
T A N G R A M

3-way TANGRAM
User Manual

Version 8.2 for Personal Computers
running Windows (any version)

Ref. TG14E - Revision 1.9

Contact

CODEWORK Italia srl, Corso Lanza 105, 10133 Torino, Italy
Tel. +39 011 6601560
E-mail: info@codework.it sales@codework.it support@codework.it

Homepage: www.codework.it/tangram/

Credits

Cover Design: Chroma
Text: Mauro Guazzo, Marco Bruzzone
Composition: Federica Pusineri, Cristina Prono, Valerio Tamburini

Copyright c©1997-2007 by Codework Italia

Contents

1 Introduction 5
1.1 Basic terms . 8
1.2 Notation . 9

2 Main menu and worksession 11
2.1 Overview . 11
2.2 Main menu . 11
2.3 Session menu . 15
2.4 About procedures . 15

3 Data Analysis 19
3.1 Virtual cube operations . 20

3.1.1 SELECTDB . 20
3.1.2 SUMMARY . 20
3.1.3 SELECT . 20
3.1.4 RESET . 22
3.1.5 EXECUTE . 22
3.1.6 Label manipulation . 23

3.1.6.1 LABELCOLUMNS 25
3.1.6.2 LABELJOIN . 25

3.2 Cube inspection . 26
3.2.1 BROWSE . 26

3.2.1.1 Formula syntax 27
3.2.1.2 Update rights 30

3.2.2 QUERY . 30
3.2.3 MISSING . 34
3.2.4 RANGE . 34

3.3 Computations . 35
3.3.1 COMPUTE . 35

3.3.1.1 Computation keywords 39
3.3.1.2 IF-ELSE conditions 40
3.3.1.3 Time shifts . 42

3.3.2 ROLLUP . 43
3.3.3 GROWTREE . 45

1

2 CONTENTS

3.3.4 GLOBAL . 47
3.3.5 NORM . 49
3.3.6 CONTRIBUTE . 49

3.4 Cube structure . 52
3.4.1 TRANSPOSE . 52
3.4.2 CROSSOVER . 53
3.4.3 DELTA . 55
3.4.4 BLOWUP . 56
3.4.5 DISAGGREGATE . 57
3.4.6 MERGE . 59
3.4.7 PROMOTE . 62
3.4.8 DEMOTE . 62
3.4.9 SHUFFLE . 63

3.5 Cube output to file . 64
3.5.1 SAVEAS . 64
3.5.2 UNLOAD . 65
3.5.3 EXPORT . 66
3.5.4 TOHTM . 69

3.5.4.1 Template design 70
3.5.5 TOLATEX . 71

3.6 Printed outputs . 72
3.6.1 REPORT . 73
3.6.2 MASKPRINT . 74

3.6.2.1 Mask design . 76
3.6.3 DRAFTPRINT . 77

3.7 Time-related operations . 78
3.7.1 GROWTH . 79
3.7.2 TODATE . 79
3.7.3 TOPERIOD . 80
3.7.4 TREND . 81
3.7.5 FORECAST . 82
3.7.6 MOVINGAVERAGE . 84

3.8 Secondary cube management . 84
3.8.1 STORE . 85
3.8.2 GETBACK . 85
3.8.3 RELEASE . 85
3.8.4 SWAP . 86

4 Administration 87
4.1 General concepts . 87
4.2 Database administration . 91

4.2.1 SELECTDB . 91
4.2.2 NEWDB . 91
4.2.3 CROSSDB . 92
4.2.4 DOCDB . 93
4.2.5 DELETEDB . 93

CONTENTS 3

4.2.6 RESIZEDB . 93
4.2.7 MOVEDB . 94

4.3 Database loading . 95
4.3.1 DATAENTRY . 95
4.3.2 LOADDB . 96
4.3.3 TRANSFER . 97
4.3.4 BUILDDB . 100
4.3.5 FILLDB . 103
4.3.6 RANDOMDB . 104
4.3.7 DOCK . 105

4.4 Administration formulae . 106
4.4.1 UPDFORMULAE . 106
4.4.2 CHECKSYNTAX . 109
4.4.3 SHOWFORMULAE . 110
4.4.4 FAMILYTREE . 111
4.4.5 RUNFORMULAE . 111

4.5 Database labels . 112
4.5.1 UPDDBLABELS . 112
4.5.2 PROTECTDB . 113
4.5.3 DB2LABEL . 114
4.5.4 LABEL2DB . 114

5 Namesystems 115
5.1 NEWLABEL . 117
5.2 UPDLABEL . 118
5.3 DELETELABEL . 118
5.4 LISTLABEL . 118
5.5 DOCLABEL . 118
5.6 TXT2LABEL . 118
5.7 LABEL2TXT . 119
5.8 SYNONYM . 119
5.9 CROSS . 119
5.10 CONVERGE . 121
5.11 PAIR . 121

6 User interface and keywords 123
6.1 Dialogue boxes . 123
6.2 Set Language . 127
6.3 Boolean operations . 131
6.4 Set operations on tables . 132
6.5 Indented tables . 133
6.6 Backend Modules . 134
6.7 Miscellaneous utilities . 137
6.8 The APL interpreter . 140
6.9 Operators . 142

4 CONTENTS

A Keyword index 145

B How-to index 151

C File extensions 157

D Bibliography on DSS OLAP 159
D.1 Books by author . 159
D.2 Books by topic . 163

Chapter 1

Introduction

“Entia non sunt multiplicanda praeter necessitatem”

William of Occam (1285-1349)

This document represents the user manual of the software product 3-way
TANGRAM, a tool for managing and manipulating multidimensional data
structures.

It is intended both for the end user and for the application developer.
TANGRAM databases can be accessed from Microsoft Excel via an add-

on called TANGRAM-reader which is explained in a different document
readerman.pdf.

Overview

TANGRAM has been designed as a general purpose tool but with a view to
company data which are often best structured as multidimensional tables.

Basically, TANGRAM has been built around the idea of a data cube, that
is, a multiway table containing both numeric cells and the labels that associate
a meaning to every cell.

Every cube is physically represented by a TANGRAM database and stored
on file.

The number of physical dimensions (or cube rank) in this version can range
from 3 to 15.

In addition, the labels of each dimension can entail an unlimited number of
fields (or facets) and, in this sense, the number of logical dimensions is unlimited.

The names of the dimensions are user-chosen (for example MEASURES,
PRODUCTS, MONTHS, CHANNELS, AREAS).

Some of these dimensions deserve a special treatment (no matter what they
have been named): for example the dimensions that represent Variables, and
Time periods.

5

6 CHAPTER 1. INTRODUCTION

TANGRAM’s approach to this is to reserve a special treatment to 3-way
cubes in Standard Orientation, in which the dimensions represent Variables,
Time periods and Items of some kind.

For instance, a string of cells along the dimension Time periods can be
regarded as a timeseries and TANGRAM supports a good number of time-
specific operations (like running sums, time lags, seasonal behavior,...).

Other fundamental operations (like computation, roll-up and selection), on
the contrary, are meaningful on any axis.

In this manual, modules and keywords that only apply to cubes with three
dimensions will be marked 3-way

Remember also that TANGRAM offers powerful techniques to change the
cube rank and, more importantly, to move single facets from dimension to di-
mension or transform them into new dimensions.

Applications

TANGRAM has been applied in diverse fields, both to automate a sin-
gle company function (for example: cashflow management, investment control,
business plan, consolidation, . . .) and to model the company as a whole.

The same TANGRAM databases that are created and managed for control
purposes can become, without additional investment, the databases of an Ex-
ecutive Information System (EIS), that is to say, a software that allows the top
management to freely navigate on company data and identify potential problems
and opportunities.

♦ Although the creation and population of TANGRAM databases can be a
matter of minutes, experience has shown that it is very recommendable to start
with the preliminary operations of

• definition of the data structure, including data nomenclature and appro-
priate level of detail;

• data sourcing, that is, identification of the systems that will feed TAN-
GRAM with relevant data (the main data source being typically the com-
pany information system).

It is neither necessary nor advisable to define all necessary outputs (reports,
analyses, computations, . . .) at the start, since TANGRAM is capable of ob-
taining nearly any output from its data structure.

Product profile

To conclude, TANGRAM’s innovation can be summarized in the following
points:

• support of a Cartesian database (rather than a relational one) which allows
for global operations on multidimensional structures;

7

• a query and a computation language that were designed specifically for
multidimensional structures;

• ease to grow upwards (TANGRAM procedures), downwards (program-
ming) and side-ways (exchanging data with other software tools);

• seamless integration between ready-to-use modules, keyword languages
and ad-hoc programming;

• safety and transparency, to ensure that only meaningful operations are
permitted and every output is appropriately named.

If you wish to quickly spot TANGRAM’s unique or innovative features,
have a look at the sections on CROSSOVER, BLOWUP, CONTRIBUTE,
QUERY, GROWTREE, SHUFFLE, MERGE in Data Analysis and also
BUILDDB in Administration.

Caveat

Finally, where is TANGRAM applicable only with caution ?

1. In case you are happy with a spreadsheet. In case your data volumes are
very reasonable, a two-way grid is sufficient and you don’t see the need to
handle hypercubes.

TANGRAM’s emphasis on 3-way cubes may lead you to think that the
structure looks the same as rows, columns and sheets in a spreadsheet.

In fact the comparison can go no further and the approaches are quite
different. For example:

• In a spreadsheet you want different formulae on a cell-by-cell level.
TANGRAM is intended for safe mass operations, where you are un-
able to inspect your cells one by one.

• The volumes you handle with TANGRAM are up to 2 Gigabytes -
The maximum number of axes is 15.

• A spreadsheet takes no responsibility for the meaning of data and
does not care if you label your cells correctly or not. TANGRAM
makes sure that a consistent set of labels follow your cells in all
transformations.

• TANGRAM emphasizes safe, documented, reproducible operations
on very large and complex data structures.

2. In case your data structure is profoundly relational, meaning that very
large element populations are mostly in a many-to-many relationship.

TANGRAM uses a Cartesian data model, meaning that some or most
populations are in an all-to-all relationship and become cube axes.

8 CHAPTER 1. INTRODUCTION

Typically, in real life, you have a mixed situation, where some relationships
are many-to-many, some are many-to-one (children-parent), some are all-
to-all.

TANGRAM handles many-to-many and many-to-one relationships as ex-
ceptions, using multi-facet labels on the cube dimensions.

In principle, all relational operations are possible on the labels of each
dimension.

If, however, you end up with too many long facets on a dimension, you
spend your time pointing at them with the mouse. If this becomes the rule,
you might be happier with a record-and-field oriented tool or a relational
database.

1.1 Basic terms

Axis See: Dimension

Cell A single number in an N-way cube. A cell can be identified by N indices
or N element labels.

Co-ordinate See: Index

Cube An N-way numeric table plus N associated text labels that describe the
dimension elements. This is TANGRAM’s basic object.

Cube rank The number of dimensions of a cube. For instance, a 4-way cube has rank
4 or has 4 axes.

Database A cube that resides on file.

Dimension A population of elements on a cube axis and the associated text labels.
For example: a list of Customers.

Dimension names Plural (collective) names of the elements of a dimension. For example:
“Measures” “Months” “Salesmen”

Facet Some columns in a label that code an aspect of the elements and can
be used like a field in a record. A facet is synonym of field, key, code,
except that a facet is not formally declared in TANGRAM. For example:
2008 12 31 can be regarded as containing three facets. If all element

labels have this structure YYYY MM DD then, say, the year facet can be
used for sorting, selecting, joining, computing etc.

Flat file A fixed-field text file, typically used to import data into TANGRAM (or
to export data). A flat file contains both codes, that become TANGRAM
labels, and numbers (in char. format) that become cube cells.

Hypercube See: Cube

1.2. NOTATION 9

Indented namesystem (or indented label) A namesystem where initial underscores define an el-
ement aggregation tree.

Index The ordinal number that determines the position of an element within a
dimension. For example: “Austria” has index 10 on dimension Countries.

Keyword A TANGRAM reserved name, typically used to provide an answer to a
module (for instance: ALL) either alone or with other keywords (for
instance: ALL BUT 5 TO 12).

Labels Texts that describe the elements of a dimensions. Each line is either free
text, like Profit before taxes or is organized as fixed-length facets,
like

CA LosAngeles BDG 2007
IL Chicago BDG 2006

Library A file that contains objects of three sorts: procedures, namesystems, user
variables.

Module A TANGRAM self-contained program that typically transforms the cur-
rent cube or performs an operation on a database.

Namesystems Reference labels that are not yet associated with a cube dimension.

Procedure (alias: macro, script). The sequence of calls that are issued in a TAN-
GRAM worksession, saved in editable form.

Standard orientation A 3-way cube where the axes represent Variables, Time periods and Items
of some sort. This is the simplest cube structure.

Time series A vector of cells on a time axis. If you keep all cube coordinates fixed and
vary only the time coordinate, you obtain a time series.

User variable A variable assigned by the user (as opposed to those managed by TAN-
GRAM).

Worksession All work you do with the TANGRAM modules (from the moment you
leave the Main Menu).

1.2 Notation

Symbols in a box, like Ctrl ↑ , represent keys to be pressed.
Commands in typewriter style, like PLUS , must be entered exactly as

shown.
Text in italics, like list, will be replaced by the one of your choice.
For example, where the manual suggests the answer ALL BUT list the user

might write ALL BUT 3 5 29 31 .

10 CHAPTER 1. INTRODUCTION

Names in boldface, like COMPUTE, are self-standing modules that you
find in menus and procedures. Keywords are shown in typewriter style, like
PICK , and are typically used to provide a single answer to a module.

Paragraphs marked ♦ end an example or start a new topic.

The word Advanced marks advanced or rarely used features, or else
details that mainly interest programmers.

The word 3-way marks modules or keywords that apply to 3-way cubes
only.

The word alias is used to suggest that a term is also known under some other
names. For example: a cube (alias: a database).

All TANGRAM names are case-sensitive. File names are not.

Chapter 2

Main menu and worksession

2.1 Overview

The TANGRAM menu system is structured as a tree.
When you start TANGRAM, (after the sunflower welcome screen) you get to

the Main menu, which deals with procedure management, library management
and initial TANGRAM configuration.

A worksession is defined as your activity in lower-level menus, that is, it
begins when you choose Start worksession and ends when you return to the
Main menu.

A procedure saves your last worksession for later use. Consequently, you can-
not save the work done in the Main menu itsef, even if few modules of the Main
menu (BROWSE, SELECTDB,...) duplicate those found in the worksession.

A library file is a collection of user objects: procedures, namesystems and
private user variables.

A whole library is read in memory when you start, modified by your work-
session activity and saved to file when you leave TANGRAM.

Libraries can be managed, copied, deleted with Windows Explorer but they
are used only via TANGRAM services.

When you leave TANGRAM the current library is saved to disk, after con-
firmation. Current and secondary cubes (defined later in Data Analysis) are
lost.

2.2 Main menu

♦ Menubar

• File

– Open database — select the current database, losing the current
cube

11

12 CHAPTER 2. MAIN MENU AND WORKSESSION

– New database — create a new physical database

– Save cube as — save the current cube as a new database

– Exit TANGRAM — save the current library

• Edit

– Browse cube — show the cell contents of the current cube

– Summary — show the labels of the current cube

– Edit ASCII file — edit a text file, possibly with framing characters

• Procedures

– Save worksession — save the work done in the Session menu and
below

– Update proc

– Delete proc

– Copy proc

– List procs

– Document procs

• Libraries

– Save lib — save the current library to file

– Save lib as — save creating a new library

– Switch to lib — the current libary is saved, then the new library is
loaded

– Delete lib — delete a library on disk

– Copy objects from — selectively copy objects from a library on
disk to the current library in memory
After choosing from which library to copy, you are prompted to
choose the objects to be copied (that will overwrite objects of the
same name in memory).
The prefix of the objects in the library listing helps you determine
the type of object:

∗ proc stands for a TANGRAM procedure;
∗ labl stands for a label, alias a namesystem;
∗ user stands for a private user variable.

– Clear lib — delete all procedures, namesystems, private variables
in memory

• Configure

2.2. MAIN MENU 13

– Install password
This module completes the installation, defining the user, the pass-
word and the serial number.
According to the password, your TANGRAM installation can be
∗ Evaluation copy (the default). Database creation inhibited.
∗ Single CPU license. All functions permitted but cannot be in-

stalled on a different PC.
∗ Portable license. All functions permitted and, in case of need,

the same parameters allow you to re-install TANGRAM.
– Default dir

Advanced This module lets you define the default directories
(alias: folders, paths) where user files are placed. This includes files
of seven types: databases, libraries, masks, log files, HTML templates
and outputs, LaTeX outputs, text files.
Of course, you can place your files on any disk and in any directory,
but it is tidy to keep all your files of the same nature together, so
that TANGRAM may direct you to the applicable directory.
If you change default directories, remember that this will take effect
at once, so that TANGRAM will be at a loss to resume work without
current database and library.
To avoid this, it is a good idea to populate your new directories with
a database and a library before you adopt them as your default.

– Format chars
Advanced This module lets you redefine the formatting characters

used by REPORT and MASKPRINT.
– Miscellany

Advanced This module lets you define four global parameters:
∗ Database lock.

In a LAN environment, this is used to prevent conflicts when two
users happen to access the same database.
If you are using database sharing in a LAN, set this parameter
to 1 in ALL involved PC.
If you use 3-way TANGRAM on a single PC, set this parameter
to 0, meaning that you don’t need the lock.

∗ Printed page (rows)
The modules REPORT, MASKPRINT and DRAFTPRINT
produce printed output with a fixed font. This parameter repre-
sents the number of printed lines per page in portrait orientation.
The actual font size is computed according to the settings (res-
olution, orientation, ...) of the default printer.

∗ Display only (rows)
This is used to truncate very large tables after a given number
of rows, to make the output more compact.

14 CHAPTER 2. MAIN MENU AND WORKSESSION

See, for example, the output of module SUMMARY.
∗ BUILDDB block (records)

The exploration of a flat file and the creation of a database are
non-trivial and often time-consuming operations.
The performance of the module BUILDDB depends on the
contents of the flat file (mostly on the way it is sorted) and also
on the available RAM memory.
If you routinely import very large flat files from the mainframe,
you may want to fine-tune this process to reduce the overall
loading time.
The parameter represents the number of records that are read
and processed at a time. Up to a point, performance is improved
by increasing this parameter (at the risk of Memory Full errors).

• Help

– Manual — open this manual userman.pdf in Acrobat reader

– Excel reader — open the TANGRAM-Excel document readerman.pdf
in Acrobat reader

– Installation readme — open the installation notes in your browser

– TANGRAM homepage — open the TANGRAM site in your browser

– About TANGRAM — show the TANGRAM version

♦ Toolbar buttons

• Worksession — start the TANGRAM menus - start defining a procedure

• Save worksession — save your last worksession as a procedure

• Update proce — edit a procedure

• Browse cube — show the cell contents of the current cube

• Manual — open this manual userman.pdf in Acrobat reader

• Exit TANGRAM — Lose the current and secondary cubes, save the
library

• Arrange vert. — Arrange the current labels on top of each other

• Arrange horiz. — Arrange the current labels side by side

• Arrange slated — Arrange the current labels in cascade

• Select highlighted — Select the highlighted elements - Reduce the
current cube.

• Reset database — Select the whole current database

2.3. SESSION MENU 15

2.3 Session menu

• Data Analysis

This menu contains all TANGRAM commands for exploiting databases to
produce analyses, computations, printouts and many other outputs.

Refer to Chapter 3 that explains these services in detail.

• Administration

This menu groups several services related to the management of TAN-
GRAM databases, for example, how to create one, define its labels, pop-
ulate it with data, define formulae and so on.

Refer to Chapter 4 that explains these services in detail.

• Namesystem management

This menu contains all services for the management of namesystems (that
is, reference nomenclatures) that are typically kept for later use on some
cube dimension.

For example: master lists of Customers, Products, Accounts,...

Refer to Chapter 5 that explains these services in detail.

• Run a procedure

This entry allows you to rerun a stored procedure. Since the procedure call
is done within the worksession, this is a convenient way to create nested
procedures.

There is no preset limit to the nesting level.

When a procedure is rerun, you may want to trace all steps (and per-
haps change the answers) or you may want it to run unattended, in the
background.

Unattended execution is a good choice for production runs: it implies
that the Questions and Answers box appears only in case of unacceptable
answers, the Info box displays only warnings and errors and the Binary
Choice box assumes the default reply.

User options

– the procedure name (in the current library)

– execution mode (1 for step-by-step, 0 for unattended)

2.4 About procedures

A procedure keeps track of all modules successfully called in a worksession and
the call arguments.

16 CHAPTER 2. MAIN MENU AND WORKSESSION

To create a procedure you simply execute the worksession, return to the
Main menu and choose the option “Save last worksession”.

The procedure name can be a character string of maximum length 25 char-
acters, containing upper and lower case letters, digits and underscores ’_’.

For example:

MONTHLY_REPORTS_2007

A procedure is permanently saved as part of the current library.

♦ When you execute a procedure, you may either confirm the same answers
of the initial execution or modify them. You may also skip some modules by
choosing “Cancel”.

In this way, the re-execution produces a clone of the original procedure,
which is automatically saved with the same name and a final underscore.

For example:

MONTHLY_REPORTS_2007_

These clones are not saved to the library and are overwritten at each new
execution, so that it is your responsibility to rename them in case you want to
keep them.

♦ It is a good habit to start a procedure with the choice of the database, so
that it can be executed in any initial condition.

Procedures represent a simple and powerful way to “program” TANGRAM,
producing safe and automatic applications for other users.

As noted, a procedure can call other procedures, with unlimited nesting.
A procedure can also call extra-menu TANGRAM programs or code of any

type via the EXECUTE module in Data Analysis.
Procedures in the current library are read into memory at the start of a

TANGRAM session and saved to the library before leaving TANGRAM.
More complex applications may want to split the collection of procedures in

different libraries.
There is no practical limit to the size of the libraries or to the number and

length of the procedures.

♦ A procedure contains a sequence of calls to TANGRAM modules, as il-
lustrated in this example:

! Created on 18/07/2006 11:36:29 in library D:\new.LIB

! Last updated on

! Last run on

goSELECTDB ’D:\TANGRAM\HLM\msales.hlm’

goSUMMARY

goSELECT ’2’ ’5 10 15’

goCOMPUTE ’2’ ’QUARTER 1’ ’ SUM [1 2 3]’

goNORM ’2’ ’4’

2.4. ABOUT PROCEDURES 17

Advanced Beginners normally prefer to create procedures with a work-
session —expert users may want to write and maintain procedures with the
editor.

Editing a procedure, you may control the flow of execution with a control
structure. The available keywords are documented in the Dyalog Help (Language
help, Defined Fns&Ops, Control Structures) and exemplified here:

! Created on 12/02/2007 16:59:59 in library lib\modist.LIB

! Last updated on 14/02/2007 11:53:06

! Last run on 23/05/2007 19:03:54

! Use of control structures in procedures

! Test if old file exists:

:if ce ’TXT\TEMP1.TXT’

DOSERASE ’TXT\TEMP1.TXT’

5 INFO ’Deleted old TEMP1.TXT’

:else

5 INFO ’File TEMP1.TXT not found’

:end

:for MONTH :in 1 TO 12

goRUNPROC ’DO_MONTH’ ’ON’

:end

:while X < Y

! Statement

! Statement

! Update X,Y

:end

A programmer may also add APL code, input-output arguments and local
variables.

Advanced Each procedure line calls a program with the prefix go (a
frontend version of the module).

Frontend programs will display their arguments during re-execution, let you
modify them, check them for acceptability and save the call in the (clone) pro-
cedure.

Most programs also exist with the prefix do .
This backend version of the program accepts inputs in a more compact form,

executes without user dialogue and does not check the acceptability of its inputs.
For example the TANGRAM module SELECT is implemented by a fron-

tend and a backend programs. Typical calls may look like:

goSELECT ’1’ ’ALL BUT LAST’
doSELECT 1 (1 TO 11)

Advanced Procedure executions are logged in file log\proc.log which
can be useful to check the correctness of unattended executions. This is what
the log file looks like:

18 CHAPTER 2. MAIN MENU AND WORKSESSION

22/01/2007 16:49:39 Sec. 428 ---- Start proc MONTHLY

22/01/2007 16:49:50 Sec. 439 ------- Start proc LOAD_MONTH

22/01/2007 16:50:23 Sec. 471 ------- End proc LOAD_MONTH - sec. 33

22/01/2007 16:50:25 Sec. 474 ------- Start proc RECOMPUTE_ALL

22/01/2007 16:50:30 Sec. 479 ------- End proc RECOMPUTE_ALL - sec. 5

22/01/2007 16:50:32 Sec. 481 ------- Start proc REPORTING

22/01/2007 16:50:38 Sec. 486 ---------- Start proc TO_BOARD

22/01/2007 16:50:42 Sec. 491 ---------- End proc TO_BOARD - sec. 5

22/01/2007 16:50:44 Sec. 492 ---------- Start proc TO_STAFF

22/01/2007 16:50:50 Sec. 498 ---------- End proc TO_STAFF - sec. 6

22/01/2007 16:50:51 Sec. 499 ------- End proc REPORTING - sec. 19

22/01/2007 16:50:51 Sec. 500 ---- End proc MONTHLY - sec. 72

Chapter 3

Data Analysis

Overview

This menu uses databases to produce analyses, queries, computations and
printouts.

From this menu, you cannot alter the existing databases (this is reserved to
Administrator services).

♦ At any time a current database and a current cube are defined. Optionally,
you may also have a secondary cube.

Every command works on the current cube produced by the previous com-
mands.

The commands DELTA, MERGE, DISAGGREGATE, BLOWUP re-
quire both current and secondary cube as their inputs.

Note that some commands are executive and alter the current cube, while
others are just informative and produce output without modifying the cube.

♦ The current cube can be virtual if only the labels are in RAM memory, or
real when the numeric cells are also in memory.

Some commands (like SUMMARY, SELECT, RESET) will work on
virtual cubes, others will require the cube to be read into memory.

If your database is larger than the available RAM memory, you will have
to work on a reasonably sized portion of it, on which all commands will be
available. Typically you use SELECT on a dimension to reduce the cube size.

The traffic light before each command name will turn green when the size
of the current cube is compatible with available memory.

The secondary cube (explained in this Chapter) is always real.
In some kind of computation, (EXECUTE, GLOBAL, BROWSE) you

may reference the current and secondary cubes as T and xT

♦ The following sections present the available options, in menu order.

19

20 CHAPTER 3. DATA ANALYSIS

3.1 Virtual cube operations

3.1.1 SELECTDB

Function

Choose the current TANGRAM database.
The previous current cube is lost, the secondary cube is not.
The new current cube is initially equal to the whole database.
You can open only one database at a time.
Since the secondary cube is unaffected by this operation, it is an expedient

way to assemble data from different databases. See “Secondary cube manage-
ment” in this chapter.

User options

• the name of the database to open .hlm

3.1.2 SUMMARY

Function

Display the size and labels of current and secondary cube.
This is normally used to see the effect of previous commands before proceed-

ing further.

Related topics

Topic Section Page

BROWSE 3.2.1 26
MISSING 3.2.3 34

3.1.3 SELECT

Function

Select, repeat or reorder the elements of a dimension.

Motivation

This command is typically used to reduce the current cube by selecting
elements on one dimension at a time.

The same command will let you select some elements, repeat some and
change their order.

The command works on each dimension independently.

♦ The power of this command is due to the number of available ways to
express the element list.

3.1. VIRTUAL CUBE OPERATIONS 21

You can express the element list as indices (like 3, 7, 10 TO 20, 7), as la-
bels (like "Cost of goods" "Revenues" "Gross margin") or you can sim-
ply leave this input field empty to be prompted for an interactive choice.

A vast number of keywords, defined in the Set Language, let you express
your choice in other ways, based on labels or cube contents.

For example your element selection may be:

WHERE ALLTRUE (T > 0) AND (T < 100)

Use the keyword BUT to code the elements to be dropped:

ALL BUT 13 TO 21

♦ The command SELECT is often used repeatedly on the same dimension.
Remember, however, that the elements are renumbered each time.
After you select the element indices

5 4 6 12 10

they will be renumbered as

1 2 3 4 5

If you wish to keep track of the original indices, the doLABELNUMBER pro-
gram (page 23) will write the numbering inside the labels.

Note that if you select less elements than you intended, you must start all
over with a RESET command (and lose the selections on other dimensions).

♦ It is often useful to select the same element many times.

Example

If you keep the rate of exchange in a cube of 1 VARIABLE, 12 MONTHS, 1
COMPANY you may want to expand it to 100 VARIABLES, 12 MONTHS, 24
COMPANIES to make it conformable with the cube of values to be converted.

To achieve this, you simply select the Rate of Exchange cube on dimension
1 and supply this index list:

100 / 1

Then you select on dimension 3 with an index list

24 / 1

The notation 100 / 1 means the value 1 repeated a hundred times.

♦ Note that, by selecting with keywords, you may select zero elements. This
is not reported as an error, but then you have no way to proceed further, except
issuing a RESET command. Not all modules are guaranteed to correctly handle
a cube with zero elements.

22 CHAPTER 3. DATA ANALYSIS

User options

• The dimension to select

• The index list, expressed in a variety of ways

Related topics

Topic Section Page

Set Language 6.2 127

3.1.4 RESET

Function

Reset the current cube to be equal to the whole database.
This command deletes the current cube and reassigns it as the whole current

database. The current cube is initially virtual.
See the commands SAVEAS and STORE to save the current cube before

issuing a RESET.

3.1.5 EXECUTE

Function

Direct code execution.

Motivation

This module provides a passthrough to the interpreter, letting you enter any
command, expression or program name for immediate execution.

It can be used as a calculator or as an expedient way to call rarely used
programs that are not included in the menu system.

Examples

You run EXECUTE and type in
1234 + 4567

In the output window you get
5801

To force zeroes where the current cube has missing values:
ND FORCE 0

To transform the cube values into rank positions 3-way :
doRANK

Advanced EXECUTE expects a result and most programs produce a
result or a return code. A program that produces no result is best preceded by

3.1. VIRTUAL CUBE OPERATIONS 23

the ♦ symbol. Otherwise the program may run correctly but the user will be
warned of a Yields no result error.

Advanced As mentioned, the EXECUTE command is a general purpose
passthrough to the APL interpreter. There is no preset limit to the kind of
instructions that you can submit (at your own risk) via this trapdoor. See the
section The APL interpreter on page 140 for minor differences between standard
APL and what EXECUTE accepts.

Advanced You can assign private variables with a colon ′ :′ symbol.
If the variable name begins with user then the variable will be saved in

the current library (Note for programmers: nested arrays are not supported in
libraries). Otherwise the variable is lost when you leave TANGRAM.

Examples:

PI : 3.14159
XYZ : COUNT 3
userNAME : ’Dept. of Agriculture’

In rare cases there might be a conflict between your variables and TANGRAM’s
names. This is avoided if you use names with the prefix user

User options

• A program name or, in general, an instruction to execute.

Errors and warnings

• Any interpreter-level error produced by your instruction. For example:

Yields no result
Syntax error
Illegal argument
Illegal index
Length mismatch
System limit error
Wrong rank
Memory full

3.1.6 Label manipulation

Function

Manage the labels of the current cube (not in the database).

Motivation

24 CHAPTER 3. DATA ANALYSIS

The labels are codes or texts that describe the elements of each dimension.
They are a crucial part of database definition and are best chosen as compact,
informative names and codes that optimize data management.

In particular you may have multi-facet labels to classify the same element
population according to several aspects.

These commands allows you to alter these labels at a later phase, so that
they become suitable for displays and printouts.

Example

If you manage a group of companies, you might want to classify each com-
pany with three facets (state, size, business field), like in this example:

PEGASUS Ass. TX L HW
ACME Corp. MI XL SW
JOHN DOE & C. CA S SW

These additional facets provide many-to-one associations that can be ex-
ploited to select, aggregate, sort, ... the elements.

Later, you may want to delete these codes or replace them with full descrip-
tions, before the cube is ready for printing.

♦ In addition to the menu modules, these backend modules are also relevant
to label manipulation (use them via EXECUTE):

• doLABELAXES string1 string2 string3 ...

Assign new names to the dimension names (of the current cube). Empty
strings leave the name unchanged.

For instance:

doLABELAXES ’ ’ ’Months/Versions’ ’Keys’

• doLABELGROW dimension text

Append text to the current cube labels.

This utility program appends the char string text to all labels of the current
cube on a given dimension.

For instance:

doLABELGROW 3 ’ Forecast’

• doLABELNUMBER dim

Append ordinal numbers to the labels of dimension dim.

Sequence numbers (like #001 #002 #003 ...) are inserted inside the labels.

This can be useful if you want to trace the initial element position during
a sequence of SELECT, COMPUTE and CROSSOVER commands.

In other cases, you end up with duplicates in the labels and want a way
to differenciate them.

3.1. VIRTUAL CUBE OPERATIONS 25

• doLOCATE dim search-string

This command will assist you in locating a label in a large population.

You can supply the beginning of the first words and obtain a list of hits,
that is, labels that match your request.

The search is case insensitive and ignores accidental differences such as
accented vowels, punctuation signs, multiple spaces etc.

Example

A label such as

Depreciation fund (ex art. 26 D.P.R. 12.2.87)

can be located with one of these calls

doLOCATE 1 ’DEP FUND EX ART 26’

doLOCATE 1 ’ D F EX ’

doLOCATE 1 ’ dep fund’

3.1.6.1 LABELCOLUMNS

Function

Select, drop or reorder the label columns.
You normally choose the dimension and leave the selection mask empty, so

that a Column Selection Box is opened for a convenient interactive choice.
If you save a procedure containing this choice, you will notice that the se-

lection mask is stored as a character string, like ’2221111333’.

User options

• the dimension

• the column selection mask

3.1.6.2 LABELJOIN

Function

Replace a facet in the labels with its full description taken from a namesys-
tem.

This is known as a join operation and requires a common key in the label
and namesystem.

You point to the key position both in the label and in the namesystem and
you get the namesystem contents inside the labels.

Example

You start with labels containing customer codes:

26 CHAPTER 3. DATA ANALYSIS

002
003
005
009

You reference a namesystem CUSTOMERS having a full description of the cus-
tomers:

001 TX Hewlett Packard
002 CA Synaptics
003 MA Digital
004 VA Orion
005 IL Pegasus

The key that drives the join operation is, of course, represented by the first
three characters in each table (this is the primary key in the namesystem).

After the operation, the current cube labels will display both old and new
contents:

002|002 CA Synaptics
003|003 MA Digital
005|005 IL Pegasus
009|????????????????

Typically, this operation is followed by the LABELCOLUMNS command,
to select the columns to be retained.

User options

• the dimension

• the namesystem

• the label mask

• the namesystem mask

Errors and warnings

• Warning - Duplicate elements in the namesystem

• Warning - Some codes were not found in the namesystem (they are re-
placed by a string of ’???’)

3.2 Cube inspection

3.2.1 BROWSE

Function

3.2. CUBE INSPECTION 27

Cube display, update, copy to clipboard.

Motivation

This module opens a spreadsheet-like window, letting you browse (or update)
the current cube, print it selectively and copy individual pages to the Windows
clipboard.

Two cube dimensions will be expanded as rows and columns. The rest will
become combos that allow you to move on each axis. Remember that you are
displaying and updating the current cube, not the database.

You may also use a color code to classify the cells according to a given
criterion. For example, you may want to highlight negative values, values below
budget, actual versus forecast etc.

The definition of updated and read-only cells can be done with a single value
for the whole cube, but also with a formula.

Both formulae (cell color and update rights) obey the general rules of the
GLOBAL command, with the addition of specialized keywords which are listed
in this section.

User options

• Choice of the cube dimensions shown as rows and columns

• Formula that defines colors (in the range 0 to 7) on a cell-by-cell basis

• Update rights on a cell-by-cell basis.

3.2.1.1 Formula syntax

If you are not interested in coloring, leave the default formula (green).
Any formula that produces integer values in the range 0 to 7 is acceptable.
The names of the colors are
black, blue, green, cyan, red, magenta, yellow, white

Several specific keywords are available:

• color-list UPTO threshold-list

Define the color based on the value in the cell.

N increasing thresholds define N +1 intervals, to which N +1 colors apply.

Example

Negative values must be green, values in the range 0-100 red, values above
100 white:

(green,red,white) UPTO 0 100

28 CHAPTER 3. DATA ANALYSIS

• color-list percentile threshold-list

3-way Define the color based on the population distribution. (For in-
stance, best 5% and worst 5%)

A population is defined on dimension 3 and percentiles are computed on
this population, according to your threshold list.

N increasing thresholds define N +1 intervals to which N +1 colors apply.

Example

Your current cube entails 3 Ratios, 5 Years, 100 Companies. For each
ratio-year pair you have a population of 100 Companies in which you
want to detect the best and worst 5% performance.

The best 5% must be yellow, the worst 5% red, the rest green:

(yellow,green,red) percentile 5 95

• dimension INLIST list

Define the color based on the cell index along a dimension.

For example, 2 INLIST 3 6 9 12 refers to elements 3,6,9,12 on dimen-
sion 2 of the current cube (irrespective of your view, that is, row and
column choice).

This keyword returns a Boolean table of the same size as the current cube.
This table is typically used within an IF-ELSE construct.

Example

Periods 3, 6, 9, 12 are end-of-quarter months and must be shown in white,
the other periods in green:

(white IF 2 INLIST 3 6 9 12)
ELSE (green IF 2 INLIST 1 2 4 5 7 8 10 11)

Since green is the default color, in this example the ELSE part may not
be coded:

white IF 2 INLIST 3 6 9 12

• SUB

Define a cube subset as the intersection of element sets on all dimensions.

This keyword will ask you to select a subpopulation on each cube axis and
will return a Boolean table of the size of the current cube.

3.2. CUBE INSPECTION 29

At the intersection of seleted subsets, the result will be 1; elsewhere it will
be 0.

Example

The area selected by SUB must be yellow, the rest red:

(yellow IF SUB) OrElse red

If you code several calls to SUB in the same reply, you should be aware
that the order of execution is right to left, so that the first set of choices
will answer the rightmost SUB:

(yellow IF SUB) OrElse (red IF SUB)

♦ This is an open-ended language in which you can freely mix computations,
Boolean operators, variable names and keywords.

If you happen to have a secondary cube of the same shape as the current
one, you refer to them as xT and T respectively.

Examples

red IF T > 1320 red IF T> 1200

red IF (T > xT TIMES 1.05) OR (T < xT TIMES 0.95)

white IF (T = 0) AND NOT (xT = 0)

yellow IF (norm T) > 0.02

The last example will display in yellow all cells above 2% of the total cube,
irrespective of their coordinates.

Advanced Color codes disappear when you quit BROWSE (although
you may save the call and apply it to a different cube). But if you want color
codes to represent cell attributes that are saved with the cube, TANGRAM
doesn’t support you.

Or, does it? With little extra effort you can have cell values and cell at-
tributes faring together and saved with the cube.

See the main steps:

1. STORE the current cube

2. Call BROWSE and assign your color formula to xT , for ex.

xT: (red IF T<0) OrElse white

3. PROMOTE the current cube with a new element “Value”

4. SWAP

30 CHAPTER 3. DATA ANALYSIS

5. PROMOTE the current cube with a new element “Attribute”

6. STORE the current cube on the last dimension

7. GETBACK

8. SAVEAS

The net result is a cube with an extra 2-element dimension, which can be up-
dated via data entry. Your attributes may code for any permanent cell property,
like: 0=estimate 1=forecast 2=actual 3=external source etc.

3.2.1.2 Update rights

If you are not interested in cell-by-cell update rights, use a global reply, like
ON or OFF (which stand for 1 and 0).

Otherwise, all keywords and techniques that were proposed for the color
formula apply here also.

The only difference is that you are defining Boolean values, not integers 0
to 7, and that in this case the default is 0.

Examples

Let me update only the cells with a missing value:

ON IF T = ND

Let me update periods from September to December:

ON IF 2 INLIST 9 TO 12

Let me define a subcube to update and also update negative cells everywhere:

ON IF SUB OR T < 0

Advanced Let me define the update rights on the result of the color formula,
so that I reply to SUB only once. This is accomplished by assigning a result
to a variable. The color formula may be:

ABC: (red IF SUB OR T= xT) OrElse white

and the update rights may refer to ABC:

ON IF ABC=white

3.2.2 QUERY

Function

3-way Formulate an English-like query on the current cube. This applies
to 3-way cubes in Standard Orientation, with axes meaning Variables, Periods,
Items.

3.2. CUBE INSPECTION 31

Motivation

This module offers access to a sophisticated query language.
It is understood that you have Variables on dimension 1, Periods on dimen-

sion 2 and Items on dimension 3 (The actual dimension names are unimportant—
they might be called Measures, Months and Customers).

The query is formulated on Variables and returns a collection of Items.
The object of each query is then a single time slice (Variables and Items)

and the query is simply iterated on each period.
The query syntax is designed for good readability: a query looks like a

natural-language sentence that uses a limited set of keywords.
This is intended to approach an ideal situation where:

• sentences that sound acceptable in English are also correct queries;

• the query produces what one would expect by the English meaning.

In more practical terms, a query consists of Variable names and keywords
from the following set:

count average total max min
equal from to above below
where label and or not

Variable names can be expressed in the double-quote notation, that is, they
can be shortened and enclosed between " ".

If, for example, your labels are:

Revenues from sale
Revenues from services
Revenues (other)

then the notation "Revenue" will be rejected as non-unique, "Revenues from sales"
will be rejected as unknown, while "Revenues sale" will be accepted as unique.

As mentioned, a query will let you select Items with Boolean conditions of
any complexity (linked by and, or, not operations), extract values or labels of
these Items and apply summary operations (count, average, total, max, min)
to the selected set.

Examples

The examples apply to a hypothetical cube containing VARIABLES, YEARS,
COMPANIES.

"EMPLOYEES" where "NUMBER OF BRANCHES" above 10

average "MARGIN" where "TOT. REVENUE" from 10000 to 30000

32 CHAPTER 3. DATA ANALYSIS

count where not "DEPRECIATION FUND" below 900000

label where ("CAPITAL" from 100000 to 200000) or
("REVENUES" above 100000)

"ROI" where "CAPITAL" from 0 to 50000

("COSTS", "REVENUES", "FIXED ASSETS") where
("REVENUES/CAPITAL" above 55.5) or
("COSTS/CAPITAL" below 15)

max "ROI"

average "INVESTMENTS/TURNOVER" where not
"TURNOVER" from 2000000 to 5000000

label where ("EMPLOYEES" above 500) and
("NUMBER OF BRANCHES" above 250) and ("COSTS" above 100000)

As it is the case with the COMPUTE command, Variables can also be
identified by their indices.

The same query examples may be formulated in a more compact form:

[1] where [2] above 10

average [3] where [4] from 10000 to 30000

count where not [5] below 900000

label where ([5] from 100000 to 200000) or ([6] above 100000)

[5] where [7] from 0 to 50000

([8], [9], [7]) where ([10] above 55.5) or ([11] below 15)

max [12]

average [13] where not [6] from 2000000 to 5000000

label where ([14] above 500) and ([2] above 250)
and ([15] above 100000)

It goes without saying that the labels that appear in a query are the labels
of the current cube, not necessarily those in the physical database.

3.2. CUBE INSPECTION 33

Similarly, the values in the current cube are the result of all previous opera-
tions, so that a query may concern percent variations, normalized values, ratios
and what not.

Queries that begin with where return the element indices (for example: 2
7 11) whereas queries that begin with label where return the corresponding
labels (for example: ‘FIAT’, ‘VOLKSWAGEN’, ‘OPEL’).

This is another open-ended language that can be freely mixed with all key-
words available in TANGRAM. You find a formal definition of the syntax of a
query in the figures at the end of the manual.

♦ Advanced
QUERY and missing values.
Suppose you have a complete 3-way cube in which three variables should

add up to 100. To spot items where exceed 100, you may issue a query like:
label where 100 < [1] + [2] + [3]

If you do have missing values, the query must be formulated with keywords
that handle them:

label where 100 below [1] PLUS [2] PLUS [3]
This will correctly show all elements where none of [1] [2] [3] is missing

and the sum is not 100.
The keywords equal above below from to handle missing values and

return a Boolean one where their arguments are not missing and satisfy the
inequality. Missing values are left out.

If you have 1000 elements on dim. 3 and issue the queries
count where [1] below 500
count where [1] equal 500
count where [1] above 500

you may be puzzled to find that the results are 720 0 240 respectively. The
40 missing cases are items where variable [1] is missing. To count these you
must use = and not equal :

count where [1] = ND
To wrap up, extra care is needed with missing values. While QUERY

keywords can only be used in a query, computational keywords
PLUS MINUS TIMES DIVIDE INT MOD ROUND APPROX

can be used in any context, including a query.

User options

• The query

• Output destination (screen, printer, file)

Related topics

Topic Section Page

WHERE keyword 6.2 127
RANGE 3.2.4 34

34 CHAPTER 3. DATA ANALYSIS

3.2.3 MISSING

Function

This command reports on the positions of missing values in the current cube.

Motivation

A missing value (alias: null, empty cell) may represent either a value that has
never been entered or the result of a computation that involved missing values
(for example the result of PLUS, MINUS, TIMES, DIVIDE, PRE, POST).

The module will report on the total number of missing values and, for each
dimension, display the list of:

• complete elements

• incomplete elements

• empty elements.

3.2.4 RANGE

Function

3-way (Variables, Periods, Items)
Classify the elements of dimension 3 according to cell values.

Motivation

This module grades or classifies the Items (elements on dimension 3) accord-
ing to the values in the corresponding cells.

You specify the Variable and the Period to be used for the operation and
the thresholds or class borders.

Example

You wish to classify your customers according to the volume of business.
Your classes may be: nil—100, 100—500, 500—1000, 1000—up
Your class borders are then expressed as 100 500 1000 and define four

intervals.
You also have to decide which variable to use (say, Net Sales) and which

period (say, Year 2006).
After the operation, a new field is appended to the customer labels, contain-

ing one of the four classifications:

... -- 100
100 -- 500
500 --1000
1000--...

3.3. COMPUTATIONS 35

In case you don’t know the order of magnitude of the values involved you
can use the keyword DEFAULT instead of the class borders. (Reasonable class
borders will be obtained on the basis of the actual values).

User options

• Element on dimension 1

• Element on dimension 2

• Class borders (a string of increasing values or the keyword DEFAULT)

Side effects

• The labels of dimension 3 are updated.

Related topics

Topic Section Page

QUERY 3.2.2 30
WHERE keyword 6.2 127
PERCENTILE keyword 3.3.1.1 39
percentile keyword 3.2.1 26
MAJOR keyword 6.2 127

3.3 Computations

3.3.1 COMPUTE

Function

Compute a new element and append it to the current cube.

Motivation

This is the general purpose tool for computing.
With a few exceptions (see following sections), it works on a dimension at a

time.
If, for example, your application concerns ACCOUNTS, YEARS, COMPA-

NIES, the command will create a new account or a new year or else a new
company.

If you create a new account, it will exist for all years and all companies.

♦ The notation that defines the computation is an open-ended language that
ranges from elementary to very sophisticated.

The rules for coding are:

• the formula is written in free format, of any length.

36 CHAPTER 3. DATA ANALYSIS

• the formula may contain keywords (PLUS, MINUS...), element indices
([39]), labels ("fixed overhead"), parentheses and numeric constants.
The keywords are listed in a later section.

• within parenthesis there is no priority between keywords (they are exe-
cuted right-to-left).

• The double quote notation must single out an element: one and only one
label must contain the words within the double quotes. (Case-sensitive,
position-independent search).

Example 1

To sum elements 10 and 15, you enter the formula:

[10] PLUS [15]

Example 2

To compute the sum of elements 10 and 12 less elements 14, 15, 16:

([10] PLUS [12]) MINUS ([14] PLUS [15] PLUS [16])

Example 3

"Revenue from sales" DIVIDE "Total Revenues"

This formula will be accepted if one of the labels contains the three strings
Revenue from and sales (in any order) and a second unique label similarly
contains the strings Total and Revenues.

If such elements happen to be the 23rd and 71st, then the formula is equiv-
alent to:

[23] DIVIDE [71]

The double quote notation can be freely mixed with the square brackets.
The maintenance of a procedure is normally more convenient if elements are

referenced by label rather than by index.

♦ If you have long lists of elements to sum, the keyword SUM[list] represents
a convenient short-hand notation:

Example 4

SUM [ALL]
SUM [3 4 10 TO 19]

3.3. COMPUTATIONS 37

SUM [SPOT ’Savings Bank’]

♦ Keywords like PLUS, MINUS, TIMES, DIVIDE are just synonyms of the
arithmetic operations, but with a difference: they handle missing values in the
result.

In other words the expression:

[3] PLUS [18]

will create a new element with missing values where the 3rd or 18th elements
exhibit missing values.

The DIVIDE keyword will also produce a missing value where the right
argument is zero.

Example 5

The ratio between these two incomplete timeseries (with ND marking a
missing value)

40 20 ND ND 60 100 ND ND

5 5 ND 0 0 10 10 8

will produce the following timeseries

8 4 ND ND ND 10 ND ND

User options

• the dimension along which to compute

• the label of the new element

• the formula that computes the new element as a function of existing ele-
ments.

Errors and warnings

• Error - An empty label is not allowed

• Error - Mismatched parentheses

• Error - Reference to non-existing elements

• Error - Illegal use of the double quote notation

• Error - Result has unacceptable size

• Error - Formula execution failed

Related topics

38 CHAPTER 3. DATA ANALYSIS

Topic Section Page

UPDFORMULAE 4.4.1 106
GLOBAL 3.3.4 47
CONTRIBUTE 3.3.6 49

Contrast the COMPUTE command with similar facilities of the Adminis-
tration Menu:

• Administrator formulae are used to define computations of general inter-
est, for the benefit of all users of a database; they are saved in the database
and managed by TANGRAM.

• Administrator formulae are applied, as a rule, to the whole database. The
formulae supplied to COMPUTE are ‘private’ in the sense that they are
defined and saved by a user and do not update the database. They are
typically saved in a procedure.

3.3. COMPUTATIONS 39

3.3.1.1 Computation keywords

The keywords that can be used in a COMPUTE formula are summarized in
the following table (with the exception of the IF—ELSE constructs).

Syntax Meaning Example
x PLUS y Sum [2] PLUS [3]
x MINUS y Difference [2] MINUS [3]
MINUS y Negative of y MINUS [3]
x TIMES y Product [2] TIMES [3]
x DIVIDE y Division [2] DIVIDE [3]
DIVIDE y Inverse of y DIVIDE [3]
x LESS y Difference [1] LESS [3]
x OVER y Division [2] OVER [1]
INT x Integer part of x INT [3]
MOD x Absolute value of x MOD [3]
x ROUND y Round y to a multiple of x 1000 ROUND [3]
ROUND y Round to the nearest integer ROUND [3]
SUM list Sum of a list of elements SUM [3 TO 20]
PRODUCT list Product of a list of elements PRODUCT [3 5 9]
PRE x The previous element (time shift) PRE [7]
POST x The next element (time shift) POST [7]
n SLIDE x Timeshift of n periods 12 SLIDE [7]
todate x Running sum (on time axis) todate [7]
toperiod x Diff. from prev. period toperiod [7]
norm x Normalize x so that it sums to 1 norm [7]
x OrElse y Take y where x has missing values [1] OrElse [7]
ND No Data. A single missing value ND, 100, ND, -5

STAT n Statistics on a population 3-way STAT 1

n=1 the mean
n=2 the variance
n=3 the third-order moment, etc.

PERCENTILE n Compute the n-th percentile 3-way PERCENTILE 95

These keywords have been designed to correctly handle missing values.
If the current cube is complete (free from missing values) one can use the

traditional symbols with the same effect (for example, + instead of PLUS).
The set of available primitive symbols of the interpreter is very vast and

includes exponentiation, logarithms, trigonometrical functions and much more.
Finally, remember that element collections in a formula may be expressed

with the Set Language.

Examples

"Revenues" LESS "Overhead costs"

40 CHAPTER 3. DATA ANALYSIS

PRODUCT [ALL BUT 19]

3.3.1.2 IF-ELSE conditions

Advanced This section defines an extension of the computation language
that allows for conditions on all dimensions.

If exp is a valid formula and cond a Boolean condition, the extension is of
the general form:

((exp1) IF cond1) ELSE ((exp2) IF cond2)
. . . ELSE ((expn) IF condn)

The meaning is to execute exp1 if cond1 is satisfied, exp2 if cond2 is satisfied
and so on.

The total length of the formula is unlimited. The number of IF conditions
is also unlimited.

A condition is any expression that produces a Boolean result (either 0 or 1).
As a general rule, it is best to use conditions that are mutually exclusive and

cover all possible outcomes, for example:
cond1: T < 0
cond2: T = 0
cond3: T > 0

Example 1

A conditional formula for COMPUTE that satisfies these requirements:

([1] IF [3]<0) ELSE (0 IF [3]=0) ELSE (([1] DIVIDE [3]) IF [3]>0)

♦ The typical use of conditions is to make the formula dependent on elements
of the other dimensions. This is done with the keyword

dim INLIST list

which return a Boolean 1 for cells that belong to the element list on dimen-
sion dim.

Example 2

If you compute on dimension 1 you may want to use a different formula for
periods 1 and 3:

([1] IF 2 INLIST 1 3) ELSE (([1] DIVIDE [3]) IF 2 INLIST 2 4 5)

♦ TANGRAM will protect you from several mistakes and limiting cases (by
assigning missing values where appropriate):

• cases in which no condition is verified

• cases where several conditions are verified

3.3. COMPUTATIONS 41

• ill-formulated conditions that produce non-Boolean results

• use of INLIST with illegal list of elements.

Syntax errors will produce an error warning and prompt you to re-enter a
correct formula.

Example 3

If you are computing on Variables with the formula:

(100 IF 2 INLIST 2) ELSE (200 IF 3 INLIST 1)

the result will be a new Variable with the constant value 100 in the second
period, the value 200 on the first item and missing values elsewhere (including
the intersection of second period and first item).

Example 4

When computing on dimension 1:

(([7] DIVIDE [6]) IF 2 INLIST 3 6 9 12)
ELSE (0 IF 2 INLIST 1 2 4 5 7 8 10 11)

Example 5

When computing on dimension 2:

(([12] TIMES 1.175) IF 1 INLIST 3 TO 11, 18 20)
ELSE ((0.5 TIMES [11] PLUS [12]) IF 1 INLIST 2 19)
ELSE (0 IF 1 INLIST 1, 12 TO 17)

Example 6

When computing on dimension 3:

([2] PLUS [7]) IF 1 INLIST 10 12

Example 7

When computing on dimension 3:

(SUM [ALL]) IF 2 INLIST (13 TO 24) BUT 18

♦ The keyword OrElse is handy to assign a default formula where a chain
of IFs has failed to cover all possibilities.

Formally, OrElse assigns cells of its right argument only where the left
arguments has missing values.

Example 8

When computing on dimension 2:

42 CHAPTER 3. DATA ANALYSIS

((SUM [ALL]) IF (3 INLIST 3 6 9) OR 1 INLIST 2 4) OrElse 0

3.3.1.3 Time shifts

Advanced The plain use of COMPUTE implies a separation between the
dimensions: if we apply the command to a dimension called ACCOUNTS, the
formula may reference all existing accounts but no other dimensions.

This section presents an exception to the basic rule: when you compute on
the first or third dimension of a 3-way cube if you may refer to elements of the
previous or following time periods.

Remember that in Standard Orientation the meaning of the dimensions is
Variables, Periods, Items.

Time lags are expressed with the keywords PRE , POST and SLIDE.

Example 1

To compute the average of variable 12 between a period and the previous
one :

([12] PLUS PRE [12]) DIVIDE 2

Example 2

When you compute on ITEMS, the formula

[1] PLUS (POST [1]) PLUS PRE [1]

will yield the sum of item 1 on the current period, the previous one and the
next one (lagging and leading values).

Note the use of parentheses to force the order of execution.

♦ The keywords PRE and POST will produce zeroes at one end of a timeseries,
where the previous or next periods do not exist.

Note that the keywords PRE and POST do not apply to computation on the
second dimension.

If you are computing on periods, the notation [12] stands for the 12th period
and the previous period is simply denoted as [11].

♦ There is no restriction on the repeated use of PRE and POST, for example:

POST POST POST [10]

The keyword SLIDE is convenient to avoid this repetition, for example:

3 SLIDE [10]

Positive values of the left argument of SLIDE represent shifts to the future.
Note that SLIDE will also produce zeroes at one end of a timeseries.

3.3. COMPUTATIONS 43

Advanced The keywords toperiod and todate are also relevant to time
shifts.

Their function is similar to that of TOPERIOD and TODATE, in that
they transform to-date values to period values and viceversa, but they apply to
a single element, not to the whole cube.

Example

You have a variable Invoices (on dim. 1) that keeps track of the invoices
received on a monthly basis. Suppose the terms of payments are 3 months, so
that each invoice will produce a debt for the duration of 3 months.

You can compute a new variable Current debt (on dim. 1) with the
formula

todate "Invoices" MINUS 3 SLIDE "Invoices"

♦ Time shift keywords handle missing values and also apply to N-way cubes,
assuming that the second dimension is a time axis. Since their use in non-trivial,
it is recommended that you learn their use on a 3-way cube to start with.

3.3.2 ROLLUP

Function

Roll up (alias: aggregate or group) the elements of a dimension.

Motivation

This module brings the current cube to a higher level of synthesis by sum-
ming the elements according to a key.

The ROLLUP command works on one dimension at a time.
You simply point to the label facets that you want to get rid of: those

elements that differ only on those positions will be added together to form a
single element.

It is your responsibility to see that the the variables invoved may be mean-
ingfully added (interest rate and percent growth, for example, may not).

Aggregated positions in the labels are marked with +++ signs, to remind you
of their new meaning.

Missing elements are aggregated as zeroes.

Example 1

Let your dimension Months contain the following labels:

2007 Q1 JAN
2007 Q1 FEB
2007 Q1 MAR

44 CHAPTER 3. DATA ANALYSIS

2007 Q2 APR
2007 Q2 MAY
2007 Q2 JUN
2007 Q3 JUL

This label structure lets you roll up from monthly data to quarterly and
yearly data by choosing the appropriate key.

If you choose an aggregation key like

111

then you roll up from months to quarters.
After aggregation, a new label, say

2007 Q1 +++

will contain the sum of the original elements

2007 Q1 JAN
2007 Q1 FEB
2007 Q1 MAR

A second execution of ROLLUP on the same dimension may yield the total,
which will look like

2007 ++ +++

♦ If you use this kind of multi-facet labels to represent a hierarchy on several
dimensions, you can, of course, “climb the ladder” in many steps, to see all
intermediate aggregations.

A single hierarchy on each dimension is the most common situation. The
key structure is, however, more general: the various facets can represent several
aggregation paths starting from the same atomic elements.

Example 2

If you have a collection of BANKS, you may classify them by size, by bank
type and by region.

Your labels might look like

LRG SAV CH Lausanne Savings Bank
SML MRC IRL Tipperary Merchant Bank

and will let you get size- type- and region- totals.

♦ If you have a complex multi-level hierarchy and want to count, say, the
number of branches in each state or in each region, you simply create a new
variable equal to 1 everywhere (via COMPUTE) and then roll up to the desired
level, aggregating both significant variables and your tally.

With a similar technique you can obtain averages, instead of sums.

3.3. COMPUTATIONS 45

User options

• Dimension to roll-up

• Roll-up key (label positions that must disappear in the process)

Side effects

• The labels of the chosen dimension are updated.

• The current cube is recomputed.

• Missing values disappear.

Related topics

Topic Section Page

BLOWUP 3.4.4 56
COMPUTE 3.3.1 35
DISAGGREGATE 3.4.5 57
BUILDDB 4.3.4 100
GROWTREE 3.3.3 45

Note. The module BUILDDB lets you aggregate values in a flat file while
the file is transformed into a TANGRAM cube.

3.3.3 GROWTREE

Function

Instate on a dimension an indented namesystem that defines an aggregation
tree. Recompute the cube accordingly.

Motivation

While the ROLLUP module aggregates a facet, GROWTREE offers a custom
aggregation tree, with any number of steps and a variable depth on each tree
branch. It assumes you have an indented namesystem in which the leaf elements
are the labels of the current cube and computes the upper levels.

Labels that are not in the indented namesystem are lost. Leaf elements in
the namesystem that are not in the current cube labels are set to zero.

Example

Assume that your labels represent product codes:

003
005
001
007

46 CHAPTER 3. DATA ANALYSIS

GROWTREE will install a namesystem like this

All products
___Modems
______Internal
_________001
_________002
_________003
______External
_________004
_________005
_________006
_________007
___Hard disks
______009

The number of underscores for each step is free (3 in this example). Codes
like 004 are leaf elements since they are not followed by a deeper indentation.

Some totals, like ___Hard disks will be set to zero by GROWTREE, as
the original cube does not have any relevant data.

Advanced The command GROWTREE selects, excludes, reorders, re-
peats elements, taking care of various extreme cases:

• The current cube may not have duplicate elements.

• The namesystem may have duplicate elements of any kind, without am-
biguity. If a tree branch is equal to a leaf element, it will be computed
according to the hierarchy.

• If a code in the tree is followed by a description, it will be correctly as-
signed, since comparison is done on the initial label width.

• The indented namesystem may contain several hierarchies of the same
atomic elements, appended to each other. For instance, the same four
codes of our example

003
005
001
007

may be expanded into

All products
_USB port
__003
__005

3.3. COMPUTATIONS 47

_Serial port
__001
__007
All products
_Business
__005
__001
_Home
__Outdoors
___007
__003

User options

• Dimension that grows

• Indented namesystem

Side effects

• The current cube is updated

• Missing values become zeroes

Related topics

Topic Section Page

ROLLUP 3.3.2 43
UPDFORMULAE 4.4.1 106

3.3.4 GLOBAL

Function

Recompute all cells of the current cube, without altering the labels.

Motivation

While COMPUTE appends a computed element on a single dimension,
GOLBAL recomputes all cells.

The GLOBAL formula may use most keywords available to COMPUTE,
with the exception of

SUM PRODUCT todate toperiod STAT PERCENTILE

48 CHAPTER 3. DATA ANALYSIS

The formula may not refer to single elements (with a notation such as [12]
or "Overhead").

Instead, the formula refers to the current cube as T and, if applicable, to
the secondary cube as xT .

♦ While in general your formula applies to the whole cube, the keywords
SUB and INLIST provide a way to limit the scope of the formula to a sub-

cube.
SUB will ask you to define a subcube by selecting elements on all axes,

while INLIST specifies a list of elements on a single axis. These keywords are
also explained under BROWSE in section 3.2.1 on page 26.

The keywords IF, ELSE, OrElse are explained under COMPUTE in
section 3.3.1 on page 35.

Examples

(0 IF SUB) OrElse T

((T TIMES 1000) IF 5 INLIST 2 4 6) OrElse ND

ROUND T DIVIDE 1000

norm T

(T IF T > 0) ELSE (ND IF T < 0)

♦ If you have a secondary cube xT of the same shape as the current one,
you may reference both, as in this example:

100 TIMES (T MINUS xT) DIVIDE xT

Note, however, that you are always assigning the result to the current cube.

User options

• A formula that assigns a cube of the size of the current cube (or else a
single value).

Errors and warnings

• Error - Shape mismatch - Global computation fails.

• Error - Mismatched parentheses or brackets.

Related topics

Topic Section Page

COMPUTE 3.3.1 35
BROWSE 3.2.1 26

3.3. COMPUTATIONS 49

3.3.5 NORM

Function

Make a reference element equal to 100 and re-scale the others. Obtain index
numbers.

Motivation

This command will normalize all values in the current cube, expressing them
as a percentage of some reference element (which is set to 100).

The module lets you choose the dimension and the element to be set to 100,
for example one of these:

Total revenues = 100
Year 2005 = 100
All companies = 100

The cube acquires a new dimension, with two elements Absolute and
Norm on Label.

User options

• Dimension (where the reference element resides)

• Reference element

Side effects

• The current cube acquires an extra dimension.

Related topics

Topic Section Page

norm keyword 3.3.1.1 39
COMPUTE 3.3.1 35
GLOBAL 3.3.4 47

3.3.6 CONTRIBUTE

Function

3-way Variance breakdown.
Compute a formula for two time periods and analyze the contribution of

each variable in the formula to the final result. Analyze the sensitivity of a
result to its inputs.

Motivation

50 CHAPTER 3. DATA ANALYSIS

Suppose you are comparing two scenarios, say Budget and Actual, and find
that Actual is $ 11900 above Budget.

The variable you are analyzing is a Margin, which is defined with the COM-
PUTE formula

("Quantity" TIMES "Unit Price") MINUS "Cost of Goods"

The next question comes rather natural: what part of the $ 11900 increase
(Actual vs Budget) is due to a higher Quantity, what to a higher Unit Price
and what to a lower Cost of Goods ?

Since the formula at hand is not simply a sum (but, instead, contains a
multiplication) there will also be a combined effect of Quantity and Unit Price.

This is a kind of routine analysis when comparing two scenarios, which can
be Actual and Budget, as in the example above, or January and February, or
any other pair you may need to compare.

♦ The way TANGRAM supports you in these exercises is the following.
It is assumed that you are computing a new variable (like Margin) on di-

mension 1 and that your scenarios (like Budget and Actual) are on dimension
2.

This is no serious constraint, because you can pivot your cube at any time
with the TRANSPOSE command.

You can have as many elements as you like on the three dimensions: that
is, on dimension 2 you must have two scenarios to compare and you may have
extra elements that are unaffected by the CONTRIBUTE operation.

The execution of CONTRIBUTE will apply a formula and create an extra
element both on dimension 1 and 2.

The new variable will accommodate the result of the formula and the new
scenario will contain the deltas, that is, the contribution of each input variable
to the result.

Dimension 3 is unaffected by CONTRIBUTE: all its elements are pro-
cessed in a single execution.

Contributions are meant to be absolute contributions (like the $ 11900 in the
example), but it is a simple matter to obtain percent contributions instead (via
COMPUTE or NORM).

Example 1

Current cube: 5 variables, 3 scenarios, 1 product
Contents:

Prod.XYZ Actual Budget Forecast
Quantity 1300 1100 990
Unit Price 40 38 38
Cost of Goods 17000 18500 18000
Commission 40 40 40
Delivery 35 20 20

3.3. COMPUTATIONS 51

After the CONTRIBUTE command, used with the formula

("Quantity" TIMES "Unit Price") MINUS "Cost of Goods"

your current cube will look like this:

Prod.XYZ Actual Budget Forecast Contr. Budget/Actual
Quantity 1300 1100 990 7600
Unit Price 40 38 38 2200
Cost of Goods 17000 18500 18000 1500
Commission 40 40 40 0
Delivery 35 20 20 0
Margin 35000 23300 19620 400

Note that the contributions of Commission and Delivery are nil, since these
variables are not referenced in the formula.

Note also that the bottom-right cell of the result (400 in this example)
represents the combined effects of an increase in Quantity, Unit Price and Cost
of Goods.

As a concluding remark, note also that the Quantity row is likely to be ex-
pressed in items or boxes. The new column “Contr. Budget/Actual”, however,
contains delta Margins, so that it is expressed in Margin units ($ for example).

♦While the initial motivation for this command was found in business topics
similar to Example 1, the command CONTRIBUTE has been cast in a very
general form and lends itself to numerous other applications.

For example, if the two scenarios have the meaning of a reference situation
and the same situation with a unit increase then what you obtain in the third
scenario are the deltas due to a unit increase.

Prod.XYZ Actual Actual+1 Sensitivity
Quantity 1300 1301 41
Unit Price 40 41 1301
Cost of Goods 17000 17001 -1
Commission 40 41 0
Delivery 35 36 0
Margin 35000 36340 -1

According to your trade, you may call this operation sensitivity analysis or
partial differenciation or variance breakdown or finite deltas.

The formula that you use can have any complexity and follows the same
rules as for the COMPUTE command.

The new label on dimension 2 (like, “Contr. Budget/Actual”) is obtained
from the labels of the two selected scenarios. Care must be taken to rename it
appropriately, to ease the interpretation of the resulting printouts.

User options

52 CHAPTER 3. DATA ANALYSIS

• Label of the new element on dimension 1

• Formula on dimension 1

• Selection of two elements on dimension 2

Errors and warnings

• Error - An empty label is not allowed

• Error - Mismatched parentheses

• Error - Reference to non-existing elements

• Error - Illegal use of the double quote notation

• Error - Result has unacceptable size

• Error - Formula execution failed

Related topics

Topic Section Page

COMPUTE 3.3.1 35

3.4 Cube structure

3.4.1 TRANSPOSE

Function

Transpose the dimensions of the current cube.

Motivation

This module lets you transpose (or rotate, topple,...) the current cube, in
the sense that you permute the order of its dimensions.

If you have ACCOUNTS, MONTHS, COMPANIES, you might prefer to
view it as COMPANIES, ACCOUNTS, MONTHS.

This operation is unnecessary for the sole purpose of printing, because all
printing modules feature a transposition on-the-fly.

The typical motivation for this command is to bring your cube to Standard
Orientation, where the dimensions have the specialized meaning of Variables,
Periods, Items.

You may need TRANSPOSE to bring a dimension to the conventional
position (1st, 2nd, 3rd) so that dimension-specific modules (like TREND, or
QUERY) produce what you expect.

User options

3.4. CUBE STRUCTURE 53

• New dimension order (a permutation)

Related topics

Topic Section Page

CROSSOVER 3.4.2 53
SHUFFLE 3.4.9 63

3.4.2 CROSSOVER

Function

Move a facet (alias: a code, a key) in the labels to a different dimension and
restructure the current cube accordingly.

Motivation

As a rule, TANGRAM operations act on each dimension independently.
This is a fundamental simplification, because it lets you concentrate on a

dimension at a time (see COMPUTE, for example).
The complexity that you handle is that of a mono-dimensional structure.
TANGRAM’s unique CROSSOVER command handles more sophisticated

cases in which this separation of dimensions becomes a problem.
CROSSOVER implements a very general transformation of cube struc-

tures: it lets you point to some label positions (a facet) and move them to a
different dimension, taking care of the numeric cells that must be re-associated
with the proper labels.

Example 1

At the start you have these labels on dimension 1:

costs jan
revenues jan
profit jan
costs feb
revenues mar

And these labels on dimension 2:

France
Germany
Italy

You use CROSSOVER to move the month facet to dimension 2. The program
will first generate all missing Variable—Month pairs, expanding the cube with
missing values:

54 CHAPTER 3. DATA ANALYSIS

costs jan
revenues jan
profit jan
costs feb
revenues feb
profit feb
costs mar
revenues mar
profit mar

Then it will move the month code to dimension 2, obtaining this final situ-
ation.

Dimension 1:

costs
revenues
profit

Dimension 2:

feb France
feb Germany
feb Italy
jan France
jan Germany
jan Italy
mar France
mar Germany
mar Italy

♦ Note that the total number of cube cells is preserved (if all key pairs were
already present) or increased.

After execution, the elements of the target dimension are sorted on the labels.

Example 2

It should be clear that CROSSOVER is specially useful when numerous
facets have been accommodated onto TANGRAM’s dimensions.

For example accounts, months, branches, products, markets, channels may
be first structured (in a 3-way cube) as

ACCOUNTS/PRODUCTS
MONTHS/BRANCHES
CHANNELS/MARKETS

and you later need to restructure the cube as

ACCOUNTS/MONTHS
PRODUCTS/BRANCHES
CHANNELS/MARKETS

3.4. CUBE STRUCTURE 55

The CROSSOVER command guarantees that in these more complex trans-
formations each cell is always associated to the appropriate labels.

The dimension names are not updated by CROSSOVER. You may want
to create a physical database with SAVEAS and then update them by hand.

User options

• the dimension that must shrink (donates a facet)

• the dimension that must grow (receives a facet)

• the label positions that migrate

Errors and warnings

• Error - Duplicate labels on a dimension

Related topics

Topic Section Page

BUILDDB 4.3.4 100
CROSS 5.9 119
TRANSPOSE 3.4.1 52
SHUFFLE 3.4.9 63

3.4.3 DELTA

Function

Compute the absolute and percent difference between current and secondary
cubes.

Motivation

This module can be handy to compute absolute and percent differences be-
tween two versions of the same situations, like Actual and Budget.

The module requires a current and secondary cube of the same rank and size
and leaves its results in the current cube.

The module accepts two inputs, that is, the label of the current and sec-
ondary cubes (like “New” and “Old”).

The current cube acquires an extra dimension to accommodate both cubes
and the absolute and percent difference. The new dimension has four elements,
for example:

New
Old
New-Old
New-Old %

56 CHAPTER 3. DATA ANALYSIS

User options

• Current cube label

• Secondary cube label

Errors and warnings

• Error - Current and secondary cube must have the same rank and size.

Related topics

Topic Section Page

COMPUTE 3.3.1 35
CROSSOVER 3.4.2 53

3.4.4 BLOWUP

Function

3-way Blowup (collapsed dimensions of) current cube using weights in the
secondary cube.

Motivation

When a dimension of the current cube reduces to a single element, you may
want to spread or allocate the values to an element population, in proportion
to elements existing in the secondary cube.

This can be done on 1, 2 or 3 dimensions in a single execution.
The rule is that, before the execution of BLOWUP, every dimension of the

current cube must either be equal to that of the secondary cube or reduce to
one element (the former is respected, the latter blown up).

The result consists in a cube of the same level of detail as the secondary
cube, in which labels of exploded dimensions are borrowed from the secondary
cube.

Example 1

Attribute the seasonal behavior of sales (secondary cube) to training costs
(current cube) that are known only for the whole year.

Current cube: 120 accounts, 1 period, 40 branches
Secondary cube: 120 accounts, 12 periods, 40 branches
After the execution of BLOWUP:
Current cube: 120 accounts, 12 periods, 40 branches.
You can check the correctness of the operation in two ways:

• summing all periods in the current cube, you re-obtain the previous cur-
rent cube.

3.4. CUBE STRUCTURE 57

• selecting a single account and a single branch you obtain 12 values that
are proportional to corresponding weights in the secondary cube.

Example 2

We wish to obtain a Profit and Loss for each customer-product pair; revenues
are available at this level of detail but costs are available only at the product
level.

One can spread the costs over the various customers assuming that they are
proportional to some variable that is available in detail (for example Revenues
from Sales).

Example 3

The current cube may contain a single value (a 1×1×1 cube) that represents
a forecast of next year’s result.

To blow it up to full size, one may use this year’s actual values as an expedient
and reasonable assumption for all the missing details.

Errors and warnings

• Error - There is no secondary cube

• Error - Element count mismatch between current and secondary cube

• Warning - Weights in the secondary cube add up to zero

Related topics

Topic Section Page

DISAGGREGATE 3.4.5 57
ROLLUP 3.3.2 43

Note. DISAGGREGATE is a generalization of BLOWUP in the case of
more complex relationships between the labels.

3.4.5 DISAGGREGATE

Function

3-way Disaggregate the current cube using weights in the secondary cube.

Motivation

This module produces more detail than you have, under the assumption that
the allocation is done in proportion to some other cube (a driver).

The current cube is the candidate for disaggregation, the secondary cube is
used as a template.

58 CHAPTER 3. DATA ANALYSIS

The detailed relationship between the elements is controlled by some match-
ing codes in their labels.

The concept is similar to that of the BLOWUP command, with more free-
dom to define the association between elements.

The disaggregation is done on all dimensions in a single execution.

Example 1

You know the sales revenues at the province level and the costs at the country
level.

Suppose, further, that you want to estimate (or spread) the costs at the
province level, assuming that they are proportional to sales revenues.

This is easily achieved, if you place your sales revenues in the secondary cube
and make sure that province names are accompanied by their country code (to
define a many-to-one relationship).

The current cube will hold cost data (with country codes).
The DISAGGREGATE command will ask you to point to the positions

of country codes in both cubes (for instance, on the third dimension of both
cubes).

A similar many-to-one relationship may exist on the first and second dimen-
sion (or, in a simple case, these dimensions may be identical in both cubes).

After execution of the command you will find your costs split by province.
To help you keep track of what happened, the new labels will contain both

old and new labels. For example:

MI Milano|IT Italy

Should you apply the ROLLUP command after DISAGGREGATE, to
roll up again to the country level, you would restore the original cube.

♦ The DISAGGREGATE command is carefully designed to handle all
extreme cases. One of these is when the codes that define the many-to-one
relationship have zero length.

This is accepted, and amounts to defining a one-to-all relationship.

Example 2

The first dimension of the current cube contains a single element:

Total overhead

whereas the first dimension of the secondary cube contains:

Personnel costs
Office costs
Operational costs

then a zero-length code means that the three costs (secondary cube) are de-
tails of the Total overhead (current cube) and the Total overhead must
be split into three component elements.

3.4. CUBE STRUCTURE 59

User options

• Code positions within the labels of each dimension of both cubes (six codes
in all).

Side effects

• Implicit input: current and secondary cube

• Implicit output: current cube

• The labels of the current cube are updated.

Errors and warnings

• Error - Code length mismatch on corresponding dimensions.

• Error - Some labels of the current cube do not find a counterpart in the
secondary cube

• Warning - Some labels of the secondary cube are not referenced.

• Warning - The secondary cube contains negative values.

Note. If the cells of the secondary cube corresponding to a single code add up
to zero (or are all missing), no explicit warning is issued but the corresponding
elements of the result will be missing.

Related topics

Topic Section Page

ROLLUP 3.3.2 43
BLOWUP 3.4.4 56
norm keyword 3.3.1.1 39

3.4.6 MERGE

Function

Merge current and secondary cube, on the basis of equal labels.

Motivation

The function of the MERGE command is to merge the cells of the current
and secondary cube, assuming that equal labels imply equal meaning.

The command requires two cubes of the same rank and updates both to
align their labels on all dimensions.

In particular the labels of each dimensions are the set union of the original
labels.

60 CHAPTER 3. DATA ANALYSIS

In other words, the labels of the result are the collection of labels from the
secondary cube (in the same order), followed by the labels found only in the
current cube (in the same order).

The program will report on the merging of the two sets of labels (whether
they were disjoint, intersecting or coincident).

If both input cubes contain a cell associated with the same labels on all
dimensions, we may have three cases:

• The cell has a missing value in at least one cube.

• The cell contains the same value in both cubes.

• The cell contains different values (comparison tolerance is 0.1).

Only the third case is regarded as a conflict. After a warning, the value in
the secondary cube prevails.

Note that no information is lost, because the current cube still contains the
conflicting cells.

The result will have missing values where both input cubes have missing
values.

Example 1

Current cube: 5 accounts, 6 months, 1 company
Contents:

XYZ ltd jan feb mar apr may jun
income 300 200 500 350
var. cost 120 170 220 170 170
fixed cost 40 40 40 40 40 40
margin 35 30
profit 10 12

Secondary cube: 4 accounts, 3 months, 1 company
Contents:

XYZ ltd dec jan feb
var. cost 95 120 170
profit 11 12
margin 28 30
personnel 17 16 17

After the MERGE command, you find the secondary cube to be:

XYZ ltd dec jan feb mar apr may jun
var. cost 95 120 170 220 170 170
profit 11 12
margin 28 35 30
personnel 17 16 17
income 300 200 500 350
fixed cost 40 40 40 40 40 40

3.4. CUBE STRUCTURE 61

The program will also warn you that a single cell was in conflict in the two
cubes (see profit of january).

Example 2

You constitute two TANGRAM cubes with 2006 and 2007 data respectively.
The collections of Customers and Products in the two years are unrelated but
use the same codes.

You then want to study the evolution of those customers and products that
existed in both years.

The MERGE command is the main tool for this analysis, because it will
return a two-period data cube and take care of all code-matching.

Example 3

Note that merging timeseries with different periodicity is just a special case
of MERGE.

You only have to use a consistent period labelling, for, say, end-of-month,
end-of-quarter and end-of-year values.

For example, if the time periods in the current cube are

Jan 2007
Feb 2007
Mar 2007
Apr 2007
May 2007
Jun 2007

and the secondary cube contains quarterly data

Mar 2007
Jun 2007

then the two periodicities are automatically merged.

Side effects

• Implicit input: the current and secondary cube

• Implicit output: the current and secondary cube with equal labels. The
secondary cube represents the merged output.

Errors and warnings

• Error - There is no secondary cube

• Error - Duplicate labels in the current cube

• Error - Duplicate labels in the secondary cube

• Warning - Redundant values in n cells

62 CHAPTER 3. DATA ANALYSIS

• Warning - Conflicting values in m cells

Related topics

Topic Section Page

TRANSFER 4.3.3 97
COMMON keyword 4.3.3 97
OrElse keyword 3.3.1.1 39

3.4.7 PROMOTE

Function

Add an extra dimension to the current cube. The extra dimension is the
last and entails a single element.

User options

• Dimension name

• Element label

Errors and warnings

• Error - 15 dimensions is a system maximum.

Related topics

Topic Section Page

DEMOTE 3.4.8 62
CROSSOVER 3.4.2 53
SHUFFLE 3.4.9 63

3.4.8 DEMOTE

Function

Remove the last dimension of the current cube, provided it consists of a
single element.

Errors and warnings

• Error - 3 dimensions is a system minimum.

• Error - The last dimension must reduce to a single element.

Related topics

Topic Section Page

PROMOTE 3.4.7 62
CROSSOVER 3.4.2 53
SHUFFLE 3.4.9 63

3.4. CUBE STRUCTURE 63

3.4.9 SHUFFLE

Function

Restructure the cube to a new rank, creating, transposing, joining dimensions.

Motivation

This module defines the new destination of existing dimensions in a new cube
structure.

The same result of SHUFFLE could be achieved by a long sequence of
PROMOTE, CROSSOVER, TRANSPOSE ...

Typical application: collapse an N-way cube to a 3-way cube to use modules
that only work 3-way.

Example

Start with a 4-way current cube, with dimension names

[1] Measures
[2] Periods
[3] Products
[4] Versions

If you code the destinations as 1 2 6 1 you obtain a new cube of rank 6,
where dim 1 is the cross of former dims 1 and 4, dim 2 is unaffected, dims 3 4
5 are empty, dim 6 is the former dim 3.

The new dimension names will be:

[1] Measures Versions
[2] Periods
[3]
[4]
[5]
[6] Products

Since dimensions with no name can be confusing, you probably want to save
this cube (SAVEAS) and name the empty dimensions (UPDDBLABELS).

User options

• New destinations of the current dimensions (a vector of positive integers,
as many as the rank of the current cube).

Errors and warnings

• Error - Operation impossible - Duplicate elements on dimension dim

• Error - Too many dimensions - Maximum 15

(The sum of the cube ranks before and after the operation must not exceed
15)

64 CHAPTER 3. DATA ANALYSIS

• Error - 3 dimensions is a system limit

• Error - Illegal target dimensions - Expects N integers

Related topics

Topic Section Page

PROMOTE 3.4.7 62
DEMOTE 3.4.8 62
TRANSPOSE 3.4.1 52
CROSSOVER 3.4.2 53

3.5 Cube output to file

3.5.1 SAVEAS

Function

Create a new physical database that stores the current cube.

Motivation

This command transforms the current cube into a new TANGRAM database.
Its typical use is to permanently store the result of processing or else to save

intermediate cubes on which you can fall back in case of a blunder.
The new database will have current size equal to maximum size.
The SAVEAS command does not make the new database current.

User options

• Name of the new database

Related topics

Topic Section Page

NEWDB 4.2.2 91
BUILDDB 4.3.4 100
CROSSDB 4.2.3 92
DOCK 4.3.7 105
STORE 3.8.1 85

3.5. CUBE OUTPUT TO FILE 65

3.5.2 UNLOAD

Function

3-way Unload the current cube as a flat file.

Motivation

This module lets you produce a four-field flat file that contains the labels
and cells of the current cube.

Three fields in each record will contain (part of) the labels of a cell, while
the forth will contain the numeric value.

Missing values are not unloaded. The number of records in the file will thus
equal the number of non-missing cells in the current cube.

Numerical values that exceed the declared width are represented as a se-
quence of asterisks.

User options

• Key positions on dim. 1

• Key positions on dim. 2

• Key positions on dim. 3

• Width of numeric field

• Number of decimal places

• Name of the flat file .txt

Errors and warnings

• Warning - Numeric field too narrow in n cases.

• Warning - n missing values did not produce a record.

Related topics

Topic Section Page

LOADDB 4.3.2 96
EXPORT 3.5.3 66
MASKPRINT 3.6.2 74

66 CHAPTER 3. DATA ANALYSIS

3.5.3 EXPORT

Function

3-way Export the current cube in a comma-separated format.

Motivation

This command will let you export the current cube to a flat file that acts as
an exchange format to other software, like a spreadsheet.

The command will export both cells and labels of the current cube in a
two-dimensional format (see examples below).

Labels and cells are separated by user-chosen characters. If these are chosen
to reflect the current choice in your spreadsheet, then the file can immediately
be loaded by the spreadsheet and correctly mapped into cells.

Example

The following are two examples of flat files obtained from the same cube
with different views. The separator characters are ’[]|,’

3.5. CUBE OUTPUT TO FILE 67

[OPTILUX SpA] |[Jan 07]|[Feb 07]|[Mar 07]|[Apr 07]
[TOT. REVENUES] |10086,00|21490,00|33697,00|45189,00
[FIRST MARGIN] | 3061,00| 6815,00|11045,00|14750,00
[SECOND MARGIN] | -215,17| 152,75| 834,39|10100,25
[RESULT] | -503,62| -388,11| -41,28| 8898,35
[PROFIT BEF.TAX] |-1106,29|-1528,20|-1960,88| 6183,77
[PROFIT AFT.TAX] |-1095,99|-1507,59|-1960,88| 6178,62
[SUNNY Sarl] |[Jan 07]|[Feb 07]|[Mar 07]|[Apr 07]
[TOT. REVENUES] | 0,00| 2622,00| 4778,00| 7232,00
[FIRST MARGIN] | 0,00| 322,00| 810,00| 1420,00
[SECOND MARGIN] | 0,00|-1082,87|-1522,16|-1869,84
[RESULT] | 0,00|-1184,18|-1666,39|-2091,33
[PROFIT BEF.TAX] | 0,00|-1125,80|-1611,44|-2046,69
[PROFIT AFT.TAX] | 0,00|-2259,02|-3235,73|-4110,53
[HITEL Ltd] |[Jan 07]|[Feb 07]|[Mar 07]|[Apr 07]
[TOT. REVENUES] | 0,00|17268,00|25912,00|33516,00
[FIRST MARGIN] | 0,00| 4444,00| 6471,00| 8180,00
[SECOND MARGIN] | 0,00| 865,03| 1008,50| 893,44
[RESULT] | 0,00| 702,27| 745,11| 506,93
[PROFIT BEF.TAX] | 0,00| 631,76| 650,19| 394,87
[PROFIT AFT.TAX] | 0,00| 907,73| 655,15| 683,03
[TAIPEI Spa] |[Jan 07]|[Feb 07]|[Mar 07]|[Apr 07]
[TOT. REVENUES] | 0,00| 0,00|86044,00|********
[FIRST MARGIN] | 0,00| 0,00|27838,00|37791,00
[SECOND MARGIN] | 0,00| 0,00| 8113,27|11673,27
[RESULT] | 0,00| 0,00| 5080,65| 6600,99
[PROFIT BEF.TAX] | 0,00| 0,00| 4111,70| 6074,21
[PROFIT AFT.TAX] | 0,00| 0,00| 5214,06| 8056,31
[MICRO SA] |[Jan 07]|[Feb 07]|[Mar 07]|[Apr 07]
[TOT. REVENUES] | 0,00| 0,00|81705,00|********
[FIRST MARGIN] | 0,00| 0,00|39593,00|54675,00
[SECOND MARGIN] | 0,00| 0,00| 1475,45| 2088,53
[RESULT] | 0,00| 0,00|-3450,62|-4248,91
[PROFIT BEF.TAX] | 0,00| 0,00|-3831,80|-4664,43
[PROFIT AFT.TAX] | 0,00| 0,00|-5713,63|-7356,68

68 CHAPTER 3. DATA ANALYSIS

[TOT. REVENUES] |[Jan 07]|[Feb 07]|[Mar 07]|[Apr 07]
[OPTILUX SpA] | 10086| 21490| 33697| 45189
[SUNNY Sarl] | 0| 2622| 4778| 7232
[HITEL Ltd] | 0| 17268| 25912| 33516
[TAIPEI Spa] | 0| 0| 86044| 118146
[MICRO SA] | 0| 0| 81705| 111790
[FIRST MARGIN] |[Jan 07]|[Feb 07]|[Mar 07]|[Apr 07]
[OPTILUX SpA] | 3061| 6815| 11045| 14750
[SUNNY Sarl] | 0| 322| 810| 1420
[HITEL Ltd] | 0| 4444| 6471| 8180
[TAIPEI Spa] | 0| 0| 27838| 37791
[MICRO SA] | 0| 0| 39593| 54675
[SECOND MARGIN] |[Jan 07]|[Feb 07]|[Mar 07]|[Apr 07]
[OPTILUX SpA] | -215| 153| 834| 10100
[SUNNY Sarl] | 0| -1083| -1522| -1870
[HITEL Ltd] | 0| 865| 1008| 893
[TAIPEI Spa] | 0| 0| 8113| 11673
[MICRO SA] | 0| 0| 1475| 2089
[RESULT] |[Jan 07]|[Feb 07]|[Mar 07]|[Apr 07]
[OPTILUX SpA] | -504| -388| -41| 8898
[SUNNY Sarl] | 0| -1184| -1666| -2091
[HITEL Ltd] | 0| 702| 745| 507
[TAIPEI Spa] | 0| 0| 5081| 6601
[MICRO SA] | 0| 0| -3451| -4249
[PROFIT BEF.TAX] |[Jan 07]|[Feb 07]|[Mar 07]|[Apr 07]
[OPTILUX SpA] | -1106| -1528| -1961| 6184
[SUNNY Sarl] | 0| -1126| -1611| -2047
[HITEL Ltd] | 0| 632| 650| 395
[TAIPEI Spa] | 0| 0| 4112| 6074
[MICRO SA] | 0| 0| -3832| -4664
[PROFIT AFT.TAX] |[Jan 07]|[Feb 07]|[Mar 07]|[Apr 07]
[OPTILUX SpA] | -1096| -1508| -1961| 6179
[SUNNY Sarl] | 0| -2259| -3236| -4111
[HITEL Ltd] | 0| 908| 655| 683
[TAIPEI Spa] | 0| 0| 5214| 8056
[MICRO SA] | 0| 0| -5714| -7357

User options

• the mapping of TANGRAM’s three dimensions to lines, columns, pages

• the field width of the numeric format

• the number of decimal places

3.5. CUBE OUTPUT TO FILE 69

• the separator characters (start of label, end of label, cell separator, decimal
point).

• the name of the flat file .txt

Errors and warnings

• Warning - n missing values have been exported as zeroes

Related topics

Topic Section Page

UNLOAD 3.5.2 65
BROWSE 3.2.1 26
MASKPRINT 3.6.2 74

3.5.4 TOHTM

Function

3-way HTML by example - Unload the cube as an HTML document ac-
cording to a template.

Motivation

This module exports the current cube in the form of HTML code (alias:
WWW or WEB pages) that can be viewed with a browser like Netscape or
Internet Explorer.

This means you can produce hypertext presentations of TANGRAM data
with negligible effort.

A single cube produces a single HTML file where two dimensions become
rows and columns and the third becomes an intra-document index.

Note that some cube transpositions are more appropriate than others and
the total size of the .htm file should not exceed some 500 kbytes for fast loading.

Since huge tables are difficult for the browser to handle, TANGRAM lets
you specify the maximum table size.

A template is a HTML file that defines your formatting preferences. In par-
ticular the template must contain a one-by-one table that specifies the desired
styling.

User options

• Name of the template file that defines the HTML style, with extension
.tmp

• Maximum row and column count (in each HTML TABLE construct)

• Decimal places

70 CHAPTER 3. DATA ANALYSIS

• Document title (replaces the symbolic variable @title that may appear
in the template)

• Mapping of TANGRAM’s three dimensions to lines, columns, pages

• Name of output file, with extension .htm

Errors and warnings

• Error - The template does not contain eight blank (separation) lines

• Error - The analysis of the template file was unsuccessful

Related topics

Topic Section Page

TOLATEX 3.5.5 71
REPORT 3.6.1 73

3.5.4.1 Template design

Advanced You can define your own templates, keeping in mind that they
must have a given format for TANGRAM to analyze them correctly.

In particular a template must have:

• An initial block of HTML code, with no blank lines

• Seven lines of code, separated by eight blank lines

• A final block of HTML code with no blank lines.

The file map.tmp (listed here), marks with an asterisk (’*’) the compulsory
blank positions. Code segments between two asterisks, like ,
can be replaced by your choice.

<HTML> <HEAD> <TITLE>

@title

</TITLE>

</HEAD> <BODY BGCOLOR=#C0C0C0 TEXT=#000000 >

<CENTER> <H1>

@title

</H1> </CENTER>

<H2> WEB output example </H2><P>

This page was generated by TANGRAM, a DSS-OLAP system developed by

Codework Italia <P>

N.B. This button brings you back to the document’s Table of

Contents, that is, to this point.

3.5. CUBE OUTPUT TO FILE 71

You will find one after every table.

<HR>

<H2>*Contents*</H2>

<CENTER><H2> Page-title </H2></CENTER>

<CENTER> <TABLE BORDER=3 CELLPADDING=5 CELLSPACING=5>

<CAPTION ALIGN=bottom>*Page-caption*</CAPTION>

<TR>*<TH >**</TH>*<TH>*col-header*</TH>*</TR>

<TR>*<TH >*line-header *</TH>*<TD>*number *</TD>*</TR>

</TABLE> </CENTER>

<P><HR SIZE=3 WIDTH=85%> <P>

<CENTER> <TABLE BORDER=3 CELLPADDING=5 CELLSPACING=5>

<CAPTION ALIGN=bottom> TANGRAM </CAPTION>

<TR> <TH> Homepage</TH>

<TH> Top document </TH>

<TH> Feedback </TH></TR>

</TABLE> </CENTER>

<P><HR SIZE=3 WIDTH=85%> <P>

</BODY></HTML>

Remember that the initial and final block can be anything (that a browser
accepts), while the seven central lines must have the right count of HTML
segments.

The variable @title , if present, must be followed by 44 blanks to make
room for a 50 char. title.

Note that several HTML files generated by TANGRAM can be assembled
by a main HTML page that contains links to all of them.

Better still, a navigation structure can be defined in the bottom block of the
template, so that the work of the hypertext author is simplified and the reader
finds consistent navigation aids in all documents.

3.5.5 TOLATEX

Function

3-way Unload the current cube as a LaTeX source document.

Motivation

LaTeX is a well known document preparation system which in turn is based
on TeX. Like HTML and XML, it processes text interspersed with structure
and stlyling tags.

72 CHAPTER 3. DATA ANALYSIS

The manual you are reading is an example of a LaTeX document.
This module produces a LaTeX source file that can be automatically com-

piled and printed (or transformed into PostScript or Acrobat format).
You don’t need any LaTeX expertise to take advantage of TANGRAM’s

output but you still must have LaTeX installed somewhere.
Since very large tables are difficult to fit into printed pages, the module will

let you choose the maximum number of rows and columns of each LaTeX table
and iterate on the TANGRAM cube accordingly.

User options

• Maximum number of rows and columns per LaTeX table

• Number of decimal places

• Main document title

• Second document title

• Third document title

• Mapping of TANGRAM’s three dimensions to lines, columns, pages

• A list of rows that must be highlighted

• Landscape orientation of the printer (as opposed to Portrait)

• Output file name .tex

Errors and warnings

• Warning - Text contains TeX reserved characters :

Related topics

Topic Section Page

TOHTM 3.5.4 69

3.6 Printed outputs

Overview

There are many ways to print TANGRAM cubes.
The most popular is to access TANGRAM databases from Excel (via the

TANGRAM-reader) and map TANGRAM data on styling templates, that is,
Excel sheets that contain only titles and cell styling options, such as color, font,
frames,...

This section presents the more traditional ways to produce fixed-font boxed
printouts.

3.6. PRINTED OUTPUTS 73

The advantages of this choice are mainly speed and versatility, as it is eas-
ier to find solutions that do not require any maintenance when the size and
orientation of the cube vary.

If you send the output of these modules to a file, it will be appended to file
log\sysprint.log, that you can manage (empty, copy, delete, print) with non
TANGRAM services.

Remember that, containing framing characters, this file is coded in ASCII
(as opposed to ANSI) and it is best viewed with the internal TANGRAM editor
(Main menu) or with ASCII editors (like DOS Edit) rather than ANSI editors
(like Notepad, Wordpad, Word).

If you send the output to the standard printer, the orientation (Landscape
or Portrait) is controlled by Windows, not by TANGRAM. The number of lines
per page (and hence the character size) is chosen by TANGRAM (See Main
menu, Configuration, Miscellany, Printed page).

The keyword DEFAULT returns the maximum character count per page,
(rows and columns) which depends on the current printer settings. As such, it
can be used in replies to TANGRAM.

For ex.

DEFAULT
80 93

3.6.1 REPORT

Function

3-way Print the current cube in a page-oriented format.

Motivation

This is one of several ways to produce printed output.
REPORT produces the traditional boxed presentations, where row, column

and page headings are derived from the cube labels.
This module is a good candidate for producing printouts when:

• the production must be automated, irrespective of the cube size

• options and customization can be reduced to a minumum

• page design is stable.

The main idea is to specify the page height and width (in characters) and let
the program iterate on all dimensions of the current cube to produce as many
printed pages as needed.

The header and footer text of each page may contain the keywords
@date @time @page

which will be replaced by their current values.

User options

74 CHAPTER 3. DATA ANALYSIS

• Mapping of TANGRAM’s three dimensions to lines, columns, pages

• Field width (it may be a string of values, to format columns differently)

• Decimal places (it may be a string of values, to format columns differently)

• List of underlined rows (indices on a cube dimension that is printed on
lines)

• Page size in characters (height and width). Reply with the keyword
DEFAULT if you just want to fill all available space on the physical page.

• Header text (one line)

• Footer text (one line)

• Destination (to screen, printer, file). Three Boolean values, for ex. ON,ON,OFF

Related topics

Topic Section Page

TOHTM 3.5.4 69
BROWSE 3.2.1 26
MASKPRINT 3.6.2 74
DRAFTPRINT 3.6.3 77

3.6.2 MASKPRINT

Function

3-way Format by example - Print the current cube according to a detailed
layout taken from a mask file.

Motivation

This is one of several ways to produce printed output.
MASKPRINT merges a mask file (that describes the page in full detail

on a char-by-char basis) with the contents of the current cube.
This module is a good candidate for producing printouts when

• a fixed font output is acceptable

• the production must be automated

• the page layout must be defined in full detail, with framed and boxed
areas and fixed text

• the page design and the current cube size are stable.

3.6. PRINTED OUTPUTS 75

The basic idea is to prepare a page layout with an ASCII editor, marking
the position of labels and numeric fields with reserved characters.

This means that an end user may maintain his masks with a simple editor
and no programming is involved.

The program will take care of the complex mapping between the current
cube and the mask, iterating the operation on all dimensions until the cube
contents have been accommodated on printed pages.

The mask file report.msk is a reserved name, in the sense that every exe-
cution of REPORT rewrites it with a mask corresponding to its current page
layout. You can thus use REPORT to obtain a first approximation to your
page layout and then refine it by hand before using MASKPRINT.

The mask file may contain the keywords @date @time and @page which
will be replaced by their current values.

♦ MASKPRINT is not simply a way to obtain extravagant framed pages.
The mask may also contain the source code required by some software product
and the reserved characters mark positions where TANGRAM data must be
placed. Or, the mask may be a record layout for exporting the cube.

User options

• Mapping of TANGRAM’s three dimensions to lines, columns, pages

• Name of the mask file (extension .msk)

• Destination (to screen, printer, file)

Errors and warnings

• Warning - The mask does not contain row descriptors

• Warning - The mask does not contain column descriptors

• Warning - The mask does not contain page descriptors

• Warning - Multiple page descriptors

• Warning - Row descriptors are not aligned with numeric fields

• Warning - Column descriptors are not aligned with num. fields

• Warning - Numeric fields are not aligned in an array

• Warning - The mask does not contain numeric fields!

• Warning - The numeric field count varies from line to line!

• Error - Invalid mask format

Related topics

76 CHAPTER 3. DATA ANALYSIS

Topic Section Page

TOHTM 3.5.4 69
BROWSE 3.2.1 26
REPORT 3.6.1 73
DRAFTPRINT 3.6.3 77
EXPORT 3.5.3 66

3.6.2.1 Mask design

Advanced You can design your masks (alias: forms, templates) with any
ASCII editor of your choice or with TANGRAM (Main menu).

You do so by entering fixed text, frames, boxes embedded with reserved
characters that mark the positions that must accommodate labels and values.

The template file must have the extension .msk and may contain the follow-
ing reserved characters:

$ position of row labels
& position of column labels
? position of page labels
! in column 1 marks a comment line
position of a numeric field
. decimal dot within a numeric field

Example

Revenues from sales

Branch: ??????????????

<----forecast---->
&&&&&&&& &&&&&&&& &&&&&&&& &&&&&&&&

$$$$$$$$$$$$ #####.## #####.## #####.# #####.#
$$$$$$$$$$$$ #####.## #####.## #####.# #####.#
$$$$$$$$$$$$ #####.## #####.## #####.# #####.#
$$$$$$$$$$$$ #####.## #####.## #####.# #####.#

N.B. all values in thousand dollars

! Form AZ04 B.M. created 4/5/2007
! Reporting procedure XYZ

3.6. PRINTED OUTPUTS 77

You can specify a different number of decimal places in each field.
The width of the cube labels needs not match the receiving field in the mask

(labels are truncated or padded as needed).
The labels associated with the cells can be taken from the current cube or

can be “frozen” in the template file.
You are expected to create masks that help interpreting the values with

suitable row and column headings.
A warning is issued when this principle is not respected and reserved char-

acters are irregularly laid out. If your mask does not contain an orderly array of
numeric fields (with the same field count on each line) then the mask is rejected.

Error example

Branch: ??????????????

<----forecast---->
&&&&&&&& &&&&&&&& &&&&&&&& &&&&&&&&

$$$$$$$$$$$ #####.# #####.# #####.# #####.#
#####.# #####.#

$$$$$$$$$$$ #####.# #####.# #####.# #####.#
#####.# #####.# #####.#

$$$$$$$$$$$ ###########

3.6.3 DRAFTPRINT

Function

3-way Print the current cube in a draft printout.

Motivation

This module will print the whole current cube over a logical page with fixed
width and infinite height.

Column labels are printed to their full length, but they are slated to produce
the most compact representation.

This module can also independently sort both rows and columns of each
logical page according to the cube values.

The label of the element used for sorting are marked with ***.

78 CHAPTER 3. DATA ANALYSIS

If you do not want rows and columns to vary from page to page (that is, you
do not want the sorting) reply NONE in the ’Sorting row’ and ’Sorting column’
field.

Example

Let your cube contain sales data, split by year, product and customer. You
want a page for each year, the products down and the customers across the
page.

On each page you want to sort the products on a column called ’All cus-
tomers’ and to sort the customers on a row called ’All products’.

The sorting order will, in general, depend on the year (and this rules out the
possibility of sorting the current cube before printing).

User options

• Mapping of TANGRAM’s three dimensions to lines, columns, pages

• Field width (one value)

• Decimal places (one value)

• Page width in characters

• Sorting row (a single element index or the keyword NONE)

• Sorting column (a single element index or the keyword NONE)

• Destination (to screen, printer, file).

Related topics

Topic Section Page

REPORT 3.6.1 73
MASKPRINT 3.6.2 74
BYVALUE keyword 6.2 127

3.7 Time-related operations

3-way This section groups all services that are time-specific, in the sense that
they are meaningful only on a dimension that represents Periods.

If you move along the Periods dimension and keep the other coordinates
fixed, you obtain a string of values that can be regarded as a timeseries.

This section, in other words, deals with timeseries operations.
All modules in this section apply to 3-way cubes and assume that

your Periods are on dimension 2.
If this is not the case, use TRANSPOSE to rotate the cube as needed.
The dimension names (like ’Years’ or ’Periods’ or ’Quarters’) are irrelevant.

3.7. TIME-RELATED OPERATIONS 79

3.7.1 GROWTH

Function

Compute the percent growth from a period to the next.

Motivation

This command computes the percent growth of every timeseries from a pe-
riod to the next.

In mathematical notation, if we call Xn the contents of a cell in period n,
the percent growth is defined as

100
Xn −Xn−1

| Xn−1 |
where Xn−1 is the previous value.
The current cube acquires an extra dimension, with elements Absolute and

Growth from prev
Missing values in the result may be due to missing values in the input cube

or to zeroes in the previous period.

Side effects

• The current cube acquires an extra dimension.

Related topics

Topic Section Page

TREND 3.7.4 81
COMPUTE 3.3.1 35
FORECAST 3.7.5 82
keyword PRE 3.3.1.1 39
keyword POST 3.3.1.1 39

3.7.2 TODATE

Function

Compute To-Date values from Period-only values. Discrete integral.

Motivation

This module will transform period values into to-date values (alias: running
totals, discrete integrals).

If, for example, a timeseries displays the following values in the first six
months

80 CHAPTER 3. DATA ANALYSIS

3 4 3 3 5 4

then the to-date values will be:

3 7 10 13 18 22

The current cube acquires an extra dimension, with elements Period and
To date.

A missing value in a timeseries produces missing values from that cell to the
end of the timeseries.

All existing periods are treated in a uniform way and year boundaries are
ignored: if your cube contains 24 months, the running totals will span two years.

If this is not what you intended, it is your responsibility to select appropriate
periods before calling the module TODATE.

Side effects

• The current cube acquires an extra dimension.

Related topics

Topic Section Page

TOPERIOD 3.7.3 80
todate keyword 3.3.1.1 39
toperiod keyword 3.3.1.1 39

3.7.3 TOPERIOD

Function

Compute Period-only values from Todate values. Discrete differentiation.

Motivation

In numerous situations, you need two views of the same timeseries: absolute
period values and “to-date” values, typically from the beginning of the year.

The TOPERIOD command computes period values, assuming that exist-
ing values are “to-date” (alias: running totals).

If, for example, a timeseries displays the following to-date values in the first
six months

3 10 21 20 33 50

then the period values will be:

3 7 11 -1 13 17

3.7. TIME-RELATED OPERATIONS 81

The current cube acquires an extra dimension, with elements To date and
Period.

A missing value in a timeseries produces missing values from that cell to the
end of the timeseries.

The command accepts no options: it is the user responsibility to make sure
that the operation is meaningful for all variables involved.

Note also that the operation applies to all periods in the current cube.
In most cases, one would select one year at a time for this kind of operation.
In other cases (like a project that spans several years) “to-date” values and

differences over a longer time-span are meaningful.

Side effects

• The current cube acquires an extra dimension.

Related topics

Topic Section Page

TODATE 3.7.2 79
toperiod keyword 3.3.1.1 39
todate keyword 3.3.1.1 39

3.7.4 TREND

Function

Compute the trend from a raw timeseries.

Motivation

This module computes the trend of all timeseries in the current cube, to
highlight significant long-term phenomena and discard noise or incidental fluc-
tuations.

In mathematical notation, given a timeseries Xn, we define the trend as a
second timeseries Yn obtained as

Y1 = X1

Yn = αYn−1 + (1− α)Xn−1

for n = 2, 3, 4, ...
The parameter α controls the smoothing: high values of α produce heavy

smoothing and filter out most random variations.
The current cube acquires an extra dimension, with elements Absolute and

Trend.
See also FORECAST for a discussion of the assumptions of trend extrac-

tion.

82 CHAPTER 3. DATA ANALYSIS

User options

• Smoothing parameter α (between 0 and 1)

Side effects

• The current cube acquires an extra dimension.

Errors and warnings

• Error - The current cube contains less than two periods

Related topics

Topic Section Page

COMPUTE 3.3.1 35
FORECAST 3.7.5 82

3.7.5 FORECAST

Function

Automatic extrapolation of timeseries, based on trend.

Motivation

This module appends a number of periods to the current cube and extrap-
olates all timeseries.

The number of new periods is user-selected. The labels are assigned as
’Extra 1’, ’Extra 2’ etc.

The module computes a trend over the past and extends it to the new
periods.

Given a timeseries Xn, we define the trend as a second timeseries Yn obtained
as

Y1 = X1

Yn = αYn−1 + (1− α)Xn−1

for n = 2, 3, 4, ...
The parameter α controls the smoothing: small values correspond to sen-

sitive (and less reliable) extrapolation while high values produce slow-varying
(and more conservative) extrapolation.

High values may also produce a jump from the latest observed value to the
extrapolated series.

A second ’mixing’ parameter (in the range 0 to 1) is used to smooth this
transition to the extrapolated series: a high value means a very smooth transi-
tion.

3.7. TIME-RELATED OPERATIONS 83

The extrapolation obtained by this module is an automatic operation—the
result must be accepted only after verifying that some basic assumptions (im-
plicit in the technique) are satisfied by the timeseries at hand.

In this case the assumptions are that each timeseries can be modelled as a
random variable with constant or slow-varying mean and that deviations from
the mean in various periods are not correlated.

In other words, the program will attempt to identify a slow-varying trend
plus a random noise component.

It is the user’s responsibility to check that these assumptions are reasonable
in a particular case.

Example

If the series at hand represents the daily production of a workshop, the
assumptions may hold and FORECAST will produce a reasonable result.

If the series, on the contrary, holds the total produced to-date then one would
expect a typical ramp behavior and the extrapolation will exhibit an (unlikely)
saturation to a plateau.

In such a case one would do well to obtain period values, extrapolate and
re-obtain to-date values of the extended timeseries.

♦ Remember also that demanding users, who may not content themselves
with a single extrapolation technique, have the whole power of COMPUTE
at their disposal to express their extrapolation formula.

Note also that the command BLOWUP offers a convenient way to copy
the seasonal behavior of one year to the next.

User options

• Number of new periods (on dimension 2)

• Smoothing parameter (between 0 and 1)

• Mixing parameter (between 0 and 1)

Side effects

• The current cube grows on dimension 2

• The new labels are marked Extra n

Errors and warnings

• Error - There are less than two elements on the second dimension.

Related topics

Topic Section Page

TREND 3.7.4 81
COMPUTE 3.3.1 35
BLOWUP 3.4.4 56

84 CHAPTER 3. DATA ANALYSIS

3.7.6 MOVINGAVERAGE

Function

Compute the moving average of all timeseries.

Motivation

This module computes the moving average of all timeseries in the current
cube and creates a new dimension to store it.

If you request a moving average on N periods, the value of a cell will be the
average of the cell itself and the N − 1 preceding cells.

The first N − 1 cells of the result will be missing values.

User options

• Number of periods to average (on dimension 2)

Side effects

• The current cube acquires a new dimension with elements Absolute and
Moving Avg N

Errors and warnings

• Error - There are less than two elements on the second dimension.

Related topics

Topic Section Page

TREND 3.7.4 81
COMPUTE 3.3.1 35

3.8 Secondary cube management

Motivation

The central idea of Data Analysis is the current cube, which is the result of
all commands issued since an initial RESET command.

There are situations where the current cube is not sufficient, because

• data from different databases must be merged

• results from intermediate operations must be stacked on top of each other

• some commands require two input cubes or some formulae refer to both
cubes.

3.8. SECONDARY CUBE MANAGEMENT 85

All this is made possible by the existence of a secondary cube, which survives
a RESET command.

The secondary cube resides in memory (not on file) and is lost whenever you
leave TANGRAM.

Current and secondary cube also share the available RAM memory. When
their sizes are too large for the available memory, you risk a Memory Full error.

The SUMMARY command reports on the size and labels of both cubes.
See also the module DOCK in the Administration chapter.

3.8.1 STORE

Function

Append the current cube to the secondary one.

Motivation

If a secondary cube exists, the current cube is appended to it, on a chosen
dimension. The element count on the other dimensions must be conformable.

If the secondary cube, for example, has size 20× 8× 13 and the current one
has size 20 × 10 × 13, then they can be appended on dimension 2, yielding a
secondary cube of size 20× 18× 13.

If there is no secondary cube, this module simply copies the current cube to
the secondary one.

Note that, when appending a 3-way cube to a 3-way secondary cube, you
assume that labels on two dimensions are one-to-one synonyms. In fact the
current cube labels on two dimensions are lost in the result. If tha labels differ,
TANGRAM will issue a warning to that effect.

User options

• The dimension on which the two cubes are stacked (this is irrelevant when
the secondary cube does not exist).

3.8.2 GETBACK

Function

Copy the secondary cube to the current one.
The current cube is overwritten, the secondary cube remains unchanged.

3.8.3 RELEASE

Function

The secondary cube is deleted.

86 CHAPTER 3. DATA ANALYSIS

3.8.4 SWAP

Function

Current and secondary cubes are interchanged.

Chapter 4

Administration

4.1 General concepts

Overview

This menu groups all database management functions, that is,

1. Database creation and management

2. Data import and data entry

3. Space allocation and management

4. Formulae that apply to the whole database.

The emphasis is on databases that are much too large to be read into memory
as a whole.

If this is not your case, you may save yourself the technicalities of points 3.
and 4.

That is, you do not need to understand current and maximum element
counts: a cube in memory can freely grow, shrink, be reordered etc. and then
be saved to file by SAVEAS.

Similarly, in a cube of reasonable size, you can compute elements with the
Data Analysis menu, then save the computed cube and store your formulae in
a procedure. Several problems disappear: COMPUTE defines an element on
existing ones, so that circular definitions are avoided.

♦ If a database is used by several people, it is recommended that a database
administrator be appointed: this person will be responsible for data integrity,
back-ups, imports and similar chores.

Some functions of the Administration menu overwrite the current cube left
by the Analysis menu. The secondary cube is not affected.

Cube design

87

88 CHAPTER 4. ADMINISTRATION

The physical creation of a database consists in space allocation and choice
of dimension names. Space is allocated for every cell, even before it contains a
value.

The creation of a TANGRAM database deserves some forethought and de-
sign:

1. Applicability of TANGRAM to your data structure: the basic data struc-
ture must be a multidimensional table of numeric data.

This implies that the choice of an element on each dimension must identify
a single cell.

For example:

Dimension ACCOUNTS: long-term debt
Dimension YEARS: financial year 2005
Dimension COMPANIES: ACME Corp.
associated cell: 234500 Dollars.

2. Cube size and element counts.

The required disk space (for the .hlm file) is simply given by 8 times
the product of the element counts on all dimensions.

For example 100 ACCOUNTS of 200 COMPANIES over 5 YEARS will
require 800.000 bytes.

You may choose to allocate a larger space on disk (see maximum element
count) typically to save yourself the inconvenience of moving the database
to a larger structure when it grows.

This version of TANGRAM handles databases up to 2 Gigabytes
or, equivalently, 250 million cells.

The database structure file (.sf) is normally very small.

3. The element labels.

You want them to be self-explanatory (to any intended reader), systematic
and concise (to produce compact printouts).

It is generally a good idea to design multi-facet labels that encode several
aspects or attributes, so as to use each facet as a selection or sorting key.

If you have in mind a hierarchy on a dimension, it is best to describe it with
adjacent fields, like ’UK Kent Maidstone’ so that the aggregation
steps are readily available.

The reserved characters ’#*?$&"_’ are best avoided in the labels, because
they may create ambiguities.

Dimensions that are needed by different cubes (like Products or Months)
are best defined as a standard namesystem and then copied to each cube
with LABEL2DB.

4.1. GENERAL CONCEPTS 89

4. Remember that you can have up to 15 dimensions and that each dimen-
sion can in fact contain several facets or the Cartesian product of several
(conceptual) dimensions:

For example:

Alfa Omega Budget
Alfa Omega Revised
Alfa Omega Actual
Italmarket Budget
Italmarket Revised
Italmarket Actual

The module CROSSOVER allows you to later move a facet to an existing
or new dimension.

5. If you design a 3-way cube, you may prefer the Standard Orientation:

• Dimension 1: variables, accounts, parameters or measures

• Dimension 2: time periods

• Dimension 3: items, observations, individuals in a population.

If you adhere to this default you do not need to transpose the cube for
queries or time-specific operations.

6. If you are designing a very large database (above, say, 50 million cells)
then performance and sparsity become an issue. The modules NEWDB,
CROSSDB, BUILDDB report on cube size and performance before
proceeding to create the files.

• A good thumb rule is to assign dimensions in the order lightest to
heaviest (in terms of element count). For example, your cube may
have 5 dimensions with 3 10 15 100 200 elements.

• If your retrieval pattern is to read all elements on a dimension, it is
better if this dimension is among the last.

• If you intend to define Admin formulae on a very large database, the
dimensions on which you compute are best placed among the last.

Cube rank: 3-way versus N-way

This section contrasts the advantages of 3-way and N-way cubes.
The world of hypercubes (alias: multi-way tables) can be very rich and

complex for the end user to handle.
Yet hypercubes (of, say, 3 to 7 dimensions) are often the natural model for

company data (and also for statistical and econometric data).
These objects are very hard to handle with Relational DBMSs and spread-

sheets, mainly because the basic data structure of these tools is bidimensional.

90 CHAPTER 4. ADMINISTRATION

Also, these tools place hard restrictions even on bidimensional operations: try,
for example, to reshape a 1000-row 8-column table into a 500-row 16-column
one.

♦ TANGRAM’s approach is to offer a full set of transformations for three
dimensional cubes (hence the name 3-way TANGRAM) with a view to these
advantages:

• This structure is easy to visualize and map to planes, rows and columns
for display and printing.

• Three dimensions can accommodate three axes that deserve specific treat-
ments, like Measures, Periods and Items.

• Three physical dimensions can also represent three groupings of several
logical dimensions.

The unlimited number of facets (alias: codes, fields, keys) on the labels of
each physical dimension (and the power of the CROSSOVER command)
allow you to move and regroup the logical dimensions at a later stage.

• Most sparsity problems are simply avoided by joining two logical dimen-
sions that happen to be in a many-to-many relationship and treating them
as a single physical dimension.

If you know, for example, that a customer only buys a small fraction of
existing products, you may have a physical TANGRAM dimension con-
taining two keys (CUSTOMERS/PRODUCTS) and sparsity is avoided.

• Three dimensions are easily mapped to Excel’s rows, columns, sheets. Sev-
eral 3-way TANGRAM databases of reasonable size can be mass converted
to Excel spread-sheets. N-way databases can also be accessed from Excel,
but a page at a time.

• Working with cubes of fixed rank helps to keep the dialogue much simpler.
The concept of MERGE could be extended to merge a 5-way cube with
a 4-way one, but at the price of puzzling and abstract questions.

For these reasons, many TANGRAM functions are implemented for three
dimensional cubes.

There are situations, however, where you wish to structure your cube as a
higher dimensional object and save it as such.

For example, you wish to access it from the TANGRAM-Reader (the Excel
add-on) and, once in Excel, you don’t have any tool like CROSSOVER to
separate the grouped dimensions.

As a rule, you increase the dimensionality as the last operation before pub-
lishing a higher dimensionality cube.

The typical sequence of operations is

• Prepare your 3-way database.

4.2. DATABASE ADMINISTRATION 91

• Make it an N-way cube with PROMOTE, SHUFFLE and CROSSOVER

• Issue a SAVEAS command to write the cube to a physical database.

• Update the dimension names.

♦ The range of allowed cube ranks (alias: dimension counts) is from
3 to 15.

4.2 Database administration

4.2.1 SELECTDB

Function

Choose the current TANGRAM database.
The previous current cube is lost, the secondary cube is not.

User options

• the file name .hlm

4.2.2 NEWDB

Function

Create an empty database.

User options

• The database name .hlm (max 50 chars)

• Dimension names, separated by semicolons.

For instance : Accounts;Months;Shops;Products

• Maximum element counts

• Current element counts

Side effects

• The new database is created with missing values, default labels.

Errors and warnings

• Error - Current element count cannot exceed maximum element count

• Error - 15 dimensions is a system maximum

• Error - 3 dimensions is a system minimum

92 CHAPTER 4. ADMINISTRATION

Related topics

Topic Section Page

CROSSDB 4.2.3 92
BUILDDB 4.3.4 100
SAVEAS 3.5.1 64

4.2.3 CROSSDB

Function

Create a new database by crossing existing namesystems, that is, placing
each of them on a dimension. The cells are assigned missing values.

Motivation

This is an expedient alternative to NEWDB, to use reference namesystems
to determine database size.

The maximum element counts are set equal to current counts.
If you want to optimize performance, it is a good thumb rule to assign

dimensions in the order lightest to heaviest (in terms of element count).
For example, your cube may have 5 dimensions with 3 10 15 100 200 ele-

ments.

User options

• The database name .hlm (max 50 chars)

• A list of namesystem names, separated by semicolons.

For instance

Accounts;Months;Shops;Products

While in NEWDB dimension names are free text, here they must repre-
sent existing namesystems. If you leave this input box empty, you will be
prompted to choose from the list (instead of retyping the names).

Side effects

• The new database is created.

Errors and warnings

• Error - 15 dimensions is a system maximum

• Error - 3 dimensions is a system minimum

Related topics

4.2. DATABASE ADMINISTRATION 93

Topic Section Page

NEWDB 4.2.2 91
BUILDDB 4.3.4 100
SAVEAS 3.5.1 64

4.2.4 DOCDB

Function

Document the current database, displaying current and maximum element count,
labels and read-only elements.

4.2.5 DELETEDB

Function

Delete a (non current) database. This module will let you delete an unneeded
TANGRAM database and release the disk space.

The operation is equivalent to deleting the two files that make up the
database with Windows Explorer commands.

User options

• Database name .hlm

Errors and warnings

• Error - The current database cannot be deleted.

4.2.6 RESIZEDB

Function

Adjust the current element counts. Create or delete elements.

Motivation

This module lets you re-adjust the current element count in the current
database, up to maximum values specified at database creation.

The element count on each dimension can be increased or decreased inde-
pendently.

In case you decrease the element count, (after confirmation) some labels and
the corresponding values are lost.

The formulae are re-checked for consistency only when you access the module
UPDFORMULAE.

If you need to increase a dimension above the predefined maximum, you
have to move the whole database to a larger structure with MOVEDB.

94 CHAPTER 4. ADMINISTRATION

User options

• New (current) element counts on all dimensions

Errors and warnings

• Warning - The following elements will be deleted :

• Error - Current element counts exceed maximum counts

Related topics

Topic Section Page

MOVEDB 4.2.7 94

4.2.7 MOVEDB

Function

Copy a database to a new physical location, altering the maximum element
counts.

Motivation

When the initial allocation of space of a database becomes insufficient this
module can be used to copy it to a new location.

The maximum element counts can be redefined, the current element counts
remain unchanged.

After the successful completion of this module the old database can be
deleted and the new one renamed.

User options

• New database name .hlm

• New maximum element counts on all dimensions

Errors and warnings

• Error - Maximum element count is less than current element count.

Related topics

Topic Section Page

RESIZEB 4.2.6 93

4.3. DATABASE LOADING 95

4.3 Database loading

4.3.1 DATAENTRY

Function

Update a database with a data entry session.

Motivation

This module displays the database in a spreadsheet-like grid and lets you
update the numeric cells (not the labels).

You choose which dimensions are expanded on the rows and columns. All
other dimensions are represented by a combo in which you can choose the current
element.

Other grid buttons allow you to copy the whole current page (labels and
cells) to the Clipboard, print it in REPORT format, change the number of
displayed decimal places.

♦ Remember that numeric cells can be copied from other Windows applica-
tions via the Clipboard.

Be sure to highlight a source rectangular area not larger than the target area
(on the TANGRAM side) and confine yourself to number cells (not text data).

User options

• Dimensions on rows, columns

• Update rights (a single value, like ON, OFF) Note that when choosing
ON you may still be subjected to restrictions on read-only elements.

Side effects

• The current database is updated.

Errors and warnings

• This module has been tested for element counts up to 3000 on each di-
mension. Larger element counts may produce a Memory Full or System
Limit error.

It is easy to update subcubes of very large databases with BROWSE,
then STORE them and write them back to file with DOCK.

Related topics

Topic Section Page

PROTECTDB 4.5.2 113
LOADDB 4.3.2 96
BROWSE 3.2.1 26

96 CHAPTER 4. ADMINISTRATION

4.3.2 LOADDB

Function

3-way Load a numeric field from a flat file to the current database.

Motivation

This module loads a numeric field from a flat file to a TANGRAM database.
Every record of the flat file must contain at least four fields, of which three

must code the three TANGRAM coordinates and a fourth must contain the
corresponding cell.

In other words, the record fields must contain codes that also appear in the
database labels.

The loading operation terminates if a record of unexpected length is encoun-
tered.

If execution continues to the end, the program reports on the number of
processed, accepted and rejected records.

Records may be rejected if one of the three codes is unknown in the database
or if the numeric field is invalid.

A file with extension .xcp contains the rejected records (with a trailing field
that flags the illegal codes).

♦ The number values in the flat file must be in character format (as op-
posed to binary, float, packed...) and may use either dot or comma to separate
the decimal part. The negative sign can either be before or after the number
(-12.33 or 12,33-).

User options

• Key on the labels of dimension 1

• Key on the labels of dimension 2

• Key on the labels of dimension 3

• Input file name .txt

• Record layout (positions of the three keys and the number field). Fields
1,2,3 correspond to keys on dimensions 1,2,3. Field 4 is the number field.
Example:

2222 111 444433

Side effects

• The current database is updated

• Output: file of rejected records .xcp

Errors and warnings

4.3. DATABASE LOADING 97

• Error - Irregular record lengths in flat file - Loading terminated

Related topics

Topic Section Page

BUILDDB 4.3.4 100
UNLOAD 3.5.2 65

4.3.3 TRANSFER

Function

3-way Transfer cells (not labels) between 3-way TANGRAM databases.

Motivation

This module allows for the transfer of data cells between physical databases.
This operation is normally reserved to the data administrator.
Data transfers of this kind may be a one-shot operations (like initializing

the budget with actual data) or a routine operation (like feeding one database
from another).

For example the aggregation of REVENUES and COSTS databases may be
copied to a PROFLOSS database and few lines of this may update some cells
of the BALSHEET database.

This module transfers numeric values only: the values overwrite the older
values in the destination database and take their meaning (in terms of labels).

All processing operations (computation, roll-up, scaling,...) must be done
before the actual transfer.

The data to be transferred always takes the form of a 3-way subcube that is
a subset of both the source and destination database (two 3-way cubes).

Example 1

The specification of the subcube consists of six lists of indices, for example:

database XXX database YYY
accounts 3 6 7 lines 106 110 31
months 1 2 3 4 5 6 periods 25 26 27 28 29 30
companies 7 8 corporations 2 1

Note that the copied subcubes must have the same size in the source and
destination databases—the databases themselves need not be conformable.

Once obtained these index lists, the module confirms the meaning of the
cells in the two databases.

For example:

98 CHAPTER 4. ADMINISTRATION

database XXX database YYY
3 Rev. from sales 106 REVENUES
6 Prod. Cost 110 IND. COSTS
7 Overhead 31 FIXED COSTS
1 January 25 JAN 95 ACT.
2 February 26 FEB 95 ACT.
3 March 27 MAR 95 ACT.
4 April 28 APR 95 ACT.
5 May 29 MAY 95 ACT.
6 June 30 JUN 95 ACT.
7 Alfa Omega 2 ALFA OMEGA
8 Pegasus 1 PEGASUS

It is recommended that you check the equivalence between corresponding
labels before proceeding to the actual transfer.

♦ The six element lists can, of course, be expressed with the help of the Set
Language (See page 127).

An extra keyword COMMON is available in this context: it produces a list of
elements that have identical labels in the two databases.

If you answer COMMON for all six element lists, you only transfer cells that
have equal descriptions in source and destination databases.

♦ The module requires that the index lists in the destination database do
not contain duplicate elements.

Duplicate elements in the source database are accepted and this is often a
useful technique to replicate an element several times.

Example 2

If you duplicate a month of the source database onto all periods of the
destination database, your lists of elements on dimension 2 may look like this:

database XXX database YYY
12 Dec 08 Actual 1 JAN 09 BDG
12 Dec 08 Actual 2 FEB 09 BDG
12 Dec 08 Actual 3 MAR 09 BDG
12 Dec 08 Actual 4 APR 09 BDG
12 Dec 08 Actual 5 MAY 09 BDG
12 Dec 08 Actual 6 JUN 09 BDG

♦ The same physical database may serve both as source and destination.
This may be the case when you do a roll-back, shifting all periods back and

making room for a new period.

Example 3

You may specify the following element lists:

4.3. DATABASE LOADING 99

database XXX database XXX
Dimension 1: ALL Dimension 1: ALL
Dimension 2: 2 3 4 5 Dimension 2: 1 2 3 4
Dimension 3: ALL Dimension 3: ALL

Note that extra care is needed to copy a database onto itself because the
copying operations are done strictly in the list order.

In this example, element 2 is copied to element 1, then element 3 is copied
to element 2, etcetera.

A roll-back operation, as the one illustrated, would also require a correct
update of the period labels (that are unaffected by this module).

User options

• Source database

• Destination database

• Indices on dim. 1 of source database

• Indices on dim. 1 of destination database

• Indices on dim. 2 of source database

• Indices on dim. 2 of destination database

• Indices on dim. 3 of source database

• Indices on dim. 3 of destination database

Side effects

• The destination database is updated

Errors and warnings

• Error - Element count mismatch on a dimension

• Error - Duplicate elements in the destination database

• Warning - Some elements in the destination database are read-only or will
be overwritten by formula execution.

Related topics

Topic Section Page

MERGE 3.4.6 59
DOCK 4.3.7 105

Note that direct assignment of the secondary cube to the current cube (GLOBAL
with formula xT) is another way to transfer cells but not labels—and this ap-
plies to cubes of any rank. See an exercise of this type in procedure TRANSFER
in library example2.

100 CHAPTER 4. ADMINISTRATION

4.3.4 BUILDDB

Function

3-way Create a new database from a flat file.

Motivation

This module assists you in the step-by-step transformation of a flat file into
a TANGRAM database.

The operation is exploratory in nature, meaning that you may decide the
final database shape after several attempts.

The whole operation of the module can be broken down into 6 steps:

Step 1 - Definition of record layout. Field names, positions, nature (code or
numeric).

Step 2 - Attribution of fields to the TANGRAM dimensions.

Step 3 - Exploratory analysis of the file to determine the database size.

Step 4 - Acceptance of the resulting size (or repetition of Steps 2 and 3).

Step 5 - Database creation.

Step 6 - Loading of the values.

Example

A file contains production orders of an apparel industry (how many suits of
each size).

Step 1 - Let the record layout be:

bytes 1 - 5 MOD Model code
6 - 10 CLO Cloth code

11 - 15 COL Color code
16 - 20 VAR Color variant
21 - 25 WEE Due date (week)
26 - 28 SZ46 Suit count of size 46 -numeric-
29 - 31 SZ48 Suit count of size 48 -numeric-
32 - 34 SZ50 Suit count of size 50 -numeric-

Step 2 - You associate each non-numeric code to a TANGRAM dimension,
for example:

MOD -> dim. 1
CLO -> dim. 2
COL -> dim. 3
VAR -> dim. 0 = ignore field
WEE -> dim. 2

4.3. DATABASE LOADING 101

Step 3 - TANGRAM reports that the resulting cube would have:

• 1000 different MOD codes

• 5000 different CLO-WEE code pairs

• 500 different COL codes.

The three numeric fields SZ46, SZ48, SZ50 have the effect of multiplying
TANGRAM’s first dimension by three, so that the resulting database will have
3000 × 5000 × 500 cells or 7500 million cells.

At this point you see the mistake: you are trying to create a huge sparse
database, because a very small fraction of all MOD-CLO-COL keys is present
in the flat file.

The best course of action is to redefine the dimensions in a more parsimonious
way:

MOD -> dim. 3
CLO -> dim. 3
COL -> dim. 3
VAR -> dim. 0 = ignore field
WEE -> dim. 2

A new analysis of the flat file produces a more acceptable proposal.
For example:

• 6500 different MOD-CLO-COL keys;

• 10 different weeks.

The whole cube will have the more manageable size of 3 suit sizes × 10 weeks
× 6500 keys or 195000 cells.

If this choice is accepted, the program will proceed to database creation and
loading (Steps 5, 6).

To conclude this example, note that the VAR field was not loaded. As a
result, all color variants corresponding to the same MOD-CLO-COL keys will
be aggregated during the loading operation.

♦ The performance of this module may become a critical factor in case of
very large files extracted from the company info system.

These considerations can help the administrator to improve the load times:

• The most important factor is the sorting order of the input file. The best
situation is when it is sorted on those keys that become the second and
third TANGRAM dimensions.

• The available RAM memory is another key factor.

• The record length and the number of fields have little influence on loading
times.

102 CHAPTER 4. ADMINISTRATION

• See Main menu, Configuration, Miscellany, for a way to tune the perfor-
mance of this module. Basically, you control the number of records that
TANGRAM processes at a time.

♦ The number values in the flat file must be in character format (as op-
posed to binary, float, packed...) and may use either dot or comma to separate
the decimal part. The negative sign can either be before or after the number
(-12.33 or 12,33-).

♦ The definition of all inputs for this operation is non trivial. It is best to fill
only the first two inputs (the file names) and let the system guide you through
the other choices.

If you save this in a procedure it will be clear how to update the resulting
strings for minor adjustments.

User options

• Name of input file .txt

• Name of new database .hlm

• Record layout (a mask of n field positions)

• Field names (a list of n field names, separated by commas)

• Number fields (a Boolean string of n values, where 1 marks number fields,
0 code fields)

• Destination of fields in the cube (a string of n integers in the range 0,1,2,3
—where 0 means that the code field is to be ignored— 1,2,3 that it must
become part of this cube dimension).

Side effects

• Database creation and loading

• Byproduct: three namesystems (named 00001, 00002, 00003) con-
tain the cube labels on the three dimensions. These may be useful to
analyze the contents of the flat file even without creating the physical
database. The three namesystems are overwritten at each file analysis.

Errors and warnings

• Error - No numeric field in record layout

• Error - Irregular record length in the flat file. Loading terminated.

• Warning - In n cases a number field contained an ill-formed number.

Related topics

4.3. DATABASE LOADING 103

Topic Section Page

NEWDB 4.2.2 91
CROSSDB 4.2.3 92
LOADDB 4.3.2 96

If you contrast BUILDDB with LOADDB you notice that the former:

• does not require a pre-existing database

• loads both codes and values in one operation

• accepts records with several numeric fields and more than three codes

• aggregates while loading, which means that values corresponding to the
same keys are not overwritten but added up.

4.3.5 FILLDB

Function

Fill the current database with test data, obtained from the marginal values.

Motivation

TANGRAM is often used to produce prototype applications in very short
time scales. This module offers a sophisticated way to fill a cube with likely test
data.

The marginal values used to fill the whole cube are the cube edges. In a
3-way cube, for example, they are at these coordinates:

• Dimension 1 : ALL
Dimension 2 : 1
Dimension 3 : 1

• Dimension 1 : 1
Dimension 2 : ALL
Dimension 3 : 1

• Dimension 1 : 1
Dimension 2 : 1
Dimension 3 : ALL

♦ The module FILLDB fills in all other cells in proportion to their marginal
values.

104 CHAPTER 4. ADMINISTRATION

You can think of this as dividing each marginal string by T[1;1;1] and then
multiplying these strings in all possible combinations. The corner cell T[1;1;1]
must not be zero.

In mathematical notation, the formula for a 3-way cube would be

Tijk = T111
Ti11

T111

T1j1

T111

T11k

T111

After obtaining a base value in this fashion, the program adds to it a random
value with maximum range h percent of the base value.

For instance, if the base value of a cell is 1200 and h = 10 then the random
component will be uniformly distributed between −120 and +120.

If you choose h = 0 (no random component) then all cells will be strictly
proportional to marginal values.

♦ It should be evident that this module helps you to fill huge cubes with
very little direct data entry on your part. If the cube is 100×12×50 , you enter
only 160 numbers and automatically produce 60000 cells.

These values will exhibit the same seasonal behaviour of the marginal data
and also reflect the relative size of the elements on all dimensions.

User options

• Random component (as a percentage of base value)

Side effects

• Implicit input: marginal strings in the database

• All cells of the current database are overwritten (including the marginal
strings, if h > 0).

Errors and warnings

• Error - Marginal strings contained missing values

Related topics

Topic Section Page

RANDOMDB 4.3.6 104

4.3.6 RANDOMDB

Function

Fill the current database with (uniformly distributed) random data.

Motivation

4.3. DATABASE LOADING 105

This module fills the entire database with random values.
Every cell is assigned a random value, uniformly distributed between two

user-supplied limits.

User options

• Minimum value

• Maximum value

Side effects

• The current database is totally overwritten.

Related topics

Topic Section Page

FILLDB 4.3.5 103

4.3.7 DOCK

Function

Write the secondary cube to the current database, provided all its labels already
appear among the database labels.

Motivation

This is one of the ways to update a database or transfer cells from a different
database that shares (a subset of) the same labels.

If a single label of the secondary cube is not found on the corresponding
dimension of the current database, the operation is not carried out.

The dimension names are irrelevant in this operation.

Side effects

• The current database is reset, losing the current cube.

• The current database is overwritten.

Related topics

Topic Section Page

SAVEAS 3.5.1 64
TRANSFER 4.3.3 97

106 CHAPTER 4. ADMINISTRATION

4.4 Administration formulae

4.4.1 UPDFORMULAE

Function

Define or modify the formulae on a given dimension of the current database.

Motivation

The Data Analysis menu offers very sophisticated computations.
Such computations are, in practice, private ones, that is, they are defined,

saved and re-used by each user of a database.
The Administration menu offers slightly different features, for the kind of

computations that are defined, saved and re-executed by the administrator for
the benefit of all users.

The module UPDFORMULAE lets you define independent computations
on each TANGRAM dimension.

You may then have several packets of formulae which are separately defined
and applied.

In the simple cases, computations are defined on the first dimension only
(for example, on Variables).

If you define computations on several dimensions you must be aware that
the order of execution does matter.

Example

If your database contains VARIABLES, YEARS, COMPANIES, you may
want to compute ratios (on VARIABLES) and company consolidations (on
COMPANIES).

It is easy to see that you want first to consolidate companies and then to
compute the ratios.

If you do it the other way around, the ratios of the consolidated company
will be the sum of the individual ratios.

♦ The general rules for coding the formulae are the same as for COM-
PUTE, with a few notable exceptions:

• All formulae that act on a given dimension are collected in a table (one
per line)

• Every formula must assign its result to a given element (with a colon
symbol).

Examples

[33] : 100 TIMES [10] DIVIDE [45]

"Margin" : "Cost of Goods" LESS "Overhead"

4.4. ADMINISTRATION FORMULAE 107

• The keywords

PRE POST SLIDE todate toperiod STAT PERCENTILE INLIST SUB

are not supported here. You may, however, mix the set language and the
computation keywords.

Examples

[24] : [22] DIVIDE SUM [SPOT ’2001’]

[30] : (SUM [ALL BUT 21 TO 30]) DIVIDE SUM [21 TO 29]

• Each element can be referenced either by its index within brackets (for
ex. [131]) or by the double-quote notation (for ex. "Variable costs").
The string between double quotes must identify one and only one element
among the labels of the chosen dimension.

• The packet of formulae on a given dimension must not contain circular
definitions.

In other words, TANGRAM must be able to compute the elements in
some order.

Error example 1

[7] : [3] PLUS [5] PLUS [1]
[5] : [2] DIVIDE [4]
[4] : [7] TIMES [20] TIMES [21]

Error example 2

[26] : [26] TIMES 1.15

Example 3

[7] : [3] PLUS [5] PLUS [1]
[10] : [2] DIVIDE [4]
[2] : [1] TIMES 36500

As you note in Example 3, the formula that defines an element may refer
to elements above and below it.

The physical order in which elements appear in the database is irrelevant.
This implies that you will never have to physically move elements to make

room for a new addendum or to adjust element indices in a formula.
Finally, the order in which you enter your formulae is irrelevant. In the last

example we have defined elements 7, 10, 2 in that order.

108 CHAPTER 4. ADMINISTRATION

If the formulae cannot be computed sequentially in the way you enter them,
TANGRAM will re-order them to reflect the sequence of execution.

Example 4

You may find the three formulae of Example 3 reordered as follows:

[2] : [1] TIMES 36500
[7] : [3] PLUS [5] PLUS [1]
[10] : [2] DIVIDE [4]

Since these formulae define elements 2, 7, 10, these elements will become
read-only elements.

♦ When you update the formulae, TANGRAM will check their consistency
before you are allowed to leave the editor and exit.

The final check for correctness is carried out by a different module CHECKSYN-
TAX.

♦ If the labels on the chosen dimension are an indented namesystem then
TANGRAM will volunteer to convert the indentations to the corresponding
formulae. Automatically generated formulae are marked with the comment
! INDENT .

When this is done, you can still edit the packet of formulae and enter your
own.

Example 5

If the labels contain:

Europe
___Germany
___United Kingdom
______Scotland
______England
___France
___Italy
______Tuscany
_________Florence

then the generated formulae will be

[3] : SUM [,4 5] ! INDENT
[8] : SUM [,9] ! INDENT
[7] : SUM [,8] ! INDENT
[1] : SUM [,2 3 6 7] ! INDENT

User options

4.4. ADMINISTRATION FORMULAE 109

• Choice of the dimension.

• An editor session to enter or update the formulae.

Side effects

• Formulae are re-ordered

• The formulae are stored as part of the current database

• Elements assigned in the formulae are defined as read-only.

Errors and warnings

• Error - Mismatched parentheses

• Error - Mismatched brackets

• Error - A line must contain one and only one assignment (colon)

• Error - Illegal use of the double quote notation " "

• Error - This formula is part of a circular definition

• Error - An element was defined more than once

• Error - Formula refers to non-existing elements

Related topics

Topic Section Page

Available keywords 3.3.1.1 39
COMPUTE 3.3.1 35
GLOBAL 3.3.4 47
GROWTREE 3.3.3 45

4.4.2 CHECKSYNTAX

Function

Check the syntax and validity of the administrator formulae.

Motivation

This module actually executes the formulae on dummy data, to guarantee
that they can be safely applied to the database.

The normal output of the module is the message

The syntax of all formulae is correct.

110 CHAPTER 4. ADMINISTRATION

or else a list of offending formulae and the nature of the problem.
For example:

Dimension Variables
Formula N.3

[2] : [1] DEVIDE [3] NAME UNKNOWN

This verification is more thorough than the one performed by the module
UPDFORMULAE since the latter performs a formal and partial verification,
while CHECKSYNTAX actually executes the formulae and intercepts all
errors.

User options

• Choice of the dimension.

4.4.3 SHOWFORMULAE

Function

Spell out the labels of all elements referred to in a formula.

Motivation

This module is used to display the full labels of all elements that appear in
a formula, even if they are referenced by index or by the double quote notation.

It is a good practice to document and print the whole packet of formulae for
desk checking.

Example

The formula

[39] : (SUM [32 TO 36]) DIVIDE "Tot overh"

will produce an output such as:

Meaning of the variables:
[39] Revenues/Overhead
[32] Sales
[33] Commissions
[34] Interests
[35] Royalties
[36] Maintenance
[10] Total overhead

User options

• Choice of the dimension.

• Elements to analyze.

4.4. ADMINISTRATION FORMULAE 111

4.4.4 FAMILYTREE

Function

Trace the elements that indirectly influence a computed element.

Motivation

When the chains of computations are long and complex it is useful to trace
the input elements that produce a result—in TANGRAM jargon the family tree
of the element.

The dependency is highlighted by the indented margin.

Example

[38] Total costs
[19] Fixed overhead
[37] Material costs

[10] Cabinets
[11] CPU
[35] Disks

[12] Removable disks
[13] Fixed disks
[14] Optic disks

[36] Labour costs
[15] Salaries
[16] External contracts
[17] Travel and expenses
[18] Consultants

User options

• Choice of the dimension.

• Elements to analyze.

4.4.5 RUNFORMULAE

Function

Recompute the current database.

Motivation

This module recomputes the current database applying administrator for-
mulae.

The computation can be applied to several dimensions in a single execution
(thus reading the database only once).

112 CHAPTER 4. ADMINISTRATION

If you define formulae on several dimensions, do remember that the prece-
dence does matter.

Be sure to recompute the database whenever you have used one of these
modules:

• LOADDB

• TRANSFER

• DATAENTRY

• UPDFORMULAE

User options

• Dimensions to recompute

Side effects

• The current database is updated

Errors and warnings

• Any interpreter-level error due to illegal formulae

• Warning - No formula is defined on the chosen dimension

4.5 Database labels

4.5.1 UPDDBLABELS

Function

Update element labels and dimension names.

Motivation

At database creation, labels are defined by TANGRAM as a numbered list.
The first operation you want to perform is the definition (or import) of mean-
ingful labels, that will assist you in all subsequent operations.

Note that a label is associated to the physical position of the cell in the file.
If the administrator shifts all labels of a dimension down one line, this will

not move data cells on disk but will wrongly label all data in the database!
For similar reasons, you may not change the label count while editing: see

RESIZEDB for this purpose.

User options

• Dimensions to update. The table of dimension names is treated as ap-
pended to the other labels, so that, in a 4-way database, you may code
1 2 3 4 5 to update all tables.

4.5. DATABASE LABELS 113

4.5.2 PROTECTDB

Function

Redefine read-only elements in the current database.

Motivation

TANGRAM has a notion of protected cells, in which the numeric value
cannot be manually updated.

Normally, only computed cells are write-protected. In other words, TAN-
GRAM analyzes the formulae on every dimension, determines which elements
are updated and defines such elements as read-only.

The reason is, of course, that such values will be overwritten whenever you
recompute the database.

In some cases you want to extend this protection to other elements, so that
you do not inadvertently update “actual” values.

In other cases, you want to lift the protection and update computed elements
for a simulation run (this may be quicker than updating all the detail elements
and recomputing).

This module lets you redefine protected elements on each dimension.
A cell is protected if one of its coordinates is a protected element.
This means that you are not allowed to define protected cells on a cell-by-cell

basis, as you can do in BROWSE.
Remember that when you execute the module UPDFORMULAE pro-

tected elements are re-assigned to coincide with computed elements.
The read-only elements are tested only by DATAENTRY. Administration

services like LOADDB ignore this setting.

User options

• Dimension

• List of read-only elements

Side effects

• Current database attributes are updated

Related topics

Topic Section Page

UPDFORMULAE 4.4.1 106

114 CHAPTER 4. ADMINISTRATION

4.5.3 DB2LABEL

Function

Copy the current database labels to a namesystem.

Motivation

This module copies (or appends) the database labels to a namesystem.

User options

• Source dimension

• Append mode (a Boolean value. Use 1 to append the labels as extra rows
in an existing namesystem. Use 0 to create a new namesystem).

• Destination namesystem (existing or new, according to the Append mode)

Related topics

Topic Section Page

LABEL2DB 4.5.4 114

4.5.4 LABEL2DB

Function

Copy a namesystem to the labels of the current database.

Motivation

This module copies (or appends) a namesystem to the labels of the current
database. The namesystem can be appended to the existing labels only if the
resulting element count does not exceed the maximum count.

User options

• Source namesystem

• Append mode (a Boolean value. Use 1 to append the namesystem to the
labels and expand the database. Use 0 to overwrite the labels).

• Destination dimension.

Errors and warnings

• Error - The resulting element count would exceed the maximum.

Related topics

Topic Section Page

DB2LABEL 4.5.3 114

Chapter 5

Namesystems

Overview

Namesystems (alias: labels, nomenclatures, descriptors) are two-way char-
acter tables in which every row describes an element.

They are the same kind of objects as the labels in a TANGRAM database—
in fact, namesystems are created in view of their use in databases.

A namesystem describes the elements of some collection, such as Branches,
Suppliers, Accounts, Companies, including all facets (alias: fields, codes, keys,
properties, attributes) that pertain to them.

Example 1

Suppose this is a list of companies, entailing several facets: code, description,
state, region, country and size:

8762 Alfa Omega CA EAST USA Large
5266 Pegasus TX SOUTH USA Small
2992 Trading Intl. NY WEST USA Medium
7382 Three Oaks TX SOUTH USA Small

♦ Remember that you do not formally declare these facets in TANGRAM—
you simply point at them when required. For this reason fixed-width facets are
used.

There is no preset limit to the number of rows, the number of facets and the
total width of a namesystem.

The order of the rows carries no special meaning but a namesystem is not
supposed to have duplicate rows.

If a namesystem contains duplicate rows, you get a warning with a list of
lines that are not unique (all occurrences of duplicate rows, except the first from
top).

115

116 CHAPTER 5. NAMESYSTEMS

The same type of error is issued for cube labels, if a module requires unique
labels.

♦ Namesystems reside in TANGRAM libraries .lib . They are perma-
nently saved when the current library is saved (or when you leave TANGRAM).

They can be created in several ways:

• Via an Editor session

• From a text file

• From elementary namesystems, via the four commands SYNONYM,
CROSS, CONVERGE, PAIR described in this chapter.

• From database labels

• By executing BILDDB. See the namesystems 00001 00002 00003 that
are left (and overwritten) by each execution.

Namesystems typically contain:

• codes, descriptions and attributes for join operations (typically used to
expand database labels that contain only codes).

• a master copy of labels used in several databases.

• a master list of elements (like Products and Customers) of which database
labels must be a subset.

• elementary namesystems that are used to generate more complex ones, for
example with the CROSS command.

• aggregation paths.

Indented Namesystems

One of the meanings of the facets in a namesystem is to specify a hierarchy or
aggregation path.

The companies in Example 1, for instance, can be aggregated on State,
Region, Country or Size.

When there is a single aggregation path and the aggregation tree has uneven
depth, TANGRAM also supports a different technique to define a hierarchy—
this is called an indented namesystem.

In this notation an element is defined as the sum of all lower elements that
have a deeper indentation. Each indentation step is marked by a consistent
number of underscores (for example, 3 underscore characters).

Example 2

5.1. NEWLABEL 117

Europe
___Germany
___United Kingdom
______Scotland
______England
___France
___Italy
______Tuscany
_________Florence

When such a namesystem is used in a database, TANGRAM generates the
appropriate formulae and read-only attributes.

Alternatively, the database labels may contain only the atomic elements and
the aggregations are produced by the GROWTREE module.

♦ This chapter groups all modules that are used to maintain a population
of namesystems.

Related topics

Topic Section Page

DB2LABEL 4.5.3 114
LABEL2DB 4.5.4 114
CROSSOVER 3.4.2 53
LABELJOIN 3.1.6.2 25
UPDFORMULAE 4.4.1 106
Indented tables 6.5 133

5.1 NEWLABEL

Function

Create a new namesystem via the editor.
An acceptable name consists of upper- and lower-case letters, digits and

underscores (max. 25 char).
Example:

PROFIT_AND_LOSS_ACCOUNTS

Remember that names are case sensitive.

User options

• the namesystem name.

118 CHAPTER 5. NAMESYSTEMS

5.2 UPDLABEL

Function

Open an editor session to update an existing namesystem.

User options

• the namesystem name.

5.3 DELETELABEL

Function

Delete a namesystem in the current library.
Note that erroneously deleted namesystems can still be recovered from the

copy of the library on disk.

User options

• the namesystem name.

5.4 LISTLABEL

Function

List the names and sizes of all namesystems in the current library.

5.5 DOCLABEL

Function

Document the namesystems in the current library.

User options

• list of namesystems to include in the documentation.

5.6 TXT2LABEL

Function

Import a text file that becomes a namesystem.

User options

• source file .txt

• append mode (Boolean - Use 0 if the namesystem does not exist - Use 1
if it exists and the file must be appended as extra rows)

• destination namesystem.

5.7. LABEL2TXT 119

5.7 LABEL2TXT

Function

Export a namesystem that becomes a text file.

User options

• source namesystem

• append mode (Boolean - Use 0 if the file does not exist - Use 1 if it exists
and the namesystem must be appended as extra rows)

• destination file .txt

5.8 SYNONYM

Function

One-to-one relationship between namesystems.

Motivation

The meaning of this operation is to declare that the two namesystems are
two forms of the same classification.

For example, the two namesystems COMPTES and ACCOUNTS may define the
same accounts in French and English.

The effect is simply to create a two-field namesystem, appending the two
input namesystems side-by-side.

User options

• left namesystem

• right namesystem

• result namesystem

5.9 CROSS

Function

All-to-all relationship (alias: Cartesian product) between namesystems.

Motivation

120 CHAPTER 5. NAMESYSTEMS

Produces a two-field namesystem containing all combinations of the rows of
the component namesystems.

Example

From a 5-element product list and a 4-element color list, you would get
5× 4 = 20 combinations:

Radiator
Fan
Conditioner
Humidifier
Oven

White
Blue
Yellow
Red

Radiator White
Radiator Blue
Radiator Yellow
Radiator Red
Fan White
Fan Blue
Fan Yellow
Fan Red
Conditioner White
Conditioner Blue
Conditioner Yellow
Conditioner Red
Humidifier White
Humidifier Blue
Humidifier Yellow
Humidifier Red
Oven White
Oven Blue
Oven Yellow
Oven Red

One application of CROSS is to combine two or more namesystems that
will reside on a single TANGRAM dimension.

The CROSSOVER module, in Data Analysis, will move one of these facets
to another dimension.

5.10. CONVERGE 121

User options

• left namesystem

• right namesystem

• result namesystem

5.10 CONVERGE

Function

Specify the many-to-one relationship between two namesystems.
For example, you want to define how Products are grouped into Product

Lines.

User options

• left namesystem

• right namesystem

• result namesystem

5.11 PAIR

Function

Specify the many-to-many relationship between several namesystems.
For example, you have master namesystems of Products, Colors, Sizes and

want to define which triplets are actually produced by your company.
This version of PAIR accepts from 2 to 7 constituent namesystems.

User options

• result namesystem

• line count in the result namesystem

• input count (number of fields in the result)

• input number 1 (a namesystem name)

• input number 2

• input number 3

• input number 4

• input number 5

122 CHAPTER 5. NAMESYSTEMS

• input number 6

• input number 7

Errors and warnings

• Warning - Duplicate rows in the resulting namesystem

Chapter 6

User interface and keywords

This chapter lists the GUI (Graphical User Interface) modules and explains the
Set Language keywords for element selection.

The following sections list other keywords and utility programs for advanced
uses of TANGRAM.

6.1 Dialogue boxes

The interaction with the TANGRAM user is handled by eleven general purpose
modules that are listed here.

Their behaviour is, in general, what a Windows user expects.
Some differences and extra features are illustrated here.

1. Questions and Answers

This module handles from zero to ten questions and answers, displays
error messages and loops until it obtains acceptable answers (or the user
hits “Cancel”).

The main idea is that you may either formulate your answer via keywords
(and even APL expressions) or leave the input field blank to be prompted
by an appropriate GUI module.

• If the answer is numeric, you may simply type in any expression
that produces an acceptable result. For instance, instead of typing
element indices as
1 2 3 4 5 6 7 8

you may use the more general reply
1 TO COUNT 3

or you may also assign a name to this answer so that you later refer-
ence it:
MyList: 1 TO COUNT 3

123

124 CHAPTER 6. USER INTERFACE AND KEYWORDS

A minus sign next to a constant is interpreted as the sign; if it is
not adjacent to a constant it performs a difference. For example,
10 -8 produces a string of two integers, whereas 10 - 8 pro-

duces the result 2.
If you use several keywords, remember that they are evaluated right
to left, unless you use parentheses.
For example: (T > 200) OR T < 100

• If the expected answer is text, it is taken at face value. If you wish
to enter an expression instead, start it with character ’=’.
For example, when you enter a page title and want to assemble it
from your own variables, you may enter something like:
= ’Department of ’,userOffice,’ Printed on ’,TS

For example, when you enter a file name you may want to assign it
in a systematic way with a reply like:
= ProjectPath, Prefix, SeqNumber, ’.hlm’

• If you leave some input fields empty and hit “Enter”, TANGRAM
will volunteer some context-dependent assistance.
For example, you may be selecting elements and leave the list empty.
TANGRAM will open a Line Selection Box and let you choose from
it.
The collection of selected element indices will be stored in the pro-
cedure.
To choose an empty element list, use the keyword NONE.

♦ Note that the procedure stores the actual answers and keywords as you
type them. If, instead, you intend to save the current result of keyword
execution, assign it to a variable.

2. Line Selection Box

According to the context, this can be a single or a multiple line selection.

Left-click selects a single element

Shift Left-click extends the selected range to this element

Ctrl Left-click adds a single element to the selection or de-selects an
element.

3. Column Selection Box

This operation is peculiar to TANGRAM. It consists in choosing columns,
that is, character positions within a displayed character table (for example,
pointing to fields in a file, to facets in a label).

According to the context, this can be a single or a multiple column se-
lection. In the former case, you have four pushbuttons available (Select

6.1. DIALOGUE BOXES 125

cols, Deselect cols, Fill rest, Deselect all), in the latter you have two more
(Next marker, Prev. marker).

How to proceed:

• You are shown the top rows of your table. Highlight a rectangular
area by dragging the left mouse button on the top row of grey tiles.

• Click on “Select cols” to transform the highlighted area into your
selection.

• Click on “OK” to close the window with a single field selected,

Or, in case of multiple fields:

• Repeat for other sets of columns, to define the next fields.

• Click on “OK” when finished.

The mask you are defining will be visible as a string of characters, like
2222 111111133331111 where ones marks the first field, twos the sec-
ond and so forth. The marker is changed (from ’1’ to ’2’ etc.) whenever
you select some columns. You can also change it manually with buttons
’Next marker’ ’Prev. marker’.

4. Binary choice

This module displays a question and expects a Yes/No answer.

5. Information

This is used to display text of five kinds (information, warnings, errors,
program failures, printout pages and comments).

You simply hit the Enter key or click on “OK” when you are ready to
proceed. The button “Print” sends the whole text to the standard printer.

In the case of printout pages, you may also click on “Cancel” to stop
producing the rest of the printout. Note that if you are sending a printout
to screen, printer and file, the “Cancel” action will apply to all of them.

6. Editing a character table

The editor is used to create or update character tables (in particular labels,
namesystems, formulae, procedures).

The editor adheres to the Windows standard.

In particular:

• Esc concludes the editing session

• Shift Esc quits (aborts editing, leaving the original table un-
changed)

• Shift Del Cuts the highlighted area and copies it to clipboard

• Ctrl Ins Copies to clipboard

126 CHAPTER 6. USER INTERFACE AND KEYWORDS

• Shift Ins Pastes from clipboard

• Del Deletes the highlighted area

• Ctrl Shift Ins Opens a line at the cursor

• Ctrl Del Deletes the current line.

• - Key-pad minus toggles line numbering. Note that the editor num-
bers the lines from zero.

7. Progress bar

Displays the progress of a time-consuming operation. After some time, it
also estimates the time to finish, in the form hh:mm:ss

This window is on top of all other windows and applications.

8. Grid

This is the standard form for data entry and cube display. Two dimensions
are expanded (and scrollable). The others are represented by combos
where you can pick a different element.

You can also use Copy-and-Paste with other Windows applications.

The toolbar contains the following buttons:

• “OK” Leaves the grid, updating the values.

• Printer icon. Prints the current page with the REPORT module
and default options.

• Clipboard icon. Copies the whole current page (labels and cells) to
the clipboard.

• “.0 .00” Displays one more decimal place, with a maximum of 9

• “.00 .0” Displays one decimal place less, with a minimum of zero.

The characters used for comma and thousand separators are taken from
the Windows settings (Settings, Control Panel, Regional Options, Numbers).

9. File Selection Box

Selects a file name with a given extension.

Two modes available: existing file or new file.

10. Menu

This is the standard menu. It lets you move on a tree-structured option
list.

A different icon (traffic light) marks available items, unavailable items and
item groups.

To select an available item, either double click on it or highlight it and
press Enter.

6.2. SET LANGUAGE 127

To quickly move to an item, enter the first letter(s).
In all menus (except the Main menu) upper-case item names correspond
to actual program names (that you also find in procedures).
To see what an item does, highlight it and see the hint.

To leave a menu, hit Esc or click on “Cancel”. This will bring you back
to the parent menu.

11. Display elements box
This dialogue box displays a collection of element names (like the proce-
dure names) in a list box and also displays the contents of the current
element (like a procedure body).

6.2 Set Language

This section illustrates various keywords to select the elements of a set (typically
the elements of a cube dimension).

The keywords introduced here, taken together, constitute a Set Language
that complements mouse-oriented selections.

♦ Your reply may reference the elements:

• via their indices in the set, for example:
12 TO LAST

• via their labels, for example:
ANY ’BUDGET’

• via the associated cell values, for example:
WHERE ALLTRUE T > 100

This last feature applies only to Data Analysis and requires the cube to
be real.

To wrap it up, the Set Language can be a free combination of available
keywords.

Examples

The simplest examples should be self-explanatory:

"First margin" TO "Overhead"
100 TO 121, 128 95, 130 TO 111
LAST TO LAST - 5
(LAST - 5) TO LAST
6, ALL BUT SPOT ’Pesetas’
ANY ’December’
ALL BUT ANY ’Ratio’
AZ BUT LAST

128 CHAPTER 6. USER INTERFACE AND KEYWORDS

The rest of this section presents these keywords in detail.

• Keywords that stand for element indices.

Keyword Meaning Example
NONE no elements NONE
ALL all elements ALL BUT 17 19
FIRST the first element in the set LAST TO FIRST
LAST the last element 7 TO LAST
EVERY n take one element every n EVERY 7
n TO m the integers from n to m inclusive 20 TO 10
lA BUT lB the elements in the list lA

except those in lB ALL BUT 22
n / m replicates n times the value m 10/1

• ANY mask —Selection on fixed label positions

The keyword ANY, followed by one or more character strings, lets you select
all elements that have the character strings in the positions of the label.
Quotation marks in the mask represent dont-care positions.

ANY ’P4331’ ’?????JAN’ will select all labels that have P4331 in the
first five positions, followed by those that have JAN in positions 6 7 8
(possibly with repeated elements).

Note that ANY is case-sensitive (ANY ’abcd’ is different from ANY ’ABCD’).

See also BYKEY for an alternative.

• AZ —Sort the labels alphabetically.

The keyword AZ returns the element indices that sort the labels (A-to-Z).
Note that AZ is case-insensitive.

• —Double quote notation

This notation selects the elements via non-positional character strings.

Example:

"TX BDG" "CA BDG" "NY BDG"

Each search string (between double quotes) is accepted if it identifies a
single element in the set. If the search string contains words or strings
separated by blanks, as in "TX BDG", there must be one and only one
element that contains both "TX" and "BDG".

For example the label may be "BDG Revenue TX 1995".

Note that this notation is case-sensitive but position-independent.

6.2. SET LANGUAGE 129

• SPOT mask —String search

This keyword returns the indices of all labels that contain given words (or
strings) anywhere in the label and in any order.

Unlike the double quote notation, this keyword accepts a multiple result
(any index count).

Unlike ANY , it does not specify the string position within the label.

Example:

SPOT ’budget Germany 2005’

• tabA index tabB —Matching rows in two tables

Returns the indices of the rows of tabB in tabA.

If tabA has a row count of N then the result will contain N + 1 for the
rows of tabB that are not in tabA.

• MAJOR Percent —Collection of largest elements

Selects the largest elements on a cube dimension to obtain up to Percent
of the total.

This keyword (used in reply to SELECT) will ask you to pick a single
element on all other dimensions, so as to define a single string of cells.

These cells will be chosen in decreasing order, stopping before exceeding
the specified Percent.

The final result of MAJOR is a list of element indices on the chosen di-
mension.

Example

Your current cube contains Variables, Periods and Customers. You want
to extract a list of Customers that make up 80 percent of the Revenues in
Total 2007.

You select on Customers and reply MAJOR 80 as the list of elements.

The keyword MAJOR asks you to specify a Variable and a Period and
you choose Revenues and Total 2007.

The final result is a cube that contains the largest Customers that consti-
tute no more than 80 percent of the total.

To select the 10 largest Customers instead, you simply select with BYVALUE and
then select again 1 TO 10 .

• WHERE Condition —Transform a Boolean condition into indices

This keyword transforms a Boolean condition into element indices.

For example WHERE 0 0 1 0 1 1 1 produces 3 5 6 7

130 CHAPTER 6. USER INTERFACE AND KEYWORDS

For example WHERE T < 0 returns the coordinates where T is negative:
if the cube is 3-way, this is a table with three rows and as many columns
as there are negative values.

Typical uses of WHERE reference the current cube T or the secondary
cube xT

Examples

WHERE ALLTRUE T < 0
WHERE ALLFALSE (T = ND) OR (T = 0)
WHERE T[1 ; 3;] < 55.5
WHERE ALLTRUE T > xT TIMES 1.2

• BYBREAK ’’ —Select elements where a key changes

This keyword will activate a Column Selection Box to choose the key and
then return all indices where the key changes.

If your labels are :

Italy Rome
Italy Milan
France Paris
Germany Frankfurt
Germany Berlin
Germany Bremen

and you choose the Country facet as your key, then BYBREAK ’’ returns
1 3 4

Typical use: flag the rows to underline (in REPORT).

• BYKEY ’’ —Step by step selection on several keys

This keyword will activate a Column Selection Box to enter a multiple key
definition and then let you choose from the unique contents of each key.

In the Country-City example of BYBREAK , you may have a long list of
cities, where you want to choose first on the countries and then on the
individual cities.

In this way every field becomes searchable but your result is still expressed
as indices of the cube elements (that is, in the form that a module like
SELECT expects).

• BYLABEL ’’ —Sort the elements on several keys

This keyword will activate a Column Selection Box to enter multiple sort-
ing keys and then sort the current elements on the labels.

If the current labels contain three facets Product-Color-Size, for instance,
you may want to sort on Color, then on Product.

6.3. BOOLEAN OPERATIONS 131

• BYVALUE —Sort the elements on corresponding cell values.

This keyword lets you sort the elements on increasing or decreasing cell
values.

If you are selecting on a dimension, you have to pick an element on each
of the other dimensions to identify the sorting string. The module will
activate several Row Selection Boxes to enter these choices and then return
the element indices that satisfy this criterion.

You can think of this as freezing all coordinates except one, to identify
the string of values that will be used for sorting the whole cube.

• PICK —Get the element list at each execution.

If you leave an element list empty, you will be prompted for your choice
by a Row Selection Box and your choice will be stored in the procedure.

Using the keyword PICK instead, means that you want to select a dif-
ferent element list at each procedure execution.

The keyword PICK stands for the user-chosen element list.

As such, it can be combined with the rest of the Set Language.

Examples

Let me choose each time:

PICK

Let me choose, but elements starting with ’Actual’ are forbidden:

PICK BUT ANY ’Actual’

Let me choose and remember this list:

MyChoice: PICK

Take all elements, except those that I choose:

ALL BUT PICK

• ToJoin —Match the labels of the seconday cube.

Advanced This keyword, used in SELECT, picks the elements so that
they match the corresponding labels in the secondary cube.

If all labels find a match, it aligns the two cubes on an axis.

See procedure JOIN_BETWEEN_CUBES in library example3 for details.

6.3 Boolean operations

This section lists the keywords for Boolean (alias: logical) operations.

132 CHAPTER 6. USER INTERFACE AND KEYWORDS

Keyword Meaning Example
x APPROX y True if x = y to within 0.01% T APPROX xT
x AND y True if both x,y are true (T>0) AND xT=0
x OR y True if x or y is true (T>0) OR T=0
NOT x True if x is false and viceversa NOT T=ND
ALLTRUE y True if y is true everywhere

(in all cells of the other dim.) ALLTRUE T > 100
ALLFALSE y True if y is false everywhere ALLFALSE T > 0
WHERE y Indices of ones in Boolean y WHERE ALLTRUE T>0
ON Boolean 1 (for readability) ON,OFF,OFF
OFF Boolean 0 OFF

6.4 Set operations on tables

These are utility functions that act on character tables (e.g. labels or namesys-
tems).

They regard each row as a set element and perform simple set operations on
the whole tables.

Two rows are considered equal if they only differ in trailing blanks.

Syntax Meaning Result
unique tabA Extract unique rows Char. table

tabA index tabB Look up rows of tabB in tabA. Row indices
tabA isin tabB Flag rows of tabA if found in tabB Boolean vector
tabA with tabB Set union Char. table
tabA within tabB Set intersection Char. table
tabA without tabB Set difference Char. table

6.5. INDENTED TABLES 133

6.5 Indented tables

Advanced This section, for programmers, documents the available support
for indented labels.

These examples refer to a sample indented namesystem, called PRODUCTS :

All products
___Modems
______Internal
_________001
_________002
_________003
______External
_________004
_________005
_________006
_________007
___Hard disks
______009

• Depths ← GETDEPTH Indented-table

Extract element depth from indented table.

Depths will contain integers representing the depth of each line in the tree
structure.

For example, GETDEPTH lablPRODUCTS will produce

0 1 2 3 3 3 2 3 3 3 3 1 2

• Table ← GETLEAVES Indented-table

Extract atomic elements from indented table

Table will contain the atomic rows of Indented-table, that is, the leaf ele-
ments in the tree structure.

For example, GETLEAVES lablPRODUCTS will produce

_________001
_________002
_________003
_________004
_________005
_________006
_________007
______009

• Table ← UNDENT Indented-table

Remove indentation.

134 CHAPTER 6. USER INTERFACE AND KEYWORDS

Table is a obtained from Indented-table removing the leading underscores
and left justifying the labels.

For example, UNDENT lablPRODUCTS will produce

All products
Modems
Internal
001
002
003
External
004
005
006
007
Hard disks
009

6.6 Backend Modules

Advanced This section lists various modules, that are typically called

• in the EXECUTE command

• in direct APL programming.

The keyword RCReport that appears in the examples is a way to display the
module return code.

• doBALANCE TwoAxes

This backend program is used to compute the balance of inter-company
accounts.

Suppose you have a 3-way cube, with axes called “Accounts” “Companies-
Debit” “Companies-Credit”. You have the same population of Companies
on axes 2 and 3, so that a single account may look as

Royalties WHSmith PanBooks Springer Addison
WHSmith 0 1100 900 0
PanBooks 400 0 15 100
Springer 170 180 0 1200
Addison 40 50 40 0

After the call doBALANCE 2 3 the same square table will be:

6.6. BACKEND MODULES 135

Royalties WHSmith PanBooks Springer Addison
WHSmith 0 700 730 -40
PanBooks -700 0 -165 50
Springer -730 165 0 1160
Addison 40 -50 -1160 0

In other words we compute the difference between a square table and its
transpose.

See an example in procedure INTER_COMPANY in library example2.

• doCALC axis formulae label

Advanced This backend program recomputes the current cube on di-
mension axis using the packet formulae (a 2-way char table) and resolving
double-quote notations with label (a 2-way char table).

For example, to run the database formulae on dimension 1 of the current
cube, you would enter doCALC 1 EXTI DI

TANGRAM’s internal names of the current cube labels are DI DA DB DC...
while the database formulae are kept in EXTI EXTA EXTB EXTC...

If you use private packets of formulae, follow the rules of Admin formulae.
If you use the double-quote notation, the variable label is used to translate
this notation into equivalent indices. Otherwise label is unused.

See an example in procedure REDUNDANT in library example2.

• doDB2XML format filename

Export the current cube as an XML document.

This utility writes the (real) current cube and associated labels to a file
filename with extension .xml. The total width of the number format and
the decimal places are controlled by format.

The output can be displayed with a Web browser (and, of course, XML
tools). The reverse transformation (from XML to TANGRAM) is also
available for this XML document definition.

For instance:

RCReport doDB2XML (12 2) ’htm/myfile.xml’

• doINTERPOL count

This backend program will interpolate the current cube on axis 2, that is,
it will insert count elements between existing periods and compute them
as a straight-line interpolation.

For example, to obtain monthly values from yearly data:

doINTERPOL 11

136 CHAPTER 6. USER INTERFACE AND KEYWORDS

Note that this operation is meaningful for stock-type variables (e.g. the
accounts of a Balance Sheet) and not flux-type variables (e.g. the accounts
of a Profit and Loss).

See an example in procedure INTERPOLATE in library example2.

• doMODEL

3-way Create linear model.

This module assumes that your current cube is in Standard Orientation
(Variables, Periods, Items) and uses linear algebra to find the best linear
combination of N − 1 Variables to estimate the last Variable.

The secondary cube initially must not exist and is assigned the model
coefficients. The process concerns Variables and Items and is iterated on
Periods.

After execution of doMODEL you can recompute the (estimated) last vari-
able by calling COMPUTE and providing a formula with the keyword
useMODEL.

See procedure MODEL in library example3.

• doRANK

3-way Ranking en masse.

This module computes rank positions (1 for the highest value, 2 for the
second-highest etc.).

The elements to be ranked are always the items (whatever you have on di-
mension 3). Every variable-period pair (whatever you have on dimensions
1 and 2) produces an independent ranking.

For example doRANK will, say, assign the value 5 to a cell associated with
these labels

Variable costs/revenues
Fiscal Year 2007
Alpha Omega Ltd

if in 2007 Alpha Omega Ltd happens to have the fifth highest ratio among
all companies in the current cube.

Missing values appear last in every ranking.

The cube acquires a new dimension, with elements Absolute and Rank.

• doTOXML format filename

Export the current cube as an XML document.

This utility writes the (real) current cube and associated labels to a file
filename with extension .xml. The total width of the number format and
the decimal places are controlled by format.

6.7. MISCELLANEOUS UTILITIES 137

The output can be displayed with a Web browser (and, of course, XML
tools).

For instance:

RCReport doTOXML (10 0) ’htm/test.xml’

6.7 Miscellaneous utilities

Advanced This section lists various keywords and utilities, that are typically
used in the Questions and Answers Dialog Box to provide the result that an
input box is expecting.

As usual, they can also be used in direct APL programming and in the
EXECUTE module.

• table-name COUNT dimensions

This keyword can be handy to express a general answer that depends on
some element count in a cube or in a namesystem.

For example, in the creation of a new database, the correct size might
depend on the number of elements in some namesystem, like Customers
or Products.

This allows for three slightly different calls:

– If the left argument is missing, the result refers to the current cube
(real or virtual).
For ex. COUNT 2 3 may return 21 40

If the right argument is empty, all dimensions are returned: For ex.
COUNT ’’ may return 5 21 40 11

– If the left argument is a variable of any kind, the result returns its
dimensions.
For ex. xT COUNT 1 2 3 may return 3 6 12

– If the left argument is the name of a namesystem, the result is its
row- or column- count.
For ex. ’Provinces’ COUNT 1 may return 26

• DIGEST n

Cube signature, cube comparison.

If you need to compare two (real, current) cubes (to see that two solutions
produced the same cube) you may issue DIGEST on each of them and
compare the results.

DIGEST produces two n-digit values; the first encodes all cube labels and
dimension names, the second the cells. For example:

DIGEST 6

324122 871771

138 CHAPTER 6. USER INTERFACE AND KEYWORDS

DIGEST is sensitive to trailing blanks, element and cell permutation and
to 3 significant digits in cell values.

This means that if a cell value is changed from 0.004512 to 0.004513 the
signature remains the same.

The number of significant digits defaults to 3 but can be coded as the left
argument of DIGEST. For example, to test 5 significant digits:

5 DIGEST 6

Both arguments have a maximum of 9.

Of course, two results can only be compared for equality and do not mea-
sure any closeness.

If a second cube produces 625330 871771 you can only conclude that
the cells are the same and the label structure differs.

• A FORCE B

This module replaces a value with another (in all cells of the current cube).

The argument A is the value to be replaced in the current cube, while B
is the replacement value.

For example:

ND FORCE 0

TANGRAM handles missing values ND as different from zeroes. In some
cases you may safely assume that missing values are to be treated as zeroes.
Or you may want to open a database from Excel, making sure that missing
values are replaced with a chosen value.

• thresholds histo num-table

Histogram of values.

histo applies to any numerical table and counts the cells that fall into
each interval. thresholds is a vector of N increasing values and the result
is a vector of N + 1 counts. Cells equal to a threshold value are counted
in the left interval.

For instance:

0 10 100 1000 histo T
0 0 25 120 2100

• style INFO char-table

This is the standard way to display text.

The variable style influences the type of output:

0 Information

1 Warning

6.7. MISCELLANEOUS UTILITIES 139

2 Error

3 Trapped program failure

4 Printout page

5 User comment

If you wish to hand-insert comments in procedures, use style 5. To do
this, you simply edit a procedure and insert a line like

5 INFO ’We now proceed to update the database.’

• LABEL dimension

Labels of the current cube

This keyword returns the labels of the current cube on a dimension. The
result is a two-way character table. Note that the keyword can be used to
read, not to assign the labels.

Example 1

To capture the labels of dim. 3 in a variable, you may use EXECUTE
and enter the formula userPRODUCTS : LABEL 3

Example 2

To highlight totals in red during a BROWSE session, you may enter the
formula

red IF 1 INLIST (LABEL 1) SPOT ’TOTAL’

In fact (LABEL 1) SPOT ’TOTAL’ returns the line indices where the word
’TOTAL’ appears and a list of indices is a legitimate input to INLIST .

Example 3

In the module GLOBAL you wish to multiply T by 1.33 only where the
labels of the third dimension contain ’Gmbh’:

((1.33 TIMES T) IF 3 INLIST (LABEL 3) SPOT ’Gmbh’) OrElse T

• Sw

Stop watch.

This keyword returns the number of seconds elapsed from the previous
call (or from the beginning of the worksession). The result is numeric.

For example, simply type Sw in the EXECUTE input window.

140 CHAPTER 6. USER INTERFACE AND KEYWORDS

• TS

Time stamp.

This keyword returns date and time (from the system clock) in this char-
acter format

DD/MM/YYYY HH:MM

Simply type TS in the EXECUTE input window.

The output may look like:

31/12/2007 24:55

• xLABEL dimension

Labels of the secondary cube.

This keyword returns the labels of the secondary cube on a dimension.
The result is a two-way character table. Note that the keyword can be
used to read, not to assign the labels.

Example

To compare the labels on dim. 2 of current and secondary cube, extracting
those that appear only in the secondary cube, you may use EXECUTE
and enter the formula

userEXCEPTIONS : (xLABEL 2) without LABEL 2

6.8 The APL interpreter

Advanced Strictly for programmers.
If you have some knowledge of the APL language (and a development version

of the Dyalog interpreter) you can add your own code or you can formulate your
replies in APL.

When you insert APL code in procedures or use the APL session (in direct
execution), remember that you are on your own, meaning that several TAN-
GRAM services are not available:

• The exclamation mark ! is not translated into the APL comment.

• The apostrophe is not translated into the APL quote.

• The minus sign next to a number is not translated into the APL high-
minus.

• The colon : is not translated into the assignment arrow.

• You get APL error messages, which are not translated. The error trap
restarts TANGRAM, unless you reassign it.

6.8. THE APL INTERPRETER 141

• The APL names of modules, procedures and namesystems have prefixes
go , proc and labl . A namesystem, called PRODUCTS in a TANGRAM
box, in APL is lablPRODUCTS

• Similarly, TANGRAM facilitates coding by knowing the context of a ques-
tion. If you compute on axis 4 of a 5-way table, an element can be denoted
as [10] . In programming you must use all indices, like T[;;; 10 ;]

• The chosen axis is also known to TANGRAM, not to APL. For example,
you may use MYTABLE SPOT ’budget’ and not simply SPOT ’budget’

For example, T[; EVERY 5;] is not understood.

• The double-quote notation (like "Net profit") is not supported.

♦ A programmer finds it useful to know the internal names of TANGRAM
variables (global variables to be read, not assigned):

• The dimension names are in dd

• The current cube is T (when real).

• The labels are DI DA DB DC ...

• The Admin formulae are EXTI EXTA EXTB EXTC ...

• The indices of read-only elements are XI XA XB XC ...

• The secondary cube dimension names are in xdd

• The secondary cube is xT

• The secondary cube labels are xDI xDA xDB xDC ...

• The current database is in fileH

• The current library is in fileL

• Printed outputs are appended to fileP

♦ A few reminders on APL.
The APL keyboard is obtained with Ctrl N . The text keyboard is ob-

tained with Ctrl O .
APL names are case-sensitive. Execution is right to left, unless you use

parentheses.
Both APL primitives and user-defined functions accept a right argument and

(optionally) a left argument. APL primitives work with two arrays of the same
shape (T + xT) or an array and a singleton (T + 1000).

The syntax along a line (and within a parethesis) simply states that the right
argument of a function is the result of the expression on its right.

142 CHAPTER 6. USER INTERFACE AND KEYWORDS

Consider, for instance, the line:
1000 ROUND +/ T DIVIDE xT + 1

The four functions are called in the order: + , then DIVIDE , then +/ ,
then ROUND

They all have two arguments, except +/
The right argument of ROUND is the result of +/ T DIVIDE xT + 1
If the result of the line is not assigned to a variable, as in this instance, it is

displayed on the (APL session) screen.
Finally, make sure you know the basic commands)SAVE and)LOAD to

save the workspace with your work.

6.9 Operators

Advanced Advanced
From an APL programmer’s point of view, so far we have encountered only

two types of objects: variables (like T) and functions (like PLUS).
Operators are objects of a different nature that modify the way a function

works. For example, +/[3] T reduces the current cube T along the 3rd axis,
obtaining a result of lower rank (a table with the same axes except the 3rd).

In this case + is the function, / the operator and [3] the axis selector.
Any other function can replace the + . For example, PLUS /[3] T will

produce a similar result handling missing values and ×/[3] T will multiply
the cells along the 3rd axis.

The axis selector defaults to the last axis of the table. The formula +/,T will
produce the sum of all cells of a table T of any rank.

A different operator \ computes the running or progressive result of a
function, so that +\[3] T is a table of the shape of T with running totals
on the 3rd axis. The effect is similar to that of the module TODATE but
\ works on any axis, on any table and with any function.

If you have a 3-way cube with dimension names Variables, Years, Customers,
you may want to compute the running total of a variable on all Customers. This
can be done via EXECUTE and a formula like T[1;12;] : +\ T[1;12;]

The axis selector is omitted, because the indexing on Variable 1 and Year
12 reduces the table to a single string. Omitting the indices of Customers, you
intend all existing elements on that axis.

There are six native operators in Dyalog APL, but only the two we have
seen are occasionally useful to an OLAP user.

As it is the case with functions, native operators can be augmented with
defined ones and TANGRAM defines two that apply to hypercube processing.

• LVar Function sparse RVar

A few defined functions (like PLUS MINUS TIMES DIVIDE) modify the
native arithmetic operations to handle missing values.

6.9. OPERATORS 143

The operator sparse allows you to obtain a similar behaviour for any
other APL function.

Examples

To modify the power function * you may write a GLOBAL formula
T * sparse 2 to obtain the square of each non-missing cell.

The Boolean function = is not aware of missing values. You can modify
it as in, for example, T = sparse xT to yield a three-valued result (in
the range 0, 1, ND).

• Axes Function along Var

The operator along reduces a table with a function (similarly to +/ T)
and then expands the result to be of the same shape as the original table
(to ease further processing between tables of the same shape). Its left
argument is a list of axes, followed by the function; its right argument is
an array.

Examples

2 + along T will compute the totals on axis 2 and then replicate the
result to reobtain the shape of T. All elements on axis 2 will have the same
contents (the total).

(2 3 + along T) ÷×/COUNT 2 3 will obtain the average on axes 2 and
3.

The Function can in turn be modified by an operator, as in

1 (OR sparse) along T < sparse 0

144 CHAPTER 6. USER INTERFACE AND KEYWORDS

Appendix A

Keyword index

145

146 APPENDIX A. KEYWORD INDEX

Name Group Page
above Query lang. 30
ALL Set language 127
ALLFALSE Boolean oper. 131
ALLTRUE Boolean oper. 131
AND Boolean oper. 131
and Query lang. 30
ANY Set language 127
APPROX Boolean oper. 131
average Query lang. 30
AZ Set language 127
below Query lang. 30
BLOWUP Module 56
BROWSE Module 26
BUILDDB Module 100
BUT Set language 127
BYBREAK Set language 127
BYKEY Set language 127
BYLABEL Set language 127
BYVALUE Set language 127
CHECKSYNTAX Module 109
COMMON Transfer 97
COMPUTE Module 35
CONTRIBUTE Module 49
CONVERGE Module 121
COUNT Utilities 137
CROSS Module 119
CROSSDB Module 92
CROSSOVER Module 53
DATAENTRY Module 95
DB2LABEL Module 114
DEFAULT Printouts 72
DEFAULT Range 34
DELETEDB Module 93
DELETELABEL Module 118
DELTA Module 55
DEMOTE Module 62
DIGEST Utilities 137
DISAGGREGATE Module 57
DIVIDE Computation 39
DOCDB Module 93
DOCK Module 105
DOCLABEL Module 118
doBALANCE Backend 134
doCALC Backend 134
doDB2XML Backend 134
doINTERPOL Backend 134
doLABELAXES Labels 23
doLABELGROW Labels 23
doLABELNUMBER Labels 23
doLOCATE Labels 23
doMODEL Backend 134

147

Name Group Page
doRANK Backend 134
doTOXML Backend 134
DRAFTPRINT Module 77
ELSE Computation 40
equal Query lang. 30
EVERY Set language 127
EXECUTE Module 22
EXPORT Module 66
FAMILYTREE Module 111
FILLDB Module 103
FIRST Set language 127
FORCE Utilities 137
FORECAST Module 82
from Query lang. 30
GETBACK Module 85
GETDENT Indented tables 133
GETLEAVES Indented tables 133
GLOBAL Module 47
GROWTH Module 79
GROWTREE Module 45
histo Utilities 137
IF Computation 40
index Set language 127
INFO Utilities 137
INLIST Browse, Global 26
INT Computation 39
isin Utilities 132
LABEL Utilities 137
LABEL2DB Module 114
LABEL2TXT Module 119
LABELCOLUMNS Module 25
LABELJOIN Module 25
LAST Set language 127
LESS Computation 39
LISTLABEL Module 118
LOADDB Module 96
MAJOR Set language 127
MASKPRINT Module 74
max Query lang. 30
MERGE Module 59
min Query lang. 30
MINUS Computation 39
MISSING Module 34
MOD Computation 39
MOVEDB Module 94
MOVINGAVERAGE Module 84

148 APPENDIX A. KEYWORD INDEX

Name Group Page
ND Computation 39
NEWDB Module 91
NEWLABEL Module 117
NONE Set language 127
NORM Module 49
norm Computation 39
NOT Boolean oper. 131
not Query lang. 30
OFF Boolean 0 131
ON Boolean 1 131
OR Boolean oper. 131
or Query lang. 30
OrElse Computation 40
OVER Computation 39
PAIR Module 121
PERCENTILE Computation 39
percentile Browse 26
PICK Set language 127
PLUS Computation 39
POST Computation 42
PRE Computation 42
PRODUCT Computation 39
PROMOTE Module 62
PROTECTDB Module 113
QUERY Module 30
RANDOMDB Module 104
RANGE Module 34
RELEASE Module 85
REPORT Module 73
RESET Module 22
RESIZEDB Module 93
ROLLUP Module 43
ROUND Computation 39
RUNFORMULAE Module 111
RUNPROC Module 11
SAVEAS Module 64
SELECT Module 20
SELECTDB Module 20
SHOWFORMULAE Module 110
SHUFFLE Module 63
SLIDE Computation 42
SPOT Set language 127

149

Name Group Page
STAT Computation 39
STORE Module 85
SUB Browse, Global 47
SUM Computation 39
SUMMARY Module 20
Sw Utilities 137
SWAP Module 86
SYNONYM Module 119
T Browse, Global 47
TIMES Computation 39
TO Set language 127
to Query lang. 30
TODATE Module 79
todate Computation 42
TOHTM Module 69
ToJoin Set language 127
TOLATEX Module 71
TOPERIOD Module 80
toperiod Computation 42
total Query lang. 30
TRANSFER Module 97
TRANSPOSE Module 52
TREND Module 81
TS Utilities 137
TXT2LABEL Module 118
UNDENT Indented tables 133
unique Utilities 132
UNLOAD Module 65
UPDDBLABELS Module 112
UPDFORMULAE Module 106
UPDLABEL Module 118
UPTO Browse 26
useMODEL Backend 134
WHERE Set language 127
where Query lang. 30
with Utilities 132
within Utilities 132
without Utilities 132
xLABEL Utilities 137
xT Browse, Global 47

150 APPENDIX A. KEYWORD INDEX

Appendix B

How-to index

• Analyze data from several cubes

The basic tool is the secondary cube (page 84).

Modules DOCK (page 105), MERGE (page 59) and TRANSFER
(page 97) are relevant, too.

• Create a database

NEWDB (page 91) and CROSSDB (page 92) create empty databases,
BUILDDB (page 100) imports a flat file. SAVEAS (page 64) writes
the current cube to file.

• Compare two cubes

If two cubes have the same labels, see DELTA (page 55) and BROWSE
(page 26) with a color formula.

If they have unrelated elements, see MERGE (page 59).

If you need a yes/no answer for the equality of whole cubes, see DIGEST (page
137).

• Compute the cells

General-purpose tools for computing:

– COMPUTE (page 35) for a new element

– GLOBAL (page 47) to recompute all cells

– EXECUTE (page 22) for single cells

– RUNFORMULAE (page 111) executes formulae on the whole database.

Special-purpose tools: doBALANCE and doCALC (page 134).

• Cost allocation

Use either BLOWUP (page 56) or DISAGGREGATE (page 57).

151

152 APPENDIX B. HOW-TO INDEX

• Currency conversion

The simplest way is to have the cells to be converted in the current cube
and the rate in the secondary cube and use GLOBAL (page 47) with a
formula T TIMES xT .

But there are variations on the theme. At times you need to expand the
cube containing the conversion rates: see PROMOTE (page 62) and
SELECT (page 20) with element repetition.

At other times a GLOBAL formula (page 47) with the scope limited by
the keyword SUB solves the problem.

• Data import-export

See the diagram at the end of the manual for a synopsis. Emphasis is on
the exchange of XML, flat files and other formats that can be imported
or exported in one-shot (as opposed to the cooperation of many complex
software components).

TANGRAM cubes can be directly read from Excel or transformed into
Excel worksheets.

See also BROWSE (page 26) for copy-and-paste of cube pages with Win-
dows applications.

• Delta analysis

For instance, how to find out if we are below budget because of lower sales,
lower prices, higher discounts etc.

The main tool for this is CONTRIBUTE (page 49).

• Demo

Choose library example in the Main Menu, then select Start worksession
and Run a procedure . Leave the “Procedure to run” field empty to see the
available procedures.

These are short (and verbose) procedures that show the use of a few
modules at a time.

During step-by-step procedure execution, leave the default answers and
press Enter to proceed (or click “OK” to leave the grid).

Libraries example2 and example3 contain more advanced procedures
(some of these create new databases and require a full installation of TAN-
GRAM).

• Drill down

For instance, how to move from Product-families to Products or from
Years to Months.

Use ROLLUP (page 43) on fewer facets, or, better, use GROWTREE
(page 45) to see all levels at a glance.

153

• Expand summary data with more detail

For example, expand a concise budget to the full size of actual data, or
allocate global costs with a driver.

Use either BLOWUP (page 56) or DISAGGREGATE (page 57).

• Logical view

How to change the logical view of a cube, say, seeing it by Customer and
Product and then by Month and Salesman.

BROWSE and the programs that produce printouts let you select the
axes on rows and columns.

TRANSPOSE (page 52) and SHUFFLE (page 63) rotate the cube in
memory.

CROSSOVER (page 53) restructures the cube in a more powerful way,
moving single facets across dimensions.

LABELJOIN (page 25) brings in new facets from a namesystem (for in-
stance, appending Customer-class and Customer-size to Customer codes).

• Missing values (alias: Nulls)

See MISSING (page 34) for a map of missing values. See keywords like
PLUS (page 35) for computing with propagation of missing values. Use
BROWSE (page 26) with the color formula BLACK IF T=ND to dim
missing cells.

Use MERGE (page 59) to merge two cubes with scattered missing values.
See also the keywords IF ELSE OrElse (page 40) and FORCE (page
137).

• Periodicity of time axis

In TANGRAM you do not declare whether your time periods represent
months, quarters, years,... or are heterogeneous.

To reduce the periodicity (say, from months to quarters) you use a different
technique according to the type of variable.

For a variable “Current assets” (end of period) you would simply SE-
LECT your periods with EVERY 3

For a variable “Sales” (in the period) you would use TODATE, SELECT
with EVERY 3 then TOPERIOD.

See doINTERPOL (page 134) to increase the periodicity with a straight-
line interpolation.

Other relevant modules: MERGE BLOWUP DISAGGREGATE
MOVINGAVERAGE.

• Populate a database

154 APPENDIX B. HOW-TO INDEX

See DATAENTRY (page 95), BUILDDB (page 100), LOADDB (page
96) and DOCK (page 105).
RANDOMDB (page 104) and FILLDB (page 103) produce test values.

• Print a cube

– Save it, open it from Excel and use styling templates or Excel fea-
tures.

– Use REPORT (page 73), MASKPRINT (page 74) or DRAFT-
PRINT (page 77).

– Export it with TOLATEX (page 71) or TOHTM (page 69).
– Export it with doDB2XML or doTOXML (page 134) and use XML tools.

• Rank of an element

To obtain element rank from cell values, see doRANK (page 136).
To sort on the values, see SELECT (page 20) and keyword BYVALUE.
To select the largest elements that make up x percent of the total, refer
to MAJOR (page 127).

• Roll up on a cube axis

See ROLLUP (page 43) if you have facets that define the aggregation,
see GROWTREE (page 45) if you hand-define an aggregation tree with
variable depth.

• Resize a cube

The current cube in memory changes its size (or rank) as an effect of your
commands and can be saved by SAVEAS (page 64).
A database size can be redefined by the modules RESIZEDB (page 93)
and MOVEDB (page 94).

• Run TANGRAM in batch mode

See unattended execution of procedures (page 15).

• Seasonal behavior

Use BLOWUP (page 56) to expand a single period with the seasonal be-
havior of the seconday cube. Use COMPUTE (page 35) to de-seasonalize
element 1 with the seasonal behavior of element 2, for example: [1] DIVIDE [2]

• Sparsity and performance

When designing very large databases (say, above 50 million cells) make
sure you read the relevant chapter (page 87), then estimate the size, call
NEWDB (page 91) and read its Database Design report.
You then create the database and measure the performance, with spe-
cial attention to the time-consuming operations (RUNFORMULAE,
BUILDDB, LOADDB).
BUILDDB (page 100) will also assist you to avoid excessive sparsity.

155

• Sort the data in a cube

Use SELECT (page 20) on a dimension at a time. To sort on the labels,
use the keywords AZ or BYLABEL. To sort on the cells, use the keyword
BYVALUE.

To sort each printout page differently, see also DRAFTPRINT (page
77).

• Spot abnormally high and low values

The main tool is BROWSE (page 26) and its color formula.

See also QUERY (page 30) and GROWTH (page 79).

You can also use FILLDB (page 103) to spot cells that contribute more
or less than their share to the total. See procedure FILLDB_SPOT in library
EXAMPLE2 for details.

• Summary of large populations

If you wish to sample the population, select using keywords like EVERY 10 or
10 ? 100 (to extract 10 different random elements out of 100).

If you wish statistical summary measures, use COMPUTE (page 35)
with either STAT or PERCENTILE.

If you wish to group the elements on a measure, see RANGE (page 34).
If you need to ad-lib questions on the population, see QUERY (page 30).

• Time axis

All time-related operations are grouped in Section 3.7 (page 78). They all
require a 3-way cube with time periods on axis 2.

More sophisticated models for smoothing and extrapolation can be ex-
pressed with COMPUTE (page 35).

See also Time-Shift keywords (page 42), which apply to N-way cubes.

• Undo an operation

You can save the cube before a critical command with SAVEAS (page
64) or save the worksession and redo all commands except the last.

156 APPENDIX B. HOW-TO INDEX

Appendix C

File extensions

Extension Description Default directory
.hlm Database file (cells) hlm\
.sf Database file (structure) hlm\
.hld Database lock file hlm\
.lib Library file lib\
.log Editable log file log\
.txt Editable text file txt\
.xcp Rejected records (LOADDB) txt\
.htm HTML output file (TOHTM) htm\
.tmp HTML template (TOHTM) htm\
.xml XML file htm\
.msk Mask file (MASKPRINT) msk\
.tex Editable LaTeX file (TOLATEX) tex\

157

158 APPENDIX C. FILE EXTENSIONS

Appendix D

Bibliography on DSS OLAP

The software family to which 3-way TANGRAM belongs is rapidly evolving.
To be informed of the latest technology, see the newsgroup comp.databases.olap
A good bibliography on OLAP, DSS, EIS is maintained by Prof. Daniel

Power and Prof. Paul Gray and is reproduced here with their kind permission,
to provide an historical view of the foundations.

The up-to-date bibliography can be found at the URL
dssresources.com

D.1 Books by author

• Adelman, L. Evaluating Decision Support and Expert Systems. New York, NY : John
Wiley & Sons, 1992. ISBN 0-471-54801-4. [text] [This is a textbook that deals with
both DSS and ES topics]

• Alter, S. Decision Support Systems : Current Practice and Continuing Challenges.
Reading, Mass. : Addison-Wesley Pub., 1980. 316 p. ISBN 0-201-00193-4. [classic]
[text] [This is a DSS classic with a strong emphasis on practice in the late 1970s]

• Andriole, S. J. Handbook of Decision Support Systems. (1st ed.) Blue Ridge Summit,
PA : TAB Professional and Reference Books, 1989. 248 p. [proc]

• Baecker, R. M.. (editor) Readings in Groupware and Computer-Supported Cooperative
Work: Assisting Human-Human Collaboration. San Mateo, CA: Morgan Kaufman
Publishers, 1993. 882 p. [team] [book review]

• Bennett, J. L. (editor) Building Decision Support Systems . Reading, MA: Addison
Wesley , 1981 ISBN 0-201-00563-8. Table of Contents [classic] [text] [This is a classic
set of readings that focus on DSS design]

• Bigdoli, H. Decision Support Systems: Principles and Practices. St.Paul, MN: West
Publishing, 1989. 0-314-46560-X. [text]

• Bird, J. Executive Information Systems Management Handbook. Blackwell, 1991. 141
p. [eis] [book review].

• Boulden, J. B. Computer-Assisted Planning Systems. New York: McGraw-Hill Book
Company, 1975. 277 p. ISBN 0-07-006657-4. [text]

• Bonczek, R. H., C. W. Holsapple, and A. Whinston. Foundations of Decision Sup-
port Systems. Academic Press, 1981 ISBN 0-12-113050-9 [classic] [text]. [Classic DSS
textbook that stressed a modeling/management science approach to DSS]

159

160 APPENDIX D. BIBLIOGRAPHY ON DSS OLAP

• Bostrom, R. P., R. T. Watson, and S. T. Kinney (editors). Computer Augmented
Teamwork: A Guided Tour. New York: Van Nostrand Reinhold, 1992. ISBN 0-442-
00277-7. [gdss] [book review]

• Brophy, P. Management Information and Decision Support Systems in Libraries. Alder-
shot, Hants, England ; Brookfield, Vt., USA : Gower, 1986. 158 p. [app].

• Bui, T. X. Co-Op: A Group Decision Support System for Cooperative Multiple Criteria
Group Decision Making. Berlin: Springer Verlag, 1987. ISBN 0-387-18753-7 [gdss] (Vol.
290 in the Lecture Notes in Computer Science series published by Springer Verlag)

• Burkan, W. C. Executive Information Systems: From Proposal through Implementa-
tion. New York : Van Nostrand Reinhold, 1991. 174 p. [eis] [book review]

• Carter, G. M., M. Murray, R. G. Walker, and W. E. Walker Building Organizational
Decision Support Systems. Boston, MA: Academic Press, 1992. 358 p. ISBN 0-12-
732070-9 [text]

• Clowes, K. W. The Impact of Computers on Managers. Ann Arbor, Mich. : UMI
Research Press, 1982. 190 p. ; Bibliography: p. 179-181.

• Coleman, D. and R. Khanna (editors). Groupware: Technology and Applications.
Englewood Cliffs, NJ: Prentice-Hall PTR, 1995. 576 p. ISBN 0-13-305194-3 Table of
Contents [gdss] [book review]

• Fink, C. Knowledge-based Systems for Financial Executives. Morristown, N.J. : Fi-
nancial Executives Research Foundation, 1991.63 p. ”Deloitte & Touche Information
Technology Research.” [app]

• Ginzberg, M. J., W. Reitman, E. A. Stohr (editors). Decision Support Systems. Ams-
terdam: North Holland, 1982. [proc].

• Gonzalez, A. J. and D. D. Dankel. The Engineering of Knowledge-based Systems:
Theory and Practice. Englewood Cliffs, NJ: Prentice-Hall, 1993. ISBN 0-13-276940-9.
Table of Contents [es]

• Gray, P. (editor). Decision Support and Executive Information Systems. Englewood
Cliffs, N.J.: Prentice-Hall, Inc.: 1994, ISBN: 0-13-235789-5 [proc]

• Gray, P. Visual IFPS/Plus for Business Englewood Cliffs, N.J.: Prentice-Hall, Inc.:
1996. ISBN: 0-13-185604-9 Table of Contents [text]

• Heymann, H. G. and R. Bloom. Decision Support Systems in Finance and Accounting.
New York : Quorum Books, 1988. 195 p. [app].

• Holsapple, C. W. and A. B. Whinston. Decision Support Systems: A Knowledge Based
Approach. Minneapolis, MN.: West Publishing, Inc., 1996. Book website link. [text]

• Hopple, G. W. The State-of-the-art in Decision Support Systems Wellesley, Mass. :
QED Information Sciences, 1988. 246 p. [proc]

• House, W. C. (editor). Decision Support Systems: A Data-Based, Model-Oriented,
User-Developed Discipline. Petrocelli, 1983. ISBN 0-89433-225-2 [proc].

• Humphreys, P., L. Bannon, A. McCosh, P. Migliarese, J. Pomerol (editors). Imple-
menting Systems for Supporting Management Decisions: Concepts, Methods and Ex-
periences. London, UK: Chapman & Hall, 1996, 379 p.; ISBN 0-412-75540-8. [proc]

• Humphreys, P., O. Svenson and A. Vari (editors). Analysing and Aiding Decision
Processes . Budapest, Hungary: Akademiai Kiado, 1983, 543 p.; ISBN 963-05-32891.
[proc]

• Inmon, W. H. Building the Data Warehouse. New York: John Wiley & Sons, 1993.
ISBN 0-471-56960-7. [dw] [book review]

• Inmon, W. H. and R.D. Hackathorn Using the Data Warehouse. New York: John
Wiley & Sons, 1994. ISBN 0-471-05966-8. [dw] [book review]

• Jelassi, T., M. R. Klein, and W. M. Mayon-White (editors). Decision Support Systems:
Experiences and Expectations. Amsterdam, NL: North-Holland, 1992. ISBN 0-444-
89673-2. [proc]

D.1. BOOKS BY AUTHOR 161

• Jessup, L. M. and J. S. Valacich (editors). Group Support Systems : New Perspectives.
New York : Macmillan ; Toronto : Maxwell Macmillan Canada, 1993. ISBN: 0-02-
360625-8. [gdss] [book review]

• Johansen, R. Groupware: Computer Support for Business Teams. New York: Free
Press, 1988. ISBN 0-02-916491-5 [team] [book review]

• Johansen, R., Sibbet, D., Benson, S., Martin, A., Mittman, R. and P. Saffo. Leading
Business Teams: How Teams Can Use Technology and Group Process Tools to En-
hance Performance. Reading, MA: Addison Wesley, 1991. 0-201-52829-0. [team] [book
review]

• Keen, P. G. W. and M. S. Scott Morton. Decision Support Systems: An Organizational
Perspective. Reading, MA: Addison-Wesley, Inc., 1978 ISBN 0-201-03667-3. Table of
Contents [classic] [text].

• Kelly, S. Data Warehouse: The Route to Mass Customisation. Chichester, UK: John
Wiley & Sons.,1995 ISBN 0-471-95082-3 [dw].

• Kimball, R. The Data Warehouse Toolkit: Practical Techniques for Building Dimen-
sional Data Warehouses. New York: John Wiley & Sons, 1996. ISBN 0-471-15337-0.
(includes CD-ROM) [dw] [book review]

• Klein, M. R. and L. B. Methlie. Knowledge-based Decision Support Systems with
Application in Business. (2nd ed.). New York, NY: John Wiley & Sons, 1995 ISBN
00471-95295-8 [es] [text].

• Leigh, W. E. and M. E. Doherty. Decision Support and Expert Systems. Cincinnati,
OH: South-Western Publishing Company, 1986. 454 p. ISBN 0-538-10910-6 [text].

• Lotfi, V. and C. Pegels. Decision Support Systems for Operations Management and
Management Science. (3rd. ed.) Homewood, IL : Irwin, 1996. 480 p. ISBN 0-256-
11559-1 (includes disk) [app]

• Mallach, E. G. Understanding Decision Suppot and Expert Systems. Burr Ridge, IL:
Richard D. Irwin, Inc., 1994. ISBN 0-256-11896-5.

• Mason, R. O. and E. B. Swanson. Measurement for Management Decision. Reading,
MA; Addison Wesley Publishing, 1981. ISBN 0-201-04646-6.

• McLean, E. R. and H. G. Sol (editors). Decision Support Systems: A Decade in
Perspective Amsteram, NL: North-Holland, 1986. 251 p. ISBN 0-444-70037-4 Table of
Contents [proc](Note: Proceedings of IFIP Working Group 8.3, Netherlands, 1986)

• McNichols, C. W. and T. D. Clark. Microcomputer-Based Information and Decision
Support Systems for Small Businesses: A Guide to Design and Implementation. Reston,
VA: Reston Publishing (A Division of Prentice-Hall), 1983. ISBN 0-8359-435 [app].

• Methlie, L. B. and R. H. Sprague (editors). Knowledge Representation for Decision
Support Systems . Amsterdam, NL: North-Holland, 1985, 267 p.; ISBN 0-444-87739-8.
Table of Contents [proc]

• Mockler, R. J. Knowledge-based Systems for Management Decisions. Englewood Cliffs,
N.J.: Prentice-Hall, Inc.: 1989. ISBN 0-13-516907-0. Summary [es] [text]

• Mockler, R. J. Knowledge-based Systems for Strategic Planning. Englewood Cliffs,
N.J.: Prentice-Hall, Inc.: 1989. ISBN 0-13-516915-1 [es] [text].

• Mockler, R. J. Computer Software to Support Strategic Management Decision Making.
New York: Macmillan, 1992. ISBN 0-02-381895-6 [text].

• Nagel, S. S. (editor). Computer-aided Decision Analysis : Theory and Applications.
Westport, Conn. : Quorum Books, 1993, 284 p [proc].

• Olson, D. L. and J. F. Courtney, Jr. Decision Support Models and Expert Systems.
New York: Macmillan, 1992. ISBN 0-02-389340-0 [text].

• Opper, S. and H. Fersko-Weiss Technology for Teams: Enhancing Productivity in Net-
worked Organizations. New York : Van Nostrand Reinhold, 1992, 181p. ISBN 0-
44223928 [team] [book review]

162 APPENDIX D. BIBLIOGRAPHY ON DSS OLAP

• Paller, A. with R. Laska. The EIS Book : Information Systems for Top Managers
Homewood, IL : Dow Jones-Irwin, 1990, 217 p. [eis] [book review]

• Poe, V. with contributions by L. L. Reeves. Building a Data Warehouse for Decision
Support . Upper Saddle River, NJ: Prentice Hall PTR, 1996, 202 p. ISBN 0-13-371121-
8. Table of Contents [dw] [book review]

• Rockart, J. F. and C. V. Bullen (editors). The Rise of Managerial Computing: The Best
of The Center for Information Systems Research. Homewood, Ill: Dow Jones-Irwin,
1986. ISBN 0-87094-757-5. [book review]

• Rockart, J. W. and D. W. DeLong. Executive Support Systems: The Emergence of
Top Management . Homewood, IL.: Dow Jones Irwin, 1988. 280 p. [eis] [book review]

• Sage, A. P. Decision Support Systems Engineering New York: John Wiley, 1991. ISBN
0-471-53000-x. [text]

• Sauter, V. Decision Support Systems. New York, NY: John Wiley & Sons, 1997. ISBN
0-471-31134-0. Web link [text].

• Scott Morton, M. S. Management Decision Systems: Computer-based Support for De-
cision Making. Boston, MA: Division of Research, Graduate School of Business Ad-
ministration, Harvard University, 1971. 216 p. ISBN 0-87584-090-6 [classic].

• Shakun, M. F. Evolutionary System Design: Policy Making Under Complexity and
Group Decision Support Systems. Oakland, CA: Holden-Day Inc., 1988. 287 pp.
ISBN 0-8162-7819-9

• Silver, M. S. Systems that Support Decision Makers: Description and Analysis. Chich-
ester: John Wiley & Sons, 1991 [text].

• Sol, H. G. (editor). Processes and Tools for Decision Support. Amsterdam: North
Holland, 1983. Table of Contents [proc]

• Snoyer, R. S. and G. A. Fischer (editors). Everyone’s Support Systems : A Complete
Guide to Effective Decision Making using Microcomputers. Homewood, Ill. : Business
One Irwin (Chantico Publishing Company, Inc.), 1993, 405 p. [app]

• Sprague, R. H. and E. D. Carlson. Building Effective Decision Support Systems En-
glewood Clifts, N.J.: Prentice-Hall, Inc.: 1982, ISBN: 0-13-086215-0 Table of Contents
[classic] [text]

• Sprague, R. H. and H. J. Watson (editors). Decision Support Systems : Putting Theory
into Practice. 3rd ed. Englewood Clifts, N.J. : Prentice Hall, 1993. 437 p. ISBN 0-13-
036229-8 [readings] [text].

• Sprague, R. H. and Hugh J. Watson (editors). Decision Support for Management En-
glewood Clifts, N.J.: Prentice-Hall, Inc.: 1996, ISBN: 0-13-396268-7 Table of Contents
[readings] [text]

• Stohr, E. A. and B. R. Konsynski (editors). Information Systems and Decision Pro-
cesses Los Alamitos, CA: IEEE Computer Society Press, 1992. 349 p. ISBN 0-8186-
2802-2. [proc] (Note: TIMS College on Information Systems and NSF sponsored study
of the future of decision systems)

• Thierauf, R. J. Decision Support for Effective Planning and Control: A Case Study
Approach. Engelwood Cliffs, N.J: Prentice Hall, 1982. ISBN 0-13-198234-6 [text]

• Thierauf, R. J. User-Oriented Decision Support Systems: Accent on Problem Finding.
Englewood Cliffs, NJ: Prentice Hall, 1988. ISBN 0-130940412-0. [text]

• Thierauf, R. J. Group Decision Support Systems for Effective Decision Making: A
Guide for MIS Practitioners and End Users. New York : Quorum Books, 1989 [gdss].

• Thierauf, R. J. Executive Information Systems: A Guide for Senior Management and
MIS Professionals. New York : Quorum Books, 1991. xix, 364 p. [eis].

• Trippi, R. R. and E. Turban. Investment Management: Decision Support and Expert
Systems. Danvers, MA: boyd & fraser, 1990 0-87835-451-4 [app].

D.2. BOOKS BY TOPIC 163

• Turban, E. Decision Support and Expert Systems: Management Support Systems. (4th
edition) Englewood Cliffs, N.J.: Prentice-Hall, Inc.: 1995. ISBN: 0-02-421701-8. Table
of Contents [text]

• Watson, H. J., R. K. Rainer, and G. Houdeshel. Executive Information Systems:
Emergence, Development, Impact. New York, NY: John Wiley & Sons, 1992. ISBN
0-471-55554-1 [eis] [book review]

• Young, L. F. Decision Support and Idea Processing Systems. Dubuque, IA: Wm. C.
Brown, 1989. ISBN 0-697-00742-01 [text].

D.2 Books by topic
• Data Warehousing

– Inmon, 1993

– Inmon and Hackathorn, 1994

– Kelly, 1995

– Kimball, 1996

– Poe, 1996

• DSS Applications

– Brophy, 1986

– Fink, 1991

– Heymann and Bloom, 1988

– Lofti and Pegels, 1991

– McNichols and Clark, 1983

– Snoyer and Fischer, 1993

– Trippi and Turban, 1990

• DSS Classics

– Alter, 1980

– Bennett, 1981

– Bonczek et al., 1981

– Keen and Scott Morton, 1978

– Scott Morton, 1971

– Sprague and Carlson, 1982

• DSS Proceedings/Readings

– Andriole, 1982

– Ginzberg et al., 1982

– Gray, 1994

– Hopple, 1988

– House, 1983

– Humphreys et al., 1996

– Humphreys et al., 1983

– Jelassi et al., 1992

– McLean et al., 1986

164 APPENDIX D. BIBLIOGRAPHY ON DSS OLAP

– Methlie and Sprague, 1985

– Nagel, 1993

– Sol, 1983

– Sprague and Watson, 1993

– Sprague and Watson, 1996

– Stohr and Konsynski, 1992

• DSS Text Books

– Adelman, 1992

– Alter, 1980

– Bennett, 1981

– Bigdoli, 1989

– Boulden, 1975

– Bonczek et al., 1981

– Carter et al., 1992

– Gray, 1996

– Holsapple and Whinston, 1996

– Keen and Scott Morton, 1978

– Klein and Methlie, 1995

– Leigh and Doherty, 1986

– Mallach, 1994

– Mockler, 1989a

– Mockler, 1989b

– Mockler, 1992

– Olson and Courtney, 1992

– Sage, 1991

– Sauter, 1997

– Silver, 1991

– Sprague and Carlson, 1982

– Sprague and Watson, 1993

– Sprague and Watson, 1996

– Thierauf, 1982

– Thierauf, 1988

– Turban, 1995

– Young, 1989

• Executive Information Systems

– Bird, 1991

– Burkan, 1991

– Paller, 1990

– Rockart and DeLong, 1988

– Thierauf, 1991

– Watson and Houdeshel, 1992

D.2. BOOKS BY TOPIC 165

• Expert Systems

– Gonzalez and Dankel, 1993

– Klein and Methlie, 1995

– Mockler, 1989a

– Mockler, 1989b

• Group Decision Support Systems (GDSS)

– Bostrom et. al., 1992

– Bui, 1987

– Coleman and Khanna, 1995 (eds.)

– Jessup and Valacich, 1993

– Thierauf, 1989

• Teamware

– Baecker, 1993

– Johansen, 1988

– Johansen et al., 1991

– Opper and Fersko-Weiss, 1992

I
T
A
L
Y

F
R
A
N
C
E

S
P
A
I
N

E
N
G
L
A
N
D

G
E
R
M
A
N
Y

Elements on dim.3

 Labels

F
R

S
P

E
N

G
E

I
T a facet

 a timeseries

Current cube

Elements
on dim.2

a cell

Elements
on dim.1

3-way TANGRAM - Basic terms

CODEWORK

Documented
TANGRAM

format

Flat file

Office, Windows
Apps

XML Clipboard

Template driven
HTML

LaTeX

Excel

Template driven
ASCII

PostScript Acrobat

DBMS

Offered by Tangram

Readily available

TANGRAM hypercube formats

MG,VT 01/2001

count label

summary_op

var_list

where

composite_cond

query:

average min total max

summary_op:

var:

[index]“words”

QUERY - Syntax definition 1 / 2

not

above below
value

equal

from

to

value

simple_cond:

 var_list: (

)

varvar
 ,

composite_cond:

(

)

simple_condsimple_cond orand

QUERY - Syntax definition 2 / 2

CODEWORK

Many to one

All to all

Many to many

Measures-Manuf.-Prod

Months-Versions

Measures Manufacturers Products

Product Lines

Months

Versions

Countries-Companies

Companies

Countries

Continents

Analysis of label structure in sample cube
MSALES (monthly tractor sales).

3-way
TANGRAM

cube

	Contents
	Introduction
	Main menu
	Data Analysis
	Administration
	Namesystems
	User interface
	Appendices
	Figures

