a process performing one of the following function calls.

hol d all ocate wait

gueue use tined_allocate

wai t _any queue_any reserve
receive tined wait tined _queue
timed _reserve tinmed_receive

Calling one of these functions does not guarantee that time will advance. For example, calling the
allocate function will cause time to pass only if the requested amount of storage is not available.

All CSIM function calls other than those in the above list, aswell as all C language statements,
occur instantaneously with respect to simulation time. A CSIM program can perform arbitrarily
many activitiesin asingle instant of simulation time.

A common programming error is to create a CSIM process that calls none of the functions in the
above list. When this process receives control, it runs endlessly to the exclusion of all other CSIM
processes.

Displaying the Time

There are several ways the simulation time can be automatically displayed while running a CSIM
program. Every trace message contains the current simulation time. The variable clock and the
function simtime() can be used to get the current smulated time. Also, when the report function is
called to produce areport of all statistics, the report header contains the current ssmulation time.

| nteger-Valued Simulation Time

In some simulation models, such as models of computer hardware, it is the case that time can only
assume discrete integer values. Although CSIM maintains time as a floating point variable, some
simple programming techniques can insure that the clock will always have an integer value. (Here,
we are using the word "integer" in the mathematical sense.)Amounts of time appear as input
parametersin calls to the following functions: hold, use, timed_reserve, timed_wait, timed_receive,
and timed_queue. To maintain an integer-valued clock, these parameters must have values that are
integers (although of type double). This can be accomplished either by specifying afloating point
numeric literal that has an integer value or by type casting an integer expression to type double.

Example: hol d (10.0);
Example: use (bus, (double) uniformint(1,5));

Example: use (bus, (double) floor (exponential(1.0)));

The IEEE Floating Point Standard guarantees that addition and subtraction with integer valued
operands will yield integer valued results. CSIM performs only addition on the simulation clock.

Processes

Processes represent the active entitiesin a CSIM model. For example, in amodel of a bank,
customers might be modeled as processes (and tellers as facilities). In CSIM, aprocessisaC
procedure which executes a create statement. A CSIM process should not be confused with a UNIX
process (which is an entirely different thing). The create statement is similar to a UNIX "fork™
statement. A process can be invoked with input arguments, but it cannot return a value to the
invoking process.

There can be several simultaneously "active" instances of the same process. Each of these instances
appears to be executing in parallel (in simulated time) even though they are in fact executing
sequentially on asingle processor. The CSIM runtime package guarantees that each instance of
every process has its own runtime environment. This environment includes local (automatic)
variables and input arguments. All processes have access to the global variables of a program.

A CSIM process, just like areal process, can be in one of four states:
® Actively computing
® Ready to begin computing
® Holding (alowing simulated time to pass)
® Waiting for an event to happen (or afacility to become available, etc.)

When an instance of a process terminates, either explicitly or via a procedure exit, it is deleted from
the CSIM system. Each process has a unique process id and each has a priority associated with it.

Initiating a Process

In CSIM, aprocess is a procedure which executes a create statement; a processis initiated
(invoked, started, ...) by executing a standard procedure call:

Prototype: voi d proc(argl, ..., argn);
Example: ny_proc(a, 64, "label");

In some cases, the process initiator requires the id of the initiated process. In these cases, the
prototype and example appear as follows:

Prototype: I ong proc(argl, . . ., argn);

Example: proc_id =ny_proc(a, 32, "label");

Caution: It isbad practice to pass the address of alocal variable to a CSIM process as an input
argument.

Caution: A process cannot return a function value.

Caution: A create statement (see below) must appear in the initiated process.

Executing the Process CREATE Statement

As stated above, a CSIM process is a procedure which executes the create statement:
Prototype: voi d create (char* name)
Example: create ("custoner");

The name of aprocessisjust acharacter string which is used to identify the processin event traces
and reports generated by CSIM. Typically, the create statement is executed at the beginning of a
process. Each instance of a processis given a unique process id (processid’s are not reused).
Processes can invoke procedures and functions in any manner. Processes can also initiate other
processes.

When a procedure executes its create statement, the following actions take place:
® The process executing the create statement (the called process) is established and is made
"ready to execute" at the statement following the create statement, and
® The calling process continues its execution (i.e., it remains the actively computing process) at
the statement after the procedure call to the called process.
The calling process continues as the active process until it suspends itself.

No simulated time passes during the execution of a createstatement.

Process Oper ation

Processes appear to operate simultaneously with other active processes at the same pointsin
simulated time. The CSIM process manager createsthisillusion by starting and suspending
processes as time advances and as events occur. Processes execute until they "’ suspend” themselves
by doing one of the following actions:

® execute a hold statement (delay for a specified interval of time),
® execute a statement which causes the processes to be placed in a queue, or
® terminate.

Processes are restarted when the time specified in a holdstatement elapses or when adelay in a
gueue ends. It should be noted that simulated time passes only by the execution of hold statements.
While a processis actively computing, no simulated time passes.

The process manager preserves the correct context for each instance of every process. In particular,
separate versions of all local variables (variables resident in the runtime stack frame) and input
arguments for a process are maintained. CSIM accomplishes this by saving and restoring process
contexts (segments of the runtime stack) as processes suspend themselves and as processes are
"resumed” (restored). A consequence of this kind of operation isthat if one processes passes an
address of alocal variable to another process, it islikely that when this address is referenced, the
reference will beinvalid. The reason is that when a process is not actually computing (using the real
CPU), its stack frame with the local variables will not be physically located in the correct placein
memory. Thisisnot amajor obstacle to writing efficient and useful models; it is adetail which
must be remembered as CSIM models are devel oped.

Terminating a Process

A process terminates when it either does a normal procedure exit or when it executes a terminate
statement.

Prototype: voi d terninate (void)
Example: terninate ();

The normal caseisfor aprocessto do anormal procedure exit or return. The terminate statement is
provided when this normal case is not appropriate.

Changing the Process Priority

Theinitial priority of aprocessisinherited from the initiator of that process. For the sim (main)
process, the default priority is 1 (low priority).

Prototype: void set_priority (long new priority)

Example: set _priority (5);

This statement must appear after the create statement in a process. Lower values represent |lower
priorities (i.e. priority 1 processes will run later than priority 2 processes when priority isa
consideration in order of execution (see section 4.10, "Changing the Service Discipline at a
Facility").

| nspector Functions

These functions each return some information to the process issuing the statement. The type of the
returned value for each of these functionsis as indicated.

Prototype: Functional Value:
char* process_name (void) retrieves pointer to name of processissuing inquiry
long identity (void) retrievestheidentifier (process number) of processissuing theinquiry

long priority (void) retrievesthe priority of processissuing inquiry

Reporting Process Status

To print the status of each active processin amodel:

Prototype: voi d status_processes (void)

Example: st atus_processes ();

To print the status of processes with pending state changes (the "next event list"):
Prototype: voi d status_next_event_list (void)

Example: st atus_next _event _|ist ();

These reports will be written to the default output location or to that specified by set_output_file
(see section 19.7, "Output File Selection™).

Facilities

A facility isnormally used to model aresource (something a process requests service from) in a
simulated system. For example, in amodel of a computer system, a CPU and a disk drive might
both be modeled by CSIM facilities. A simple facility consists of a single server and asingle queue
(for processes waiting to gain access to the server). Only one process at atime can be using a
server. A multiserver-server facility contains a single queue and multiple servers. All of the waiting
processes are placed in the queue until one of the servers becomes available. A facility setisan

array of simple facilities; in essence, afacility set consists of multiple single server facilities, each
with its own queue.

Normally, processes are ordered in afacility queue by their priority (ahigher priority processis
ahead of alower priority process). In cases of tiesin priorities, the order is first-come, first-served
(fcfs). An fcfsfacility can be designated as a synchronous facility. Each synchronous facility hasits
own clock with a period and a phase and all reserve operations are delayed until the onset of the
next clock cycle. Service disciplines other than priority order can be established for a server. These
are described in section 4.10, "Changing the Service Discipline at a Facility".

A set of usage and queueing statistics is automatically maintained for each facility in amodel. The
statistics for al facilities which have been used are "printed” when either areport (see section 17.2,
"CSIM Report Output™) or areport_facilitiesis executed (see section 4.4, "Producing Reports' for
details about the reports that are generated). In addition, thereis a set of inspector functions that can
be used to extract individual statistics for each facility.

First time users of facilities should focus on the following four sections, which explain how to set
up facilities, use (and reserve and release) facilities, and produce reports. Subsequent sections
describe the more advanced features of facilities.

Declaring and Initializing a Facility

A facility isdeclared in aCSIM program using the built-in type FACILITY.
Example: FACI LI TY f;

Before afacility can be used, it must be initialized by calling the facility function.
Prototype: FACILITY facility (char* name)

Example: f = facility ("fac");

A newly created facility is created with asingle server which is "free". The facility nameis used
only to identify the facility in output reports and trace messages.

Facilities should be declared with global variables and initialized in the first process (normally the
process named sim) prior to the beginning of the simulation part of the model. Unless changed by a
set_servicefunc statement (see section 4.10, "Changing the Service Disciplines at a Facility"), the
scheduling policy of the facility will be first-come, first-served (fcfs).

Using a Facility
A processtypically uses a server for a specified interval of time.

Prototype: voi d use (FACILITY f, double service_tine)
Example: use (f, expntl (1.0));

If the server at thisfacility is free (not being used by another process), then the process gains
exclusive use of the server and the usage interval starts immediately. At the end of the usage
interval, the process gives use of the server and departs this facility. Execution continues at the
statement following the use statement.

If the server at thisfacility is busy (is being used by another process), then the newly arriving
process is placed in a queue of waiting processes; this queue is ordered by process priority, with
processes of equal priority being ordered by time of arrival. As each process completes its usage
interval, the process at the head of the queue is assigned to the server and its usage interval starts at
that time.

The service discipline at afacility specifies how processes are given access to the server. One of
severa different service disciplines can be specified for afacility. Also, another form of facility has
multiple servers. In addition, it is possible to have an array of facilities (afacility set). The
difference between a multiserver facility and afacility set isthat a multiserver facility has one
queue for al of the waiting processes, while afacility set has a separate queue for each facility in
the set.

Reserving and Releasing a Facility

In some cases, aprocess will acquire a server, but will do something other than enter the usage
interval when it gets the server. The statements for doing this are reserve (to gain exclusive use of a
server) and release (to relinquish use of the server acquired in a previous reserve statement)

Prototypes. | ong reserve (FACILITY f)
void rel ease (FACILITY f)

Examples: reserve (f);
rel ease(f);

When a process executes areserve, it either gets use of the server immediately (if the server is not
busy) or it is suspended and placed in a queue of processes waiting to get use of the server. When it
gains access to the server, it executes the statement following the reserve statement. The order of
processes in the queue is by process priority, with processes of equal priority being ordered by time
of arrival. This process priority service disciplineis called fcfsin CSIM; it (along with fcfs_sy, see
below) isthe only service discipline that can be specified for facilities where processes do this
reserve-releasestyle of access. If another service disciplineisin force, then the processes must
execute use statements instead of reserve-release pairs of statements.

The process releasing a server at afacility must be the same process as the one which reserved it. If
thisis not the case, then the release_server statement (see below) must be used. When a process
executes arelease, it gives up use of the server; if thereis at least one process waiting to start using
the server (i.e., thereis at least one process in the queue at this facility), the process at the head of
the queue is given access to the server and that process is then reactivated and will proceed by
executing the statement following its reserve statement. No simulation time passes during execution
of arelease statement.

Note: Executing the sequence "reserve(f); hold(t); release(f);" is equivalent to executing the
statement "use(f,t);". However, if the usage interval is specified by a random number function, then
there is a subtle difference between these, as follows: the randomly derived interval is determined
after gaining access to the server in the first sequence and before gaining access to the server with
the use form; thus it islikely that the intervals in these two examples will be different. In other
words, the sequence "reserve(f); hold (exponential (t)); release(f);" will not necessarily display
exactly the same behavior as executing the statement "use(f,exponential (t));".

Producing Reports

Reports for facilities are most often produced by calling the report function which prints reports of
all the CSIM objects. Reports can be produced for all existing facilities by calling the
report_facilities function.

Prototype: void report_facilities (void)

Example report _facilities ();

Thereport for afacility, asillustrated below, includes, for each facility, the name of the facility, the

service discipline, the average service time, the utilization, the throughput rate, the average queue
length, the average response time and the number of completed service requests.

FACILITY SUMMARY

facility service service through queue response compl
name disc time util. put length time count

f fcfs0.40907 0.208 0.50900 0.27059 0.53162 509

ms fac fcfs 1.50020 0.764 0.50900 0.83821 1.64678 509
> server 0 1.55358 0.494 0.31800 318

> server 1 1.41133 0.270 0.19100 191

g rnd_rob 0.73437 0.507 0.69000 0.95522 1.38438 690

Releasing a Specific Server at a Facility

Sometimes, it is necessary for one process to reserve afacility and then for another process to
release the server obtained by the first process. In this case, the first process has to save the index of
the server it obtained, and then give this server index to the second process, so that it can specify
that index in therelease server statement, as follows:

Example: server _index = reserve (f) ;

Prototype: voi d rel ease_server (FACILITY f, long server_index)

Example: rel ease_server (f, server_index);
This operates in the same way as the release statement except that the ownership of the server is not

checked; thus, a process which did not reserve the facility may release it by executing the
release server statement with a server index.

Declaring and Initializing a Multiserver Facility

In some cases, afacility has multiple servers, and each of these serversis indistinguishable from the
other servers. A mutliserver facility is declared as anormal (single server) facility.

Example: FACI LI TY cpu;

However, amultiserver facility isinitialized in a different manner.

Prototype: FACILITY facility_ms (char *nane, |ong nunber_of _servers)
Example: cpu = facility_ms ("dual cpu", 2);

A process can either execute a use statement or the reserve-release pair of statements at a

multiserver facility. In either case, the process gains access to any server that isfree; aprocessis
suspended and put in the single queue at the facility only when all of the servers are busy.

Facility Sets

A facility set isan array of facilities.

Example: FACI LI TY di sk[10]

A facility setisinitialized as follows:

Prototype: void facility_set (FACILITY f[],char *name, |long numfacilities) ;
Example: facility_set (disk, "disk", 10) ;

In afacility set, each element of the set is an independent, single server facility, with its own queue.
Each of these facilities is given a constructed name which shows its position in the set. In the above

example, the name for the first element of the set is"disk[0]". Facility sets are used to model cases
where each server has its own queue of waiting processes.

Reserving a Facility with a Time-out

Sometimes a process must not wait indefinitely to gain accessto a server. If a process executes the
timed_reserve function, it will be suspended until either it gains use of a server or the specified
time-out interval expires.

Prototype: l ong tined_reserve (FACILITY f, long timeout)

Example: result = timed_reserve (f, 100.0); if (result ! = TIMED QUT) .
The process must check the functional value, to determine whether or not it obtained a server. If the
value TIMED_OUT isreturned, the process did not obtain a server. If thisis not returned

(EVENT_OCCURRED will in fact be returned), then the process did obtain a server and should
eventually release the server.

Renaming a Facility

The name of afacility can be changed at any time, as follows:

Prototype: voi d set_nanme_facility (FACILITY f, char *new nane)
Example: set _nanme_facility (f, "cpus");

Only the first ten characters of the facility’ s name are stored.
Changing the Service Discipline at a Facility

The service discipline for afacility determines the order in which processes at the facility are given
access to that facility. If not otherwise specified, the service discipline for afacility isfcfs. When

the priorities differ, processes gain access to the server in priority order (higher priority processes
before lower priority processes). When processes have the same priority, the processes gain access
in the order of their arrival at the facility (first come, first served). This default service discipline
can be changed.

Prototype: voi d set_servicefunc (FACILITY f, void(*service_function)())
Example: set _servicefunc (f, pre_res);

Set_servicefunc() refersto a service function which is invoked when the use statement (described
above) references thisfacility. This service function can be any of the following pre-defined service
discipline functions:

® fcfs- first come, first served
Thisisthe default service discipline and is described in the introduction to this section. If the
synchronous _facility statement (see below) is used for thisfacility, thiswill behave like a fcfs_sy
(clock synchronized fcfs) facility. In other words, there are two ways for afacility to become
synchronized: specifying the service discipline of fcfs_sy or specifying (or defaulting) fcfsfor the
service discipline and using the synchronous_facility statement.

® fcfs sy - first come, first served, clock synchronized
Thisisthe same as fcfs except that requests can be satisfied only at the beginning of a clock cycle.
If not otherwise specified (via synchronous_facility below), the clock phase (time to onset of first
clock cycle) will be 0.0, and the period (length of aclock cycle) will be 1.0.

® inf_srv - infinite servers
Thereisno queueing delay at all since thereis always a server available at the facility.

® |cfs pr - last come, first served, preempt

Arriving processes are always serviced immediately, preempting a process that is currently being
served if necessary. Priority is not a consideration with this service discipline.

® prc_shr - processor sharing

Thisisload-dependent processor sharing. Service times for each process are determined based on
the number of processes at the facility. If not otherwise specified (see set_|oaddep below), it will be
assumed that the rate that applies when there are n processes at the facility is n (in other words, if
there are n processes at the facility, the service time will be multiplied by n). The altered service
times are recomputed as tasks that arrive at and leave the facility. There is no queueing delay with
processor sharing since the assumption isthat the server works faster and faster as necessary to
service all processes that request it.

There can be a maximum of 100 processes sharing a prc_shrfacility.
® pre_res- preempt resume

Higher priority processes will preempt lower priority processes, so that the highest priority process

at the facility will always finish using it first. Where the priorities are the same, processes will be
served on afirst come, first served basis. Preempted processes will eventually resume and complete
their service timeinterval.

® rnd_pri - round robin with priority
Higher priority processes will be served first. When there are multiple processes with the same
priority, they will be serviced on around robin basis, with each getting the amount of time specified
in set_timeslice (see below) before being preempted by the next process of the same priority.

® rnd_rob - round robin
Processes will be serviced on around robin basis, with each getting the amount of time specified in
set_timedlice (see below) before being preempted by the next process requiring service. Process
priority is not a consideration with this service discipline.

Caution: The use statement (as opposed to thereserve) statement must be used for most of these
service disciplines to be effective. Only fcfs and fcfs_sy will operate properly with reserve.

To set the clock information for the fcfs_sy service discipline:

Prototype: voi d synchronous_facility (FACILITY f, double phase, double period)
Example: synchronous_facility (f, 0.0, 1.0);

To set the load dependent service rate for the prc_shr(see above) service discipline:

Prototype: voi d set_| oaddep (FACILITY f, double rate[], long n)

Example: set _| oaddep(f, rate, 10);

The"rate" array isan array of length n, where each element specifies the service rate for the
corresponding number of processes using the server. Rate[i] isthe amount by which the service
time is multiplied when there are processes at the facility. If nislessthan the 100 (the maximum
number of processes allowed to share use of a prc_shr facility), then the value of the last specified
rateis replicated until 100 values are available. Also, if nisgreater than 99, only 100 values will be
used. It should be remembered that the altered service times are recomputed as tasks arrive at and
leave the facility.

To set the time dlice for the round robin service disciplines, rnd_pri and rnd_rob (see above):

Prototype: voi d set _tinmeslice (FACILITY f, double slice_length)

Example: set _tineslice (f, 0.01);
Deleting a Facility or a Facility Set
To delete afacility:

Prototype: voi d delete_facility (FACILITY f)

Example: del ete_facility (f);
To delete afacility set:

Prototype: void delete facility_set (FACILITY if_set[])

Example: del ete_facility_set (f_set);

Caution: Deleting afacility or facility set is an extreme action and should be done only when
necessary.

Collecting Class-Related Statistics

Information about usage of afacility by processes belonging to different process classes can be
collected for al facilities or for a specific facility. To collect class-based usage information for a
specific facility:

Prototype: voi d collect_class_facility (FACILITY f)

Example: col l ect _class facility (f);

Usage of thisfacility by all process classes (see section 15, "Process Classes') will be reported in
the facilities report. Also, it is an error to change the maximum number of classes allowed after this
statement has been executed.

To collect usage information for all facilities:

Prototype: voi d col lect_class_facility_all (void)

Example: col | ect _class_facility_all ();

This appliesto al of the facilities in existence when this statement is executed Usage of the
facilities by all process classes (see section 15, "Process Classes') will be reported in the facilities

report. It isan error to change the maximum number of classes allowed after this statement has
been executed.

| nspector Functions

All statistics and information maintained by afacility can be retrieved during execution of a model
or upon its completion.

Prototype: Functional Value:

char* facility_name (FACILITY f) pointer to name of facility

| ong num servers (FACILITY f) number of serversat facility

char* service_disp (FACILITY f) pointer to name of service discipline at facility

doubl e timeslice (FACILITY f) timeineach time-slicefor facility (which has around robin

service discipline)

|l ong num busy (FACILITY f) number of serverscurrently busy at facility
l ong gl ength (FACILITY f) number of processes currently waiting at facility
|l ong status (FACILITY f) current status of facility

Busy if all serversarein use

FREE if at least one server isnot in use

| ong compl etions (FACILITY f) number of completions at facility

| ong preenpts (FACI LITY f) number of preempted requests at facility
doubl e gl en (FACILITY f) mean queue length at facility

doubl e resp (FACI LI TY f) mean responsetime at facility

doubl e serv (FACILITY f) mean servicetime at facility

doubl e tput (FACILITY f) mean throughput rate at facility

doubl e util (FACILITY f) utilization (% of time busy) at facility

Additional data on servers and classes can be obtained as follows;

| ong server_conpletions (FACILITY f, long sn) number of completionsfor server sn at
facility

doubl e server_serv (FACILITY f, long sn) mean servicetimefor server sn at facility
doubl e server_tput (FACILITY f, long sn) mean throughput rate for server sn at facility
doubl e server_util (FACILITY f, long sn) utilization for server sn at facility

| ong cl ass_conpl etions (FACILITY f, CLASS c¢) number of completionsfor class at facility
doubl e class_qglen (FACILITY f, CLASS c) mean queuelength for class at facility

doubl e class_resp (FACILITY f, CLASS c) mean responsetimefor classat facility

doubl e class_serv (FACILITY f, CLASS c) mean servicetimefor class at facility

doubl e class_tput (FACILITY f, CLASS c) mean throughput rate for class at facility

doubl e class_util (FACILITY f, CLASS c) utilization for class at facility

Status Report

To obtain areport on the status of al of the facilitiesin amodel:

Prototype: voi d status_facilities (void)
Example: status_facilities ();
This report lists each facility along with the number of servers, the number of servers which are

busy, the number of processes waiting. the name and id of each process at a server, and the name
and id of each processin the queue.

Storages

A CSIM storage is aresource which can be partially alocated to a requesting process. A storage
consists of a counter (to indicate the amount of available storage) and a queue for processes waiting
to receive their requested allocation. A storage set is an array of these basic storages.

A storage can be designated to be synchronous. In a synchronous storage, each allocate is delayed
until the onset of the next clock cycle.

Usage and queueing statistics are automatically maintained for each storage unit. These are

"printed” whenever areport or areport_storages statement is executed (see section 17.2, "CSIM
Report Output” for details about the reports that are generated).

Declaring and Initializing Storage

A storageis declared in a CSIM program using the built-in type STORE.

Example: STORE s;

Before a storage can be used, it must be initialized by calling the storage function.

Prototype: STORE storage (char* nane, |ong size)

Example: s = storage ("nenory", 1000);

A newly created storage is created with all of the "storage”" available. Storages should be declared
with global variablesin the sim (main) process, prior to the beginning of the simulation part of the

model. A storage must be initialized via the storage statement before it can be used in any other
statement.

Allocating from a Storage

The elements of a storage can be allocated to a requesting process.
Prototype: voi d all ocate (long amount, STORE s)
Example: al | ocate (10, s);

The amount of storage requested is compared with the amount of storage available at s. If the

amount of available storage is sufficient, the amount available is decreased by the requested amount
and the requesting process continues. If the amount of available storage is not sufficient, the
requesting process is suspended. When some of the storage elements are deallocated by some other
process, the highest priority waiting processes are automatically allocated their requested storage
amounts (as they can be accommodated), and they are allowed to continue. The list of waiting
processes is searched in priority order until arequest cannot be satisfied. In order to preserve
priority order, a new request which would fit but which would get in front of higher priority waiting
requests will be queued.

Caution: The order of the arguments for the allocate statement (and the deall ocate statement too)
can be confusing. Think of "allocating n elements of storage from storage s ™.

Deallocating from a Storage Unit

To return storage elements to a storage, the deall ocate procedure is used.
Prototype: voi d deal | ocate (Il ong anount, STORE s)

Example: deal | ocate (10, s);

If there are processes waiting, the highest priority processes that are waiting are examined. Those
that will now fit have their requests satisfied and are allowed to continue. If a deallocate operation
causes the count of the number of using processes to become negative, an error is detected and
execution stops. This occurs whenever more deall ocates than allocates are done, regardless of the
storage amounts or the number of different processes involved. Executing a deall ocate statement
causes no simulated time to pass.

Caution: Thereis no check to insure that a process returns only the amount of storage that it had
been previoudly allocated.

Caution: A runtime error is detected if the number of deallocates exceeds the number of allocates at
astorage.

Producing Reports

Reports for storages are most often produced by calling the report function, which reports for all
CSIM objects. Reports can be produced for al existing storages by calling the report_storages
function. The report for a storage, asillustrated below, gives the name of the storage, the size
(initial amount), the average allocation request, the utilization, the average time each request is"in"
the storage, the average queue length, the average response time and the number of completed
requests.

STORAGE SUMMARY
storage alloc service queue response allocs

name size amount util. time length time compl

st 100 24.982 0.175 1.44064 0.72814 1.45338 501

Storage Sets

A storage set is an array of storages. Each element of the array is an individual storage.
Example: STORE *s_set, char *name [5];

A storage set must be initialized before the elements of the set can be used.

Prototype: voi d storage_set (STORE* s_set. char
*nane, | ong anmount, |ong nunmber in_set);

Example: st orage_set (s_set, "set", 100, 5);

The exampleinitializes a set of five storages, each with 100 elements of storage available at the
onset of operation. The name is the name of the set. Each individual unit of storageisgiven a
unique (indexed) name. In the example, the first storage in the set is named "set[0]", the second is
named "set[1]", and so on. The last storage is named "set[99]". Similarly, the individual units of
storage are accessed as elements of an array. All of the operations which apply to a storage also
apply to the individual units of a storage set.

Allocating Storage with a Time-out

Sometimes, processes cannot wait indefinitely to allocate the needed amount of storage. If such a
process executes the timed_allocate function, then, if the requested amount of storageis not
available, the process will be suspended until either the requested amount of storage becomes
available or the time-out interval expires.

Prototype: | ong tined_all ocate (long amount, STORE s,
doubl e tineout)

Example: result = timed_all ocate (10, s, 100.0);
if (result ! = TIMED QUT) .

The process must check the function value (result) to determine whether or not the requested
storage was obtained. If the value TIME_OUT isreturned, the process did not obtain any of the

requested storage. If thisvalueis not returned (EVENT_OCCURRED will in fact be returned), then
the process did obtain the requested storage.

Making a Storage Unit Clock Synchronous
A storage unit can be designated to be a synchronous storage unit.

Prototype: voi d synchronous_st orage (STORE s,
doubl e. phase, doubl e peri od)

Example: synchronous_storage (s, 0.0, 1.0);
A synchronous storage unit is similar to a normal storage unit except that alocation requests are
always delayed until the beginning of the next clock cycle. The clock phase specifies the interval

before the onset of the first clock cycle, and the period specifies the interval between successive
clock cycles.

Adding More Storage Elementsto a Storage Unit
To increase the amount of storage (the number of storage elements) in a storage,
Prototype: voi d add_store (long anount, STORE s)

Example: add_store (100, s);

Renaming a Storage Unit:
The name of a storage can be changed at any time, as follows:

Prototype: voi d set_nane_storage (STORE s, char
*new_namne)

Example: set _nane_storage (s, "cache");

Only thefirst ten characters of the storage’ s name are stored.

Deleting Storage or a Storage Set
To delete a storage:

Prototype: voi d del ete_storage (STORE s)
Example: del ete_storage (s);

To delete a storage set:

Prototype: voi d del ete_storage_set (STORE s_set[])

Example: del et e_storage (s_set);

Deleting a storage or storage set is an extreme action and should be done only when necessary.

| nspector Functions

These functions each return a statistic which describes some aspect of the usage of the specified
storage.

Prototype: Functional Value:

char* storage_name(STORE s) pointer to name of store

| ong storage_capacity(STORE s) number of storages defined for
store

| ong avai |l (STORE s) number of storages currently
available at store

| ong storage_gl engt h(STORE s) number of processes currently
waliting at store

| ong storage_request_ant (STORE s) sum of requested amounts from
store

| ong st orage_nunber_ant (STORE s) time-weighted sum of
requesters for store

doubl e storage_busy_ant (STORE s) busy time-weighted sum of
amounts for store

doubl e storage_waiting_ant (STORE s) waiting time weighted sum of
amounts for store

| ong storage_request_ant (STORE s) total number of requests for
store

| ong storage_rel ease_ant (STORE s) total number of completed
requests for store

| ong storage_queue_cnt (STORE s) number of queued requests at
store

doubl e storage_ti me(STORE s) time at storethat is spanned by
report

Reporting Storage Status
Prototype: voi d status_storages (void)
Example: stat us_storages ();

The report will be written to the default output location or to that specified by set_output_file (see
section 19.7, "Output File Selection™).

Events

Events are used to synchronize the operations of CSIM processes. An event exists in one of two
states: occurred or not occurred . A process can change the state of an event, or it can suspend its
execution until an event has occurred. When a process is suspended it can join a set of processes, all

of which will be resumed when the event occurs. Or, it can join an ordered queue from which only
one process is resumed for each occurrence of the event. An event is automatically reset to the not
occurred state when all of the suspended processes that can proceed have done so.

Advanced features of eventsinclude the ability to create sets of events for which processes can wait

and the ability for a process to bound its waiting time by specifying atime-out. Events can aso be
used to construct other synchronization mechanisms such as semaphores.

Declaring and Initializing an Event

An event isdeclared in a CSIM program using the built-in type EVENT.
Example: EVENT e;

Before an event can be used, it must be initialized by calling the event function.
Prototype: EVENT event (char* name)

Example: e = event ("done");

An event isinitialized in the not occurred state. The event name is used only to identify the event in
output reports and trace messages.

Anevent that isinitialized in the first CSIM process (sim) exists during the entire ssmulation run
and is called aglobal event. An event initialized in any other processis called alocal event. A local
event is deleted when the processin which it was initialized terminates. To make such an event
exist for the entire run, it must be initialized by calling the global _event function.

Prototype: EVENT gl obal _event (char* nane)

Example: e = gl obal _event ("done");

Waiting for an Event to Occur

A process waits for an event to occur by calling the wait function.

Prototype: voi d wait (EVENT e)

Example: wait (e);

If the event isin the occurred state, control returns from the wait function immediately and the
event is changed to the not occurred state. If the event isin the not occurred state, the calling
process is suspended from further execution and control will not return from the wait function until

some other process sets this event. When the event is set, all waiting processes will be resumed and
the event will be placed in the not occurred state.

Waiting with a Time-Out

Sometimes a process must not be suspended indefinitely waiting for an event to occur. If a process

callsthe timed_wait function, it will be suspended until either the event is set or the specified
amount of time has passed.

Prototype: 1 ong timed_wait (EVENT e, double tineout)

Example: result = timed_wait (e, 100.0);
if (result ! = TIMED QUT)

The calling process should check the functional value to determine the circumstances under which
it was resumed. If the value EVENT_OCCURRED is returned, the process was activated because

the event has occurred; if the value TIMED_OUT isreturned, the specified amount of time passed
without the event being set.

Queueing for an Event to Occur

A process joins the ordered queue for an event by calling the queue function.

Prototype: voi d queue (EVENT e)

Example: queue (e);

This function behaves similarly to the wait function, except that each time the event is set only one

gueued processis resumed. The queue is maintained in order of process priority, with processes
having the same priority being ordered by time of insertion into the queue.

Queueing with a Time-out

If aprocess calls the timed _queue function, it will be suspended until either the event is set a
sufficient number of times for the process to be activated or the specified amount of time has
passed.

Prototype: | ong ti ned_queue (EVENT e, double tineout)

Example: result = timed_queue (e, 100.0);
if (result !' = TIMED QUT) ...

The calling process should check the functional value to determine the circumstances under which
it was resumed. If the value EVENT_OCCURRED is returned, the process was activated because

the event occurred; if the value TIMED _OUT isreturned, the specified amount of time passed
without the process being activated by the event being set.

Setting an Event

A process can put an event into the occurred state by calling the set function.
Prototype: voi d set (EVENT e)

Example: set (e);

Calling this function causes all waiting processes and one queued process to be resumed. If there

are no waiting or queued processes, the event will bein the occurred state upon return from the set
function. If there are waiting or queued processes, the event will be in the not occurred state upon
return. No simulation time passes during these activities. Setting an event that is already in the
occurred state has no effect.

Clearing an Event

A process can put an event into the not occurred state by calling the clear function.
Prototype: voi d cl ear (EVENT e)
Example: cl ear (e);

Clearing an event happens in zero simulation time and no processes are in any way affected.
Clearing an event that is aready in the not occurred state has no effect.

Renaming an Event

The name of an event can be changed at any time using the set_name_event function.

Prototype: voi d set_nane_event (EVENT e, char *new_nane)
Example: set _nanme_event (e, "finished");

Only thefirst ten characters of the event’ s name are stored.

Deleting an Event

When an event is no longer needed, its storage can be reclaimed using the delete_event function.
Prototype: voi d del ete_event (EVENT e)

Example: del ete_event (e);

If an event islocal, only the process that created the event can delete it. Once an event has been

deleted, it must not be further referenced. It is an error to attempt to delete an event on which
processes are waiting or queued.

Event Sets

An event set isan array of related events for which some specia operations are provided. An event
set isdeclared using the C array construct.

Example: EVENT e_set [10] ;
All eventsin an event set are initialized with asingle call to the event_set function.

Prototype: voi d event _set (EVENT e_set[], char *nane,
| ong nunber _of _events)

Example: event _set (e_set, "events", 10);

Aswith any C array, the eventsin an event set are indexed from 0 to num_events - 1. Individua
eventsin the event set can be manipulated using any of normal event functions (e.g. ., set, clear,
wait, queue).

Example: set (e_set[3]);

A process can wait for the occurrence of any event in an event set by calling the wait_any function.
Prototype: | ong wait _any (EVENT e_set[])

Example: event _i ndex = wait_any (e_set);

This function returns the index of the event that caused the calling process to proceed. If multiple
eventsin the set are in the occurred state, the lowest numbered event is the one recognized by the
calling process. All processes that have called wait_any are activated by the next event that occurs,
and these processes al receive the same index value.

A process can join an ordered queue for an event set by calling the queue_any function.
Prototype: | ong queue_any (EVENT e_set[])

Example: event _i ndex = queue_any (e_set);

Each time any event in the event set occurs, one process in the queue is activated. The functional
value is the same as that of the wait_any function. It is not currently possible to specify atime-out
for the wait_any or queue_any functions.

An entire event set is deleted by calling the delete_event_set function.

Prototype: voi d del ete_event _set (EVENT e_set[])

Example: del ete_event _set (e_set);

The delete_event function must not be called on individual members of an event set.

| nspector Functions

The following functions return information about the specified event at the time they are called.
Prototype: Functional value:

char* event _name (EVENT e) pointer to name of event

|l ong wait_cnt (EVENT e) number of processes waiting for
event

| ong queue_cnt (EVENT e) number of processes queued of
event

| ong event_gl en (EVENT e) sum of wait_cnt and queue_cnt

| ong state (EVENT e) state of event:
OCC if occurred or
NOT_OCC if not occurred

Status Report

The status_events function prints areport of the status of all eventsin the model.
Prototype: voi d status_events (void)

Example: status_events ();

For each event, the report includes its state, the number of processes waiting for it, the number of
processes queued for it, the name and id of all waiting processes, and the name and id of all queued
processes. The report iswritten to the default output stream or the stream specified in the last call to
set_output_file.

Built-In Events

A process can suspend itself until there are no other active processes by waiting on the built-in
event event_list_empty.

Example: wai t (event _list_enpty);

Thisevent isautomatically set by CSIM when all processes have terminated or are waiting for
something (e.g., afacility or storage). Modelers sometimes use this to force the initial (sSim) process
towait until al work in the system being modeled has completed. Upon being reactivated, the
initial process might then produce reports.

If run length control isinvolved for atable, gtable, meter or box, (see 14.3), aprocess can suspend
itself until the run length control mechanism signals the end of arun. Thisis done by waiting for
the built-in event converged.

Example: wait (converged);

M ailboxes

A mailbox alows for the synchronous exchange of data between CSIM processes. Any process
may send a message to any mailbox, and any process may attempt to receive a message from any
mailbox.

A mailbox is comprised of two FIFO queues: a queue of unreceived messages and a queue of
waiting processes. At least one of the queues will be empty at any time. When a process sends a
message, the message is given to awaiting process (if one exists) or it is placed in the message
gueue. When a process attempts to recelve a message, it is either given a message from the message
gueue (if one exists) or it is added to the queue of waiting processes.

A message can be either asingle long integer or a pointer to some other data object. If a process
sends a pointer, it is the responsibility of that process to maintain the integrity of the referenced data
until it is received and processed.

Declaring and Initializing a M ailbox

A mailbox is declared in a CSIM program using the built-in type MBOX.
Example: MBOX m

Before amailbox can be used, it must be initialized by calling the mailbox function.
Prototype: MBOX mai | box (char* nane)

Example: m = mai | box ("requests");

A newly created mailbox contains no messages. The mailbox name is used only to identify the
mailbox in output reports and trace messages.

A mailbox that isinitialized in the first CSIM process (sim) exists during the entire simulation run

and is called agloba mailbox. A mailbox initialized in any other processis called aloca mailbox.
A local mailbox is deleted when the processin which it wasinitialized terminates.

Sending a M essage

A process sends a message by calling the send function.

Prototype: voi d send (MBOX m |ong nmessage)

Example: send (m (long) buffer);

If one or more processes are waiting on this mailbox, the process at the head of the process queue

will resume execution and will be given this message. If no processes are waiting, this message will
be appended to the tail of the message queue. No simulation time passes during this function call.

Receiving a M essage

A process receives a message by calling the receive function.

Prototype: voi d receive (MBOX m |ong* nessage)

Example: receive (m (long*) &ptr);

If one or more messages are queued at this mailbox, the calling process is given the message at the

head of the queue and continues executing. If no messages are queued, the process is suspended
from further execution and is added to the tail of the process queue for this mailbox.

Receiving a Message with a Time-out

Sometimes a process must not wait indefinitely to receive amessage. If aprocess callsthe
timed_receive function, it will be suspended until either amessage is received or the specified
amount of time has passed.

Prototype: | ong tinmed_receive (MBOX m |ong* nessage,
doubl e tineout)

Example: result = timed_receive(m (long*) &ptr, 100.0);
if (result !' = TIMED QUT) ...

The calling process can check the functional value to determine the circumstances under which it
was resumed. If the value EVENT_OCCURRED is returned, the process was activated because a

message was received; if theval ue TIMED_OUT is returned, the specified amount of time passed
without the process being activated by the receipt of a message.

Renaming a M ailbox
The name of a mailbox can be changed at any time using the set_name_mailbox function.

Prototype: voi d set_nane_mai | box (MBOX m char *new_nane)
Example: set _nanme_mai | box (m "responses");

Only the first ten characters of the mailbox’ s name are stored.

Deleting a Mailbox

When amailbox is no longer needed, its storage can be reclaimed using the delete_mailbox
function.

Prototype: voi d del et e_mai | box (MBOX m)
Example: del et e_mai | box (m);
If amailbox islocal, only the process that created the mailbox can delete it. Once a mailbox has

been deleted, it must not be further referenced. Deleting a mailbox causes any unreceived messages
to belost. It isan error to attempt to delete a mailbox on which processes are waiting.

| nspector Functions

The following functions return information about the specified mailbox at the time they are called.
Prototype: Functional value:

char* mail box_name (MBOX nm) pointer to name of mailbox

l ong msg_cnt (MBOX m if positive, number of unreceived messages; if negative, magnitudeis
number of waiting processes

Status Report

The status_mailboxes function prints areport of the status of all mailboxes in the model.
Prototype: voi d status_mai | boxes (void)

Example: st at us_mai | boxes ();

For each mailbox, the report includes the number of unreceived messages, the number of waiting
processes, and the name and id of all waiting processes. The report is written to the default output
stream or the stream specified in the last call to set_output_file.

Introduction to Statistics Gathering

CSIM automatically gathers and reports performance statistics for certain types of model
components, including facilities and storages. CSIM also provides four general-purpose statistics
gathering tools: tables, gtables, meters, and boxes. These tools can be used for the following
purposes:

® to obtain statistics other than mean values for facilities and storages

® to obtain statistics for other model components, such as mailboxes and events

® to obtain statistics for selected submodels or for the model considered as awhole

® to employ the run length control algorithms provided with CSIM (see section 14.3, "Run
Length Control™)

Any statistics can of course be gathered by declaring and updating variablesin a CSIM program.
But, the statistics gathering tools are powerful and comprehensive, and their use will decrease the
likelihood of programming errors that lead to incorrect statistics. Formatted reports of the statistics
gathered with these tools can easily be included in the model output.

The following steps are suggested for adding statistics gathering to a model:

® |dentify what statistics are of interest and which statistics gathering tools are appropriate.
® Declare aglobal pointer (variable) for each statistics gathering tool that will be used.

® [nitialize each statistics gathering tool, usually at the beginning of the sim function.

® Add instrumentation (i.e., function calls) to the model to feed data to the tools.

® Generate reports by calling the report function.

The magnitudes of the performance statistics obviously depend on the time unit that is chosen for
the model. Most of the reports produced by the statistics gathering tools will accommodate floating
point numbers with six digitsto the left of the decimal point and six digits to the right of the
decimal point. Up to nine digits can be displayed for integer values. The time unit should be chosen
to avoid performance values so far from unity that digits of interest are not displayed.

Tables

A tableisused to gather statistics on a sequence of discrete values such as interarrival times,
service times, or response times. Data values are "recorded” in atable to include them in the
statistics. A table does not actually store the recorded values; it smply updates the statistics each

time avaueisincluded. (See section 9.6, "Moving Windows", for the only exception to thisrule.)
The statistics maintained by a table include the minimum, maximum, range, mean, variance,
standard deviation, and coefficient of variation. Optional features for atable allow the creation of a
histogram, the calculation of confidence intervals, and the computation of statistics for valuesin a
moving window.

First-time users of tables should focus on the following three sections, which explain how to set up

tables, record values, and produce reports. Subsequent sections describe the more advanced features
of tables.

Declaring and initializing a table

A tableisdeclared in a CSIM program using the built-in type TABLE.

Example: TABLE t;

Before atable can be used, it must beinitialized by calling the table function.

Prototype: TABLE tabl e (char* nane);

Example:t = table ("response tines");

The table name is used only to identify the table in the output reports. Up to 80 charactersin the
name will be stored by CSIM. A newly created table contains no values and all the statistics are
zero.

A table can beinitialized as a permanent table using the permanent_table function.

Prototype: TABLE per manent _tabl e (char* nane)

Example:t = permanent _table ("response times");

The information in a permanent tableis not cleared when the reset function iscalled, and a
permanent tableis not deleted whenrerun is called. In al other ways, a permanent table is exactly
like any other table. Permanent tables are often used to gather data across multiple runs of a model.
Asagenera rule, do not make atable permanent unless you have a specific reason for doing so.

Recording values

A valueisincluded in atable using the record function.
Prototype: voi d record (doubl e val ue, TABLE t)
Example: record (1.0, t);

Tables are designed to maintain statistics on data of type double. Data of other types, such as
integer, must be cast to type double in the call to record.

Caution: It isacommon mistake to reverse the order of the parametersin callsto record. Think of

"recording the value x in table t".

Producing reports

Reports for tables are most often produced by calling the report function, which prints reports for
all statistics gathering objects. A report can be generated for a specified table at any time by calling
the report_table function.

Prototype: voi d report_table (TABLE t)

Example: report _table (t);

Reports can be produced for all existing tables by calling the report_tables function.

Prototype: voi d report_tables (void)

Example: report _tables ();

The report for atable will include the table name and all statistics, asillustrated below. If the table
is empty, a message to that effect is printed instead of the statistics.

TABLE 1: response tines

m ni mum 0. 009880 nmean 2.881970

maxi mum 13. 702809 vari ance 7.002668

range 13. 692929 st andard 2. 646255
devi ati on

observati ons 962 coefficient 0.918211
of var

A summary report for al tables can be generated by calling the table_summary function.
Prototype: voi d tabl e_summary (voi d)
Example: t abl e_summary ();

The report that is produced contains one line for each table and includes only a subset of the
statistics. If atable isempty, no statistics will appear in the last three columns.

TABLE SUMMARY
standard

name observations mean maximum deviation

response times 962 2.881970 13.702809 2.646255

Histograms

A histogram can be specified for atable in order to obtain more detailed information about the
recorded values. The mode and other percentiles can often be estimated from a histogram. A
histogram is specified for atable by calling the table_histogram function.

Prototype: voi d tabl e_hi stogram (TABLE t, |ong nbucket,
doubl e mi n, doubl e nax)

Example: t abl e_hi stogram (t, 10, 0.0, 10.0);

The number of buckets in the histogram will be nbucket. The smallest value in the first bucket will
be min; the largest value in the last bucket will be max. All buckets will have the same width of
(max-min)/nbucket. An underflow bucket and an overflow bucket will automatically be created if
needed to hold values less than min or greater than max.

Usually, ahistogram is specified for atable immediately after the table isinitialized. Additional
calls can be made to table_histogram to change the characteristics of the histogram, but only if the
table is empty.

A report for atable having a histogram will include an additional section asillustrated below. For
each bucket in the histogram, the following information will be displayed: the smallest value the
bucket can hold, the number of valuesin the bucket, the proportion of all valuesthat arein the
bucket, the proportion of all valuesin the bucket and all preceding buckets, and a bar whose length
corresponds to the proportion of valuesin the bucket.

curmul ati ve
| ower frequency proportion proportion

limt

0. 00000 265 0. 275468 0. 275468
kkkkkkhkkhkhkkhkkkkkhkkhkikikhkk*%x

1. 00000 219 0. 227651 0. 503119
kkhkkkkhkkhkkkkhkhkkkkhkkk*k

2. 00000 125 0. 129938 0. 633056 *FxxFxEFx

3. 00000 92 0. 095634 0. 728690 **xx*xxx

4.00000 74 0. 076923 0. 805613 ****x*

5. 00000 54 0. 056133 0. 861746 ****

6. 00000 53 0. 055094 0.916840 ****

7.00000 38 0. 039501 0.956341 ***

8. 00000 8 0. 008316 0. 964657 *

9. 00000 8 0. 008316 0.972973 *

>=10. 00000 26 0. 027027 1. 000000 **

If leading or trailing buckets contain no values, the linesin the report for these buckets will not be

printed. This allows the histogram to be output as compactly as possible without losing any
information.

CSIM must save information for each bucket in a histogram. Consequently, the storage
requirements for atable that has a histogram are proportional to the number of buckets.

Confidencelntervals

CSIM can automatically compute confidence intervals for the mean of the datain any table. The
confidence interval calculations are enabled by calling the table_confidence function.

Prototype: voi d tabl e_confidence (TABLE t)
Example: t abl e_confi dence (t);

If confidence intervals have been requested, the report for atable will have an additional section, as
illustrated below.

confidence intervals for the mean after 50000 observations

| evel confidence interval rel. error

90 % 4.114119 +/- 0.296434 = 0. 077648
[3.817684, 4.410553]

95 % 4,114119 +/- 0.354041 = 0. 078837
[3. 760078, 4.468159]

98 % 4.114119 +/- 0.421555 = 0. 080279

[3.692563, 4.535674]

Chapter 14, "Confidence Intervals and Run Length Control" describes confidence intervalsin detail
and explains how to interpret the information in this report.

Moving Windows

By default, all values recorded in atable are included in the statistics. If amoving window is
specified for atable, only the last n values are used in computing the statistics, where nis called the
window size. A moving window is specified for atable using the table_moving_window function.

Prototype: voi d t abl e_novi ng_w ndow (TABLE t, |ong n)
Example: t abl e_novi ng_w ndow (t, 1000);
Usually, atable’s moving window is specified immediately after the table isinitialized. Additional

calls can be made to table_moving_window to change the table’ swindow size. It is an error to
specify amoving window for atable that is not empty.

If atable has awindow size of n, the last n values recorded in the table must be saved by CSIM.
Consequently, the storage requirements for a table having a moving window are proportional to its
window size.

| nspector Functions

All statistics maintained by atable can be retrieved during the execution of amodel or upon its
completion. The attributes of atable (i.e., its name and moving window size) can also be retrieved.

Prototype: Functional value:

char* tabl e_nanme (TABLE t) pointer to name of table

| ong tabl e_w ndow_si ze (TABLE t) Size of moving window
l ong tabl e cnt (TABLE t) number of valuesrecorded

doubl e table_min (TABLE t) minimum vaue

doubl e table_max (TABLE t) maximum value

doubl e tabl e_sum (TABLE t) sum of values

doubl e tabl e_sum square (TABLE t) sum of squares of values
doubl e tabl e_mean (TABLE t) mean of values

doubl e tabl e_range (TABLE t) range of values

doubl e table_var (TABLE t) variance of values

doubl e tabl e_stddev (TABLE t) standard deviation of values

doubl e table_cv (TABLE t) coefficient of variation of
values

The following inspector functions retrieve information about the confidence interval associated
with atable:

Prototype: Functional Value:

doubl e tabl e_conf_hal fwi dth (double |evel, TABLE t) hafwidth
doubl e tabl e_conf | ower (double |evel, TABLE t) lower end
doubl e tabl e_conf_upper (double |evel, TABLE t) upper end

The following inspector functions retrieve information about the run length control associated with
atable:

Prototype: Functional Value:

|l ong tabl e _batch_size (TABLE t) current size of batch

| ong tabl e_batch_count (TABLE t) number of batches used

| ong tabl e converged (TABLE t) TRUE or FALSE

doubl e tabl e_conf_mean (TABLE t) mid point of conf. int.

doubl e tabl e_conf_accuracy (double |evel, TABLE t) accuracy achieved

Although most statistics are mathematically undefined if there is no data, the corresponding
inspector functions return avalue of zero if the table is empty.

The following inspector functions retrieve information about the histogram associated with atable.
Prototype: Functional value:
| ong tabl e_histogram num (TABLE t) number of buckets

doubl e tabl e_hi stogram | ow (TABLE t) smallest valuethat isnot
underflow

doubl e tabl e_hi stogram hi gh (TABLE t) largest valuethat is not
overflow

doubl e tabl e_hi stogram wi dt h (TABLE t) width of each bucket

| ong tabl e_hi st ogram bucket (TABLE t,long i) number of valuesin
bucket

| ong taabl e_hi stogram total (TABLE t) number of valuesin al
buckets

The number of buckets in a histogram does not include the underflow or overflow buckets. Bucket
number O is the underflow bucket; bucket number 1+table _histogram num() isthe overflow
bucket. If a histogram has not been specified for atable, the above inspector functions all return
zero values.

The inspector functions that retrieve information about the results of run-length control are
described in section 14.3.

Renaming a Table
The name of atable can be changed at any time using the set_name_table function.

Prototype: voi d set_nanme_table (TABLE t, char* new_nane)
Example: set _nane_table (t, "elapsed tine");

Only the first 80 characters of the table’ s name are stored.

Resetting a Table

Resetting a table causes all information maintained by the table to be reinitialized. All optional
features selected for the table (e.g., histogram, confidence intervals, moving window) remainin
effect and are also reinitialized.

Thereset function is usually used to reset all statistics gathering tools at once. A specific table can
be reset using the reset_table function.

Prototype: voi d reset _table (TABLE t)
Example: reset _table (t);

Although permanent tables are not reset by the reset function, they can be reset explicitly by calling
reset_table.

Deleting a Table

When atable is no longer needed, its storage can be reclaimed using the delete_table function.
Prototype: voi d del ete_tabl e (TABLE t)
Example: del ete_table (t);

Once atable has been deleted, it must not be further referenced. If enhancements (either histogram,
confidence intervals, or moving window) have been defined for atable, the each of these
enhancements is also deleted when the corresponding table is deleted.

Qtables

A gtableis used to gather statistics on an integer-valued function of time, such asthe length of a
gueue, the population of a subsystem, or the number of available resources. Every change in the
value of the function must be "noted" by calling a CSIM function. A gtable does not actually save
the functional values; it smply updates the statistics each time the value changes. (See section 10.6
for the only exception to thisrule.)

The statistics maintained by a gtable include the minimum, maximum, range, mean, variance,
standard deviation, and coefficient of variation. The number of changes in the functional valueis
maintained, aswell asthe initial and final values. Optional features for a gtable allow the creation
of ahistogram, the calculation of confidence intervals, and the computation of statistics for values
in amoving window.

First-time users of gtables should focus on the following three sections, which explain how to set up

gtables, note changes in their values, and produce reports. Subsequent sections describe the more
advanced features of gtables.

Declaring and Initializing a Qtable

A gtableis declared in aCSIM program using the built-in type QTABLE.

Example: QTABLE qt ;

Before agtable can be used, it must be initialized by calling the gtable function.

Prototype: QTABLE qt abl e (char* nane)

Example: gt = qgtable ("queue |ength");

The gtable name is used only to identify the gtable in the output reports. Up to 80 charactersin the
name will be stored by CSIM. A newly created gtable has an initial value of zero. To create agtable
with anon-zero initial value, call the note_state function (described below) immediately after
creating the gtable.

A gtable can be initialized as a permanent gtable using the permanent_qtable function.

Prototype: QTABLE per nanent _qt abl e (char* namne)

Example: gt = permanent -qtabl e ("queue |ength");

Noting a Changein Value

The most common way for the value of a gtable to change isfor it to increase or decrease by one.
Such a change would occur when a customer joins a queue or aresourceis alocated. The value of a
gtable isincreased by one using the note_entry function.

Prototype: voi d note_entry (QTABLE qt)

Example: note_entry (qt);

The value of a gtable is decreased by one using the note_exit function.

Prototype: voi d note_exit (QTABLE qt)

Example: note_exit (qt);

The value of a gtable can be changed to an arbitrary number using the note_value function.

Prototype: voi d note_val ue (QTABLE qgt, |ong val ue)

Example: note_val ue (qt, 12);

Producing Reports

Reports for gtables are most often produced by calling the report function, which prints reports for
all statistics gathering objects. A report can be generated for a specified gtable at any time by
calling the report_gtable function.

Prototype: voi d report_qgtabl e (QTABLE qt)

Example: report_gtable (qt);

Reports can be produced for all existing gtables by calling the report_gtables function.
Prototype: voi d report_qgtabl es (void)

Example: report _gtables ();

The report for a gtable will include the gtable name and all statistics, asillustrated below. If no time

has passed since the creation or reset of the gtable, a message to that effect is printed instead of the
statistics.

QTABLE 1: queue length

initial 0 m ni mum 0 mean 2.788416

final 4 maxi mum 14 vari ance 8. 529951

entries 966 range 14 st andard 2.920608
devi ati on

exits 962 coeff of 1.047408
variation

A summary report for al gtables can be generated by calling the gtable_summary function.
Prototype: voi d gt abl e_summary (voi d)
Example: gt abl e_summary ();

The report that is produced contains one line for each gtable and includes only a subset of the
statistics. If no time has passed, no statistics will appear in the last three columns.

QrABLE SUMVARY

st andar d

nane entries exits nean nmaxi num devi ati on

gueue |l ength 966 962 2.788416 14 2.920608

Histograms

A histogram can be specified for a gtable in order to obtain more detailed information about the
functional values. Depending on how the gtable is being used, its histogram might give the

distribution of the queue lengths, the subsystem population, or the number of available resources. A
histogram is specified for atable by calling the gtable_histogram function.

Prototype: voi d qt abl e_hi st ogram (QTABLE qt, |ong
nbucket, long mn, |ong max)

Example: gt abl e_hi stogram (qt, 11, 0, 10);

The number of bucketsin the histogram will be (no greater than) nbucket. The smallest value in the
first bucket will be min; the largest value in the last bucket will be max. All buckets will have the
same width, which will be rounded up to an integer if necessary. An underflow bucket and an
overflow bucket will automatically be created if needed to hold values less than min or greater than
max.

Caution: The min and max parameters of gtable_histogram are of type long, whereas the analogous
parameters of table histogram are of type double.

Usually, a histogram is specified for a gtable immediately after the gtable isinitialized. Additional
calls can be made to gtable_histogram to change the characteristics of the histogram, but only if the
gtable is empty.

A report for agtable having a histogram will include an additional section asillustrated below. For
each bucket in the histogram, the following information will be displayed: the smallest value the
bucket can hold, the total time the functional value was in the bucket, the proportion of time that the
functional value was in the bucket, the proportion of all functional valuesin the bucket and all
preceding buckets, and a bar whose length corresponds to the proportion of time the functional
value was in the bucket.

curmul ati ve
nunber total tine proportion proportion
0 248.74145 0.249003 0.249003

khkkkhkhkkhkkhkhkkhkhkhkhkkhkr*x

1 185. 45534 0. 185651 0. 434654
2 157. 13503 0. 157300 0. 591954
*kkhkkkkhkhkkkkhkkk*k

3 100. 01937 0. 100125 0. 692079 FHA KA xR
4 78. 14196 0. 078224 0. 770303 Rl
5 62. 59210 0. 062658 0. 832961 FHE KK
6 44. 38455 0. 044431 0.877392 ol
7 35. 33308 0. 035370 0.912762 i
8 25. 94494 0. 025972 0. 938735 *x
9 21. 48465 0. 021507 0. 960242 o

>= 10 39. 71625 0. 039758 1. 000000 ***

If leading or trailing buckets contain no values, the lines in the report for these buckets will not be
printed. This allows the histogram to be output as compactly as possible without losing any
information.

CSIM must save information for each bucket in a histogram. Consequently, the storage
requirements for a gtable that has a histogram are proportional to the number of buckets.

Confidence lntervals

CSIM can automatically compute confidence intervals for the mean value of any gtable. The
confidence interval calculations are enabled by calling the gtable_confidence function.

Prototype: voi d qt abl e_confidence (QTABLE qt)
Example: gt abl e_confi dence (qt);

If confidence intervals have been requested, the report for a gtable will include an additional
section, asillustrated below.

confidence intervals for the mean after 29600.000000 time units

| evel confidence interval rel
error

90 % 4.319412 +/- 0.491696 = [3.827715, 0. 128457
4.811108]

95 % 4.319412 +/- 0.588209 = [3.731203, 0. 157646
4,907621]

98 % 4.319412 +/- 0.701971 = [3.617441, 0. 194052
5.021382]

Section 14.1, "Confidence Intervals®, describes confidence intervalsin detail and explains how to
interpret the information in this report.

Moving Windows

By default, all changes to the value of a gtable are included in the statistics. If amoving window is
specified for aqtable, only the last n changes are used in computing the statistics, wherenis called
the window size. A moving window is specified for a gtable using the gtable_moving_window
function.

Prototype: voi d gt abl e_novi ng_wi ndow (QTABLE qt, |ong n)

Example: gt abl e_novi ng_wi ndow (qt, 1000);

Usually, a gtable’s moving window is specified immediately after the gtable isinitialized.
Additional calls can be made to gtable_moving_window to change the gtable’ swindow size. It isan
error to specify amoving window for a gtable that is not empty.

If agtable has awindow size of n, the last n changes noted for the gtable must be saved by CSIM.
Consequently, the storage requirements for a gtable having a moving window are proportional to its
window size.

Note: In an alternate implementation of moving windows, the window size would be specified as an
amount of time. The storage requirements of such an implementation would be non-constant and
potentially prohibitive.

| nspector Functions

All statistics maintained by a gtable can be retrieved during the execution of amodel or upon its
completion. The attributes of a gtable (i.e., its name and moving window size) can also be retrieved.

Prototype: Functional value:

char* qgtabl e_name (QTABLE qgt) pointer to name of gtable

| ong gt abl e_wi ndow_si ze (QTABLE qt) moving window size

|l ong gtable_entries (QTABLE qt) number of note entry’s

| ong qtable_exits (QTABLE qt) number of note exit’'s

|l ong gtable_min (QTABLE gt) minimum value

| ong qtabl e_max (QTABLE qgt) maximum value

long qtable_initial (QTABLE qt) initia value

| ong qtable current (QTABLE qt) current value

doubl e gt abl e_sum (QTABLE qgt) sum of values weighted by time
doubl e gt abl e_sum square (QTABLE qt) sum of squared weighted
doubl e gtabl e_nean (QTABLE qt) mean value

| ong gt abl e_range (QTABLE qt) rangeof values

doubl e gtabl e_var (QTABLE qt) Vvariance of values

doubl e gtabl e_stddev (QTABLE qt) standard deviation of values
doubl e gtabl e_cv (QTABLE qt) coefficient of variation of values

The following inspector functions retrieve information about the confidence interval associated
with atable:

Prototype: Functional Value:
doubl e gtabl e_conf_hal fwidth (double level, QTABLE qt) hafwidth
doubl e gtabl e_conf | ower (double |evel, QTABLE qt) lower end

doubl e gt abl e_conf_upper (double |evel, QTABLE gt) upper end

The following inspector functions retrieve information about the run length control associated with
atable:

Prototype: Functional Value:

| ong qtabl e_batch_size (QTABLE qt) current size of batch

| ong gt abl e_batch_count (QTABLE qgt) number of batches used
doubl e gtabl e_conf_nmean (QTABLE qgt) mid point of conf. int.

| ong gt abl e_converged (QTABLE qt) TRUE or FALSE

doubl e gtabl e_conf_aaccuracy (double |evel, QTABLE gt)accuracy
achieved

Many statistics are mathematically undefined if zero time has passed since the creation or reset of a
gtable. The corresponding inspector functions return a value of zero in this case.

The following inspector functions retrieve information about the histogram associated with a gtable.
Prototype: Functional value:
| ong qtabl e_hi st ogram num (QTABLE qt) number of buckets

doubl e gtabl e_hi stogram | ow (QTABLE qt) smallest valuethat is
not underflow

doubl e gt abl e_hi st ogram hi gh (QTABLE qt) largest value that is not
overflow

doubl e gt abl e_hi st ogram wi dt h(QTABLE qt) width of each bucket

| ong qt abl e_hi st ogr am bucket (QTABLE qt,|ong i) total timevaueisin
bucket

The number of bucketsin a histogram does not include the underflow or overflow buckets. Bucket
number O is the underflow bucket; bucket number 1+gtable_histogram num() isthe overflow
bucket. If a histogram has not been specified for a gtable, the above inspector functions all return
zero values.

The inspector functions that retrieve information about the results of run-length control are
described in section 14.3, "Run Length Control".

Renaming a Qtable
The name of a gtable can be changed at any time using the set_name_qtable function.

Prototype: voi d set_nane_qtabl e (QTABLE qt, char
*new_nane)

Example: set _nanme_gtable (qt, "number in queue");

Only the first 80 characters of the gtable' s name are stored.

Resetting a Qtable

Resetting a gtable causes all information maintained by the gtable to be reinitialized, except that the
current value is saved for use in computing future values. All optional features selected for the
gtable (e.g., histogram, confidence intervals, moving window) remain in effect and are also
reinitialized.

Thereset function is usually used to reset al statistics gathering tools at once. A specific gtable can
be reset using the reset_gtable function.

Prototype: voi d reset _qtabl e (QTABLE qt)
Example: reset _qtable (qt);

Although permanent gtables are not reset by the reset function, they can be reset explicitly by
calling reset_qtable.

Deleting a Qtable

When a gtable is no longer needed, its storage can be reclaimed using the delete_gtable function.
Prototype: voi d del ete_gtabl e (QTABLE qt)

Example: del ete_gtable (qt);

Once a qtable has been deleted, it must not be further referenced.

Meters

A meter is used to gather statistics on the flow of entities such as customers or resources past a
specific point in amodel. Meters can be used to measure arrival rates, completion rates, and
allocation rates. A meter can be thought of as a probe that isinserted at some point in amodel.

While a meter primarily measures the rate at which entities flow past it, a meter also keeps statistics
on the times between passages. These interpassage times are recorded in atable, whichisan
integral part of every meter.

First-time users of meters should focus on the following three sections, which explain how to set up

meters, update meters, and produce reports. Subsequent sections describe the more advanced
features of meters.

Declaring and Initializing a M eter

A meter isdeclared in a CSIM program using the built-in type METER.

Example: METER m
Before ameter can be used, it must be initialized by calling the meter function.
Prototype: METER neter (char* name)

Example: m = meter ("system conpl etions");

The meter name is used only to identify the meter in the output reports. Up to 80 charactersin the
name will be stored by CSIM.

| nstrumenting a M odel

An entity notes its passage by a meter using the note_passage function.
Prototype: voi d note_passage (METER n)

Example: not e_passage (m;

For the statistics to be accurate, every entity of interest must note its passage and do so at the
correct time.

Producing Reports

Reports for meters are most often produced by calling the report function, which prints reports for
all statistics gathering objects. A report can be generated for a specified meter at any time by calling
the report_meter function.

Prototype: voi d report_neter (METER m)

Example: report _nmeter (m;

Reports can be produced for all existing meters by calling the report_meters function.

Prototype: voi d report_neters (void)

Example: report _neters ();

The report for ameter, asillustrated below, will include the meter name, the number of passages,

the passage rate, and statistics on the interpassage times. If no time has elapsed, a message to that
effect is printed instead of the statistics.

METER 2: System conpl eti ons

count 494 rate 0. 988000

i nterpassage tinme statistics

ni ni mum 0. 001258 nmean 1. 008764

maxi mum 6. 533026 vari ance 0. 994894

range 6.531768 st andard 0.997444
devi ation

observati ons 494 coefficient of 0.988778
var

A summary report for al meters can be generated by calling the meter_summary function.
Prototype: voi d neter_summary (voi d)
Example: met er _summary ();

The report that is produced contains one line for each meter and includes only a subset of the
statistics. If no time has passed, undefined statistics will be omitted.

METER SUMMARY

name passage rate nmean ip max ip
S tine tine

System 501 1. 002000 0. 997048 6.679665

arrivals

System 494 0. 988000 1.008764 6.533026

conpl eti ons

Histograms

A histogram can be specified for the interpassage times of a meter. Thisis accomplished using the
meter _histogram function.

Prototype: voi d net er _hi stogram (METER m | ong nbucket,
doubl e mi n, doubl e nax)

Example: met er _hi stogram (m 10, 0.0, 10.0);

The histogram for a meter is exactly the same as the histogram for a table. See section 9.4,
"Histograms", for details.

Confidence lntervals

CSIM can automatically compute confidence intervals for the mean interpassage time at a meter.
The confidence interval calculations are enabled by calling the meter _confidence function.

Prototype: voi d neter_confi dence (METER m)
Example: met er _confi dence (m;

The confidence intervals for ameter are the same as the confidence intervals for atable. See section
9.5, "Confidence Intervals', for details.

Moving Windows

Moving windows are not supported by meters.

| nspector Functions

All statistics maintained by a meter can be retrieved during the execution of amodel or upon its
completion. The name of ameter can also be retrieved.

Prototype: Functional value:

char* neter_name (METER n) pointer to name of meter

doubl e meter_start_tinme (METER m) time at which recording began
| ong meter_cnt (METER m) number of passages noted

doubl e meter_rate (METER n) rate of passages

TABLE neter_i p_table (METER m) pointer to interpassage time
table

Although the passage rate is mathematically undefined if no time has passed, the meter_rate
function returns the value zero in this case.

The pointer to a meter’ s interpassage time table can be passed to the inspector functions for atable
in order to obtain interpassage time statistics.

Example: max_ip_time = table_max (meter_ip_table(m);

If no passages have occurred, the interpassage time table is empty. The interpassage time
contributed by the first passage is the time from the beginning of the observation period to that first

passage.

Renaming a M eter
The name of a meter can be changed at any time using the set_name_meter function.

Prototype: voi d set_nanme_neter (METER m char *new_nane)
Example: set _nanme_meter (m "system departures");

Only the first 80 characters of the meter’ s name are stored.

Resetting a M eter

Resetting a meter causes all information maintained by the meter to be reinitialized, except that the
time of the last passage is saved for use in computing the next interpassage time. All optional
features selected for the meter (e.g., histogram, confidence intervals, moving window) remainin
effect and are also reinitialized.

Thereset function is usually used to reset al statistics gathering tools at once. A specific meter can
be reset using the reset_meter function.

Prototype: voi d reset _neter (METER m)

Example: reset _neter (m;

Deleting a Meter

When ameter is no longer needed, its storage can be reclaimed using the delete_meter function.
Prototype: voi d del ete_nmeter (METER m)
Example: del ete_neter (m;

Once a meter has been deleted, it must not be further referenced.

Boxes

A box conceptually encloses part or all of amodel. The box gathers statistics on the number of
entities in the box (i.e., the population) and the amount of time entities spend in the box (i.e., the
elapsed time). An entity might be a customer, a message, or aresource. Boxes are usually used to
gather statistics on queue lengths, response times, and popul ations. Instrumenting a model involves
inserting function calls at the places that entities enter and exit the box.

A table and a gtable are invisible but integral parts of every box. Statistics on the elapsed times are
kept in the table, statistics on the population are kept in the gtable.

First-time users of boxes should focus on the following three sections, which explain how to set up
boxes, instrument a model, and produce reports. Subsequent sections describe the more advanced

features of boxes.

Declaring and Initializing a Box

A box isdeclared in a CSIM program using the built-in type BOX.

Example: BOX b;

Before a box can be used, it must be initialized by calling the box function.

Prototype: BOX box (char* nane)

Example: b = box ("systent);

The box name is used only to identify the box in the output reports. Up to 80 charactersin the name
will be stored by CSIM. A newly created box is aways empty. To create a non-empty box, call the
enter_box function (described in the following section) the appropriate number of times
immediately after creating the box.

A box can be initialized as a permanent box using the permanent_box function.

Prototype: BOX per manent _box (char* name)

Example: b = permanent _box ("systent);

The information in a permanent box is not cleared when the reset function is called, and a
permanent box is not deleted when rerunis caled. In all other ways, a permanent box is exactly

like abox. Asageneral rule, do not make a box permanent unless you have a specific reason for
doing so.

| nstrumenting a M odel

An entity enters abox by calling the enter_box function.

Prototype: doubl e enter_box (BOX b)

Example: ti mestanp = enter_box (b);

This function returns a timestamp that must be saved by the entity that entered the box. The entity
exits the box by calling the exit_box function and passing to it the timestamp that it received upon
entry.

Prototype: voi d exit_box (BOX b, double entry_tine)

Example: exit _box (b, tinestanp);

It isthe responsibility of the programmer to ensure that the integrity of the timestamp is maintained
while the entity isin the box. Because boxes may be nested or may overlap, it is advisable to make

the timestamp local to the CSIM process and to use a separate timestamp variable for each box. An
invalid timestamp (i.e. ., one that is less than zero or greater than the current time) will cause an

error.

Producing Reports

Reports for boxes are most often produced by calling the report function, which prints reports for
all statistics gathering objects. A report can be generated for a specified box at any time by calling
the report_box function.

Prototype: voi d report_box (BOX b)

Example: report _box (b);

Reports can be produced for all existing boxes by calling the report_boxes function.
Prototype: voi d report_boxes (voi d)

Example: report_boxes ();

The report for abox, asillustrated below, will include the box name, statistics on the elapsed times,
and statistics on the population of the box. If the box is empty or no time has passed since its
creation or reset, messages to that effect are printed instead of the statistics. Note that statistics on

the elapsed times reflect only those entities that have exited the box. Entities still in the box when
the report is produced contribute to the population statistics but not to the elapsed time statistics.

BOX 1: Queue statistics

statistics on elapsed times

m ni num 0. 009880 nmean 2. 088345

maxi mum 7.943915 vari ance 3.211423

range 7.934035 standard 1.792044
devi ati on

observati on 494 coefficient of 0. 858117

S var

statistics on population

initial 0 m ni num 0 nmean

final 7 maxi num 10 vari ance

entries 501 range 10 standard devi ation

exits 494 coeff of variation

A summary report for al boxes can be generated by calling the box_summary function.
Prototype: voi d box_summary (voi d)

Example: box_summary ();

The report that is produced contains one line for each box and includes only a subset of the
statistics. If abox isempty or no time has passed since its creation or reset, some statistics will not

appear.

BOX SUMVARY

nean maxi mum nean maxi mum
nane el apsed-time el apsed-time popul ati on popul ati on
Queue 2.088345 7.943915 2. 093697 10
statistic
Histograms

A histogram can be specified for the elapsed timesin abox and for the population of a box using
the following functions.

Prototype: voi d box_ti me_hi stogram (BOX b, |ong nbucket,
doubl e mi n, doubl e max)

Example: box_ti me_hi stogram (b, 10, 0.0, 10.0);

Prototype: voi d box_nunber _hi stogram (BOX b, |ong
nbucket, long min, |ong max)

Example: box_nunber _hi stogram (b, 10, 0, 10);

The histogram for the elapsed times is the same as the histogram for atable. See section 9.4,
"Histograms", for details. The histogram for the population of a box is the same as the histogram
for aqgtable. See section 10.4, "Histograms", for details.

Caution: The min and max parameters of box_time_histogram are of type double, whereas the
corresponding parameters of box_number _histogram are of type long.

Confidencelntervals

Confidence intervals can be requested for the mean of the elapsed timesin a box and for the mean
population of a box using the following functions.

Prototype: voi d box_time_confi dence (BOX b)
Example: box_ti me_confidence (b);
Prototype: voi d box_nunber _confi dence (BOX b)

Example: box_nunber _confi dence (b);

These two types of confidence intervals are identical to the confidence intervals for atable and
gtable, respectively. See sections 9.5, "Confidence Intervals', and 10.5, "Confidence Intervals’, for
details.

Moving Windows

Moving windows can be specified for the elapsed timesin abox and for the population of abox
using the following functions.

Prototype: voi d box_ti me_novi ng_w ndow (BOX b, |ong n)
Example: box_t i me_novi ng_wi ndow (b, 1000);
Prototype: voi d box_nunber _novi ng_wi ndow (BOX b, |ong n)

Example: box_nunber _movi ng_wi ndow (b, 1000);

The window for the elapsed times specifies the number of entities whose elapsed times will be
included in the statistics. The window for the population specifies the number of changesin the
population that will be included in the statistics. Consequently, the simulation time covered by
these two windows may not be the same.

| nspector Functions

All statistics maintained by abox can be retrieved during the execution of amodel or upon its
completion. The name of abox can also be retrieved.

Prototype: Functional value:

char* box_nane (BOX b) pointer to name of box

TABLE box_time_table (BOX b) pointer to elapsed timetable
QTABLE box_number _qt abl e (BOX b) pointer to population gtable

The pointer to abox’s elapsed time table can be passed to the inspector functions for atablein
order to obtain statistics on the times that entities have spent in the box.

Example: max_ti me_i n_box = tabl e_max
(box_tine_table(b));

If no entities have exited the box, the table will be empty and zeros will be returned for the
undefined statistics.

The pointer to abox’s population gtable can be passed to the inspector functions for aqgtablein
order to obtain statistics on the population.

Example: max_popul ati on = gt abl e_max
(box_nunber _qt abl e(b));

If no time has passed, zero values will be returned for the undefined statistics.

Renaming a Box
The name of a box can be changed at any time using the set_name_box function.

Prototype: voi d set_nanme_box (BOX b, char *new_name)
Example: set _name_box (b, "systent);

Only the first 80 characters of the box’s name are stored.

Resetting a Box

Resetting a box causes all information maintained by the box to be reinitialized, except that the
number currently present in the box is saved for use in computing future populations. All optional
features selected for the box (e.g., histogram, confidence intervals, moving window) remainin
effect and are also reinitialized.

Thereset function is usually used to reset all statistics gathering tools at once. A specific box can be
reset using the reset_box function.

Prototype: voi d reset _box (BOX b)
Example: reset _box (b);

Although permanent boxes are not reset by the reset function, they can be reset explicitly by calling
reset_box.

Deleting a Box

When a box is no longer needed, its storage can be reclaimed using the delete_box function.
Prototype: voi d del et e_box (BOX b)
Example: del et e_box (b);

Once a box has been deleted, it must not be further referenced.

Advanced Statistics Gathering

Example: Instrumenting a Facility
For each facility, CSIM automatically gathers and reports the following statistics:
mean service time mean queue length

utilization mean response time

throughput number of completions

Meters and boxes can easily be used to gather more detailed statistics. The following statements
show the declaration of the needed variables:

FACI LI TY f;
METER arrival s;
METER depart ures;
BOX queue_box;
BOX servi ce_box;

The following statements, which would appear in the sim function, show the initialization of the
variables:

f = facility ("center");

arrivals = meter ("arrivals");
departures = neter ("conpletions");
gueue_box = box ("queue");

servi ce_box = box ("in service");
The following code shows the instrumentation of the facility:
cust omer ()

{

doubl e ti mestanpl;

doubl e ti mest anmp2;

create ("custoner");

not e_passage (arrivals);

ti mestanpl = enter_box (queue_box);
reserve (f);

ti mestanp2 = enter_box (service_box);
hol d (exponential (0.8));

rel ease (f);

exit_box (service_box, tinestanp2);
exit_box (queue_box, tinestanpl);
not e_passage (departures);

termnate ();

}

The report for box "queue_box" would give statistics on response times (under the heading
"statistics on elapsed times") and queue lengths (under the heading " statistics on population”). The
report for box "service_box " would give statistics on service times (under the heading "statistics on
elapsed times") and utilization (under the heading "statistics on population™). The report for meter
"arrivals' would give statistics on the arrival rate and inter-arrival times. The report for meter
"departures’ would give statistics on the completion rate and inter-compl etion times. If the arrival
and completion rates were sufficiently similar, this quantity would be called the throughput.

Obvioudly, histograms could be added to any of these meters and boxes to obtain information on
the various distributions.

The Report Function

Although reports can be produced at any time for individual statistics gathering tools, it is most
common to generate reports for all tools at the same time, usually when the ssimulation has
converged. This can be done by calling the report function.

Prototype: voi d report (void)

Example: report ();

The report function produces reports for all facilities, storages, and classes, followed by reports for

all tables, gtables, meters, and boxes. The sequence of reports begins with a header that includes the
model name, the date and time, the current simulation time, and the cpu time used.

Resetting Statistics

CSIM provides asingle function that will clear all accumulated statistics without affecting the state
of the system being modeled in any way. Thisreset function is most often used when warming up a
simulation. The simulation is begun with the system in an empty state, smply as a matter of
convenience. A small number of customersis allowed to pass through the system, hopefully taking
the system closer to its equilibrium state. Then, the statistics are reset and the simulation is run until
convergence is achieved.

The reset function has a simple interface.
Prototype: voi d reset (void)

Example: reset ();

Reset clears the statistics that are automatically gathered for facilities, storages, events, and process
classes. It also resets the statistics in al non-permanent tables, gtables, meters, and boxes being
used in the program. Permanent tables are not affected by calling reset.

In general, resetting statistics returns all the statistical counters and timers maintained by CSIM to
their initial values, which are usually zero. But, there are afew subtle and important exceptionsto
thisrule. When a qtable is reset, it remembers the current value for use in computing future values
from the relative changes specified by note_entry and note_exit. When ameter isreset, it
remembers the time of the last passage for use in computing the next interpassage time. When a box
isreset, it remembers the number present for use in computing future populations.

Calling reset in no way changes the state of the system being modeled. It does not change the
simulation clock; it does not affect the streams of random numbers being used in the simulation;
and it does not affect the states of processes, facilities, storages, events, and mailboxes. The reset
function is normally called during a simulation run, whereas the rerun function (see section 19.4.1,
"To rerun aCSIM model") is called between successive runs.

Confidence Intervalsand Run Length Control

Most ssimulations are designed so they converge to what might be called the "true solution” of the
model. But, because a simulation can only be run for afinite amount of time, this true solution can
never be known. This gives rise to two important questions: What is the accuracy in the results of a
simulation’ s output? How long should a simulation be run in order to obtain a given accuracy?
These questions can be answered using confidence intervals and run-length control agorithms.

Using an ad hoc technique instead of the methods described in this section can be dangerous as well
as wasteful. Running a simulation for too short an amount of time will result in performance
statistics that are highly inaccurate. Running a simulation for an unnecessarily long amount of time
wastes computing resources and delays the completion of the simulation study. Without some type
of formal analysis, the errorsin simulation results cannot be quantified.

Confidence lntervals

A confidence interval isarange of valuesin which the true answer is believed to lie with a high
probability. The interval can be specified in two equivalent ways, either by specifying the midpoint
of theinterval (which could be considered the "best guess” for the true answer) and the half-width
of the interval, or by specifying the lower and upper bounds of the interval. CSIM reports the
confidence interval in both formats, asillustrated below:

4.114119 +/- 0.296434 = [3.817684, 4.410553]

The probability that the true answer lies within the interval is called the confidence level. Since a
confidence level of 100% would result in an infinitely wide confidence interval, confidence levels
from 90% to 99% are most often used. Be aware that there is aways a small probability (dictated
by the confidence level) that the true answer lies outside the confidence interval.

Confidence intervals can be automatically generated for the mean values in any table, gtable, meter,
or box simply by calling one of the following functions immediately after the statistics object has
been initialized.

Prototype: voi d tabl e_confidence (TABLE t)

Prototype: voi d qt abl e_confi dence (QTABLE qt)

Prototype: voi d neter_confi dence (METER m)

Prototype: voi d box_ti me_confi dence (BOX b)

Prototype: voi d box_nunber _confi dence (BOX b)

The technique used to calculate confidence intervalsis called batch means analysis. It is beyond the
scope of this manual to describe the mathematics underlying this technigque, but any good

simulation text should provide details.

If confidence intervals have been requested for atable, gtable, meter, or box, the statistics report
will include a section like the following.

confidence intervals for the mean after 50000 observations
level confidenceinterval rel. error

90 % 4.114119 +/- 0.296434 = [3.817684, 4.410553] 0.077648
95 9% 4.114119 +/- 0.354041 = [3.760078, 4.468159] 0.078837

98 % 4.114119 +/- 0.421555 = [3.692563, 4.535674] 0.080279

Notice that confidence intervals are calculated for three commonly used confidence levels: 90%,
95%, and 98%. The confidence intervals are reported in both of the formats described previoudly.
The relative error measures the accuracy in the midpoint of the interval as an estimate of the true
answer. It is defined to be the half-width divided by the lower bound of the interval. Like any
relative error, its value suggests how many accurate digits there are in the estimate.

The algorithm for computing confidence intervals groups the observations into fixed size batches
and uses only compl ete batches. For this reason, the number of observations used in the calculation
of the confidence intervals may be dlightly less than the number of observations used in computing
the other performance statistics. For example, in the above report 50,000 observations were used to
calculate the confidence intervals. The part of the report not shown may give the mean, variance,
standard deviation, etc. based on 50,472 observations.

The algorithm also requires a minimum number of observations for its resultsto be valid. This
minimum number cannot be known before running the simulation because it depends on the
amount of correlation found in the statistic. If areport is produced before sufficient observations
have been obtained, the message

> insufficient observations to conpute confidence intervals

will appear in place of the confidence intervals. To obtain confidence intervals, run the simulation

longer or use the run length control algorithm.

| nspector Functions

All values calculated by the confidence interval algorithm can be retrieved during the execution of a
model or upon its completion.

Prototype: Functional value:
| ong tabl e _batch_size (TABLE t) sSizeof batch
| ong tabl e _batch_count (TABLE t) number of batches

doubl e tabl e_conf_mean (TABLE t) midpoint of interval

doubl e tabl e_conf_hal fwidth (TABLE t, double conf_|evel)
half-width of interval

doubl e tabl e _conf | ower (TABLE t, double conf_I|evel)
lower bound of interval

doubl e tabl e_conf_upper (TABLE t, double conf_Ievel)
upper bound of interval

doubl e tabl e_conf_accuracy (TABLE t, double conf_Ievel)
accuracy achieved

Prototype: Functional value:
| ong qtabl e _batch_size (QTABLE qt) Size of batch
| ong qt abl e_batch_count (QTABLE qt) number of batches

doubl e gt abl e_conf_nean (QTABLE qt) midpoint of interval

doubl e gtabl e_conf_hal fwi dth (QTrABLE qt, double conf_|evel)
half-width of interval

doubl e qtabl e _conf | ower (QTABLE qt, double conf_Ievel)
lower bound of interval

doubl e gtabl e_conf _upper (QTABLE qt, double conf_Ievel)
upper bound of interval

doubl e gtabl e _conf _accuracy (QTABLE qt, double conf _|evel)
accuracy achieved

The conf_level parameter specifies the desired confidence level and should be a value between 0.0
and 1.0

If confidence intervals have not been requested or if there have not been sufficient observations to
calculate confidence intervals, all of the above functions return zero values.

To inspect confidence interval information for meters and boxes, pass to the appropriate function
listed above a pointer returned by one of the following functions. meter_ip_table, box_time_table,
or box_number_qtable.

Run Length Control

If the reported confidence intervals show that the needed accuracy has not been achieved, a
simulation could be run again for alonger amount of time. This has two disadvantages. repeating
part of the simulation is wasteful, and it may not be clear how much longer to run the simulation the
second time.

A better method is to use the run length control algorithm that is built into CSIM. This algorithm
monitors the confidence interval as it narrows and automatically terminates the simulation when the
desired accuracy has been achieved.

To use run length control, choose a performance measure that will be used to decide when the
simulation should terminate. Instrument the model to gather statistics on this performance measure
using atable, gtable, meter, or box. Immediately after the statistics gathering object has been
initialized, call the appropriate function below.

Prototype: voi d tabl e_run_l ength (TABLE t, doubl e accuracy,
doubl e conf | evel, double max_tinme)

Example: table_run_length (t, 0.01, 0.95, 10000.0);

Prototype: voi d qtabl e_run_l ength (QTABLE qt, double
accuracy, double conf_|evel, double max_tinme)

Prototype: voi d neter_run_l ength (METER m doubl e accuracy, double conf_| evel
doubl e nax_tine)

Prototype: voi d box_tinme_run_|l ength (BOX b, double
accuracy, double conf_|evel, double max_time)

Prototype: voi d box_nunber _run_l ength (BOX b, double
accuracy, double conf_|evel, double max_tinme)

The accuracy parameter specifies the maximum relative error that will be allowed in the mean value
of this performance measure. A value of 0.1 is usually used to request one digit of accuracy, 0.01is
used to request two digits of accuracy, and so forth. The conf_level parameter is the confidence
level and usually has a value between 0.90 and 0.99. The max_time parameter places an upper
bound on how long the simulation will run. If the specified accuracy cannot be achieved within this
time, the simulation will terminate and a warning message will appear in the report.

In the main CSIM process, place the following call to the wait function.
wai t (converged);
"Converged" is abuilt-in event that does not need to be declared or initialized. Thisevent is set

when the run length control algorithm determines that the requested accuracy has been achieved or
when the maximum time has passed.

If run length control has been enabled, the statistics report will include a section like the following.

results of run length control using confidence intervals
cpu time limit 10.0 accuracy requested 0.005000
cpu time used 1.8 accuracy achieved 0.005000

95.0% confidence interval: 0.998735 +/- 0.004969 = [0.993767, 1.003704]

The confidence interval is reported in both formats for the confidence level that was specified. If
the requested accuracy was not achieved or if there were not enough observations to calculate
confidence intervals, awarning message will appear in the report.

The mechanics for running a simulation until multiple performance measures have been obtained to
desired accuracy are smple. Call the appropriate run length function for several statistics gathering
objects and then wait on the "converged" event as many times as there are statistics to converge.
However, there are some subtleties in the theory underlying this procedure. Personsinterested in
this topic should read section 9.7 of Smulation Modeling and Analysis by Law and Kelton.

Caveats

Confidence intervals attempt to bound the errors in performance statistics caused by running a
simulation for afinite amount of time. They in no way measure the errors caused by the model
being an unfaithful representation of the actual system.

All known techniques for computing confidence intervals are heuristics. Detecting and removing
correlation from performance data is a mathematically difficult problem. Confidence intervals
should always be considered to be estimates.

In spite of these limitations, it is our belief that confidence intervals and run length control play an
essential role in any simulation study. Simply running a simulation for a"long time" and hoping
that the performance measures will be highly accurate is an unprofessional and dangerous
approach.

Process Classes

Process classes are used to segregate data for reporting purposes A set of usage statisticsis
automatically maintained for each process class. These are "printed” whenever areport or a
report_classes statement is executed. In addition, facility information (from report_facilities) is
kept by process class, when process classes exist. See section 17.2, "CSIM Report Output”, for
details about the reports that are generated.

Declaring and Initializing Process Classes

To declare a process class:
Example: CLASS c;

A process class must be initialized viathe process_class statement before it can be used in any
other statement.

Prototype: CLASS process_cl ass (char* nane)
Example: ¢ = process_class ("low priority");
Using Process Classes

To have the executing process join a process class:
Prototype: voi d set_process_cl ass (CLASS c)
Example: set _process_cl ass (c);

Prototype: CLASS current _cl ass (voi d)
Example: ¢ = current_class ();

If no set_process class statement is executed for a process, that process is automatically a member
of the "default” class. A report statement will not print process class statistics for the default
process class. A report_classes statement will print process class statistics for the default process
class, but ONLY if it isthe only process class. If any other process classis defined, report_classes
will only report on non-default process classes.

Producing Reports

Reports for process classes are most often produced by calling the report function, which prints
reports for al of the CSIM objects. Reports can be produced for all existing process classes by
calling the report_classes function. The report for a process class gives the class id, the class name,
the number of entriesinto the class, the average lifetime for a process in this class, the average
number of hold operations executed by jobs in this class, the average time per hold and the average
walit time per job in this class.

PROCESS CLASS SUMMARY

id name number lifetime hold count hold time wait time

0 default 493 4.05680 0.99594 4.05680 0.00000

1 low priority 293 229.66986 0.54266 2.27873 227. 39113

2 high priority 198 2.18412 1.00000 1.67845 0.50567

To Change the Name of a Process Class:

Prototype: voi d set_nanme_process_cl ass (CLASS c, char
*new_nane)

Example: set _nane_process_class (c, "high priority");
Deleting Process Classes

To delete a process class:

Prototype: voi d del ete_process_cl ass (CLASS c)
Example: del et e_process_class (c);

If afacility is collecting statistics for the deleted class, this collection will continue.

| nspector Functions

These functions each return a statistic which describes some aspect of the usage of the specified
process class. The type of the returned value for each of these functionsis as indicated.

Prototype: Functional Value:
long class_id (CLASS c) id of process class
char* class_name (CLASS c) pointer to name of process class

|l ong class_cnt (CLASS c¢) number of processesin process
class

doubl e class_lifetime (CLASS c) tota timefor al processesin
process class

| ong cl ass_hol dcnt (CLASS c) total number of holdsfor all
processes in process class

doubl e cl ass_hol dtime (CLASS c) total hold time for all processes
in process class

Random Numbers

Most simulations are random number driven. In such simulations, random numbers are used for
interarrival times, service times, allocation amounts, and routing probabilities. For each application
of random numbersin asimulation, a distribution must be chosen. The distribution determines the

likelihood of different values occurring. A distribution is uniquely specified by the name of its
family (such as uniform, exponential, or normal) and its parameter values (such as the mean and
standard deviation). Discussions of distributions and their usesin models can be found in texts such
as Smulation Modeling and Analysis, Second Edition by Law and Kelton (McGraw-Hill, 1991).

Random numbers generated by computers are actually pseudo-random . A sequence of valuesis
generated using a recurrence relation that calcul ates the next value in the sequence from the
previous value. The sequence is begun by specifying a starting value called a seed. A good random
number generator has the property that the numbers it produces have no discernible patterns that
distinguish them from truly random numbers.

Most CSIM users need only read the following two sections, which describe single stream random
number generation. Those interested in building multiple-stream simulations should read the
remaining sections as well.

Single Stream Random Number Generation

CSIM includes alibrary of functions for generating random numbers from 18 different
distributions. Continuous distributions have values that are floating-point numbers; values from
these distributions are most often used for amounts of time. Discrete distributions have values that
are integers; values from these distributions are often used for quantities of resources.

The following prototypes are for the functions that generate values from continuous distributions.
The parameters min and max specify the minimum and maximum values that will be generated. The
parameters mean, var, stddev, and mode specify respectively the mean, variance, standard

deviation, and mode of the distribution. The parameters shapel , shape2, shape, alpha, and beta are
all shape parameters whose meaning can be found in any text that describes these distributions.

Prototype: doubl e uni form (doubl e min, double max)

Prototype: doubl e triangul ar (doubl e nmin, double max,
doubl e node)

Prototype: doubl e beta (double min, double max, double
shapel, doubl e shape2)

Prototype: doubl e exponential (double nean)

Prototype: doubl e gamma (doubl e nean, doubl e stddev)
Prototype: doubl e erl ang (doubl e nmean, double var)
Prototype: doubl e hyperx (doubl e nean, double var)
Prototype: doubl e wei bul | (doubl e shape, doubl e scale)
Prototype: doubl e nornal (doubl e nmean, doubl e stddev)
Prototype: doubl e | ognornal (doubl e nmean, doubl e stddev)

Prototype: doubl e cauchy (doubl e al pha, double beta)

The following prototypes are for the functions that generate values from discrete distributions. The
parameters min and max specify the minimum and maximum values that will be generated. The
parameter mean specifies the mean of the distribution. The parameters prob_success, num trials,
and success_num are respectively the probability of success, the number of trials, and the success
number. A text that describes theses distributions should be consulted for the detailed meaning of
these parameters.

Prototype: | ong random.int (long min, |ong max)
Prototype: | ong bernoulii (doubl e prob_success)

Prototype: | ong binoni al (doubl e prob_success, |ong
numtrials)

Prototype: | ong geonetric (doubl e prob_success)

Prototype: | ong negative_binonial (long success_num
doubl e prob_success)

Prototype: | ong poi sson (doubl e nmean)
Two functions must be used to efficiently generate values from an empirical distribution.
Their prototypes are shown below.

Prototype: void setup_enpirical (long n, double prob[],
doubl e cutoff[], long alias[])

Prototype: doubl e enpirical (long n, double cutoff[],
long alias[], double value[])

The setup_empirical function must be called once, prior to any calls to function empirical. It takes
as input the number of values, n, in the distribution and an array, prob, that specifies the probability
of generating each value. It calculates two sets of values and stores them in the arrays cutoff and
alias. The contents of these arrays need not be understood to use this distribution. All arrays must
be of size at least n+1. Function empirical is called to generate a value from an empirical
distribution that has already been set-up. The function takes as input the same parameters n, cut-off,
and alias as the setup_empirical function. It also takes an array, value, that contains the values to be
generated with the probabilities that were specified in array prob. Each call returns one of the
valuesin the array value.

Changing the Seed of the Single Stream

By default, the single stream from which all random numbers are generated is seeded with the value
of 1. Unless the seed is changed, every execution of every CSIM program will use the same
sequence of random numbers. The seed can be changed by calling the reseed function.

Prototype: voi d reseed (STREAM s, |ong n)

Example: reseed (NIL, 13579);

In simulations that use a single random number stream, the value of the first parameter in the
function call should always be NIL. The second parameter is the positive integer that is to be used
as the seed. The choice of the seed value will not affect the randomness of the numbers that are
produced. Although it is most common to call reseed once at the beginning of a CSIM program, the
reseed function can be called any number of times and from any place within a program.

The current state of the stream can be retrieved by calling the stream_state function.

Prototype: | ong stream state (STREAM s)

Example:i = streamstate (NIL);

If stream_stateis called immediately after reseeding the stream, the seed value will be returned.

Otherwise, the positive integer used to produce the most recently generated random number will be
returned.

Single Versus M ultiple Streams

In asingle stream simulation, all random numbers are produced from a single stream of
pseudo-random integers. The random numbers used for a particular purpose (for example,
interarrival times) are generated from a subsequence of these random integers. It is of concern to
some people that the subsequence of integers may not be "as random" as the stream from which
they were extracted. This concern can be alleviated by using a separate stream of pseudo-random
integers for each application of random numbersin the model. So, separate streams would be used
for the service times at each facility, for the allocation amounts of each storage, and so forth.

Multiple streams are also used to guarantee that exactly the same sequence of random numbersis
used for the interarrival times (for example) in two different models. Thistechniqueis called
common random numbers and is described in simulation texts.

Thereisvirtually no difference in the time required to generate random number from a single
stream or from multiple streams. Multiple stream simulations require slightly more programming:

the multiple streams must be declared, initialized, and (perhaps) seeded, and each call to afunction
that generates random numbers must specify the stream to be used.

Managing M ultiple Streams

A stream isdeclared in a CSIM program using the built-in type STREAM.

Example: STREAM s;

Before a stream can be used, it must beinitialized by calling the create_stream function.
Prototype: STREAM creat e_stream (voi d)

Example: s = create_stream ();

By default, streams are created with seeds that are spaced 100,000 values apart. CSIM contains a
table of 100 such seed values; if more than 100 streams are created, the seed values are reused.

The seed value for any stream can be changed by calling the reseed function.

Prototype: voi d reseed (STREAM s, |ong n)

Example: reseed (s, 24680);

The second parameter is a positive integer that is to be used as the new seed. Although it is most
common to call reseed once for each stream at the beginning of a CSIM program, streams can be
reseeded any number of times and at any place in the program.

The current state of a stream can be retrieved by calling the stream_state function.

Prototype: | ong stream state (STREAM s)

Example:i = streamstate (s);

If stream_stateis called immediately after reseeding a stream, the seed value will be returned.
Otherwise, the positive integer used to produce the random number most recently generated from
the stream will be returned.

If astream isno longer needed, its storage can be reclaimed by calling the delete_stream function.
Prototype: voi d del et e_stream (STREAM s)

Example: del et e_stream (s);

Once a stream has been deleted, it must not be further referenced.

Multiple Stream Random Number Generation

The same 18 distributions are available for generating random numbers from multiple streams as
are available for generating random numbers from a single stream. For multiple streams, the
function names begin with "stream " and the functions have an additional first parameter that
specifies the stream. The following are two examples.

Single Stream Prototype: doubl e uni f orm (doubl e nin,
doubl e max)

Multiple Stream Prototype: doubl e stream uni f orm (STREAM s,
doubl e mi n, double max)

Single Stream Prototype: doubl e triangul ar (doubl e mn,
doubl e nmax, doubl e node)

Multiple Stream Prototype: doubl e stream triangul ar (STREAM
s, doubl e min, double nax,

doubl e node)

In al other ways, the functions and their parameters are exactly the same. It is the programmer’s
responsibility to ensure that a stream is used for only one purpose and that a separate stream is used
for each application of random numbers in the model.

Output from CSIM

In order for asimulation model to be useful, output indicating what occurred has to be produced so
that it can be analyzed. The following kinds of output can be produced from CSIM:

® Reports
CSIM aways collects usage and queueing information on facilities and storage units. In addition, it
will collect summary information from tables, gtables, histograms and ghistograms, if any were
created by the user. All of thisinformation can be printed via various report statements.

® Model statistics
CSIM collects statistics on the model itself. Thisinformation will be printed upon request.

® Status reports

Throughout the execution of the model, CSIM collects information on current status. This
information will be printed via various status statements.

If no report statement is specified, CSIM will not generate any output (although the user can
generate customized output by gathering data through the various information retrieval statements,
doing calculations on it, if desired, and printing it).

Generating Reports

Partial Reports

A partial report can contain information on just one type of object or just the header.
Prototype: voi d report_hdr (void)
Prototype: void report_facilities (void)
Prototype: voi d report_storages (void)
Prototype: voi d report_cl asses (void)
Prototype: voi d report_tables (void)
Where:
® report_hdr prints the header of the report
® report_facilities prints the usage statistics for all facilities defined in the model

® report_storages prints the usage statistics for all storage units defined in the model
® report_classes prints the process usage statistics for all process classes defined in the model

® report_tables prints the summary information for all tables (with histograms and confidence
intervals)

® report_gtables prints the summary information for all gtables (with histograms and
confidence intervals)

® report_meters prints the summary information for all meters (with histograms and confidence
intervals)

® report_boxes prints the summary information for all boxes (with histograms and confidence
intervals)

Notes:

® Details of the contents of these reports are in the section 17.2, "CSIM Report Output”.

Complete Reports

A complete report contains al of the sub-reports.
Prototype: voi d report (void)
Notes:

® The sub-reports appear in the order:

report_hdr

report_facilities

report_storages

report_classes

report_tables

report_gtables

report_meters

report_boxes

® Detalls of the contents of these reports are in the section 17.2, "CSIM Report Output”.

(ONoNoNoNONONONG)

To change the model name:

Prototype: voi d set_nodel _nane (char* new_nane)

Example: set _nodel _nane ("prototype systent);

Where:
® name - isthe new name for the simulation model (quoted string or type char*)
Notes:

® name appears as the model name in the report header (in report_hdr and report).
® Unless changed by this statement, the model name will be "CSIM".

CSIM Report Output

The output generated by the report statements present information on the ssmulation run asit has
progressed so far. The sub-reports, comprising the overall report are:

Header

Report on facility usage (if any facilities were declared)

Report on storage usage (if any storage units were declared)

Report on the process classes (if more than one process class (the default process class) has
been declared)

Summary for each table (with histogram and confidence interval) declared

Summary for each gtable (with histogram and confidence interval) declared

Summary for each meter (with histogram and confidence interval) declared

Summary for each box (with histogram and confidence interval) declared

The following tables give a complete description of each of these sub-reports.

Report_Hdr Output

Qut put Headi ng Meani ng

Revi si on CSI M ver si on nunber

System System si nul ati on was run on,
e.g. SUN Sparc

Model Model nanme (see

set _nodel _nane) st atenent

Date and tine Date and tine that report was
printed

Endi ng Simul ation Total sinulated tine

Ti me

El apsed Si nul ati on Sinmul ated tine since |ast

Ti me reset

CPU Ti ne Real CPU time used since |ast
report

Report_Facilities Output

Qut put Headi ng Meani ng

Facility

Summary

facility nane Nane (for a facility set, the
i ndex i s appended)

service Service discipline (when one was
di scipline def i ned)
service tine Mean service tine per request
util Mean utilization (busy tine
di vi ded by el apsed tine)
t hr oughput Mean t hroughput rate (conpletions

per unit tine)

gueue | ength
response tine
Count s

conpl eti on
count

Mean nunber of requests waiting or
in service

Mean tinme at facility (both

wai ting and in service)

Nunber of requests conpl eted

Notes:

® \When computing averages based on the number of requests for facilities, the number of
completed requestsis used. Thus, any requests waiting or in progress when the report is

printed do not contribute to these statistics.

® |f collection of process class statistics is specified, then the above items are repeated on a

separate line for each process class which uses the facility.

Report_Storages Output

Qut put Headi ng
St orage Summary

st orage nane
size

Meani ng

Nane of storage unit
Si ze of storage unit

Means (see note bel ow)

al |l oc anmount

uti

service tine
gueue | ength
response time

Count s
al l ocs conpl

Mean anount of storage per

al ocati on request

Mean utilization - fraction of
storage in use during the

simul ation interval

Mean tine waiting for storage to
be al |l ocat ed

Mean nunber of requests in storage
or waiting

Mean tine requests are in storage
or waiting

Nunber of requests conpl eted

Notes:

® \When computing averages based on the number of requests for storage, the number of
completed requestsis used. Thus, any requests waiting or in progress when the report is

printed do not contribute to these statistics.

Report_Classes Output

Qut put Headi ng
id

Meani ng

Process class id

nane Process cl ass name

nunber Nunber of processes belonging to
this class

lifetinme Mean sinulated time per process in
this class

hol d ct Mean nunber of hold statenents per
process in this class

hold tine Mean hold tine per process in this
cl ass

wait tine Mean wait time per process in this
cl ass

(lifetime - holdtine)

Notes
® |f no process classes are specified, the report for the "default” class (every process beginsas a

member of this class)is not provided. If any process classes are specified, then the report
includes the default class.

Report_Tables Output

Qut put Headi ng Meani ng
Tabl es (al so output by report_table(t);)
m ni mum M ni mum val ue recorded
maxi mum Maxi mum val ue recorded
range Maxi mum - i ni mum
observati ons Nunber of entries in table
nmean Aver age of val ues recorded
variance Variance of val ues recorded
st andard Square root of variance
devi ation
coefficient of St andard devi ati on divided by
var. t he mean

Confidence Intervals (al so output by
report _table(t);)

Observati ons Nunber of observations used to
conpute interva

Level Probability that interva
contai ns true nean

Confi dence Two forms: Md-point +/-

i nterval hal f-wi dth

Lower limt -
upper limt
Rel . error Rel . error: half-w dth divided
by lower limt
Hi stograms (al so output by report _table(t);)

Lower limt Low val ue for this bucket

Fr equency Nunber of entries in this bucket

Proportion Fraction of total nunber of
entries that are in this bucket

Cunul ati ve Fraction of total nunber of

proportion entries that are in this bucket

and all | ower buckets

Report_Qtables Output

Q abl es and Ghi stogranms (al so out put by
report _qtable(qt);)

Initial

Fi na
Entries
Exits

M ni mum
Maxi mum
Range
Mean

Vari ance
St andard
devi ati on
Coef f. of
vari ation

Initial state val ue

Fi nal state val ue

Nunber of entries to states
Number of exits from states

M ni num st ate val ue
Maxi mum st at e val ue

Range of state val ues

Mean state val ue (Ti me-wei ghted)
Vari ance of state val ues
Square root of variance

Coefficient of variation:
st andard devi ati on divided by
nean

Confidence Intervals (al so output by
report _qtable(qt);)

Cbservati ons

Level

Confi dence
| nt erval

Rel . error

Nurmber of observation used to
conput interva
Probability that interva
contai ns true nean
Two fornms: Md-point +/-
hal f-wi dth

Lower limt -
upper limt
Rel ative error: half-width
divided by lower limnt

Hi stogranms (al so output by report_qtable(qt);)

Lower limt

Frequency
Proportion

Cumul ative
proportion

Low val ue for this bucket

Nurmber of entries in this bucket
Fraction of total nunber of
entries that are in this bucket
Fraction of total nunber of
entries that are in this bucket
and all | ower buckets

Notes:

® All histogram output for gtables is grouped by state value, where each interval except the last
includes only one state value. The last bucket contains al state values greater than the value

covered by the penultimate value.

Report_Meters Output

Meters (al so output by report_neter(nj;)

Count
Rat e

I nt er passage tine

statistics

(see Tabl es)

Confidence Intervals (see Tables)
Hi st ogr ans (see Tabl es)

Report_Boxes Output

Boxes (al so output by report_box(b);)
Statistics on elapsed tinmes (see Tabl es)
Confidence Intervals (see Tabl es)

Hi st ograns (see Tabl es)
Statistics on popul ation (see Q ables)
Confidence Intervals (see Qables)

Hi st ograns (see Q abl es)

Printing Model Statistics

Togenerateareport on the model statistics:

Example: mdl st at () ;
Notes:

® Thisreport lists:
O CPU time used
O Number of events processed
O Main memory obtained viamalloc calls
O Number of malloc calls
O Process information:
B Number of processes started
B Number of processes saved
B Number of processes terminated
B Maximum number of processes active at onetime
O Information about storage for run-time stacks

Generating Status Reports

Partial Reports

Prototype: voi d status_processes (void)
Prototype: voi d status_next_event_list (void)

Prototype: voi d status_events (void)

Prototype: voi d status_mai | boxes (voi d)
Prototype: voi d status_facilities (void)
Prototype: voi d status_storages (void)
Where:

status_processes prints the status of all processes defined in the model
status_next_event_list prints the pending state changes for processes

status_events prints the status of all events defined in the model

status_mailboxes prints the status for al mailboxes defined in the model

status_facilities prints the status of all facilities defined in the model

status_storages prints the status of al storage units defined in the model

Details of the contents of these reports are in the sections of this document that discuss their
related objects.

Complete Reports

Prototype: voi d dunp_status (void)
Notes:

® The sub-reports appear in the order:
O status processes
O status next_event_list
O status events
O status mailboxes
O dtatus facilities
O status_storages

Each of the above status statementsis callable, so a"customized" status report can be created.

Tracing Simulation Execution

A simulation program, like any other complex software, can be difficult to debug and verify
correct. To aid in this, CSIM can produce alog of trace messages during the execution of a
simulation. A one-line trace message is produced each time an interesting change in the state of the
simulation occurs.

An enormous number of trace messages can be generated by even a short simulation run. For this
reason you should try to be selective when enabling different tracing options.

Tracing All State Changes

The generation of trace messages for all state changesis enabled using the trace _on function. The

tracing is disabled using the trace_off function.
Prototype: voi d trace_on (void)

Example: trace_on ();

Prototype: voi d trace_of f (void)
Example: trace_of f ();

Trace messages can be turned on and off as desired during a simulation. Logic can even be added to
asimulation to turn on trace messages when a specific condition is detected.

Trace messages can also be enabled by specifying the switch "-T" in the command line that
executes the simulation. This feature allows trace messages to be enabled without modifying or
recompiling the program. See the documentation for your operating system or programming
environment for details on specifying command line switches.

Tracing a Specific Process

Trace messages that pertain to one specific process or one type of process can be produced using
thetrace_process function. A specific processisidentified by a character string consisting of the
name that was specified in the call to function create, followed by a period and the sequence
number of the process. If the period and sequence number are omitted, trace messages for all
processes created with that name will be generated.

Prototype: voi d trace_process (char* nane)

Example: trace_process ("custoner.100");

Example: trace_process ("custoner");

Note that in the first example above there is no guarantee that the 100th process that is created will
be an instance of customer. If it is not, no trace messages will be produced. The tracing of a specific

process can be disabled by calling function trace_off . Successive callsto trace_process will change
which process is being traced. Thereis currently no way to specify alist of processesto trace.

Tracing a Specific Object

Trace messages that pertain to one specific object (i.e., afacility, storage, event, or mailbox) can be
produced using the trace_object function. The object isidentified by the character string that was
specified when the object was initialized.

Prototype: voi d trace_object (char* name)

Example: trace_obj ect ("nenory");

Note that the type of the object is not specified. If there is more than one object with the specified

name, trace messages for all such objects will be produced. The tracing of a specific object can be
disabled by calling function trace_off. Successive callsto trace_object will change which object is

being traced. Thereis currently no way to specify alist of objectsto trace.

Format of Trace M essages

Each trace message contains the current simulation time, the name and sequence number of the
process that caused the state change, and a description of the state change. Sample trace messages
are shown below.

0.716 customer 4 1 use facility cpu for 0.070

0.716 customer 4 1 reserve facility cpu

0.716 customer 4 1 hold for 0.070

0.716 customer 4 1 sched proc: t = 0.070, id =4

0.787 customer 4 1 release facility cpu

Program Generated Trace M essages

Any CSIM program can add its own trace messages to the sequence by calling the trace_msg
function.

Prototype: voi d trace_nsg (char* string)

Example: trace_nsg ("entering procedure for");

Trace messages containing any mixture of text and numeric values can be constructed using the C
sprintf function. CSIM will prefix the provided string with the current simulation time and the
name and sequence number of the process that produced the message.

What Isand IsNot Traced

Idedlly, every occurrence that changes the state of a CSIM object will generate a trace message. In
particular, any occurrence that causes time to pass should be traced.

Occurrences that do not produce trace messages include 1) the generation of random numbers, 2)

the updating of performance statistics, and 3) the production of reports. Obviously, non-CSIM
operations such as updates of local variables can not produce trace messages.

Redirecting Trace Output

By default, trace messages are written to file stdout. Trace messages can be redirected to a different
file using the function set_trace file.

Prototype: voi d set_trace_file (FILE * file_pointer)

Example: *fp = fopen ("trace", "w'); set_trace_file (fp);

MISCELLANEOUS

Real Time

Although, internally, the model only deals with simulated time, the running of the model takes
placein real time.

Toretrievethecurrent real time:

Prototype: char* time_of _day (voi d)
Example: tod = tinme_of _day ();
Where:
® cur_time - isthe actual time of day (type char*)
Notes:
® Theformat of the returned string is:

day mm dd hh:mm:ssyyyy, for example, Sun Jun 05 13:22:43 1994 for Sunday, June 5, 1994 at
1:22:43 PM

Toretrievethe amount of CPU time used by the mode!:

Prototype: doubl e cputime (void)
Example:t = cputinme ();
Where:

® t - istheamount of CPU time, in seconds, that has been consumed by the model thus far (type
double)

Retrieving and Setting Limits

There is a maximum number of each kind of CSIM data object in a CSIM program. These
maximums can be interrogated and/or changed. The maximums serve as limits on the number of
structures of a particular type which exist simultaneously

Toretrieveor changea CSIM maximum:

The syntax conventions for these statements are as follows:

® | - isthe returned maximum allowed value for the number of objects of the given type which
may exist simultaneously in the model. If this statement changed the value, i will contain the
new value. It must be type long.

® n-isof typelong. It iseither:

® Zero - inwhich case thisis strictly an information retrieval request

® Non-zero - in which case the maximum will be changed to n

Prototype: | ong nmax_cl asses (| ong new_max)
(prototypes for the other functions are similar)

Notes:

® The maximums apply to objects which have been both declared and initialized (and not
deleted).

® Since a histogram creates atable, the number of active histograms + active tables cannot
exceed the limit for tables.

® Because each mailbox includes an event, the maximum number of events must include at
least one event per mailbox. Therefore, if the maximum number of mailboxesisincreased, it
islikely that the maximum number of events must also be increased.

® [tisan error to change the maximum number of classes after a collect_class ... statement has
been executed.

Creating a CSIM Program
There are two distinct ways of writing CSIM programs:

® Write aroutine named sim() (the standard approach). Thiswill cause CSIM to do the
following:
O Generate the main() routine "under the covers'
O Perform necessary initialization
O Process the command line
O Cadll sim() with argc and argv repositioned to point to the non-CSIM arguments
® Provide the main() routine yourself. This allows you to imbed the CSIM model in a
surrounding tool. To do this:
O Call sim() (or any routine) which becomes the first (base) CSIM process when it
executes a create statement
O Call proc_csim argsto process the CSIM command line arguments (if desired)
O Cadll conclude_csimwhen the simulation model part of the program is complete

To processCSIM input parametersfrom a user-provided main() routine:

Prototype: voi d proc_csimargs (int * argc, char *** argv)

Where:

argc and argv are the standard C arguments.
Notes:
® Onreturn, any CSIM arguments have been processed (currently the only CSIM argument is

-T (to turn on tracing) and argc and argv have been modified to point to any remaining
arguments.

To cause CSIM to perform its necessary cleanup when using a user-provided
main() routine:

Prototype: voi d concl ude_csi m (voi d)
Notes:

® |f amodel isto be rerun, then the rerun statement should be executed.

Rerunning or Resettinga CSIM M odel

It may be useful to run a model multiple times with different values, or run multiple modelsin the
same program.

Torerun aCSIM model:

Prototype: voi d rerun (void)
Notes:

® rerun will cause the following to occur:
O All non-permanent tables structures are cleared.
O All processes are eliminated
O All facilities, events, mailboxes, process classes, storage units, tables and gtables
established before the first create statement (the create for the first ("sim™) process) are
reinitialized
O All remaining facilities, storage units, events, etc., are eliminated
O Theclock is set to zero
® Thefollowing are NOT reset or cleared:
O The random number generator (issue areset_prob(1) to reset the random number
stream)
O Permanent tables structures

Toclear statisticswithout rerunning the model:

Prototype: voi d reset (void)

Notes:

® reset will cause the following to occur:
O All statistics for facilities and storage units are cleared.
O All non-permanent table structures are cleared
O theglobal variable start tmis set to the current time and is used as the starting point
for calculations
O All remaining facilities, storage units, events, etc., are eliminated
O The simulated time clock is set to zero
® Thevariable clock is not altered.
® Timeintervalsfor facilities, storage units and gtables which began before the reset are
tabulated in their entirety if they end after the reset.
® Thisfeature can be used to eliminate the effects of start-up transients.

Error Handling

When CSIM detects an error, its default action isto send a message to the error file and then
perform adump_status . If thisis not satisfactory, the programmer can, instead, intercept CSIM
errors, and handle them as desired.

Torequest that CSIM call a user-specific error handler:

Prototype: voi d set_err_handl er (void (*handler)(long))

Where:
® func - isthe name of the function to be called when CSIM detects an error
Notes:

® Thefunction is called with one argument: the index of the error that was detected (see section
20, "Error Messages', for alist of errors and their indices).

Torequest that CSIM revert to the default method of handling errors:

Prototype: voi d cl ear_err_handl er (void)

To print the error message corresponding to the index passed to theerror
handler:

Prototype: voi d print_csimerror (long error_nunber)

Where:

® index - isthe error index for which the error message should be printed (type long)
Notes:

® The error messages and their indices are listed in section 20, "Error Messages'.
Prototype: char* csimeror_nsg (long n);
Example: printf ("%d: %/n", n, csimerr_nsg (n);

Gets string which is error message corresponding to the CSIM error. The error number is made
available as the argument to the CSIM error handler procedure.

Output File Selection

CSIM alows the user to select where various types of output should be sent. The default file for all
of theseis"stdout". The following are the files that can be specified:

® Output file - for reports and status dumps

® Error file - for error messages
® Tracefile- for traces

To changethefileto which a given type of output is sent:

Prototype: voi d set_error_file (FILE* f)
Prototype: voi d set_output _file (FILE* f)
Prototype: voi d set_trace_file (FILE* f)
Where:
® fp-isafilepointer of thefileto which the indicated type of output will be sent (type FILE*)
Notes:

® TypeFILE isnormally declared in the standard header file <stdio.h>.
® The user isresponsible for opening and closing the file.

Compiling and Running CSIM Programs

A CSIM program has to be compiled referencing the CSIM library to process the required "csim.h”
header and using the CSIM library (archivefile) to satisfy callsto the CSIM library routines.

For information on installing and using CSIM 18 on specific platforms, please see the appropriate
installation guide.

Remindersand Common Errors

When writing a CSIM program, the following things are important:

® Be aware of the maximum allowed number of concurrently active processes. In the current
version, thereis alimit of 12000 concurrently active processes (this can be changed by using
the function max_processes) .

® \When a process (a procedure containing a create statement) is called with parameters, these
should be either parameters passed as values (the default in C) or addresses of variablesin
global (or static) storage. Beware of local arrays and strings which are parameters for
processes...they are likely to cause problems. THISISVERY IMPORTANT!

CSIM manages processes by copying the runtime stack to a save area when the processis
suspended and then back to the stack when the process resumes. Thus, if a process receives a
parameter which isalocal addressin the initiating process (i.e. in that process's stack frame), the
address will not point to the desired value when the called process is executing.

® All entities (facilities, storage units, etc.) must be declared using variables of the correct type.
® All entities (facilities, storage units, etc.) must be initialized before being referenced.
® Anarray of length nisindexed 0,1,...,n-1 (standard C indexing).

Error Messages

The following error messages can be printed by a CSIM program which detects a problem. With
each error message isitsindex (see section 19.5, "Error Handling" for the usage of indexes), and a
brief interpretation:

1 NEGATI VE EVENT TI ME

You tried to schedule an event to occur at a
negative tinme. The probable cause is either a
negative hold interval or a program which has
truly run away.

2 EMPTY EVENT LI ST

Every active process is waiting for an event to
occur, and there is no process which can cause an
event to happen (this is a common error) Possible
causes for this error are:

A create statement was |eft out of a process
There is a deadl ock

There is a subtle error in process synchronization
If it is none of these, use the debuggi ng
switch(es), to try to find out what was goi ng on
when di saster struck.

3 RELEASE OF | DLE/ UNOWNED FACI LI TY

A process has attenpted to release a facility
which it did not own.

4 (not used)

5 PROCESS SHARI NG TASK LI M T EXCEEDED

An attenpt was made to have nore than 100
processes at a facility declared with the prc_shr
servi ce function.

6 NOTE FOUND CURRENT STATE LESS THAN ZERO
You issued either a note entry or a note exit to
store a value in a gtable or ghistogram and the
current state (current queue length) was | ess than
zero. One cause of this error is that nore
note_exit

statenments than note_entry statenents to have
been execut ed.
7 ERROR | N DELETE EVENT
The del ete_event procedure was called and one of
the follow ng failures occurred:
The argument was N L
The calling process had not created the event
The argunment did not point to an event created by
the calling process
8 ERROR | N DELETE MAI LBOX
The del ete_mai |l box procedure was call ed and one of
the follow ng failures occurred:
The argument was N L
The calling process had not created the event
The argunment did not point to an event created by
the calling process
9 MALLCC FAI LURE
The UNI X routine named mall oc was unable to
all ocate nore nenory to the program Malloc is
used to allocate space for process control units,
so this usually occurs when many processes are
si mul taneously active. The only cures are to
ei t her have fewer processes or to have the UN X
limts on virtual nenory changed on your system
10 I N PREEMPT, ERROR I N CANCEL EVENT FOR PROCESS

(1 NTERNAL ERROR)

The processor sharing or |ast-cone, first-served
service disciplines have tried to preenpt a
process whi ch does not hold the facility. This is
a CSIMerror and should not occur
11 | LLEGAL EVENT TYPE (| NTERNAL ERROR)
The procedure for creating events has been called
with a node (type) paraneter which is not
recogni zable. This is a CSIMerror and shoul d not
occur.
12 TOO MANY EVENTS
The limt on the nunmber of events which can be
si mul taneously in existence is being exceeded.
Ei t her:
The program needs nore events (see the max_events
function)
You' ve created nore events than you intended in
your program
13 TOO MANY FACI LI TIES
The limt on the nunmber of facilities which can be
si mul taneously in existence is being exceeded.
Ei t her:
The program needs nore facilities (see the
max_facilities function)
You' ve created nore facilities than you intended
i n your program
14 TOO MANY HI STOGRANMS
The Iimt on the nunber of histograns which can be
si mul taneously in existence is being exceeded.
Ei t her:
The program needs nore histogranms (see the
max_hi st ograns function)
You' ve created nore histograns than you intended
i n your program

15 TOO MANY MAI LBOXES

The limt on the nunmber of mail boxes which can be
si mul taneously in existence is being exceeded.

Ei t her:

The program needs nore mail boxes (see the
max_mai | boxes function)

You' ve created nore mail boxes than you intended in
your program

16 TOO MANY MESSAGES

The Iimt on the nunber of nessages which can be
si mul taneously in existence is being exceeded.

Ei t her:

The program needs nore nmessages (see the
max_nmessages function)

You' ve created nore nessages than you intended in
your program

17 TOO MANY PROCESSES

The Iimt on the nunber of processes which can be
si mul taneously in existence is being exceeded.

Ei t her:

The program needs nore processes (see the
Max_processes

function)

You’' ve created nore processes than you intended in
your program

18 TOO MANY QTABLES

The Iimt on the nunber of qtables which can be
si mul taneously in existence is being exceeded.

Ei t her:

The program needs nore gtables (see the
max_qt abl es function)

You' ve created nore qtables than you intended in
your program

19 TOO MANY STORAGES
The limt on the nunmber of storage units which can
be simultaneously in existence is being exceeded.
Ei t her:
The program needs nore storage units (see the
max_st orages function)

You’' ve created nore storage units than you

i ntended in your program

20 TOO MANY SERVERS
The linmt on the nunber of servers which can be
si mul taneously in existence is being exceeded.

Ei t her:
The program needs nore servers (see the
max_servers functi on)

You’ ve created nore servers than you intended in
your program

21 TOO MANY TABLES
The limt on the nunber of tables which can be
si mul taneously in existence is being exceeded.

Ei t her:
The program needs nore tables (see the max_tabl es
function)

You' ve created nore tables than you intended in
your program

22 CANNOT OPEN LOG FI LE
The event | oggi ng procedures are not able to open
the file "csimlog". There is probably a problem
with privileges and protection in the current
directory you are using.

23 DEQUEUE FROM QUEUE FAI LED

Not currently valid

24 TRIED TO RETURN AN UNALLOCATED PCB

This is a CSIMerror and shoul d not occur

25 TRIED TO CHANGE MAXI MUM CLASSES AFTER COLLECT
You cannot change the linit on process classes
after a collect_class facility [all] statement.
26 TOO MANY CLASSES

The limt on the nunber of classes which can be
si mul taneously in existence is being exceeded.

Ei t her:

The program needs nore process cl asses (see the
max_cl asses function)

You' ve created nore classes than you intended in
your program

27 I N RETURN EVENT, FOUND WAI TI NG PROCESS
An attenpt was made to delete a | ocal event, but a
process is waiting for that event. A local event
is deleted either by use of a del ete_event
statenment or when the process which initialized

t hat event term nates.

28 TRI ED TO DELETE EMPTY EVENT SET
An attenpt was made to del ete an event_set
structure which is not initialized.

29 TRIED TO WAIT ON NI L EVENT SET

The wait_any or queue_any

function was passed a NIL pointer (argument).

30 WAIT_ANY ERROR, NI L EVENT

This is an internal error in the wait_any or
gueue_any function. The function thinks that an
event in the set occurred, but it did not find
one. This is a CSIMerror and should not occur
31 STORAGE DEALLOCATE ERROR CURRENT COUNT < O
The deal | ocate procedure has detected a negative
val ue for the current nunber of users at a storage
unit (nore allocates than deall ocates were done).
This is probably the result of having sone
processes doing a deallocate w thout a prior

all ocate operation. Note that this error can
result regardless of the anpbunt of storage

al |l ocated and deal | ocat ed.

32 TI MED_RECEI VE ERROR - MSG WAS LOST
There was a failure in tinmed_receive. This is a
CSIM error and should not occur.

33 MULTI SERVER FACI LI TY- ZERO OR NEG. NUMBER OF

SERVERS

A multi-server facility was defined with the
nunber of servers less than or equal to zero.

34 TRIED TO CHANGE MAX_CLASSES AFTER CREATI NG

PROCESS CLASSES

You can’t change the maxi mum nunber of process
classes after a collect_class facility

or collect _class facility all has been execut ed.
35 ASKED FOR STATS ON NON- EXI STENT SERVER

You called a function that retrieves information
about a server and specified an out-of-range
server nunber.

36 ERROR I N CALENDAR QUEUE INI' T
This is a CSIMerror and shoul d not occur

37 ERROR | N DELETE FACI LI TY
The delete facility procedure was called and one
of the follow ng failures occurred:
The argument was N L
The argument did not point to a facility

38 ERROR | N DELETE PROCESS CLASS
The del ete_process_cl ass procedure was call ed and
one of the follow ng failures occurred:
The argument was N L

The
39
The
t he
The
The
ghi s
40
The
t he
The
The
41
The
t he
The
The
42

argunent did not point to a process class
ERROR | N DELETE QTABLE

del ete_qtabl e procedure was called and one of
followi ng failures occurred:

argument was NI L

argunent did not point to a qtable or

t ogram

ERROR | N DELETE STORAGE

del ete_storage procedure was called and one of
followi ng failures occurred:

argurment was N L

argunent did not point to a storage unit
ERROR | N DELETE TABLE

del ete_tabl e procedure was call ed and one of
followi ng failures occurred:

argunment was N L

argunent did not point to a table or histogram
IN TIMED-, ERROR I N CANCEL EVENT FOR PROCESS
(1 NTERNAL ERROR)

Ei ther timed_queue, timed_receive or tined_wait

has
proc
Thi s
43
Thi s
44

Thi s
45

Thi s

tried to cancel a hold for a process, and the
ess cannot be found in the next_event_list.
is a CSIMerror and should not occur.

STACK UNW ND FAI LURE - HPPA (| NTERNAL ERROR)
is a CSIMerror and should not occur.

ODD OR SMALL STACK LENGTH - HPPA (| NTERNAL
ERROR)

is a CSIMerror and shoul d not occur.
SET_STACK ROUTI NES MAY NOT BE | NVOKED AFTER
CALLI NG CREATE - HPPA

is a CSIMerror and should not occur.
UNRECOVERABLE STACK OVERFLOW - HPPA

is a CSIMerror and should not occur.

I NI TI AL STACK SIZE TOO SVALL - HPPA

is a CSIMerror and should not occur.

Acknowledgments

Teemu Kerolaassisted in theinitial implementation of CSIM. He also designed and
implemented the MONIT event logging feature and the post-run analysis program for the
SUN.

Bill Alexander has provided consultation on the wisdom of many proposed features.

L eonard Cohn suggested using mailboxes.

Ed Rafalko, of Eastman Kodak, provided the changes required to have CSIM available on the
VMS operating system.

Rich Lary and Harry Siegler of DEC have provided code for the VM S version of CSIM. They
also suggested a number of modifications which have improved the performance of CSIM
programs.

Geoff Brown of Cornell University did most of the work for the HP-300 version. He aso
provided the note on CSIM on the NeXT System.

Jeff Brumfield, of The University of Texas at Austin, critiqgued many aspects CSIM. He and
Kerola suggested process classes.

Connie Smith, of L & S Systems, did much of the work on the Macintosh version.

Kevin Wilkinson, of HP Labs, did most of the work on the HP Prism support.

Murthy Devarakonda, of IBM T.J. Watson Research Labs, did most of the work on the IBM

RS/6000 support.

o Jeff Brumfield provided the ideas, code, and documentation on meters, boxes, confidence
intervals, and run length control. He also improved the format of the output reports and added
the additional probability distributions.

® Beth Tobias rewrote the CSIM manual.

® Jorge Gonzales helped test and debug CSIM18.

® Dawn Childress revised and reformatted the CSIM 18 manuals.

List of References

[Brow88] Brown, R., "Calendar Queues: A Fast O(1) Priority Queue Implementation for the
Simulation Event Set Problem", Communications of the ACM, (31, 10), October, 1988, pp. 1220 -
1227.

KeSc87] Kerola, T. and H. Schwetman, "Monit: A Performance Monitoring Tool for Parallel and
Pseudo-Parallel Programs”, Proceedings of the 1987 ACM S GMETRICS Conference on
Measurement and Modeling of Computer Systems, ACM/SIGMETRICS, May, 1987, pp. 163-174.

[Lake9l] Law, A. and D. Kelton, Smulation Modeling and Analysis, second edition,
(McGraw-Hill, 1991).

[MaMc73] MacDougall, M.H. and J.S. McAlpine, Computer System Simulation with ASPOL,
Symposium on the Smulation of Computer Systems, ACM/SIGSIM, June, 1973, pp. 93-103.

[MacD74] MacDougall, M.H., Simulating the NASA Mass Data Storage Facility, Symposium on
the Smulation of Computer Systems, ACM/SIGSIM, June 1974, pp. 33-43.

[MacD75] MacDougall, M.H., Process and Event Control in ASPOL, Symposium on the
Smulation of Computer Systems, ACM/SIGSIM, August, 1975, pp. 39-51.

[Schw86] Schwetman, H.D., CSIM: A C-Based, Process-Oriented Simulation Language,
Proceedings of the 1986 Winter Smulation Conference, December, 1986, pp. 387 - 396.

[Schw88] Schwetman, H.D., Using CSIM to Model Complex Systems, Proceedings of the 1988
Winter Srmulation Conference, December, 1988, pp. 246 - 253; also available as Microelectronics
and Computer Technology Corporation, Technical Report ACA-ST-154-88.

[Schw90b] Schwetman, H.D., Introduction to Process-Oriented Simulation and CSIM™,
Proceedings of the 1990 Winter Smulation Conference, December, 1990, pp. 154- 157.

[Schw94] Schwetman, H.D., CSIM17: A Simulation Model-Building Toolkit, Proceedings of the
1994 Winter Simulation Conference, December, 1994. pp. 464-470

[Schw95] Schwetman, H.D., Object-Oriented Simulation Modeling with C++/CSIM 17, Proceeding
of the 1995 Winter Simulation Conference, December, 1995.

[Schw96] Schwetman, H.D., CSIM 18 - The Simulation Engine, Proceedings of the 1996 Winter
Simulation Conference, December 1996.

Sample Program

A sample CSIM program follows. This program isamodel of an M/M/1 queueing system. The
process simincludes a for loop, which generates, at appropriate intervals (exponentially distributed
with mean IATM) arriving customers. These customers contend for the facility on a
first-come-first-served basis. As each customer gains exclusive use of the facility, they delay for a
service period (again exponentially distributed, but with mean SVTM) and then depart. The
individual response times (time of arrival to time of departure) are collected in atable. The program
also makes use of the histogram feature to collect the frequency distribution of the queue length.
Sample Program to Simulate Single Server Facility

[* simulate an M/M/1 queue

(an open queue with exponential service times and interarrival intervals)*/

#include "csim.h" /* include csim functions*/

#include <stdio.h>

#define SVTM 1.0 /* mean service time per customer*/

#define IATM 2.0 /* mean time between customers*/

#define NARS 5000 /* number of arrivals to be simulated*/

FACILITY f; /* declare the facility */

EVENT done; /* declare the event*/

TABLE tbl; /* declare the table*/

QTABLE qtbl; /* declare the ghistogram™*/

int cnt; /* number of active tasks*/

FILE *fp; /* declare the pointer to the output file*/

sim() /* 1st process - named sim*/

{

inti;

fp = fopen("csim.out”, "w"); /* open output file and call it csim.out*/

set_output_file(fp); /* tell csim to write reports to the file*/

set_trace file(fp); /* tell csim to write traces to the file*/

set_model_name("M/M/1 Queue");
/* call model M/M/1 Queue in report*/

create("sim"); /* initiate the simulation process sim*/

f = facility("facility"); /* initialize facility and name it facility*/
done = event("done"); /* initialize event and name it done*/

tbl = table("resp tms"); /* initialize table and name it resp tms*/

gtbl = histogram("num in sys", 10l);
[*initialize histogram named num*/

cnt = NARS; /* initialize cnt to number of customers*/

for(i = 1; 1 <= NARS; i++) /* loop through for each customer*/
hold(expntl (IATM)); /* wait till next customer should arrive*/
cust(); /* initiate customer process cust*/

}

wait(done); /* wait until all customers are
processed*/

report(); /* print report of facilities, storage,
tables*/

theory(); /* calculate and print theoretical results*/
mdlstat(); /* print model statistics*/
fclose(fp); /* close output file*/

}

cust() /* process customer*/

{
TIME t1; /* declare time variable*/

create("cust"); /* create customer process cust*/
t1 = clock; /* retrieve simulated time of request*/

note_entry(qtbl); /* note arrival in the gtable/histogram*/

reserve(f); /I* reserve facility f*/

hold(expntl(SVTM)); /* hold facility to service customer*/
release(f); /* release facility f (customer done)*/
record(clock-t1, thl); /* record response time in table*/
note_exit(qtbl); /* note departure in gtable/histogram*/
cnt--; /*decrement cnt*/

if(cnt == 0) /* if last customer has been processed*/
set(done); /*signal that by indicating event occurred*/
}

theory() /* calculate and print theoretical results*/

{

float rho, nbar, rtime, tput;

printf("\n\n\n\t\t\tM/M/1 Theoretical Results\n");

tput = 1L.O/IATM;

rho = tput*SVTM;

nbar = rho/(1.0 - rho);

rtime = SVTM/(1.0 - rho);

printf("\n\n");

printf("\t\tInter-arrival time = %10.3f\n",|ATM);
printf("\t\tService time = %10.3f\n",SVTM);
printf("\t\tUtilization = %10.3f\n",rho);
printf("\t\tThroughput rate = %10.3f\n" tput);
printf("\t\tMn nbr at queue = %10.3f\n",nbar);
printf("\t\tMn queue length = %10.3f\n",nbar-rho);
printf("\t\tResponse time = %10.3f\n",rtime);

printf("\t\tTime in queue = %10.3f\n",rtime - SVTM);

Statements, Reserved Words

St at enent
add_store

al l ocate

avai
ber noul i

bet a

bi nom al
box
box_nane

box_nunber _hi st ogr am

box_nunber _nmovi ng_w ndow
box_number _qt abl e
box_summary
box_time_confidence

box _ti nme_hi st ogram

box tinme_movi ng_w ndow
box time_table

cauchy

cl ass_cnt

cl ass_conpl eti ons

cl ass_hol dcnt
class_hol dti ne

class id

class lifetine

cl ass_nane

Usage
add_store(ant, st);

al l ocate(ant, st);

amt = avail (st);

n bernoul ii (p-success);

X = beta(xm n, xmax, xshpl,
xshp2);

n

b

box("nane");
nm = box_namne(b);

box_nunber _hi st ogran(b, nbkt,
mn, nmax);

box_nunber novi ng_w ndow(b, n);

gt = box_nunber _qgtabl e(b);
box_summary();
box_time_confidence(b);

box_time_hi stogram b, nbkt,
Xmn, Xxmex);

box_time_novi ng_w ndow(b, n);
tbl = box_tine_table(b);

x = cauchy(al pha, beta);

n = class_cnt(cl);

n = class_conpletions(f,cl);
n = class_holdcnt(cl);

n = class_hol dti me(cl);

n = class_id(cl);

>
1

class lifetine(cl);

name = class_nane(cl);

bi nom al (p-success, numtr);

Section
St or ages

St or ages

5.10
16. 1

16. 1

16.1
12.1
12.7
12.

N

12.

12.

12.

g w N o

12.

12.

N

12.

»

12. 7
16.1
15.5
4.12
15.5
15.
15.
15.

o o o O

15.

class_qgl en

cl ass_resp

cl ass_serv

cl ass_t put

class_util

cl ear

clear _err_handl er

cl ock

collect_class _facility

collect class facility_ a
[l

conpl eti ons

concl ude_csim
cputinme

create
current _cl ass
deal | ocat e

del et e_box

del et e_event

del et e_event _set
delete facility
delete facility_set
del et e_nai | box

del ete_neter

del et e_process_cl ass
del ete_qtable

del et e_st orage

del ete_storage_set
del ete_table
dunp_st at us

enpiri cal

ent er _box

erl ang

x = class_glen(f, cl);
x = class_resp(f, cl);
x = class_serv(f, cl);

x = class_tput(f, cl);

X class_util (f, cl);

clear(ev);
clear_err_handler();
t = cl ock;

collect_class _facility(f);

collect _class facility all();

n = conpletions(f);

concl ude_csi m);

t = cputinme();
create("nane");

cl = current_class();

deal | ocate(ant, st);

del et e_box(b);

del ete_event (ev);

del ete_event _set (array);
delete facility(f);

delete facility_set(array);
del et e_mai | box(nb);

del ete_neter(ntr);

del et e_process_cl ass(c);
del ete_qgt abl e(qt);

del et e_st orage(s);

del ete_storage_set(array);
del ete_table(t);

dunp_stat us();

X = enpirical (n, cut_avr,
alias_avr, value_avr);

tm = enter_box(b);

x = erlang(xm, xvar);

.12

.12

12

12

> M b b b

.12
6.7
20.6
2.2
4.11

4.11

4.12
20. 3
20.1

15. 2

12. 10

6. 10
4.10
4.10
7.6
11. 10
15. 4
10. 10
5.9
5.9
9.10
17. 4
16.1

12. 2

16. 1

event
event |ist_enpty
event _name

event _qgl en

event _set
exit_box
facility

facility_ns
facility_nane

facility_set

fcfs

fcfs_sy

ganma
geonetric

gl obal _event

hi st ogram bucket
hi st ogram hi gh
hi st ogram | ow
hi st ogr am_num
hi st ogram wi dt h
hol d

hyper x
identity

i nf_srv

[cfs_pr

| ognor mal
mai | box

mai | box_narme
nmax_cl asses
md| st at

net er

met er _cnt

ev = event ("nane");
wait (event _|ist_enpty);
nm = event _name(ev);
n = event gl en(ev);
event _set(array, "

exit_box(b, tm;
f

facility("name");

f

facility_nms("name", ns);

name = facility_name(f);

facility_set(array, "name",

nunj ;
set _servicefunc(f, fcfs);
set _servicefunc(f, fcfs_sy);

X = ganma(xm, xstdv);

n geonetri c(p-success);

ev = gl obal event ("name");

n = hi stogram bucket (h,i);
x = hi stogram hi gh(h);

X = histogram|ow h);

n = hi stogram nun(h);

X = hi stogramw dt h(h);
hol d(t);

x = hyperx(m, var);
id=identity();

set _servicefunc(f, inf_srv);
set _servicefunc(f, lcfs_pr);
x = lognormal (xm n, xstdv);

mb

mai | box(" name");

nm = mai | box(nb);

i = max_cl asses(n);
mdl stat () ;

nr = nmeter("neter");

n = nmeter_cnt(mntr);

nane", num;

6.13
6.11
6.11
6.10
12. 2
4.1
4.5
4.12
4.6

16. 1

16. 1

N © © © 0 © o
\l

16. 1

20.2
17.3
11.1

11. 7

nmet er _confi dence

nmet er _hi st ogram

neter _ip_table
net er _nane
neter_rate
neter_start_tinme
net er _sunmary
noni tor_csim
nsg_cnt

negat i ve_bi noni al

nor mal
note_entry
note_exit

not e_passage

not e_val ue

num busy

num servers

per manent _box
per manent _qt abl e
per manent _tabl e
poi sson

prc_shr

pre_res

preenpts
print_csimerror
priority
proc_csi margs
process_cl ass
process_nane

gl en

gl ength

nmet er _confidence(mtr);

net er _hi stogram(ntr, nbkt, xmn,

xmax) ;
tbl = neter_ip_table(mr);

nm = neter_nane(ntr);

X neter _rate(ntr);

X neter_start_time(mr);
meter _summary() ;

noni t or_csi m);

i = msg_cnt(nb);

n =

negati ve_bi noni al (success_num p_s

uccess);

x = normal (xm, xstdv);
note_entry(qt);
note_exit(qt);

not e=passage(ntr);

note_val ue(qgt, new state);

[num busy(f);

[num servers(f);

b

per manent _box(" name");
gt = gtabl e("name", n);

t = table("nanme");

n=poi sson(xm) ;

set _servicefunc(f, prc_shr);
set _servicefunc(f, pre_res);
n = preenpts(f);
print_csimerror(errno);

pr = priority();
proc_csimargs(argc, argv);
cl = process_cl ass("nane");
nm = process_nane();

qlen(f);

x
1

x
1

gl engt h(f);

11.5

11. 4

11. 7
11. 7
11. 7
11. 7
11.3
16.1

16.1

16.1
10. 2
10. 2
11. 2
10. 2
4.12
4.12
12.1
10.1
9.1
16.1
4.9
4.9
4.12
20.6

3.6
20. 3
15.1

3.6
4.12

4.12

gt abl e
gt abl e_bat ch_count
gt abl e_batch_si ze

gt abl e_conf_accuracy

gtabl e _conf _hal fwidth

gt abl e_conf _| ower

gt abl e_conf _nean

gt abl e_conf _upper

gt abl e_confi dence

gt abl e_conver ged

gt abl e_current
gt abl e_cv
gtabl e _entries
gtable_exits
gt abl e_hi st

gt abl e_hi st ogr am

gtable_ initial

gt abl e_nmax

gt abl e_nean
gtable_nmn

gt abl e_novi ng_wi ndow
gt abl e_nane

gt abl e_range

gt abl e_st ddev

gt abl e_sum

gt abl e_sum square
gt abl e_summary

gt abl e_var

gt abl e_wi ndow si ze

queue

gt = gtabl e("name");
| ong gt abl e_bat ch_count
| ong qtabl e_batch_size

doubl e qtabl e _conf _accuracy
(doubl e I evel)

doubl e gtabl e _conf _hal fwi dth
(doubl e I evel)

doubl e gtabl e_conf | ower (double
| evel)

doubl e gtabl e_conf _mean

doubl e qtabl e _conf _upper (double
I evel)

gt abl e_confi dence(qt);

| ong gtabl e_converged (double
I evel)

n = qtable_current(qt);
X = qtable_cv(qt);

n = qtable_entries(qt);
n = gtable_exits(qt);

hist = qtable_hist(qt);

gt abl e_hi stogran(qt, nbkt, xmn,
xmax) ;

n = qgtable_initial (qt);
i = qtable_max(qt);

X = qtabl e_nean(qt);

n = qtable_min(qt);

[gt abl e_novi ng_wi ndow(qt) ;

name = qtabl e_name(qt);

n = qtable_range(qt);

X = gtable_stddev(qt);

X = gtable_ sun(qt);

X = qtabl e_ssum square(qt);

gt abl e_sunmary(qt);

X = gqtable_var(qt);
n = qtabl e_w ndow si ze(qt);
gueue(ev);

10.
10.
10.

10.

10.

10.
10.

10.
10.

10.
10.
10.
10.
10.
10.

10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.

gueue_any
queue_cnt
random i nt
receive

record

rel ease

rel ease_server
report

report _box
report_boxes
report _cl asses
report_facilities
report _hdr
report_neter
report_neters
report_qtable
report _qtabl es
report_storages
report table
report_tables
rerun

reserve

reset

reset box
reset _meter
reset _prob
reset qtable
reset table
resp

rnd_pri
rnd_rob

send

serv

[gueue_any(array);

[queue_cnt (ev);
n=random.int(nmn, nax);
recei ve(nb, &nsg);
record(x, thl);

rel ease(f);

rel ease_server(f, i);
report();

report _box(b);

report _boxes();
report_cl asses();
report_facilities();
report _hdr();
report_neter(mtr);
report_meters();
report_qtable(qt);
report _qtables(qt);
report_storages();
report_table(thbl);
report _tables();
rerun();

i = reserve(f);

reset ();

reset _box(b);

reset _meter(mtr);
reset_prob(i);

reset _qtable(qt);
reset _table(thbl);

x = resp(f);

set _servicefunc(f, rnd_pri);
set _servicefunc(f, rnd_rob);
send(nb, nsgQ);

x = serv(f);

6.10
6.11
16.1

13.
12.

b
W oW N A W N W

12.

17.

[

17.

=Y

17.

[

11.
11.
10.

w W w W

10.
17.

=Y

19.

13.
12.
11.
20.
10.

© ©O© A O© © W W r W0 W

4.12
4.9
4.9
7.2

4.12

server_conpl etions

server_serv
server _t put
server _util

servi ce_disp

set

set _ nane_net er
set _err_handl er
set _error_file
set | oaddep

set _nodel _nane
set _nane_box

set _nanme_event
set _nane facility

set _nane_nai | box

set _name_process_cl ass

set _nane_st or age
set _nane_tabl e
set _output _file
set _priority

set _process_cl ass
set _servi cefunc
set _tabl e _nane
set _tineslice

set _trace file

setup_enpirical

sim
sintinme
state
st at us

status_events

n = server_conpletions(f, i);
X = server_serv(f, i);

X = server _tput(f, i);

X = server_util (f, i);

nane = service_disp(f);

set (ev);

set _ name_neter(ntr, "nanme");
set _err_handl er (procedure);
set _error_file(fd);

set | oaddep(f, array, n);

set _nodel _nane("new nane");
set _nane_box(b, "nane");

set _nane_event (ev, "nane");
set_nane _facility(f, "nane");
set _nane_nai |l box(nb, "nane");

set _nane_process_cl ass(c,
n naITE") ;

set _nane_storage(st, "nane");
set _nane_tabl e(qt, "nane");
set _output _file(fd);

set _priority(pr);

set _process_class(cl);

set _servicefunc(f, func_nane);

set _table_name(tbl, "name");
set _tineslice(f, t);
set _trace_file(fd);

setup_enpirical (n, pr_avr,
cut _avr,alias_avr);

sim) or simlargc, argv)
t

simime();

[state(ev);

[status(f);

status_events();

4.12
4.12
4.12
4.12

4.12

11. 8

20.6

20.7

17.1

12. 8

15.3

10. 8
20.

~

15.

o0 © 00 O N O

18.
16.1

6. 11
4.12

6.12

status _facilities

st at us_nmi | boxes
status_next _event i st
st at us_processes

st at us_st or ages

st or age

st orage_busy_ant

st orage_capacity

st or age_nane

st orage_nunber _am

st orage_queue_cnt
storage_ql ength

storage_rel ease_ant
st or age_r equest _ant

st or age_set

storage_tine
storage_wai ting_ant

synchronous_facility

synchronous_st or age

tabl e

t abl e_bat ch_count
tabl e_batch_si ze

t abl e_cnt

t abl e_conf _accuracy
tabl e_conf _hal fwi dth
tabl e_conf _| ower

t abl e_conf _mean

t abl e_conf _upper

t abl e_confi dence

t abl e_conver ged
tabl e_cv

tabl e_hi st

status_facilities();

st atus_nmmi | boxes();
status_next_event _list();
status_processes();
status_storages();

st = storage("nane", size);

n storage_busy_ant (st);

n st orage_capacity(st);

nane = storage_nanme(st);

n = storage_nunber ant(st);
n = storage_queue_cnt(st);
n = storage_ql ength(st);

n = storage_rel ease_ant(s);

n = storage_request _ant(st);

storage_set(arr, "name", size,

n);
X = storage_ tine(st);
n = storage_waiting_ant(st);

synchronous_facility(f, phse,
per);

synchronous_st orage(s, phse,
per);

tbl = tabl e("name");

| ong tabl e_batch_count

| ong tabl e_batch_size

n = table cnt(thl);

doubl e tabl e_conf_accuracy
doubl e tabl e_conf_hal fwi dth
doubl e tabl e_conf | ower
doubl e tabl e_conf_nean
doubl e tabl e_conf _upper
tabl e_confidene(tbl);

| ong tabl e_converged

x = able _cv(thl);

hist = table_hist(tbl);

4.13
7.8
3.7
3.7

5.11

© © © © © © © © © © © © ©
\l

t abl e_hi st ogr am

t abl e_nax

t abl e_nean
table_mn

t abl e_novi ng_wi ndow
t abl e_nane

t abl e_range

t abl e_st ddev

tabl e_sum

tabl e_sum square
t abl e_sunmary
tabl e_var

t abl e_wi ndow_si ze
term nate

ti me_of day

timed_all ocate

ti med_queue

ti med_receive

timed_reserve

timed _wait

neslice

t
t put
trace_msg
trace_obj ect
trace_off
trace_on
trace_process
triangul ar

uni form

use

util

wai t

tabl e_hi stogran{tbl, nbkt,
xmax) ;

x = table_max(tbl);

x = table_nmean(thbl);

X = table_mn(tbl);

n = tabl e_novi ng_wi ndow(t bl

nane = table_nane(tbl);

x = tabl e _range(thbl);

X = table_stddev(thl);

x = table_sunm(thbl);

X = tabl e_sum square(tbl);

tabl e_summary();

X table_var(tbl);

n = tabl e_wi ndow_size(tbl);
term nate();

name = time_of day();

n ti med_al |l ocate(ant, st,
n = tinmed_queue(ev, tn);

n = timed_receive(nb, tm;
n =tinmed reserve(f,tn);
n=timed wit(ev, tm;

t =tineslice(f);

tput (f);

trace_nsg("nsg");

X

trace_obj ect ("obj _name");
trace_off();
trace_on();

trace_process("proc nane");

X = triangul ar(xm n, xnmax,
X = uniformx1, x2);
use(f, t);

x = util(f);

wait (ev);

Xm n,

)

tn;

xmd) ;

w © © © © © © © © © © © ©
\l

)
N o O
T ONG ING I=

wai t _any i = wait_any(array); 6. 10
wai t _cnt i = wait_cnt(ev); 6. 11
wei bul | x=wei bul | (xshp, xscle); 16. 1
Data Structures
CLASS used to define a process cl ass
EVENT used to define an event or event_set
FACI LI TY used to define a facility or
facility_set
H ST used to define a histogram
MBOX used to define a mail box
QH ST used to define a ghistogram
QTABLE used to define a qtable
STORE used to define a storage
STREAM used to define a stream of random
nunber s
TABLE used to define a table
TI ME used to define time variables (double
preci si on)
Constant Values
BUSY status of facility
FREE
NI L 0
ocC status of event (occurred)
NOT_QOCC
EVENT _OCCURRED val ue of tined _operation
TI MED_QUT
MAXCLASSES defaul t maxi mum nunber of process
cl asses
MAXEVNTS def aul t maxi mum nunber of events
MAXFACS defaul t maxi mum nunber of
facilities
MAXHI STS defaul t maxi mum nunber of
hi st or gr anms
MAXMBOXS defaul t maxi mum nunber of
mai | boxes
MAXMSGS defaul t maxi mum nunber of
nessages
MAXPROCS defaul t maxi mum nunber of
processes
MAXQTBLS defaul t maxi mum nunber of queue

hi st ogr ans

MAXSTORS
MAXSERVS
MAXSI ZEH

MAXTBLS

defaul t maxi num nunber of storage
units

defaul t maxi mum nunber of
server/facility

default maxi mum si ze of a

hi st ogram

defaul t maxi mum nunber of tables

Special Structures

default _cl ass

class that all process belong to
initially

Legacy Functions

These are compatible with CSIM 17 and prior versions.

current _state
events_processed
exit_csim
exponenti a

free

hi st ogram

initialize_csim
| og

mal | oc
max_event s
max_facilities
max_hi st ogr anms
max_mai | boxes
max_mnmessages
Max_processes
max_qt abl es
max_servers
max_si zehi st
max_st or ages
max_t abl es

per manent _hi st ogr am

n = current_state(qt);

n = events_processed();
exit_csim);

X = exponential (xm);

UNI X routine used in CSIM
h = histogram"nanme", num
| ow, high);
initialize_csim);
UNI X routine used in
UNI X routine used in
[max_events(n);
max_facilities(n);
max_hi st ogranms(n);
max_mai | boxes(n);
max_nmessages(n);
max_processes(n);
max_qt abl es(n);
max_servers(n);
max_si zehi st(n);
max_st orages(n);
max_t abl es(n);

CSIM
CSIM

h
per manent _hi st ogran{"nane",
n, lo, hi);

per manent _ghi st ogr am gh =

prob
ghi st ogr am

per manent _ghi st ogr an(" nane",
n);

X = prob();

gh = ghi stogran("nane", n);

ghi st ogr am bucket _cnt n =

ghi st ogr am bucket _cnt (qgh,i);

ghi st ogram bucket _tine x =

ghi st ogram num
ghi stogramtime

ghi st ogram bucket _ti ne(qgh,i)
h = ghi st ogram nun(gh) ;
x = ghi stogramtine(qgh);

gt abl e_cnt

gtabl e_cur

gtabl e_qgl en
gtable_qtine

gt abl e_qt sum

rand

random

set _log file

set _novi ng_qt abl e
set _noving table
storage_rel ease_cnt

st orage_r equest _cnt
stream erl ang

st ream expnt |
st r eam hyper x

stream.init
st ream nor na

st ream prob
st ream random

streamreset _prob
stream uni form

trace_sw

gtable_cnt(qt);
gtable cur(qt);
gtabl e _qglen(qt);
gtable_qtinme(qt);
gtabl e_qgtsun(qt);
UNI X routine used in CSIM
i = random(il, i2);

set _log file(fd);

set _novi ng_qt abl e(qt, n);
set _noving table(tbl, n);
n =

storage_rel ease_cnt(st);
n =

storage_request _cnt(st);
x = streamerlang(s, x1,
X2);

X = streamexpntl (s, x1);
X = stream hyperx(s, x1,
X2);

S = stream.init(i);

X = stream nornal (s, x1,
X2);

X = stream prob(s);

i = streamrandon(s, i1,
i2);

streamreset _prob(s, i);
x = streamuni forn(s, x1,
X2);

X X X ==

