
ConQueSt User Manual

Francesco Bonchi, Fosca Giannotti, Claudio Lucchese,
Salvatore Orlando, Raffaele Perego, Roberto Trasarti

December 2007

1

Contents

1 Introduction 4
1.1 What is ConQueSt ? . 4
1.2 Who should read this document? 4
1.3 Acknowledgements . 4
1.4 Theoretical requirement . 4
1.5 Some intended purposes . 5
1.6 Features . 7

1.6.1 System requirement . 7
1.6.2 Compatibility with DBMS 8
1.6.3 Obtaining the source, binary, and document distributions 8

2 User Interface 8
2.1 Introduction . 8
2.2 Connect to a database . 9
2.3 The Table List pane . 10
2.4 The workbench . 11
2.5 The toolbar menu . 12
2.6 The Statistics pane . 13
2.7 The Constraints pane . 14
2.8 The Table Visualization pane 14
2.9 The SPQL query pane . 15
2.10 The Mining View pane . 16
2.11 The Status and progress bar 16

3 Discretization 16

4 SPQL language 18
4.1 Mining view definition . 21
4.2 Resolve Attributes conflicts 24
4.3 Add Constraints . 25

4.3.1 Crisp Constraints . 25
4.3.2 Soft Constraints . 27

5 Execute SPQL query 29

2

6 Navigate Results 29
6.1 Pattern Browser . 29

6.1.1 Relaxing or Strengthen constraints 31
6.1.2 Materialize patterns 32

6.2 Extract Rules . 32

7 Example of use 32

8 Appendix 32
8.1 Formal SPQL grammar . 32

3

1 Introduction

1.1 What is ConQueSt ?

This is the user manual of ConQueSt a constraint based querying sys-
tem devised with the aim of supporting the intrinsically exploratory (i.e.,
human-guided, interactive, iterative) nature of pattern discovery. Following
the Inductive Database vision, this framework provides users with an expres-
sive constraint based query language which allows the discovery process to
be effectively driven toward potentially interesting patterns. This compre-
hensive mining system can access real world relational databases from which
extract data. After a preprocessing step, users mining queries are answered
by an efficient pattern mining engine which entails several data and search
space reduction techniques. Finally, results are presented to the user, and
then stored in the database.

1.2 Who should read this document?

This document is for the user that approach ConQueSt having a basic
knowledge in database and want to improve the analysis using constraint
pattern discovery to find regularities in the data. Next we describe some
theoretical requirement useful for understand how use all the potentially of
ConQueSt .

1.3 Acknowledgements

ConQueSt is the result of a joint work of the Pisa KDD (Knowledge Discov-
ery and Delivery) and HPC (High Performance Computing) Laboratories: it
is built around a scalable and high-performance constraint-based mining en-
gine exploiting state-of-the-art constraint pushing techniques, as those ones
developed in the last three years by our two labs.

1.4 Theoretical requirement

The constraint-based pattern mining paradigm has been recognized as one of
the fundamental techniques for Inductive Databases: user-defined constraints
drive the mining process towards potentially interesting patterns only. More-
over, they can be pushed deep inside the mining algorithm in order to deal

4

with the exponential search space curse, achieving better performance. Con-
straint based frequent pattern mining has been studied a lot as a query
optimization problem, i.e., developing efficient, sound and complete evalua-
tion strategies for constraint-based mining queries. To this aim, properties of
constraints have been studied comprehensively, e.g., anti-monotonicity, suc-
cinctness, monotonicity , convertibility, loose anti-monotonicity, and on the
basis of such properties efficient computational strategies have been defined.

Definition 1 (Constrained Frequent Itemset Mining) Let I = {x1, ..., xn}
be a set of distinct items, where an item is an object with some predefined
attributes (e.g., price, type, etc.). An itemset X is a non-empty subset of I.
A transaction database D is a bag of itemsets t ∈ 2I, usually called transac-
tions. A constraint on itemsets is a function C : 2I → {true, false}. We say
that an itemset I satisfies a constraint if and only if C(I) = true. We define
the theory of a constraint as the set of itemsets which satisfy the constraint:
Th(C) = {X ∈ 2I | C(X)}. The support of an itemset X in database D,
denoted suppD(X), is the number of transactions which are superset of X.
Given a user-defined minimum support, denoted σ, an itemset X is called
frequent in D if suppD(X) ≥ σ. This defines the minimum frequency con-
straint: Cfreq[D,σ](X) ⇔ suppD(X) ≥ σ.

In general, given a conjunction of constraints C the constrained frequent
itemsets mining problem requires to compute Th(Cfreq) ∩ Th(C).

1.5 Some intended purposes

Developing ConQueSt we have tried to reduce as much as possible the
gap existing between real-world data stored in relational DBMS, and the
constraint-based pattern discovery paradigm, as defined above. In fact, the
data is usually stored in relational databases, and thus in the form of relations
and not of transactions. In Section 4 we explain how transactions are defined
and constructed both at the query language and at the system level. More-
over, the constraint-based mining paradigm assumes that the constraints are
defined on attributes of the items that are in functional dependency with the
items. This rarely the case in real-world data: just think about the price of
one item in a market over a period of one month. ConQueSt provides sup-
port to solve this cases, allowing the user to reconstruct the ideal situation
of functional dependency, for instance, by choosing to take the average of

5

prices of the item in the period as price attribute. ConQueSt as Inductive
Database system provide the following features:

Compatible with commercial DBMS. Easy connect to commercial DBMS
to access to the data storage.

Coupling with a DBMS. The analyst can retrieve the portion of interest-
ing data (for instance, by means of SQL queries). Moreover, extracted
patterns should also be stored in the DBMS in order to be further
queried or mined (closure principle).

Expressiveness of the query language. The analyst interact with the
pattern discovery system by specify declaratively how the desired pat-
terns should look like and which conditions they should satisfy. The
analyst is supposed to have a high-level vision of the pattern discovery
system, without worrying about the details of the computational en-
gine, in the same way as a database user has not to worry about query
optimization. The task of composing all constraints and producing the
most efficient mining strategy (execution plan) for a given query should
be thus completely demanded to the underlying system.

Efficiency of the mining engine. Keeping query response time as small
as possible is, on the one hand necessary, since our goal is to give
frequent feedbacks to the user allowing realistic human-guided explo-
ration. On the other hand, it is a very challenging task, due to the ex-
ponential complexity of pattern discovery computations. To this end,
data and search space reduction properties of constraints should be
effectively exploited by pushing them within the mining algorithms.
Pattern discovery is usually a highly iterative task: a mining session
is usually made up of a series of queries (exploration), where each new
query adjusts, refines or combines the results of some previous queries.
It is important that the mining engine adopts techniques for incremen-
tal mining; i.e. reusing results of previous queries, in order to give a
faster response to the last query presented to the system, instead of
performing again the mining from scratch.

Graphical user interface. The exploratory nature of pattern discovery
imposes to the system not only to return frequent feedbacks to the
user, but also to provide pattern visualization and navigation tools.

6

These tools should help the user in visualizing the continuous feedbacks
form the systems, allowing an easier and human-based identification of
the fragments of interesting knowledge. Such tools should also play
the role of graphical querying interface: the action of browsing pattern
visualization should be tightly integrated (both by a conceptual and
engineering point of view) with the action of iteratively querying.

To do this ConQueSt implements tools which help the user from the be-
ginning to the end of his analysis giving the possibilities to guide the process
and obtain the knowledge he search for.

1.6 Features

ConQueSt give a set of tools that can be divided in 4 big familes. Now
we give only a short description of this family, which will be deepened in the
next sections.

Visualization Tools Help user to organize the tables in the workbench and
to analyze their dependencies.

Analysis Tools Those tools give information about tables or field and per-
mit to manipulate the data to prepare at the mining process.

Mining tools Give the possibilities to define the mining task and view the
transformation from relational to transactional view of the data and
then navigate the result of query in different way.

Post-processing tools Reached the result of a query, there are tools that
use this knowledge to extract more refined information or put it into
the database in relational form that can be used as source of further
analysis or mining process.

1.6.1 System requirement

ConQueSt need at least this requirement:

• Processor 800Mhz

• Ram 256 MB

• Windows 9*/XP

7

• Java Runtime Environment Version 1.5.0 Update 5

• 20 MB free hard disk space

1.6.2 Compatibility with DBMS

ConQueSt can be connected to all the DBMS that use the interface JDBC/ODBC.
The basic set of driver included is:

• Microsoft Access

• PostgreSQL

• Oracle

• MySQL

• SQL Server

• ODBC Sources

Is easy to add a new database having his driver, simply add in the ”DriverDB”
directory the driver and then add in ”DBlist.ini” an entry in this format:
[DBName] [DBDriverName] [FormatOfConnection].

1.6.3 Obtaining the source, binary, and document distributions

The source code, the binary and this document is published on the site of
ConQueSt : [www.conquest ???] where you can find other information
about this system and you can download a video tutorial of the system.
[subscribe ???]

2 User Interface

2.1 Introduction

ConQueSt is equipped with a simple but powerful interface, that permit
the user to explore the data, guide the mining process and navigate the result.
When it start the main window appear as show in fig. 1. Next it’s described
how to connect to a database use all the possibilities that ConQueSt give
to users.

8

Figure 1: ConQueSt main window

2.2 Connect to a database

To connect ConQueSt to a database select from the toolbar File and then
Connect, the system show the window showed in fig.2 where the user can
insert all the information needed to establish a connection with the dbms:

Database Type: the type of database which ConQueSt must be con-
nected

Database Address: is the string that identify the location of database with
format: [Url]:[Port]:[DbName]

Username: the username of a user in the dbms

Password: the password of the user in the dbms

Schema Name: the name of the schema of the dbms which contains the
data

9

Figure 2: ConQueSt main window

On the right side of the window there is a list of connection used by the
user for a rapid reconnection. The Clear button delete the history of the
connection. When all the information is ready simply click on the Connect
button. In the first phase of connection ConQueSt read the list of the tables
in the schema of the dbms specified and the start to gather information of
it reading them. This process is showed on the left side of the main window
on the table list pane.

2.3 The Table List pane

The table list, after connecting to a dbms, contains the list of the tables of
the schema which the system is connected. After a first phase of reading all
the table is scanned to calculate statistics on their fields. At the end, near
all tables names, there is an icon that show the status of scanning and if
ConQueSt have metainformation about the creation of the table as show
in fig.3

If some table in the list is marked as not scanned after the scanning
phase it means that their size is grater then a threshold specified in the
option to denied a too long computation of statistics. In the section 2.5 is
described how to change this parameter. Under the table list there are some
information about the dbms which ConQueSt is connected that show:

• Number of tables

• Product name and version

10

Icon Description

not scanned
there are error in the table
informations avaibles for this table
table materialized from a patterns discovery process
table materialized from a rules extraction process

Figure 3: Icon of table list

(a) (b) (c)

Figure 4: link and icon in workbench

• The Url of the dbms

A table can be show in workbench with a double click on his name in the
table list. In the table list is always showed the table currently selected.

2.4 The workbench

The workbench is the place where the tables are visualized and can be orga-
nized by the user. Not only the tables are showed into the workbench but
the relation between they and the typology of fields are represented by lines
and icon: In fig.4(a) and fig.4(b) is showed the relation between the two table
and the different color of the line in the case the selected table is the one
that have the primary key or the foreign key for the link. In fig.4(c) is the
detailed view ot a part of the table where there are information about some
field: intuitively the yellow key represent the primary key and the grey one
represent the foreign key, in addition the yellow box with U is for the unique
property that the field have (it is call property because isn’t necessary the
unique constraint of database). All the tables can be moved with drag and
drop or can be minimized by double clicking on their header (or restored in

11

the same way). In case of big schema it’s necessary have a lot of space, so
ConQueSt give to users a tool to organize and navigate it: clicking on free
space of workbench with right mouse button a navigation control window
appear, with this the user can perform zoom and can move all the tables in
workbench to create big diagram. With the Global View button see all in
one window.

2.5 The toolbar menu

At the top of main window there is the toolbar divided into six different
menu, in the next sections we describe them.

• File menu:

Save diagram. Save the diagram created into into the workbench.

Exit. Exit from ConQueSt .

• Edit menu:

Copy text. Copy the text from SPQL query pane into clipboard.

Paste text. Paste the text from the clipboard into the SPQL query
pane.

Clear text. Clear the text into the SPQL query pane.

• Action menu:

Connect. Open the window for connection preferences.

Reset all id. Clear the definition of mining view.

Option. Open the window for ConQueSt preferences (e.g. maxi-
mum number of rows displayed in Table view pane)

Reload database. Establish a new connection to a database and reload
the data.

Exec SPQL query. Exec the SQPL query written into the SPQL
query pane.

• Tools menu:

12

Create table link. Create links between tables based on the name
and existing primary key (in some type of database this informa-
tion isn’t stored so this feature is applied during connection)

Maximize all. All the tables are maximized (show the name and the
field of the tables).

Minimize all. All the tables are minimized (show only the name of
the tables).

Show all. All the table are showed into the workbench.

Hide all. All the table are hidden.

Clear dataset cache. Clear the cache of ConQueSt .

• Window menu:

Add constraint. Open the window to add a constraint to the SPQL
query.

Resolve attribute conflict. Open the window to resolve an attribute
conflict.

• Help menu:

Help. Open the online user manual of ConQueSt .

About. Show some information about ConQueSt .

2.6 The Statistics pane

In the right side of ConQueSt there are three pane that give to user some
statistical information about the selected table as show in fig.5. The top
one is the Table information pane that show information about the number
of rows and the type of all the fields contained in the table. If a field of
a the table is selected, the Field information pane show the name of this
one and some aggregate information as maximum, minimum, average and
number of distinct value. Under these two panel there is a graph that show
the distribution of the values of the field selected. The three ratio button on
the right of the graph permits to select the type of graph or if the system
selects automatically the better one. Clicking on it with left mouse button
a window with the graph appear. In this new window the user can navigate
the graph as show in fig.6 or trough Action menu discretize the values and

13

Figure 5: ConQueSt statistic pane

create a new field in the table, this feature is specified in the section 3. If a
table is not scanned, during the connection phase, when is selected in these
panel can’t be showed any information, clicking on it the scanning process
will be initialized and executed, and then the results is showed.

2.7 The Constraints pane

In the top right side of main window there is the Constraints pane, that show
the list of constraints of the current SPQL query. Clicking on Add constraint
button the user can add a new constraint, more information about it is in
section 4.3.

2.8 The Table Visualization pane

This pane is in the group of three tab under the workbench as show in fig.7.
In this pane is showed a preview of the selected table (the number of the
rows showed is a system parameter, specified in Option menu) and the user
can perform an ordination clicking on the header of the columns.

14

Figure 6: Distribution graph window

Figure 7: Table visualization pane

2.9 The SPQL query pane

This is the space where the SPQL (or SQL) query is written, as showed in
fig.8 there is a button for execute the query. The user can write the query
directly in this pane or see what the system create meanwhile the user use
the interface to specified the parameters of the query.

15

Figure 8: SPQL query pane

2.10 The Mining View pane

This pane permits to user to create a preview of the dataset generated by the
mining view definition (section ??) given in the SPQL query. To start the
process click on the button on the right as show in fig.9 The pane is divided

Figure 9: Mining view pane

in two, the left side show the transactions of the dataset and the right side
the attribute of the items. On the top there are some statistic of the dataset
as the number of transactions.

2.11 The Status and progress bar

The status bar is the bottom part of the main window, and visualize the
status of ConQueSt or warning and error message of the system. When
ConQueSt perform some process a progress bar and a little window on the
right side of workbench appear displaying the name of the work in progress,
with the abort button the work is terminated.

3 Discretization

As showed in previous section, ConQueSt give to user a powerful tool which
can discretize a field of a table. To use this tool click on the distribution

16

graph pane and then select Discretize from the Action menu. A new window
appear as in fig.10, where the user can select the discretization method the
smoothing type, the name of the new field creataed in the table by the process
and the number of partition in which the value space must be divided. The

Figure 10: Discretize window

discretization method can be:

Equal width. The space are divided into equal part with the same length
(fig.11(a)).

Equal depth. The space are divided into part that have the same numbero
of objects (fig.11(b)).

Free Partitioning. The partitions is defined by the user.

In the first two cases after specified the number of partitions the user must
click on calculate to apply the parameter, in the third the user specified
the boundaries of each partition and then click on add for each one. The
smoothing is the type of information that will be stored into the new field:

Bin boundaries. The boundaries of the partition where the field is in.

17

Average. The average of the boundaries of the partition where the field is
in.

Count. The count of the items that there are in the partition where the
field is in.

When all are set the user can click on OK button and the discretization will
be applied on the table. Discretize a field can be performed not only using

(a) (b)

Figure 11: sample of discretion method

the interface but also executing a SQPL query, the syntax is:
DISCRETIZE old field AS new field
FROM table
IN number of partition disctretization method BINS
SMOOTINGH BY smoothing type

In case of free partition the syntax change:

DISCRETIZE old field AS new field
FROM table

IN (iα1 , iβ1), . . . ,(iακ , iβκ) BINS
SMOOTINGH BY smoothing type

where (iακ , iβκ) are the boundaries of the interval κ.

4 SPQL language

In this section is presented the SPQL language, this include three type of
query: discretization query, standard SQL query and Mine query, but in the

18

next paragraph we use the term SPQL query to indicate only Mine query.
The formal grammar of the language is presented in appendix 8.1.

To understand the process of a SPQL query and then the language an
introduction to the theory is needed. According to the constraint-based min-
ing paradigm, the data analyst must have a high-level vision of the pattern
discovery system, without worrying about the details of the computational
engine, in the very same way a database designer has not to worry about
query optimizations. The user must be provided with a set of primitives to
be used to communicate with the pattern discovery system, using a query
language. The user just needs to declaratively specify in the pattern dis-
covery query how the desired patterns should look like and which conditions
they should obey (a set of constraints). Such rigorous interaction between the
user and the pattern discovery system, can be implemented following, where
Mannila introduces an elegant formalization for the notion of interactive min-
ing process: the term inductive database refers to a relational database plus
the set of all sentences from a specified class of sentences that are true w.r.t.
the data. In other words, the inductive database is a database framework
which integrates the raw data with the knowledge extracted from the data
and materialized in the form of patterns. In this way, the knowledge discov-
ery process consists essentially in an iterative querying process, enabled by
a query language that can deal either with raw data or patterns.

Definition 2 Given an instance r of a relation R, a class L of sentences
(patterns), and a selection predicate q, a pattern discovery task is to find a
theory

T h(L, r, q) = {s ∈ L|q(r, s) is true}

The selection predicate q indicates whether a pattern s is considered in-
teresting. In the constraint-based paradigm, such selection predicate q is
defined by a conjunction of constraints. In this Section, going through a
rigorous identification of all its basic components, we provide a definition of
constraint-based frequent pattern mining query over a relational database
DB.

The first needed component is the data source: which table must be
mined for frequent patterns, and which attributed do identify transactions
and items.

Definition 3 (Data Source) Given a database DB any relational expres-
sion V on preds(DB) can be selected as data source.

19

Definition 4 (Identifier) Given a data source V and let sch(V) his fields.
Any subset of fields H ⊂ sch(V) can be selected as identifier, and named id.

Definition 5 (Transaction id) A Transaction id is an identifier on V that
uniquely identify a transaction.

Definition 6 (Item id) An Item id is an identifier I on V that define the
values of items in the transactions and satisfy I ∩ T = ∅ where T is the
transaction id associated.

Definition 7 (Transactional definition) A transactional definition is a
triple ξ = 〈V , T , I〉 where V is the data source, T is the transaction id and
I is the item id.

Definition 8 (Attribute id) Given a transactional definition ξ = 〈V , T , I〉,
an Attribute id is an identifier A on V that define the values of item at-
tributes and satisfy A∩T = ∅, A∩I = ∅ and have a functional dependency
I → A holds in V.

Definition 9 (Mining View definition) A Mining view definition is a quadru-
ple ξ′ = 〈V , T , I,A〉 where V is a data source, T is a transaction id, I is a
item id and A is an attribute id. We can define a mining view definition as
ξ′ = 〈ξ,A〉 too.

Definition 10 (Derived Attributes list) Given a mining view definition
ξ′ = 〈V , T , I,A〉, a derived attribute list is

Lξ′ = {〈ik, ak〉 ∈ V |ik ∈ δV (I), ak ∈ δV (A)}

Definition 11 (Mining View) Given a mining view definition ξ′ = 〈ξ,A〉
the mining view is 〈Dξ,Lξ′〉

Since the data source is in relational form, a pre-processing step is needed
to create a set of transactions, which are the input of any frequent pattern
mining system. Transaction are created by grouping ITEM by the attributes
specified in the TRANSACTION clause and associating to each item the value
of the ATTRIBUTE selected.

20

4.1 Mining view definition

Definition 12 (Derived Transactional dataset) Give a transactional def-
inition ξ = 〈V , T , I〉, a derived transactional dataset is

Dξ = {(ttid = {i1 . . . in}, ik ∈ δV (I), ia 6= ib, a 6= b) ⇔ ∃〈tid, ik〉 ∈ V}

Definition 13 (Mining View definition) A Mining view definition is a
quadruple ξ′ = 〈V , T , I,A〉 where V is a data source, T is a transaction
id, I is a item id and A is an attribute id. We can define a mining view
definition as ξ′ = 〈ξ,A〉 too.

Definition 14 (Derived Attributes list) Given a mining view definition
ξ′ = 〈V , T , I,A〉, a derived attribute list is

Lξ′ = {〈ik, ak〉 ∈ V |ik ∈ δV (I), ak ∈ δV (A)}

Definition 15 (Mining View) Given a mining view definition ξ′ = 〈ξ,A〉
the mining view is 〈Dξ,Lξ′〉

In ConQueSt the definition of mining view can be performed in two way:
by writing a query in the SPQL query pane, or by clicking and select the
field we want to define as transaction id, item id and attribute id; to do this
open the all the table you need and maximize them on the workbench, then
click with right mouse button on each field and select the type of definition
as show in fig.12 The fields change their color when a definition is assigned:

Color Definition associated
Blue Transaction id
Green Item id
Red Attribute id (descriptive)

In the example showed in the figure the fields aren’t all in the same table, so
ConQueSt joins the source tables using the links. In the same time a user
define the Mining view, an inverse parser create the SPQL query associated
showed in the bottom of the figure, there is a Mining view definition pane
too on the right of the main window with three tab one for each definition:
fig.13(a) transaction view, fig.13(b) item view, fig.13(c) attribute view

The definition of the mining view is the first step to generate the SPQL
query, but, before continue the process, the user can have a preview of the

21

Figure 12: Mining view definition process

(a) (b) (c)

Figure 13: Mining View definition pane

dataset that the definition generate using the Mining view pane. Clicking on
the button on the right side of this panel the pre-processing described above
start (an example of result is in fig.14). In this way the user can see how the
data is transformed in and if there are error in his definition before executing
the SPQL query. Adding a support value in the space under the constraints
pane (fig.15)the user can execute the SPQL query. Without constraints the
query task will be find frequent pattern w.r.t. the support value in the
transaction model of the data generated (the attribute definition in this case
is useless). The second way to define a mining view is to write the query in
the SPQL query pane. For simplicity consider the query:

1. MINE PATTERNS WITH SUPP>= 5 IN

22

Figure 14: Mining view definition process

Figure 15: Constraint pane and support value space

2. SELECT product.product_name, product.gross_weight, sales_fact_1998.time_id,

sales_fact_1998.customer_id, sales_fact_1998.store_id

3. FROM [product], [sales_fact_1998]

4. WHERE sales_fact_1998.product_id=product.product_id

5. TRANSACTION sales_fact_1998.time_id, sales_fact_1998.customer_id,

sales_fact_1998.store_id

6. ITEM product.product_name

7. ATTRIBUTE product.gross_weight

In line 1 there is the header that classify the query as a mine query and specify
the support value, next in line 2-3-4 there is a SQL query that extract for
the dbms all the information needed: all the field and table used in mining
definition must be in this part. From line 5 to 7 we specify what fields identify
a transaction (line 5), what the is the item of transaction (line 6) and what is
the attribute of this items (line 8). The Syntax is SQL like and very simple,
additional information about it are in appendix 8.1.

23

4.2 Resolve Attributes conflicts

In def.8 an Attribute is described as a value that have functional dependency
I → A, but in the real world is not guarantee this property (e.g. price of a
item can change over time). ConQueSt analyze the mining definition given
and if there are possibilities of a conflict, near the attribute field appears a
warning icon as in fig.16(a), clicking with right mouse button on the field
and selecting Resolve the window in fig.16(b), where the user can select one
method to resolve the conflict:

Take first. Is the default one and take the first value associated with item,
the other is ignored.

Take last. Each time a new value is fended associated with a item, the
relation is updated.

Take count. The value of attribute is ignored, each item is associated to
the number of distinct value of the attribute field.

Take maximum. Take the maximum of the attribute field values.

Take minimum. Take the minimum of the attribute field values.

Take average. Take the average of the attribute field values.

Take sum. Take the sum of the attribute field values.

(a) (b) (c)

Figure 16: How to resolve an attribute conflict

When a method is specified the warning became gray as in fig.16(c).

24

4.3 Add Constraints

The previous section provided all the needed components for defining a
constraint-based frequent pattern query as follows.

Definition 16 (Constraint-based frequent pattern query) Using all the
definition above (def. 3 - 15): given a Mining view φ = 〈Dξ,Lξ′〉, the mini-
mum support threshold σ and a conjunction of constraints on itemsets C, the
task is to extract all the itemset:

freq(φ, σ, C) = {(i, S) |i ∈ δV (I) ∧ C(i) ∧ suppξ(i) = S ∧ S ≥ σ}

where δV (I) indicate the set of values of the item in the transactional dataset
Dξ.

this definition is the same of def.1 but in this case the source data is the
processed data from the DBMS selected by the user. Using the same example
of SQPL query showed above we complete it with a constraint:

1. MINE PATTERNS WITH SUPP>= 5 IN

(...)

8. CONSTRAINED BY Average(product.gross_weight)<=15

The two new elements are the first line where there is the header that classify
the query as a mine query and specify the support value and the last line
with the constraint on the attribute: σ, C. The normal way to specify a
constraints in C is the crisp one (as in the example), but ConQueSt give
the possibility to use a different type of constraints named Soft where the
result of Th(C) is continuous.

4.3.1 Crisp Constraints

A Crisp Constraint is a function P(x) → {0, 1} that is used to prune the
space of solutions in the process. The constraints that can be used in Con-
QueSt are showed in table 1. This set of constraints can be divided into 2
type:

On Attributes Constraints means that the constraint is based on the val-
ues of on item’s attribute in the pattern (e.g. max(price)).

25

subset subset supset superset
asubset attributes are subset len length
asupset attributes are superset acount attributes count
min minimum max maximum
range range sum sum
avg average var variance
std standard deviation spv sample variance
md mean deviation med median

Table 1: The set of available constraints.

On Properties Constraints means that the constraint is based on a prop-
erties of the pattern (e.g. lenght() in this case is implicit that the
argument of the constraint is the pattern).

With the combination of constraints on all the attributes selected by the
user, he can represent the specific type of knowledge he want to extract.
In ConQueSt the crisp constraint is named only constraints because, in
the literature, is considered as the normal type of constraints. To add a
constraints in ConQueSt the user can write them into the query or can use
the top right constraints panel (fig.17(a)) clicking on Add New button. The
system show a window (fig.17(b)) where the user can select the constraints,
the threshold and the attribute based on (the system show only the attributes
in the current mining view definition).

(a) (b)

Figure 17: Constraints panels

26

If the user select a set constraint as subset, superset, attribute subset or
attribute superset, the system show a window where all the values available
(fig.18), the user can select all the values needed by double clicking on it (or
writing it on the parameter space separated by a comma).

Figure 18: List of values panel

4.3.2 Soft Constraints

Soft constraints are an advanced feature of ConQueSt , the Soft constraints
aren’t boolean predicates that describe if an attribute/property satisfy it
but continuous function P(x) → [0, 1] that give the interesting value of the
pattern as showed in fig.19.

Figure 19: Difference between Crisp and Soft Constraints output

To Know how soft is a constraint the user must specify the softness
value: a percentile of the threshold value of the constraint that specify the
inclination of the line graph. The idea of this type of definition is that the
crisp constraints can be too rigid and can eliminate patterns with value of

27

constraint near the threshold but which don’t satisfy it completely, or in
other hand, there are more constraints but not all of them have the same
importance, in fact With this new concept of constraints we have two different
way to calculate the interest value for a conjunction of constraints:

Fuzzy We take the minimum of the interesting values of all the constraints.

Probabilistic We take the multiplication of the values of all the constrains.

In this way we can perform two new task:

extract the pattern with interesting value greater then a threshold
the user specify an interesting threshold and the system extract all the
pattern that have the interesting value greater than this value.

extract the top-k interesting pattern the user specify how many top
pattern want to extract and the system perform a search in the space
to find them. If there are more than one pattern that have the same
interesting value in the last position the result will be greater than the
values specified by the user.

In ConQueSt is simple to create a soft constraint: in the constraints panel
in fig.17(b) check the option soft and specify the softness in the box on the left
(the user can visualize graph of the soft constraint clicking on plot button).
All the constraints created (soft and crisp) are showed int the constraints
panel showed as in fig.20 The frequency constraint can be soft too, in this

Figure 20: How the constraints are showed in the panel

case check the soft option on the left right and then specify the softness value
for it (fig.20). Using the Soft constraints the format of a SPQL query change
a little:

28

1.MINE TOP 10.0 FUZZY PATTERNS WITH SUPP>= 10.0 SOFT 0.3 IN

(...)

8.CONSTRAINED BY sum(product.gross_weight)>=35 SOFT .2

AND minimum(product.gross_weight)>=5

The changes in the relative SPQL query is on line 1 and 8 where there are
the information about the soft method and the parameters. For more details
see the appendix 8.1.

5 Execute SPQL query

Now the user have all the elements to create a SQPL query, to execute it he
can select the SPQL query pane and than clicking on the Execute button, or
from the Action menu the Execute item. When the query is executed the a
progress bar appear and show the process of the following steps:

Create Dataset Create the dataset from the mining view definition.

Create Attributes Create the attribute of item from the mining view def-
inition.

Mining Search for patterns in the dataset.

All the step can be chaced from queries executed before by the users and then
skipped. On the Workbench there is another windows with abort button to
stop the process.

6 Navigate Results

This section show how the user can visualize, navigate and manipulate the
result of a query. In fig.21 is showed a schema of the possibilities of naviga-
tion.

6.1 Pattern Browser

After the execution of a query the pattern browser appears as in fig.22. The
patterns are divided in two parts: in the left side show the extracted patterns,
in the right side there are the source query and general information. The

29

Figure 21: Navigation Schema

patterns are in tabular format and have two type of visualization: itemset
view or item view, the default mode is the first one. In the Itemset view we
have the following columns:

Id. A number that identify the pattern.

Frequent itemset. The pattern in transactional representation.

Support. The support value of the pattern (see def.1).

Constraints value. The values of all constraints in the source query

Otherwise in the item view we have:

Id. A number that identify the pattern, in this case if a pattern is formed
by more item there are multiple rows with same id.

Item. A item of a pattern, the Id of the item is the same of the pattern in
the itemset view.

Attribute value. The values of all attributes specified in the query of the
item

To change type of visualization and other option use the visualization menu
in the pattern browser. In case of the query have soft constraints in the
visualization menu the user can use the command show interesting value to

30

Figure 22: Pattern Browser

change visualization of the value of constraints from the real values and the
interesting values of them. Clicking with right button on one of the columns
(not all the ordering are available for all the columns) of pattern browser the
user can perform different type of sorting:

Ascending. Sort by ascending value.

Descending. Sort by descending value.

Cardinality Sort by the number of item in a pattern.

Cardinality*Support. Sort by the product of Cardinality and the support
value of the pattern.

6.1.1 Relaxing or Strengthen constraints

The pattern browser isn’t only a visualization of pattern, but the user can
tuning the constraints specified in the source query by clicking with right
button on one of the constraint column and select Modify Constraint, the
window in fig.23 is showed. The user can modify the threshold of the con-
straint selected and then clicking on Apply the change are applied to the
pattern browser. During the change in the modify constraint window there
are the description of the current operation the user are going to perform:

31

Figure 23: Pattern Browser

Relaxing. The Th(C) ⊆ Th(C ′).

Strengthen. The Th(C ′) ⊆ Th(C).

using the same symbolism of def.1. Checking the box Apply on change the
change is applied immediately.

6.1.2 Materialize patterns

6.2 Extract Rules

7 Example of use

8 Appendix

8.1 Formal SPQL grammar

32

<SpqlQuery> ::= (<SqlQuery>| <MineQuery> | <Discretize>)

<MineQuery> ::=<Header>
<SqlQuery>
<MiningDefinition>
<Constraints>

<Header> ::= MINE PATTERNS WITH SUPP >= <Number>

<MiningDefinition> ::= TRANSACTION <Transaction>
 ITEM

<Item>
[ATTRIBUTE <Attribute>]

<Transaction> ::= <Field>[<Separator><Transaction>]

<Item> ::= <Field>[<Separator><Item>]

<Attribute> ::= <Field>[<Separator><Attribute>]

<Field> ::= <String>.<String>

<Constraints> ::= CONSTRAINED BY <Function>

<Function> ::= (<FunctionM>(<Field>)<Op><Number> | <FunctionS>(<Field>)<Op><Set> |

<FunctionN>()<Op><Number>) [<Separator>(Function)]

<FunctionM> ::= (Minimum | Maximum | Range | Variance | Std_Deviation | Median | Average | Sum)

<FunctionS>::= (Subset_of | Superset_of | Attribute_Subset_of | Attribute_Superset_of)

<FunctionN>::= Length

<Op> ::= (>|<|>=|<=)

<Separator> ::= ,

 ::= \n

<Set> ::= <String>[<Separator><Set>]

<Discretize>::= DISCRETIZE <Field> AS <Field>
 FROM <String>
 IN

(<Method>| <Intervals>) BINS
 SMOOTINGH BY <Smethod>

<Method> ::= (EQUALWIDTH | EQUALDEPTH)

<Smethod> ::= (AVERAGE | COUNT | BIN BOUNDARIES)

<Intervals>::= (<Number> <Separator> <Number>)[<Separator> <Intervals>]

<Number> ::= (0-9) [<Number>]

<String> ::= (a-z|A-Z|0-9) [<String>]

Table 2: A portion of spql formal grammar definition.

33

