
Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-1

Windows Internals and
Advanced Troubleshooting

Mark Russinovich
Winternals Software
David Solomon
David Solomon Expert Seminars

Part 1: Kernel Architecture

1-3

Purpose of Tutorial
Give IT Professionals a foundation
understanding of the Windows OS kernel
architecture

Note: this is a small, but important part of Windows
The “plumbing in the boiler room”

Condensed from a 5 day internals class
Benefits:

Able to troubleshoot problems more effectively
Understand system performance issues

Applies to NT4, Windows 2000, Windows XP,
and Windows Server 2003

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-4

Outline
1. Kernel Architecture
2. Troubleshooting Processes and Threads
3. Troubleshooting Memory Problems
4. Crash Dump Analysis

1-5

hardware interfaces (buses, I/O devices, interrupts,
interval timers, DMA, memory cache control, etc., etc.)

System Service Dispatcher

Task Manager
Explorer

SvcHost.Exe
WinMgt.Exe

SpoolSv.Exe

Service
Control Mgr.
LSASS

O
bject

M
gr.

Win32
USER,

GDIFile
System
C

ache

I/O Mgr

Environment
Subsystems

User
Application

Subsystem DLLs

OS/2

System Processes Services Applications

Original copyright by Microsoft Corporation. Used by permission.

System
Threads

User
Mode

Kernel
Mode

Win32

NTDLL.DLL

Device &
File Sys.
Drivers

WinLogon

Session
Manager

Services.Exe

POSIX

Plug and
Play M

gr.

Pow
er

M
gr.

Security
R

eference
M

onitor

Virtual
M

em
ory

Processes
&

Threads

Local
Procedure

C
all Graphics

Drivers

Kernel
Hardware Abstraction Layer (HAL)

(kernel mode callable interfaces)

Kernel Architecture

C
onfigura-
tion

M
gr

(registry)

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-6

Tools used to dig in
Many tools available to dig into Windows 2000/XP internals

Helps to see internals behavior “in action”

We’ll use these tools to explore the internals
Many of these tools are also used in the labs that you can do after
each module

Several sources of tools
Support Tools
Resource Kit Tools
Debugging Tools
Sysinternals.com
Inside Windows 2000, 3rd edition book CD

Additional tool packages with internals information
Platform Software Development Kit (SDK)
Device Driver Development Kit (DDK)

1-7

Windows XP
Six variants:

1. Windows XP Professional: replaces Windows 2000
Professional

2. Windows XP Home Edition (new)
First consumer focused release of NT
Replaces Windows ME (Millenium Edition)
Has slightly less features than Windows XP Professional

3. Windows XP Professional 64-bit Edition (new)
First 64-bit version of NT - 64-bit pointers, much larger
address space
Runs on Intel Itanium & Itanium 2 (later: AMD Opteron)

4. Windows XP Embedded
Same kernel as regular 32-bit XP
Configurable to remove unnecessary components
Boot and execute from ROM (OS runs from RAM, apps
from ROM)

5. Windows XP Media Center Edition
6. Windows XP Tablet PC Edition

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-8

Windows Server 2003
Replacement for Windows 2000 Server family
Name changes for flavors

Windows Server 2003, Web Edition (new package)
Windows Server 2003, Standard Edition (was Server)
Windows Server 2003, Enterprise Edition (was Advanced Server)
Windows Server 2003, Datacenter Edition (no change)

New features:
More scalable: 64 processor systems, 8 node clusters, larger
memory maximums
IIS 6.0 (HTTP in the kernel, Connection failover)
Active Directory enhancements
Many new group policies
Remote Installation Support (RIS)
Bundles .NET Framework

1-9

Level Of Kernel Change
Windows .NET Server 2003 & Windows XP are
modest upgrades as compared to the changes from
Windows NT 4.0 to Windows 2000
Kernel architecture is basically unchanged

No new subsystems
No new API sets

Internal version numbers confirm this
Windows 2000 is 5.0
Windows XP is 5.1 (not 6.0)
Windows .NET Server is 5.2

Not the same kernel as XP (a superset)

But, nonetheless, still lots of interesting kernel
changes…

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-10

Kernel Architecture

Process Execution Environment
Architecture Overview
Interrupt Handling & Time Accounting
System Threads
Process-based code
Summary

1-11

Processes And Threads
What is a process?

Represents an instance of a running program
You create a process to run a program
Starting an application creates a process

Process defined by
Address space
Resources (e.g., open handles)
Security profile (token)

What is a thread?
An execution context within a process
Unit of scheduling (threads run, processes don’t
run)
All threads in a process share the same per-
process address space

Services provided so that threads can
synchronize access to shared resources
(critical sections, mutexes, events,
semaphores)

All threads in the system are scheduled as peers
to all others, without regard to their “parent”
process

Per-process
address space

System-wide
Address Space

Thread

Thread

Thread

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-12

Scheduling Priorites

0

15
16

31

System Idle

Dynamic Idle

Realtime Idle

Realtime Time Critical

Realtime
Levels 16-31

Dynamic
Levels 1-15

24

13

8

4

Realtime

High

Normal
10

Above Normal

6

Below Normal
8

Idle

1-13

Processes And Threads
Every process starts with one thread

First thread executes the program’s “main” function
Can create other threads in the same process
Can create additional processes

Why divide an application into multiple threads?
Perceived user responsiveness, parallel/background execution

Examples: Word background print – can continue to edit during print
Take advantage of multiple processors

On an MP system with n CPUs, n threads can literally run at the
same time

Questions
Given a single threaded application, will adding a second
processor make it run faster?
Will a multithreaded application run faster on an MP system?

Depends if application internal synchronization permits this
Having too many runnable threads causes excess context switching

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-14

Code: EXE/DLLs
Data: EXE/DLL

static storage, per-
thread user mode

stacks, process
heaps, etc.

00000000

7FFFFFFF
Code:
NTOSKRNL, HAL,
drivers
Data: kernel stacks,

File system cache
Non-paged pool,
Paged pool

FFFFFFFF

80000000

Process page tables,
hyperspace

C0000000

32-Bit Virtual
Address Space
(x86)

2 GB per-process
Address space of one process
is not directly reachable from
other processes

2 GB system-wide
The operating system is
loaded here, and appears
in every process’s
address space
The operating system is not a
process (though there are
processes that do things for
the OS, more or less in
“background”)

3 GB user space and Address
Windowing Extensions (AWE)
t.b.d.

Unique per
process,

accessible in
user or kernel

mode

System wide,
accessible

only in kernel
mode

Per process,
accessible

only in kernel
mode

1-15

64-Bit Virtual
Address Space
(Itanium)

64-bit Windows 32-bit Windows
User Address Space 7152 GB 2 or 3 GB
System PTE Space 128 GB 2 GB
System Cache 1 TB 960 MB
Paged pool 128 GB 650 MB
Non-paged pool 128 GB 256 MB

User-Mode User Space

Kernel-Mode User Space

1FFFFF0000000000 User Page Tables

Session Space

Session Space Page Tables

System Space

6FC00000000

2000000000000000

3FFFFF0000000000

E000000000000000
-E000060000000000

FFFFFF0000000000 Session Space Page Tables

0

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-16

Memory Protection Model

No user process can touch another user process’
address space

Without first opening the process (means passing
through NT security)

All kernel components share a single address
space

This is how driver bugs can cause ‘blue screens’
Most other commercial OSs (Unix, Linix, VMS etc.) have
the same design

1-17

Memory Protection Model
Controlled by using two hardware access modes:
user and kernel

X86: Ring 0, Ring 3
Itanium: Privilege Level 0 & 3
Each memory page is tagged to show the required
mode for access

Associated with threads
Threads can change from user to kernel mode and
back (via a secure interface)
Part of saved context, along with registers, etc.
Does not affect scheduling

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-18

Accounting for Kernel-Mode Time
“Processor Time” =
total busy time of
processor (equal to
elapsed real time -
idle time)
“Processor Time” =
“User Time” +
“Privileged Time”
“Privileged Time” =
time spent in kernel
mode
“Privileged Time”
includes:

Interrupt Time
DPC Time
Explained later… Screen snapshot from: Programs |

Administrative Tools | Performance Monitor
click on “+” button, or select Edit | Add to chart...

1-19

Kernel Architecture

Process Execution Environment
Architecture Overview
Interrupt Handling & Time Accounting
System Threads
Process-based code
Summary

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-20

Multiple OS Personality Design

OS/2
Win32

POSIX

Environment Subsystems

User
Application
Subsystem DLL

Win32
User/GDI

Executive
Device Drivers Kernel

Hardware Abstraction Layer (HAL)

User
Mode

Kernel
Mode

System
& Service
Processes

NTDLL.DLL

1-21

Environment Subsystems
Windows NT 4.0 shipped with three environment
subsystems

Win32 – 32-bit Windows API
OS/2 – 1.x character-mode apps only

Removed in Windows 2000
Posix – only Posix 1003.1 (bare minimum Unix services – no
networking, windowing, threads, etc.)

Removed in Windows XP/Server 2003 – enhanced version ships
with Services For Unix 3.0

Of the three, Win32 provides access to the majority of the
native functions
Of the three, Win32 is required to be running

System crashes if Win32 subsystem process exits
POSIX and OS/2 subsystems are Win32 programs
POSIX and OS/2 start on demand (first time an app is run)

Stay running until system shutdown

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-22

OS/2
Win32

POSIX

Environment Subsystems

User
Application

Subsystem DLL

Win32
User/GDI

User
Mode

Executive
Device Drivers Kernel

Hardware Abstraction Layer (HAL)

Kernel
Mode

System
& Service
Processes

Subsystem Components

API DLLs
For Win32: Kernel32.DLL, Gdi32.DLL, User32.DLL, etc.

Subsystem process
For Win32: CSRSS.EXE (Client Server Runtime SubSystem)

For Win32 only: kernel-mode GDI code
Win32K.SYS – (this code was formerly part of CSRSS)

3

2

1

3

2

1

1-23

Role Of Subsystem Components

API DLLs
Export the APIs defined by the subsystem
Implement them by calling Windows “native” services, or by asking the
subsystem process to do the work

Subsystem process
Maintains global state of subsystem
Implements a few APIs that require subsystem-wide state changes

Processes and threads created under a subsystem
Drive letters
Window management for apps with no window code of their own (character-
mode apps)
Handle and object tables for subsystem-specific objects

Win32K.Sys
Implements Win32 User and GDI functions; calls routines in
GDI drivers
Also used by Posix and OS/2 subsystems to access the display

3

2

1

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-24

Symmetric Multiprocessing (SMP)
No master processor

All the processors share just one
memory space
Interrupts can be serviced on any
processor
Any processor can cause another
processor to reschedule what it’s
running

Current implementation supports up
to 32 CPUs (64-bit edition is 64
internally)

Not an architectural limit—just
implementation
Maximum # of CPUs stored in registry
HKLM\System\CurrentControlSet
\Control\Session Manager
\LicensedProcessors

Memory I/O

CPUs

L2
Cache

SMP

1-25

SMP Scalability
Scalability is a function of parallelization and
resource contention

Can’t make a general statement
Different for different applications (e.g., file server
versus SQL versus Exchange)

Windows kernel provides a scalable foundation
Multiple threads of execution within a single process,
each of which can execute simultaneously on different
processors
Ability to run operating system code on any available
processor and on multiple processors at the same time
Fine-grained synchronization within the kernel as well
as within device drivers allows more components to run
concurrently on multiple processors
Multiple programming mechanisms that facilitate
scalable server applications (e.g. I/O completion ports)

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-26

SMP Scalability
More efficient locking mechanism (pushlocks)
Minimized lock contention for hot locks

E.g., PFN (Page Frame Database) lock
Some locks completely eliminated

Charging nonpaged/paged pool quotas, allocating and
mapping system page table entries, charging
commitment of pages, allocating/mapping physical
memory through
AWE functions

Even better in Server 2003:
Further reduction of use of spinlocks & length they are
held
Dispatcher (scheduling) database locking now per-
CPU

1-27

New MP Configurations
NUMA (non uniform memory architecture) systems

Groups of physical processors (called “nodes”) that have “local
memory”
Still an SMP system (e.g. any processor can access all of memory)

But node-local memory is faster
Scheduling algorithms take this into account

Hyperthreading support
CPU fools OS into thinking there are multiple CPUs

Example: dual Xeon with hyperthreading can support 2 logical
processors

Windows Server 2003 is hyperthreading aware
Logical processors don’t count against physical processor limits
Scheduling algorithms take into account logical vs physical
processors

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-28

Many Packages…
1. Windows XP Home Edition

1 CPU, 4GB RAM
2. Windows 2000 & XP Professional

Desktop version (but also is a fully functional server system)
2 CPUs, 4GB RAM

3. Windows Server 2003, Web Edition (new)
Reduced functionality Standard Server (no domain controller)
2 CPUs, 2GB RAM

4. Windows 2000 Server/Windows Server 2003, Standard Edition
Adds server and networking features (active directory-based domains,
host-based mirroring and RAID 5, NetWare gateway, DHCP server,
WINS, DNS, …)
Also is a fully capable desktop system
4 CPUs (2 in Server 2003), 4GB RAM

5. Windows 2000 Advanced Server/Windows Server 2003, Enterprise
Edition

3GB per-process address space option, Clusters (8 nodes)
8 CPUs, 8GB RAM (32GB in Server 2003 32-bit; 64GB on 64-bit)

6. Windows 2000/Server 2003 Datacenter Edition
Process Control Manager
Licensed for 32 CPUs, 64GB RAM (128GB on 64-bit edition)

1-29

…But one OS
Through Windows 2000, core operating system
executables are identical

NTOSKRNL.EXE, HAL.DLL, xxxDRIVER.SYS, etc.
XP & Server 2003 have different kernel versions, but not
substantially different

Registry indicates system type (set at install time)
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control

\ProductOptions
ProductType: WinNT=Workstation, ServerNT=Server not a domain
controller, LanManNT=Server that is a Domain Controller
ProductSuite: indicates type of Server (Advanced, Datacenter, or for
Windows NT 4.0: Enterprise Edition, Terminal Server, …)

Code in the operating system tests these values and
behaves slightly differently in a few places

Licensing limits (number of processors, number of inbound network
connections, etc.)
Boot-time calculations (mostly in the memory manager)
Default length of time slice

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-30

NTOSKRNL.EXE
Core operating system image

Contains Executive and Kernel
Kernel versions

Windows NT 4.0 is 4.0 (client and server)
Windows 2000 is 5.0 (client and server)
Windows XP is 5.1 (client only)
Windows Server 2003 is 5.2 (server only)

Kernel evolution
NT4->Windows 2000 – significant change
Windows 2000->Windows XP – modest change
Windows XP->Server 2003 – minimal change

1-31

NTOSKRNL Variants

Four variations:
4GB or less

NTOSKRNL.EXE Uniprocessor
NTKRNLMP.EXE Multiprocessor

>4GB (new as of Windows 2000)
NTKRNLPA.EXE Uniprocessor w/extended

addressing support
NTKRPAMP.EXE Multiprocessor w/extended

addressing support

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-32

HAL – Hardware Abstraction Layer
Responsible for a small part of “hardware
abstraction”

Components on the motherboard not handled by drivers
System timers, Cache coherency, and flushing
SMP support, Hardware interrupt priorities

Subroutine library for the kernel and device drivers
Isolates OS & drivers from platform-specific details
Presents uniform model of I/O hardware interface to
drivers

Reduced role in Windows 2000
Bus support moved to bus drivers
Majority of HALs are vendor-independent

1-33

NTOSKRNL And HAL Selection

Selected at installation time
See \windows\repair\setup.log to find out which one
Can select manually at boot time with /HAL= in boot.ini

NT distribution
CD-ROM:\i386

NTOSKRNL.EXE,
NTKRNLPA.EXE,
NTKRNLMP.EXE,
NTKRPAMP.EXE

HAL.DLL
HALACPI.DLL
etc.

NTOSKRNL.EXE
NTKRNLPA.EXE

HAL.DLL

Boot Partition:
\Windows\System32

NT Setup

(see \windows\repair\setup.log)

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-34

NTOSKRNL And HAL Selection
NTOSKRNL & HAL considered to be the “device drivers” for the
“computer”

Go to Control Panel->System – Hardware tab
Click on “Device Manager”
Click on “Computer”
Right click/Properties on
“driver” for PC

Screen snapshot from:
Control Panel | System | Hardware |
Device Manager | Computer properties |
Driver Details

1-35

Debug Version
“Checked Build”

Special debug version of system called “Checked Build”
Provided with MSDN
Primarily for driver testing, but can be useful for catching timing bugs in
multithreaded applications

Built from same source files as “free build” (a.k.a., “retail build”)
“DBG” compile-time symbol defined which enables:

Error tests for “can’t happen” conditions in kernel mode (ASSERTs)
Validity checks on arguments passed from one kernel mode routine to another

Multiprocessor kernel (of course, runs on UP systems)
Since no checked Server CD provided, can copy checked NTOSKRNL, HAL,
to a normal Server system

Select debug kernel and HAL with Boot.ini /KERNEL=, /HAL= switches
See Knowledge base article 314743 (HOWTO: Enable Verbose Debug
Tracing in Various Drivers and Subsystems)

#ifdef DBG
if (something that should never happen has happened)

KeBugCheckEx(…)
#endif

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-36

Kernel Architecture

Process Execution Environment
Architecture Overview
Interrupt Handling & Time Accounting
System Threads
Process-based code
Summary

1-37

Interrupt Dispatching

Interrupt dispatch routine

Disable interrupts

Record machine state (trap
frame) to allow resume

Mask equal- and lower-IRQL
interrupts

Find and call appropriate
ISR

Dismiss interrupt

Restore machine state
(including mode and
enabled interrupts)

Tell the device to stop
interrupting
Interrogate device state,
start next operation on
device, etc.
Request a DPC
Return to caller

Interrupt service routine

interrupt !

user or
kernel mode

code
kernel mode

Note, no thread or
process context
switch!

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-38

Interrupt Precedence Via IRQLs
IRQL = Interrupt Request Level

The “precedence” of the interrupt
with respect to other interrupts
Different interrupt sources have
different IRQLs
Not the same as IRQ

IRQL is also a state of the
processor
Servicing an interrupt raises
processor IRQL to that
interrupt’s IRQL

This masks subsequent interrupts at
equal and lower IRQLs

User mode is limited to IRQL 0
No waits or page faults at
IRQL >= DISPATCH_LEVEL

Passive
APC

Dispatch/DPC
Device 1

.

.

.
Device n

Clock
Interprocessor Interrupt

Power fail
High

normal thread execution

Hardware interrupts

Deferrable software interrupts

0
1
2

30
29
28

31

1-39

Deferred Procedure Calls (DPCs)

Used to defer processing from higher (device) interrupt level to a
lower (dispatch) level

Driver (usually ISR) queues request
One queue per CPU; DPCs are normally queued to the current
processor, but can be targetted to other CPUs
Executes specified procedure at dispatch IRQL (or “dispatch level”, also
“DPC level”) when all higher-IRQL work (interrupts) completed

Used heavily for driver “after interrupt” functions
Also used for quantum end and timer expiration

queue head DPC object DPC object DPC object

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-40

Interrupt Time Accounting
Time servicing interrupts are NOT charged to
interrupted thread

Time spent at IRQL 2 appears as “% DPC time”
Time spent at IRQL >2 appears as “% interrupt time”
Hence no process appears to be running

What if system is not idle, but no process
appears to be running?

Must be due to interrupt-related activity
Performance counters (Processor object):

% Interrupt time – time spent processing hardware
interrupts
% DPC time – software generated interrupts
Can also look at Interrupts/sec & DPCs Queued/sec

1-41

Time Accounting Quirks
Looking at total CPU time for each process may
not reveal where system has spent its time
CPU time accounting is driven by programmable
interrupt timer

Normally 10 msec (15 msec on some MP Pentiums)
Thread execution and context switches between
clock intervals NOT accounted

E.g., one or more threads run and enter a wait state
before clock fires
Thus threads may run but never get charged

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-42

Kernel Architecture

Process Execution Environment
Architecture Overview
Interrupt Handling & Time Accounting
System Threads
Process-based code
Summary

1-43

System Threads

Functions in OS and some drivers that need to run as
real threads

E.g., need to run concurrently with other system activity, wait on
timers, perform background “housekeeping” work
Always run in kernel mode
Not non-preemptible (unless they raise IRQL to 2 or above)
For details, see DDK documentation on PsCreateSystemThread

What process do they appear in?
“System” process (Windows NT 4.0: PID 2,
Windows 2000: PID 8, Windows XP: PID 4)
In Windows 2000 and XP, windowing system threads (from
Win32k.sys) appear in “csrss.exe”
(Win32 subsystem process)

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-44

Examples Of System Threads
Memory Manager

Modified Page Writer for mapped files
Modified Page Writer for paging files
Balance Set Manager
Swapper (kernel stack, working sets)
Zero page thread (thread 0, priority 0)

Security Reference Monitor
Command Server Thread

Network
Redirector and Server Worker Threads

Threads created by drivers for their exclusive use
Examples: Floppy driver, parallel port driver

Pool of Executive Worker Threads
Used by drivers, file systems, …
Accessed via ExQueueWorkItem

1-45

Understanding System Threads

Later we’ll see how to understand what
system thread is running when the System
process is consuming CPU time…

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-46

Kernel Architecture

Process Execution Environment
Architecture Overview
Interrupt Handling & Time Accounting
System Threads
Process-based code
Summary

1-47

Process-Based Code
OS components that run in separate executables
(.exes), in their own processes

Started by system
Not tied to a user logon

Three types
Environment subsystems (already described)
System startup processes

Note: “system startup processes” is not an official Microsoft
defined name

Win32 Services
Let’s examine the system process “tree”

Use Tlist /T or Process Explorer

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-48

Process-Based NT Code
System Startup Processes

First two processes aren’t real processes
Not running a user mode .EXE
No user-mode address space
Different utilities report them with different names
Data structures for these processes (and their initial threads) are
“pre-created” in NtosKrnl.Exe and loaded along with the code

(Idle) Process id 0
Part of the loaded system image
Home for idle thread(s) (not a real process nor real threads)
Called “System Process” in many displays

(System) Process id 2 (8 in Windows 2000; 4 in XP)
Part of the loaded system image
Home for kernel-defined threads (not a real process)
Thread 0 (routine name Phase1Initialization) launches the first
“real” process, running smss.exe...

...and then becomes the zero page thread

1-49

Process-Based NT Code
System Startup Processes

smss.exe Session Manager
The first “created” process
Takes parameters from
\HKEY_LOCAL_MACHINE\System\CurrentControlSet
\Control\Session Manager
Launches required subsystems (csrss) and then winlogon

csrss.exe Win32 subsystem
winlogon.exe Logon process: Launches services.exe & lsass.exe; presents first

login prompt
When someone logs in, launches apps in
\Software\Microsoft\Windows NT\WinLogon\Userinit

services.exe Service Controller; also, home for many NT-supplied services
Starts processes for services not part of services.exe (driven by
\Registry\Machine\System\CurrentControlSet\Services)

lsass.exe Local Security Authentication Server
userinit.exe Started after logon; starts Explorer.exe (see

\Software\Microsoft\Windows NT\CurrentVersion\WinLogon\Shell)
and exits (hence Explorer appears to be an orphan)

explorer.exe and its children are the creators of all interactive apps

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-50

Win32 Services
An overloaded generic term
A process created and managed by the Service
Control Manager (Services.exe)

E.g. Solitaire can be configured as a service, but is
killed shortly after starting

Similar in concept to Unix daemon processes
Typically configured to start at boot time (if started
while logged on, survive logoff)
Typically do not interact with the desktop

Note: Prior to Windows 2000 this is one way to
start a process on a remote machine (now you
can do it with WMI)

1-51

Service
Controller/
Manager

(Services.Exe)

Life Of A Service
Install time

Setup application tells Service
Controller about the service

System boot/initialization
SCM reads registry, starts
services as directed

Management/maintenance
Control panel can start
and stop services and
change startup parameters

Setup
Application

CreateService
Registry

Service
Processes

Control
Panel

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-52

Mapping Services to Service
Processes

Service properties displayed through Control
Panel (services.msc) show name of .EXE

But not which process started services are in
Tlist /S or Tasklist /svc (new as of XP) list
internal name of services inside service
processes
Process Explorer shows both internal and
external name

1-53

Services Infrastructure Improvements
Two new less privileged accounts for built-in services

LOCAL SERVICE, NETWORK SERVICE
Less rights than LocalSystem

Reduces possibility of damage if system compromised

More services run in generic service host process
(svchost.exe)

Reduces number of processes

Four instances (at least)
SYSTEM
SYSTEM (2nd instance – for RPC)
LOCAL SERVICE
NETWORK SERVICE

Later we’ll see how to understand WHICH service is
consuming CPU time when a multi-service process is
running

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-54

Logon Process
1. Winlogon sends username/password to Lsass

Either on local system for local logon, or to Netlogon service on a domain
Windows XP enhancement: Winlogon doesn’t wait for Workstation
service to start if:

Account doesn't depend on a roaming profile
Domain policy that affects logon hasn't changed since last logon
Controller for a network logon

2. Creates a process to run
HKLM\Software\Microsoft\Windows NT

\CurrentVersion\WinLogon\Userinit
By default: Userinit.exe
Runs logon script, restores drive-letter mappings, starts shell

3. Userinit creates a process to run
HKLM\Software\Microsoft\Windows NT

\CurrentVersion\WinLogon\Shell
By default: Explorer.exe

There are other places in the Registry that control
programs that start at logon

1-55

Processes Started at Logon
Displays order of processes configured to start at log on time
Also can use new XP built-in tool called
“System Configuration Utility”

To run, click on Start->Help, then “Use Tools…”, then System
Configuration Utility
Only shows what’s defined to start vs Autoruns which shows all places
things CAN be defined to start

Autoruns (Sysinternals) Msconfig
(in \Windows\pchealth\helpctr\binaries)

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-56

Kernel Architecture

Process Execution Environment
Architecture Overview
Interrupt Handling & Time Accounting
System Threads
Process-based code
Summary

1-57

hardware interfaces (buses, I/O devices, interrupts,
interval timers, DMA, memory cache control, etc., etc.)

System Service Dispatcher

Task Manager
Explorer

SvcHost.Exe
WinMgt.Exe

SpoolSv.Exe

Service
Control Mgr.
LSASS

O
bject

M
gr.

Win32
USER,

GDIFile
System
C

ache

I/O Mgr

Environment
Subsystems

User
Application

Subsystem DLLs

OS/2

System Processes Services Applications

Original copyright by Microsoft Corporation. Used by permission.

System
Threads

User
Mode

Kernel
Mode

Win32

NTDLL.DLL

Device &
File Sys.
Drivers

WinLogon

Session
Manager

Services.Exe

POSIX

Plug and
Play M

gr.

Pow
er

M
gr.

Security
R

eference
M

onitor

Virtual
M

em
ory

Processes
&

Threads

Local
Procedure

C
all Graphics

Drivers

Kernel
Hardware Abstraction Layer (HAL)

(kernel mode callable interfaces)

Kernel Architecture

C
onfigura-
tion

M
gr

(registry)

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-58

Four Contexts For Executing Code
Full process and thread context

User applications
Win32 Services
Environment subsystem processes
System startup processes

Have thread context but no “real” process
Threads in “System” process

Routines called by other threads/processes
Subsystem DLLs
Executive system services (NtReadFile, etc.)
GDI32 and User32 APIs implemented in Win32K.Sys (and graphics
drivers)

No process or thread context (“arbitrary thread context”)
Interrupt dispatching
Device drivers

1-59

Core Kernel System Files
Kernel32.Dll, Gdi32.Dll, User32.Dll

Export Win32 entry points

NtDll.Dll
Provides user-mode access to system-space routines
Also contains heap manager, image loader, thread startup routine

NtosKrnl.Exe (or NtkrnlMp.Exe)
Executive and kernel
Includes most routines that run as threads in “system” process

Win32K.Sys
The loadable module that includes the now-kernel-mode Win32
code (formerly in csrss.exe)

Hal.Dll
Hardware Abstraction Library

drivername.Sys
Loadable kernel drivers

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-60

End of Kernel Architecture

Next: Process & Thread Troubleshooting

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-1

Windows Internals and
Advanced Troubleshooting
Part 2: Troubleshooting Processes &

Threads

1-2

Agenda

� Introduction to Tools
� Identifying the Process
� Analyzing Process/Thread Activity
� Application Failures

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-3

Tools for Obtaining Process &
Thread Information
� Many overlapping tools (most show one item the others do not)
� Built-in tools in Windows 2000/XP:

� Task Manager, Performance Tool
� Tasklist (new in XP)

� Support Tools
� pviewer - process and thread details (GUI)
� pmon - process list (character cell)
� tlist - shows process tree and thread details (character cell)

� Resource Kit tools:
� apimon - system call and page fault monitoring (GUI)
� oh – display open handles (character cell)
� pviewer - processes and threads and security details (GUI)
� ptree – display process tree and kill remote processes (GUI)
� pulist - lists processes and usernames (character cell)
� pstat - process/threads and driver addresses (character cell)
� qslice - can show process-relative thread activity (GUI)

� Tools from www.sysinternals.com
� Process Explorer – super Task Manager – shows open files, loaded DLLs, security info,

etc.
� Pslist – list processes on local or remote systems
� Ntpmon - shows process/thread create/deletes (and context

switches on MP systems only)
� Listdlls - displays full path of EXE & DLLs loaded in each process

1-4

Tools We’ll Look At
� Task Manager – see what’s using CPU
� Process Explorer (Procexp) – view

process details
� Filemon – monitors file I/O
� Regmon – monitors registry I/O
� Pssuspend – suspends a proces
� Strings – dumps printable strings in files

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-5

Agenda

� Introduction & Data Structures
� Identifying the Process
� Analyzing Process/Thread Activity
� Application Failures

1-6

The CPU Is Busy – Why?

� System is busy
(may be slow)

� What is running?
� A user or system

process?
� Interrupt activity?

� What’s it doing?
� File I/O? Network

I/O? Registry
calls?

� Application code?

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-7

Which Process Is Running?
� Determine which process’

threads are consuming
the most CPU time

� Quick method:
� Open Task Manager

->Processes
� Sort processes by “CPU”

usage column
� Other tools
� Qslice.exe (Resource Kit)
� Performance Monitor

(monitor %Processor Time
counter in process object
for all processes)

1-8

Task Manager:
Applications vs.
Processes
� Applications tab: List

of top level visible
windows
� Windows are owned by

threads
� Right-click on a window

and select “Go to
process”

� Processes tab: List of
processes
� Can configure with

View->Select columns

“Running” means
waiting for window
messages

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-9

Dealing with a CPU Hog

� Option 1: Try and figure out what it’s doing using
monitoring tools explained later in this talk

� Option 2: Lower the priority
� Option 3: Suspend the process with PsSuspend

� Another use: you’ve started a long running job but
want to pause it to do something else
� Lowering the priority still leaves it running…

� Option 4: Kill the process

1-10

Identify The Image
� Once you’ve found the process of interest,

what is it?
� Sometimes name of .EXE identifies clearly

(e.g., Winword.exe)
� Often, it doesn’t since Task Manager doesn’t

show the full path of the image
� We need more information!

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-11

Process Explorer (Sysinternals)
� “Super Task Manager”
� Shows full image path, command line, environment

variables, parent process, security access token, open
handles, loaded DLLs & mapped files

1-12

Process Explorer
� Process tree

� If left justified, parent has exited
� Disappears if you sort by any column

� Bring back with View->Show Process Tree

� Additional details in process list
� Icon and description (from .EXE)
� User Name shows domain name

� Highlight Own, Services Processes
� Differences highighting

� Green: new, Red: gone
� View->Update speed->Paused

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-13

Process Properties
� Image tab:

� Description, company name, version
(from .EXE)

� Full image path
� Command line used to start process
� Current directory
� Parent process
� User name
� Start time

� Performance tab:
� Basic process CPU/memory usage

� Security tab:
� Access token (groups list, privilege list)

� Environment tab: environment
variables

� Services tab (only for service
processes):
� List of services hosted by process

1-14

Process Tree

� System keeps track of
parent/child relationship

� What if parent exits?
� System only keeps track of

parent PID
� If parent exits, no way to

find its ancestors (without a
trace of process creations)

� Process Explorer shows
orphans left justified

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-15

Handle and DLL Views

� Lower half of display shows either:
� Open handles
� Loaded DLLs & mapped files

� Handle View
� Sort by handle
� Objects of type “File” and “Key” are most

interesting for general troubleshooting
� DLL View
� Shows loaded DLLs, .EXE, and any memory

mapped files

1-16

Process Explorer Lab

1. Run Process Explorer
2. Sort on first column (“Process”) and note tree

view disappears
3. Click on View->Show Process Tree to bring it

back
4. Change update speed to paused
5. Run Notepad
6. In ProcExp, hit F5 and notice new process
7. Find value of PATH environment variable in

Notepad
8. Exit Notepad
9. In ProcExp, hit F5 and notice Notepad in red

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-17

Identify The Image (Continued)
� Check “Description” column in Process Explorer
� Taken from .EXE header

1-18

Identify The Image
� Sometimes description is not meaningful

� Check full path of
.EXE with Process
Explorer
� Often pinpoints

which product

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-19

Identify The Image
� Often, applications are

installed in
\Windows\System32
� Or in folders with

unrecognizable names
� Check company name

or copyright
� Process Explorer: double

click on process
� Explorer->right-click,

properties on .EXE

1-20

Identify The Image

� What if image properties say
nothing?

� Examine open handles
� Open files or registry keys may

give a clue

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-21

Identifying Processes

� If you still don’t know what the EXE is, run
Strings on it
� Dumps printable strings in binary

� Need to run twice
� No switches dumps Unicode strings
� “–a” switch dumps ANSI strings

� Printable strings may yield clues
� Registry keys
� Help/error message text

1-22

Agenda

� Introduction & Data Structures
� Identifying the Process
� Analyzing Process/Thread Activity
� Application Failures

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-23

Multi-service Processes

� Some processes host multiple services
� E.g. Svchost.exe, Inetinfo.exe (IIS)

� If still not clear what process is doing,
need to peer inside process and examine
which thread(s) are running and what
code they are executing
� With Performance Monitor, monitor

%Processor Time for threads inside
a process

� Find thread(s) consuming CPU time

1-24

Analyzing Thread Activity

� Then try and determine what code they are
executing by finding which code module
the thread started in:
� 1. Get thread start address with Tlist
� 2. With Process Explorer DLL view, sort by

base address and find in which module the
address lies
� Can also do this with Tlist

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-25

Analyzing Thread Activity

� Start address may not be enough
� May need to look at call stack

� Can attach with Windbg or Ntsd and issue
“k” command
� Caution: pre-XP, exiting debugger kills

debugee if real debugger attachment
� Attach “noninvasive”
� Freezes threads while connected
� Allows viewing information in process, but not

changing data

1-26

Analyzing Call Stacks

� With Windbg, click on
File->Attach to Process

� Then View->
Call Stack

� Then View
->Processes and
Threads
� Select thread of interest

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-27

Call Stacks
� If not obvious from

function names, note
name of DLL and look
at description in
Process Explorer

� Run Strings
(Sysinternals) on DLL
or EXE

1-28

Examining System Threads
� If System threads are consuming CPU time,

cannot use WinDbg to attach to process and
examine user stack
� System threads always run in kernel mode
� No user stack

� Need to find out what code is running, since it
could be any one of a variety of components
� Memory manager modified page writer
� Swapper
� File server worker threads

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-29

Examining System Threads
� With user-mode tools:

1.PerfMon: monitor %Processor time for
each thread in System process

2.Determine which thread(s) are running
3.From this, get “Start address” (address

of thread function) in Pviewer
4.Run pstat to find which driver thread

start address falls in
¾ Look for what driver starts near the thread

start address

1-30

Examining System Threads
� With Kernel Debugger:
� ln (“List Near”) <startaddress> will give name of

driver and function
� Use !process or !thread to see kernel stack

lkd> ln 8061adb8
(8061adb8) nt!MiModifiedPageWriter | (8061af38)
lkd> !process 4

…
THREAD 816113e0 Cid 8.50 WAIT: (Executive) KernelMode Non-Alertable

f5c67d70 NotificationTimer
80482540 SynchronizationEvent

Start Address nt!KeBalanceSetManager (0x804634e0)
Stack Init f5c68000 Current f5c67cc0 Base f5c68000 Limit f5c65000 Call 0

ChildEBP RetAddr Args to Child
f5c67cd8 8042d5a3 ffffffff ff676980 00000000 nt!KiSwapThread+0xc5
f5c67d0c 8046355e 00000002 f5c67d98 00000001 nt!KeWaitForMultipleObjects+0x266
f5c67da8 80454faf 00000000 00000000 00000000 nt!KeBalanceSetManager+0x7e
f5c67ddc 80468ec2 804634e0 00000000 00000000 nt!PspSystemThreadStartup+0x69
00000000 00000000 00000000 00000000 00000000 nt!KiThreadStartup+0x16

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-31

Agenda

� Introduction & Data Structures
� Identifying the Process
� Analyzing Process/Thread Activity
� Application Failures

1-32

Troubleshooting Application Failures

� Most applications do a poor job of reporting
file-related or registry-related errors
� E.g. permissions problems
� Missing files
� Missing or corrupt registry data

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-33

Troubleshooting Application Failures

� When in doubt, run Filemon and Regmon!
� Filemon monitors File I/O; Regmon monitors

registry I/O
� Ideal for troubleshooting a wide variety of

application failures
� Also useful for to understand and tune file

system access
� E.g. understanding hard drive activity

� Work on all Windows® OSs
� Used extensively within Microsoft

1-34

Using Regmon/Filemon

� Two basic techniques:
� Go to end of log and look backwards to where problem

occurred or is evident and focused on the last things
done

� Compare a good log with a bad log
� Often comparing the I/O and Registry activity of a

failing process with one that works may point to
the problem
� Have to first massage log file to remove data that differs

run to run
� Delete first 3 columns (they are always different: line #, time,

process id)
� Easy to do with Excel by deleting columns

� Then compare with FC (built in tool) or Windiff
(Resource Kit)

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-35

Filemon
� # - operation number
� Process: image name + process id
� Request: internal I/O request code
� Result: return code from I/O operation
� Other: flags passed on I/O request

1-36

Controlling Filemon

� Start/stop logging (Control/E)
� Clear display (Control/X)
� Open Explorer window to folder containing

file:
� Double click on a line does this

� Find – finds text within window
� Save to log file
� History depth
� Advanced mode

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-37

Limiting Filemon Output
� Can set filters for including, excluding, and

highlighting output

1-38

Filemon Lab 1

1. Run Filemon
2. Set filter to only include Notepad.exe
3. Run Notepad
4. Type some text
5. Save file as “test.txt”
6. Go back to Filemon
7. Stop logging
8. Set highlight to “test.txt”
9. Find line representing creation of new file

z Hint: look for create operation

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-39

Filemon Example

� While typing in the document Word XP closes
without any prompts

� Filemon log showed this:

� User looked up what .LEX file was
� Related to Word proofing tools
� Uninstalled and reinstalled proofing tools & problem

went away

1-40

Access Denied

� Many applications don’t report access
denied errors well
� Example: try to save a file with Notepad to a

folder you don’t have access to
� Use Filemon to verify access denied

errors are not occurring on file opens
� Check Result column

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-41

Example: Access Denied

� AOL reported this error:

� Filemon showed this:

� User did not have admin rights to AOL directory

waol.exe OPEN C:\PROGRA~1\AMERIC~1.0\IDB\main.ind ACCESS DENIED

1-42

Example: Access Denied
� For example, an application failed with

this error:

Ran Filemon and found it was getting
Access Denied

� Someone had misread a request to
remove EDIT rights and removed all rights

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-43

Hot File Analysis
� Understand disk activity system-wide
� Run Filemon for a period of time
� Save output in a log file
� Import into Excel and make a pie chart

by file name or operation type
� Example: used Filemon on a server

to determine which file(s) were being
accessed most frequently
� Moved these files to a different disk on

a different controller

1-44

Locked Files
� Attempting to open or delete a file that is

in use simply reports “file locked”
� With Process Explorer search (in handle

view) you can determine what process is
holding a file or directory open

� Can even close open files (be careful!)

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-45

Process Explorer Lab: Locked File

1. Run ProcExp
z Click on View->Update speed – change to

Paused
2. Run Microsoft Word
3. Create a file called “test.doc” and save it

(but don’t close it)
4. From a command prompt try and delete

“test.doc” (should get file locked)
5. In ProcExp, hit F5 and then use Search to

find open handle to test.doc

1-46

Access Denied on Mapped Files

� Attempting to delete a DLL or EXE that is in
use gets “access denied”, not “file locked”
� Can be misleading

� In Process Explorer DLL View, search for
file
� Example: try and delete Notepad.exe while

you’re running it

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-47

DLL Problems
� DLL version mismatches can cause strange

application failures
� Most applications do a poor job of reporting

DLL version problems
� Process Explorer can help detect DLL

versioning problems
� Compare the output from a working process

with that of a failing one (use File->Save As)

1-48

DLL Problems
� But sometimes it’s the order of DLL loads

that clues you in, so use Filemon!
� Missing DLLs often not reported correctly

� Look for “NOTFOUND” or “ACCESS DENIED”
� May be opening wrong versions due to files in

PATH
� Look at the last DLL opened before the

application died

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-49

Example Problem: Word Dies

� Word97 starts and a few seconds later
gets a Dr. Watson (access violation)
� Customer tried re-installing Office – still failed

� Solution:
� Ran Filemon, looked at last DLL loaded

before Dr. Watson
� It was a printer DLL
� Uninstalled printer – problem went away

1-50

Example Problem: Help Fails

� The Help command in an application failed
on Win95, but worked fine on
Win98/ME/NT4/Win2000/WinXP
� Failed with meaningless error message

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-51

Solution
� Ran Filemon on failing system and working

system
� Reduced log to file opens
� Compared logs

� At the point they diverged, looked backwards to
last common thing done
� An OLE system DLL was loaded
� Noticed this OLE DLL was loaded from a directory in

the user’s PATH on Win95, but from
\Windows\System on other versions

� Conclusion:
� DLL loaded on Win95 system was not for Win95
� Got proper version for Win95, problem went away

1-52

Example Problem: Access Hangs

� Problem: Access 2000 would hang when
trying to import an Excel file
� Worked fine on other users’ workstations
� User had Access 97 and Access 2000

installed
� Compared a Filemon log from the working

and failing system
� Failing system was loading an old Access

DLL from \windows\system32 due to having
installed Access 97 previously

� Removed DLL and problem went away

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-53

Dll Version Mismatch Lab

With Word XP installed in the default folder:

1. Go to folder:
\Program Files\Microsoft
Office\Office\1033

2. Rename MSO9INTL.DLL to “MSO9INTL.DLL1”
3. Copy OUTLLIBR.DLL to MSO9INTL.DLL
4. Try and start Word

z Send error report to Microsoft ☺
5. Use FileMon to confirm which DLL is likely

causing the problem

1-54

Configuration Problems
� Missing, corrupted or overly-secure Registry

settings often lead to application crashes and
errors

� Some applications don’t completely remove
registry data at uninstall

� Regmon may yield the answer…

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-55

Regmon Output
� Request: OpenKey, CreateKey, SetValue,

QueryValue, CloseKey
� Path

� HKCU=HKEY_CURRENT_USER (per-user settings)
� HKLM=HKEY_LOCAL_MACHINE (system wide settings)

� Result – return code from Registry operation
� Other – extended information or results

1-56

Controlling Regmon

� Start/stop logging (Control/E)
� Clear display (Control/X)
� Regedit jump (opens Registry Editor and

jumps directly to key)
� Double clicking on a line does this

� Filtering/Highlighting
� Find
� Save to log file

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-57

Regmon Filtering
� Normally, registry activity should be only at

application/system startup and exit
� But, sadly, lots of processes perform needless

registry querying…
� Filtering options:

� Process name or registry path (or partial name)
� Success/failure, read/write

1-58

Regmon Lab 1

1. Run Regmon
2. Highlight Notepad.exe
3. Run Notepad
4. Change font to “Times New Roman”
5. Exit
6. Go back to Regmon
7. Stop logging
8. Find line showing storing of font name in

registry
z Hint: search for “times”

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-59

Using Regmon

� Identify missing Registry keys
� Search for status “NOTFOUND”

� Troubleshoot permission problems
� Search for status “ACCESS DENIED”

� Find incorrect or corrupt data
� Examine values read and/or written (in

Other column)

1-60

Example Problem

� Internet Explorer failed to start:

� Solution:
� Looked backwards from end of Regmon log
� Last queries were to:

HKCU\Software\Microsoft\Internet Connection Wizard

� Looked here and found a single value “Completed”
set to 0

� Compared to other users—theirs was 1
� Set this manually to 1 and problem went away

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-61

Regmon Applications

� If you suspect registry data is causing
problems, rename the key and re-run the
application
� Most applications re-create user settings

when run
� In this way, the data won’t be seen by the

application
� Can always rename the key back

1-62

Regmon Lab 2
1. Run Notepad
2. Change Font and point size
3. Enable Word wrap
4. Run Regmon & filter to Notepad.exe
5. Exit Notepad
6. In Regmon log, find location of user-specific

Notepad settings
7. Double click on a line to jump to Regedit
8. Delete top level Notepad user settings key
9. Re-run Notepad and confirm font and word

wrap reset to default setting

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-63

Example Problem
� Internet Explorer hung when started
� Default internet connection was set, but

wasn’t being dialed
� Dialing the connection first manually and

then running IE worked
� Background information:
� User had previously installed the AT&T

Dialer program, but had uninstalled it and
created dial up connection manually

1-64

Solution

� Ran Regmon
� Looked backwards from end (at the point

IE was hung)
� Found references to ATT under a

PhoneBook key
� Renamed ATT key and problem went away

� Conclusion: registry junk was left from
uninstall

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-65

Example Problem
� User somehow disabled all toolbars and

menus in Word
� No way to open files, change settings etc.

� With Regmon, captured startup of Word
� Found location of user-specific settings for

Word
� Deleted this Registry key
� Re-ran Word – menus and toolbars were

back!
� Word re-created user settings from scratch

1-66

Filemon/Regmon as a Service
� Sometimes need to capture I/O or registry

activity during the logon or logoff process
� E.g. errors occuring during logon/logoff

� Solution:
� Run Filemon/Regmon with AT command
� Install and run Filemon/Regmon as a service
� Use Srvany tool from Resource Kit

� In either case, but tools remain running
after logoff

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-67

Analyzing Process Crashes

� If you still can’t determine why a process is
crashing, next step is to get a process dump
to the developer
� But, until XP, few knew there was a process

dump…

1-68

Process Crashes

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-69

Windows Error Reporting
� On XP & Server 2003, when an unhandled

exception occurs:
� System first runs DWWIN.EXE

� DWWIN creates a process microdump and XML file and offers
the option to send the error report

� Then runs debugger (Drwtsn32.exe)

1-70

Windows Error Reporting

� Configurable with
System Properties-
>Advanced->Error
Reporting
� HKLM\SOFTWARE

\Microsoft\PCHealth
\ErrorReporting

� Configurable with group
policies
� HKLM\SOFTWARE

\Policies\Microsoft
\PCHealth

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-71

Dr. Watson
� User message box

doesn’t mention most
important thing:
� A dump file was created!

� Can customize by
running
“DRWTSN32.EXE”
� Note: servers default to

no visual notification
� To set Dr. Watson as

default debugger:
� Drwtsn32 -i

1-72

Dumping a Running Processes
� Instead of killing a hung process (leaving no

debug info), run Dr. Watson on it
� Dr. Watson creates a crash dump file and then kills

process
� drwtsn32 –p processid

� Autodump (Debugging Tools) will snapshot a
process without killing it
� E.g. a server process that is having problems on a

production system
� Snapshot the process and debug offline
� Determine if the process needs to be restarted or not

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-73

End of Troubleshooting Processes
& Threads

Next: Troubleshooting Memory Problems

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-1

Windows Internals and
Advanced Troubleshooting
Part 3: Troubleshooting Memory

Problems

1-2

Troubleshooting Memory
Problems

System and process memory usage may
degrade performance

Or eventually cause process failures
How do you determine memory leaks?

Process vs. system?
How do you know if you need more memory?
How do you size your page file?
What do system and process memory counters
really mean?

Understanding process and system memory
information can help answer these questions…

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-3

Windows Memory Management

Demand paged virtual memory
Unit of protection and usage is one page

x86: 4 KB
Itanium 8 KB

Pages are read in on demand and written out when
necessary (to make room for other memory needs)

Provides illusion of flat virtual address space to
each process

32-bit: 4 GB, 64-bit: 16 Exabytes (theoretical)
Supports up to 64 GB (32-bit systems) or 512 GB
(64-bit systems) physical memory
Intelligent, automatic sharing of memory

1-4

Process Memory Usage

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-5

Process Memory Usage
Process virtual size

By default, 2 GB on 32-bit Windows
64-bit Windows: 7152 GB

Up to 3 GB with Windows .NET Enterprise Server
(/USERVA= or /3GB)
Application must be marked large address space aware

What limits total process virtual memory?
Page file size + (most of) physical memory
Called “Commit limit”

What limits physical size of a process?
Physical memory + Memory Manager policies

Based on memory demands and paging rates

1-6

Code: EXE/DLLs
Data: EXE/DLL

static storage, per-
thread user mode

stacks, process
heaps, etc.

00000000

7FFFFFFF
Code:
NTOSKRNL, HAL,
drivers
Data: kernel stacks,

File system cache
Non-paged pool,
Paged pool

FFFFFFFF

80000000

Process page tables,
hyperspace

C0000000

32-Bit Virtual
Address Space
(x86)

2 GB per-process
Address space of one process
is not directly reachable from
other processes

2 GB system-wide
The operating system is
loaded here, and appears
in every process’s
address space
The operating system is not a
process (though there are
processes that do things for
the OS, more or less in
“background”)

3 GB user space and Address
Windowing Extensions (AWE)
t.b.d.

Unique per
process,

accessible in
user or kernel

mode

System wide,
accessible

only in kernel
mode

Per process,
accessible

only in kernel
mode

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-7

Unique per
process
(= per appl.),
user mode

.EXE code
Globals

Per-thread user
mode stacks

.DLL code
Process heaps

Exec, kernel, HAL,
drivers, etc.

00000000

BFFFFFFF

FFFFFFFF

C0000000

Unique per
process,

accessible in
user or kernel

mode

3GB Process Space
Option

/3GB option in BOOT.INI
Provides up to 3 GB per-process
address space
Windows .NET Server supports
variations from 2GB to 3GB
(/USERVA=)

Restrictions to use:
Only available on Windows 2000
Advanced Server & .NET Server
Enterprise Edition

Limits memory to 16 GB
.EXE must have “large address
space aware” flag in image
header, or they’re limited to 2
GB (specify at link time or with
imagecfg.exe in Resource Kit)
Better solution: address
windowing extensions

System wide,
accessible

only in kernel
mode

Per process,
accessible

only in kernel
mode

Process page tables,
hyperspace

1-8

64-Bit Virtual
Address Space
(Itanium)

64-bit Windows 32-bit Windows
User Address Space 7152 GB 2 or 3 GB
System PTE Space 128 GB 2 GB
System Cache 1 TB 960 MB
Paged pool 128 GB 650 MB
Non-paged pool 128 GB 256 MB

User-Mode User Space

Kernel-Mode User Space

1FFFFF0000000000 User Page Tables

Session Space

Session Space Page Tables

System Space

6FC00000000

2000000000000000

3FFFFF0000000000

E000000000000000
-E000060000000000

FFFFFF0000000000 Session Space Page Tables

0

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-9

Process Memory Usage: “Working Set”
Working set: All the physical pages “owned” by a
process

Essentially, all the pages the process can reference
without incurring a page fault

A process always starts with an empty working set
Pages itself into existence

XP prefetches pages to speed up application startup
Many page faults may be resolved from memory

PerfMon
Process “WorkingSet”

newer pages older pages

1-10

“Mem Usage” = physical
memory used by process
(working set size, not
working set limit)

Note: Shared pages are
counted in each
process

“VM Size” = private (not
shared) committed virtual
space in processes ==
potential pagefile usage
“Mem Usage” in status bar
is not total of “Mem Usage”
column (see later slide)

Screen snapshot from:
Task Manager | Processes tab

1

2

3

1

2

3

Process Memory Information
Task Manager
Processes tab

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-11

Shared Memory
Like most modern OSs,
Windows provides a way for
processes to share memory

High speed IPC (used by LPC,
which is used by RPC)
Threads share address space, but
applications may be divided into
multiple processes for stability
reasons

Processes can also create shared
memory sections

Called page file backed file mapping
objects
Full Windows security

It does this automatically for
shareable pages

E.g., code pages in an EXE or DLL

Process 1
Address
Space

Process 2
Address
Space

Physical
Memory

DLL
code

1-12

Viewing the Working Set

Working set size counts shared pages in each
working set
Vadump (Resource Kit) can dump the breakdown
of private, shareable, and shared pages

C:\> Vadump –o –p 3968
Module Working Set Contributions in pages

Total Private Shareable Shared Module
14 3 11 0 NOTEPAD.EXE
46 3 0 43 ntdll.dll
36 1 0 35 kernel32.dll
7 2 0 5 comdlg32.dll
17 2 0 15 SHLWAPI.dll
44 4 0 40 msvcrt.dll

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-13

Working Set Replacement

When working set “count” = working set size, must give up
pages to make room for new pages
This is called a local page replacement policy
(versus a global replacement policy common on Unix)

Means that a single process cannot take over all of physical
memory unless other processes aren’t using it

Page replacement algorithm is least recently accessed
Windows 2000: only on uniprocessor; Windows XP and .NET
Server: All systems

Kept in
memory on
standby or
modified
page list

1-14

Paging Lists

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-15

Managing Physical Memory

System keeps unowned physical pages on
one of several lists

Free page list
Modified page list
Standby page list
Zero page list
Bad page list – pages that failed memory test at
system startup

1-16

Standby And Modified Page Lists

Modified pages go to modified (dirty) list
Avoids writing pages back to disk too soon

Unmodified pages go to standby (clean) list
They form a system-wide cache of “pages likely
to be needed again”

Pages can be faulted back into a process from the
standby and modified page list
These are counted as page faults, but not
page reads

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-17

Free And Zero Page Lists

Free Page List
Used for page reads
Private modified pages go here on process exit
Pages contain junk in them (e.g., not zeroed)
On most busy systems, this is empty

Zero Page List
Used to satisfy demand zero page faults

References to private pages that have not been created
yet

When free page list has 8 or more pages, a priority
zero thread is awoken to zero them
On most busy systems, this is empty too

1-18

Paging Dynamics

Standby
Page
List

Zero
Page
List

Free
Page
List

Working
Sets

page read from
disk or kernel
allocations

demand zero
page faults

working set
replacement

Modified
Page
List

modified
page
writer

zero
page

thread

“soft”
page
faults

Bad
Page
List

Private pages
at process exit

“global
valid”
faults

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-19

Memory Management Information
Task Manager
Performance tab

“Available” = sum of free,
standby, and zero page
lists (physical)
Majority are likely standby
pages
“System Cache” = size of
standby list + size of
system working set (file
cache, paged pool,
pageable OS/driver code
& data)

Screen snapshot from:
Task Manager | Performance tab

6

6

1-20

Viewing the Paging Lists

Only way to get actual size of physical memory
lists is to use !memusage in Kernel Debugger

lkd> !memusage
loading PFN database

Zeroed: 0 (0 kb)
Free: 3 (12 kb)

Standby: 98248 (392992 kb)
Modified: 563 (2252 kb)

ModifiedNoWrite: 0 (0 kb)
Active/Valid: 93437 (373748 kb)
Transition: 1 (4 kb)

Unknown: 0 (0 kb)
TOTAL: 192252 (769008 kb)

Screen snapshot from:kernel debugger
!memusage command

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-21

Page Files

1-22

Page Files
What gets sent to the paging file?

Not code – only modified data (code can be re-read
from image file anytime)

When do pages get paged out?
Only when necessary
Page file space is only reserved at the time pages
are written out
Once a page is written to the paging file, the space is
occupied until the memory is deleted (e.g., at
process exit), even if the page is read back from disk

Can run with no paging file
Windows NT4/Windows 2000: Zero pagefile size
actually created a 20MB temporary page file

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-23

Do I Need More Memory?

If heavy paging activity:
Monitor Memory->Page Reads/sec

Not Page Faults/sec (which includes soft faults)
Should not stay high for sustained period
Some hard page faults unavoidable

Process startup
Normal file I/O done via paging

To eliminate normal file I/O, subtract
System->File Read Operations/sec

Or, use Filemon to determine what file(s) are
having paging I/O (asterisk next to I/O function)

1-24

Sizing The Page File
Given understanding of page file usage,
how big should the total paging file space
be?
(Windows supports multiple paging files)
Size should depend on total private virtual
memory used by applications and drivers

Therefore, not related to RAM size (except for
taking a full memory dump)

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-25

Sizing The Page File
Worst case: Windows has to page all private data
out to make room for code pages

To handle, minimum size should be the maximum of VM
usage (“Commit Charge Peak”)

Hard disk space is cheap, so why not double this
Normally, make maximum size same as minimum
But, max size could be much larger if there will be
infrequent demands for large amounts of page file
space

Performance problem: Page file extension will likely be very
fragmented
Extension is deleted on reboot, thus returning to a contiguous
page file

1-26

Memory Management Information
Task Manager
Performance tab

Total committed private virtual
memory (total of “VM Size” in
process tab + Kernel
Memory Paged)
not all of this space has actually
been used in the paging files; it is
“how much would be used if it was
all paged out”
“Commit charge limit” = sum of
physical memory available for
processes + current total size of
paging file(s)
does not reflect true maximum
page file sizes (expansion)
when “total” reaches “limit”, further
VirtualAlloc attempts by any
process will fail

Screen snapshot from:
Task Manager | Performance tab

4
3

3

4

3

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-27

Why Page File Usage on Systems with
Ample Free Memory?

Because memory manager doesn’t let process working
sets grow arbitrarily

Processes are not allowed to expand to fill available memory
(previously described)

Bias is to keep free pages for new or expanding processes
This will cause page file usage early in the system life even with
ample memory free

We talked about the standby list, but there is another list of
modified pages recently removed from working sets

Modified private pages are held in memory in case the process asks
for it back
When the list of modified pages reaches a certain threshold, the
memory manager writes them to the paging file (or mapped file)
Pages are moved to the standby list, since they are still “valid” and
could be requested again

1-28

Memory Leaks

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-29

Process Memory Leaks
System says “running low on virtual
memory”

Before increasing size of page file, look for a
process (or system) memory leak

Look for who is consuming pagefile space
Process memory leak: Check Task Manager,
Processes tab, VM Size column

Or Perfmon “private bytes”, same counter

1-30

Leakyapp Test Program
Leakyapp.exe is in the Resource Kit
Continuously allocates private,
nonshareable virtual memory

When there is no more, it just keeps trying..
Run several copies to fill pagefile more
quickly

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-31

Handle Leaks
Processes that open resources but don’t
close them can exhaust system memory

Check total handle count in Task Manager
Performance tab
To find offending process, on Process tab add
Handle Count and sort by that column
Using Process Explorer handle view with
differences highlighting you can even find which
handle(s) are not being closed

1-32

Kernel Memory Leaks
Or, a rowing Memory
Usage and Paged
pool usage

A driver leaking nonpaged
pool shows up as large and
growing Nonpaged pool
usage

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-33

Two system memory pools
“Nonpaged Pool” and “Paged Pool”
Used for systemwide persistent data (visible
from any process context)

Pool sizes are a function of memory size &
Server vs. Workstation

Can be overidden in Registry:
HKLM\System\CurrentControlSet\Control\Session

Manager
\Memory Management

Kernel Memory Pools

1-34

Kernel Memory Pools
Nonpaged pool

Has initial size and upper limit (can be grown dynamically,
up to the max)
32-bit upper limit: 256 MB on x86 (NT4: 128MB)

64-bit limit: 128 GB

Paged pool
32-bit upper limit: 650MB (Windows Server 2003), 470MB
(Windows 2000), 192MB (Windows NT 4.0)

64-bit limit: 128 GB

Pool size performance counters display current size,
not maximum

To display maximums, use “!vm” kernel debugger
command

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-35

Debugging Pool Leaks

Two options:
Poolmon

In the Support Tools and the Device Driver Kit
(DDK)
Requires that you turn on Pool Tagging with
Gflags on Windows NT and Windows 2000

Driver Verifier
Select all drivers
Turn on pool tracking

1-36

Troubleshooting with Poolmon
Poolmon.exe (Support Tools)

Shows paged and nonpaged pool consumption by data structure “tag”
Must first turn on “pool tagging” with Resource Kit gflags tool & reboot

On by default in Windows Server 2003

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-37

Troubleshooting with Poolmon

Once you find pool tag that is leaking:
Look up in Windows Debugging Tools subfolder
\triage\pooltag.txt

May not be there if 3rd party driver
Run Strings (from Sysinternals) on all drivers:
strings \windows\system32\drivers*.sys
| findstr Xyzz

1-38

Troubleshooting with Driver Verifier
Use Driver Verifier to enable pool tracking
for all drivers (or ones of interest)

System tracks pool usage by driver
Poolmon looks at pool usage by structure tag

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-39

Looking for Leaks
Reboot and look at the pool usage of each driver
A leaker exhibits the following

Current allocations is always close to or equal to the peak
The peak grows over time
If the leak is significant the peak allocations or bytes will be large

1-40

Causing a Pool Leak
Run NotMyFault and select “Leak Pool”

Allocates paged pool buffers and doesn’t free them
Stops leaking when you select “Stop Leaking”

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-41

End of Troubleshooting Memory
Problems

Next: Crash Dump Analysis

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-1

Windows Internals and
Advanced Troubleshooting
Part 4: Crash Dump Analysis

1-2

Outline

What causes crashes?
Crash dump options
Analysis with WinDbg/Kd
Debugging hung systems
Microsoft On-line Crash Analysis
Using Driver Verifier
Live kernel debugging
Getting past a crash

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-3

Why Analyze Dumps?

The debuggers and Microsoft Online Crash
Analysis (OCA) often solve crashes
Sometimes, however, they do not, so your
analysis might tell you:

What driver to disable, update, or replace with different
hardware
What OEM to send the dump to

1-4

You Can Do It!
Many systems administrators ignore
Windows NT/Windows 2000’s crash dump
options

“I don’t know what to do with one”
“Its too hard”
“It won’t tell me anything anyway”

Basic crash dump analysis is actually pretty
straightforward

Even if only 1 out of 5 or 10 dumps tells you
what’s wrong, isn’t it worth spending a few
minutes?

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-5

What Causes Crashes?

System crashes when a fatal error prevents
further execution

Any kernel-mode component can crash the
system

Drivers and the OS share the same memory
space

Therefore, any driver or OS component can,
due to a bug, corrupt system memory
Note: This is for performance reasons and is the
same on Linux, most Unix’s, VMS, etc…

1-7

Dump Options

Complete memory dump (Windows NT 4,
Windows 2000, Windows XP)

Full contents of memory written to
<systemroot>\memory.dmp

Kernel memory dump (Windows 2000, Windows
XP)

System memory written to <systemroot>\memory.dmp
Small memory dump (Windows 2000, Windows
XP)

Also called a minidump or triage dump
64KB of summary written to
<systemroot>\minidump\MiniMMDDYY-NN.dmp

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-8

Enabling Dumps

In Windows NT 4:

1-9

Enabling Dumps
In Windows 2000/XP:

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-10

At The Crash
A component calls KeBugCheckEx, which takes
five arguments:

Stop code
4 stop-code defined parameters

KeBugCheckEx:
Turns off interrupts
Tells other CPUs to stop
Paints the blue screen
Notifies registered drivers of the crash
If a dump is configured:

Verifies checksums
Calls dump I/O functions

1-11

Common Stop Codes

There are about 150 defined stop codes
IRQL_NOT_LESS_OR_EQUAL (0x0A)

Usually an invalid memory access
INVALID_KERNEL_MODE_TRAP (0x7F)
and
KMODE_EXCEPTION_NOT_HANDLED
(0x1E)

Generated by executing garbage instructions
Its usually caused when a stack
is trashed

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-12

At The Reboot

Session
Manager

NtCreatePagingFile Paging
File

Memory.dmp

WinLogon

SaveDump

User mode
Kernel mode

1

2

3

4

1-13

At The Reboot

Session Manager process
(\winnt\system32\smss.exe) initializes
paging file

NtCreatePagingFile
NtCreatePagingFile determines if the dump
has a crash header

Protects the dump from use
WinLogon calls NtQuerySystemInformation
to tell if there’s a dump

1

2

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-14

At The Reboot

If there’s a dump, Winlogon executes
SaveDump
(\winnt\system32\savedump.exe)

Writes an event to the System event log
SaveDump writes contents to appropriate
file

Crash dump portion of paging file is in use
during copy, so virtual memory can run low

3

4

1-15

Why Crash Dumps Fail
Most common reasons:

Paging file on boot volume is too small
Not enough free space for extracted dump

Less common:
The crash corrupted components involved in the
dump process
Miniport driver doesn’t implement dump I/O
functions

Windows 2000 and Windows XP storage drivers
must implement dump I/O to get a Microsoft®
signature

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-16

Generating A Test Dump

Get BSOD from Sysinternals:
www.sysinternals.com/ntw2k/freeware/

bluesave.shtml
It crashes the system by:

Allocating kernel memory
Freeing the memory
Raising the IRQL
Touching the freed memory

1-17

Analyzing a Crash Dump

There are two kernel-level debuggers:
WinDbg –Windows program
Kd – command-line program
Same functionality

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-18

Debugging Tools

Get the latest from:
www.microsoft.com/ddk/debugging

Supports Windows NT 4, Windows 2000,
Windows XP, Server 2003
Check for updates frequently
Don’t use older version on install media

Install to c:\Debuggers
Easy access from command prompt

1-19

Symbol Files

Before you can use any crash analysis tool you
need symbol files

Symbol files contain global function and variable names
At the minimum, get the symbol file(s) for ntoskrnl.exe,
ntkrnlmp.exe, ntkrnlpa.exe, ntkrpamp.exe

Symbols are service pack-specific and have an
installer (default directory is \winnt\symbols)

Windows NT 4: *.dbg
Windows 2000: *.dbg, *.pdb
Windows XP: *.pdb
Note: SP symbols only include updates

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-20

Microsoft Symbol Server

WinDbg and Kd can download symbols
automatically from Microsoft
Pick a directory to install symbols and add
the following to the debugger’s symbol
path:

SRV*directory*http://msdl.microsoft.
com/download/symbols

The debugger automatically detects the OS
version of a dump and downloads the
symbols on-demand

1-21

Installing the Symbol Files

On CDs:
Windows NT 4: on Windows NT 4 Setup CD under
\support\debug
Windows 2000 SP0/Windows XP SP0 on Customer
Support Diagnostics CD
Windows 2000 SP1 on SP1 CD

Online:
Windows NT 4: All (US) service packs are at
ftp.microsoft.com:\
bussys\winnt\winnt-public\fixes\usa\nt40
Windows 2000/XP:
http://www.microsoft.com/ddk/debugging/
symbols.asp

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-22

Automated Analysis

When you open a crash dump with Windbg
or Kd you get a basic crash analysis:

Stop code and parameters
A guess at offending driver

The analysis is the result of the automated
execution of the !analyze debugger
command

1-23

Debugger Commands

Two types of commands
Dot commands are built-in
Bang commands are provided with extension
DLLs

Extension DLLs allow Microsoft and third-
parties to dynamically add commands

The main extension DLL is the kernel-
debugger extension DLL, kdexts.dll
Each OS has a subdirectory with its own
kdexts.dll version as well as other,
development-area specific, extension DLLs
(e.g. Rpcexts.dll, ndiskd.dll, …)

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-24

Deeper Analysis

Always execute !analyze with the –v option
to get more information

Text description of stop code
Meaning (if any) of parameters
Stack dump

!Analyze uses heuristics to walk up the
stack and determine what driver is the likely
cause of the crash

“Followup” is taken from optional triage.ini file

1-25

Useful Commands

When you load a dump into the debugger it executes
!analyze

Sometimes identifies the cause of a crash
Always execute !analyze –v to see more

The next steps:

u <address or function name>Disassemble code:
!irp <irp address>Look at an I/O request packet:
lm kvList loaded drivers:
!thread <thread address or ID>Look at a thread:
!process 0 0List all processes:
!processLook at the current process:

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-26

Hung Systems

You can tackle a hung system, but only if you’ve
prepared:

Boot in debug mode, or
Set the keystroke-crash Registry value

For debug mode you need a second system (the
debugger host) connected to the target via serial
cable

Run Windbg/Kd on the host
Edit the target’s boot.ini file:

/debugport=comX /baudrate=XXX
When the system hangs, connect with the debugger
and hit Ctrl-C

1-27

Hung Systems

To configure keystroke-crash:
Set HKEY_LOCAL_MACHINE\System\
CurrentControlSet\Services\i8042prt\
Parameters\CrashOnCtrlScrl to 1
Enter right-ctrl+[scroll-lock, scroll-lock] to crash
the system

Use !thread to see what’s running

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-28

Microsoft On-line Crash Analysis
(OCA)

Have Microsoft process dumps at
oca.microsoft.com

XP asks you if you want to submit after a crash
You can visit OCA and manually submit a dump

OCA accepts Win2K and XP dumps, but is
focused on XP
Currently requires a Passport account to check
crash analysis status if it doesn’t know right away

1-29

What Does OCA Do?
Server farm uses !analyze, but uses
Microsoft’s Triage.ini file and database that
includes information about known problems
Several ways to get OCA results:

Via e-mail
At the OCA site

Sometimes OCA will point you at KB
articles that describe the problem

KB articles may tell you to use Windows
Update to get newer drivers, a hotfix, or install
a Service Pack

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-30

Driver Verifier

This tool was introduced in Windows 2000
and can be useful to validate a suspicion
about a driver
The Verifier performs the following checks:

IRQL rule adherence
I/O request consistency
Proper memory usage

1-31

Special Pool
Special pool is a kernel
buffer area where buffers
are sandwiched with invalid
pages
Conditions for a driver
allocating from special
pool:

Driver Verifier is verifying
driver
Special pool is enabled
Allocation is slightly less than
one page (4 KB on x86)

Invalid

Invalid

Buffer

Signature

Higher
Addresses

Page n

Page n+1

Page n+2

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-32

Driver Verifier

If the Verifier detects a violation it crashes
the system and identifies the driver
If you find a driver in a crash dump that looks like
it might be the cause of the crash, turn on
verification for it

Use “Last Known Good” if the verifier detects a bug
during the boot
If a bug is detected in a third-party product check for
updates and/or contact the vendor’s support

Note that the Verifier means fewer crashes on
Windows XP than Windows 2000 than Windows
NT 4

1-33

Getting Past a Crash

Last-Known Good
Boots with driver/kernel configuration last used during
a successful boot

Safe Mode
Boots the system with core set of drivers and services
Network and non-network

The Recovery Console
Manually disable offending service, replace corrupt
images, update files

ERD Commander 2002
Registry Editor, Explorer, Driver/Service Manager,
password changer, Event Log viewer, Notepad

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-34

The Bluescreen Screen Saver

Scare your enemies and fool your friends
with the Sysinternals Bluescreen Screen
Saver

Be careful, your job may be on the line!

1-35

More Information

Inside Windows 2000, 3rd edition – section
on System Crashes in chapter 4
Debugging Tools help file
Knowledge Base Articles

http://www.microsoft.com/ddk/debugging
Other books:

http://www.microsoft.com/ddk/
newbooks.asp

The debugger team wants your feedback
and bug reports

Windows Internals and Advanced Troubleshooting
Copyright © 2002-2003 by David A. Solomon and Mark E. Russinovich

1-36

End of Tutorial

Thank you for coming!

