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Introduction - Chapter 1:  Mosel 

1.1  Why You Need Mosel 

“Mosel” is not an acronym.  It is pronounced like the German river, mo-zul. It is an advanced modeling and solving 
language and environment, where optimization problems can be specified and solved with the utmost precision and 
clarity. 

Here are some of the features of Mosel 

• Mosel's easy syntax is regular and described formally in the reference manual. 

• Mosel supports dynamic objects, which don't require pre-sizing. For instance, you don't have to specify the 
maximum sizes of the indices of a variable x. 

• Mosel models are pre-compiled. Mosel compiles a model into a binary file which can be run on any 
computer platform, and which hides the intellectual property in the model if so required. 

• Mosel is embeddable. There is a runtime library which can be called from your favorite programming 
language if required. You can access any of the model's objects from your programming language. 

• Mosel is easily extended through the concept of modules It is possible to write a set of functions, which 
together stand alone as a module. Several modules are supplied by Dash, including the XpressMP Optimizer. 

• Support for user-written functions and procedures is provided. 

• The use of sets of objects is supported.  

• Constraints and variables etc. can be added incrementally. For instance, column generation can depend on 
the results of previous optimizations, so sub problems are supported 

The modeling component of Mosel provides you with an easy to use yet powerful language for describing your 
problem.  It enables you to gather the problem data from text files and a range of popular spreadsheets and 
databases, and gives you access to a variety of solvers, which can find optimal or near-optimal solutions to your 
model.  

1.2  What You Need to Know Before Using Mosel 

Before using Mosel you should be comfortable with the use of symbols such as x or y to represent unknown 
quantities, and the use of this sort of variable in simple linear equations and linear inequalities.  For example: 

x + y ≤ 6 

Experience of a basic course in Mathematical or Linear Programming is recommended but is not essential.   

For all but the simplest models you should also be familiar with the idea of summing over a range of variables.  For 
example, if xj is used to represent the number of cars produced on production line j then the total number of cars 
produced on all N production lines can be written as: 

∑
=

N

j
jx

1

 

which says "sum the output from each production line xj over all production lines j from j=1 to j=N".   

If our target is to produce at least 1000 cars in total then we would write the inequality: 
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1000
1

≥∑
=

N

j
jx  

Mosel closely mimics the mathematical notation an analyst uses to describe a problem. so provided you are happy 
using the above mathematical notation the step to using Mosel should be straightforward. 

1.3  Symbols and Conventions 

We have used the following conventions within this guide: 

• Square brackets [...] contain optional material. 

• Curly brackets {...} contain optional material, one of which must be chosen. 

• Entities in italics which appear in expressions stand for meta-variables.  The description following the 
meta-variable always describes how it is to be used. 

• The vertical bar symbol | is found on many keyboards as ¦, but often confusingly displays on-screen without 
the small gap in the middle.  In the UNIX world it is referred to as the pipe symbol.  Note that this symbol is 
not the same as the character sometimes used to draw boxes on a PC screen.  In ASCII, the | symbol is 7C in 
hexadecimal, 124 decimal. 

• Examples of commands, models and their output are printed in a Courier font.  Filenames are given in 
lower case Courier. 

• Mathematical objects are presented in italics. 

1.4  The Structure of this Guide 

This User Guide is structured into these main parts 

Part A describes the use of Mosel for people who want to build and solve mathematical programming (MP) 
problems. These will typically be Linear Programming (LP), Mixed Integer Programming (MIP), or Quadratic 
Programming (QP) problems. The Part has been designed to show the modeling aspects of Mosel, omitting most of 
the more advanced programming constructs. 

Part B is designed to help those users who want to use the powerful programming languages facilities of Mosel, 
using Mosel as a modeling, solving and programming environment. Items covered include looping (with examples), 
more about using sets, producing nicely formatted output, functions and procedures. 

Part C gives an introduction to the C interface of Mosel. It shows how to execute models from C and how to  access 
modeling objects from C.  

This User Guide is deliberately informal and is not complete. It must be read in conjunction with the Mosel 
Reference Manual, where features are described precisely and completely. 
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Part A - Chapter 2:  Getting Started with Mosel 

A2.1  Entering a Model 

In this chapter we will take you through a very small manufacturing example to illustrate the basic building blocks 
of Mosel. 

Models are entered into a Mosel file using a standard text editor (don't use a word processor as an editor as this may 
not produce an ASCII file). The Mosel file is then loaded into Mosel, and compiled. Finally, the compiled file can 
be run. This chapter will show the stages in action. 

A2.2  The Chess Set Problem: Description 

To illustrate the model development and solving process we shall take a very small example. 

A joinery makes two different sizes of boxwood chess sets.  The smaller size requires 3 hours of machining on a 
lathe and the larger only requires 2 hours, because it is less intricate.  There are ten lathes with skilled operators who 
each work a 40 hour week.  The smaller chess set requires 1 kg of boxwood and the larger set requires 3 kg.  
However boxwood is scarce and only 200 kg per week can be obtained. 

When sold, each larger chess set yields a profit of £20 and each smaller chess set a profit of £5.  The problem is to 
decide how many sets of each kind should be made each week to maximize profit. 

A2.2.1  A First Formulation 

The joinery can vary the number of large and small chess sets produced: there are thus two variables in our model.  
We shall give these variables names: 

small:  the number of small chess sets to make 

large:  the number of large chess sets to make 

The number of large and small chess sets we should produce to achieve the maximum contribution to profit is 
determined by the optimization process.  Since the values of small and large are to be determined by optimization 
these are known as the decision variables, or more simply the variables. 

The values which small and large can take may be constrained to be equal to, less than or greater than some 
constant.  The joinery has a maximum of 400 hours of machine time available per week.  Three hours are needed to 
produce each small chess set and two hours are needed to produce each large set.  So the number of hours of 
machine time actually used each week is 3small +2large.  One constraint is thus: 

3 small + 2 large ≤ 400 (machine time) 

which restricts the allowable combinations of small and large chess sets to those that do not exceed the man-hours 
available.  

In addition, only 200 kg of boxwood is available each week.  Since small sets use 1 kg for every set made, against 3 
kg needed to make a large set, a second constraint is: 

small + 3 large ≤ 200 (wood ) 

The joinery cannot produce a negative number of chess sets so two further constraints are:  
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small ≥ 0 
large ≥ 0 

The objective function is a linear function which is to be optimized, that is, maximized or minimized.  It will involve 
some or all of the decision variables.  In maximization problems the objective function usually represents profit, 
turnover, output, sales, market share, employment levels or other "good things".  In minimization problems the 
objective function describes things like total costs, disruption to services due to breakdowns, or other less desirable 
process outcomes. 

The aim of the joinery is to maximize profit.  Since a large set contributes £20 to total profit while a small set 
contributes £5, the objective function is: 

profit = 5 small + 20 large 

The collection of variables, constraints and objective function that define our linear programming problem is called 
a model. 

A2.3  Solving the Chess Set Problem 

A2.3.1  Building the model 

The Chess Set problem can be solved easily using Mosel.  The first stage is to get the model we have just developed 
into the syntax of the Mosel language.  

Remember that we use the notation that items in italics (for example, small) are the mathematical variables.  The 
corresponding Mosel variables will be the same name in non-italic courier (for example, small). 

We illustrate this simple example by using the command line version of Mosel. The model can be entered into a file 
named, perhaps, chess.mos as follows: 

model chess 
 declarations 
  small: mpvar 
  large: mpvar 
 end-declarations 
 
 profit:=  5*small + 20*large 
 mc_time:= 3*small + 2*large <= 400  
 wood:=      small + 3*large <= 200  
 
end-model 

Indentations are purely for clarity. 

Notice that the character "*" is used to denote multiplication of the decision variables by the units of machine time 
and wood that one unit of each uses in the mc_time and wood constraints. The modeling language distinguishes 
between upper and lower case, so Small would be recognized as different from small. 

Let’s see what this all means. 

A model is enclosed in a model … end-model block. 

The mathematical programming decision variables are declared as such in the declarations … end-
declarations block.  Every decision variable must be declared. LP, MIP and QP variables are of type mpvar. 
Several decision variables can be declared on the same line, so  

 declarations 
  small, large: mpvar 
 end-declarations 

is exactly equivalent to what we first did. By default, Mosel assumes that all mpvar variables are constrained to be 
non-negative unless it is informed otherwise, so there is no need to specify non-negativity constraints on variables.   
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Here is an example of a constraint: 

mc_time:= 3*small + 2*large <= 400 

The name of the constraint is mc_time. The actual constraint then follows. If the “constraint” is unconstrained (for 
example, it might be an objective function), then there is no <=, >= or = part. 

In Mosel you enter the entire model before starting to compile and run it.  Any errors will be signaled when you try 
to compile the model, or later when you run it. 

A2.3.2  Obtaining a Solution using Mosel 

So far, we have just specified a model to Mosel. Next we shall try to solve it.. 

The first thing to do is to specify to Mosel that it is to use XpressMP’s Optimizer to solve the problem. Then, 
assuming we can solve the problem, we want to print out the optimum values of the decision variables, small and 
large, and the value of the objective function. The model becomes 

model chess2 
 uses "mmxprs" 
 declarations 
  small: mpvar 
  large: mpvar 
 end-declarations 
 
 profit:=  5*small + 20*large 
 mc_time:= 3*small + 2*large <= 400  
 wood:=      small + 3*large <= 200  
 
 maximize(profit) 
 
 writeln("small is ", getsol(small) ) 
 writeln("large is ", getsol(large) ) 
 writeln("Best profit is ", getobjval) 
end-model 

The line  

 uses "mmxprs" 

tells Mosel that the Xpress Optimizer will be used to solve the LP. We need to tell Mosel that we shall be using the 
XPRS module, which provides us with such things as maximization, handling bases etc. 

The line 

 maximize(profit) 

tells Mosel to maximize the objective function called profit. 

More complicated are the writeln statements, though it is actually quite easy to see what they do. If some text is 
in quotation marks, then it is written literally. getsol() and getobjval are special Mosel functions that return 
respectively the optimal value of the argument, and the optimal objective function value. writeln() writes a line 
terminator after writing all its arguments. 

writeln() can take many arguments. The statement 

writeln("small: ", getsol(small), " large: ", getsol(large ) ) 

will result in the values being printed all on one line. 

A2.3.3  Running Mosel from a Command Line 

When you have entered the complete model into a file (let’s say it is called chess2.mos), we can proceed to get 
the solution to our problem. Three stages are required: 
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1 Compiling chess.mos to a compiled file, chess.bim 

2 Loading the compiled file chess2.bim 

3 Running the model we have just loaded. 

We start Mosel at the command prompt, and type the following sequence of commands 

C:\mosel\book>mosel 
 
compile chess2 
load chess2 
run 
quit 

which will compile, load and run the model. We will see output something like that below, where we have 
underlined Mosel's output. 

C:\mosel\book>mosel 
** Mosel ** 
 (c) Copyright Dash Associates 1998-2001 
>compile chess2 
Compiling 'chess2'... 
>load chess2 
>run 
small is 0 
large is 66.6667 
Best profit is 1333.33 
Returned value: 0 
>quit 
Exiting.. 

Since the compile/load/run sequence is so often used, it can be abbreviated to 

cl chess2 
run 
quit 

or even 

cl chess2 
ru 
q 

Another nice way to do all the steps from the command line is  

C:\mosel\book>mosel -c "cl chess2; ru" 

The –c option is followed by a list of commands enclosed in double quotes. Even nicer is to use this with Mosel’s 
silent ( –s) option: 

C:\mosel\book>mosel –s -c "cl chess2; ru" 

When the only output is 

small is 0 
large is 66.6667 
Best profit is 1333.33 
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Part A - Chapter 3:  Some Illustrative Examples 

A3.1  The Burglar Problem  

This chapter develops the basics of modeling set out in Chapter 2.  It presents some further examples of the use of 
Mosel and introduces new features. 

The first of these is the use of subscripts. Almost all models of any size have subscripted variables. Consider a 
model which represents the problem faced by a burglar. He sees 8 items, of different worths and weights. He wants 
to take the items of greatest total worth whose total weight is not more than the maximum he can carry. This is an 
example of a Knapsack Problem.  

model Burglar  
 uses "mmxprs"  
 declarations 
  Items = 1..8                   ! Index range for items  
  VALUE: array(Items) of real    ! Value of items 
  WEIGHT: array(Items) of real   ! Weight of items  
  WTMAX=102                      ! Max weight allowed 
  x: array(Items) of mpvar 
           ! 1 if we take item i; 0 otherwise 
 end-declarations 
 
 !   Item:   1    2   3   4   5   6   7   8 
  VALUE := [15, 100, 90, 60, 40, 15, 10,  1] 
  WEIGHT:= [ 2,  20, 20, 30, 40, 30, 60, 10] 
 
 ! Objective: maximize total value 
 MaxVal:= sum(i in Items) VALUE(i)*x(i)  
 
 ! Weight restriction 
  WtMax:= sum(i in Items) WEIGHT(i)*x(i) <= WTMAX 
 
 ! All x are 0/1 
  forall(i in Items) x(i) is_binary   
 
 maximize(MaxVal)            ! Solve the MIP-problem 
 
 ! Print out the solution 
 writeln("Solution:\n Objective: ", getobjval) 
 forall(i in Items)  writeln(" x(", i, "): ", getsol(x(i))) 
end-model 

In this model there are a lot of new features, which we shall now explain. 

A3.1.1  Index Ranges 

The line 

  Items = 1..8                   ! Index range for items 

introduces an index range, that is, a range of values over which an index will later range. 
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A3.1.2  Arrays 

  VALUE: array(Items) of real    ! Value of items 

declares VALUE to a one-dimensional array of real values. In Mosel, reals are double precision. The other numeric 
type is integer.  An individual element of the array is indexed by a value in the index range Items. Exactly 
equivalent would be 

  VALUE: array(1..8) of real    ! Value of items  

Multi-dimensional arrays are declared in the obvious way e.g. 

  VAL3: array(Items, 1..20, Items) of real 

declares a 3-dimensional real array. Arrays of decision variables are declared likewise: 

  x: array(Items) of mpvar 

declares an array of decision variables x(1), x(2), x(3), …, x(8) 

All objects (scalars and arrays) declared in Mosel are always initialized with a default value: 

 real, integer: 0 
 boolean:      false 
 string:       '' (i.e. the empty string) 

A3.1.3  Constants  

  WTMAX=102                      ! Max we ight allowed 

declares a constant called WTMAX, and gives it the value 102. Since 102 is an integer, WTMAX is an integer constant. 
Anything that is given a value in a declarations block is a constant. 

A3.1.4  Assigning Values to Arrays 

  VALUE := [15, 100, 90, 60, 40, 15, 10,  1] 

fills the VALUE array as follows: 

VALUE(1) gets the value 15; VALUE(2) gets the value 100; …; VALUE(8) gets the value 1. 

A3.1.5  Summations 

MaxVal:= sum(i in Items) VALUE(i)*x(i) 

defines a linear expression called MaxVal as the sum  
i

i
i xVALUE *

8

1
∑

=

 

A3.1.6  Making a Variable a Binary Variable 

To make an mpvar variable, say variable xbinvar, into a binary (0/1) variable, we just have to say 

xbinvar is_binary 

To make an mpvar variable an integer variable, i.e. one that can only take on integral values in a MIP problem, we 
would have 

xintvar is_integer  
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A3.1.7  Simple Looping 

The statement  

  forall(i in Items) x(i) is_binary   

illustrates looping over all values in an index range. Recall that the index range Items is 1..8, so the statement says 
that x(1), x(2), … , x(8) are all binary variables. 

There is another example of the use of forall at the penultimate line of the model when writing out all the 
solution values. 

A3.1.8  Comments 

The symbol ! signifies the start of a comment, which continues to the end of the line. Longer comments can be 
written thus 

(! Mosel example problem  
   ===================== 
   file xxxx.yyy 
   Example of the use of the Mosel language 
   (c) yyyy Dash Associates 
!) 

where (! denotes the start of the comment, and !) the end. 

A3.2  The Burglar Problem Revisited 

Consider this model: 

model Burglar2 
uses "mmxprs" 
declarations 
 Items={"camera", "necklace", "vase", "picture", "tv", "video",   
  "chest", "brick"}           ! Index set for items 
  VALUE: array(Items) of real    ! Value of items 
  WEIGHT: array(Items) of real   ! Weight of items  
  WTMAX=102                      ! Max weight allowed 
  x: array(Items) of mpvar 
           ! 1 if we take item i; 0 otherwise 
 end-declarations 
 
 !   Item:  ca   ne  va  pi  tv  vi  ch  br 
  VALUE := [15, 100, 90, 60, 40, 15, 10,  1] 
  WEIGHT:= [ 2,  20, 20, 30, 40, 30, 60, 10] 
 
 MaxVal:= sum(i in Items) VALUE(i)*x(i)  
 ! Objective: maximize total value 
 
 ! Weight restriction 
  WtMax:= sum(i in Items) WEIGHT(i)*x(i) <= WTMAX 
 
 ! All x are 0/1 
  forall(i in Items) x(i) is_binary   
 
 maximize(MaxVal)            ! Solve the MIP-problem 
 
! Print out the solution  
 writeln("Solution:\n Objective: ", getobjval) 
 forall(i in Items)  writeln(" x(", i, "): ", getsol(x(i))) 
end-model 

What have we changed? The answer is, “not very much”   
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A3.2.1  String Indices 

The lines 

Items={"camera", "necklace", "vase", "picture", "tv", "video",  
  "chest", "brick"}           ! Index set for items 

declare that this time Items is a set of indices (an Index Set)  with the indices taking the string values "camera", 
"necklace" etc. 

If we run the model, we get 

Solution: 
 Objective: 280 
 x(camera): 1 
 x(necklace): 1 
 x(vase): 1 
 x(picture): 1 
 x(tv): 0 
 x(video): 1 
 x(chest): 0 
 x(brick): 0 

A3.2.2  Continuation Lines 

Notice that the statement 

Items={"camera", "necklace", "vase", "picture", "tv", "video",  
  "chest", "brick"}           ! Index set for items 

was spread over two lines. Mosel is smart enough to recognize that the statement is not complete, so it automatically 
tries to continue on the next line. If you wish to extend a single statement to another line, just cut it after a symbol 
that implies a continuation, like an operator (‘+’, ‘-’, ...) or a comma (‘,’) in order to warn the analyzer that the 
expression continues in the following line(s). For example 

 ObjMax:= sum(i in Irange, j in Jrange) TAB(i,j) * x(i,j) +  
           sum(i in Irange) TIB(i) * delta(i)             + 
           sum(j in Jrange) TUB(j) * phi(j) 

A3.2.3 Correcting Syntax Errors 

The parser of Mosel is able to detect a large number of errors that may occur when writing a model. In this section 
we shall try to analyze and correct some of these. If we compile the model 

model `Plenty of errors' 
 declarations 
  small: mpvar 
  large: mpvar 
 end-declarations 
 
 profit=   5*small + 20*large 
 mc_time:= 3*small + 2*large <= 400  
 wood:=      small + 3*large <= 200  
 
 maximize(profit) 
 
 writeln("Best profit is ", getobjval 
end-model 

we get the following output: 

Mosel: E-100 at (1,7) of `error.mos': Syntax error before ``'.  
Parsing failed. 

The second line of the output informs us that the compilation has not been executed correctly. The first line tells us 
exactly the type of the error that has been detected, namely a syntax error with the code E-100 (where E stands for 
error) and its location: line 1 character 7. The problem is caused by the apostrophe ` (or something preceding it). 
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Indeed, Mosel expects either single or double quotes around the name of the model if the name contains blanks. We 
therefore replace it by ' and compile the corrected model, resulting in the following display: 

Mosel: E-100 at (7,8) of `error.mos': Syntax error before `='.  
Mosel: W-121 at (7,28) of `error.mos': Statement with no effect. 
Mosel: E-100 at (11,16) of `error.mos': Syntax error before `profit'.  
Mosel: E-100 at (13,39) of `error.mos': Syntax error.  
Parsing failed. 

There is a problem with the sign = in the 7th line: 

 profit=  5*small + 20*large 

In the model body the equality sign = may only be used in the definition of constraints. Constraints are linear 
relations between variables, but profit has not been defined as a variable, the parser therefore detects an error. What 
we really want, is to assign the linear expression 5*small + 20*large to profit. For such an assignment we have to 
use the sign := .  

As a consequence of this error, the linear expression after the equality sign does not have any relevance to the 
problem that is stated. The parser informs us about this fact in the second line: it has found a statement with no 
effect. This is not an error that would cause the failure of the compilation taken on its own, but simply a warning 
(marked by the W in the error code W-121) that there may be something to look into. 

Since profit has not been defined, it cannot be used in the call to the optimization, hence the third error message. 

As we have seen, the second and the third error messages are consequences of the first mistake we have made. 
Before looking at the last message that has been displayed we recompile the model with the corrected line   

 profit:=  5*small + 20*large 

to get rid of all side effects of this error. Unfortunately, we still get a few error messages:  

 Mosel: E-100 at (11,17) of `error.mos': Syntax error.  
 Mosel: E-100 at (13,37) of `error.mos': Syntax error.  

There is still a problem in line 11, this time it shows up at the very end of the line. Although everything appears to 
be correct, the parser does not seem to know what to do with this line. The solution to this enigma is that we have 
forgotten to load the module mmxprs that provides the optimization function maximize. To tell Mosel that this 
module is used we need to add the line 

uses "mmxprs"  

immediately after the start of the model, before the declarations block. 

We now have a closer look at line 13 (that has now become line 14 due to the addition of the uses statement). All 
subroutines called in this line (writeln and getobjval) are provided by Mosel, so there must be yet another 
problem: we have forgotten to close the brackets. After adding the closing bracket after getobjval the model 
finally compiles without displaying any errors. If we run it we obtain the desired output: 

Best profit is 1333.33 
Returned value: 0 

Besides the detection of syntax errors, Mosel may also give some help in finding run time errors. Going into details 
would lead too far at this place. It should only be pointed out here that it is possible to add the flag -g to the compile 
command to obtain some information about where the error occurred in the program. 

A3.3  A Blending Example 

This example illustrates how data may be read into tables from text files.  

A3.3.1  The Model Background 

A mining company has two types of ore available: Ore 1 and Ore 2.  Denote the amounts of these ores to be used by 
x1 and x2.  The ores can be mixed in varying proportions to produce a final product of varying quality.  For the 
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product we are interested in, the "grade" (a measure of quality) of the final product must lie between the specified 
limits of 4.0 and 5.0.  It sells for £125 per ton.  The costs of the two ores vary, as do their availabilities. 

Maximizing net profit (i.e., sales revenue less cost of raw material) gives us the objective function: 

  )125(
2

1
j

j
j xCOSTNET_PROFIT ∑

=
−=  

We then have to ensure that the grade of the final ore is within certain limits.  Assuming the grades of the ores 
combine linearly, the grade of the final product is: 
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This must be greater than or equal to 4.0 so, cross-multiplying and collecting terms, we have the constraint: 
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Similarly the grade must not exceed 5.0, so we have the further constraint: 
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Finally there is a limit to the availability of each of the ores.  We model this with the constraints: 

22
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AVAILx

AVAILxl

≤
≤

 

A3.3.2  Developing the Model 

The above problem description sets out the relationships which exist between variables but contains few explicit 
numbers.  Focusing on relationships rather than figures makes the model much more flexible.  In this example only 
the selling price and the upper/lower limits on the grade of the final product are fixed. 

Enter the following model into a file blend2.mos. 
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model Blend2  
uses "mmxprs"  
 
declarations 
 ROres = 1..2           ! Range of Ores 
 REV = 125.0            ! Unit revenue of product 
 MINGRADE = 4.0         ! Min permitted grade of product  
 MAXGRADE = 5.0         ! Max permitted grade of product  
 COST: array(ROres) of real    ! Unit cost of ores  
 AVAIL: array(ROres) of real   ! Availability of ores 
 GRADE: array(ROres) of real  
   ! Grade of ores (measured per unit of mass) 
 
 x: array(ROres) of mpvar      ! Quantities of ores used  
end-declarations 
 
! Read data from file blend.dat in subdirectory Data 
initializations from 'Data/blend.dat'  
 COST 
 AVAIL 
 GRADE 
end-initializations 
 
! Objective: maximize total profit 
 Profit:= sum(o in ROres) (REV-COST(o))* x(o) 
 
! Lower and upper bounds on ore quality 
 LoGrade:= sum(o in ROres) (GRADE(o)-MINGRADE)*x(o) >= 0 
 UpGrade:= sum(o in ROres) (MAXGRADE -GRADE(o))*x(o) >= 0 
 
! Set upper bounds on variables  
 forall(o in ROres) x(o) <= AVAIL(o) 
 
 maximize(Profit)              ! Solve the LP-problem 
 
 ! Print out the solution 
 writeln("Solution:\n Objective: ", getobjval) 
 forall(o in ROres)  writeln(" x(" + o + "): ", getsol(x(o))) 
 
end-model 

A3.3  Data from Text Files 

The file Data/blend.dat contains 

! Data file for 'blend.mos' 
COST: [85 93] 
AVAIL: [60 45] 
GRADE: [2.1 6.3] 

The “initializations from … end-initializations” block is new here, telling Mosel where to get 
data from to initialize named arrays. The order of the data items in the file does not have to be the same as that in the 
initializations block; equally acceptable would have been the statements 

initializations from 'Data/blend.dat'  
 AVAIL GRADE COST 
end-initializations 

Section 5.4 has more about getting data from text files into multi-dimensional arrays. 

The mmetc library can be used in Mosel programs to load data files written for XpressMP's mp-model using the 
diskdata()procedure. For example, if we had a file Data/cost.dat containing data 

85, 93 

then the Mosel model 



Mosel User Guide Part A - Some Illustrative Examples 
 

  

14 

model Blendx 
 uses "mmxprs", "mmetc"  
 declarations 
  COST: array(1..2) of real  
 end-declarations 
 
 diskdata(ETC_DENSE, "Data/cost.dat", COST)  
 writeln("COST(1) is ", COST(1), " COST(2) is ", COST(2)) 
end-model 

will output 

COST(1) is 85 COST(2) is 93  

A3.3.1  Re-running the Model with New Data 

There is a problem with the model we have just presented - the name of the file containing the costs date is hard-
wired into the model. If we wanted to use a different file, say Data/ncost.dat, then we would have to edit the model, 
and recompile it. To help with this situation, Mosel has parameters. A model parameter is a symbol the value of which 
can be set just before running the model, often as an argument of  the run command of the command line 
interpreter. 

model Blendy 
 uses "mmxprs", "mmetc"  
 parameters 
  CostFile="Data/cost.dat" 
 end-parameters 
 declarations 
  COST: array(1..2) of real  
 end-declarations 
 diskdata(ETC_DENSE, CostFile, COST) 
 writeln("COST(1) is ", COST(1), " COST(2) is ", COST(2)) 
end-model 

The parameter CostFile  is recognized as a string, and its default value is specified. If we have previously 
compiled the model into say blendy.bim, then the command 

mosel -c "load blendy; run 'CostFile="data/ncost.dat "'" 

will read the cost data from the file we want. 
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Part A - Chapter 4:  Using Databases and Spreadsheets 

A4.1  Overview 

This chapter shows how Mosel’s SQL/ODBC facilities can be used to obtain data from and export data to a variety 
of spreadsheets and databases.  

It is quite easy to create and maintain data tables in text files but we have found that a much better data storage 
medium is provided by spreadsheets or databases.  So there is a facility in Mosel whereby the contents of ranges 
within spreadsheets may be read into data tables and databases may be accessed.  It requires an additional 
authorization in your XpressMP license. 

A4.2  A Spreadsheet Example 

A4.2.1  Spreadsheets are not Databases 

SQL and ODBC were designed for databases, not for spreadsheets. One of the many differences between 
spreadsheets and databases is that columns in a relational database have a type (text, integer, real, etc.), whereas 
individual cells in a spreadsheet are typed, and all the cells in a column do not necessarily have the same type. If you 
are constructing spreadsheet ranges to hold your data for use by ODBC, you must ensure that all the cells in a 
column of the range have the same type. 

Furthermore, if you are writing to a spreadsheet you must be aware that ODBC has to guess the type of the column - 
and hence the type of all the cells in the column - somehow. It does this by looking at the first few rows in the range. 
So these rows have to be populated with specimen data. 

A4.2.2  The Example 

Please note that if you are going to work through the examples in this section, you must have access to Excel.  

Let us suppose that in a spreadsheet called myss.xls you have inserted the following into the cells indicated: 

 A B C 
1    
2  First Second 
3  6.2 1.3 
4  -1.0 16.2 
5  2.0 -17.9 

and called the range B2:C5 MyRange. 

We will use ODBC to extract these data into a Mosel array TOM(1..3,1..2) 

• In Windows set up a User Data Source called MSExcel, by clicking Add, selecting Microsoft Excel 
Driver (*.xls), and filling in the ODBC Microsoft Excel Setup dialog.  Click Options >> and 
clear the Read Only check box. 

The following model will set up the TOM array in Mosel and fill it with the data from the Excel range MyRange. 
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model ODBCex 
 uses "mmodbc" 
 declarations 
  TOM: array(1..3,1..2) of real 
 end-declarations 
 
 SQLconnect('DSN=MSExcel; DBQ= Data/myss.xls')  
 SQLexecute("select * from MyRange ",[TOM]) 
 
 forall(i in 1..3) do 
  writeln("Row(",i,"): ", TOM(i,1), " ", TOM(i,2)) 
 end-do 
end-model 

Note that we use the mmodbc package. The ODBC statement “select * from MyRange” says "select 
everything from the range called MyRange".  ODBC uses SQL, and it is possible to have much more complex 
selection statements than the ones we have used. 

A4.3  A Database Example 

If we use Microsoft Access, we might have set up an ODBC DSN called MSAccess, and suppose we are extracting 
data from a table called MyTable in the database moseg.mdb. There are just two double columns in MyTable, 
called First and Second. We have just three records in MyTable, and the data are the same as in the Excel 
example above. 

We modify the example above to be 

model ODBCexAC 
 uses "mmodbc" 
 declarations 
  TOM: array(1..3,1..2) of real 
 end-declarations 
 
 SQLconnect('DSN=MSAccess; DBQ= Data/moseg.mdb') 
 SQLexecute("select * from MyTable ",[TOM]) 
 
 forall(i in 1..3) do 
  writeln("Row(",i,"): ", TOM(i,1), " ", TOM(i,2)) 
 end-do 
end-model 

and get the output 

Row(1): 6.2 1.3 
Row(2): -1 16.2 
Row(3): 2 -17.9 

A4.4  Using ODBC to Output Data 

It is important to recall the warning in section 4.2.1. that " Spreadsheets are not Databases" Remember in particular 
that if you are writing to a spreadsheet you must be aware that ODBC has to guess the type of the column - and 
hence the type of all the cells in the column - somehow. It does this by looking at the first few rows in the range. So 
these rows have to be populated with specimen data. 

A4.4.1 A Database Example 

We will take the Microsoft Access example of reading data using ODBC we used above, and show how to write 
data to a table. We are going to square the numbers we get in TOM and write the squares to a table called MyOut in 
the database Data\mosegout.mdb. There are just two double columns in MyOut, called First2 and 
Second2. 
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model ODBCOut 
 uses "mmodbc" 
 declarations 
  TOM: array(1..3,1..2) of real 
 end-declarations 
 
 SQLconnect('DSN=MSAccess; DBQ=Data\mosegout.mdb') 
! Get the data from MyTable 
 SQLexecute("select * from MyTable ",[TOM]) 
 
! Square all the numbers ... 
 forall(i in 1..3, j in 1..2) TOM(i,j) := TOM(i,j)^2  
 
! ... and write to MyOut  
 SQLexecute("insert into MyOut (First2, Second2) values (?,?)", TOM) 
 
end-model 

A4.5  Helpful Tip: Sizing TABLES for Spreadsheet Data 

There is a trick that we have found to be very useful in practice.  Mosel does the evaluation of what it sees at the 
point that it sees it.  This is particularly helpful when you want to make dynamic adjustments to the sizes of tables.  
Below we develop a set of commands that we use repeatedly when we are feeding Mosel with data from a 
spreadsheet that obtain the sizes of tables directly from the data source. 

Suppose that we have set up some data in a spreadsheet ssxmpl to represent the resource usage of some raw 
materials by some products.  We want to be able to allow for the number of raw materials and the number of 
products changing.  Diagrammatically, we have decided to lay out this part of the spreadsheet as follows: 

 

 RawMat1 RawMat2 RawMat3 RawMat4 
Product1     
Product2     
Product3     
...     

and to call the range, including the row containing raw material names (but not the column containing product 
names), USAGE.  If an extra product is introduced, then USAGE gets bigger by one row; if an extra raw material is 
used then the number of columns increases by one.  These changes have to be mirrored in the Mosel formulation.  

We construct a small region of the spreadsheet and name it SIZES.  Into it we put the numbers that characterize the 
problem - in this case the number of products and the number of raw materials - the parameters.  It is important that 
these numbers are not "hard-wired" in, but that we let the spreadsheet calculate them for itself.  In Excel it would be: 

 

Number of Products Number of Raw Materials 

=ROWS(USAGE)-1 =COLUMNS(USAGE) 

The reduction by 1 allows for the row which just contains the raw material names. We name as Nprod the range 
formed by the two cells 

Number of Products 

=ROWS(USAGE)-1 

and likewise the range made from the two cells that form the second column of SIZES is named  Nrm. 

Now the commands below might form the introductory part of a model.  
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model sizes 
 uses "mmodbc" 
 declarations 
  Nprod, Nrm: integer 
 end-declarations 
 
 SQLconnect('DSN=MSExcel;DBQ=Data/ssxmpl.xls') 
 Nprod:=SQLreadinteger("select Nprod from SIZES") 
 Nrm  :=SQLreadinteger("select Nrm   from SIZES") 
 
 declarations 
  PneedsR: array(1..Nprod,1..Nrm) of real  
 end-declarations 
 
 SQLexecute("select * from USAGE",[PneedsR]) 
 
 forall(p in 1..Nprod, r in 1..Nrm) do 
  writeln("PneedsR(",p,",",r, " is ", PneedsR(p,r) ) 
 end-do 
end-model 
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Part A - Chapter 5:  More Advanced Modeling Features 

A5.1  Overview 

This chapter introduces some more advanced features of the modeling language in Mosel.  We shall not attempt to 
cover all its features or give the detailed specification of their formats.  These are covered in greater depth in the 
Mosel Reference Manual. 

The main areas not yet covered in any detail are 

• conditional generation 

• sparse data 

• displaying data 

• built in functions 

• more on reporting results 

The following sections deal with each of these in turn. 

A5.2  Conditional Generation 

Suppose we wish to apply an upper bound to some but not all members of a set of variables xi.  There are MAXI 
members of the set.  The upper bound to be applied to xi is Ui, but it is only to be applied if the entry in the data table 
TABi is greater than 20. 

If the bound did not depend on the value in TABi then the statement would read: 

forall(i in 1..MAXI) x(i) <= U(i)  

Requiring the condition leads us to write 

forall(i in 1..MAXI ¦ TAB(i) > 20 ) x(i) <= U(i)  

The symbol  ¦  can be read as “such that” or “subject to”.  

Now suppose that we wish to model the following 

15

0)(..
1      

≤∑
>

=

IMAX

iAts
i

ix
 

In other words, we just want to include in a sum those xi for which A(i) is greater than zero. This is accomplished by 

CC:= sum((i in 1..IMAX ¦ A(i)>0 ) x(i) <= 15  

We can conditionally create variables by a slightly more complex procedure. Suppose that we have a set of 15 
decision variables x(i) where we do not know the set of i for which x(i) exist until we have read data into an 
array EXIST(i).  
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model doesx 
 declarations 
  IR = 1..15 
  EXIST: set of integer 
  x: dynamic array(IR) of mpvar 
 end-declarations 
 
! Read data from file 
 initializations from 'Data/idata.dat' 
  EXIST 
 end-initializations 
 
! Create the x variables that exist 
 forall(i in EXIST ) create(x(i)) 
 
! Build a littl e model to show what esists  
 obj:= sum(i in IR) x(i) 
 c:= sum(i in IR) i * x(i) >= 5 
 
 exportprob(0, "", obj) ! show model 
end-model 

If the data in idata.dat are 

EXIST: [1 4 7 11 14] 

the output from the model is 

Minimize 
 x(1) + x(4) + x(7) + x(11) + x(14) 
Subject To 
c: x(1) + 4 x(4) + 7 x(7) + 11 x(11) + 14 x(14) >= 5  
Bounds 
End 

Note: exportprob(0, "", obj) is a nice idiom for seeing on-screen the problem  that has been created. 

The key point is that x has been declared as a dynamic array, and then the ones that exists have been created 
explicitly with create(). When we later take operations over the index set of x (for instance, summing), we only 
include those x that have been created. 

Another way to do this, is 

model doesx2 
 declarations 
  EXIST: set of integer 
 end-declarations 
 
 initializations from 'Data/idata.dat' 
  EXIST 
 end-initializations 
 finalize(EXIST) 
 
 declarations 
  x: array(EXIST) of mpvar    ! here the array is _not_ dynamic 
 end-declarations             ! because the set has been finalized 
 
 obj:= sum(i in EXIST) x(i) 
 forall(i in EXIST)  x(i) <= i 
 
 exportprob(0, "", obj) 
end-model 

By default, an array is of fixed size if all of its indexing sets are of fixed size (i.e. they are either constant or have 
been finalized.  Finalizing turns a dynamic set into a constant set consisting of the elements that are currently in the 
set. All subsequently declared arrays that are indexed by this set will be created as static (= fixed size). 

The second method has two advantages: it is more efficient, and it doesn't require us to think of the upper limit of 
the range IR a priori. 
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A5.3  Initializing Multi-Dimensional Arrays 

How does one initialize  a 2-dimensional array such as 

declarations 
  EE: array(1..2, 1..3) of real  
end-declarations 

For a 1-dimensional array we might have 

VALUE := [15, 100, 90, 60, 40, 15, 10,  1] 

but for our array EE we might write 

EE:= [11, 12, 13 , 
      21, 22, 23 ] 

which of course is the same as 

EE:= [11, 12, 13, 21, 22, 23] 

but much more intuitive. Mosel places the values in the tuple into EE "going across the rows", with the last subscript 
varying most rapidly. 

For higher dimensions, the principle is the same. The model 

model sp 
 declarations 
  TT: array(1..2, 1..3, 1..4) of integer 
 end-declarations 
 
 TT:= [111, 112, 113, 114,  
       121, 122, 123, 124,  
       131, 132, 133, 134,  
       211, 212, 213, 214,  
       221, 222, 223, 224,  
       231, 232, 233, 234]  
 
 forall(i in 1..2, j in 1..3, k in 1..4) do  
  writeln("TT(", i, ",",j, ",", k, ") = ", TT(i,j,k) )  
 end-do 
end-model 

produces output 

TT(1,1,1) = 111 
TT(1,1,2) = 112 
TT(1,1,3) = 113 
TT(1,1,4) = 114 
TT(1,2,1) = 121 
TT(1,2,2) = 122 
TT(1,2,3) = 123 
TT(1,2,4) = 124 
TT(1,3,1) = 131 
TT(1,3,2) = 132 
TT(1,3,3) = 133 
TT(1,3,4) = 134 
TT(2,1,1) = 211 
TT(2,1,2) = 212 
TT(2,1,3) = 213 
TT(2,1,4) = 214 
TT(2,2,1) = 221 
TT(2,2,2) = 222 
TT(2,2,3) = 223 
TT(2,2,4) = 224 
TT(2,3,1) = 231 
TT(2,3,2) = 232 
TT(2,3,3) = 233 
TT(2,3,4) = 234 
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A5.4  Dynamic Arrays 

A5.4.1  Sparsity 

Almost all large scale LP and MIP problems have a property known as sparsity, that is, each variable appears with a 
non-zero coefficient in a very small fraction of the total set of constraints.  Often this property is reflected in the data 
tables used in the model in that many values of the tables are zero.  When this happens, it is more convenient to 
provide just the non-zero values of the data table rather than listing all the values, the majority of which are zero. 
This is also the easiest way to input data into data tables with more than two dimensions. An added advantage is that 
less memory is used by Mosel. 

model Transport 
 uses "mmxprs" 
 declarations 
  REGION: set of string              ! Set of customer regions 
  PLANT: set of string               ! Set of plants 
  DEMAND: array(REGION) of real      ! Demand at regions 
  PLANTCAP: array(PLANT) of real     ! Production capacity at plants 
  PLANTCOST: array(PLANT) of real    ! Unit production cost at plants 
  TRANSCAP: array(PLANT,REGION) of real 
   ! Capacity on each route plant->region 
  DISTANCE: array(PLANT,REGION) of real  
   ! Distance of each route plant->region 
  FUELCOST: real                     ! Fuel cost per unit distance  
  flow: array(PLANT,REGION) of mpvar ! Flow on each route 
 end-declarations 
  
 ! Read data from file 
 initializations from 'Data/transprt.dat' 
  DEMAND 
  PLANTCAP 
  PLANTCOST 
  DISTANCE 
  TRANSCAP 
  FUELCOST 
 end-initializations 
  
 ! Create the flow variables that exist  
 forall(p in PLANT, r in REGION | TRANSCAP(p,r) >0 ) create(flow(p,r)) 
  
 ! Objective: minimize total cost  
  MinCost:= sum(p in PLANT,r in REGION) (FUELCOST * DISTANCE(p,r) +  
       PLANTCOST(p)) * flow(p,r) 
  
 ! Limits on plant capacity  
  forall(p in PLANT) Supply(p):= sum(r in REGION) flow(p,r) <= 
    PLANTCAP(p) 
 ! Satisfy all demands 
  forall(r in REGION) Demand(r):= sum(p in PLANT) flow(p,r) = DEMAND(r)  
  
 ! Bounds on flows 
  forall(p in PLANT,r in REGION) flow(p,r) <= TRANSCAP(p,r) 
  
  minimize(MinCost)                   ! Solve the LP -problem 
  

 end-model 

REGION and PLANT are declared to be sets of strings, as yet of unknown size. DEMAND, PLANTCAP, PLANTCOST 
and TRANSCAP are  arrays that will be indexed by members of REGION and PLANT The data file 
Data/transprt.dat contains the problem specific data. It might have, for instance, 
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DEMAND: [ (Scotland) 2840 (North) 2800 (SWest) 2600 
          (SEast) 2820 (Midlands) 2750 ]  
 
PLANTCAP: [ (Corby) 3000 (Deeside) 2700 (Glasgow) 4500 (Oxford) 4000 ]  
 
PLANTCOST: [ (Corby) 1700 (Deeside) 1600 (Glasgow) 2000 (Oxford) 2100 ]  
 
DISTANCE: [ 
(Corby   North)    400 
(Corby   SWest)    400 
(Corby   SEast)    300 
(Corby   Midlands) 100 
(Deeside Scotland) 500  
(Deeside North)  200 
(Deeside SWest)  200 
(Deeside SEast)  200 
(Deeside Midlands) 400  
(Glasgow Scotland) 200  
(Glasgow North)  400 
(Glasgow SWest)  500 
(Glasgow SEast)  900 
(Oxford  Scotland) 800  
(Oxford  North)  600 
(Oxford  SWest)  300 
(Oxford  SEast)  200 
(Oxford  Midlands) 400  
] 
 
TRANSCAP: [ 
(Corby   North)  1000 
(Corby   SWest)  1000 
(Corby   SEast)  1000 
(Corby   Midlands) 2000  
(Deeside Scotland) 1000  
(Deeside North)  2000 
(Deeside SWest)  1000 
(Deeside SEast)  1000 
(Deeside Midlands) 300  
(Glasgow Scotland) 3000  
(Glasgow North)  2000 
(Glasgow SWest)  1000 
(Glasgow SEast)  200 
(Oxford  Scotland) 0  
(Oxford  North)  2000 
(Oxford  SWest)  2000 
(Oxford  SEast)  2000 
(Oxford  Midlands) 500  
] 
 
FUELCOST: 17 

Note that some data are not specified; for instance, there is no Corby<->Scotland route. So the data are sparse. 

A5.4.2  Reading Sparse Data 

Suppose we want to read in data of the form 

i , j, value_ij  

from an ASCII file, setting up a dynamic array A(range, range) just with A(i,j)= value_ij for the (i,j) which 
exist in the file. Here is an example which shows three different ways of doing this. We read data from differently 
formatted files into three different arrays, and show using writeln() that the arrays hold identical data. 
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model trio 
uses "mmetc"  ! required for diskdata()  
 
declarations 
 A1, A2, A3: array(range,range) of real 
 i, j: integer 
end-declarations 
 
! First method: use an initializations block  
 initializations from "Data/data_1.dat" 
  A1 as "mydata" 
 end-initializations 
 
! Second method: use the built-in readln function  
 fopen("Data/data_2.dat",F_INPUT) 
 repeat 
  readln('Tut(',i,'and',j,')=', A2(i,j)) 
 until getparam("nbread") < 6 
 fclose(F_INPUT) 
 
! Third method: use diskdata  
 diskdata(ETC_IN+ETC_SPARSE,"Data/data_3.dat", A3) 
 
! Now let's see what we have  
 writeln('A1 is: ', A1) 
 writeln('A2 is: ', A2) 
 writeln('A3 is: ', A3) 
 
end-model 

The data files could be set up thus: 

data_1.dat 

mydata: [ (1 1) 12.5 (2 3) 5.6 (10 9) -7.1 (3 2) 1 ] 

data_2.dat 

Tut(1 and 1)=12.5 
Tut(2 and 3)=5.6 
Tut(10 and 9)=-7.1 
Tut(3 and 2)=1 

data_3.dat 

1, 1, 12.5 
2, 3,  5.6 
10,9, -7.1 
3, 2, 1 

Note that the second way of setting up and accessing data demonstrates the immense flexibility of readln.  
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A5.5  Useful Functions and Procedures 

There is a range of built-in functions and procedures available in Mosel. They are described fully in the Mosel  
Reference Manual. Here is a summary. 

Accessing solution values getsol, getact, getcoeff, getdual, getrcost, 
getslack, getobjval 

Arithmetic functions arctan, cos, sin, ceil, floor, round, exp, ln, 
log, sqrt, isodd 

List functions maxlist, minlist 
String functions strfmt, substr 
Dynamic array handling create, finalize 
File handling fclose, fflush, fopen, fselect, fskipline, 

getfid, iseof, read, readln 
Accessing control parameters getparam, setparam 
Getting information getsize, gettype, getvars 
Hiding constraints sethidden, ishidden 
Miscellaneous functions exportprob, bittest, random, setcoeff, settype, 

exit 

In the mmxprs module are the following useful functions. 

Optimize minimize, maximize 
MIP directives setmipdir, clearmipdir  
Handle bases savebasis, loadbasis, delbasis 
Force problem loading loadprob  
Get problem status getprobstat 
Deal with bounds setlb, setub, getlb, getub 
Model cut functions setmodcut, clearmodcut  

For example, here is a nice habit to get into when solving a problem with XPRS. 

declarations 
  status:array({XO_OPT,XO_UNF,XO_INF,XO_UNB}) of string 
end-declarations 
 
status:=["Optimum found","Unfinished","Infeasible","Unbounded"]  
... 
minimize(obj) 
writeln(status(getprobstat)) 

In the mmsystem module are various useful functions provided by the underlying operating system: 

Delete a file/directory fdelete, removedir 
Move a file fmove 
Current working directory getcwd 
Get an environment variable’s value getenv 
File status getfstat 
Returns the system status. getsysstat 
Time gettime 
Make a  directory makedir 
General system call system 

See the Mosel Reference Manual for full details. 
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Part A - Chapter 6:  Integer Programming 

A6.1  Introduction to Integer Programming 

Though many systems can accurately be modeled as Linear Programs, there are situations where discontinuities are 
at the very core of the decision making problem.  There seem to be three major areas where non-linear facilities are 
required 

• where entities must inherently be selected from a discrete set; 

• in modeling logical conditions; and 

• in finding the global optimum over functions. 

Mosel lets you model these non-linearities using a range of discrete (global) entities and then the XpressMP Mixed 
Integer Programming (MIP) optimizer can be used to find the overall (global) optimum of the problem.  Usually the 
underlying structure is that of a Linear Program, but optimization may be used successfully when the non-linearities 
are separable into functions of just a few variables. 

XpressMP handles the following global entities: 

Binary variables (BV) - decision variables that can take either the value 0 or the value 1 (do/don't do variables). 

Integer variables (UI) - decision variables that can take only integer values.  Some small upper limit must be 
specified. 

Partial integer variables (PI) - decision variables that can take integer values up to a specified limit and any 
value above that limit. 

Semi-continuous variables (SC) - decision variables that can take either the value 0, or a value between some 
lower limit and upper limit.  SCs help model situations where if a variable is to be used at all, it has to be 
used at some minimum level. 

Semi-continuous integer variables (SI) - decision variables that can take either the value 0, or an integer value 
between some lower limit and upper limit.  SIs help model situations where if a variable is to be used at all, 
it has to be used at some minimum level, and has to be integer. 

Special Ordered Sets of type one (SOS1 or S1) - an ordered set of variables at most one of which can take a 
non-zero value. 

Special Ordered Sets of type two (SOS2 or S2) - an ordered set of variables, of which at most two can be 
non-zero, and if two are non-zero these must be consecutive in their ordering. 

The most commonly used entities are binary variables, which can be employed to model a whole range of logical 
conditions.  General integers are more frequently found where the underlying decision variable really has to take on 
a whole number value for the optimal solution to make sense.  For instance, we might be considering the number of 
airplanes to charter, where fractions of an aero plane are not meaningful and the optimal answer will probably 
involve so few planes that rounding to the nearest integer may not be satisfactory. 

Partial integers provide some computational advantages in problems where it is acceptable to round the LP solution 
to an integer if the optimal value of a decision variable is quite large, but unacceptable if it is small. 

Semi-continuous variables are useful where, if some variable is to be used, its value must be no less than some 
minimum amount. If the variable is a mi-continuous integer variable, then it has the added restriction that it must be 
integral too. 
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Special Ordered Sets of type 1 are often used in modeling choice problems, where we have to select at most one 
thing from a set of items.  The choice may be from such sets as: the time period in which to start a job; one of a 
finite set of possible sizes for building a factory; which machine type to process a part on. 

Special Ordered Sets of type 2 are typically used to model non-linear functions of a variable.  They are the natural 
extension of the concepts of Separable Programming, but when embedded in a Branch and Bound code (see below) 
enable truly global optima to be found, and not just local optima.  (A local optimum is a point where all the nearest 
neighbors are worse than it, but where we have no guarantee that there is not a better point some way away.  A 
global optimum is a point which we know to be the best.  In the Himalayas the summit of K2 is a local maximum 
height, whereas the summit of Everest is the global maximum height). 

Theoretically, models that can be built with any of the entities we have listed above can be modeled solely with 
binary variables.  The reason why modern IP systems have some or all of the extra entities is that they often provide 
significant computational savings in computer time and storage when trying to solve the resulting model.  Most 
books and courses on Integer Programming do not emphasize this point adequately.  We have found that careful use 
of the non-binary global entities often yields very considerable reductions in solution times over ones that just use 
binary variables. 

To illustrate the use of Mosel in modeling Integer Programming problems, a small example follows.  The first 
formulation uses binary variables.  This formulation is then modified use Special Ordered Sets.  

For the interested reader, an excellent text on Integer Programming is Integer Programming by Laurence Wolsey, 
Wiley Interscience, 1998, ISBN 0-471-28366-5. 

A6.2  A Project Planning Model 

The problem to be modeled is as follows: 

A company has several projects that it must undertake in the next few months.  Each project lasts for a given time 
(its duration) and uses up one resource as soon as it starts.  The resource profile is the amount of the resource that is 
used in the months following the start of the project.  For instance, project 1 uses up 3 units of resource in the month 
it starts, 4 units in its second month, and 2 units in its last month. 

The problem is to decide when to start each project, subject to not using more of any resource in a given month than 
is available.  The benefit from the project only starts to accrue when the project has been completed, and then it 
accrues at BENp per month for project p, up to the end of the time horizon. 

Below, we give a mathematical formulation of the above project planning problem, and then display the Mosel 
model form. 

We define the following constants: 

NPROJ: the number of projects; and 
NTIME: the number of months to plan for. 

The data are: 

PROFpt: the resource usage of project p in its tth month 
BENp: the benefit per month when project finishes 
RESMAXm: the resource available in month m 
DURp: the duration of project p 

and the variables: 

xpm: =1 if project p starts in month m, otherwise 0 
startp: start month for project p 

The objective function is obtained by noting that the benefit coming from a project only starts to accrue when the 
project has finished.  If it starts in month m then it finishes in month m+DURp-1.  So, in total, we get the benefit of 
BENp for NMTH-(m+ DURp-1) = NMTH - m- DURp+1 months.  We must consider all the possible projects, and all 
the starting months that let the project finish before the end of the planning period.  For the project to complete it 
must start no later than month NMTH-DURp.  Thus the profit is: 
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We next need to consider the implications of the limited resource availability each month.  Note that if a project p 
starts in month m it is in its (k-m+1)th month in month k, and so will be using PROFp,k-m+1 units of the resource.  
Adding this up for all projects and all starting months up to and including the particular month k under consideration 
gives: 
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since if an xpm is 1 the summation picks up the corresponding m. 

Finally we have to specify that the xpm are binary (0 or 1) variables.  This is done by the statement: 

mpx pm , }1,0{ ∀∈  

The model as specified to Mosel is as follows: 

model Pplan  
 uses "mmxprs" 
 
 declarations 
  RProj = 1..3            ! Range of projects 
  NMTH = 6                ! Time horizon (months) 
  RMonth = 1..NMTH        ! Range of time periods (months) to plan for 
  
  DUR: array(RProj) of integer    ! Duration of project p 
  PROF: array(RProj,RMonth) of integer  
             ! Resource usage of project p in its t'th month 
  RESMAX: array(RMonth) of integer 
             ! Resource available in month t  
  BEN: array(RProj) of real  ! Benefit per month once project finished 
  
  x: array(RProj,RMonth) of mpvar  
       ! 1 if proj p starts in mnth t, else 0 
 
  start: array(RProj) of mpvar   ! Month in which project p starts 
 end-declarations 
 
 DUR   := [3, 3, 4] 
 RESMAX:= [5, 6, 5, 5, 4, 5]  
 BEN   := [10.2, 12.3, 11.2] 
 PROF(1,1):= [3, 4, 2] 
 PROF(2,1):= [4, 1, 6] 
 PROF(3,1):= [3, 2, 1, 2] ! Other PROF entries are 0 by default 
 
! Objective: Maximize Benefit 
! If project p starts in month t, it finishes in month 
!  t+DUR(p)-1 and contributes a benefit of BEN(p) for 
!  the remaining NMTH-(t+DUR(p)-1) months: 
 MaxBen:=  
  sum(p in RProj, m in 1..NMTH-DUR(p)) (BEN(p)*(NMTH-m-DUR(p)+1)) * x(p,m) 
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! Resource availability 
! A project starting in month m is in its k -m+1'st month in month k:  
 forall(k in RMonth) ResMax(k):= 
  sum(p in RProj, m in 1..k) PROF(p,k+1-m)*x(p,m) <= RESMAX(k) 
 
! Each project starts once and only once:   
 forall(p in RProj) One(p):= sum(m in RMonth) x(p,m) = 1.0  
  
! Connect variables x(p,t) and start(p)  
 forall(p in RProj) Connect(p):= sum(m in 1..NMTH-DUR(p)) m*x(p,m) = start(p)   
 
! Make all the x variables binary 
 forall(p in RProj, m in RMonth) x(p,m) is_binary 
 
 maximize(MaxBen)                ! Solve the MIP-problem 
 writeln("Solution value is: ", getobjval)  
 
end-model 

A6.3  The Project Planning Model Using Special Ordered Sets 

The example can be modified to use Special Ordered Sets of type 1 (SOS1).  The xmt variables for a given p form a 
set of variables which are ordered by m, the month.  The ordering is induced by the coefficients of the x(p,m)in 
the specification of the SOS.  For example, xp1's coefficient, 1, is less than xp2's, 2, which in turn is less than xp3's 
coefficient, and so on 

The fact that the xpm variables for a given p form a set of variables is specified to Mosel as follows: 

(! Define SOS-1 sets that ensure that at most one x is non -zero for 
   each project p. Use month index to order the variables !)  
 
forall(p in RProj) XSet(p):= sum(m in RTime) m*x(p,m) is_sos1  

The is_sos1 specification tells Mosel that Xset(p) is a Special Ordered Set of type 1.The sum term is not a 
summation operator but really Mosel’s equivalent to the set theoretic union concept.  In this context it says that all 
the x(p,m) variables for m in the RTime index range are members of an SOS1 with reference row entries t.  If the 
set were an SOS2 set then the is_sos1 specification would be replaced by is_sos2. 

The specification of the x(p,m) as binary variables must now be removed.  The binary nature of the x(p,m) is 
implied by the SOS1 property, since if the x(p,m) must add up to 1 and only one of them can differ from zero, 
then just one is 1 and the others are 0. 

If the two formulations are equivalent why were Special Ordered Sets invented, and why are they useful? The 
answer lies in the way the reference row gives the search procedure in Integer Programming (IP) good clues as to 
where the best solution lies.  Quite frequently the Linear Program (LP) that is solved as a first approximation to an 
Integer Program gives an answer where xp1 is fractional, say with a value of 0.5, and xpM takes on the same fractional 
value.  The IP will say: 

"my job is to get variables to 0 or 1.  Most of the variables are already there so I will try moving xp1 or xpT.  Since 
the set members must add up to 1.0, one of them will go to 1, and one to 0.  So I think that we start the project 
either in the first month or in the last month." 

A much better guess is to see that the xpm are ordered and the LP is telling us it looks as if the best month to start is 
somewhere midway between the first and the last month.  When sets are present, the IP can branch on sets of 
variables.  It might well separate the months into those before the middle of the period, and those later.  It can then 
try forcing all the early xpm to 0, and restricting the choice of the one xpm that can be 1 to the later xpm.  It has this 
option because it now has the information to "know" what is an early and what is a late xpm, whereas these variables 
were unordered in the binary formulation. 

The power of the set formulation can only really be judged by its effectiveness in solving large, difficult problems.  
When it is incorporated into a good IP system such as XpressMP it is often found to be an order of magnitude better 
than the equivalent binary formulation for large problems. 
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Part B 

This Part takes the reader who wants to use Mosel as a modeling, solving and programming environment through its 
powerful programming language facilities. The following topics, most of which have already been briefly mentioned 
in Part A, are covered in a more detailed way: 

selections and loops 

working with sets 

output to files and producing formatted output  

functions and procedures 

Whilst the first 4 chapters in this part present pure programming examples, the last two chapters contain some 
advanced examples of LP and MIP that make use of the programming facilities in Mosel. 
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Part B - Chapter 1:  Flow Control Constructs 

Flow control constructs are mechanisms for controlling the order of the execution of the actions in a program. In  
this chapter we take a closer look at two fundamental types of control constructs in Mosel: selections and loops.  

Actions in a program frequently need to be repeated a certain number of times, for instance for all possible values of 
some index or depending on whether a condition is fulfilled or not. This is the purpose of loops. Since in practical 
applications loops are often interwoven with conditions (selection statements), these are introduced first.  

B1.1  Selections 

Mosel provides several statements to express a selection between different actions to be taken in a program. 

The simplest form of a selection is the if-then statement: 

B1.1.1  if-then 

"If a condition holds, do something". For example: 

if A >= 20 then  
 x <= 7 
end-if 

For an integer number A and a variable x of type mpvar, x is constrained to be less than or equal to 7 if A is greater 
than or equal to 20. 

Note that there may be any number of expressions between then and end-if, not just a single one. In other cases, 
it may be necessary to express choices with alternatives. 

B1.1.2  if-then-else 

"If a condition holds, do this, otherwise do something else". For example: 

if A >= 20 then  
 x <= 7 
else x >= 35  
end-if 

Here the upper bound 7 is applied to the variable x if the value of A is greater than or equal to 20, otherwise the 
lower bound 35 is applied to it. 

B1.1.3  if-then-elif-then-else 

"If a condition holds do this, otherwise, if a second condition holds do something else etc." 

if A >= 20 then 
 x <= 7 
elif A <= 10 then 
 x >= 35 
else 
 x = 0 
end-if 

Here the upper bound 7 is applied to the variable x if the value of A is greater than or equal to 20, and if the value of 
A is less than or equal to 10 then the lower bound 35 is applied to x. In all other cases (that is, A is greater than 10 
and smaller than 20), x is fixed to 0. 
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Note that this could also be written using two separate if-then statements but it is more efficient to use if-
then-elif-then[-else] if the cases that are tested are mutually exclusive. 

B1.1.4  case 

"Depending on the value of an expression do something". 

case A of  
 -MAX_INT..10 : x >= 35 
 20..MAX_INT :  x <= 7 
 12, 15 :       x = 1 
 else           x = 0 
end-if 

Here still the upper bound 7 is applied to the variable x if the  value of A is greater than or equal to 20, and the lower 
bound 35 is applied if the value of A is less than or equal to 10. In addition, x is fixed to 1 if A has a value 12 or 15, 
and fixed to 0 for all remaining values. 

An example of the use of the case statement is given in Chapter B-5. 

The following example uses the if-then-elif-then statement to compute the minimum and the maximum of 
a set of randomly generated numbers: 

model Minmax 
 
 declarations 
  SNumbers: set of integer  
  LB=-1000                   ! Elements of SNumbers must be between LB 
  UB=1000                    ! and UB  
 end-declarations 
 
                       ! Generate a set of 50 randomly chosen numbers  
 forall(i in 1..50) SNumbers += {round(random*200) -100} 
 
 writeln("Set: ", SNumbers, " (size: ", getsize(SNumbers), ")") 
 
 minval:=UB 
 maxval:=LB 
 forall(p in SNumbers) 
   if p<minval then 
     minval:=p 
   elif p>maxval then  
     maxval:=p 
   end-if     
 
 writeln("Min: ", minval, ", Max: ", maxval) 
 
end-model  

Instead of writing the loop above, it would of course be possible to use the corresponding operators min and max 
provided by Mosel: 

 writeln("Min: ", min(p in SNumbers) p, ", Max: ", max(p in SNumbers) p)    

It is good programming practice to indent the block of statements in loops or selections as in the preceding example 
so that it becomes easy to get an overview where the loop or the selection ends. At the same time this may serve as a 
control whether the loop or selection has been terminated correctly (i.e. no end-if or similar key words 
terminating loops have been left out).  

B1.2  Loops 

Loops group actions that need to be repeated a certain number of times, either for all values of some index or 
counter (forall) or depending on whether a condition is fulfilled or not (while, repeat-until). 

This section presents the complete set of loops available in Mosel, namely forall, forall-do, while, 
while-do, and repeat-until. 
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B1.2.1  forall 

The forall loop repeats a statement or block of statements for all values of an index or counter. If the set of 
values is given as an interval of integers (range), the enumeration starts with the smallest value. For any other type 
of sets the order of enumeration depends on the current (internal) order of the elements in the set.    

The forall loop exists in two different versions in Mosel. The inline version of the forall loop (i.e. looping 
over a single statement) has already been used repeatedly, for example as in the following loop that constrains 
variables x(i) (i=1,...,10) to be binary. 

forall(i in 1..10) x(i) is_binary 

The second version of this loop, forall-do, may enclose a block of statements, the end of which is marked by 
end-do. 

Note that the indices of a forall loop can not be modified inside the loop. Furthermore, they must be new objects: 
a symbol that has been declared cannot be used as an index of a forall loop. 

The following example that calculates all perfect numbers between 1 and a given upper limit combines both types of 
the forall loop. (A number is called perfect if the sum of its divisors is equal to the number itself.) 

model Perfect 
 
 parameters 
  LIMIT=100 
 end-parameters 
 
 writeln("Perfect numbers between 1 and ", LIMIT, ":") 
 
 forall(p in 1..LIMIT) do 
   sumd:=1 
   forall(d in 2..p-1) 
     if p mod d = 0 then  
       sumd+=d  
     end-if 
   if p=sumd then  
     writeln(p)  
   end-if  
 end-do 
 
end-model 

The outer loop encloses several statements, so we need to use forall-do. The inner loop only applies to a single 
statement (if statement) so that we may use the inline version forall. 

If run with the default parameter settings, this program computes the solution 1, 6, 28. 

Multiple indices 

The forall statement (just like the sum operator and any other statement in Mosel that requires index set(s)) may 
take any number of indices, with values in sets of any basic type or ranges of integer values. If two or more indices 
have the same set of values as in 

forall(i in 1..10, j in 1..10) y(i,j) is_binary 

(where y(i,j) are variables of type mpvar) the following equivalent short form may be used: 

forall(i,j in 1..10) y(i,j) is_binary 

Conditional Looping 

The possibility of adding conditions to a forall loop via the `¦' symbol has already been mentioned in Chapter A-
5. Conditions may be applied to one or several indices and the selection statement(s) can be placed accordingly.  

Consider the following example where A and U are one- and two-dimensional arrays of integers and reals 
respectively, and y is a two-dimensional array of decision variables (mpvar): 
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forall(i in -10..10, j in 0..5 | A(i) > 20) y(i,j) <= U(i,j) 

For all i from -10 to 10, the upper bound U(i,j) is applied to the variable y(i,j) if the value of A(i) is greater 
than 20. 

The same conditional loop may be reformulated (in an equivalent but usually less efficient way) using the if 
statement: 

forall(i in -10..10, j in 0..5) 
 if A(i) > 20  
  y(i,j) <= U(i,j) 
 end-if 

If we have a second selection statement on both indices with B a two-dimensional array of integers or reals, we may 
either write  

forall(i in -10..10, j in 0..5 | A(i) > 20 and B(i,j) <> 0 ) y(i,j) <= U(i,j) 

or, more efficiently, since the second condition on both indices is only tested if the condition on index i holds: 

forall(i in -10..10 | A(i) > 20, j in 0..5 | B(i,j) <> 0 ) y(i,j) <= U(i,j) 

B1.2.1  while 

A while loop is typically employed if the number of times that the loop needs to be executed is not known 
beforehand but depends on the evaluation of some condition: a set of statements is repeated while a condition holds. 

As with forall, the while statement exists in two versions, an inline version (while) and a version (while-
do) that is to be used with a block of program statements. 

The following example computes the largest common divisor of two integer numbers A and B (that is, the largest 
number by which both, A and B, can be divided without remainder). Since there is only a single if-then-else 
statement in the while loop we could use the inline version of the loop but, for clarity's sake, we have given 
preference to the while-do version that marks where the loop terminates clearly. 

model Lcdiv1 
 
 declarations 
  A,B: integer 
 end-declarations 

 write("Enter two integer numbers:\n  A: ") 
 readln(A) 
 write("  B: ") 
 readln(B) 

 while (A <> B) do 
  if (A>B) then  
   A:=A-B  
  else B:=B-A  
  end-if 
 end-do 
 
 writeln("Largest common divisor: ", A) 
 
end-model 

B1.2.3  repeat until 

The repeat-until structure is similar to the while statement except that the actions in the loop are executed 
once before the termination condition is tested for the first time. 

The following example combines the three types of loops (forall, while, repeat-until) that are available 
in Mosel. It implements a Shellsort algorithm for sorting an array of numbers into numerical order. The idea of this 
algorithm is to first sort, by straight insertion, small groups of numbers. Then several small groups are combined and 
sorted. This step is repeated until the whole list of numbers is sorted. 
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The spacings between the numbers of groups sorted on each pass through the data are called the increments. A good 
choice is the sequence which can be generated by the recurrence i(1)=1, i(k+1)=3i(k)+1, k=1,2,... 

model ShellSort 
 declarations 
  N: integer                   ! Size of array ANum 
  ANum: array(range) of real   ! Unsorted array of numbers  
 end-declarations 
 
 N:=50 
 forall(i in 1..N) 
  ANum(i):=round(random*100) 
 
 writeln("Given list of numbers (size: ", N, "): ") 
 forall(i in 1..N) write(ANum(i), " ") 
 writeln 
 
 inc:=1                        ! Determine the starting increment  
 repeat                          
   inc:=3*inc+1 
 until (inc>N)   
  
 repeat                        ! Loop over the partial sorts  
   inc:=inc div 3 
   forall(i in inc+1..N) do    ! Outer loop of straight insertion 
     v:=ANum(i) 
     j:=i 
     while (ANum(j-inc)>v) do  ! Inner loop of straight insertion 
       ANum(j):=ANum(j-inc) 
       j -= inc 
       if j<=inc then break; end-if 
     end-do 
     ANum(j):= v      
   end-do   
 until (inc<=1) 
  
 writeln("Ordered list: ") 
 forall(i in 1..N) write(ANum(i), " ") 
 writeln 
end-model 

The example introduces a new statement: break. It can be used to interrupt one or several loops. In our case it 
stops the inner while loop. Since we are jumping out of a single loop, we could just as well write break 1. If we 
wrote break 3, the break would make the algorithm jump 3 levels of looping higher, that is outside of the 
repeat-until loop. 

Note that in Mosel, there is no limit to the number of nested loops and/or selections. 
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Part B - Chapter 2:  Sets 

A set collects objects of the same type without establishing an order among them (which is the case with arrays). In 
Mosel, sets may be defined for all elementary types, that is the basic types (integer, real, string, boolean) 
and the MP types (mpvar and linctr). 

This chapter presents in a more systematic way the different ways sets may be initialized (all of which the reader has 
already encountered in the examples in Part A), and also shows more advanced ways of working with sets. 

B2.1  Initializing Sets 

In the revised formulation of the Burglar Problem in Chapter 3 and in the models in Chapter A-5 we have already 
seen different examples of the use of index sets. We recall here the relevant parts of the respective models. 

B2.1.1  Constant Sets 

In the Burglar example the index set is assigned directly in the model: 

declarations 
 Items={"camera", "necklace", "vase", "picture", "tv", "video",  
        "chest", "brick"} 
end-declarations 

Since in this example the set contents are set in the declarations section, the index set Items is a constant set (its 
contents cannot be changed). To declare it as a dynamic set, the contents need to be assigned after its declaration: 

declarations 
 Items: set of string 
end-declarations 
 
Items:={"camera", "necklace", "vase", "picture", "tv", "video",  
        "chest", "brick"} 

B2.1.2  Set Initialization from File, Finalized and Fixed Sets 

In Chapter 5 the reader encountered several examples of how the contents of sets may be initialized from data files.  

The contents of the set may be read in directly as in the following case: 

declarations 
 EXIST: set of integer 
end-declarations 
 
initilizations from 'Idata.dat' 
 EXIST 
end-initializations   

where Idata.dat contains data in the following format: 

EXIST: [1 4 7 11 14] 

Unless a set is constant, arrays that are indexed by this set are created as dynamic arrays. Since in many cases the 
contents of a set do not change further after its initialization, Mosel provides the finalize statement that turns a 
(dynamic) set into a constant set. Consider the continuation of the example above:  
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finalize(EXIST) 
 
declarations 
 x: array(EXIST) of mpvar  
end-declarations 

The array of variables x will be created as a static array; without the finalize statement it would be dynamic 
since the index set EXIST may still be subject to changes. Declaring arrays in the form of static arrays is preferable 
if the indexing set is known beforehand because this allows Mosel to handle them more efficiently. 

Index sets may also be initialized indirectly during the initialization of dynamic arrays: 

declarations 
 REGION: set of string 
 DEMAND: array(REGION) of real  
end-declarations 
 
initializations from 'transprt.dat'  
 DEMAND 
end-initilizations   

If file transprt.dat contains the data: 

DEMAND: [(Scotland) 2840 (North) 2800 (West) 2600 (SEast) 2820 (Midlands) 2750] 

then printing the set REGION after the initialization will give the following output: 

{`Scotland',`North',`West',`SEast',`Midlands'} 

Once a set is used for indexing an array (of data, decision variables etc.) it is fixed, that is, its elements can no longer 
be removed, but it may still grow in size. 

The indirect initialization of (index) sets is not restricted to the case where data is input from file. In the following 
example we add an array of variable descriptions to the chess problem introduced in the first chapter of this manual. 
These descriptions may, for instance, be used for generating nice output. Since the array DescrV and its indexing 
set Allvars are dynamic they grow with each new variable description that is added to DescrV.   

model Chess3 
 uses "mmxprs" 
 
 declarations 
  Allvars: set of mpvar 
  DescrV: array(Allvars) of string  
  small: mpvar 
  large: mpvar 
 end-declarations 
 
 DescrV(small):= "Number of small chess sets"  
 DescrV(large):= "Number of large chess sets"  
  
 profit:=  5*small + 20*large 
 mc_time:= 3*small + 2*large <= 400  
 wood:=      small + 3*large <= 200  
   
 maximize(profit) 
 
 writeln("Solution:\n Objective: ", getobjval) 
 writeln(DescrV(small), ": ", getsol(small)) 
 writeln(DescrV(large), ": ", getsol(large)) 
 
end-model 

The reader may have already noted another feature that is illustrated by this example: the indexing set Allvars is 
of type mpvar. So far only basic types have occurred as index set types but as mentioned earlier, sets in Mosel may 
be of any elementary type, including the MP types mpvar and linctr. 
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B2.2  Working with Sets 

In all examples of sets given so far sets are used for indexing other modeling objects. But they may also be used for 
different purposes. The following example demonstrates the use of basic set operations in Mosel: union (+), 
intersection (*), and difference (-):  

model "Set example"  
 
 declarations  
  Cities={"rome", "bristol", "london", "paris", "liverpool"} 
  Ports={"plymouth", "bristol", "glasgow", "london", "calais",  
              "liverpool"} 
  Capitals={"rome", "london", "paris", "madrid", "berlin"} 
 end-declarations 
 
 Places:= Cities+Ports+Capitals       ! Create union of all 3 sets  
 In_all_three:= Cities*Ports*Capitals ! and intersection of all 3 sets  
 Cities_not_cap:= Cities-Capitals     ! Create the set of all cities that are not capitals 
 
 writeln("Union of all places: ", Places)  
 writeln("Intersection of all three: ", In_all_three) 
 writeln("Cities that are not capitals: ", Cities_not_cap)  
 
end-model 

The output of this example will look as follows: 

Union of all places: 
{`rome',`bristol',`london',`paris',`liverpool',`plymouth',`bristol',`glasgow',`calais',`liverp
ool',`rome',`paris',`madrid',`berlin'} 
Intersection of all three: {`london'} 
Cities that are not capitals: {`b ristol',`liverpool} 

Sets in Mosel are indeed a powerful facility for programming, as in the following example that calculates all prime 
numbers between 2 and some given limit. Starting with the smallest one, the algorithm takes every element of a set 
of numbers SNumbers (positive numbers between 2 and some upper limit that may be specified when running the 
model), adds it to the set of prime numbers SPrime and removes the number and all its multiples from the set 
SNumbers. 

model Prime 
 
 parameters 
  LIMIT=100                    ! Search for prime numbers in 2..LIMIT  
 end-parameters 
 
 declarations 
  SNumbers: set of integer     ! Set of numbers to be checked  
  SPrime: set of integer       ! Set of prime numbers 
 end-declarations 
 
 SNumbers:={2..LIMIT}  
  
 writeln("Prime numbers between 2 and ", LIMIT, ":")  
 
 n:=2 
 repeat 
   while (not(n in SNumbers)) n+=1 
   SPrime += {n}               ! n is a prime number  
   i:=n 
   while (i<=LIMIT) do         ! Remove n and all its multiples  
     SNumbers-= {i} 
     i+=n 
   end-do 
 until SNumbers={}     
 
 writeln(SPrime) 
 writeln(" (", getsize(SPrime), " prime numbers.)")  
  
end-model 
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This example uses a new function, getsize, that if applied to a set returns the number of elements of the set. The 
condition in the while loop is the logical negation of an expression, marked with not. The loop is repeated as long 
as the condition n in SNumbers is not satisfied.  

B2.3  Set Operators 

The preceding example introduced the operator += to add sets to a set ((there is also an operator -= to remove 
subsets from a set). Another set operator used in the example is in denoting that a single object is contained in a set. 
We have already encountered this operator in the enumeration of indices for the forall loop. 

Mosel also defines the standard operators for comparing sets: subset (<=), superset (>=), different (<>), end equality 
(=). Their use is illustrated by the following example: 

model "Set comparisons" 
 
 declarations 
  RAINBOW = {"red", "orange", "yellow", "green", "blue", "purple"}  
  BRIGHT = {"yellow", "orange"} 
  DARK = {"blue", "brown", "black"} 
 end-declarations 
 
 writeln("BRIGHT is included in RAINBOW: ", BRIGHT <= RAINBOW)  
 writeln("RAINBOW is a superset of DARK: ", RAINBOW >= DARK)  
 writeln("BRIGHT is different from DARK: ", BRIGHT <> DARK) 
 writeln("BRIGHT is the same as RAINBOW: ", BRIGHT = RAINBOW) 
 
end-model 

As one might have expected, this example produces the following output: 

 BRIGHT is included in RAINBOW: true  
 RAINBOW is a superset of DARK: false  
 BRIGHT is different from DARK: true 
 BRIGHT is the same as RAINBOW: false 
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Part B - Chapter 3:  Functions and Procedures 

When programs grow larger than the small examples presented so far, it becomes necessary to introduce some 
structure that makes them easier to read and to maintain. Usually, this is done by dividing the tasks that have to be 
executed into subtasks which may again be subdivided, and indicating the order in which these subtasks have to be 
executed and which are their activation conditions. 

To facilitate this structured approach, Mosel provides the concept of subroutines. Using subroutines, longer and 
more complex programs can be broken down into smaller subtasks that are easier to understand and to work with. 

Subroutines may be employed in the form of procedures or functions. Procedures are called as a program statement, 
they have no return value, whereas functions must be called in an expression that uses their return value.  

Mosel provides a set of predefined subroutines (for a comprehensive documentation the reader is referred to the 
Reference Manual), and it is possible to define new functions and procedures according to the needs in a specific 
program. A procedure that has occurred repeatedly in this document is writeln. Typical examples of functions are 
mathematical functions like abs, floor, ln, sin etc.  

User defined subroutines in Mosel have to be marked with procedure / end-procedure and function / 
end-function respectively. The return value of a function has to be assigned to returned as shown in the 
following example. 

model "Simple subroutines"  
 
 declarations 
  a:integer 
 end-declarations 
 
 function three:integer 
  returned := 3 
 end-function 
 
 procedure printstart 
  writeln("The program starts here.")  
 end-procedure 
 
 printstart  
 a:=three 
 writeln("a = ", a) 
 
end-model 

This program will produce the following output: 

The program starts here.  
a = 3 

B3.1  Parameters 

In many cases, the actions to be performed by a procedure or the return value expected from a function depend on 
the current value of one or several objects in the calling program. It is therefore possible to pass parameters into a 
subroutine.  The (list of) parameter(s) is added in parentheses following the name of the subroutine: 

 function timestwo(b:integer):integer  
  returned := 2*b 
 end-function  
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The structure of subroutines being very similar to the one of model, they may also include declarations 
sections for declaring local parameters  local that are only valid in the corresponding subroutine. It should be noted 
that such local parameters may mask global parameters within the scope of a subroutine, but they have no effect on 
the definition of the global parameter outside of the subroutine as is shown below in the extension of the example 
"Simple subroutines". 

Whilst it is not possible to modify function/procedure parameters in the corresponding subroutine, the declaration of 
local parameters may hide these parameters. Mosel considers this as a likely mistake and prints a warning during 
compilation (without any consequence for the execution of the program).   

model "Simple subroutines"  
 
 declarations 
  a:integer 
 end-declarations 
 
 function three:integer 
  returned := 3 
 end-function 
 
 function timestwo(b:integer):integer  
  returned := 2*b 
 end-function 
 
 procedure printstart 
  writeln("The program starts here.")  
 end-procedure 
 
 procedure hide_a_1 
  declarations 
   a: integer 
  end-declarations 
  
  a:=7 
  writeln("Procedure hide_a_1: a = ", a)  
 end-procedure 
 
 procedure hide_a_2(a:integer)  
  writeln("Procedure hide_a_2: a = ", a)  
 end-procedure 
 
 procedure hide_a_3(a:integer)  
  declarations 
   a: integer 
  end-declarations 
 
  a := 15 
  writeln("Procedure hide_a_3: a = ", a)  
 end-procedure 
 
 printstart  
 a:=three 
 writeln("a = ", a) 
 a:=timestwo(a)    
 writeln("a = ", a) 
 hide_a_1 
 writeln("a = ", a) 
 hide_a_2(-10) 
 writeln("a = ", a) 
 hide_a_3(a) 
 writeln("a = ", a) 
 
end-model  

During the compilation we get the warning 

Mosel: W-165 at (30,3) of `subrout.mos': Declaration of `a' hides a parameter.  

which is due to the redefinition of the parameter in procedure hide_a_3. The program results in the following 
output: 
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 The program starts here. 
 a = 3 
 a = 6 
 Procedure hide_a_1: a = 7 
 a = 6 
 Procedure hide_a_2: a = -10 
 a = 6 
 Procedure hide_a_3: a = 15 
 a = 6 

B3.2  Recursion 

 following example returns the largest common divisor of two numbers, just like the example Lcdiv1 in the previous 
chapter. This time we implement this task using recursive function calls, that is, from within function lcdiv we 
call again function lcdiv. 

model Lcdiv2 
 
 function lcdiv(A,B:integer):integer 
  if(A=B) then 
   returned:=A 
  elif(A>B) then 
   returned:=lcdiv(B,A-B) 
  else 
   returned:=lcdiv(A,B-A) 
  end-if    
 end-function 
 
 declarations 
  A,B: integer 
 end-declarations 
 
 write("Enter two integer numbers:\n  A: ") 
 readln(A) 
 write("  B: ") 
 readln(B) 
 
 writeln("Largest common divisor: ", lcdiv(A,B)) 
 
end-model 

This example uses a simple recursion (a subroutine calling itself). In Mosel, it is also possible to use cross recursion, 
that is, subroutine A calls subroutine B which again calls A.  The only pre-requisite is that any subroutine that is 
called prior to its definition must be declared before it is called by using the forward statement (see below). 

B3.3  forward 

A subroutine has to be "known" at the place where it is called in a program. In the preceding examples we have 
defined all subroutines at the start of the programs but this may not always be feasible or desirable. Mosel therefore 
enables the user to declare a subroutine separately from its definition by using the keyword forward. The 
declaration of a subroutine states its name, the parameters (type and name) and, in the case of a function, the type of 
the return value. The definition that must follow later in the program contains the body of the subroutine, that is, the 
actions to be executed by the subroutine. 

The following example implements a quick sort algorithm for sorting a randomly generated array of numbers into 
ascending order. The procedure qsort that starts the sorting algorithm is defined at the very end of the program, so 
it needs to be declared at the beginning, before it is called. Procedure qsort_start calls the main sorting routine, 
qsort. Since the definition of this procedure precedes the place where it is called there is no need to declare it (but 
it still could be done). Procedure qsort calls yet another subroutine, swap.  

The idea of the quicksort algorithm is to partition the array that is to be sorted into two parts. The "left" part 
containing all values smaller than the partitioning value and the "right" part all the values that are larger than this 
value. The partitioning is then applied to the two subarrays, and so on, until all values are sorted.   
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model "Quick Sort 1" 
 
 parameters 
  LIM=50 
 end-parameters 
  
 forward procedure qsort_start(L:array(range) of integer) 
 
 declarations 
  T:array(1..LIM) of integer 
 end-declarations 
  
 forall(i in 1..LIM) T(i):=round(.5+random*LIM) 
 writeln(T) 
 qsort_start(T) 
 writeln(T)  
 
! Swap the positions of two numbers in an array  
 procedure swap(L:array(range) of integer,i,j:integer)  
  k:=L(i) 
  L(i):=L(j) 
  L(j):=k 
 end-procedure 
 
! Main sorting routine 
 procedure qsort(L:array(range) of integer,s,e:integer) 
  v:=L((s+e) div 2)          ! Determine the partitioning value  
  i:=s; j:=e 
  repeat                     ! Partition into two subarrays 
   while(L(i)<v) i+=1 
   while(L(j)>v) j-=1 
   if i<j  then 
    swap(L,i,j) 
    i+=1; j-=1 
   end-if 
  until i>=j 
                             ! Recursively sort the two subarrays: 
  if j<e and s<j then qsort(L,s,j); end-if 
  if i>s and i<e then qsort(L,i,e); end-if 
 end-procedure 
 
! Start of the sorting process  
 procedure qsort_start(L:array(r:range) of integer)  
  qsort(L,getfirst(r),getlast(r)) 
 end-procedure 
 
end-model 

The quicksort example above demonstrates typical uses of subroutines, namely regrouping actions that are executed 
repeatedly (qsort) and isolating subtasks (swap) in order to structure a program and increase its readability. 

The calls to the procedures in this example are nested (procedure swap is called from qsort which is called from 
qsort_start): in Mosel there is no limit on the number of nested calls to subroutines (it is not possible, though, 
to define subroutines within a subroutine).  

B3.4  Overloading of Subroutines 

In Mosel, it is possible to re-use the names of subroutines, provided that every version  has a different number 
and/or types of parameters. This functionality is commonly referred to as overloading.  

An example of an overloaded function in Mosel is getsol: if a variable is passed as a parameter it returns its 
solution value, if the parameter is a constraint the function returns the evaluation of the corresponding linear 
expression using the current solution.  

Function abs (for obtaining the absolute value of a number) has different return types depending on the type of the 
input parameter: if an integer is input it returns an integer value, if it is called with a real value as input parameter it 
returns a real.  



Mosel User Guide Part B - Functions and Procedures 
 

  

44 

Function getcoeff is an example of a function that takes different numbers of parameters: if called with a single 
parameter (of type linctr) it returns the constant term of the input constraint, if a constraint and a variable are 
passed as parameters it returns the coefficient of the variable in the given constraint. 

The user may define (additional) overloaded versions of any subroutines defined by Mosel as well as for his own 
functions and procedures. Note that it is not possible to overload a function with a procedure and vice versa. 

Using the possibility to overload subroutines, we may rewrite the preceding example "Quick Sort" as follows. 

model "Quick Sort 2" 
 
 parameters 
  LIM=50 
 end-parameters 
                              
 forward procedure qsort(L:array(range) of integer) 
 
 declarations 
  T:array(1..LIM) of integer 
 end-declarations 
  
 forall(i in 1..LIM) T(i):=round(.5+random*LIM) 
 writeln(T) 
 qsort(T) 
 writeln(T)  
 
 procedure swap(L:array(range) of integer,i,j:integer)  
  (...)                        (same procedure body as in the preceding example) 
 end-procedure 
 
 procedure qsort(L:array(r ange) of integer,s,e:integer) 
  (...)                        (same procedure body as in the preceding example) 
 end-procedure 
 
! Start of the sorting process  
 procedure qsort(L:array(r:range) of integer)  
  qsort(L,getfirst(r),getlast(r)) 
 end-procedure 
 
end-model 

The procedure qsort_start is now also called qsort. The procedure bearing this name in the first 
implementation keeps its name too; it has got two additional parameters which suffice to ensure that the right 
version of the procedure is called. On the contrary, it is not possible to give procedure swap the same name qsort 
because it takes exactly the same parameters as the original procedure qsort and hence it would no longer be 
possible to differentiate between these two procedures. 
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Part B - Chapter 4:  Output  

B4.1  Producing Formatted Output 

In some of the previous examples the procedures write and writeln have been used for displaying data, 
solution values and some accompanying text. To produce more easily readable output, these procedures can be 
combined with the formatting procedure strfmt that indicates the (minimum) space reserved for printing an item 
and its placement within this space (negative values mean left justified printing, positive right justified).   

The following example prints out the solution of model Transport (Chapter A-5) in table format. The reader may be 
reminded that the objective of this problem is to compute the product flows from a set of plants (PLANT) to a set of 
sales regions (REGION) so as to minimize the total cost. The solution needs to comply with the capacity limits of the 
plants (PLANTCAP) and satisfy the demand  DEMAND of all regions. 

procedure printtab 
 declarations 
  rsum: array(REGION) of integer    ! Data table for printing 
  psum,prsum,ct,iflow: integer      ! Counters 
 end-declarations 
 
         ! Print heading and the first line of the table  
 writeln("\nProduct Distribution\n--------------------") 
 writeln(strfmt("Sales Region",44))  
 write(strfmt("",14)) 
 forall(r in REGION) write(strfmt(r,9)) 
 writeln(strfmt("TOTAL",9), " Capacity")  
         ! Print the solution values of the flow variables and 
         ! calculate totals per region and per plant  
 ct:=0 
 forall(p in PLANT) do 
   ct += 1 
   if ct=2 then  
     write("Plant ",strfmt(p,-8)) 
   else 
     write("      ",strfmt(p,-8)) 
   end-if 
   psum:=0 
   forall(r in REGION) do 
     iflow:=integer(getsol(flow(p,r))) 
     psum += iflow 
     rsum(r) += iflow 
     if iflow<>0 then  
       write(strfmt(iflow,9)) 
     else 
       write("         ") 
     end-if 
   end-do 
   writeln(strfmt(psum,9), strfmt(integer(PLANTCAP(p)),9))  
 end-do 
 
         ! Print the column totals 
 write("\n", strfmt("TOTAL",-14))  
 prsum:=0  
 forall(r in REGION) do 
   prsum += rsum(r); 
   write(strfmt(rsum(r),9)) 
 end-do 
 writeln(strfmt(prsum,9)) 
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         ! Print demand of every region  
 write(strfmt("Demand",-14))  
 forall(r in REGION) write(strfmt(integer(DEMAND(r)),9))  
 
         ! Print objective function value  
 writeln("\n\nTotal cost of distribution = ",strfmt(getobjval/1 e6,0,3)," million.") 
end-procedure 

With the data from Chapter A-5 the procedure produces the following output: 

Product Distribution  
-------------------- 
                                Sales Region  
               Scotland    North    SWest    SEast Midland s    TOTAL Capacity 
      Corby                           180      820     2000     3000     3000  
Plant Deeside               1530      920               250     2700     2700  
      Glasgow      2840     1270                                4110     4500  
      Oxford                         1500     2000      500     4000     4000  
 
TOTAL              2840     2800     2600     2820     2750    13810 
Demand             2840     2800     2600     2820     2750 
 
Total cost of distribution = 81.018 million.  

B4.2  File Output 

If we do not want the output of procedure printtab in the previous section to be displayed on screen but to be 
saved in the file solout.txt, we simply open the file for writing at the beginning of the procedure by adding 

fopen("solout.txt",F_OUTPUT) 

before the first writeln statement, and close it at the end of the procedure, after the last writeln statement with 

fclose(F_OUTPUT) 

If we do not want any existing contents of the file solout.txt to be deleted, so that the table is appended at the 
end of the file, we need to write the following for opening the file (closing it the same way as before): 

fopen("solout.txt",F_OUTPUT+F_APPEND) 

Similarly to the input of data from file, in Mosel there are several ways of outputting data (e.g. solution values) to a 
file. The following example demonstrates three different ways of writing the contents of a table A to a file.  

model "trio output" 
 uses "mmetc" 
 
 declarations 
  A: array(1..3,1..3) of real 
 end-declarations 
 
 A := [ 2,  4,  6, 
      12, 14, 16, 
      22, 24, 26] 
 
! First method: use an initializations block  
 initializations to "out_1.dat" 
  A as "myout" 
 end-initializations 
 
! Second method: use the built-in writeln function  
 fopen("out_2.dat",F_OUTPUT) 
 forall(i,j in 1..3) 
  writeln('A_out(',i,' and ',j,') = ', A(i,j))  
 fclose(F_OUTPUT) 
 
! Third method: use diskdata  
 diskdata(ETC_OUT+ETC_SPARSE,"out_3.dat", A) 
 
end-model 
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File out_1.dat will contain the following: 

'myout': [2 4 6 12 14 16 22 24 26] 

If this file already contains a data entry myout, it is replaced with this output without modifying or deleting any 
other contents of this file. Otherwise, the output is appended at the end of it.  

The nicely formatted output to out_2.dat results in the following:  

A_out(1 and 1) = 2 
A_out(1 and 2) = 4 
A_out(1 and 3) = 6 
A_out(2 and 1) = 12 
A_out(2 and 2) = 14 
A_out(2 and 3) = 16 
A_out(3 and 1) = 22 
A_out(3 and 2) = 24 
A_out(3 and 3) = 26 

The output with diskdata simply prints the contents of the array to out_3.dat. With option ETC_SPARSE 
each entry is preceded by the corresponding indices: 

1,1,2 
1,2,4 
1,3,6 
2,1,12 
2,2,14 
2,3,16 
3,1,22 
3,2,24 
3,3,26 

Without option ETC_SPARSE out_3.dat looks as follows: 

2,4,6 
12,14,16 
22,24,26 
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Part B - Chapter 5:  More about Integer Programming 

This chapter presents two applications to (Mixed) Integer Programming of the programming facilities in Mosel that 
have been introduced in the previous chapters. 

B5.1  Cut Generation 

Cutting plane methods add constraints (cuts) to the problem that cut off parts of the convex hull of the integer 
solutions, thus drawing the solution of the LP relaxation closer to the integer feasible solutions and improving the 
bound provided by the solution of the relaxed problem.  

The Xpress-Optimizer provides automated cut generation (see the Optimizer documentation for details). To show 
the effects of the cuts that are generated by our example we switch off the automated cut generation. 

B5.1.1  Example Problem 

The problem we want to solve is the following: a large company is planning to outsource the cleaning of its offices 
at least cost. The NSITES office sites of the company are grouped into NAREAS areas. Several professional cleaning 
companies (with a total number of NCONTRACTORS) have submitted bids for the different sites, a cost of 0 in the 
data meaning that a contractor is not bidding for a site.  

To avoid dependency on a single contractor, adjacent areas have to be allocated to different contractors. Every site s 
(s in 1,...,NSITES) is to be allocated to a single contractor, but there may be between LOWCONa and UPPCONa 
contractors per area a. 

B5.1.1.1  Problem Formulation 

The problem stated above may be summarized as follows: 

Objective:  

Minimize the total cost of all contracts. 

Constraints:  

Each site must be cleaned by exactly one contractor.  

Adjacent areas must not be allocated to the same contractor. 

The lower and upper limits on the number of contractors per area must be respected. 

For the mathematical formulation of the problem we  introduce two sets of variables: 

xcs indicates whether contractor c is cleaning site s 

y
ca
 indicates whether contractor c is allocated any site in area a 

To express the relation between these two sets of variables we need another collection of constraints: 

A contractor c is allocated to an area a if and only if he is allocated a site s in this area, that is, yca is 1 if and only 
if some x

cs
 (for a site s in area a) is 1. 



Mosel User Guide Part B - More about Linear Programming 

  

49 

model "Office cleaning" 
 
 uses "mmxprs","mmsystem" 
 
 forward procedure cutgen 
 
 declarations 
  PARAM: array(1..3) of integer  
 end-declarations 
  
 initializations from 'Data/clparam.dat' 
  PARAM 
 end-initializations 
 
 declarations 
  NSITES = PARAM(1)                 ! Number of s ites  
  NAREAS = PARAM(2)                 ! Number of areas (subsets of sites)  
  NCONTRACTORS = PARAM(3)           ! Number of contractors  
  RA = 1..NAREAS 
  RC = 1..NCONTRACTORS 
  RS = 1..NSITES 
  AREA: array(RS) of integer        ! Area site is in  
  NUMSITE: array(RA) of integer     ! Number of sites in an area  
  LOWCON: array(RA) of integer      ! Lower limit on the number of  
                                    ! contractors per area  
  UPPCON: array(RA) of integer      ! Upper limit on the number of  
                                    ! contractors per area  
  ADJACENT: array(RA,RA) of integer ! =1 if areas adjacent  
  PRICE: array(RS,RC) of real       ! Price per contractor per site  
 
  x: dynamic array(RC,RS) of mpvar  ! 1 iff c allocated to site s  
  y: array(RC,RA) of mpvar          ! 1 iff ctrctor allocated to 
                                    !  a site in area a  
 end-declarations 
 
 initializations from 'Data/cldata.dat' 
  NUMSITE 
  LOWCON 
  UPPCON 
  ADJACENT 
  PRICE 
 end-initializations  
 
 ct:=1 
 forall(a in RA) do 
  forall(s in ct..ct+NUMSITE(a)-1) 
   AREA(s):=a 
  ct+= NUMSITE(a) 
 end-do 
  
 forall(c in RC) 
  forall(s in RS | PRICE(s,c) > 0.01) 
   create(x(c,s)) 
  
      ! Objective: Minimize total cost of all cleaning contracts  
  cost:= sum(c in RC, s in RS) PRICE(s,c)*x(c,s) 
 
      ! Each site must be cleaned by exactly one contractor  
 forall(s in RS) 
  clean(s):= sum(c in RC) x(c,s) = 1 
 
      ! Ban same contractor from serving adjacent areas  
 forall(c in RC, a in RA, a2 in RA | a > a2 a nd ADJACENT(a,a2) = 1)  
  adj(c,a,a2):= y(c,a) + y(c,a2) <= 1    
 
      ! Specify lower & upper limits on contracts per area  
 forall(a in RA | LOWCON(a)>0)  
  area_low(a):= sum(c in RC) y(c,a) >= LOWCON(a)  
 forall(a in RA | UPPCON(a)<NCONTRACTORS)  
  area_upp(a):= sum(c in RC) y(c,a) <= UPPCON(a) 
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      ! Define y[c,a] to be 1 iff some x[c,s]=1 for sites s in area a  
 forall(c in RC, a in RA) do 
  y_upp(c,a):= y(c,a) <= sum(s in RS| AREA(s)=a) x(c,s)  
  y_low_area(c,a):= y(c,a) >= 1.0/NMSITE(a) * sum(s in R S| AREA(s)=a) x(c,s)   
 end-do 
  
 forall(c in RC) do 
  forall(s in RS) x(c,s) is_binary 
  forall(a in RA) y(c,a) is_binary 
 end-do 
 
 starttime:= gettime 
 
 cutgen 
  
 minimize(cost);                 ! Solve the MIP problem  
 writeln("(", gettime-starttime, " sec) Global status ", 
    getparam("XPRS_MIPSTATUS"), ", best solution:", getobjval); 
....  

In the preceding model, we have chosen to implement the constraints that force the variables yca to become 1 
whenever an xcs is 1 for some site s in area a in an aggregated way (this type of constraint is usually referred to as a 
Multiple Variable Lower Bound, MVLB, constraint). Instead of 

 forall(c in RC, a in RA)  
  y_low_area(c,a):= y(c,a) >= 1.0/NMSITE(a) * sum(s in RS| AREA(s)=a) x(c,s)   

we could have used the stronger formulation 

 forall(c in RC, s in RS) y_low_site(c,s):= y(c,AREA(s)) >= x(c,s)  

but this considerably increases the total number of constraints. 

The aggregated constraints are sufficient to express this problem, but this formulation is very loose, with the 
consequence that the solution of the LP relaxation only provides a very bad approximation of the integer solution 
that we want to obtain. For large data sets the branch-and-bound search may therefore take a long time. To improve 
this situation without blindly adding many unnecessary constraints, we implement a cut generation loop at the top 
node of the search that only adds those constraints y_low_site that are violated by the current LP solution. 

The cut generation loop (procedure cutgen) performs the following steps:  

1. solve the LP and save the basis  

2. get the solution values  

3. identify violated constraints and add them to the problem  

4. load the modified problem and load the previous basis  

 procedure cutgen 
 
  declarations 
   MAXCUTS = 2500              ! Max no. of constraints added in total 
   MAXPCUTS = 1000             ! Max no. of constraints added per pass 
   MAXPASS  = 50               ! Max no. passes 
   ncut, npass, npcut: integer ! Counters for cuts and passes  
   ztolrhs:real                ! Zero tolerance 
   solx: array(RC,RS) of real  ! Sol. values for variables x 
   soly: array(RC,RA) of real  ! Sol. values for variables y 
   objval,starttime: real 
   cut: array(range) of linctr  
  end-declarations 
 
  starttime:=gettime 
  setparam("XPRS_CUTSTRATEGY", 0)      ! Disable automatic cuts 
  setparam("XPRS_PRESOLVE", 0)         ! Switch presolve off 
  ztolrhs:= getparam("XPRS_FEASTOL")   ! Get the zero tolerance 
  ztolrhs:= ztolrhs * 10  
  ncut:=0  
  npass:=0 
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  while (ncut<MAXCUTS and npass<MAXPASS) do 
    npass+=1 
    npcut:= 0 
    minimize(XPRS_LIN, cost)           ! Solve the LP 
    savebasis(1)                       ! Save the current basis  
    objval:= getobjval                 ! Get the objective value  
 
    forall(c in RC) do                 ! Get the solution values 
      forall(a in RA) soly(c,a):=getsol(y(c,a)) 
      forall(s in RS) solx(c,s):=getsol(x(c,s)) 
    end-do 
   
      ! Search for violated constraints and add them to the problem:  
    forall(s in RS) 
     forall(c in RC) 
      if(solx(c,s)-soly(c,AREA(s)) > ztolrhs) then 
       cut(ncut):= y(c,AREA(s)) >= x(c,s)  
       ncut+=1 
       npcut+=1 
       if(npcut>MAXPCUTS or ncut>MAXCUTS) then break 2; end -if 
      end-if 
    
    writeln("Pass ", npass, " (", gettime -starttime, 
            " sec), objective value ",  
            objval, ", cuts added: ", npcut, " (total ", ncut,")") 
 
    if(npcut=0) then 
      break 
    else 
      loadprob(cost)                   ! Reload the problem 
      loadbasis(1)                     ! Load the save d basis 
    end-if 
  end-do 
 
                                       ! Display cut generation status  
  write("Cut phase completed: ") 
  if(ncut >= MAXCUTS) then writeln("space for cuts exhausted")  
  elif(npass >= MAXPASS) then writeln("max. num. of passes r eached") 
  else writeln("no more violations") 
  end-if 
  
 end-procedure 
 
end-model 

B5.2  Column Generation 

The technique of column generation is used for solving linear problems with a huge number of variables when it is 
not practical to generate all columns of the problem matrix explicitly. Starting with a very restricted set of columns, 
after each solution of the problem a column generation algorithm adds one or several columns that improve the 
current solution. These columns must have a negative reduced cost (in a minimization problem) and are calculated 
based on the dual value of the current solution. 

For solving large MIP problems, column generation typically has to be combined with a branch-and-bound search, 
leading to a so-called branch-and-price algorithm. The example problem described subsequently is solved by solving 
a sequence of LPs without starting a tree search. 

B5.2.1  Example Problem 

A paper mill produces rolls of paper of a fixed width MAXWIDTH that are subsequently cut into smaller rolls 
according to the orders by the customers. The rolls can be cut into NWIDTHS different sizes. The orders are given as 
demand per width i (DEMANDi). The objective of the paper mill is to satisfy the demand with the smallest possible 
number of paper rolls in order to minimize the losses. 



Mosel User Guide Part B - More about Linear Programming 

  

52 

B5.2.1.1  Problem Formulation 

The objective of minimizing the total number of rolls can be expressed as choosing the best set of cutting patterns 
for the current set of demands. Since it may not be obvious how to calculate all possible cutting patterns by hand, we 
start off with a basic set of patterns (PATTERN1,...,PATTERNNWIDTH), that consists of cutting small rolls all of the 
same width as many times as possible out of the large roll.  

When we define variables patj to denote the number of time a cutting pattern j is used, the objective is to minimize 
the sum of these variables, subject to the constraints that the demand for all sizes have to be met.  

model Papermill 
 
 uses "mmxprs" 
                           
 forward procedure colgen 
 forward function knapsack(c:array(range) of real, 
                           a:array(range) of real,  
                           b:real, 
                           xbest:array(range) of integer):real  
 forward procedure shownewpat(dj:real, vx: array(range) of integer) 
 
 declarations 
  NWIDTHS = 5                           ! Number of different widths  
  RW = 1..NWIDTHS                       ! Range of widths 
  RP: range                             ! Range of cut ting patterns 
  MAXWIDTH = 94                         ! Maximum roll width  
  EPS = 1e-6                            ! Zero tolerance  
 
  WIDTH: array(RW) of real              ! Possible widths 
  DEMAND: array(RW) of integer          ! Demand per width  
  PATTERNS: array(RW, RW) of integer    ! (Basic) cutting patterns 
 
  pat: array(RP) of mpvar               ! Rolls per pattern 
  solpat: array(RP) of real             ! Solution values for vars  
  dem: array(RW) of linctr              ! Demand constraints  
  minRolls: linctr                      ! Objective function  
  knap_ctr, knap_obj: linctr            ! Knapsack constraint+objective  
  x: array(RW) of mpvar                 ! Knapsack variables 
 end-declarations 
 
 WIDTH:=  [17, 21, 22.5, 24, 29.5]  
 DEMAND:= [150, 96,   48, 108,  227] 
                                        ! Make basic patterns  
 forall(j in RW) PATTERNS(j,j):= floor(MAXWIDTH/WIDTH(j)) 
 
 forall(j in RW) do 
  create(pat(j))                        ! Create NWIDTHS variables pat  
  pat(j) is_integer                     ! Variables are integer and bounded 
  pat(j) <= integer(ceil(DEMAND(j)/PATTERNS(j,j))) 
 end-do  
 forall(j in RW) x(j) is_integer        ! Knapsack variables are integer 
 minRolls:= sum(j in RW) pat(j)         ! Objective function      
 
                                        ! Satisfy all demands  
 forall(i in RW) dem(i):= sum(j in RW) PATTERNS(i,j) * pat(j) >= DEMAND(i)   
 
 colgen                                 ! Column generation at top node  
 
 minimize(minRolls)                     ! Compute the best integer solution for 
                                        ! the current problem (including the  
                                        ! new columns)  
 writeln("Optimal solution: ", getobjval, " rolls) 
 write("   Rolls per pattern: ") 
 forall(i in RP) write(getsol(pat(i)),", ") 
 writeln 

With the basic set of cutting patterns the mill can satisfy the demand, but it is likely to incur significant losses 
through wasting more than necessary of every large roll and by cutting more small rolls than its customers have 
ordered. We therefore employ a column generation heuristic to find more suitable cutting patterns. 
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The following function colgen defines a column generation loop that is executed at the top node (this heuristic 
was suggested by M. Savelsbergh for solving a similar cutting stock problem). The column generation loop 
performs the following steps:  

1. solve the LP and save the basis 

2. get the solution values 

3. compute a more profitable cutting pattern based on the current solution 

4. generate a new column (=cutting pattern): add a term to the objective function and to the corresponding 
demand constraints 

5. load the modified problem and load the saved basis 

To be able to increase the number of variables patj in this function, these variables have been declared at the 
beginning of the program as a dynamic array without specifying any index range. 

procedure colgen 
 
 declarations 
  dualdem: array(RW) of real 
  xbest: array(RW) of integer 
  dw, zbest, objval: real  
 end-declarations 
 
  setparam("XPRS_CUTSTRATEGY", 0)       ! Disable automatic cuts  
  npatt:=NWIDTHS 
  npass:=1 
 
  while(true) do 
    minimize(XPRS_LIN, minRolls)        ! Solve the LP  
    savebasis(1)                        ! Save the current basis  
    objval:= getobjval                  ! Get the objective value  
                                        ! Get the solution values  
    forall(j in 1..npatt)  solpat(j):=getsol(pat(j))  
    forall(i in RW)  dualdem(i):=getdual(dem(i))  
 
    zbest:=knapsack(dualdem, WIDTH, MAX WIDTH, xbest) - 1 
 
    write("Pass ", npass, ": ")    
    if(zbest < EPS) then 
      writeln("no profitable column found. \n") 
      break 
    else                                  
      shownewpat(zbest, xbest)          ! Print the new pattern  
      npatt+=1 
      create(pat(npatt))                ! Create a new variable  
      pat(npatt) is_integer 
 
      minRolls+= pat(npatt)             ! Add new variable to the objective 
      dw:=0 
      forall(i in RW)                   ! Add new variable to demand constraints 
        if(xbest(i) > EPS) then 
         dem(i)+= xbest(i)*pat(npatt)  
         dw:= maxlist(dw, ceil(DEMAND(i)/xbest(i) )) 
        end-if 
      pat(npatt) <= dw                  ! Set upper bound on the new variable  
 
      loadprob(minRolls)                ! Reload the problem  
      loadbasis(1)                      ! Load the saved basis  
    end-if 
    npass+=1 
  end-do 
 
 end-procedure 

The preceding  procedure colgen calls the following auxiliary function knapsack to solve an integer knapsack 
problem of the form 
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 z = max{cx : ax<=b, x is integer} 

function knapsack(c:array(range) of real, 
                  a:array(range) of real,  
                  b:real, 
                  xbest:array(range) of integer):real 
 
     forall(j in RW) sethidden(dem(j) , true)  ! Hide the demand constraints 
 
     knap_ctr:= sum(j in RW) a(j)*x(j) <= b   ! Define the knapsack constraint  
     knap_obj:= sum(j in RW) c(j)*x(j)        ! Define the objective function 
 
     maximize(knap_obj)                       ! Solve the knapsack problem 
     returned:=getobjval                      ! Get the objective value  
                                              ! Get the solution values  
     forall(j in RW) xbest(j):=round(getsol(x(j)))  
   
     knap_ctr:= 0                             ! Delete (reset) knapsack constraint  
     knap_obj:= 0                             ! Delete (reset) knapsack objective  
     forall(j in RW) sethidden(dem(j), false) ! Unhide demand constraints 
 end-function 

The knapsack problem is a second, completely independent optimization problem that is stated within the same 
model as the main problem. The formulation above uses a procedure that has not yet been introduced: 

 sethidden(c:linctr, b:boolean) 

With this procedure, constraints can be removed (`hidden') from the problem that is solved by the optimizer without 
deleting them in the problem definition. This means that the optimizer solves a subproblem of the complete problem 
stated in Mosel. In the current case, when solving the knapsack problem the optimizer only takes into account the 
knapsack constraint. At the end of function knapsack the definition of the knapsack problem is removed and the 
demand constraints are re-activated so that the next call to the optimizer in the loop of function colgen will solve 
the main, cutting stock problem. 

The constraints of the knapsack problem are defined globally because problem definition in Mosel is incremental. 
The constraints defined in a subroutine are not deleted at the end of it (hence the need to reset the knapsack 
constraint explicitly before leaving function knapsack).  

The following procedure is called from procedure colgen to print out every new pattern that is found: 

procedure shownewpat(dj:real, vx: array(range) of integer)  
  declarations  
   dw: real 
  end-declarations 
 
  writeln("new pattern found with marginal cost ", dj) 
  write("   Widths distribution: ")  
  dw:=0 
  forall(i in 1..NWIDTHS) do  
    write(WIDTH(i), ":", vx(i), "  ") 
    dw += WIDTH(i)*vx(i) 
  end-do  
  writeln("Total width: ", dw) 
end-procedure 
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Part B - Chapter 6:  Extensions to Linear Programming 

The two examples (recursion and goal programming) in this chapter show how Mosel can be used to implement 
extensions of Linear Programming. 

B6.1  Recursion 

Recursion, more properly known as Successive Linear Programming, is a technique whereby LP may be used to 
solve certain non-linear problems. Some coefficients in an LP problem are defined to be functions of the optimal 
values of LP variables. When an LP problem has been solved, the coefficients are re-evaluated and the LP re-solved. 
Under some assumptions this process may converge to a local (though not necessarily a global) optimum. 

Consider the following financial planning problem: we wish to determine the yearly interest rate x so that for a given 
set of payments we obtain the final balance of 0. Interest is paid quarterly according to the following formula: 

interest(t) = (92/365) * balance(t) * interest_rate 

The balance at time t (t=1,...,T) results from the balance of the previous period t-1 and the net of payments and 
interest: 

net(t) = Payments(t) - interest(t) 

balance(t) = balance(t-1) - net(t) 

This problem cannot be modeled just by LP because we have the T products 

balance(t) * interest_rate 

which are non-linear. To express an approximation of the original problem by LP we replace the interest rate 
variable x by a (constant) guess X of its value and a deviation variable dx 

x = X + dx 

The formula for the quarterly interest payment i(t) therefore becomes 

i(t) = 92/365 * (b(t-1) * x) 
      = 92/365 * (b(t-1) * (X + dx)) 
      = 92/365 * (b(t-1) * X + b(t-1) * dx) 

We now also replace the balance b(t-1) in the product with dx by a guess B(t-1) and a deviation db(t-1) 

i(t) = 92/365 * (b(t-1) * X + (B(t-1)+db(t-1)) * dx) 
      = 92/365 * (b(t-1) * X + B(t-1) * dx + db(t-1) * dx) 

which can be approximated by dropping the product of the deviation variables 

i(t) = 92/365 * (b(t-1) * X + B(t-1) * dx) 

To ensure feasibility we add penalty variables epl and emn for positive and negative deviations in the formulation of 
the constraint: 

i(t) = 92/365 * (b(t-1) * X + B(t-1) * dx + epl - emn) 

The model then looks as follows (note the balance variables b(t) as well as the deviation dx and the quarterly nets 
n(t) are defined as free variables, that is they may take any values between minus and plus infinity using 
is_free): 
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model Fin_nlp 
 
 uses "mmxprs" 
 
 forward procedure solverec  
 
 declarations 
  T=6                                ! Time horizon  
  RT=1..T                            ! Range of time periods 
  P,R,V: array(RT) of real           ! Payments  
  B: array(RT) of real               ! An INITIAL GUESS as to balances b(t) 
  X: real                            ! An INITIAL GUESS as to interest rate x  
 
  i: array(RT) of mpvar              ! Interest 
  n: array(RT) of mpvar              ! Net 
  b: array(RT) of mpvar              ! Balance 
  x: mpvar                           ! Inte rest rate 
  dx: mpvar                          ! Change to x  
  epl, emn: array(RT) of mpvar       ! + and - deviations 
 end-declarations 
 
 X:= 0.0 
 B:= [1, 1, 1, 1, 1, 1] 
 P:= [-1000, 0, 0, 0, 0, 0] 
 R:= [206.6, 206.6, 206.6, 206.6, 206.6, 0] 
 V:= [-2.95, 0, 0, 0, 0, 0] 
 
                                     ! net = payments - interest 
 forall(t in RT) net(t):= n(t) = (P(t)+R(t)+V(t)) - i(t)  
 
                                     ! Money balance across periods  
 forall(t in RT) bal(t):= b(t) = if(t>1, b(t-1), 0) - n(t)  
 
                                     ! Approximation of interest  
 forall(t in 2..T)  
  interest(t):= -(365/92)*i(t) + X*b(t-1) + B(t-1)*dx + epl(t) - emn(t) = 0 
                           
 def:= X + dx = x                    ! Define the interest rate: x = X + dx  
                                      
 feas:= sum(t in RT) (epl(t)+emn(t)) ! Objective: get feasible 
 
 i(1) = 0                            ! Initial interest is zero  
 forall (t in RT) n(t) is_free 
 forall (t in 1..T-1) b(t) is_free 
 b(T) = 0                            ! Final balance is zero  
 dx is_free 
 
 minimize(feas)                      ! Solve the LP-problem 
 
 solverec                            ! Recursion loop 
  
                                     ! Print the solution  
 writeln("\nThe interest rate is ", getsol(x))  
 write(strfmt("t",5), strfmt(" ",4)) 
 forall(t in RT) write(strfmt(t,5), strfmt(" ",3))  
 write("\nBalances ") 
 forall(t in RT)  write(strfmt(getsol(b(t)),8,2)) 
 write("\nInterest ") 
 forall(t in RT)  write(strfmt(getsol(i(t)),8,2)) 
 writeln 
 
end-model 

In the above model we have declared the procedure solverec that executes the recursion but it has not yet been 
defined. The recursion on x and the b(t) (t=1,...,T-1) is implemented by the following steps: 

1. The B(t-1) in constraints interest(t) get the prior value of b(t-1) 

2. The X in constraints interest(t) get the prior value of x 

3. The X in constraint def gets the prior value of x 
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We say we have converged when the change in dx (variation) is less than 0.000001 (TOLERANCE). 

procedure solverec 
 
  declarations 
   TOLERANCE=0.000001                   ! Convergence tolerance  
   variation: real                      ! Variation of x  
   BC: array(RT) of real  
  end-declarations 
 
  variation:=1.0 
  ct:=0 
 
  while(variation>TOLERANCE) do 
   savebasis(1)                       ! Save the current basis  
   ct+=1 
   forall(t in 2..T)  
     BC(t-1):= getsol(b(t-1))         ! Get solution values for b(t)'s  
   XC:= getsol(x)                     ! and x 
   write("Round ", ct, " x:", getsol(x), 
         " (variation:", variation,"), ") 
   writeln("Simplex iterations: ", getparam("XPRS_SIMPLEXITER")) 
 
   forall(t in 2..T) do               ! Update coefficients 
     interest(t)+= (BC(t-1)-B(t-1))*dx 
     B(t-1):=BC(t-1) 
     interest(t)+= (XC-X)*b(t-1) 
   end-do 
   def+= XC-X   
   X:=XC 
   oldxval:=XC                        ! Store solution value of x  
 
   loadprob(feas)                     ! Reload the problem into optimizer  
   loadbasis(1)                       ! Reload previous basis  
   minimize(feas)                     ! Re -solve the LP-problem  
 
   variation:= abs(getsol(x)-oldxval) ! Change in dx 
  end-do 
  
end-procedure  

With the initial guesses 0 for X and 1 for all B(t) the model converges to an interest rate of 5.94413% (x = 
0.0594413). 

B6.2  Goal Programming 

Goal Programming is an extension of Linear Programming in which targets are specified for a set of constraints. In 
Goal Programming there are two basic models: the pre-emptive (lexicographic) model and the Archimedean model. 
In the pre-emptive model, goals are ordered according to priorities. The goals at a certain priority level are 
considered to be infinitely more important than the goals at the next level. With the Archimedean model weights or 
penalties for not achieving targets must be specified, and we attempt to minimize the sum of the weights. 

If constraints are used to construct the goals, then the goals are to minimize the violation of the constraints. The 
goals are met when the constraints are satisfied. 

The example in this section demonstrates how Mosel can be used for implementing pre-emptive goal programming 
with constraints. We try to meet as many goals as possible, taking them in priority order. The objective is to solve a 
problem with two variables x, y, the constraint 

100*x + 60*y ≤ 600 
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and the three goal constraints  

7*x + 3*y ≥  40 
10*x + 5*y = 60 
5*x + 4*y ≥  35 

where the given order corresponds to their priorities. 

To increase readability, the model is organized into three blocks: the problem is stated in the main part, procedure 
preemptive implements the solution strategy via preemptive goal programming, and procedure printsol 
produces a nice solution printout.  

model GoalCtr 
 
 uses "mmxprs" 
 
 forward procedure preemptive 
 forward procedure printsol(i: integer) 
 
 declarations 
  NGOALS=3                          ! Number of goals 
  x,y: mpvar                        ! Variables  
  dev: array(1..2*NGOALS) of mpvar  ! Deviation from goals 
  mindev: linctr                    ! Objective function 
  goal: array(1..NGOALS) of linctr  ! Goal constraints 
 end-declarations 
  
 limit:= 100*x + 60*y <= 600        ! Define a constraint  
  
! Define the goal constraints 
 goal(1):=  7*x + 3*y >= 40 
 goal(2):= 10*x + 5*y = 60 
 goal(3):=  5*x + 4*y >= 35 
   
 preemptive                         ! Pre-emptive goal programming 
 
 
 procedure preemptive 
(!  
  Add successively the goals to the problem and solve it, until all  
  goals have been added or a goal cannot be satisfied. This assumes 
  that the goals are given ordered by pri ority. 
!) 
 
! Remove (=hide) goal constraint from the problem 
  forall(i in 1..NGOALS) sethidden(goal(i), true) 
 
  i:=0 
  while (i<NGOALS) do 
    i+=1 
    sethidden(goal(i), false)       ! Add (=unhide) the next goal 
    case gettype(goal(i)) of        ! Ad d deviation variable(s)  
     CT_GEQ: do 
              deviation:= dev(2*i) 
              mindev += deviation  
             end-do 
     CT_LEQ: do 
              deviation:= -dev(2*i-1) 
              mindev += dev(2*i-1)  
             end-do 
     CT_EQ : do 
              deviation:= dev(2*i) - dev(2*i-1) 
              mindev += dev(2*i) + dev(2*i-1)  
             end-do 
     else    writeln("Wrong constraint type") 
             break 
    end-case   
    goal(i)+= deviation 
    
    minimize(mindev)                ! Solve the LP-problem 
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    writeln(" Solution(", i,"): x: ", getsol(x), ", y: ", getsol(y)) 
 
    if(getobjval>0) then 
     writeln("Cannot satisfy goal ",i)  
     break 
    end-if   
    goal(i)-= deviation    ! Remove deviation variable(s) from goal  
  end-do 
 
  printsol(i)                       ! Solution printout  
 end-procedure 
   
 procedure printsol(i:integer)  
  declarations 
   STypes={CT_GEQ, CT_LEQ, CT_EQ}  
   ATypes: array(STypes) of string 
  end-declarations 
  
  ATypes:=[">=", "<=", "="] 
 
  writeln(" Goal", strfmt("Target",12), strfmt("Value",9))  
  forall(g in 1..i)  
   writeln(strfmt(g,5), strfmt(ATypes(gettype(goal(g))),3),  
     strfmt(-getcoeff(goal(g)),9),  
     strfmt( getact(goal(g)) -getsol(dev(2*g))+getsol(dev(2*g-1)) ,9))  
 
  forall(g in 1..NGOALS) 
   if(getsol(dev(2*g))>0) then 
    writeln(" Goal(",g,") deviation from target: -", getsol(dev(2*g)))  
   elif(getsol(dev(2*g-1))>0) then 
    writeln(" Goal(" ,g, ") deviation from target: +", 
              getsol(dev(2*g-1)))  
   end-if 
  
 end-procedure 
 
end-model 

This example again uses procedure sethidden to remove constraints from the problem that is solved by the 
optimizer without deleting them in the problem definition. So effectively, the optimizer solves a series of 
subproblems of the problem stated originally in Mosel. 

When running the program, the user will find that the first two goals can be satisfied, but not the third. 
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Part C 

This part presents some advanced uses of Mosel that go beyond the functionality that is typically required for 
working with this software. Whilst the two previous parts have shown how to work with the Mosel language, this 
Part introduces Mosel's C interface. The C interface is provided in the form of two libraries. 

It may be of special interest to users who want to 

integrate models and/or solution algorithms written with Mosel into some larger system 

 (re)use already existing parts of algorithms written in C 

interface Mosel with other software, for instance for graphically displaying results 
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Part C - Chapter 1:  The C Interface 

This chapter gives an introduction to the C interface of Mosel. It shows how to execute models from C and how to 
access modeling objects from C. It is not possible to make changes to Mosel modeling objects from C, but the data 
and parameters used by a model may be modified via files or run time parameters.  

C1.1 Basic Tasks 

To work with a Mosel model, in the C language or with the command line interpreter, the model always needs to be 
compiled, then loaded into Mosel, and finally executed. In this section we show how to perform these basic tasks in 
C.  

C1.1.1 Compiling a Model in C 

The following example program shows how Mosel is initialized and terminated in C, and how a model file 
(extension .mos) is compiled into a BIM file (extension .bim). To use the Mosel Model Compiler Library, we 
need to include the header file xprm_mc.h at the start of the C program. 

For the sake of readability, in this program, as for all others in this chapter, we only implement rudimentary testing 
for errors.  

#include <stdlib.h> 
#include "xprm_mc.h" 
 
int main() 
{ 
 if(XPRMinit())                       /* Initialize Mosel */  
  return 1; 
 
 if(XPRMcompmod(NULL, "Models/burglar3", NULL, "Knapsack example")) 
  return 2;                           /* Compile the model burglar3.mos,  
                                         output the file burglar3.bim */ 
 XPRMfree();                          /* Free Mosel, clear everything */  
 return 0; 
} 
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C1.1.2 Executing a Model in C 

The example in this section shows how a Mosel binary model file (BIM) can be executed in C. The BIM file can of 
course be generated within the same program as where it is executed, but here we leave out this step. A BIM file is 
an executable version of a model, but it does not include any data that is read in by the model from external files. It 
is portable, that is, it may be executed on a different type of architecture from the one it has been generated on. 

A BIM file produced by the Mosel compiler first needs to be loaded into Mosel (function XPRMloadmod) and can 
then be run by a call to function XPRMrunmod. To use these functions, we need to include the header file 
xprm_rt.h at the beginning of our program. 

#include <stdio.h> 
#include "xprm_rt.h" 
 
int main() 
{ 
 XPRMmodel mod; 
 int result; 
 
 if(XPRMinit())                       /* Initialize Mosel */  
  return 1; 
 
 if((mod=XPRMloadmod("Models/burglar3.bim",NULL))==NULL)  /* Load a BIM file */ 
  return 2; 
  
 if(XPRMrunmod(mod,&result,NULL))     /* Run the model */ 
  return 3; 
 
 XPRMfree();                          /* Free Mosel, clear everything */  
 return 0; 
} 

C1.2 Parameters 

In Part A the concept of parameters in Mosel was introduced: when a Mosel model is executed from the command 
line, it is possible to pass new values for its parameters into the model. The same is possible with a model run in C. 
If, for instance, we want to run model Prime from Chapter B2 to obtain all prime numbers up to 500 (instead of the 
default value 100 set for the parameter LIMIT in the model), we may start a program with the following lines: 

 int result; 
  
 if(XPRMinit())                                         /* Initialize Mosel */  
  return 1; 
 
 if((mod=XPRMloadmod("Models/prime.bim",NULL))==NULL)   /* Load a BIM file */ 
  return 2; 
  
 if(XPRMrunmod(mod,&result,"LIMIT=500"))                     /* Run the model */  
  return 3; 

C1.3 Accessing Modeling Objects and Solution Values 

Using the Mosel libraries we can easily access information on the different modeling objects. 

C1.3.1 Accessing Sets 

A complete version of a program for running the model Prime mentioned in the previous section may look as 
follows (we work with a model prime2 that corresponds to the one printed in Chapter B2 but with all output printing 
removed because we are doing this in C): 
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#include <stdio.h> 
#include "xprm_rt.h" 
 
int main() 
{ 
 XPRMmodel mod; 
 XPRMalltypes rvalue, setitem; 
 XPRMset set; 
 int result, type, i, size, first, last; 
  
 if(XPRMinit())                              /* Initialize Mosel */  
  return 1; 
 
 if((mod=XPRMloadmod("Models/prime2.bim",NULL))==NULL)  /* Load a BIM file */  
  return 2; 
  
 if(XPRMrunmod(mod,&result,"LIMIT=500"))     /* Run the model */ 
  return 3; 
 
 type=XPRMfindident(mod,"SPrime",&rvalue);   /* Get the object 'SPrime' */ 
 if((XPRM_TYP(type)!=XPRM_TYP_INT)||         /* Check the type: */ 
    (XPRM_STR(type)!=XPRM_STR_SET))          /* it must be a set of integers */ 
  return 6; 
 set = rvalue.set; 
 
 size = XPRMgetsetsize(set);                 /* Get the size of the set */  
 if(size>0) 
 { 
  first = XPRMfirstsetndx(set);              /* Get the number of the first index */ 
  last = XPRMlastsetndx(set);                /* Get the number of the last index */ 
  printf("Prime numbers from 2 to %d: \n", LIM); 
  for(i=first;i<=last;i++)                   /* Print all set elements */ 
   printf(" %d,",XPRMgetelsetval(set,i,&setitem) ->integer); 
  printf("\n");   
 } 
 
 XPRMfree();                                 /* Fr ee Mosel, clear everything */ 
 return 0; 
} 

To print the contents of set SPrime that contains the desired result (prime numbers between 2 and 500), we first 
retrieve the Mosel reference to this object using function XPRMfindident. We can then enumerate the elements 
of the set and obtain their respective values. 

C1.3.2 Retrieving Solution Values 

The following program executes the model Burglar3 (the same as model Burglar2 from Chapter A3 but with all 
output printing removed) and prints out its solution. 

#include <stdio.h> 
#include "xprm_rt.h" 
 
int main() 
{ 
 XPRMmodel mod; 
 XPRMalltypes rvalue, itemname; 
 XPRMarray varr, darr; 
 XPRMmpvar x; 
 XPRMset set; 
 int indices[1], result, type; 
 double val; 
 
 if(XPRMinit())                              /* Initialize Mosel */  
  return 1; 
 
 if((mod=XPRMloadmod("Models/burglar3.bim",NULL))==NULL)  /* Load a BIM file */ 
  return 2; 
  
 if(XPRMrunmod(mod,&result,NULL))            /* Run the model (includes  
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                                                optimization) */  
  return 3; 
 
 if((XPRMgetprobstat(mod)&XPRM_PBRES)!=XPRM_PBOPT) 
  return 4;                                  /* Test whether a solution is found */ 
 
 printf("Objective value: %g\n", XPRMgetobjval(mod));  
                                             /* Print the objective function value */  
 
 type=XPRMfindident(mod,"x",&rvalue);        /* Get the model object 'x' */ 
 if((XPRM_TYP(type)!=XPRM_TYP_MPVAR)||       /* Check the type: */ 
    (XPRM_STR(type)!=XPRM_STR_ARR))          /* it must be an array of unknowns */  
  return 5; 
 varr = rvalue.array; 
 
 type=XPRMfindident(mod,"VALUE",&rvalue);    /* Get the model object 'VALUE' */ 
 if((XPRM_TYP(type)!=XPRM_TYP_REAL)||        /* Check the type: */  
    (XPRM_STR(type)!=XPRM_STR_ARR))          /* it must be an array of reals */  
  return 6; 
 darr = rvalue.array; 
 
 type = XPRMfindident(mod,"Items",&rvalue);  /* Get the model object 'Items' */ 
 if((XPRM_TYP(type)!=XPRM_TYP_STRING)||      /* Check the type: */ 
    (XPRM_STR(type)!=XPRM_STR_SET))          /* it must be a set of strings */  
  return 7; 
 set = rvalue.set; 
 
 XPRMfirstarrentry(varr, indices);           /* Get the first entry of array varr 
                                                (we know that the array is dense  
                                                and has a single dimension) */  
 do  
 { 
  XPRMgetarrval(varr,indices,&x);            /* Get a variable from varr */ 
  XPRMgetarrval(darr,indices,&val);          /* Get the corresponding value */ 
  printf("x(%s) : %g\t (item value: %g)\n", XPRMgetelsetval(set, indices[0],  
     &itemname)->string, XPRMgetvsol(mod,x), val);  
                                             /* Print the solution value */  
 } while(!XPRMnextarrentry(varr, indices));  /* Get the next index */ 
 
 XPRMfree();                                 /* Free Mosel, clear everything */  
 return 0; 
} 

The array of variables x is enumerated using function XPRMnextarrentry. This function may be applied to 
arrays of any type and dimension (for higher numbers of dimensions, merely the size of the array indices that is 
used to store the index-tuples has to be modified). This function systematically runs through all possible 
combinations of index-tuples, hence the hint at dense arrays in the example. In the case of sparse arrays it is 
preferable to use a different enumeration function that only enumerates those entries that are defined (see next 
section). 

C1.3.3 Sparse Arrays 

In Chapter A5 the Transport problem was introduced. The objective of this problem is to calculate the flows flowpr 
from a set of plants to a set of sales regions that satisfy all demand and supply constraints and minimize the total 
cost. Not all plants may deliver goods to all regions. The flow variables flowpr are therefore defined as a sparse 
array. The following example prints out all existing entries of the array of variables. 
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#include <stdio.h> 
#include "xprm_rt.h" 
 
int main() 
{ 
 XPRMmodel mod; 
 XPRMalltypes rvalue; 
 XPRMarray varr; 
 XPRMset *sets; 
 int *indices, dim, result, type, i; 
 
 if(XPRMinit())                          /* Initialize Mosel */  
  return 1; 
 
 if((mod=XPRMloadmod("Models/transport.bim",NULL))==NULL)  /* Load a BIM file */ 
  return 2; 
  
 if(XPRMrunmod(mod,&result,NULL))        /* Run the model */ 
  return 3; 
 
 type=XPRMfindident(mod,"flow",&rvalue); /* Get the model object named 'flow' */ 
 if((XPRM_TYP(type)!=XPRM_TYP_MPVAR)||   /* Check the type: */ 
    (XPRM_STR(type)!=XPRM_STR_ARR))      /* it must be an array of unkn owns */ 
  return 4; 
 varr=rvalue.array; 
 
 dim = XPRMgetarrdim(varr);              /* Get the number of dimensions of  
                                            the array */  
 indices = (int *)malloc(dim*sizeof(int)); 
 sets = (XPRMset *)malloc(dim*sizeof(XPRMset));  
 
 XPRMgetarrsets(varr,sets);              /* Get the indexing sets  */ 
 XPRMfirstarrtruentry(varr,indices);     /* Get the first true index tuple */ 
 do 
 { 
  printf("flow("); 
  for(i=0;i<dim-1;i++) 
   printf("%s,",XPRMgetelsetval(sets[i],indices[i],&rvalue)->string); 
  printf("%s), ",XPRMgetelsetval(sets[dim-1],indices[dim-1],&rvalue)->string); 
 } while(!XPRMnextarrtruentry(varr,indices));   /* Get next true index tuple*/  
 printf("\n"); 
 
 free(sets); 
 free(indices); 
 
 XPRMfree();                             /* Free Mosel, clear everything */  
 return 0; 
} 

C1.4 Problem Solving in C with Xpress-Optimizer 

In certain cases, for instance if the user wants to re-use parts of algorithms that he has written in C for the Xpress-
Optimizer, it may be necessary to pass from a problem formulation with Mosel to solving the problem in C by direct 
calls to the Xpress-Optimizer. The following example shows how this may be done for the Burglar problem. We use 
a slightly modified version of the original Mosel model:  
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model Burglar4 
 uses "mmxprs" 
  
 declarations 
  Items={"camera", "necklace", "vase", "picture", "tv", "video", "chest", "brick"} 
                                    ! Index set for items  
  VALUE: array(Items) of real       ! Value of items 
  WEIGHT: array(Items) of real      ! Weight of items 
  WTMAX=102                         ! Max weight allowed  
  x: array(Items) of mpvar          ! 1 if we take item i; 0 otherwise 
 end-declarations 
 
 !  Item:  ca   ne  va  pi  tv  vi  ch  br 
 VALUE := [15, 100, 90, 60, 40, 15, 10,  1] 
 WEIGHT:= [ 2,  20, 20, 30, 40, 30, 60, 10] 
 
 ! Objective: maximize total value 
 MaxVal:= sum(i in Items) VALUE(i)*x(i)  
 
 ! Weight restriction 
 WtMax:= sum(i in Items) WEIGHT(i)*x(i) <= WTMAX 
 
 ! All x are 0/1 
 forall(i in Items) x(i) is_binary   
 
 setparam("XPRS_LOADNAMES", true)    ! Enable loading of object names 
 loadprob(MaxVal)                    ! Load problem into the optimizer 
 
end-model 

The procedure maximize to solve the problem has been replaced by loadprob. This procedure loads the 
problem into the optimizer without solving it. We also enable the loading of names from Mosel into the optimizer so 
that we may obtain an easily readable output.  

The following C program reads in the Mosel model and solves the problem by direct calls to the optimizer. To be 
able to address the problem loaded into the optimizer, we need to retrieve the optimizer problem pointer from 
Mosel. Since this information is a parameter that is provided by module mmxprs, we first need to obtain the 
reference of this library (by using function XPRMfinddso). 

#include <stdio.h> 
#include "xprm_rt.h" 
#include "xprs.h" 
 
int main() 
{ 
 XPRMmodel mod; 
 XPRMdsolib dso; 
 XPRSprob prob; 
 int result, ncol, len, i; 
 double *sol, val; 
 char *names; 
 
  if(XPRMinit())                         /* Initialize Mosel */  
  return 1; 
 
 if((mod=XPRMloadmod("Models/burglar4.bim",NULL))==NULL)  /* Load a BIM file */ 
  return 2; 
  
 if(XPRMrunmod(mod,&result,NULL))       /* Run the model (no opti mization) */ 
  return 3; 
 
  /* Retrieve the pointer to the problem loaded in the Xpress-Optimizer */ 
 if((dso=XPRMfinddso("mmxprs"))==NULL) 
  return 4;              
 if(XPRMgetdsoparam(mod, dso, "xprs_problem", &result, (XPRMalltypes *)&prob))  
  return 5; 
 
 if(XPRSmaxim(prob, "g"))               /* Solve the problem */  
  return 6; 
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 if(XPRSgetintattrib(prob, XPRS_MIPSTATUS, &result)) 
  return 7;  
                                       /* Test whether a solution is found */  
 if((result==4) || (result==6))  
 { 
  if(XPRSgetdblattrib(prob, XPRS_MIPOBJVAL, &val))  
   return 8;   
  printf("Objective value: %g\n", val); /* Print the objective function value */ 
  if(XPRSgetintattrib(prob, XPRS_COLS, &ncol)) 
   return 9;  
  if((sol = (double *)malloc(ncol * sizeof(doub le)))==NULL) 
   return 10; 
  if(XPRSgetsol(prob, sol, NULL, NULL, NULL)) 
   return 11;                           /* Get the primal solution values */  
  if(XPRSgetintattrib(prob, XPRS_NAMELENGTH, &len)) 
   return 11;                           /* Get the max imum name length */ 
  if((names = (char *)malloc((len*8+1)*ncol*sizeof(char)))==NULL)  
   return 12; 
  if(XPRSgetnames(prob, 2, names, 0, ncol -1)) 
   return 13;                           /* Get the variable names */  
  for(i=0; i<ncol; i++)                 / * Print out the solution */ 
    printf("%s: %g\n", names+((len*8+1)*i), sol[i]);    
  free(names); 
  free(sol);  
 } 
  
 XPRMfree();                            /* Free Mosel, clear everything */ 
 return 0; 
} 

Since the Mosel language provides ample programming facilities, in most applications there will be no need to 
switch from the Mosel language to problem solving in C. Nevertheless, if this mode of implementation is chosen, it 
should be noted that it is not possible to get back to Mosel, once the Xpress-Optimizer has been called directly from 
C: the solution information and any possible changes made to the problem directly in the optimizer are not 
communicated back to Mosel. 
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assigning values to, 8 
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break, 35 
built-in functions, 25 
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chess set problem, 3 
column generation, 53 
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constants, 8 
constraints, 3 

conditional, 19 
hiding, 54 
modelling logical conditions, 26 
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conventions, 2 
data 
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text files, 11 

data tables 
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decision variables, 3. see also variables 
difference, 38 
different, 39 
discrete entities 

see global entities, 26 
discrete set, 26 
diskdata, 13, 47 

sparse output, 47 
enumerate 
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executing models 

C interface, 62 
files 
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flow control constructs, 31 
forall loop, 9, 33 
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forall-do loop, 33 
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free variables, 55 
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recursive, 42 
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goal programming, 57 
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initializing C interface, 61 
integer programming, 26 
integer variables, 8, 26 
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linear equations, 1 
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looping, 9 
loops 
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repeat-until, 34 
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interrupting, 35 
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model, 4 
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doesx2, 20 
knapsack problem, 7 
largest common divisor, 34 
ODBCex, 16 
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prime numbers, 38 
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Shell sort, 34 
sizes, 17 

multi-dimensional arrays, initializing, 21 
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parameters, 17 

local, 41 
partial integer variables, 26 
pointer 

problem, 66 
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procedures, 40 
project planning, 27 

model, 28 
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operators, 39 
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subroutine 
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terminating C interface, 61 
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