
KLFA USER MANUAL

Contents

1 Introduction 3

2 Installing and Compiling KLFA 5
2.1 Installing a compiled version of KLFA . 5

2.2 Compiling KLFA from a source distribution . 6

2.3 Compiling KLFA from CVS . 7

2.4 Installing SLCT . 7

3 Tools 9
3.1 Monitoring . 9

3.2 Model Generation . 9

3.3 Failure Analysis . 11

4 Examples 13
4.1 Glassfish deployment failure . 13

4.1.1 Monitoring . 13

4.1.2 Model Generation . 13

4.1.3 Failure analysis . 20

Bibliography 26

1

Chapter 1

Introduction

Log files are commonly inspected by system administrators and developers to detect suspicious be-

haviors and diagnose failure causes. Since size of log files grows fast, thus making manual analysis

impractical, different automatic techniques have been proposed to analyze log files. Unfortunately,

accuracy and effectiveness of these techniques are often limited by the unstructured nature of logged

messages and the variety of data that can be logged.

KLFA is a tool that automatically analyzes log files and retrieves important information to iden-

tify failure causes. KLFA automatically identifies dependencies between events and values in logs

corresponding to legal executions, generates models of legal behaviors and compares log files col-

lected during failing executions with the generated models to detect anomalous event sequences

that are presented to users.

Experimental results show the effectiveness of the technique in supporting developers and testers

to identify failure causes.

kLFA has been described in [CPMP07] and [MP08].

Figure 1.1 shows the three steps of the technique, while Figure 1.2 focus on the model generation.

Detailed information about the technique can be found in [MP08].

Following chapters describe for every step of the technique the tools involved and give examples

of the usage of the tools.

3

Introduction

target system

test cases in-the-field
uses

log

log

0 1 2 3
4

5

0 1 2 3
4

5

target system

in-the-field
uses

log
tester

0 1 2 3
4

5

suspicious
sequences

Failure

automated
analysis

step 1: Monitoring step 2: Model Generation step 3: Failure Analysis

model
inference

monitoring models

model
inference

models

Figure 1.1: Automated log analysis.

log file Parser

log file
(1 event
per line)

Splitter

Simple
Logfile

Clustering
Tool

log file
(1 event
per line)

log file
(1 event
per line)

application level analysis

action level
analysis

component
level analysis

1 log for each
component

1 annotated
log file

detected
event types

mappings:
event-component
and event-actions

Rule
Matcherlogs

log file
(clustered

events)

1. Event
Detection

Data
Analysis

Data
ReWriting

rewriting
strategy

log file
(with data-
flow info)

2. Data Transformation

Inference
Engine

modelsmodels
models

3. Model
Inference

Legend
sw module

llog file

data

Figure 1.2: Model generation.

4

Chapter 2

Installing and Compiling KLFA

2.1 Installing a compiled version of KLFA

If you received the KLFA distribution zip (something like klfa-201010141601.zip), just uncompress

it in the location you prefer, e.g. /home/fabrizio/Programs/klfa201010141601.

Once you uncompressed it you just need to do the following commands:

1) (if using Linux or OSX) make scripts executables e.g.

chmod a+x /home/fabrizio/Programs/klfa-201010141601/bin/*

2) (for any OS) set the environment variable KLFA_HOME to point to the folder where you

installed klfa, e.g. /home/fabrizio/Programs/klfa-201010141601/

If you are using Linux or OSX with the BASH shell you could add the following line to file

$HOME.bashrc:

export KLFA_HOME=/home/fabrizio/Programs/klfa-201010141601/

Change the path according to your KLFA installation path.

3) (for any OS) add the bin folder in KLFA_HOME to the PATH environment variable.

If you are using Linux or OSX with the BASH shell you could add the following line to file .bashrc

(change the path according to your path):

export PATH=$PATH:/home/fabrizio/Programs/klfa-201010141601/bin/

You can check if the previous command succeeded by running the following command and check-

ing that you have an output similar to the one reported below:

5

Installing and Compiling KLFA

$ which klfaCsvAnalysis.sh

/home/fabrizio/Programs/klfa-201010141601/bin//klfaCsvAnalysis.sh

Check if klfa is correctly installed by running:

$ klfaCsvAnalysis.sh

The command will output KLFA command help. Like in the following paragraph:

This program builds models of the application behavior by analyzing a trace

file. The trace file must be a collection of lines, each one in the format

COMPONENT,EVENT[,PARAMETER].

Multiple traces can be defined in a file, to

separate a trace from another put a line with the | symbol.

Usage :

it.unimib.disco.lta.alfa.klfa.LogTraceAnalyzer [options] <analysisType> <phase>

<valueTranformersConfigFile> <preprocessingRules> <traceFile>

KLFA includes several programs and utilities described in the following Sections. The most

common utilities can be run by using the shell scripts in KLFA_HOME/bin

We suggest to go through the examples in folder KLFA_HOME/examples to understand how to

use KLFA. Some examples are described in Chapter 4, others are described in the file README.txt

that you find in each example folder.

2.2 Compiling KLFA from a source distribution

If you received a source distribution zip of KLFA (something like klfa-src-201010141601.zip), un-

compress it in the location you prefer, e.g. /home/fabrizio/Programs/klfa-src201010141601.

In order to compile an installable version of klfa from sources run the following command within

the folder where you uncompressed klfa:

ant distribution

so you could do:

cd /home/fabrizio/Programs/klfa-src-201010141601

ant distribution

6

2.3 Compiling KLFA from CVS

The command will create the KLFA distribution zip in the dist folder. e.g. /home/fabrizio/Programs-

/klfa-src201010141601/dist/klfa201010141601.zip

After creating the distribution zip you can follow the commands described in Section ??.

2.3 Compiling KLFA from CVS

In order to install the head version of klfa stored on the UniMiB CVS repository you need to down-

load the following CVS modules:

• LogFileAnalysis-LFA

• BCT (you need to download the TPTPIntegration branch)

LogFileAnalysis-LFA is klfa. BCT provides the libraries to infer automata.

The first step is the compilation of klfa dependencies. To do so run

ant buildDependencies

The command will create the library bct.jar in folder lib.

Next step is to run the command

ant distribution

This command builds the klfa distribution zip. Follow the instructions described in Section 2.1

to install KLFA.

Other klfa ant compilation options are described by the build.xml help. To see the other compi-

lation options just run

ant

2.4 Installing SLCT

In order to identify event types AVA uses SLCT [Vaa03]. In order to install SLCT you need to change

your current directory to src-native/slct-0.5 and compile slct.

If you use Linux or OsX you can run the following commands

cd $AVA_HOME/../src-native/slct-0.5

gcc -o slct -O2 -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 slct.c

sudo mkdir /opt/slct-0.5

sudo mv slct /opt/slct-0.5

7

Chapter 3

Tools

3.1 Monitoring

In the monitoring phase the user is supposed to collect log files relative to correct system executions.

These log files can be collected at testing time during functional system tests or during correct runs

of the system. We do not provide any logging tool because the system can work with any logging

systems.

3.2 Model Generation

In this phase the log files collected are analyzed by the system to derive a model that generalizes

the application behavior. In this phase the initial logs files are preprocessed with different tools in

order to:

• contain a complete event in a single line;

• automatically detect event types and associated parameters;

• detect rewriting strategies for parameters;

• infer a model of the log file structure;

Figure 3.1 shows the components involved in this phase. All the components must be called from

command line and the user has to set parameters according to the analysis type and the log file

analyzed. Following sections describe the functionality of each component.

9

Tools

TransformationRulesGenerator

transformers
definitions

preprocessing
rules

parameters
statistics

EventTypesDetectionComponent

csv file
(with events)

EventsSeparationComponent

log file
(1 event per line)

kFSAEngine

Models

log file

actions

Figure 3.1: Components involved in the model generation phase.

10

3.3 Failure Analysis

3.3 Failure Analysis

In this fail the logs recorded during faulty executions are first preprocessed following the criterion

adopted in the model inference phase and then are compared with the inferred models.

Figure 4.1 shows the components involved in this phase.

transformers
definitions

preprocessing
rules

EventTypesDetectionComponent

csv file
(with events)

EventsSeparationComponent

log file
(1 event per line)

kFSAEngine

Models

log file

actions

From Model Inference

Figure 3.2: Components involved in the failure analysis phase.

The results of this phase are a set of extended models and an anomaly file.

11

Tools

Column name Description

Component Name of the component that presents this anomaly.

Anomaly Anomaly type, can be branch, tail or final state.

Line Position in the trace in which the anomaly starts. This

number corresponds to the position of the event in the

trace named checking_<componentName>.trace

State State of the component FSA in which the anoamly has

been found

StateType State type, can be existing if it is a state present in the

component FSA, or newif it is a state added during a pre-

vious extension

Event Sequence of anomalous preprocessed events observed

Original log line Position in the original log

Original log event Sequence of anomalous events observed

To state State in which the anomaly ends (makes sense only if it

is a branch added anomaly).

Branch length Lenght of the added branch.

Expected Expected event going out from the anomalous state

Expected incoming Events expected before state "To state"

12

Chapter 4

Examples

4.1 Glassfish deployment failure

This section describe a real case study in which we analyzed log files generated by the Glassfish

J2EE application server to detect the cause of a failure while deploying the Petstore [Sun10a] web

application.

In this case study we collected the log files produced by glassfish during system tests, derived

models from the log files (we applied the three different approaches), and compared the log file

produced during the failure. This log file was provided by a user of the system who was not able to

deploy the Petstore web application using Netbeans [Gla].

All the files described in this example can be found in folder

examples/glassfishForumUserIssue/.

4.1.1 Monitoring

In the monitoring phase we collected log files produced by Glassfish while it was performing dif-

ferent functionalities: start-up, shutdown, web application deploy, and response to web application

requests.

The log files were recorded with the default log verbosity. Log files are stored in folder examples/glassfish-

ForumUserIssue/correctLogs.

4.1.2 Model Generation

In the model generation phase we preprocess the original log files in order to generate a model of

the correct log file format.

13

Examples

Table 4.1: RegexBasedRawEventsSeparator parameters.
Parameters description

−eventsStartExpression” \ [# \ \|.∗ indicates that log messages start with [# \ \|
../correctLogs/server.log∗ expands to all the correct log files

Raw Events Separation

Glassfish records logs in the Uniform Log Format [Sun10b]. Logging messages witten in this for-

mat start with [# and end with |] and can span over different lines. For this reason we need to

preprocess the original log files in order to obtain a file in which each log message is recorded in a

line.

In order to do this we descend into folder

examples/glassfishForumUserIssue/analysis/ and run RegexBasedRawEventsSeparator with

the following command (all in a line):

java -cp

path/to/klfa

preprocessing.rawEventsSeparation.RegexBasedRawEventsSeparator

-eventStartExpression "\[#\|2008.*" ../correctLogs/server.log*

events.correct.txt

From examples/glassfishForumUserIssue/analysis/ you can simply run ../bin/runRawEventsSeparationTraning.sh.

Table 4.1.2 explains the options used.

Events Types Detection

Event types detection is performed using the AutomatedEventTypesDetector tool, which uses

SLCT to detect the event types and then parses the given log to produce a final csv file in which

component names, events and parameters are separated in different columns.

The usage of the AutomatedEventTypesDetector depends on the kind of analysis you want to

perform on your log file. Following Sections list the different options used for the distinct analysis.

Component Level Analysis

java -cp

path/to/klfa

14

4.1 Glassfish deployment failure

it.unimib.disco.lta.alfa.preprocessing.eventTypesDetection.

AutomatedEventTypesDetector

-slctExecutablePath path/to/slct

-replacement "CORE5076: Using.*" "Using Java" -replacement

".*/domains/domain1/config/" "/domains/domain1/config/" -replacement

"service:jmx:rmi:///jndi/rmi://.*:8686/jmxrmi" "" -replacement

"service:jmx:rmi:///jndi/rmi://.*:8686/jmxrmi" "" -replacement

"\|INFO\|" "" -replacement "\|FINE\|" "" -replacement "\|DEBUG\|" ""

-replacement "\|FINEST\|" "" -replacement "\|FINER\|" ""

-dataExpression "\[#\|2008.*\|.*\|.*\|.*\|.*\|(.*)\|#\]"

-componentExpression "\[#\|2008.*\|.*\|.*\|(.*)\|.*\|.*\|#\]"

-exportRules rules.properties -workingDir trainingCsvGen

-componentsDefinitionFile components.training.properties

events.correct.txt events.correct.csv

From examples/glassfishForumUserIssue/analysis/ you can simply run ../bin/runComponentLevelEventsDetectionTraining.sh.

Table 4.2 explains the parameters used.

Table 4.2: AutomatedEventsDetector parameters.

Parameters description

-slctExecutablePath path/to/slct Path to the SLCT executable

-replacement "CORE5076: Using.*" "Using

Java"

Replaces all messages of this type with a de-

fault message. We need to replace this mes-

sage because it causes a false positive due

to the different versions of VM used during

training and checking, thus we removed the

info about the VM.

-replacement ".*/domains/domain1/config/"

"/domains/domain1/config/"

Removes the part of the path that generates

a false positive.

15

Examples

-replacement "ser-

vice:jmx:rmi:///jndi/rmi://.*:8686/jmxrmi"

""

Remove this information because the path is

system dependent and we do not have enough

tests to permit SLCT to understand that the

service string is a parameter.

-replacement "ser-

vice:jmx:rmi:///jndi/rmi://.*:8686/jmxrmi"

""

Same as above.

-replacement "\ \ |DEBUG \ \|" "" Removes the information about the logging

granularity. We remove this information not

because it introduces false positives, but be-

cause make events regular expressions less

readable.

-replacement "\ \ |FINE \ \|" "" Same as above.

-replacement "\ \ |FINER \ \|" "" Same as above.

-replacement "\ \ |FINEST \ \|" "" Same as above.

-replacement "\ \ |INFO \ \|" "" Same as above.

-dataExpression "[# \ \|2008. ∗ \ \ |. ∗ \ \ |. ∗ \ \
|. ∗ \ \ |. ∗ \ \ |(.∗) \ \|#]"

Tells KLFA where the useful information

about the event is positioned using regex

grouping.

-componentExpression "[# \ \|2008. ∗ \ \ |. ∗ \ \
|. ∗ \ \ |(.∗) \ \|. ∗ \ \ |. ∗ \ \ |#]"

Tells KLFA where the component name is po-

sitioned in the log line using regex grouping.

-exportRules rules.properties Export the patterns detected by SLCT to file

rules.properties (in the current dir).

-workingDir trainingCsvGen Generates component files in folder

trainingCsvGen.

-componentsDefinitionFile compo-

nents.training.properties

save components ids to file

components.training.properties.

events.correct.txt Original log file (the one that we generated in

the previous step).

events.correct.csv The destination file.

Application Level Analysis and Action Level Analysis

16

4.1 Glassfish deployment failure

java -cp

path/to/klfa

it.unimib.disco.lta.alfa.preprocessing.eventTypesDetection.

AutomatedEventTypesDetector

-dontSplitComponents

-replacement "CORE5076: Using.*" "Using Java" -replacement

".*/domains/domain1/config/" "/domains/domain1/config/" -replacement

"service:jmx:rmi:///jndi/rmi://.*:8686/jmxrmi" "" -replacement

"service:jmx:rmi:///jndi/rmi://.*:8686/jmxrmi" "" -replacement

"\|INFO\|" "" -replacement "\|FINE\|" "" -replacement "\|DEBUG\|" ""

-replacement "\|FINEST\|" "" -replacement "\|FINER\|" ""

-dataExpression "\[#\|2008.*\|.*\|.*\|.*\|.*\|(.*)\|#\]"

-componentExpression "\[#\|2008.*\|.*\|.*\|(.*)\|.*\|.*\|#\]"

-exportRules rules.properties -workingDir trainingCsvGen

-componentsDefinitionFile components.training.properties

events.correct.txt events.correct.csv

From examples/glassfishForumUserIssue/analysis/ you can simply run ../bin/run-

ActionLevelEventsDetectionTraining.sh.

As you can see for both Application and Action Level Analysis the options are the same of the

Component Level Analysis except from the additional parameter -dontSplitComponents. This

happens because the log file format is the same so the parsing options do not change, the only differ-

ence is in the way events are detected, in this case we do not need to detect events for components

separately.

Transformation Rules Generation

The next step is the automatic detection of the rewriting strategies to be used with the engine. This

is achieved by running TransformationRulesGenerator.

java -cp

path/to/klfa

17

Examples

Parameters description

-patterns rules.properties load events regex from

file rules.properties.

-signatureElements 0,1 do not threat columns

0 and 1 as parameters.

events.correct.csv name of the csv file to

analyze.

Table 4.3: TransformationRulesgenerator options

it.unimib.disco.lta.alfa.parametersAnalysis.TransformationRulesGenerator

-patterns rules.properties -signatureElements 0,1 events.correct.csv

From examples/glassfishForumUserIssue/analysis/ you can simply run ../bin/run-

TransformationRulesGeneration.sh.

If you already had a CSV file and for this reason you did not run class EventTypesDetector,

you can generate the transformation rules by running:

java -cp

path/to/klfa

it.unimib.disco.lta.alfa.parametersAnalysis.TransformationRulesGenerator

-signatureElements 0,1 events.correct.csv

Table 4.1.2 explains the options used.

Inference of the models

Model inference is done using the LogTraceAnalyzer tool. It first applies the data transformation

rules detected by the TransformationRulesGenerator. Then it builds models using the kBehavior

inference engine [MP07].

The analysis type is selected by the user providing the corresponding parameters to the Log-

TraceAnalyzer. In the following paragraphs we explain how to do the different analysis.

Component Level Analysis

java -cp path/to/klfa

tools.kLFAEngine.LogTraceAnalyzer -separator "," -minimizationLimit

100 componentLevel training transformersConfig.txt

18

4.1 Glassfish deployment failure

Parameters description

-separator "," separator char used in the csv file.

-minimizationLimit 100 do not minimize FSA if they have more than 100 states.

componentLevel do component level analysis.

training learn the models.

transformersConfig.txt file with the rewriting rules defined for the different data

clusters.

preprocessingRules.txt file with the association between the different instances

of rewriting strategies and the different parameters.

events.correct.csv csv file to load data from.

Table 4.4: LogTraceAnalyzer Component Level Analysis options

preprocessingRules.txt events.correct.csv

From examples/glassfishForumUserIssue/analysis/ you can simply run ../bin/runCom-

ponentLevelInference.sh.

Table 4.1.2 explains the options used.

Action Level Analysis

java -cp path/to/klfa

tools.kLFAEngine.LogTraceAnalyzer -separator ","

-splitActionLines -actionLines

actions.correct.properties -minimizationLimit

100 actionLevel training transformersConfig.txt

preprocessingRules.txt events.correct.csv

From examples/glassfishForumUserIssue/analysis/ you can simply run ../bin/runAc-

tionLevelInference.sh.

Application Level Analysis

java -cp path/to/klfa

tools.kLFAEngine.LogTraceAnalyzer -separator "," -minimizationLimit

100 applicationLevel training transformersConfig.txt

preprocessingRules.txt events.correct.csv

19

Examples

From examples/glassfishForumUserIssue/analysis/ you can simply run ../bin/runAppli-

cationLevelInference.sh.

4.1.3 Failure analysis

Once the failure occurs the faulty log file can be compared with the inferred models to detect anoma-

lies. To do this we have to process the faulty log file in a similar manner as in the model inference

phase. Figure 4.1 shows the required steps.

transformers
definitions

preprocessing
rules

EventTypesDetectionComponent

csv file
(with events)

EventsSeparationComponent

log file
(1 event per line)

kFSAEngine

Models

log file

actions

From Model Inference

Figure 4.1: Components involved in the failure analysis phase.

20

4.1 Glassfish deployment failure

Raw Events Separation

The command used to separate raw events is the same as in the ModelGeneration phase except from

the input and output parameters.

java -cp

path/to/klfa

preprocessing.rawEventsSeparation.RegexBasedRawEventsSeparator

-eventStartExpression "\[#\|2008.*" ../faultyLogs/server.fail.log

events.fail.txt

From examples/glassfishForumUserIssue/analysis/ you can simply run ../bin/run-

RawEventsSeparationChecking.sh.

Events Types Detection

The command is similar as in the Model Generation phase except from the fact that we tell the tool

to use the component and rules ids used in the Model Generation phase.

Component Level Analysis

java -cp

path/to/klfa

it.unimib.disco.lta.alfa.preprocessing.eventTypesDetection.AutomatedEventTypesDetector

-replacement "CORE5076: Using.*" "Using Java" -replacement

".*/domains/domain1/config/" "/domains/domain1/config/" -replacement

"service:jmx:rmi:///jndi/rmi://.*:8686/jmxrmi" "" -replacement

"service:jmx:rmi:///jndi/rmi://.*:8686/jmxrmi" "" -replacement

"\|INFO\|" "" -replacement "\|FINE\|" "" -replacement "\|DEBUG\|" ""

-replacement "\|FINEST\|" "" -replacement "\|FINER\|" ""

-dataExpression "\[#\|2008.*\|.*\|.*\|.*\|.*\|(.*)\|#\]"

-componentExpression "\[#\|2008.*\|.*\|.*\|(.*)\|.*\|.*\|#\]"

-loadComponents components.training.properties -exportRules

rules.checking.properties -workingDir checkingCsvGen

-loadEventPatterns -patternsDir trainingCsvGen

-componentsDefinitionFile components.fail.properties events.fail.txt

events.fail.csv

21

Examples

From examples/glassfishForumUserIssue/analysis/ you can simply run ../bin/runCom-

ponentLevelEventsDetectionChecking.sh.

Application Level Analysis and Action Level Analysis

java -cp

path/to/klfa

it.unimib.disco.lta.alfa.preprocessing.eventTypesDetection.AutomatedEventTypesDetector

-dontSplitComponents -replacement "CORE5076: Using.*" "Using Java"

-replacement

".*/domains/domain1/config/" "/domains/domain1/config/" -replacement

"service:jmx:rmi:///jndi/rmi://.*:8686/jmxrmi" "" -replacement

"service:jmx:rmi:///jndi/rmi://.*:8686/jmxrmi" "" -replacement

"\|INFO\|" "" -replacement "\|FINE\|" "" -replacement "\|DEBUG\|" ""

-replacement "\|FINEST\|" "" -replacement "\|FINER\|" ""

-dataExpression "\[#\|2008.*\|.*\|.*\|.*\|.*\|(.*)\|#\]"

-componentExpression "\[#\|2008.*\|.*\|.*\|(.*)\|.*\|.*\|#\]"

-loadComponents components.training.properties -exportRules

rules.checking.properties -workingDir checkingCsvGen

-loadEventPatterns -patternsDir trainingCsvGen

-componentsDefinitionFile components.fail.properties events.fail.txt

events.fail.csv

From examples/glassfishForumUserIssue/analysis/ you can simply run ../bin/runAppli-

cationtLevelEventsDetectionChecking.sh or ../bin/runActionLevelEventsDetectionChecking.sh.

Comparison against the models

Comparison against the model is done calling the LogTraceAnalyzer tool and giving the analysis

type used in the model generation phase and specifying that we are now doing the comparison.

Component Level Analysis

java -cp path/to/klfa tools.kLFAEngine.LogTraceAnalyzer

-separator "," -minimizationLimit 100 componentLevel checking

transformersConfig.txt preprocessingRules.txt events.fail.csv

22

4.1 Glassfish deployment failure

From examples/glassfishForumUserIssue/analysis/ you can simply run ../bin/runCom-

ponentLevelAnomalyDetection.sh.

Action Level Analysis

java -cp path/to/klfa

tools.kLFAEngine.LogTraceAnalyzer -separator "," -minimizationLimit

100 actionLevel checking transformersConfig.txt

preprocessingRules.txt events.correct.csv

From examples/glassfishForumUserIssue/analysis/ you can simply run ../bin/runAc-

tionLevelAnomalyDetection.sh.

Application Level Analysis

java -cp path/to/klfa

tools.kLFAEngine.LogTraceAnalyzer -separator "," -minimizationLimit

100 applicationLevel checking transformersConfig.txt

preprocessingRules.txt events.correct.csv

From examples/glassfishForumUserIssue/analysis/ you can simply run ../bin/runAppli-

cationLevelAnomalyDetection.sh.

Anomalies interpretation

In the model comparison phase the tool detects the anomalies present in the faulty log files and

report them to the user by saving them in the file klfaoutput/anomalies.csv.

The last phase of the technique involves actively the user who has to inspect the reported anoma-

lies, and use them as a guide to inspect correct and faulty files to detect the problem.

Table 4.1.3 shows the anomalies detected by the tool in the given case study.We imported the

csv file produced by the tool, anomalies.csv, and sorted the items according to the column Original

Event Line. In the next paragraphs we are going to interpret them to give an exhaustive explana-

tion of the problem.

Anomaly 1 Anomaly 1 appears in line 15 of the faulty log file. The anomaly regards com-

ponent com.sun.jbi.framewor (the id 5 correspond to this component as you can see from file

components.training.properties). In this case the anomaly is not caused by an unexpected

event, but the system detects that the events regarding component 5 stopped before expected. In fact

a new final state was added to the automaton. By opening the automaton with the command java

23

Examples
Table

4.5:A
nom

alies
detected

by
K

L
FA

for
the

G
lassfish

case
study

C
om

p.
A

nom
aly

L
ine

State
State

T
ype

E
vent

O
riginallog

line
O

riginal

log
event

E
xpected

5
F

inalState
1

q2
E

xisting
5_R

0065
15

5,R
0065

5_R
0064

5_R
0066__0__0

0
F

inalState
5

q8
E

xisting
0_R

0055)
20

0,R
0055

0_R
0052)

0_R
0057)

G
L

O
B

A
L

Tail
13

q109
E

xisting
14_R

0020__0)
2114,R

0020,java-

petstore2.0ea5

3_R
0032)

λ

14
F

inalState
1

q4
E

xisting
14_R

0020__0)
2114,R

0020,java-

petstore-2.0-ea5

14_R
0023)

4
Tail

7
q12

E
xisting

4_289331648)
24

4,289331648
4_-1628344215)

4_R
0073)

4_1573705168

4_R
0075)

17
Tail

1
q3

E
xisting

17_-811928006)
25

17,-

811928006

17_R
0003);

3
Tail

5
q10

E
xisting

3_-1648356848)
27

3,-

1648356848

3_R
0032)

3_R
0031)

23
N

ew
C

om
-

ponent

24

4.1 Glassfish deployment failure

-cp path/to/klfa tools.ShowFSA klfaoutput/5.fsa we can see that many more events are

expected. Furthermore by looking at the faulty log file we can see that the file is very short, so we

can deduce that it was truncated by the user or the application was blocked.

The Event column in this case do not represent the wrong event occurred but the last event seen.

The id of this last event is R0065, which correspond to the event regex "JBIFW0010 JBI framework

ready to accept requests.".

Anomaly 2 Anomaly 2 regards component javax.enterprise.system.core, also in this case

the anomaly is caused by the premature end of messages.

Anomaly 3 Anomaly 3 regards component GLOBAL. This is not a real component, it is a key-

word used to indicate the automata that describes the way components execution alternate.

The anomaly type is Tail, it indicates that an unseen tail was added to the state q109. The first

anomalous event seen is 14_R0020_0, while it expected 3_R0032, 3_R0031, 13_1394096499, or 2_-

2135717321 (the last three are detected following the ε transition). The more interesting is the first

one, which indicates that a deploy message from component 3 (javax.enterprise.system.to-

ols.admin) is missing from the log. We do not know if it indicates the cause of the failure (This

anomaly could depend on the fact that in one case it was used the Glassfish asadmin tool while in

the other not).

Anomaly 4 Anomaly 4 regards component 14: the component recorded less messages than

expected. This is because the premature end of the log file. KLFA expected a message of type

R0023 ((̂.*) AutoDeploy Disabling AutoDeployment service.), before stopping the Glass-

fish server. We have an anomaly because in this log the stopping phase of the server is not recorded.

Anomaly 5 Anomaly 5 indicates that at line 24 an anomalous event 4_289331648 occurs. The

event ID in this case is an hash. The AutomatedEventTypesExtractor assigns to a raw event line

its hashcode as its id when the raw event is an outlier. We have an outlier when a raw event does

not match any event regexp.

The occurrence of an hashcode as an anomalous event can have two meanings: the specific event

was never seen in the correct logs analyzed or the event was present in the logs analyzed but its

was present very few time and it was not considered an event type (by default this happens when an

event occurs just once). In the first case it can be an exceptional event that appear as a consequence

of a failure, or it can be a false positive caused by event regexp that do not generalize enough the

data. This should happen if in the correct log files we have events in which a parameter remains

constant over all their occurrences: in this case the parameter will be considered by SLCT as part

of the event regex, and in case the value change in the faulty execution because of environmental

reasons (e.g. domain of a web server) it will be detected as an anomaly which may be not related to

25

Examples

the experienced failure (pay attention it should also be the case in which in the correct execution the

system was behaving correctly because of this constant value).

In this case to further inspect the anomalous event we need to take a look at the faulty log file

(events.fail.txt), we see that there is an exception in line 24, which is related to the failure.

The exception was never seen in the correct log files (search for 289331648 in the correct log).

Anomaly 6 Anomaly 6 occur at line 25, the event 17_-811928006 was unexpected. As in the

previous case the hashcode-id was generate because of a message never seen before (the exception).

Anomaly 7
Anomaly 7 is detected in line 27 of the trace file. Also in this case if we take a look at the faulty

log file (events.fail.txt), in line 27 we see that there is an exception, which is related with the

failure. The technique has detected an useful information for the root cause analysis.

Anomaly 8
Anomaly 8 indicates that a new component appeared. If we open components.fail.properties

we see that component id 23 correspond to component com.sun.org.apache.commons.modeler.Registry.

By looking for it in the failure log we see that it appears because of an event occurred as a conse-

quence of the failure.

26

Bibliography

[CPMP07] Domenico Cotroneo, Roberto Pietrantuono, Leonardo Mariani, and Fabrizio Pastore. In-

vestigation of failure causes in workload-driven reliability testing. In proceedings of the
Fourth international workshop on Software quality assurance, pages 78–85. ACM, 2007.

[Gla] Glassfish user forum. Glassfish configuration issue.

http://forum.java.sun.com/thread.jspa?threadID=5249570, visited in 2010.

[MP07] L. Mariani and M. Pezzè. Dynamic detection of COTS components incompatibility. IEEE
Software, 24(5):76–85, September/October 2007.

[MP08] Leonardo Mariani and Fabrizio Pastore. Automated identification of failure causes in

system logs. In Proceedings of the 19th IEEE International Symposium on Software Re-
liability Engineering (ISSRE’08), pages 117 – 126, Washington, DC, USA, 2008. IEEE

Computer Society.

[Sun10a] Sun, visited in 2010. Java PetStore. http://java.sun.com/developer/releases/petstore/.

[Sun10b] Sun, visited in 2010. GlassFish v3 Application Server Administration Guide.

http://docs.sun.com/doc/820-4495.

[Vaa03] R. Vaarandi. A data clustering algorithm for mining patterns from event logs. In Proceed-
ings of the 3rd IEEE Workshop on IP Operations and Management, 2003.

27

	Introduction
	Installing and Compiling KLFA
	Installing a compiled version of KLFA
	Compiling KLFA from a source distribution
	Compiling KLFA from CVS
	Installing SLCT

	Tools
	Monitoring
	Model Generation
	Failure Analysis

	Examples
	Glassfish deployment failure
	Monitoring
	Model Generation
	Failure analysis

	Bibliography

