Project FET Profundis

Minimization Module: User Manual
Version 0.1 — DRAFT

Gialuigi Ferrari Ugo Montanari Marco Pistore Roberto Raggi
Emilio Tuosto

Dipartimento di Informatica
Universita di Pisa

June 9, 2002

Abstract

This document describes the application program interface relative to an implementation
of a partition refinement algorithm. We show how the API is used in the implementation
of the minimization algorithm. As a programming example we detail the realization of the
standard automata case. Data format and a short programming guideline for HD-automata
is detailed. More precisely, we consider HD-automata for the early semantics of w-calculus.

Contents
1 Overview

2 API
21 8tate . . o e e e
typet . . e
td: state:t — string L
compare: sti:t — st2:t — int
print: state:t — unit
2.2 ATTOW . . . o o e
type statetype L L L L L L
type labeltype L
type t . e e e e e e e e e e
source: arw:t — statetype
target: arw:t — statetype
label: arw:t — labeltype e e
compare: arwl:t — arw2:t — int
compose: arwl:t — arw2:t — t
print: arw:t — unit

23Bundle.
type arrowtype e e e e e e e e
type quadtype L. e e e e e
type statetype L L e e
from_arrow_list: arrows:(arrowtype list) — quadtypelist
to_arrow_list: state:statetype — bundle:(quadtype list) — arrowtype list
normalize: red:(quadtype list — quadtype list) — bundle:(quadtype list) — quadtype list
minimize: red:(quadtype list — quadtype list) — bundle:(quadtype list) — quadtype list . .
diff: bl1:(quadtype list) — bl12:(quadtype list) — quadtypelist
compare: bll:(quadtype list) — bl2:(quadtypelist) —int
print: bundle:(quadtype list) — unit
2.4 Automaton oL e
type statetype L e e
type arrowtype e e e e e e
type bundletype e
type t . . e e e e e e
create: start:statetype — states:statetype list — arrows:arrowtype list -t
start: a:t — statetype e
states: a:t — statetype list L
arrows: a:t — arrowtype listo
bundle: a:t — state:statetype — bundletypeo oo
print: a:it = UDIL . . L . L e e e e e e e e e e e e e e e
2.5 Dominationo e e e e
type quadtype e e e
dominated: gd:quadtype — bundle:(quadtype list) — quadtype option
2.6 Bisimulation
type bundletype L.
type resulttype
bisimilar: bll:bundletype — bi2:bundletype — resulttype option
2.7 Block e e e
type statetype L e e
type bundletype
type buckettype e e e e e
type resulttype L
typet . . e e e e
id: block:t — String L e
states: block:t — statetype list
cardinal: block:t — int Lo e e
norm: block:t — bundletype e
mem: state:statetype — block:t = bool L Lo
from_states: states:(statetype list) — t
to_state: id:int — block:t — statetypeo
close_block: env:(statetype — t) — buck:buckettype =t
next: env:(statetype — t) — h_n:(t — statetype) — bundle:bundletype — bundletype
split: bundle:bundletype — pred:(statetype — resulttype option) — block:t — buckettype xt
compare: blkl:t — blk2:t — int L e e

© © 00000 OoOoOMOOooMWOAWAEITIT~IT~TITIT I JITJT T T DI OH OO OO OO O OO O W

Reducer

[y
o

The standard automata case 12
4.1 The implementation 12
4.2 How to use the reducer e 17

5 The HD-automata case 18
5.1 The HD-automata file format . e 18

1 Overview

This document describes the application program interface of an implementation of a partition
refinement algorithm. The implementation is written in OCAML. The main features of OCAML
exploited in our realization are polimorphism and encapsulation. Polimorphism is one of the
intrinsic peculiarity of ML-language family, while encapsulation may be obtained in OCAML in
two different ways; the first way is by using the object oriented features of the language, the
second way is provided by modular programming features. More precisely, the module system
separates the definition of interface specification, called signatures (i.e. definition of abstract data
types) from their realizations, called structures. A structure may be parameterized using OCAML
functors. Where a functor maps structures of a given signature on structures of other signatures.

In our opinion, object oriented programming simply adds to polimorphism and encapsulation
(features already present in functional programming) hierarchical relations among abstract data
types. However, in our case, those relations are meaningless and, therefore, have not been
exploited.

Our tool allows the user to specify the automata type and, after having implemented some
functionalities on such data structures, a general minimization algorithm is applied and the
minimal realization of the automaton is returned.

The algorithm implementation is detailed in Section 3. Module Reducer is the only structure
module. Reducer depends on the other signatures and details the constraints among the types of
these modules. Using a type-theoretic notation, we write such dependencies as follows.

Reducer : H State, Arrow, Bundle, Block, Automaton, Bisimulation, Domination (...),

where the constraints are specified with the following equalities:

Arrow.statetype = Bundle.statetype = Automaton.statetype = Block.statetype = State.t

Bundle.arrowtype = Automaton.arrowtype = Arrow.t

Automaton.bundletype = Bisimultion.bundletype = Block.bundletype =
Bundle.quadtype 1ist

Block.resulttype = Bisimulation.resulttype

Domination.quadtype = Bundle.quadtype
The structure of API permits us two facilities.

1. it is possible to apply the minimization algorithm to different class of automata, e.g. stan-
dard automata or HD-automata. Indeed, the 0CAML module parameterization is exploited:
a module may depend on other defined modules. For instance, the implementation module
Reducer depends on many others and its implementation defines the constraints between
them.

2. if the model (calculus and behavioural equivalence) changes, the programmer must re-
implement only part of the interface. For instance, in the implementation of HD-automata
minimization the behavioural equivalence is the early bisimulation. If we want to apply
the algorithm to another observational equivalence for the same family of calculi, we have
to supply the implementation of Domination and Bisimulation.

In Section 2 the whole interface is described by detailing all the types and functions. All
those interfaces must be implemented in order to apply the algorithm for the minimization.

Section 3 comments on the implementation of the minimization algorithm and the main
function of the tool. Moreover, Section 5.1 describes the syntactic format of the input in the case
of HD-automata.

2 API

This Section describes all the signatures defined for the reducer. For each signature, types and
functions are described.

2.1 State

The module State defines the interface of automata states.

type t
is the type of the states.

id: state:t — string
returns the identifier of the state state.

It is assumed that state identifiers are uniquely defined.

compare: stl:t — st2:t — int
compares the two states st! and st2. The result is

e 0, if the arrows are equal,
e -1, if st1 is less than st2,

e 1, otherwise.
The comparison is meant to be a structural comparison. However, any function
that does not equate two conceptually different states may be adopted.
print: state:t — unit

prints state on the standard output.

2.2 Arrow

The interface for arrow is given below. Only the minimal features of arrows are included. This
module specifies a type t which is a dependent type. Indeed, it depends on the type of the states
and the type of the labels.

type statetype
is the type of states.

See: State

type labeltype
is the type of labels.

In this prototype the type of label is a generic type. Indeed, no interface is
defined for labels. Probably in future it would be refined.
type t

is the type of the arrows. It is not specified and depends on statetype and labeltype.

source: arw:t — statetype

returns the source of the arrow arw.

target: arw:t — statetype

returns the target (destination) of the arrow arw.

label: aru:t — labeltype

returns the label of the arrow arw.

compare: arwl:t = arw2:t — int
compares arrows arwl and arw2. The result is

e (, if the arrows are equal,
e -1 if arwl is less than arw?2,

e 1, otherwise.

The comparison is meant to be a structural comparison. However, any function
that does not equate two conceptually different states may be adopted.
compose: arwl:t - arw2:t — t

returns an arrow from source arwl to target arw?2, arw! and arw2 are arrows.

Up to now compose is not used; it has been included in the interface, because in
future extensions of HD-automata it could be useful, e.g. for specifying weak version
of semantics.

print: arw:t — unit

prints the arrow arw on the standard output.

2.3 Bundle

The module Bundle defines the interface for bundle types. A bundle contains the information
about the observables and future states carried out by the transitions starting from a given state.
The module relies on statetype, arrowtype and quadtype. Usually, a bundle is computed from a
list of arrows.

type arrowtype

is the type of the arrow.

See: from_arrow_list, to_arrow_list and Automaton.bundle.

type quadtype
is the type of the elements in the bundle.

the bundle’s type is a list of quadtype.

type statetype
is the type of the states.

from_arrow_list: arrows:(arrowtype list) — quadtype list

creates a bundle from the list of transitions arrows.

to_arrow_list: state:statetype — bundle:(quadtype list) — arrowtype list

returns a list of arrows with source state from bundle. This functions is used by
Reducer to compute the arrows of the minimal automaton.

See: Reducer, Block.norm.
normalize: red:(quadtype list — quadtype list) — bundle:(quadtype list) — quad-
type list

returns a normalized bundle from bundle and the reduce function red.

See: Bisimultation.bisimilar

minimize: red:(quadtype list —» quadtype list) — bundle:(quadtype list) — quad-
type list

returns a minimized bundle from bundle and the reduce function red. Function red is
supposed to eliminate dominated transitions from a given bundle (see Domination)
We underline that the minimization is parameterized by the compare functions on

states, arrows and quadruples. Reducer uses minimize to compute the representative
bundle of a block.

See: Bisimultation.bisimilar and Block

diff: bl1:(quadtype list) — bl2:(quadtype list) — quadtype list
returns the bundle obtained by bl1 minus all quadruples in bl2.

compare: bl1:(quadtype list) — bl2:(quadtype list) — int
compares the two bundles bl7 and bl2. The result is

e 0, if the bundles are equal,
e -1, if bl1 is less than bi2,

e 1, otherwise.

The comparison is meant to be a structural comparison. However, any function
that does not equate two conceptually different states may be adopted.
print: bundle:(quadtype list) — unit

prints bundle on the standard output.

2.4 Automaton

The following module defines the interface for automata type. An automaton is built out from
states and arrows between states. However, also the type of a bundle should be provided for
specifying automata. The functions of an automaton allows to extract the relevant information.

type statetype

is the type of the states in the automaton.

type arrowtype

is the type of the arrows in the automaton.

type bundletype

is the type of the bundle (all abservable actions).

type t

is the type for automata.

create: start:statetype — states:statetype list — arrows:arrowtype list — t

creates an automaton from start, states and arrows.

start: a:t — statetype

returns the start state of the automaton a.

states: a:t — statetype list

returns the list of states of the automaton a.

arrows: a:t — arrowtype list

returns the list of arrows of the automaton a.

bundle: a:t — state:statetype — bundletype

returns the bundle of the state state in automaton a.

print: a:t — unit

prints the automaton on the standard output.

2.5 Domination

Automata may contain transitions that are "redundant", in the sense that, a transition ¢ represent
a state change (with a given observation) that is semantically covered by another transition ¢’
We say that ¢’ dominates ¢. The module Domination defines the interface for such dominance
relation.

type quadtype
is the type of quadruples.

dominated: gd:quadtype — bundle:(quadtype list) — quadtype option

returns Some(qd’) if qd’ is in bundle and dominates gd, otherwise, None is returned.

2.6 Bisimulation

The Bisimulation module specifies the interface for expressing the behavioural equivalence the
user is interested in. Note that this module depends on the type adopted for bundles and is
also parameterized with respect to the type of the result. The idea is that, in some cases it
is not enough to know that the relation holds for two bundle but also auxiliary informations
may be useful. For instance, in the case of standard automata, resulttype could be simply
bool, but automata for name passing calculi also has names appearing on bundles and name
correspondences could be used for computing the minimal automaton.

type bundletype
is the type of bundles.

type resulttype

is the type of the result of bisimilar.

bisimilar: bli:bundletype — bl2:bundletype — resulttype option

returns an optional type; if the relation holds between blf and bl2, then res should be
Some(r) (for some r of type resultype) otherwise None is returned.

2.7 Block

The module Block is the signature for blocks. A block is the data structure which contains the
states that are considered equivalent at a given iteration. The main operation on a block is the
split operation that divide a block into buckets, i.e. quasi-blocks that have some components that
should be uniformely computed at the end of the splitting phase. Reducer will return a list of
blocks as result of each iteration. Such block represents the states of the current approximation
of the minimal automaton.

type statetype
is the type of states.

type bundletype
is the type of bundles.

type buckettype
is the type of buckets.

type resulttype
is the type used by the splitting operation to separate the states of a block into
different equivalence classes.

type t
is the type of a block.

td: block:t — string

returns the name of block.

It is assumed that blocks have unique identifiers.

states: block:t — statetype list

returns the list of states in block.

cardinal: block:t — int

returns the cardinality of the set of states in block.

norm: block:t — bundletype

returns the normalized bundle of block.

mem: state:statetype — block:t — bool

returns true if, and only if, state is member of the set of states in block.

from_states: states:(statetype list) — t

builds a block out of a list of states.
rename from_states to init/initialize

to_state: id:int — block:t — statetype

converts a block into a state. Integer id is used to uniquely generate the name of block.

close_block: env:(statetype — t) — buck:buckettype — t

converts buck into a block. The conversion requires an environment env that associates
to a state its containing block.

next: env:(statetype — t) — h_n:(t — statetype) — bundle:bundletype — bundle-
type

returns the application of h_n, the n-th approximation of the functor (see FMP02)
to bundle. As for to_state and environment enwv is required in order to substitute the
destination states on bundle with the block that contains them.

split: bundle:bundletype — pred:(statetype — resulttype option) — block:t — buck-
ettype xt

separates the states of block whose normalized bundle is to bundle equivalent, accord-
ing to pred. Indeed, predicate pred returns Nomne if such equivalence does not hold,
otherwise it returns Some(r), where r establishes the correspondence between the two
bundles. The result is a pair bucket-block, where the first component is the bucket
made of the equivalent states and the second component is the block where such states
are removed.

compare: blkl:t — blk2:t — int
compares blocks blk1 and blk2. The result is

e 0, if the blocks are equal,
e -1, if blk1 is less than blk2,

e 1, otherwise.

The comparison is meant to be a structural comparison. However, any function
that does not equate two conceptually different states may be adopted.

10

3 Reducer

This Section deals with the implementation of the partitioning algorithm. In particular, the main
part of Reducer’s code are described.

let partitioning aut =
let start, states, arrows = (Automaton.start aut),
(Automaton.states aut),
(Automaton.arrows aut) in

Initially, the list of blocks is made of a single block that contains all automaton’s states.
blocks = [(Block.from_states states) | ;

split blocks block returns a pair (bucket,block') where bucket contains all the states supposed
equivalent at the current iteration and block’ is obtained by removing those states from block.

let split blocks block =
try

minimal computes the minimal bundle of the first state of block. Note that to compute the
minimal and the normalized bundle we use three auxiliary functions red, env and h_n. red is
a filter function, e.g., for a given bundle b it returns the bundle obtained by removing from b
all dominated quadruples (see Domination.dominated). env maps states to blocks; in particular
given a state ¢ returns the block that approximate ¢ h_n maps blocks to states; given a block b
returns the states ¢ that represent b in the n-th approximation.

let minimal =
(Bundle.minimize red
(Block.next
(env blocks)
(h_n blocks)
(Automaton.bundle aut (List.hd (Block.states block))))) in

At this point, block is splitted in the pair (bucket, block’). More precisely, the function Block.split
is invoked with a predicate that, for each state ¢, computes its normalized bundle normal and
returns (Bisimulation.bisimilar minimal normal).

Some (Block.split
minimal
(fun ¢ —
let normal =
(Bundle.normalize
red
(Block.next (env blocks)
(h_n blocks)
(Automaton.bundle aut q))) in
Bisimulation.bisimilar minimal normal)
block)
with Failure e — None in

split_iter f blks, using the split function f, recursively splits the blocks in the list blks into a list
of buckets. Such splitting is performed as much as possible.

11

let rec split_iter f = function

|} =]
| exels —
match f e with
| Some(bucket, continuation) —
if (Block.states continuation) = []
then bucket :: (split_iter f els)
else bucket :: (split_iter f (continuation : els))
| - — (split_iter f els) in

let stop = ref false in
while = (Istop) do
begin
oldblocks records the blocks of the previous iteration.
let oldblocks = !blocks in
let buckets = split_iter (split oldblocks) oldblocks in
begin
The buckets computed by splitting all the blocks are coerced to real blocks. Such coercion is
performed by adding to buckets the new information obtained in the current iteration.

blocks := (List.map (Block.close_block (env oldblocks)) buckets);

The termination condition is evaluated. The termination is reached when the current list of
blocks blocks is isomorphic to the list of blocks of the previous iteration.

Note that if each block is not broken, then i-th block of the current approximation (blocks)
exactly corresponds to the i-th block of previous approximation (oldblocks). Therefore, the
comparison between blocks and oldblocks can be done position-wise.

stop =
(List.length blocks) = (List.length oldblocks) A
(List.for_all2
(fun z y — (Block.compare z y) = 0)

'blocks
oldblocks)
end
end
done ;
'blocks

end

12

4 The standard automata case

4.1 The implementation

In this Section we describe a simple implementation of the signatures for (ordinary) Automaton.
First states of automata must be implemented.

module State =
struct

the only information that we need to represent a state is its identifier.
type t = State of string

let id = function State(z) — =z

let create z = State(z)

let compare = compare

let print = function State(z) — Printf.fprintf stdout "State: %s\n" z
end
1. module Arrow =

Arrows are defined in this Section. We use 0CAML functor (or parameterizers) to make the
implementation independent from states.
The type Arrow depends on the type State

functor(State : StateSig) —
struct

type statetype = State.t

labeltype represents the observables associated with arrows.
type labeltype = string

an arrow is described by a tuple (source, label, target)
type t = Arrow of statetype X labeltype X statetype

this code provides all functions needed to accomplish with the Reducer.Arrow signature

let create s | t = Arrow(s,l,t)
let source = function Arrow(s,l,t) — s
let target = function Arrow(s,l,t) t

,t) —
let label = function Arrow(s,l,t) — |
let compose arl ar2 =
match ari, ar2 with
| Arrow(sl,l1,t1), Arrow(s2,12,t2) —
if (State.compare t1 s2) = 0
then Arrow(s1,11°12,t2)

else failwith "Error: not composable arrows"
let compare = compare

let print = function Arrow(s,l,t) —
Printf .forintf stdout "Arrow = " ;

13

print_string " "
State.print s ;
print_string " "
Printf.fprintf stdout "label = %s \n" [;
print_string " "
State.print t ;
end

2. module Bundle =

Bundle depends on the types State and Arrow.
Note that StateSig is a subsignature of State, and ArrowSig is a subsignature of Arrow.

functor (State : StateSig) —
functor (Arrow : ArrowSig with type statetype = State.t) —
struct

type statetype = State.t
type arrowtype = Arrow.t

In the case of Automaton implementation the elements of bundle are the arrows of the automaton.
Note that this simplifies the functions from_arrow_list and to_arrow_list (they are simply the
identity functions) but complicates compare, because we must ignore the source of the arrows.

type quadtype = arrowtype
type t = quadtype list

let from_arrow_list = function z — =z
let to_arrow_list ¢ = functionz — =z

let compare bl1 bl2 =
let zz = State.create "dummy" in

let bl1' =
List.sort Arrow.compare
(List.map
(fun ar —

Arrow.create xz (Arrow.label ar) (Arrow.target ar))
bl1) in

let bI2" =
List.sort Arrow.compare
(List.map
(fun ar —

Arrow.create zx (Arrow.label ar) (Arrow.target ar))
bl2) in

compare bl1' bl2'
normalization and minimization leave the bundle unchanged.

let normalize = funred z — =z
let minimize = funred z — =z

let diff = list_diff

14

let print bundle = List.iter Arrow.print (bundle)
end

3. module Automaton =

Automaton depends to the type State, Arrow and Bundle

functor(State : StateSig) —

functor(Arrow : ArrowSig with type statetype = State.t) —

functor(Bundle : BundleSig with type arrowtype = Arrow.t) —
struct

type statetype = State.t

type arrowtype = Arrow.t

type bundletype = Bundle.t

Automaton are represented as tuples (start, states, arrows)
type t = Automaton of statetype X statetype list X arrowtype list

let create start states arrows =
Automaton(start, states, arrows)

we provide the projections

let states = function Automaton(start, states, arrows) — states
let arrows = function Automaton(start, states, arrows) — arrows
let start = function Automaton(start, states, arrows) — start

the function that returns the bundle for the given state

let bundle =
function Automaton(start, states, arrows) —
fun (q : statetype) —
(Bundle.from_arrow _list
(List.filter
(fun a — State.compare q (Arrow.source a) = 0) arrows))

and the print function

let print (a : t) =
List.iter State.print (states a);
print_newline();
List.iter Arrow.print (arrows a)
end

4. module Bisimulation =

This module depends to the type of the Bundle

functor (Bundle : BundleSig) —
struct
type bundletype = Bundle.t

in this case the extra information returned by bisimilar has type boolean.

type resulttype = bool

15

two states are bisimilar if they have the same bundle in the current approximation.

let bisimilar bundlel bundle?2 =
if (Bundle.compare bundlel bundle2 = 0)
then Some true (* NOTE: the extra information is ignored)
else None
end

5. module Domination =
This module depends on signature Bundle

functor (Bundle : BundleSig) —
struct

type quadtype = Bundle.quadtype

type bundletype = quadtype list

does not exist a quadruple ¢d’ in bundle that dominates ¢d

let dominated qd bundle =
None
end

6. module Block =

functor(State : StateSig) —
functor(Arrow : ArrowSig

with type statetype = State.t) —
functor(Bundle : BundleSig

with type statetype = Arrow.statetype) —
functor(Automaton : AutomatonSig

with type statetype = State.t

and type arrowtype = Arrow.t

and type bundletype = Bundle.t) —
functor(Bisimulation : BisimulationSig

with type bundletype = Bundle.t) —

struct
this module depends on the type of the State, Arrow, Bundle, Automaton and Bisimulation.

type statetype = State.t

type bundletype = Bundle.t

type automatontype = Automaton.t
type resulttype = Bisimulation.resulttype

blocks are defined as a tuple (identifier, states, norm)
type t = Block of string x statetype list x bundletype

There is no difference between buckets and blocks, because all information in the block depends
only from the previous approximation.

type buckettype = t

let close_block env bucket =

16

bucket
The constructors are

let from_states states =
Block("", states, (Bundle.from_arrow_list []))

let create id states norm =
Block(id, states, norm)

let to_state n block =
State.create ("b" " (string_of —int n))

While projections are detailed below

let id =
function Block(name, states, norm) — name

let states =
function Block(name, states, norm) — states

let norm =
function Block(name, states, norm) — mnorm

let cardinal block =
List.length (states block)

let mem state block =
List.mem state (states block)

this function provides the composition of Automaton with the previous approximation.

let next env h_n bundle =
Bundle.from_arrow _list
(unique
(List.map
(fun ar —
(Arrow.create
(Arrow.source ar)
(Arrow.label ar)

(h_n (env (Arrow.target ar))))
bundle)))

we split the block using the List.partition
let split minimal pred block =

let (states’, states') =
(List.partition
(fun z — (pred) # None)
(states block)) in

((create "" states’ minimal), (* the bucket x)
(create (id block) states” (norm block))) (x the remaining block *)

let compare blockl block2 =
Bundle.compare (norm block1) (norm block2)

end

17

4.2 How to use the reducer

This Section aims at describing how it is possible to use the APT’s introduced so far. In order to
do that, we describe the running example of instantiating the interfaces in the case of automata
minimization.

Once all signatures (see Section 2) have been implemented, a new Reducer can be instantiated.
The implementation of the signatures proceeds similarly to the case of ordinary automata.

The first step is the importing of Reducer and of all the implementation modules. In our
running example

open Reducer

open Automaton_state

open Automaton_arrow

open Automaton_bundle

open Automaton_block

open Automaton_bisimulation
open Automaton_domination

open Automaton_

Then the structure module must be instantiated is such a manner that module dependencies

are satisfied:

module
module
module
module
module
module

module

module

AutomatonState = State

AutomatonArrow = Arrow (AutomatonState)

AutomatonBundle = Bundle (AutomatonState) (AutomatonArrow)

MyAutomaton = Automaton (AutomatonState) (AutomatonArrow) (AutomatonBundle)
AutomatonDomination = Domination (AutomatonArrow) (AutomatonBundle)
AutomatonBisimulation = Bisimulation (AutomatonBundle)

AutomatonBlock = Block (AutomatonState) (AutomatonArrow)
(AutomatonBundle) (MyAutomaton)
(AutomatonBisimulation)

AutomatonReducer = Reducer (AutomatonState) (AutomatonArrow)
(AutomatonBundle) (MyAutomaton)
(AutomatonBisimulation) (AutomatonBlock)
(AutomatonDomination)

At this point, AutomatonReducer.reduce can be invoked for reducing automata, as shown below.

let automaton = ... in
let reduced_automaton = (AutomatonReducer.reduce automaton) in

18

5 The HD-automata case

5.1 The HD-automata file format

The format for I/O data of HDReducer.reduceris described in this Section. Basically, such format
mimics the scheme of the type of automata described in Section 2. Roughly, an automaton is a
triple made of an initial state, a set of states and a set of arrows between states.

HD-automata extend ordinary automata in two ways:

1. states are equipped with local names and group of symmetries (permutations) on names.
Names are supposed to be totally ordered,

. l .
2. atransition s =3’ d exposes names 7 of the source state s, and has a function ¢ that maps
names of the destination state d into the name of s, or in a distinguished name *.

In our data model names are represented as integers, « is represented as * or as 0. Moreover,
if a state has n names we represent them with the segment of integers 1,...n. Note that this is
consistent because names have local meaning.

A symmetry over n names may be simply expressed by means of a list p = [i1;...;i,] of
distinct integers, where each i; is in 1,...,n; the convention is that p represents the permutation
that maps each j in 4;. For instance, [2; 1; 3] represents a permutation of 3 elements: in particular
it is the permutation that exchanges 1 and 2, and leaves 3 unchanged. The permutation group
is specified as a list of permutations. Such convention is also adopted for representing other
functions on names, e.g. ¢’s.

Given the above assumptions, we describe the format by commenting on the following exam-
ple:

start qO0

state q0 3

state q1 3

state q2 2

state g3 2 [[1;2]1 ; [2;1] 1]

state q4 3

SOURCE TARGET PI_LABEL SIGMA

q0 -> ql out[1 ;2] [1;2;3]
q0 -> ql out[2 ;1] [1;2;3]
q0 -> q0 tau [2;1; 3]
ql -> q2 in[1 ; 1] [1;2]
ql -> a3 in[1 ; 2] [1;2]
ql -> q4 in[1 ; 3] [1;2; 3]
qQl > q4 bin[1] [152; %]
q2 -> q2 bout[1 ; 2 1] [1; 2]

start denotes the initial state (the name of the state is a string)

start q0

19

then the list of states is given. For each state it is mandatory to specify
e the name of the state

e the number of local names of the state. Indeed, note that a group of symmetries has been
explicitly specified only for q3. For all other cases, it is assumed to be the group made of
the identity permutation over the names of the state.

On the other hand, the list of permutations of the state may be optionally specified.

Finally, the list of arrows of the automaton is given (the line starting with # is a comment).
Columns SOURCE and TARGET are (the names of) the initial and final states of transitions. Column
PI_LABEL is one of the strings out, in, tau, bin, bout followed by the local names exposed in
the transition. Column SIGMA represents the o-component of the transition. Such a function is
represented as a list of integers whose length is the number of names of the target, while the
elements are integers ranging from 1 to the number of names of the source state moreover also 0
or *" may appear in the list (see transition from q1 to q4).

20

