
MBDyn Installation Manual

Version 1.X-Devel

Pierangelo Masarati

Dipartimento di Ingegneria Aerospaziale

Politecnico di Milano

Automatically generated May 18, 2007

Contents

1 Introduction 3

2 Getting the package 4

2.1 MBDyn . 4
2.2 Mathematical Utilities . 4

2.2.1 ATLAS . 4
2.2.2 BLAS . 5

2.3 Linear Solvers . 5
2.3.1 Naive . 5
2.3.2 Y12 . 5
2.3.3 Umfpack . 6
2.3.4 Lapack . 6
2.3.5 SuperLU (experimental) 6
2.3.6 TAUCS (experimental) 6
2.3.7 Harwell (historical) . 6
2.3.8 Meschach (historical) . 6

2.4 Utilities . 6
2.5 Communication . 6

2.5.1 MPI . 6
2.5.2 Metis . 6

2.6 Real-Time . 7
2.6.1 RTAI . 7

2.7 Build Environments . 7
2.7.1 GNU/Linux . 7
2.7.2 Windows: CygWin . 7
2.7.3 Windows: MSYS/MinGW 7

3 Building 8

3.1 Configuring . 8
3.1.1 Option List . 8
3.1.2 Multithread Assembly/Solution 9
3.1.3 Schur Parallel Solver . 9
3.1.4 Real-Time Simulator . 10

1

4 Installing 11

5 Executing 12

5.1 Regular Execution . 12
5.2 Parallel Execution . 12
5.3 Real-Time Execution . 12
5.4 External Execution . 12

6 Troubleshooting 13

7 HOWTOs 14

7.1 Run-Time Modules . 14
7.2 Schur Solver . 15
7.3 Real-Time Simulator . 17
7.4 Simulink Interface . 18

8 Developers 20

8.1 Prepare for Building . 20

2

Chapter 1

Introduction

This document describes how to download, build, install and execute MBDyn —
MultiBody Analysis program, a suite of tools for multibody/multidisciplinary
analysis of complex systems.

For any question or problem, to fix typos, bugs, for comments and sugges-
tions, please contact the Development Team without hesitation:

Pierangelo Masarati,
MBDyn Development Team
Dipartimento di Ingegneria Aerospaziale
Politecnico di Milano
via La Masa 34, 20156 Milano, Italy
Fax: +39 02 2399 8334
E-mail: mbdyn@aero.polimi.it

Web: http://www.aero.polimi.it/~mbdyn/

This document is also available online at
http://mbdyn.aero.polimi.it/~masarati/MBDyn-input/install/

3

mailto:mbdyn@aero.polimi.it
http://www.aero.polimi.it/~mbdyn/
http://mbdyn.aero.polimi.it/~masarati/MBDyn-input/install/

Chapter 2

Getting the package

2.1 MBDyn

The package can be downloaded in source form from

http://mbdyn.aero.polimi.it/~mbdyn/

Binary releases and snapshots are also available for Windows 2000/XP at
http://mbdyn.aero.polimi.it/~masarati/Download/mbdyn/, compiled with
Cygwin (see http://www.cygwin.com/) and thus require cygltdl-3.dll; they
are provided to Windows users to save them the burden of installing Cygwin
(very easy and straightforward, though) and to compile a package under an
unfamiliar environment. However, no support is provided for those builds, unless
problems are easily identifiable as related to the sources and not to the OS, and
they impact the UN*X version as well.

MBDyn may use a wide range of packages, if available on the host system
and correctly detected by configure.

2.2 Mathematical Utilities

MBDyn may exploit the availability of some mathematical utilities; neither of
them is required for a basic compilation, but they may be useful or required for
specific features.

2.2.1 ATLAS

The Automatically Tunable Linear Algebra Subroutines are a replacement of
the standard BLAS. They are exploited by the linear solver Umfpack (see Sec-
tion 2.3.3) and can be used by Lapack (see Section 2.3.4) and other packages
that require BLAS (see Section 2.2.2).

Note that ATLAS provides its own implementation of Lapack but only for
a limited set of functions. This set of functions is packed into an archive called

4

http://mbdyn.aero.polimi.it/~{}mbdyn/
http://mbdyn.aero.polimi.it/~masarati/Download/mbdyn/
http://www.cygwin.com/

liblapack.a, so in typical installations it may shadow complete implemen-
tations of the Lapack package. A useful “trick” to have a complete Lapack
installation that exploits ATLAS performances where available is described
in http://math-atlas.sourceforge.net/errata.html#completelp. The es-
sential instructions are reported below, assuming that $ATLAS and $LAPACK

respectively are the paths to your ATLAS and Lapack static library archive
files:

mkdir tmp

cd tmp

ar x $ATLAS/liblapack.a

cp $LAPACK/liblapack.a $ATLAS/liblapack.a

ar r $ATLAS/liblapack.a *.o

cd ..

rm -rf tmp

2.2.2 BLAS

The Basic Linear Algebra Subroutines can be used by Umfpack (see Section 2.3.3)
and other packages. Specially tuned binaries for each architecture (processor
type, cache size and other special hardware features) are advisable; otherwise,
instead of compiling them of your own, ATLAS (see Section 2.2.1) are considered
a better replacement.

2.3 Linear Solvers

MBDyn may use a variety of linear solvers

2.3.1 Naive

The Naive solver is also native. It is especially meant for medium size problems
(between 100 and 1000 unknowns) and is essentially a sparse solver optimized
for speed rather than memory usage.

2.3.2 Y12

The Y12 solver is also built-in. the MBDyn Project distributes the Y12 library
AS IS and WITHOUT ANY WARRANTY as part of the source code,
with no copyright statement and no license. Of course credits go to the original
Authors: Zahari Zlatev, Jerzy Wasniewski, and Kjeld Schaumburg, Comp. Sci.,
Math. Inst., University of Aarhus, Ny Munkegade, DK 8000 Aarhus. This solver
is recommended for moderate to large problems, if Umfpack (see Section 2.3.3)
is not available.

5

http://math-atlas.sourceforge.net/errata.html#completelp

2.3.3 Umfpack

The Umfpack linear sparse solver library must be downloaded separately, from
http://www.cise.ufl.edu/research/sparse/umfpack/. Credit goes to Tim-
othy A. Davis, University of Florida. Umfpack is used by permission; please
read its Copyright, License and Availability note. It is used as the standard
sparse solver by MATLAB (see http://www.mathworks.com/). This solver is
recommended for very large problems, and as a general purpose solver.

2.3.4 Lapack

2.3.5 SuperLU (experimental)

2.3.6 TAUCS (experimental)

2.3.7 Harwell (historical)

2.3.8 Meschach (historical)

2.4 Utilities

2.5 Communication

2.5.1 MPI

2.5.2 Metis

Metis is a package that performs automatic domain decomposition. It is used by
the Schur solution manager to partition the model into submodels of nearly equal
computational cost and with minimal interface size. Its compilation is straight-
forward. It can be downloaded from http://www-users.cs.umn.edu/~karypis/metis/metis/.
Its compilation for MBDyn used to require a special patch to cleanup its names-
pace; now the patch is no longer required as a better namespace separation has
been operated. No installation procedure is provided as of version 4.0; at the
end of compilation, the library libmetis.a is available in the build tree, and
it should be copied to a directory where the loader can locate it; the headers
Lib/*.h should be copied where the C preprocessor can locate them.

6

http://www.cise.ufl.edu/research/sparse/umfpack/
http://www.mathworks.com/
http://www-users.cs.umn.edu/~karypis/metis/metis/

2.6 Real-Time

2.6.1 RTAI

2.7 Build Environments

2.7.1 GNU/Linux

The preferred build environment is GNU/Linux, using gcc, g++ and either g77
or gfortran.

2.7.2 Windows: CygWin

MBDyn has been successfully compiled under CygWin. No special requirement
is known. Special attention is required to build with some specific feature,
significantly run-time loadable modules.

2.7.3 Windows: MSYS/MinGW

MBDyn has been successfully compiled under MSYS/MinGW. Special attention
needs to be played to what version is used.

Download packages from http://www.mingw.org/.
Required packages (in order of installation):

• MinGW-3.1.0-1.exe (install wizard)

• MSYS-1.0.10.exe (install wizard; if not automagically done, edit file /etc/fstab
as indicated in MSYS’ documentation)

• msysDTK-1.0.1.exe (install wizard)

• gcc-core-3.4.2-20040916-1.tar.gz (archive; untar after changing di-
rectory into /mingw)

• gcc-g++-3.4.2-20040916-1.tar.gz (archive; untar after changing direc-
tory into /mingw)

• gcc-g77-3.4.2-20040916-1.tar.gz (archive; untar after changing direc-
tory into /mingw)

• msys-libtool-1.5.tar.bz2 (archive; untar after changing directory into
/)

7

http://www.mingw.org/

Chapter 3

Building

The configuration of the MBDyn package is based on GNU’s autotools (see
http://www.gnu.org/ for details).

3.1 Configuring

3.1.1 Option List

Specific options (from configure --help):

--enable-debug enable debugging (no)

--with-debug-mode[={none|mem}] with debug mode {none|mem} (none)

--enable-socket-drives enable socket drives (auto)

--enable-runtime-loading enable runtime loading (auto)

--with-static-modules build (known) modules as static (auto)

--enable-crypt enable crypt (deprecated) (no)

--enable-schur enable Schur parallel solver

(needs MPI and either Metis or Chaco) (auto)

--enable-multithread enable multithread solution (no)

--enable-adams enable MSC.ADAMS output (no)

--enable-motionview enable Altair’s Motion View output (no)

--with-tcl with tcl interpreters (auto)

--with-libf2c[={f2c|g2c}] with f2c library (auto)

--with-fs[={unix|dos}] filesystem type (unix)

--with-mpi with MPI support (=pmpi for profiling) (auto)

--enable-debug-mpi enable MPI debugging (no)

--with-metis with Metis model partitioning support (auto)

--with-threads with threads (auto)

--with-rtai with RTAI support (no)

math libraries:

--with-blas with (C)BLAS math library (auto)

--with-goto=lib(s) with Goto BLAS implementation

--with-ginac with GiNaC support

8

http://www.gnu.org/

(ginac-config must be in $PATH) (auto)

linear algebra solvers (naive is enabled by default):

--with-y12 with Y12 sparse math library (yes)

--with-umfpack with Umfpack math library (auto)

--with-lapack with LAPACK math library (auto)

--with-hsl with HSL (Harwell) sparse math library - historical (auto)

--with-meschach with Meschach math library - historical (auto)

--with-superlu with SuperLU math library - eXperimental (auto)

misc security libraries:

--with-pam with PAM support (auto)

--with-sasl2 with Cyrus SASL2 support (auto)

supported features:

--with-struct with structural elements (yes)

--with-elec with electric stuff (yes)

--with-aero with aerodynamic stuff (yes)

--with-aero-output={std,gauss,node} aerodynamic output mode (auto)

--with-hydr with hydraulic stuff (yes)

--with-module=<list> build listed modules (see modules/)

3.1.2 Multithread Assembly/Solution

The switch --enable-multithread enables multithreaded assembly; it defaults
to auto, i.e. if the system meets the following requirements, it is automati-
cally enabled. Essentially, a working -lpthread library and a POSIX compli-
ant pthread.h header must be available. Currently, only the SuperLU sparse
threaded solver is available; it is experimental. A threaded implementation of
the built-in naive sparse solver is under development.

3.1.3 Schur Parallel Solver

The Schur parallel solver is enabled by using the switch --enable-schur. It
requires a working MPI library with the ch driver and the C++ interface, and
a partitioning library. The MPI library is selected by the switch --with-mpi,
which allows to specify the value pmpi if the profiling version of the library is
to be used. Note that recent MPI releases by default only build the profiling
version of the C++ library, so the pmpi value is mandatory. Currently, the
only partitioning library that is supported by MBDyn is METIS; a patch to
support Chaco is being incorporated, and may be available in future releases.
The Schur solver is not compatible with the multithreaded assembly/solution,
so if no switch is specified and the system meets the requirements for both, the
multithreaded assembly wins over the Schur solver. As a consequence, the schur
solver should be explicitly enabled.

9

3.1.4 Real-Time Simulator

The real-time simulator is enabled by using the switch --with-rtai, which
essentially detects the availability of the mandatory headers of the GNU/Linux
Real-Time Application Interface. These headers changed between 2.4.13 and
3.X; both versions are automatically detected.

10

Chapter 4

Installing

Run make install; this essentially installs the binary, the utilities, the man
page and the dynamic modules, if any.

11

Chapter 5

Executing

Prepare an input file and run mbdyn -f <input> -o <output>.

5.1 Regular Execution

5.2 Parallel Execution

5.3 Real-Time Execution

5.4 External Execution

To run MBDyn as a Simulink module, use the SimulinkInterface that is
available under contrib/.

12

Chapter 6

Troubleshooting

13

Chapter 7

HOWTOs

This chapter contains mini-howtos about typical significant configurations of
MBDyn as performed by the developers. Feel free to contribute your own if you
had to do any unusual configuring to meet special needs.

7.1 Run-Time Modules

To enable run-time loading of modules, a powerful means to extend MBDyn
functionality, one needs to:

• install, and let MBDyn detect, the ltdl library, an ancillary library of
libtool that handles platform-independent run-time loading of software
modules;

• enable run-time loading of modules; this requires to configure MBDyn
with --enable-runtime-loading;

• when using gcc, it is recommended to add -rdynamic to the LDFLAGS envi-
ronment variable; this is required to make functions and objects provided
by MBDyn available in the modules;

• when developing a custom module, it must be placed in a subdirectory
of the directory modules/, named module-name/. The module should
be contained in one file, with the same name of the directory plus the
language-specific extension; this should be

– C: module-name.c;

– C++: module-name.cc;

– Fortran 77: module-name.f.

• the building of each module must be explicitly enabled; this requires to
configure with --with-module=list, providing a list of the module names
(without the leading module-).

14

For example, to enable run-time loading and to build the wheel2 module, use

$./configure --enable-runtime-loading --with-module=wheel2

Occasionally, one may want to statically build some well-known modules into
MBDyn, specifically those that implement new elements. This requires to con-
figure with --with-static-modules. After that, the user-defined elements are
available as joints. Currently, only the wheel2 module can be statically built
into MBDyn; this feature will require some reworking.

Run-time loading of dynamic modules is known to work on any flavor of
GNU/Linux on X86/X86 64 and on Windows using Cygwin, when compiled
with gcc. It may work on other architectures and with other compilers, but it
has not been tested by, nor reported to, the Developers.

7.2 Schur Solver

This section describes how the Schur parallel solver available within the MBDyn
package has been successfully compiled and executed on a dual Athlon SMP
machine. By no means it is intended to suggest how the related packages should
be built for other purposes, nor it may represent a replacement for the original
build and install procedures. Please refer to the documentation available with
each package for more details or for troubleshooting.
Software prerequisites:

• gcc/g++/g77 >= 3.0 (tested with gcc/g++/g77 3.2.1, 3.3.1 and 3.4.0)

Software requirements:

• MBDyn 1.2.1

• mpich 1.2.5.2

• Metis 4.0

MPI

• download mpich.tar.gz from http://www-unix.mcs.anl.gov/mpi/

• untar the package in a temporary directory

• configure the package with

$./configure -rsh=ssh --disable-f77 --prefix=/usr/local/mpich

• make the package

• make install

• edit /usr/local/mpich/share/machines.<arch> to enumerate the max
number instances of the MBDyn process you want to allow on each ma-
chine; in my case <arch> is LINUX (more details in /usr/local/mpich/doc/mpichman-chp4.pdf).

15

http://www-unix.mcs.anl.gov/mpi/

Metis

• download XXX from http://www-users.cs.umn.edu/~karypis/metis/metis/

• untar it in a temporary directory

• apply the patch metis-namespace-cleanup.patch from
http://mbdyn.aero.polimi.it/~masarati/Download/mbdyn/

• make the package

• ...

• copy the library libmetis.a in /usr/local/lib and the header files
defs.h, macros.h, metis.h, proto.h, rename.h and struct.h in
/usr/local/include/metis.

MBDyn

• download mbdyn-1.2.1.tar.gz from
http://mbdyn.aero.polimi.it/~masarati/Download/mbdyn/

• untar it in a temporary directory

• make sure the compiler can find headers from MPI and Metis by defining

CPPFLAGS="-I/usr/local/mpich/include \

-I/usr/local/mpich/include/mpi2c++ \

-I/usr/local/include/metis"

• make sure the linker can find the libraries from MPI and Metis by defining

LDFLAGS="-L/usr/local/mpich/lib \

-L/usr/local/lib"

• configure MBDyn by running

$./configure --with-mpi=pmpi --with-metis --enable-schur \

--prefix=/usr/local

• make the package

• make install the package

Run It!

To test the system, one needs a test input file; the example cantilever2 from
http://www.aero.polimi.it/~mbdyn/documentation/examples/ should do the
trick. The input file does not need any specific change, unless special features
are required. To run it on an SMP machine, simply execute

$ /usr/local/mpich/bin/mpirun -np 2 mbdyn -f cantilever2 -o /tmp/ -ss

This generates a set of files /tmp/cantilever2.0.*and /tmp/cantilever2.1.*

with the outputs from processes 0 and 1.

16

http://www-users.cs.umn.edu/~karypis/metis/metis/
http://mbdyn.aero.polimi.it/~masarati/Download/mbdyn/
http://mbdyn.aero.polimi.it/~masarati/Download/mbdyn/
http://www.aero.polimi.it/~{}mbdyn/documentation/examples/

7.3 Real-Time Simulator

This section describes how the Real-Time simulator available within the MBDyn
package has been successfully compiled and executed. By no means it is intended
to suggest how the related packages should be built for other purposes, nor it
may represent a replacement for the original build and install procedures. Please
refer to the documentation available with each package for more details or for
troubleshooting.
Software prerequisites:

• gcc/g++/g77 >= 3.0 (tested with gcc 3.3.1 and 3.4.0)

Software requirements:

• MBDyn 1.2.1

• RTAI 3.0

RTAI

• download rtai-3.0.tar.gz from http://www.rtai.org/

• untar the package in a temporary directory

• configure the package with

$./configure

• make the package

• make install

MBDyn

• download mbdyn-1.2.1.tar.gz from
http://mbdyn.aero.polimi.it/~masarati/Download/mbdyn/

• untar it in a temporary directory

• make sure the compiler can find headers from RTAI by defining

CPPFLAGS="-I/home/realtime"

• configure MBDyn by running

$./configure --with-rtai

• make the package

• make install the package

17

http://www.rtai.org/
http://mbdyn.aero.polimi.it/~masarati/Download/mbdyn/

Run It!

To test the system, one needs a test input file; the example RT-MBDyn/pendulum
from http://www.aero.polimi.it/~mbdyn/documentation/examples/ should
do the trick. Simply execute

$ mbdyn -f pendulum -ss

...

7.4 Simulink Interface

This section describes how the Simulink Interface available within the MBDyn
package has been successfully compiled and executed. By no means it is intended
to suggest how the related packages should be built for other purposes, nor it
may represent a replacement for the original build and install procedures. Please
refer to the documentation available with each package for more details or for
troubleshooting.
Software prerequisites:

• gcc/g++/g77 >= 3.0 (tested with gcc 3.3.1 and 3.4.0)

• Matlab/Simulink (tested with XXX)

Software requirements:

• MBDyn 1.2.1

MBDyn

• download mbdyn-1.2.1.tar.gz from
http://mbdyn.aero.polimi.it/~masarati/Download/mbdyn/

• untar it in a temporary directory

• configure MBDyn by running

$./configure

• make the package

• make install the package

• in directory contrib/SimulinkInterface, edit the file Makefile such
that the appropriate mex compiler is used; in my system it is /opt/matlab/bin/mex

• make the package

18

http://www.aero.polimi.it/~{}mbdyn/documentation/examples/
http://mbdyn.aero.polimi.it/~masarati/Download/mbdyn/

Run It!

To test the system, one needs a test input file; the example pendulum in the
subdirectory examples should do the trick.

• start Matlab

• add the subdirectory contrib/SimulinkInterface to Matlab’s path, by
executing

> path(’<path/to>/contrib/SimulinkInterface’, path);

• execute simulink by clicking on the related icon, or by running

> simulink

• open the model by clicking File->Open on the menubar

• run the model by clicking Simulation->Start on the menubar. some
times, the first run fails; we’re still trying to track that down. In case, just
try again...

• for more details on creating your own model, or on editing the interface
parameters, refer to the README in contrib/SimulinkInterface

• an analogous interface with Scicos is under development.

19

Chapter 8

Developers

8.1 Prepare for Building

Developers need to prepare the build environment by running

$./bootstrap.sh

This need appropriate versions of the autotools:

• automake: there seems to be no special version requirement;

• autoconf: there seems to be no special version requirement;

• libtool: needs to be at least version 1.5.

20

Bibliography

21

	Introduction
	Getting the package
	MBDyn
	Mathematical Utilities
	ATLAS
	BLAS

	Linear Solvers
	Naive
	Y12
	Umfpack
	Lapack
	SuperLU (experimental)
	TAUCS (experimental)
	Harwell (historical)
	Meschach (historical)

	Utilities
	Communication
	MPI
	Metis

	Real-Time
	RTAI

	Build Environments
	GNU/Linux
	Windows: CygWin
	Windows: MSYS/MinGW

	Building
	Configuring
	Option List
	Multithread Assembly/Solution
	Schur Parallel Solver
	Real-Time Simulator

	Installing
	Executing
	Regular Execution
	Parallel Execution
	Real-Time Execution
	External Execution

	Troubleshooting
	HOWTOs
	Run-Time Modules
	Schur Solver
	Real-Time Simulator
	Simulink Interface

	Developers
	Prepare for Building

