
DE LA RUE
CARD SYSTEMS

Version 1

User Manual

Galact IC
U s e r M a n u a l

© 1998, De La Rue Cartes et Systèmes. All rights reserved.

The information contained in this publication is accurate to the best of De La Rue Cartes et
Systèmes’ knowledge. However, De La Rue Cartes et Systèmes disclaims any liability
resulting from the use of this information and reserves the right to make changes without
notice.

Manual references:

PE: 993-099

12NCT: 4311 240 26362

Publication date: 15 December 1998.

C o n t e n t s

G A L A C T I C U S E R M A N U A L iii

CONTENTS

PREFACE..V
Presentation of this guide ... v

GalactIC: A definition ... v
Purpose.. v
Audience.. v

Structure of this guide ... v
Related documentation ... v

INSTALLATION...7
Package contents..7
Technical requirements...7

Hardware ...7
Software ..7

Installation procedure..8
Connecting the reader..8
Installing the kit...9

THE CONVERTER ..11
Product Description...11
Environment ..11
Functions...12

MultiClass Applications ..12
Package Linking ..12
Variable Types ..13
Bytecode Verifier ..13

Launching the Converter...14
Command Line ..14
Input files...14
Output files ..14
Conversion Errors..15
Conversion Warnings ..15

THE LOADER ..17
Product Description...17
Environment ..17
Product Functions..17

Loading ...18
Sending a file to the smart card ...18

Loader*.ini ...18
Initialisation ...19

De La Rue Java Loader ...19
Example – Filling in text fields ...19
Other Fields ...20

Loading ...21
Reference..22

Fields ...22
Flags ..22

DEBUGGING ENVIRONMENT (PCOM32) ...23
Product Description...23
Technical Requirements ..23
Launching PCOM32..23

C o n t e n t s

D E L A R U E C A R D S Y S T E M Siv

User Interface ... 24
Main Window.. 24
Example - Command File.. 26

Erasing card data.. 27
Reuse.cmd ... 27

Command Files... 28
Introduction ... 28
Typographic conventions .. 29
Card commands... 29
Expected return status ... 30
Expected return data.. 30

Special characters .. 31
Comment character ... 31
Line continuation character ... 31
Indentation... 31

Card reader directives .. 32
.INSERT.. 32
.EJECT .. 32
.POWER_ON.. 32
.POWER_OFF .. 32

Setup directives .. 33
.LIST_ON ... 33
.LIST_OFF.. 33
.STEP_ON... 33
.STEP_OFF ... 33
.ERROR_BEEP_ON... 33
.ERROR_BEEP_OFF ... 33
.END_BEEP_ON.. 33
.END_BEEP_OFF .. 33
.SET_TIME_OUT... 34
.READER.. 34

File management directives.. 35
.CALL ... 35
.EXECUTE ... 36

Loop management directives ... 37
Buffer management directives.. 38

The PCOM32 buffers .. 38
The directives .. 39

Constant management directives ... 43

APPENDIX A – ERROR STATUS ... 45
Reader error status... 45
Card error status... 46

G A L A C T I C U S E R M A N U A L v

PREFACE

Presentation of this guide

GalactIC: A definition
GalactIC is a Java™ powered smart card, optimised to store and run a range of applications
written in Java. This application range covers solutions for debit/credit, electronic purse,
electronic commerce, loyalty, access control, pay TV, healthcare, identification, mass transit
and gambling. The Galactic User Manual includes these tools:

• The Converter
• The Loader
• Debugging environment (PCOM32)

Purpose
The purpose of this GalactIC User Manual is to introduce and explain the three tools
comprising the Galactic solution.

Audience
This guide is destined for programmers who know the basics of Java language and are
familiar with the basic principles of smart cards.

Structure of this guide
Chapter 1: Installation

Chapter 2: The Converter

Chapter 3: The Loader

Chapter 4: Debugging environment (PCOM32)

Related documentation
For further information on GalactIC, refer to the following De La Rue guides:

• GalactIC Operating System – Ref. PE 993-098
• Smart Card Reader Java API Reference Guide – Ref. PE 993-097

P r e f a c e

D E L A R U E C A R D S Y S T E M Svi

For information on specifications, refer to the following:

ISO/IEC 7816-3 (1989) Identification cards - Integrated circuit(s) cards with contacts
Part 3: Electronic signal and transmission protocols.

ISO/IEC 7816-4 (1995) Identification cards - Integrated circuit(s) cards with contacts
Part 4: Inter industry commands for interchange.

ISO/IEC 7816-5 (1992) Numbering system and registration procedure for application
identifiers.

ISO 9564-1 (1991) Banking - Personal Identification Number management and
security.

ANSI X9.19 (1986) Financial Institution Retail Message authentication.

EMV (1996) Integrated Circuit Card Specifications for Payment Systems:

Part 1: Electromechanical Characteristics, Logical Interface,
and Transmission Protocols (version 3.0).

Part 2: Data Elements and Commands (version 3.0).

Part 3: Application Selection (version 3.0).

Part 4: Security Aspects (Version 3.0).

SUN The Java Virtual Machine specification v1.0.

SUN Java Card 2.0 - Programming concepts

SUN Java Card 2.0 - Language Subset and Virtual Machine
Specification

SUN Java Card 2.0 - Application Programming Interfaces

VISA (optionally) Visa Open Platform 1.0 (Visa proprietary)

G A L A C T I C U S E R M A N U A L 7

INSTALLATION

Package contents
In this package you will find:

• 1 CD-ROM
• 1 Card Reader with cables
• 3 test cards

Technical requirements

Hardware
Minimal requirements you need to run GalactIC:

• PC Pentium with a screen resolution of 800x600 and 256 colours and 32 Mo of RAM
• Operating System: Windows 95 or Windows NT 4.0

Software
To develop applications, you need a Java development environment such as
SymantecVisual Café for Java, PDE V2.0.

To help debugging applications, you also need the Sun Reference Implementation Code. You
can download it at the following address:

http://java.sun.com/products/javacard/index.html#spec

To facilitate the compilation of applets, a set of empty classes is supplied in the kit. These
classes are contained in the file cardclass.zip. However, they are not needed if the Sun
Reference Implementation Code is used instead.

I n s t a l l a t i o n

D E L A R U E C A R D S Y S T E M S8

Installation procedure
Before installing the CD-ROM, you must first connect the reader to your PC.

Connecting the reader

Serial cable

1

2
3

Power supply cable
5

4

• Turn your PC off.
• Plug the RJ45 connector � into the reader.
• Plug the DB9 part of the connector � into the serial port of the PC, tightening the screws.
• Disconnect either the PC keyboard or mouse. Connect it to part � of the power supply

cable.
• Connect the mini-jack � to the jack socket of the connector �.
• Connect part � of the power supply cable to the PC mouse or keyboard port.

For information on how to configure the reader, see Installing the kit, step 3, on page 9.

I n s t a l l a t i o n p r o c e d u r e

G A L A C T I C U S E R M A N U A L 9

Installing the kit
To install the GalactIC kit, proceed as follows:

Step Action

1. Insert the GalactIC CD-ROM in your drive and run setup.exe.

Result: The installation wizard starts up.

2. Follow the instructions displayed, particularly to indicate the destination directory (by
default C:\De La Rue\GalactIC) and choose the installation type:

1. The "Typical" installation installs all the GalactIC components (Converter, Java
Loader, PCOM 32 Debugging Tool, user documentation, samples).The typical
installation requires 15 M of free memory.

2. The "Compact" installation only installs the software components. It requires
4 M of free memory.

3. The "Custom" installation allows you to choose the components you want to
install.

Result: The GalactIC kit is installed. The Loader and Debugging Tool icons are
created in the task bar. The Smart Card Readers icon is added to the Control
Panel.

3. Open the Control Panel and double-click on the Smart Card Readers icon to configure the
reader.

4. Click on the Add... button to create the new reader.

Result: The Add Logical Connection dialogue box is displayed with three tabs
enabling you to set the various parameters.

5. Set the following parameters on the Reader tab.

Logical connection name Name to be assigned to the reader (see the instructions on
screen)

Reader type Type of the reader connected to the PC (De La Rue reader
name)

6. Set the following parameter on the Protocol tab.

Protocol Protocol to be used when communicating with the reader (in
this case Fastnet).

7. Set the following parameter on the Port tab.

Port Port to which the reader is connected on the PC.

I n s t a l l a t i o n

D E L A R U E C A R D S Y S T E M S10

G A L A C T I C U S E R M A N U A L 11

THE CONVERTER

Product Description
This section describes the De La Rue Java Card (DLRJC) converter.

The De La Rue Java Card converter takes several class files, created by any Java compiler,
and converts them into a single DLRJC install file. The resulting install file is run on a smart
card by the De La Rue implementation of the Java Virtual Machine (32-bit MultiClass
version).

In addition to creating the install file, the DLRJC has two functions:

Verify The DLRJC converter verifies that the class files contain only
bytecodes included in the subset of the Java language defined for
the Javacard.

Optimise In order to comply with smart card technology constraints, the
DLRJC converter must reduce the size of the DLRJC install file.
Using improved class management and new bytecodes, this file is
reduced to between 20% and 30% of its original size.

Environment
The converter is designed to run on any 32-bit version of Windows.

The converter is a console application and must be launched from a Windows command line.

The Java compiler used must conform to the Java Virtual Machine Specification
(Sun Microsystems).

T h e C o n v e r t e r

D E L A R U E C A R D S Y S T E M S12

Functions

MultiClass Applications
The converter integrates several class files into a single .dlrjar file. This allows
applications to create and use objects defined by the user or any objects already defined in the
Java Card API.

If, for example, the class MyApplet explicitly uses the classes Class1, Class2 and OwnerPIN,
passing MyApplet via the command line to the converter results in a .dlrjar file containing
the conversion of the class files MyApplet, Class1 and Class2.

The class OwnerPIN is not included since it belongs to the Java Card API.

Note : The converter looks for the class files in the current directory. If they are not found,
the converter looks in the class files package directory. For example, the converter searches
class myPackage.utils.myClass in the initial directory, then in .\myPackage\utils\.

Package Linking
This is the procedure used to instantiate classes (package2) that have been declared in another
package (package1).

• Package1 must be compiled.
• The converter creates an export file (user .api file).
• Package2 uses the .api file during conversion.

For example, Pack1 declares class1 and class2, its AID is C, it generates C1.API.

Pack2 declares class3 and class4, its AID is C2, it generates C2.API.

Pack3 instantiates class1 and class4. The user does not have the sources of Pack1 or Pack2,
but they have the files C1.API and C2.API. By using the text file javaconv.apis, the user
can link packages.

From the position of Pack3 :

1. Create the text file javaconv.apis, for example [C1.api], [C2.api].

2. Enter the text lines containing the full path of C1.API and C2.API.

3. Convert Pack3.

The converter automatically finds the descriptions of Pack1 and Pack2.

F u n c t i o n s

G A L A C T I C U S E R M A N U A L 13

Variable Types
The converter allows the use of the following variable types:

• byte
• short
• int (optional) – see Command Line on page 14.
• boolean
• strings
• objects from the Java Card 2.0 API, or user-defined
• arrays of the above variable types

The converter refuses other variable types such as:

• float
• long
• double

Multiarrays and arrays of arrays are not allowed.

Bytecode Verifier
The first step performed by the converter is to verify that the bytecode generated for the
virtual machine is valid. The converter checks for:

• potential stack overflow
• type mismatches between actual and formal parameters
• use of unsupported data types
• transfer of control outside the current method

T h e C o n v e r t e r

D E L A R U E C A R D S Y S T E M S14

Launching the Converter

Command Line
The converter can be launched from:

• MS DOS or
• Postbuild for users of Visual j++

Enter the command for the converter as follows:

JavaConv options < file >

<file> is a .class file(s) and the options are:

Option Description

-a<AID> Specifies the application AID

-i Allows use of ‘int’ type

-l Generates associated .api file
(see Package Linking on page 12)

-p Pauses output between each page.

Input files
Below are the files necessary to launch the converter:

• The .class files of the application. Any further .class files used by the application are
automatically converted.

• The file javaconv.apis and files declared within it. These files are optional (see Package
Linking on page 12).

Output files
Conversion results in:

• a .dlrjar file, which is the package file.

and some or all of the following:

• a .cmd file
• a .api file

Note: If an error occurs no output files are created.

L a u n c h i n g t h e C o n v e r t e r

G A L A C T I C U S E R M A N U A L 15

Conversion Errors
When an error is encountered the converter does not generate an output file.

The converter may stop execution after several errors, when an error introduces exceptions.

Error Description

Too many methods in class. A class cannot have more than 256 methods.

Not compiled in debug mode : ‘class’. The class file has not been compiled in debug
mode.

Type ‘type’ not supported. The data type is not supported, see command line
reference to ‘int’ data types.

Unsupported bytecode ‘bytecode’. The converter encountered a bytecode not
supported by Java Card 2.0.

Can’t find enough space for interface methods! Too many methods have been defined. The limit
is 256.

Native methods not supported! Native methods cannot be used in Java Card
applications.

API entry not found. A method not found in the API entries.

Packages not found. The accessed package is not in the API or is not a
user-defined package.

The <bytecode/macro> verifier crashed! Internal error.

Different stack on the same location. Bytecode verification detects stack error.

Conversion Warnings
This section gives a list of warnings given by the converter.

Warning Description

Stack is not empty before return. Bytecode verification found that there is no empty
stack at the end of the function.

Pop no value from the stack. Stack underflow in verifier operation.

Pop value type different from bytecode type! Stack data type control error.

T h e C o n v e r t e r

D E L A R U E C A R D S Y S T E M S16

G A L A C T I C U S E R M A N U A L 17

THE LOADER

Product Description
By default the GalactIC card supports a subset of the Visa Open Platform specification. This
subset does not support security domains and hence encryption and signature of a file is not
supported. This loading mechanism is present in all the test cards supplied with the kit, and
can be extended with the Visa mechanism on initialisation, when the card is manufactured by
De La Rue Card Systems.

This extension is a configurable option, which supports the mechanisms as defined by Visa
International, through the Visa Open Platform specification. This specification is the property
of Visa International.

The Loader consists of two parts:

JAVALOAD.EXE This is an executable file representing the user interface to send
commands to the card.

PCOMOP.DLL This is the dynamic link library which includes the functions and
the interface between the reader and the smart card.

Environment
The De La Rue Loader runs under MS – Windows NT. It is designed as a menu–mouse
application.

It uses De La Rue Smart Cards drivers and libraries.

To use the Loader you need:

• a physical and logical smart card reader.
• all configuration files installed.

Note: The CD-ROM automatically runs the file Setup.exe (the configuration file). If it does
not then you must run Setup.exe manually before using the Loader.

Product Functions
The file to be written to the smart card can be loaded using different functions. These
functions conform to the Visa Open Platform specification and are available as configurable
options during card initialisation.

These functions are designed to increase the level of security and management of the target
file.

T h e L o a d e r

D E L A R U E C A R D S Y S T E M S18

Loading

Sending a file to the smart card
The Loader cuts the file into several blocks APDU (Application Protocol Data Unit) and then
sends it to the smart card. These blocks can be sent directly or secured.

The following table shows the options available and the domain keys to use.

File Keys

Sent directly None

Ciphered and signed ENC card domain

MAC card domain

Loader*.ini
This file contains information used by the Loader to load code onto the smart card. The
GalactIC card supports, as a configurable option during initialisation, the Visa Open Platform
specification.

Loader*.ini must be created and/or edited using an external editor such as Windows
Notepad. Two of the parameters, AID and SID, are automatically updated by the Loader.

There are four fields in Loader*.ini.

1. [Common]

AIDCardDomain=47 61 6C 61 63 74 49 43

This is the AID of the Card Domain and the value is defined before the loading. The user
cannot modify it.

2. [KeySet1]

Name=”GalactIC demo keys”

KeyIndex=0

KeySetIdentifier=0

KeyMACCardDomain=22334455667788113344556677881122

KeyENCCardDomain=11223344556677882233445566778811

KeyMACSecurityDomain=22334455667788113344556677881122

KeyENCSecurityDomain=11223344556677882233445566778811

This field contains the set of keys defined in the Card Domain and Security Domain. The
keys are hexadecimal triple DES keys of 16 bytes. The values are fixed during the Card
Domain loading and cannot be modified. The keys are used for authentication and the
functions are defined by the Visa Open Platform specification.

3. [AID]

AID1=A0 00 00 00 03 10 10

AID2=A0 00 00 00 03 90 10

AID3=A0 00 00 00 03 60 10

AID4=A0 00 00 00 03 60 20

AID5=A0 00 00 00 03 60 30

I n i t i a l i s a t i o n

G A L A C T I C U S E R M A N U A L 19

4. [SID]

SID1=00 00 00 00

This field contains the Security Domain AID. It is defined by the Visa Open Platform
specification.

Initialisation

De La Rue Java Loader

Launching
Two files are necessary:

• the initialisation file (Loader*.ini).
• the file to install (*.dlrjar).

Run Javaload.exe.

The following window opens.

Example – Filling in text fields
The following procedure is an example of filling in the text fields.

1. Use Browse to enter Card reader name.

By default this is LC0, which is created during the Setup.exe.

2. Use Browse to enter path and name of the initialisation file.

This file is Loader*.ini. The maximum number of characters is 256.

3. Use Browse to enter path and name of the file to install onto card.

This is the *.dlrjar file. The maximum number of characters is 256.

T h e L o a d e r

D E L A R U E C A R D S Y S T E M S20

4. Use the scroll bar to select KeySet section of the initialisation file.

5. Use scroll bar to select Application identifier from the list.

This can be from 2 to 32 hexadecimal, even length characters.

A new value can be added to the list by using Add to list.

6. Select the flag External authentication.

Now you can install the file onto the smart card (see Loading on page 21).

Other Fields
The following fields are NOT used by the GalactIC loader when using the cards from the kit.
They are used only if cards support Visa Open Platform specifications (offered as an option).

For a complete description of the fields and flags, see Reference on page 22.

L o a d i n g

G A L A C T I C U S E R M A N U A L 21

Loading
When all mandatory fields have been filled you can load the smart card.

1. Click Load.

If the smart card is already in the reader the Applet loading window appears and the file
loads automatically. Go to step 3.

If the smart card is not already in the reader the following windows appears:

2. Insert the smart card.

The file loads automatically.

3. When the file finishes loading, click OK.

4. Remove card.

The loading is complete.

Now you can load another file or exit the application.

T h e L o a d e r

D E L A R U E C A R D S Y S T E M S22

Reference

Fields
Field Name Mandatory Min. char.

Length
Max. char.
Length

Character type

Card reader name Yes 3 3 2 letters, 1 number

Initialisation file Yes N/A 64 N/A

File to install Yes N/A 64 N/A

Key Set name Yes 1 32 N/A

Application Identifier Yes 2 32 Hexadecimal, even length

Security domain
identifier

No 2 32 Hexadecimal, even length

Installation
parameters

No 2 64 Hexadecimal, even length

Flags

Allows authentication of the Security Domain with the key
KeyMACSecurityDomain before applet loading. Defined by the Visa Open
Platform specification and available as an option for GalactIC.

Mandatory for GalactIC. Protects the card during loading.

Allows the loader to decipher the applet before loading. Defined by the
Visa Open Platform and available as an option for GalactIC.

Allows verification of the MAC (Message Authentication Code) before
applet loading. Defined by the Visa Open Platform and available as an
option for GalactIC.

Allows loading of applet with ciphering and signature.

G A L A C T I C U S E R M A N U A L 23

DEBUGGING ENVIRONMENT (PCOM32)

Product Description
The debugging environment consists of :

• the standard Java Development Kit (Symantec Café)
• De La Rue PCOM32 Card Command Processor

PCOM32 sends commands to a smart card via a card-reader interface, and logs the responses
to these commands in a text file. The tool allows commands to be sent one at a time under
manual control. Alternatively, an entire sequence of commands can be sent as a single
operation. In addition there are control constructs that allow the user to loop through
command sequences, and to insert break points. Responses to commands are logged in a text
file, which is directly accessible from the PCOM32 window.

Technical Requirements

Hardware
You need:

• an IBM-compatible PC connected to at least one De La Rue smart card reader.

Software
You need:

• Windows 95 or NT operating systems.
• a smart card reader library.

Launching PCOM32
PCOM32 can be launched from a command line or Explorer.

1. From a command line, the syntax is:

• PCOM32 or
• PCOM32 <commandfile_name>

commandfile_name is the full name of the command file with extension. This parameter is
optional.

2. From Explorer:

• Click on PCOM32.

D e b u g g i n g e n v i r o n m e n t (P C O M 3 2)

D E L A R U E C A R D S Y S T E M S24

User Interface

Main Window
Launch the Debug Tool in the Tools folder.

The following window appears.

The following menus are available:

• File
• Edit
• View
• Process
• Options
• Window
• About

File

Icon Menu Item Control Key Description

New Ctrl+N Creates a new command file.

Open Ctrl+O Opens an existing command file.

- Close Closes the active command file.

Save Ctrl+S Saves the active command file.

- Save As Saves the active command file with selected name.

- Recent File Opens one of the four last opened command files.

- Exit . Exits the application.

U s e r I n t e r f a c e

G A L A C T I C U S E R M A N U A L 25

Edit

Icon Menu Item Control Key Description

- Undo Ctrl+Z Undoes the last edit action.

Cut Ctrl+X Cuts the selection and moves it to the clipboard.

Copy Ctrl+C Copies the selection to the clipboard.

Paste Ctrl+V Inserts the clipboard contents at the insertion point.

- Find Ctrl+F Finds the specified text.

- Replace Replaces the specified text.

- Go To Ctrl+G Moves to a specified line.

View

Menu Item Description

Toolbar Toggles toolbar view.

Status Bar Toggles status bar view.

Process

Icon Menu Item Control
Key

Description

Go F5 Starts or continues the processing of the command file.

Restart Alt+F5 Stops and restarts processing from the beginning of the
file.

End Escape Aborts processing of the command file.

Stop Space Stops processing of the command file.

Next Step Enter Processes the next directive or command of the
command file.

Options

Menu Item Description

Settings Allows the configuration of the execution mode, command file logging and error or end
of file beeps.

Readers Allows logical reader configuration.

D e b u g g i n g e n v i r o n m e n t (P C O M 3 2)

D E L A R U E C A R D S Y S T E M S26

Window

Menu Item Description

Cascade Arranges windows so they overlap.

Tile Arranges windows as non – overlapping tiles.

Arrange Icons Arranges icons at the bottom of the window.

Opened File Activates the opened file.

About

Menu Item Description

About PCOM32 Displays PCOM32 information, version number and copyright.

Example - Command File
The following command file chkloy.cmd, which contains a list of arbitrary commands,
shows how commands can be sent one at a time under manual control. The toolbar and
control keys allow different options when processing the command file, such as stop, end or
restart. Use the Window menu to switch between the log file and command file windows.

When opened in the command file window the following code appears.

.INSERT

.POWER_ON

00 A4 04 00 07 A0000000039010 (9000)

1. Press F5 to process command file.
The log file display window opens showing the following code.

Command File : C:\javacard\Course\GalactIC\PCOM32-
RI\chkloy.cmd
Logging File : C:\javacard\Course\GalactIC\PCOM32-
RI\chkloy.L97
Date : 25 August 1998 at 11h28 18s
Version : PCOM32 Version 3.24

0001 :
0002 : .INSERT

2. Press Enter.
Window asks you to insert card in reader.

3. Insert card.
PCOM32 continues processing.

0001 :
0002 : .INSERT
0003 : .POWER_ON

E r a s i n g c a r d d a t a

G A L A C T I C U S E R M A N U A L 27

4. Press Enter to step through commands.

0003 : .POWER_ON

 Command : POWER_ON
 Output Data : 00 31 80 71 96 64 32 CE 01 00 82
 Status : 90 00

0004 :
0005 : 00 A4 04 00 07 A0000000039010 (9000)

 Command : 00 A4 04 00 07
 Input Data : A0 00 00 00 03 90 10
 Status : 90 00
0006 :
0007 :
0008 :

 * FILE PROCESSING RESULT : *
 * *
 * NORMAL EXECUTION *
 * *

PCOM32 processes the command file and gives the processing result.

Erasing card data

Reuse.cmd
To add a new set of applications onto the card and discard all the currently loaded
applications, you must erase the applications on the card. To do so, launch the Debug Tool in
the Tools folder.

1. Select Open under the File menu. The browser appears. The Reuse.cmd file is in the
same directory as Debug Tool. The Reuse commands lets you erase data from the card.

2. Open the Reuse.cmd file. The following screen appears:

D e b u g g i n g e n v i r o n m e n t (P C O M 3 2)

D E L A R U E C A R D S Y S T E M S28

3. To launch the Reuse command, click on the Go icon twice.

Go

Clicking on this icon runs the program and brings up this screen:

The card is now ready to accept new applications.

Command Files

Introduction
A command file is made up from following elements:

• Card commands
• Card reader directives
• PCOM32 directives
• PCOM32 external directives
• Comments

The format of the card commands is standard, as defined by ISO 7816-4. The card reader
directives control the reader: turning it on or off, or prompting the user to insert or remove the
card. The PCOM32 directives include:

• flow control constructs for looping and stepping through command sequences and
• directives to assign and access variables and constants.

The external directives provide a mechanism for passing data to external functions (.DLLs).

C o m m a n d F i l e s

G A L A C T I C U S E R M A N U A L 29

Typographic conventions
The following conventions are used in the command syntax descriptions. Reserved words and
symbols are marked in bold. Parameter names, which stand for values that the user has to
supply, are marked in italic. Optional input is delimited with square brackets. Note that square
brackets are also used to delimit expected return values, in this context the square brackets are
part of the command syntax and are marked accordingly in bold.

Card commands
ISO 7816-4 specifies four command formats:

CLA INS P1 P2

CLA INS P1 P2 Le

CLA INS P1 P2 Lc Input Data

CLA INS P1 P2 Lc Input Data Le

CLA Command class (1 byte)

INS Command instruction code (1 byte)

P1 First parameter of the command (1 byte)

P2 Second parameter of the command (1 byte)

Lc Length of the input data (1byte)

Le Length expected, of data returned by the card (1 byte)

Input Data Data sent to the smart card (Lc bytes)

The ISO commands appear in the command file unmodified, as strings of hexademical digits.

Example
A0 A4 00 00 02 3F 00

D e b u g g i n g e n v i r o n m e n t (P C O M 3 2)

D E L A R U E C A R D S Y S T E M S30

Expected return status
The expected return status for any command, or for the .POWER_ON directive, can be
appended to the command. If the status returned by the card does not match the expected
return status, a STATUS ERROR message is displayed in the logging file. An X anywhere in
the expected return status matches any hexadecimal digit in the corresponding position in the
actual return status. The expected return status must be on the same line as the command to
which it applies.

Syntax
Command (ExpectedReturnedStatus)
or
.POWER_ON (ExpectedReturnedStatus)

Example

A0 A4 00 00 02 3F 00 (XF XX)

; expected return status:
; StatusWord1: any hex digit followed by F
; StatusWord2: any two hex digits

Expected return data
The expected return data for any command, or for the .POWER_ON directive, can be
appended to the command. If the data returned by the card does not match the expected return
data, a DATA ERROR message is displayed in the logging file, and the offending bytes are
flagged with a “<” character. An X anywhere in the expected return data matches any
hexadecimal digit in the corresponding position in the actual return data. The expected return
data must be on the same line as the command to which it applies.

Syntax
Command [ExpectedReturnData]

or

.POWER_ON [ExpectedReturnData]

Example

A0 C0 00 00 08 [XX XX XX XX 3F 00 XX XX]
A0 C0 00 00 08 [XX XX XX XX 3X X0 XX XX]

S p e c i a l c h a r a c t e r s

G A L A C T I C U S E R M A N U A L 31

Special characters

Comment character
The ";" and "*" characters are defined to start a comment in a line of the command file. A
comment may be placed anywhere in a command file, all the characters following the ";" or
the "*" up to the end of the line are then considered to be part of the comment.

Example
; this is a comment
* this is a comment
this is not a comment
A0 A4 00 00 02 3F 00 ; this is a comment

Line continuation character
A line continuation character "\" can be added after the last significant character of a line to
indicate that the card command continues on the next line. Any character on the same line as
the line continuation character and following it is ignored.

Example

A0 DC 01 04 10 FF FF FF FF FF FF FF FF \
 FF FF FF FF FF FF FF FF

Indentation
The space and tabulation characters can be used for indentation.

D e b u g g i n g e n v i r o n m e n t (P C O M 3 2)

D E L A R U E C A R D S Y S T E M S32

Card reader directives
There are four card reader directives:

• .INSERT
• .EJECT
• .POWER_ON
• .POWER_OFF

.INSERT
If there is no card present in the reader, PCOM32 prompts the reader to insert one.

Syntax
.INSERT

.EJECT
Prompts the user to remove the card from the reader.

Syntax
.EJECT

.POWER_ON
Switches on the card reader.

Syntax
.POWER_ON [/PROTOCOL_ON] [/FClockFrequency]

Parameters and switches
• ClockFrequency

Frequency (in MHz) of the card reader clock. The value must be between 4 and 8, the
default value is 4.

• PROTOCOL_ON
Enables the return of the protocol bytes by the card at power on.

Example
.POWER_ON /PROTOCOL_ON /F8

.POWER_ON /F4

.POWER_OFF
Switches off the card reader.

Syntax
.POWER_OFF

S e t u p d i r e c t i v e s

G A L A C T I C U S E R M A N U A L 33

Setup directives
The following directives are used to initialise PCOM32:

• .LIST_ON
• .LIST_OFF
• .STEP_ON
• .STEP_OFF
• .ERROR_BEEP_ON
• .ERROR_BEEP_OFF
• .SET_TIME_OUT
• .READER

.LIST_ON
Enables logging. The output from the logging process appears in a separate file.

.LIST_OFF
Disables logging. However, logging is automatically re-enabled when an error is detected.

.STEP_ON
Enables step by step execution. This is the default setting.

.STEP_OFF
Disables step by step execution.

.ERROR_BEEP_ON
Enables beep on error.

.ERROR_BEEP_OFF
Disables beep on error.

.END_BEEP_ON
Enables beep on end of file.

.END_BEEP_OFF
Disables beep on end of file.

D e b u g g i n g e n v i r o n m e n t (P C O M 3 2)

D E L A R U E C A R D S Y S T E M S34

.SET_TIME_OUT
Sets the time-out for the transmit command. The directive can be used to prevent premature
time-outs.

Syntax
.SET_TIME_OUT TimeOut

Parameters
• TimeOut

Value (in seconds) of the time-out delay. The default value is 1 second, the maximum
value is 250 seconds.

Example
.SET_TIME_OUT 10

.READER
Changes the default reader assignment. The name and characteristics of the card reader can be
configured with the windows Control Panel.

Syntax
.READER Name

Parameters
• Name

Name of the selected reader. The length of the name is limited to 3 characters.

Example
.READER TE1

F i l e m a n a g e m e n t d i r e c t i v e s

G A L A C T I C U S E R M A N U A L 35

File management directives
Two directives are used to manage the command files:

• .CALL
• .EXECUTE

.CALL
Calls and executes a secondary command file.

Syntax
.CALL FileName [/LIST_ON] [/LIST_OFF] [/STEP_ON] [/STEP_OFF]

Parameters and switches
• FileName

Name of the called command file, the name may include the full path to reach the file.
• LIST_ON

Enables logging for the called command file.
• LIST_OFF

Disables logging for the called command file.
• STEP_ON

Enables the step by step execution of the called command file.
• STEP_OFF

Disables the step by step execution of the called command file.
The default execution mode is the execution mode of the calling command file. When the last
instruction of the called file has been executed, control returns to the command immediately
following the CALL directive. CALL directives can be nested.

Example
; Responses to commands in INI_LOCK.CMD not logged

.CALL C:\A_TEST\C\COMMUNS\INI_LOCK.CMD /LIST_OFF

D e b u g g i n g e n v i r o n m e n t (P C O M 3 2)

D E L A R U E C A R D S Y S T E M S36

.EXECUTE
Calls and executes a secondary command file and logs the responses in a text file.

Syntax
.EXECUTE FileName

Parameters
FileName
Name of command file to execute, the name may include the full path to reach the file. The
responses to the called file are always logged separately: in the first instance, in
FileName.L00, and if the same command file is executed a second time, in FileName.L01.

Note: all the buffers are reinitialised by the .EXECUTE directive. The DLLs loaded before
the .EXECUTE directive are not considered loaded by the executed command file, and the
DLLs loaded by the executed command file are unloaded after the executed command file
processing.

Example
; Execute scenario.cmd and generate SCENARIO.L00
.EXECUTE SCENARIO.CMD

L o o p m a n a g e m e n t d i r e c t i v e s

G A L A C T I C U S E R M A N U A L 37

Loop management directives

.BEGIN_LOOP and .LOOP
A basic loop instruction is available in PCOM32 through the .BEGIN_LOOP and .LOOP
directives. A legal loop instruction must begin with a .BEGIN_LOOP and end with a .LOOP.
It is possible to nest up to 16 loops.

Syntax
.LOOP LoopCount [/HEX]

Parameters and switches
• LoopCount

Total number of iterations: must be greater than 1 and less than 232.
• /HEX

Interpret the LoopCount parameter as a hexadecimal number.

Example

.BEGIN_LOOP
 .BEGIN_LOOP
 A0 A4 00 00 02 3F 00
 .LOOP 10 /HEX
.LOOP 2

; the inner loop is executed 32 times

D e b u g g i n g e n v i r o n m e n t (P C O M 3 2)

D E L A R U E C A R D S Y S T E M S38

Buffer management directives

The PCOM32 buffers
PCOM32 provides five general purpose buffers and two buffers for storing card responses.
The general purpose buffers are accessible to directives for both reading and writing. The two
buffers that store card responses are read only. The table below summarises the buffer
properties.

PCOM32 buffers

Name Function Size
(bytes)

Accessibility

G general purpose 256 read/write

I general purpose 256 read/write

J general purpose 256 read/write

K general purpose 256 read/write

M general purpose 256 read/write

R stores data returned by the card 256 read only

W stores the status returned by the card 2 read only

Accessing data from buffers
Data from any of the buffers can be inserted after either a command or a directive. If the
buffer name is used without a range specification, the entire contents of the buffer are
inserted. Using range specifications, it is possible to insert substrings from a buffer.

Syntax
Command BufferName[(begin:end)]

or

Command BufferName[(begin;length)]

or

Directive BufferName[(begin:end)]

or

Directive BufferName[(begin;length)]

Parameters
• BufferName

One of the buffers: G, I, J, K, L, M, R or W. If the BufferId is not followed by a range, the
entire content of the buffer is inserted. If the BufferId is followed by a range, then the
specified range is inserted.

• begin:end
The range to be inserted: 2:6 means bytes 2 to 6 inclusive, and 6:6 means just the sixth
byte. Note that the first element in the buffer is element 1.

• begin;end
The range to be inserted: 2;6 means insert 6 bytes starting at byte 2, and 6;2 means insert
2 bytes starting at byte 6. Note that the first element in the buffer is element 1.

Example
A0 A4 00 00 02 R(2:2) R(1:1)

A0 A4 00 00 02 R(2;1) R(1;1)

B u f f e r m a n a g e m e n t d i r e c t i v e s

G A L A C T I C U S E R M A N U A L 39

The directives
The following directives are used to initialise or modify the buffers:

• .SET_BUFFER
• .INCREASE_BUFFER
• .DECREASE_BUFFER
• .APPEND_BUFFER

.SET_BUFFER
• Sets or modifies the contents of any of the read/write buffers.

Syntax
.SET_BUFFER BufferName[(begin:end)] HexData

.SET_BUFFER BufferName[(begin;end)] HexData

Parameters

• BufferName
If no range is specified, the first data byte is assigned to the first element of the buffer, and
subsequent bytes to subsequent elements, in left to right order. This is the only way to
initialise a buffer.

• begin:end
The range of buffer elements to be assigned. G(3:7), for example, means elements: 3 to 7
inclusive. The range specified must already contain data.

• begin;end
The range of buffer elements to be assigned. G(3;7), for example, means 7 elements:
starting at element 3 and ending at element 9. The range specified must already contain
data.

• HexData
If you are assigning to a range of elements, the number of elements must be the same on
both sides of the assignment.

Example
.SET_BUFFER I 11 22 33 44 55 66 77 88
; I = 11 22 33 44 55 66 77 88

.SET_BUFFER I(5;4) I(1:4)
; I = 11 22 33 44 11 22 33 44

.SET_BUFFER I(1:4) I(8;1) I(7;1) I(6;1) I(5;1)
; I = 44 33 22 11 11 22 33 44

D e b u g g i n g e n v i r o n m e n t (P C O M 3 2)

D E L A R U E C A R D S Y S T E M S40

.INCREASE_BUFFER
Increments one or more buffer elements. If a range is not specified the increment is added to
the last element of the buffer, and any overflow is carried over to the left. So a 256-byte
buffer used in this way provides a counter with a maximum value of 22048-1, which should be
enough for most purposes! Of more practical value, is the possibility of specifying a number
of bytes for a counter somewhere within the buffer. For example:

.INCREASE_BUFFER G(10:11) 01

could be used to provide a modulo 216 counter, using bytes 10 and 11.

 Syntax
.INCREASE_BUFFER BufferName[(begin:end)] Increment

.INCREASE_BUFFER BufferName[(begin;end)] Increment

Parameters

• BufferName
Name of buffer to which the increment is to be applied.

• begin:end begin;end
The range of the buffer to which the increment is to be applied.

• Increment
The value of the increment. The value can be provided from the same or another buffer.
The number of bytes in the value must be less than or equal to the number of bytes
specified in BufferName[(begin:end)]. Note that two characters are required to express the
value of a byte, so an increment of one is written 01 not 1.

Examples
; I = 00 00 00

.INCREASE_BUFFER I 01
; I = 00 00 01

.INCREASE_BUFFER I FF
; I = 00 01 00

.INCREASE_BUFFER I(2:2) FF
; I = 00 00 00
; note, that the overflow is not carried to the left

B u f f e r m a n a g e m e n t d i r e c t i v e s

G A L A C T I C U S E R M A N U A L 41

.DECREASE_BUFFER
Decrements one or more buffer elements. If a range is not specified the decrement is
subtracted from the last element of the buffer, and any borrow that may be required is taken
from the left.

 Syntax
.DECREASE_BUFFER BufferName[(begin:end)] Increment

.DECREASE_BUFFER BufferName[(begin;end)] Increment

Parameters

• BufferName
Name of buffer to which the decrement is to be applied.

• begin:end begin;end
The range of the buffer to which the decrement is to be applied.

• Increment
The value of the decrement. The value can be provided from the same or another buffer.
The number of bytes in the decrement must be less than or equal to the number specified
in BufferName[(begin:end)]. Note that two characters are required to express the value of
a byte, so a decrement of one is written 01 not 1.

Example
; I = FF FF FF

.DECREASE_BUFFER I 01
; I = FF FF FE

.DECREASE_BUFFER I FF
; I = FF FE FF

.DECREASE_BUFFER I(2;1) FF
; I = FF FF FF

.SET_BUFFER I = 00 00 00

.DECREASE_BUFFER I 01

; I = FF FF FF

D e b u g g i n g e n v i r o n m e n t (P C O M 3 2)

D E L A R U E C A R D S Y S T E M S42

.APPEND_BUFFER
Concatenates two or more byte sequences and assigns the result to the first named buffer. The
byte sequences can be provided directly as data, or from one or more buffers. Note that the
total length of the string assigned is the total length of the strings specified, so that a buffer
can be truncated by an .APPEND_BUFFER directive. For example:

.SET_BUFFER G 00 00 00 00 00 00 00 00

.APPEND_BUFFER G(3:3) 11

G(3:3) is one byte: 00, it is concatenated with the 11, and the result is assigned to the buffer
G, so the buffer now contains just two bytes: 00 11.

Syntax
.APPEND_BUFFER BufferName[(begin:end)] HexData

.APPEND_BUFFER BufferName[(begin;end)] HexData

Parameters

• BufferName
The name of the buffer to which the concatenated string is assigned. If the name is not
qualified with a range, the whole buffer is used as the first part of the string to be
concatenated. Otherwise just the characters specified are used.

• begin:end or begin;length
The range from the named buffer.

• HexData
Any sequence of hexadecimal data. The data may derive from one or more buffers,
including the buffer being assigned to, or it may be supplied directly.

Example
; I = FF FF FF
; J = 22 33

.APPEND_BUFFER I 01
; I = FF FF FF 01

.APPEND_BUFFER I 00 J
; I = FF FF FF 01 00 22 33

.APPEND_BUFFER I(4;1) 44
; I = 01 44

C o n s t a n t m a n a g e m e n t d i r e c t i v e s

G A L A C T I C U S E R M A N U A L 43

Constant management directives
PCOM32 provides a constant definition mechanism which works along the same lines as the
#define in C.

.DEFINE
Defines a constant value.

Syntax
.DEFINE %ConstantName ConstantValue

Parameters
• ConstantName

The constant name. It must be preceded by a % character, and must be less than 32
characters.

• ConstantValue
The replacement string. Everything following the ConstantName up to the end of the line
is part of the replacement string.

Example
.DEFINE %SELECT A0 A4 00 00 02

.UNDEFINE
Undefines a constant name. The name can then be reused in a further .DEFINE directive.

Syntax
.UNDEFINE %ConstantName

Parameters
• ConstantName

Name of the constant to be undefined.

Examples

.DEFINE %SELECT A0 A4 00 00 02

.DEFINE %MF 3F 00

%SELECT %MF

.DEFINE %BUFFER_INIT 00 00 00 00

.SET_BUFFER I %BUFFER_INIT

D e b u g g i n g e n v i r o n m e n t (P C O M 3 2)

D E L A R U E C A R D S Y S T E M S44

G A L A C T I C U S E R M A N U A L 45

APPENDIX A – ERROR STATUS

Reader error status

value
(hex)

meaning

60 C0 Function unknown

60 C1 Illegal function parameters

60 C2 Illegal format of the function (bytes)

60 C3 The length byte and the number of data bytes following do not match, or a read function
consists of more than five bytes

60 FE Data I/O line held at 0 volt or POWER_CARD not executed

60 80 Operation correctly terminated

60 81 No card

60 82 Card in slot

60 83 Card in position, but too short

60 84 Card in position

60 85 Card pulled out and then replaced in correct position

60 86 Motor failure in CAD

60 87 Card still in correct position

60 F0 Card answer error (INS not correct) or erroneous TS byte during POWER_CARD

60 F1 3 parity errors in TS byte reception

60 F2 Card cannot be processed

60 F3 Card protocol not supported (T0 <> 0 in TD1 byte during POWER_CARD)

60 F4 Framing error in reception mode

60 F8 3 parity errors in reception mode

60 FC 3 parity errors in transmission mode

60 FD Failure in programming voltage generator or possible short circuit (Vpp <4 volts)

90 FF Card not in place, or does not respond (mute)

A p p e n d i x A – E r r o r s t a t u s

D E L A R U E C A R D S Y S T E M S46

Card error status

Value
(Hex)

Meaning

61LL Correct execution, response is LL bytes

6300 EXTERNAL AUTHENTICATE failed

6490 Data not found. AID not written during personalisation

6491 EEPROM integrity error
Incorrect optional code checksum
BAD DES key
Data checksum error

6581 EEPROM write error

6600 Java unhandled Exception

6601 Java unhandled Throwable

6602 Java unhandled ArithmeticException

6603 Java unhandled ArrayIndexOutOfBoundsException

6604 Java unhandled ArrayStoreException

6605 Java unhandled ClassCastException

6606 Java unhandled IndexOutOfBoundsException

6607 Java unhandled NegativeArraySizeException

6608 Java unhandled NullPointerException

6609 Java unhandled RunTimeException

660A Java unhandled SecurityException

660B Java unhandled UserException

660C Java unhandled APDU Exception

660D Java unhandled PINException

660E Java unhandled SystemException

660F Java unhandled TransactionException

6610 Java unhandled CryptoException

6640 JavaStackOverflowError

6641 JavaOutOfMemoryError

6680 DLRJC VM wrong package file version

6681 DLRJC VM unsupported bytecode

6682 DLRJC VM feature not supported yet

6683 DLRJC VM wrong number of parameters

6684 DLRJC VM wrong data type

6685 DLRJC VM class definition not found

6686 DLRJC VM method not found

6687 DLRJC VM native API entry not found

6688 DLRJC VM field not found

6689 DLRJC VM no access to field

668A DLRJC VM no access to method

6690 DLRJC VM stack underflow

6691 DLRJC VM stack not empty on method return

6692 DLRJC VM invalid local variable access

C a r d e r r o r s t a t u s

G A L A C T I C U S E R M A N U A L 47

Value
(Hex)

Meaning

6700 Length error

6982 ACs not satisfied

6985 Sequence error

6990 Command forbidden in current life phase

6991 No random generated before

6A80 Incorrect parameter in data field

6A81 Command not supported

6A84 Not enough space

6A85 Lc inconsistent with length recorded in TLV object

6A86 Incorrect P1, P2

6A87 P1, P2 inconsistent with Lc

