
Xpress-Mosel

User Guide

 Copyright Dash Associates 1984-2001

All trademarks referenced in this manual that are not the property of Dash Associates are acknowledged.

All companies, products, names and data contained within this user guide are completely fictitious and are used
solely to illustrate the use of XpressMP. Any similarity between these names or data and reality is purely
coincidental.

How to Contact Dash

If you have any questions or comments on the use of XpressMP, please contact Dash technical support at:

USA, Canada and The Americas Elsewhere
Dash Optimization Inc. Dash Optimization Limited
560 Sylvan Avenue Quinton Lodge, Binswood Avenue
Englewood Cliffs Leamington Spa
NJ 07632 Warwickshire CV32 5TH
USA UK
Telephone: (201) 313 5297 Telephone: +44 1926 315862
Fax: (201) 313 5299 Fax: +44 1926 315854
e-mail: support-usa@dashoptimization.com e-mail: support@dashoptimization.com

If you have any sales questions or wish to order XpressMP software, please contact your local sales office or Dash
sales at:

USA, Canada and The Americas Elsewhere
Dash Optimization Inc. Dash Optimization Limited
560 Sylvan Avenue Blisworth House, Church Lane
Englewood Cliffs Blisworth
NJ 07632 Northants NN7 3BX
USA UK
Telephone: (201) 313 5297 Telephone: +44 1604 858993
Fax: (201) 313 5299 Fax: +44 1604 858147
e-mail: sales@dashoptimization.com e-mail: sales@dashoptimization.com

For the latest news and XpressMP software updates please visit the Dash website at:
http://www.dashoptimization.com

Mosel User Guide Contents

i

Contents

Introduction - Chapter 1: Mosel 1
1.1 Why You Need Mosel 1
1.2 What You Need to Know Before Using Mosel 1
1.3 Symbols and Conventions 2
1.4 The Structure of this Guide 2

Part A - Chapter 2: Getting Started with Mosel 3
A2.1 Entering a Model 3
A2.2 The Chess Set Problem: Description 3

A2.2.1 A First Formulation 3
A2.3 Solving the Chess Set Problem 4

A2.3.1 Building the model 4
A2.3.2 Obtaining a Solution using Mosel 5
A2.3.3 Running Mosel from a Command Line 5

Part A - Chapter 3: Some Illustrative Examples 7
A3.1 The Burglar Problem 7

A3.1.1 Index Ranges 7
A3.1.2 Arrays 8
A3.1.3 Constants 8
A3.1.4 Assigning Values to Arrays 8
A3.1.5 Summations 8
A3.1.6 Making a Variable a Binary Variable 8
A3.1.7 Simple Looping 9
A3.1.8 Comments 9

A3.2 The Burglar Problem Revisited 9
A3.2.1 String Indices 10
A3.2.2 Continuation Lines 10
A3.2.3 Correcting Syntax Errors 10

A3.3 A Blending Example 11
A3.3.1 The Model Background 11
A3.3.2 Developing the Model 12

A3.3 Data from Text Files 13
A3.3.1 Re-running the Model with New Data 14

Part A - Chapter 4: Using Databases and Spreadsheets 15
A4.1 Overview 15
A4.2 A Spreadsheet Example 15

A4.2.1 Spreadsheets are not Databases 15
A4.2.2 The Example 15

A4.3 A Database Example 16
A4.4 Using ODBC to Output Data 16

A4.4.1 A Database Example 16
A4.5 Helpful Tip: Sizing TABLES for Spreadsheet Data 17

Mosel User Guide Contents

ii

Part A - Chapter 5: More Advanced Modeling Features 19
A5.1 Overview 19
A5.2 Conditional Generation 19
A5.3 Initializing Multi-Dimensional Arrays 21
A5.4 Dynamic Arrays 22

A5.4.1 Sparsity 22
A5.4.2 Reading Sparse Data 23

A5.5 Useful Functions and Procedures 25

Part A - Chapter 6: Integer Programming 26
A6.1 Introduction to Integer Programming 26
A6.2 A Project Planning Model 27
A6.3 The Project Planning Model Using Special Ordered Sets 29

Part B 30

Part B - Chapter 1: Flow Control Constructs 31
B1.1 Selections 31

B1.1.1 if-then 31
B1.1.2 if-then-else 31
B1.1.3 if-then-elif-then-else 31
B1.1.4 case 32

B1.2 Loops 32
B1.2.1 forall 33
B1.2.1 while 34
B1.2.3 repeat until 34

Part B - Chapter 2: Sets 36
B2.1 Initializing Sets 36

B2.1.1 Constant Sets 36
B2.1.2 Set Initialization from File, Finalized and Fixed Sets 36

B2.2 Working with Sets 38

Part B - Chapter 3: Functions and Procedures 40
B3.1 Parameters 40
B3.2 Recursion 42
B3.3 forward 42
B3.4 Overloading of Subroutines 43

Part B - Chapter 4: Output 45
B4.1 Producing Formatted Output 45
B4.2 File Output 46

Part B - Chapter 5: More about Integer Programming 48
B5.1 Cut Generation 48

B5.1.1 Example Problem 48
B5.2 Column Generation 51

B5.2.1 Example Problem 51

Mosel User Guide Contents

iii

Part B - Chapter 6: Extensions to Linear Programming 55
B6.1 Recursion 55
B6.2 Goal Programming 57

Part C 60

Part C - Chapter 1: The C Interface 61
C1.1 Basic Tasks 61

C1.1.1 Compiling a Model in C 61
C1.1.2 Executing a Model in C 62

C1.2 Parameters 62
C1.3 Accessing Modeling Objects and Solution Values 62

C1.3.1 Accessing Sets 62
C1.3.2 Retrieving Solution Values 63
C1.3.3 Sparse Arrays 64

C1.4 Problem Solving in C with Xpress-Optimizer 65

Index 68

Mosel User Guide Introduction

1

Introduction - Chapter 1: Mosel

1.1 Why You Need Mosel

“Mosel” is not an acronym. It is pronounced like the German river, mo-zul. It is an advanced modeling and solving
language and environment, where optimization problems can be specified and solved with the utmost precision and
clarity.

Here are some of the features of Mosel

• Mosel's easy syntax is regular and described formally in the reference manual.

• Mosel supports dynamic objects, which don't require pre-sizing. For instance, you don't have to specify the
maximum sizes of the indices of a variable x.

• Mosel models are pre-compiled. Mosel compiles a model into a binary file which can be run on any
computer platform, and which hides the intellectual property in the model if so required.

• Mosel is embeddable. There is a runtime library which can be called from your favorite programming
language if required. You can access any of the model's objects from your programming language.

• Mosel is easily extended through the concept of modules It is possible to write a set of functions, which
together stand alone as a module. Several modules are supplied by Dash, including the XpressMP Optimizer.

• Support for user-written functions and procedures is provided.

• The use of sets of objects is supported.

• Constraints and variables etc. can be added incrementally. For instance, column generation can depend on
the results of previous optimizations, so sub problems are supported

The modeling component of Mosel provides you with an easy to use yet powerful language for describing your
problem. It enables you to gather the problem data from text files and a range of popular spreadsheets and
databases, and gives you access to a variety of solvers, which can find optimal or near-optimal solutions to your
model.

1.2 What You Need to Know Before Using Mosel

Before using Mosel you should be comfortable with the use of symbols such as x or y to represent unknown
quantities, and the use of this sort of variable in simple linear equations and linear inequalities. For example:

x + y ≤ 6

Experience of a basic course in Mathematical or Linear Programming is recommended but is not essential.

For all but the simplest models you should also be familiar with the idea of summing over a range of variables. For
example, if xj is used to represent the number of cars produced on production line j then the total number of cars
produced on all N production lines can be written as:

∑
=

N

j
jx

1

which says "sum the output from each production line xj over all production lines j from j=1 to j=N".

If our target is to produce at least 1000 cars in total then we would write the inequality:

Mosel User Guide Introduction

2

1000
1

≥∑
=

N

j
jx

Mosel closely mimics the mathematical notation an analyst uses to describe a problem. so provided you are happy
using the above mathematical notation the step to using Mosel should be straightforward.

1.3 Symbols and Conventions

We have used the following conventions within this guide:

• Square brackets [...] contain optional material.

• Curly brackets {...} contain optional material, one of which must be chosen.

• Entities in italics which appear in expressions stand for meta-variables. The description following the
meta-variable always describes how it is to be used.

• The vertical bar symbol | is found on many keyboards as ¦, but often confusingly displays on-screen without
the small gap in the middle. In the UNIX world it is referred to as the pipe symbol. Note that this symbol is
not the same as the character sometimes used to draw boxes on a PC screen. In ASCII, the | symbol is 7C in
hexadecimal, 124 decimal.

• Examples of commands, models and their output are printed in a Courier font. Filenames are given in
lower case Courier.

• Mathematical objects are presented in italics.

1.4 The Structure of this Guide

This User Guide is structured into these main parts

Part A describes the use of Mosel for people who want to build and solve mathematical programming (MP)
problems. These will typically be Linear Programming (LP), Mixed Integer Programming (MIP), or Quadratic
Programming (QP) problems. The Part has been designed to show the modeling aspects of Mosel, omitting most of
the more advanced programming constructs.

Part B is designed to help those users who want to use the powerful programming languages facilities of Mosel,
using Mosel as a modeling, solving and programming environment. Items covered include looping (with examples),
more about using sets, producing nicely formatted output, functions and procedures.

Part C gives an introduction to the C interface of Mosel. It shows how to execute models from C and how to access
modeling objects from C.

This User Guide is deliberately informal and is not complete. It must be read in conjunction with the Mosel
Reference Manual, where features are described precisely and completely.

Mosel User Guide Part A - Getting Started

3

Part A - Chapter 2: Getting Started with Mosel

A2.1 Entering a Model

In this chapter we will take you through a very small manufacturing example to illustrate the basic building blocks
of Mosel.

Models are entered into a Mosel file using a standard text editor (don't use a word processor as an editor as this may
not produce an ASCII file). The Mosel file is then loaded into Mosel, and compiled. Finally, the compiled file can
be run. This chapter will show the stages in action.

A2.2 The Chess Set Problem: Description

To illustrate the model development and solving process we shall take a very small example.

A joinery makes two different sizes of boxwood chess sets. The smaller size requires 3 hours of machining on a
lathe and the larger only requires 2 hours, because it is less intricate. There are ten lathes with skilled operators who
each work a 40 hour week. The smaller chess set requires 1 kg of boxwood and the larger set requires 3 kg.
However boxwood is scarce and only 200 kg per week can be obtained.

When sold, each larger chess set yields a profit of £20 and each smaller chess set a profit of £5. The problem is to
decide how many sets of each kind should be made each week to maximize profit.

A2.2.1 A First Formulation

The joinery can vary the number of large and small chess sets produced: there are thus two variables in our model.
We shall give these variables names:

small: the number of small chess sets to make

large: the number of large chess sets to make

The number of large and small chess sets we should produce to achieve the maximum contribution to profit is
determined by the optimization process. Since the values of small and large are to be determined by optimization
these are known as the decision variables, or more simply the variables.

The values which small and large can take may be constrained to be equal to, less than or greater than some
constant. The joinery has a maximum of 400 hours of machine time available per week. Three hours are needed to
produce each small chess set and two hours are needed to produce each large set. So the number of hours of
machine time actually used each week is 3small +2large. One constraint is thus:

3 small + 2 large ≤ 400 (machine time)

which restricts the allowable combinations of small and large chess sets to those that do not exceed the man-hours
available.

In addition, only 200 kg of boxwood is available each week. Since small sets use 1 kg for every set made, against 3
kg needed to make a large set, a second constraint is:

small + 3 large ≤ 200 (wood)

The joinery cannot produce a negative number of chess sets so two further constraints are:

Mosel User Guide Part A - Getting Started

4

small ≥ 0
large ≥ 0

The objective function is a linear function which is to be optimized, that is, maximized or minimized. It will involve
some or all of the decision variables. In maximization problems the objective function usually represents profit,
turnover, output, sales, market share, employment levels or other "good things". In minimization problems the
objective function describes things like total costs, disruption to services due to breakdowns, or other less desirable
process outcomes.

The aim of the joinery is to maximize profit. Since a large set contributes £20 to total profit while a small set
contributes £5, the objective function is:

profit = 5 small + 20 large

The collection of variables, constraints and objective function that define our linear programming problem is called
a model.

A2.3 Solving the Chess Set Problem

A2.3.1 Building the model

The Chess Set problem can be solved easily using Mosel. The first stage is to get the model we have just developed
into the syntax of the Mosel language.

Remember that we use the notation that items in italics (for example, small) are the mathematical variables. The
corresponding Mosel variables will be the same name in non-italic courier (for example, small).

We illustrate this simple example by using the command line version of Mosel. The model can be entered into a file
named, perhaps, chess.mos as follows:

model chess
 declarations
 small: mpvar
 large: mpvar
 end-declarations

 profit:= 5*small + 20*large
 mc_time:= 3*small + 2*large <= 400
 wood:= small + 3*large <= 200

end-model

Indentations are purely for clarity.

Notice that the character "*" is used to denote multiplication of the decision variables by the units of machine time
and wood that one unit of each uses in the mc_time and wood constraints. The modeling language distinguishes
between upper and lower case, so Small would be recognized as different from small.

Let’s see what this all means.

A model is enclosed in a model … end-model block.

The mathematical programming decision variables are declared as such in the declarations … end-
declarations block. Every decision variable must be declared. LP, MIP and QP variables are of type mpvar.
Several decision variables can be declared on the same line, so

 declarations
 small, large: mpvar
 end-declarations

is exactly equivalent to what we first did. By default, Mosel assumes that all mpvar variables are constrained to be
non-negative unless it is informed otherwise, so there is no need to specify non-negativity constraints on variables.

Mosel User Guide Part A - Getting Started

5

Here is an example of a constraint:

mc_time:= 3*small + 2*large <= 400

The name of the constraint is mc_time. The actual constraint then follows. If the “constraint” is unconstrained (for
example, it might be an objective function), then there is no <=, >= or = part.

In Mosel you enter the entire model before starting to compile and run it. Any errors will be signaled when you try
to compile the model, or later when you run it.

A2.3.2 Obtaining a Solution using Mosel

So far, we have just specified a model to Mosel. Next we shall try to solve it..

The first thing to do is to specify to Mosel that it is to use XpressMP’s Optimizer to solve the problem. Then,
assuming we can solve the problem, we want to print out the optimum values of the decision variables, small and
large, and the value of the objective function. The model becomes

model chess2
 uses "mmxprs"
 declarations
 small: mpvar
 large: mpvar
 end-declarations

 profit:= 5*small + 20*large
 mc_time:= 3*small + 2*large <= 400
 wood:= small + 3*large <= 200

 maximize(profit)

 writeln("small is ", getsol(small))
 writeln("large is ", getsol(large))
 writeln("Best profit is ", getobjval)
end-model

The line

 uses "mmxprs"

tells Mosel that the Xpress Optimizer will be used to solve the LP. We need to tell Mosel that we shall be using the
XPRS module, which provides us with such things as maximization, handling bases etc.

The line

 maximize(profit)

tells Mosel to maximize the objective function called profit.

More complicated are the writeln statements, though it is actually quite easy to see what they do. If some text is
in quotation marks, then it is written literally. getsol() and getobjval are special Mosel functions that return
respectively the optimal value of the argument, and the optimal objective function value. writeln() writes a line
terminator after writing all its arguments.

writeln() can take many arguments. The statement

writeln("small: ", getsol(small), " large: ", getsol(large))

will result in the values being printed all on one line.

A2.3.3 Running Mosel from a Command Line

When you have entered the complete model into a file (let’s say it is called chess2.mos), we can proceed to get
the solution to our problem. Three stages are required:

Mosel User Guide Part A - Getting Started

6

1 Compiling chess.mos to a compiled file, chess.bim

2 Loading the compiled file chess2.bim

3 Running the model we have just loaded.

We start Mosel at the command prompt, and type the following sequence of commands

C:\mosel\book>mosel

compile chess2
load chess2
run
quit

which will compile, load and run the model. We will see output something like that below, where we have
underlined Mosel's output.

C:\mosel\book>mosel
** Mosel **
 (c) Copyright Dash Associates 1998-2001
>compile chess2
Compiling 'chess2'...
>load chess2
>run
small is 0
large is 66.6667
Best profit is 1333.33
Returned value: 0
>quit
Exiting..

Since the compile/load/run sequence is so often used, it can be abbreviated to

cl chess2
run
quit

or even

cl chess2
ru
q

Another nice way to do all the steps from the command line is

C:\mosel\book>mosel -c "cl chess2; ru"

The –c option is followed by a list of commands enclosed in double quotes. Even nicer is to use this with Mosel’s
silent (–s) option:

C:\mosel\book>mosel –s -c "cl chess2; ru"

When the only output is

small is 0
large is 66.6667
Best profit is 1333.33

Mosel User Guide Part A - Some Illustrative Examples

7

Part A - Chapter 3: Some Illustrative Examples

A3.1 The Burglar Problem

This chapter develops the basics of modeling set out in Chapter 2. It presents some further examples of the use of
Mosel and introduces new features.

The first of these is the use of subscripts. Almost all models of any size have subscripted variables. Consider a
model which represents the problem faced by a burglar. He sees 8 items, of different worths and weights. He wants
to take the items of greatest total worth whose total weight is not more than the maximum he can carry. This is an
example of a Knapsack Problem.

model Burglar
 uses "mmxprs"
 declarations
 Items = 1..8 ! Index range for items
 VALUE: array(Items) of real ! Value of items
 WEIGHT: array(Items) of real ! Weight of items
 WTMAX=102 ! Max weight allowed
 x: array(Items) of mpvar
 ! 1 if we take item i; 0 otherwise
 end-declarations

 ! Item: 1 2 3 4 5 6 7 8
 VALUE := [15, 100, 90, 60, 40, 15, 10, 1]
 WEIGHT:= [2, 20, 20, 30, 40, 30, 60, 10]

 ! Objective: maximize total value
 MaxVal:= sum(i in Items) VALUE(i)*x(i)

 ! Weight restriction
 WtMax:= sum(i in Items) WEIGHT(i)*x(i) <= WTMAX

 ! All x are 0/1
 forall(i in Items) x(i) is_binary

 maximize(MaxVal) ! Solve the MIP-problem

 ! Print out the solution
 writeln("Solution:\n Objective: ", getobjval)
 forall(i in Items) writeln(" x(", i, "): ", getsol(x(i)))
end-model

In this model there are a lot of new features, which we shall now explain.

A3.1.1 Index Ranges

The line

 Items = 1..8 ! Index range for items

introduces an index range, that is, a range of values over which an index will later range.

Mosel User Guide Part A - Some Illustrative Examples

8

A3.1.2 Arrays

 VALUE: array(Items) of real ! Value of items

declares VALUE to a one-dimensional array of real values. In Mosel, reals are double precision. The other numeric
type is integer. An individual element of the array is indexed by a value in the index range Items. Exactly
equivalent would be

 VALUE: array(1..8) of real ! Value of items

Multi-dimensional arrays are declared in the obvious way e.g.

 VAL3: array(Items, 1..20, Items) of real

declares a 3-dimensional real array. Arrays of decision variables are declared likewise:

 x: array(Items) of mpvar

declares an array of decision variables x(1), x(2), x(3), …, x(8)

All objects (scalars and arrays) declared in Mosel are always initialized with a default value:

 real, integer: 0
 boolean: false
 string: '' (i.e. the empty string)

A3.1.3 Constants

 WTMAX=102 ! Max we ight allowed

declares a constant called WTMAX, and gives it the value 102. Since 102 is an integer, WTMAX is an integer constant.
Anything that is given a value in a declarations block is a constant.

A3.1.4 Assigning Values to Arrays

 VALUE := [15, 100, 90, 60, 40, 15, 10, 1]

fills the VALUE array as follows:

VALUE(1) gets the value 15; VALUE(2) gets the value 100; …; VALUE(8) gets the value 1.

A3.1.5 Summations

MaxVal:= sum(i in Items) VALUE(i)*x(i)

defines a linear expression called MaxVal as the sum
i

i
i xVALUE *

8

1
∑

=

A3.1.6 Making a Variable a Binary Variable

To make an mpvar variable, say variable xbinvar, into a binary (0/1) variable, we just have to say

xbinvar is_binary

To make an mpvar variable an integer variable, i.e. one that can only take on integral values in a MIP problem, we
would have

xintvar is_integer

Mosel User Guide Part A - Some Illustrative Examples

9

A3.1.7 Simple Looping

The statement

 forall(i in Items) x(i) is_binary

illustrates looping over all values in an index range. Recall that the index range Items is 1..8, so the statement says
that x(1), x(2), … , x(8) are all binary variables.

There is another example of the use of forall at the penultimate line of the model when writing out all the
solution values.

A3.1.8 Comments

The symbol ! signifies the start of a comment, which continues to the end of the line. Longer comments can be
written thus

(! Mosel example problem
 =====================
 file xxxx.yyy
 Example of the use of the Mosel language
 (c) yyyy Dash Associates
!)

where (! denotes the start of the comment, and !) the end.

A3.2 The Burglar Problem Revisited

Consider this model:

model Burglar2
uses "mmxprs"
declarations
 Items={"camera", "necklace", "vase", "picture", "tv", "video",
 "chest", "brick"} ! Index set for items
 VALUE: array(Items) of real ! Value of items
 WEIGHT: array(Items) of real ! Weight of items
 WTMAX=102 ! Max weight allowed
 x: array(Items) of mpvar
 ! 1 if we take item i; 0 otherwise
 end-declarations

 ! Item: ca ne va pi tv vi ch br
 VALUE := [15, 100, 90, 60, 40, 15, 10, 1]
 WEIGHT:= [2, 20, 20, 30, 40, 30, 60, 10]

 MaxVal:= sum(i in Items) VALUE(i)*x(i)
 ! Objective: maximize total value

 ! Weight restriction
 WtMax:= sum(i in Items) WEIGHT(i)*x(i) <= WTMAX

 ! All x are 0/1
 forall(i in Items) x(i) is_binary

 maximize(MaxVal) ! Solve the MIP-problem

! Print out the solution
 writeln("Solution:\n Objective: ", getobjval)
 forall(i in Items) writeln(" x(", i, "): ", getsol(x(i)))
end-model

What have we changed? The answer is, “not very much”

Mosel User Guide Part A - Some Illustrative Examples

10

A3.2.1 String Indices

The lines

Items={"camera", "necklace", "vase", "picture", "tv", "video",
 "chest", "brick"} ! Index set for items

declare that this time Items is a set of indices (an Index Set) with the indices taking the string values "camera",
"necklace" etc.

If we run the model, we get

Solution:
 Objective: 280
 x(camera): 1
 x(necklace): 1
 x(vase): 1
 x(picture): 1
 x(tv): 0
 x(video): 1
 x(chest): 0
 x(brick): 0

A3.2.2 Continuation Lines

Notice that the statement

Items={"camera", "necklace", "vase", "picture", "tv", "video",
 "chest", "brick"} ! Index set for items

was spread over two lines. Mosel is smart enough to recognize that the statement is not complete, so it automatically
tries to continue on the next line. If you wish to extend a single statement to another line, just cut it after a symbol
that implies a continuation, like an operator (‘+’, ‘-’, ...) or a comma (‘,’) in order to warn the analyzer that the
expression continues in the following line(s). For example

 ObjMax:= sum(i in Irange, j in Jrange) TAB(i,j) * x(i,j) +
 sum(i in Irange) TIB(i) * delta(i) +
 sum(j in Jrange) TUB(j) * phi(j)

A3.2.3 Correcting Syntax Errors

The parser of Mosel is able to detect a large number of errors that may occur when writing a model. In this section
we shall try to analyze and correct some of these. If we compile the model

model `Plenty of errors'
 declarations
 small: mpvar
 large: mpvar
 end-declarations

 profit= 5*small + 20*large
 mc_time:= 3*small + 2*large <= 400
 wood:= small + 3*large <= 200

 maximize(profit)

 writeln("Best profit is ", getobjval
end-model

we get the following output:

Mosel: E-100 at (1,7) of `error.mos': Syntax error before ``'.
Parsing failed.

The second line of the output informs us that the compilation has not been executed correctly. The first line tells us
exactly the type of the error that has been detected, namely a syntax error with the code E-100 (where E stands for
error) and its location: line 1 character 7. The problem is caused by the apostrophe ` (or something preceding it).

Mosel User Guide Part A - Some Illustrative Examples

11

Indeed, Mosel expects either single or double quotes around the name of the model if the name contains blanks. We
therefore replace it by ' and compile the corrected model, resulting in the following display:

Mosel: E-100 at (7,8) of `error.mos': Syntax error before `='.
Mosel: W-121 at (7,28) of `error.mos': Statement with no effect.
Mosel: E-100 at (11,16) of `error.mos': Syntax error before `profit'.
Mosel: E-100 at (13,39) of `error.mos': Syntax error.
Parsing failed.

There is a problem with the sign = in the 7th line:

 profit= 5*small + 20*large

In the model body the equality sign = may only be used in the definition of constraints. Constraints are linear
relations between variables, but profit has not been defined as a variable, the parser therefore detects an error. What
we really want, is to assign the linear expression 5*small + 20*large to profit. For such an assignment we have to
use the sign := .

As a consequence of this error, the linear expression after the equality sign does not have any relevance to the
problem that is stated. The parser informs us about this fact in the second line: it has found a statement with no
effect. This is not an error that would cause the failure of the compilation taken on its own, but simply a warning
(marked by the W in the error code W-121) that there may be something to look into.

Since profit has not been defined, it cannot be used in the call to the optimization, hence the third error message.

As we have seen, the second and the third error messages are consequences of the first mistake we have made.
Before looking at the last message that has been displayed we recompile the model with the corrected line

 profit:= 5*small + 20*large

to get rid of all side effects of this error. Unfortunately, we still get a few error messages:

 Mosel: E-100 at (11,17) of `error.mos': Syntax error.
 Mosel: E-100 at (13,37) of `error.mos': Syntax error.

There is still a problem in line 11, this time it shows up at the very end of the line. Although everything appears to
be correct, the parser does not seem to know what to do with this line. The solution to this enigma is that we have
forgotten to load the module mmxprs that provides the optimization function maximize. To tell Mosel that this
module is used we need to add the line

uses "mmxprs"

immediately after the start of the model, before the declarations block.

We now have a closer look at line 13 (that has now become line 14 due to the addition of the uses statement). All
subroutines called in this line (writeln and getobjval) are provided by Mosel, so there must be yet another
problem: we have forgotten to close the brackets. After adding the closing bracket after getobjval the model
finally compiles without displaying any errors. If we run it we obtain the desired output:

Best profit is 1333.33
Returned value: 0

Besides the detection of syntax errors, Mosel may also give some help in finding run time errors. Going into details
would lead too far at this place. It should only be pointed out here that it is possible to add the flag -g to the compile
command to obtain some information about where the error occurred in the program.

A3.3 A Blending Example

This example illustrates how data may be read into tables from text files.

A3.3.1 The Model Background

A mining company has two types of ore available: Ore 1 and Ore 2. Denote the amounts of these ores to be used by
x1 and x2. The ores can be mixed in varying proportions to produce a final product of varying quality. For the

Mosel User Guide Part A - Some Illustrative Examples

12

product we are interested in, the "grade" (a measure of quality) of the final product must lie between the specified
limits of 4.0 and 5.0. It sells for £125 per ton. The costs of the two ores vary, as do their availabilities.

Maximizing net profit (i.e., sales revenue less cost of raw material) gives us the objective function:

)125(
2

1
j

j
j xCOSTNET_PROFIT ∑

=
−=

We then have to ensure that the grade of the final ore is within certain limits. Assuming the grades of the ores
combine linearly, the grade of the final product is:

∑

∑

=

=
2

1

2

1

j
j

j
jj

x

xGRADE

This must be greater than or equal to 4.0 so, cross-multiplying and collecting terms, we have the constraint:

0)0.4(
2

1

≥−∑
=j

jj xGRADE

Similarly the grade must not exceed 5.0, so we have the further constraint:

0)0.5(
2

1

≥−∑
=j

jj xGRADE

Finally there is a limit to the availability of each of the ores. We model this with the constraints:

22

1

AVAILx

AVAILxl

≤
≤

A3.3.2 Developing the Model

The above problem description sets out the relationships which exist between variables but contains few explicit
numbers. Focusing on relationships rather than figures makes the model much more flexible. In this example only
the selling price and the upper/lower limits on the grade of the final product are fixed.

Enter the following model into a file blend2.mos.

Mosel User Guide Part A - Some Illustrative Examples

13

model Blend2
uses "mmxprs"

declarations
 ROres = 1..2 ! Range of Ores
 REV = 125.0 ! Unit revenue of product
 MINGRADE = 4.0 ! Min permitted grade of product
 MAXGRADE = 5.0 ! Max permitted grade of product
 COST: array(ROres) of real ! Unit cost of ores
 AVAIL: array(ROres) of real ! Availability of ores
 GRADE: array(ROres) of real
 ! Grade of ores (measured per unit of mass)

 x: array(ROres) of mpvar ! Quantities of ores used
end-declarations

! Read data from file blend.dat in subdirectory Data
initializations from 'Data/blend.dat'
 COST
 AVAIL
 GRADE
end-initializations

! Objective: maximize total profit
 Profit:= sum(o in ROres) (REV-COST(o))* x(o)

! Lower and upper bounds on ore quality
 LoGrade:= sum(o in ROres) (GRADE(o)-MINGRADE)*x(o) >= 0
 UpGrade:= sum(o in ROres) (MAXGRADE -GRADE(o))*x(o) >= 0

! Set upper bounds on variables
 forall(o in ROres) x(o) <= AVAIL(o)

 maximize(Profit) ! Solve the LP-problem

 ! Print out the solution
 writeln("Solution:\n Objective: ", getobjval)
 forall(o in ROres) writeln(" x(" + o + "): ", getsol(x(o)))

end-model

A3.3 Data from Text Files

The file Data/blend.dat contains

! Data file for 'blend.mos'
COST: [85 93]
AVAIL: [60 45]
GRADE: [2.1 6.3]

The “initializations from … end-initializations” block is new here, telling Mosel where to get
data from to initialize named arrays. The order of the data items in the file does not have to be the same as that in the
initializations block; equally acceptable would have been the statements

initializations from 'Data/blend.dat'
 AVAIL GRADE COST
end-initializations

Section 5.4 has more about getting data from text files into multi-dimensional arrays.

The mmetc library can be used in Mosel programs to load data files written for XpressMP's mp-model using the
diskdata()procedure. For example, if we had a file Data/cost.dat containing data

85, 93

then the Mosel model

Mosel User Guide Part A - Some Illustrative Examples

14

model Blendx
 uses "mmxprs", "mmetc"
 declarations
 COST: array(1..2) of real
 end-declarations

 diskdata(ETC_DENSE, "Data/cost.dat", COST)
 writeln("COST(1) is ", COST(1), " COST(2) is ", COST(2))
end-model

will output

COST(1) is 85 COST(2) is 93

A3.3.1 Re-running the Model with New Data

There is a problem with the model we have just presented - the name of the file containing the costs date is hard-
wired into the model. If we wanted to use a different file, say Data/ncost.dat, then we would have to edit the model,
and recompile it. To help with this situation, Mosel has parameters. A model parameter is a symbol the value of which
can be set just before running the model, often as an argument of the run command of the command line
interpreter.

model Blendy
 uses "mmxprs", "mmetc"
 parameters
 CostFile="Data/cost.dat"
 end-parameters
 declarations
 COST: array(1..2) of real
 end-declarations
 diskdata(ETC_DENSE, CostFile, COST)
 writeln("COST(1) is ", COST(1), " COST(2) is ", COST(2))
end-model

The parameter CostFile is recognized as a string, and its default value is specified. If we have previously
compiled the model into say blendy.bim, then the command

mosel -c "load blendy; run 'CostFile="data/ncost.dat "'"

will read the cost data from the file we want.

Mosel User Guide Part A - Using Databases and Spreadsheets

15

Part A - Chapter 4: Using Databases and Spreadsheets

A4.1 Overview

This chapter shows how Mosel’s SQL/ODBC facilities can be used to obtain data from and export data to a variety
of spreadsheets and databases.

It is quite easy to create and maintain data tables in text files but we have found that a much better data storage
medium is provided by spreadsheets or databases. So there is a facility in Mosel whereby the contents of ranges
within spreadsheets may be read into data tables and databases may be accessed. It requires an additional
authorization in your XpressMP license.

A4.2 A Spreadsheet Example

A4.2.1 Spreadsheets are not Databases

SQL and ODBC were designed for databases, not for spreadsheets. One of the many differences between
spreadsheets and databases is that columns in a relational database have a type (text, integer, real, etc.), whereas
individual cells in a spreadsheet are typed, and all the cells in a column do not necessarily have the same type. If you
are constructing spreadsheet ranges to hold your data for use by ODBC, you must ensure that all the cells in a
column of the range have the same type.

Furthermore, if you are writing to a spreadsheet you must be aware that ODBC has to guess the type of the column -
and hence the type of all the cells in the column - somehow. It does this by looking at the first few rows in the range.
So these rows have to be populated with specimen data.

A4.2.2 The Example

Please note that if you are going to work through the examples in this section, you must have access to Excel.

Let us suppose that in a spreadsheet called myss.xls you have inserted the following into the cells indicated:

 A B C
1
2 First Second
3 6.2 1.3
4 -1.0 16.2
5 2.0 -17.9

and called the range B2:C5 MyRange.

We will use ODBC to extract these data into a Mosel array TOM(1..3,1..2)

• In Windows set up a User Data Source called MSExcel, by clicking Add, selecting Microsoft Excel
Driver (*.xls), and filling in the ODBC Microsoft Excel Setup dialog. Click Options >> and
clear the Read Only check box.

The following model will set up the TOM array in Mosel and fill it with the data from the Excel range MyRange.

Mosel User Guide Part A - Using Databases and Spreadsheets

16

model ODBCex
 uses "mmodbc"
 declarations
 TOM: array(1..3,1..2) of real
 end-declarations

 SQLconnect('DSN=MSExcel; DBQ= Data/myss.xls')
 SQLexecute("select * from MyRange ",[TOM])

 forall(i in 1..3) do
 writeln("Row(",i,"): ", TOM(i,1), " ", TOM(i,2))
 end-do
end-model

Note that we use the mmodbc package. The ODBC statement “select * from MyRange” says "select
everything from the range called MyRange". ODBC uses SQL, and it is possible to have much more complex
selection statements than the ones we have used.

A4.3 A Database Example

If we use Microsoft Access, we might have set up an ODBC DSN called MSAccess, and suppose we are extracting
data from a table called MyTable in the database moseg.mdb. There are just two double columns in MyTable,
called First and Second. We have just three records in MyTable, and the data are the same as in the Excel
example above.

We modify the example above to be

model ODBCexAC
 uses "mmodbc"
 declarations
 TOM: array(1..3,1..2) of real
 end-declarations

 SQLconnect('DSN=MSAccess; DBQ= Data/moseg.mdb')
 SQLexecute("select * from MyTable ",[TOM])

 forall(i in 1..3) do
 writeln("Row(",i,"): ", TOM(i,1), " ", TOM(i,2))
 end-do
end-model

and get the output

Row(1): 6.2 1.3
Row(2): -1 16.2
Row(3): 2 -17.9

A4.4 Using ODBC to Output Data

It is important to recall the warning in section 4.2.1. that " Spreadsheets are not Databases" Remember in particular
that if you are writing to a spreadsheet you must be aware that ODBC has to guess the type of the column - and
hence the type of all the cells in the column - somehow. It does this by looking at the first few rows in the range. So
these rows have to be populated with specimen data.

A4.4.1 A Database Example

We will take the Microsoft Access example of reading data using ODBC we used above, and show how to write
data to a table. We are going to square the numbers we get in TOM and write the squares to a table called MyOut in
the database Data\mosegout.mdb. There are just two double columns in MyOut, called First2 and
Second2.

Mosel User Guide Part A - Using Databases and Spreadsheets

17

model ODBCOut
 uses "mmodbc"
 declarations
 TOM: array(1..3,1..2) of real
 end-declarations

 SQLconnect('DSN=MSAccess; DBQ=Data\mosegout.mdb')
! Get the data from MyTable
 SQLexecute("select * from MyTable ",[TOM])

! Square all the numbers ...
 forall(i in 1..3, j in 1..2) TOM(i,j) := TOM(i,j)^2

! ... and write to MyOut
 SQLexecute("insert into MyOut (First2, Second2) values (?,?)", TOM)

end-model

A4.5 Helpful Tip: Sizing TABLES for Spreadsheet Data

There is a trick that we have found to be very useful in practice. Mosel does the evaluation of what it sees at the
point that it sees it. This is particularly helpful when you want to make dynamic adjustments to the sizes of tables.
Below we develop a set of commands that we use repeatedly when we are feeding Mosel with data from a
spreadsheet that obtain the sizes of tables directly from the data source.

Suppose that we have set up some data in a spreadsheet ssxmpl to represent the resource usage of some raw
materials by some products. We want to be able to allow for the number of raw materials and the number of
products changing. Diagrammatically, we have decided to lay out this part of the spreadsheet as follows:

 RawMat1 RawMat2 RawMat3 RawMat4
Product1
Product2
Product3
...

and to call the range, including the row containing raw material names (but not the column containing product
names), USAGE. If an extra product is introduced, then USAGE gets bigger by one row; if an extra raw material is
used then the number of columns increases by one. These changes have to be mirrored in the Mosel formulation.

We construct a small region of the spreadsheet and name it SIZES. Into it we put the numbers that characterize the
problem - in this case the number of products and the number of raw materials - the parameters. It is important that
these numbers are not "hard-wired" in, but that we let the spreadsheet calculate them for itself. In Excel it would be:

Number of Products Number of Raw Materials

=ROWS(USAGE)-1 =COLUMNS(USAGE)

The reduction by 1 allows for the row which just contains the raw material names. We name as Nprod the range
formed by the two cells

Number of Products

=ROWS(USAGE)-1

and likewise the range made from the two cells that form the second column of SIZES is named Nrm.

Now the commands below might form the introductory part of a model.

Mosel User Guide Part A - Using Databases and Spreadsheets

18

model sizes
 uses "mmodbc"
 declarations
 Nprod, Nrm: integer
 end-declarations

 SQLconnect('DSN=MSExcel;DBQ=Data/ssxmpl.xls')
 Nprod:=SQLreadinteger("select Nprod from SIZES")
 Nrm :=SQLreadinteger("select Nrm from SIZES")

 declarations
 PneedsR: array(1..Nprod,1..Nrm) of real
 end-declarations

 SQLexecute("select * from USAGE",[PneedsR])

 forall(p in 1..Nprod, r in 1..Nrm) do
 writeln("PneedsR(",p,",",r, " is ", PneedsR(p,r))
 end-do
end-model

Mosel User Guide Part A - More Advanced Modeling

19

Part A - Chapter 5: More Advanced Modeling Features

A5.1 Overview

This chapter introduces some more advanced features of the modeling language in Mosel. We shall not attempt to
cover all its features or give the detailed specification of their formats. These are covered in greater depth in the
Mosel Reference Manual.

The main areas not yet covered in any detail are

• conditional generation

• sparse data

• displaying data

• built in functions

• more on reporting results

The following sections deal with each of these in turn.

A5.2 Conditional Generation

Suppose we wish to apply an upper bound to some but not all members of a set of variables xi. There are MAXI
members of the set. The upper bound to be applied to xi is Ui, but it is only to be applied if the entry in the data table
TABi is greater than 20.

If the bound did not depend on the value in TABi then the statement would read:

forall(i in 1..MAXI) x(i) <= U(i)

Requiring the condition leads us to write

forall(i in 1..MAXI ¦ TAB(i) > 20) x(i) <= U(i)

The symbol ¦ can be read as “such that” or “subject to”.

Now suppose that we wish to model the following

15

0)(..
1

≤∑
>

=

IMAX

iAts
i

ix

In other words, we just want to include in a sum those xi for which A(i) is greater than zero. This is accomplished by

CC:= sum((i in 1..IMAX ¦ A(i)>0) x(i) <= 15

We can conditionally create variables by a slightly more complex procedure. Suppose that we have a set of 15
decision variables x(i) where we do not know the set of i for which x(i) exist until we have read data into an
array EXIST(i).

Mosel User Guide Part A - More Advanced Modeling

20

model doesx
 declarations
 IR = 1..15
 EXIST: set of integer
 x: dynamic array(IR) of mpvar
 end-declarations

! Read data from file
 initializations from 'Data/idata.dat'
 EXIST
 end-initializations

! Create the x variables that exist
 forall(i in EXIST) create(x(i))

! Build a littl e model to show what esists
 obj:= sum(i in IR) x(i)
 c:= sum(i in IR) i * x(i) >= 5

 exportprob(0, "", obj) ! show model
end-model

If the data in idata.dat are

EXIST: [1 4 7 11 14]

the output from the model is

Minimize
 x(1) + x(4) + x(7) + x(11) + x(14)
Subject To
c: x(1) + 4 x(4) + 7 x(7) + 11 x(11) + 14 x(14) >= 5
Bounds
End

Note: exportprob(0, "", obj) is a nice idiom for seeing on-screen the problem that has been created.

The key point is that x has been declared as a dynamic array, and then the ones that exists have been created
explicitly with create(). When we later take operations over the index set of x (for instance, summing), we only
include those x that have been created.

Another way to do this, is

model doesx2
 declarations
 EXIST: set of integer
 end-declarations

 initializations from 'Data/idata.dat'
 EXIST
 end-initializations
 finalize(EXIST)

 declarations
 x: array(EXIST) of mpvar ! here the array is _not_ dynamic
 end-declarations ! because the set has been finalized

 obj:= sum(i in EXIST) x(i)
 forall(i in EXIST) x(i) <= i

 exportprob(0, "", obj)
end-model

By default, an array is of fixed size if all of its indexing sets are of fixed size (i.e. they are either constant or have
been finalized. Finalizing turns a dynamic set into a constant set consisting of the elements that are currently in the
set. All subsequently declared arrays that are indexed by this set will be created as static (= fixed size).

The second method has two advantages: it is more efficient, and it doesn't require us to think of the upper limit of
the range IR a priori.

Mosel User Guide Part A - More Advanced Modeling

21

A5.3 Initializing Multi-Dimensional Arrays

How does one initialize a 2-dimensional array such as

declarations
 EE: array(1..2, 1..3) of real
end-declarations

For a 1-dimensional array we might have

VALUE := [15, 100, 90, 60, 40, 15, 10, 1]

but for our array EE we might write

EE:= [11, 12, 13 ,
 21, 22, 23]

which of course is the same as

EE:= [11, 12, 13, 21, 22, 23]

but much more intuitive. Mosel places the values in the tuple into EE "going across the rows", with the last subscript
varying most rapidly.

For higher dimensions, the principle is the same. The model

model sp
 declarations
 TT: array(1..2, 1..3, 1..4) of integer
 end-declarations

 TT:= [111, 112, 113, 114,
 121, 122, 123, 124,
 131, 132, 133, 134,
 211, 212, 213, 214,
 221, 222, 223, 224,
 231, 232, 233, 234]

 forall(i in 1..2, j in 1..3, k in 1..4) do
 writeln("TT(", i, ",",j, ",", k, ") = ", TT(i,j,k))
 end-do
end-model

produces output

TT(1,1,1) = 111
TT(1,1,2) = 112
TT(1,1,3) = 113
TT(1,1,4) = 114
TT(1,2,1) = 121
TT(1,2,2) = 122
TT(1,2,3) = 123
TT(1,2,4) = 124
TT(1,3,1) = 131
TT(1,3,2) = 132
TT(1,3,3) = 133
TT(1,3,4) = 134
TT(2,1,1) = 211
TT(2,1,2) = 212
TT(2,1,3) = 213
TT(2,1,4) = 214
TT(2,2,1) = 221
TT(2,2,2) = 222
TT(2,2,3) = 223
TT(2,2,4) = 224
TT(2,3,1) = 231
TT(2,3,2) = 232
TT(2,3,3) = 233
TT(2,3,4) = 234

Mosel User Guide Part A - More Advanced Modeling

22

A5.4 Dynamic Arrays

A5.4.1 Sparsity

Almost all large scale LP and MIP problems have a property known as sparsity, that is, each variable appears with a
non-zero coefficient in a very small fraction of the total set of constraints. Often this property is reflected in the data
tables used in the model in that many values of the tables are zero. When this happens, it is more convenient to
provide just the non-zero values of the data table rather than listing all the values, the majority of which are zero.
This is also the easiest way to input data into data tables with more than two dimensions. An added advantage is that
less memory is used by Mosel.

model Transport
 uses "mmxprs"
 declarations
 REGION: set of string ! Set of customer regions
 PLANT: set of string ! Set of plants
 DEMAND: array(REGION) of real ! Demand at regions
 PLANTCAP: array(PLANT) of real ! Production capacity at plants
 PLANTCOST: array(PLANT) of real ! Unit production cost at plants
 TRANSCAP: array(PLANT,REGION) of real
 ! Capacity on each route plant->region
 DISTANCE: array(PLANT,REGION) of real
 ! Distance of each route plant->region
 FUELCOST: real ! Fuel cost per unit distance
 flow: array(PLANT,REGION) of mpvar ! Flow on each route
 end-declarations

 ! Read data from file
 initializations from 'Data/transprt.dat'
 DEMAND
 PLANTCAP
 PLANTCOST
 DISTANCE
 TRANSCAP
 FUELCOST
 end-initializations

 ! Create the flow variables that exist
 forall(p in PLANT, r in REGION | TRANSCAP(p,r) >0) create(flow(p,r))

 ! Objective: minimize total cost
 MinCost:= sum(p in PLANT,r in REGION) (FUELCOST * DISTANCE(p,r) +
 PLANTCOST(p)) * flow(p,r)

 ! Limits on plant capacity
 forall(p in PLANT) Supply(p):= sum(r in REGION) flow(p,r) <=
 PLANTCAP(p)
 ! Satisfy all demands
 forall(r in REGION) Demand(r):= sum(p in PLANT) flow(p,r) = DEMAND(r)

 ! Bounds on flows
 forall(p in PLANT,r in REGION) flow(p,r) <= TRANSCAP(p,r)

 minimize(MinCost) ! Solve the LP -problem

 end-model

REGION and PLANT are declared to be sets of strings, as yet of unknown size. DEMAND, PLANTCAP, PLANTCOST
and TRANSCAP are arrays that will be indexed by members of REGION and PLANT The data file
Data/transprt.dat contains the problem specific data. It might have, for instance,

Mosel User Guide Part A - More Advanced Modeling

23

DEMAND: [(Scotland) 2840 (North) 2800 (SWest) 2600
 (SEast) 2820 (Midlands) 2750]

PLANTCAP: [(Corby) 3000 (Deeside) 2700 (Glasgow) 4500 (Oxford) 4000]

PLANTCOST: [(Corby) 1700 (Deeside) 1600 (Glasgow) 2000 (Oxford) 2100]

DISTANCE: [
(Corby North) 400
(Corby SWest) 400
(Corby SEast) 300
(Corby Midlands) 100
(Deeside Scotland) 500
(Deeside North) 200
(Deeside SWest) 200
(Deeside SEast) 200
(Deeside Midlands) 400
(Glasgow Scotland) 200
(Glasgow North) 400
(Glasgow SWest) 500
(Glasgow SEast) 900
(Oxford Scotland) 800
(Oxford North) 600
(Oxford SWest) 300
(Oxford SEast) 200
(Oxford Midlands) 400
]

TRANSCAP: [
(Corby North) 1000
(Corby SWest) 1000
(Corby SEast) 1000
(Corby Midlands) 2000
(Deeside Scotland) 1000
(Deeside North) 2000
(Deeside SWest) 1000
(Deeside SEast) 1000
(Deeside Midlands) 300
(Glasgow Scotland) 3000
(Glasgow North) 2000
(Glasgow SWest) 1000
(Glasgow SEast) 200
(Oxford Scotland) 0
(Oxford North) 2000
(Oxford SWest) 2000
(Oxford SEast) 2000
(Oxford Midlands) 500
]

FUELCOST: 17

Note that some data are not specified; for instance, there is no Corby<->Scotland route. So the data are sparse.

A5.4.2 Reading Sparse Data

Suppose we want to read in data of the form

i , j, value_ij

from an ASCII file, setting up a dynamic array A(range, range) just with A(i,j)= value_ij for the (i,j) which
exist in the file. Here is an example which shows three different ways of doing this. We read data from differently
formatted files into three different arrays, and show using writeln() that the arrays hold identical data.

Mosel User Guide Part A - More Advanced Modeling

24

model trio
uses "mmetc" ! required for diskdata()

declarations
 A1, A2, A3: array(range,range) of real
 i, j: integer
end-declarations

! First method: use an initializations block
 initializations from "Data/data_1.dat"
 A1 as "mydata"
 end-initializations

! Second method: use the built-in readln function
 fopen("Data/data_2.dat",F_INPUT)
 repeat
 readln('Tut(',i,'and',j,')=', A2(i,j))
 until getparam("nbread") < 6
 fclose(F_INPUT)

! Third method: use diskdata
 diskdata(ETC_IN+ETC_SPARSE,"Data/data_3.dat", A3)

! Now let's see what we have
 writeln('A1 is: ', A1)
 writeln('A2 is: ', A2)
 writeln('A3 is: ', A3)

end-model

The data files could be set up thus:

data_1.dat

mydata: [(1 1) 12.5 (2 3) 5.6 (10 9) -7.1 (3 2) 1]

data_2.dat

Tut(1 and 1)=12.5
Tut(2 and 3)=5.6
Tut(10 and 9)=-7.1
Tut(3 and 2)=1

data_3.dat

1, 1, 12.5
2, 3, 5.6
10,9, -7.1
3, 2, 1

Note that the second way of setting up and accessing data demonstrates the immense flexibility of readln.

Mosel User Guide Part A - More Advanced Modeling

25

A5.5 Useful Functions and Procedures

There is a range of built-in functions and procedures available in Mosel. They are described fully in the Mosel
Reference Manual. Here is a summary.

Accessing solution values getsol, getact, getcoeff, getdual, getrcost,
getslack, getobjval

Arithmetic functions arctan, cos, sin, ceil, floor, round, exp, ln,
log, sqrt, isodd

List functions maxlist, minlist
String functions strfmt, substr
Dynamic array handling create, finalize
File handling fclose, fflush, fopen, fselect, fskipline,

getfid, iseof, read, readln
Accessing control parameters getparam, setparam
Getting information getsize, gettype, getvars
Hiding constraints sethidden, ishidden
Miscellaneous functions exportprob, bittest, random, setcoeff, settype,

exit

In the mmxprs module are the following useful functions.

Optimize minimize, maximize
MIP directives setmipdir, clearmipdir
Handle bases savebasis, loadbasis, delbasis
Force problem loading loadprob
Get problem status getprobstat
Deal with bounds setlb, setub, getlb, getub
Model cut functions setmodcut, clearmodcut

For example, here is a nice habit to get into when solving a problem with XPRS.

declarations
 status:array({XO_OPT,XO_UNF,XO_INF,XO_UNB}) of string
end-declarations

status:=["Optimum found","Unfinished","Infeasible","Unbounded"]
...
minimize(obj)
writeln(status(getprobstat))

In the mmsystem module are various useful functions provided by the underlying operating system:

Delete a file/directory fdelete, removedir
Move a file fmove
Current working directory getcwd
Get an environment variable’s value getenv
File status getfstat
Returns the system status. getsysstat
Time gettime
Make a directory makedir
General system call system

See the Mosel Reference Manual for full details.

Mosel User Guide Part B

26

Part A - Chapter 6: Integer Programming

A6.1 Introduction to Integer Programming

Though many systems can accurately be modeled as Linear Programs, there are situations where discontinuities are
at the very core of the decision making problem. There seem to be three major areas where non-linear facilities are
required

• where entities must inherently be selected from a discrete set;

• in modeling logical conditions; and

• in finding the global optimum over functions.

Mosel lets you model these non-linearities using a range of discrete (global) entities and then the XpressMP Mixed
Integer Programming (MIP) optimizer can be used to find the overall (global) optimum of the problem. Usually the
underlying structure is that of a Linear Program, but optimization may be used successfully when the non-linearities
are separable into functions of just a few variables.

XpressMP handles the following global entities:

Binary variables (BV) - decision variables that can take either the value 0 or the value 1 (do/don't do variables).

Integer variables (UI) - decision variables that can take only integer values. Some small upper limit must be
specified.

Partial integer variables (PI) - decision variables that can take integer values up to a specified limit and any
value above that limit.

Semi-continuous variables (SC) - decision variables that can take either the value 0, or a value between some
lower limit and upper limit. SCs help model situations where if a variable is to be used at all, it has to be
used at some minimum level.

Semi-continuous integer variables (SI) - decision variables that can take either the value 0, or an integer value
between some lower limit and upper limit. SIs help model situations where if a variable is to be used at all,
it has to be used at some minimum level, and has to be integer.

Special Ordered Sets of type one (SOS1 or S1) - an ordered set of variables at most one of which can take a
non-zero value.

Special Ordered Sets of type two (SOS2 or S2) - an ordered set of variables, of which at most two can be
non-zero, and if two are non-zero these must be consecutive in their ordering.

The most commonly used entities are binary variables, which can be employed to model a whole range of logical
conditions. General integers are more frequently found where the underlying decision variable really has to take on
a whole number value for the optimal solution to make sense. For instance, we might be considering the number of
airplanes to charter, where fractions of an aero plane are not meaningful and the optimal answer will probably
involve so few planes that rounding to the nearest integer may not be satisfactory.

Partial integers provide some computational advantages in problems where it is acceptable to round the LP solution
to an integer if the optimal value of a decision variable is quite large, but unacceptable if it is small.

Semi-continuous variables are useful where, if some variable is to be used, its value must be no less than some
minimum amount. If the variable is a mi-continuous integer variable, then it has the added restriction that it must be
integral too.

Mosel User Guide Part B

27

Special Ordered Sets of type 1 are often used in modeling choice problems, where we have to select at most one
thing from a set of items. The choice may be from such sets as: the time period in which to start a job; one of a
finite set of possible sizes for building a factory; which machine type to process a part on.

Special Ordered Sets of type 2 are typically used to model non-linear functions of a variable. They are the natural
extension of the concepts of Separable Programming, but when embedded in a Branch and Bound code (see below)
enable truly global optima to be found, and not just local optima. (A local optimum is a point where all the nearest
neighbors are worse than it, but where we have no guarantee that there is not a better point some way away. A
global optimum is a point which we know to be the best. In the Himalayas the summit of K2 is a local maximum
height, whereas the summit of Everest is the global maximum height).

Theoretically, models that can be built with any of the entities we have listed above can be modeled solely with
binary variables. The reason why modern IP systems have some or all of the extra entities is that they often provide
significant computational savings in computer time and storage when trying to solve the resulting model. Most
books and courses on Integer Programming do not emphasize this point adequately. We have found that careful use
of the non-binary global entities often yields very considerable reductions in solution times over ones that just use
binary variables.

To illustrate the use of Mosel in modeling Integer Programming problems, a small example follows. The first
formulation uses binary variables. This formulation is then modified use Special Ordered Sets.

For the interested reader, an excellent text on Integer Programming is Integer Programming by Laurence Wolsey,
Wiley Interscience, 1998, ISBN 0-471-28366-5.

A6.2 A Project Planning Model

The problem to be modeled is as follows:

A company has several projects that it must undertake in the next few months. Each project lasts for a given time
(its duration) and uses up one resource as soon as it starts. The resource profile is the amount of the resource that is
used in the months following the start of the project. For instance, project 1 uses up 3 units of resource in the month
it starts, 4 units in its second month, and 2 units in its last month.

The problem is to decide when to start each project, subject to not using more of any resource in a given month than
is available. The benefit from the project only starts to accrue when the project has been completed, and then it
accrues at BENp per month for project p, up to the end of the time horizon.

Below, we give a mathematical formulation of the above project planning problem, and then display the Mosel
model form.

We define the following constants:

NPROJ: the number of projects; and
NTIME: the number of months to plan for.

The data are:

PROFpt: the resource usage of project p in its tth month
BENp: the benefit per month when project finishes
RESMAXm: the resource available in month m
DURp: the duration of project p

and the variables:

xpm: =1 if project p starts in month m, otherwise 0
startp: start month for project p

The objective function is obtained by noting that the benefit coming from a project only starts to accrue when the
project has finished. If it starts in month m then it finishes in month m+DURp-1. So, in total, we get the benefit of
BENp for NMTH-(m+ DURp-1) = NMTH - m- DURp+1 months. We must consider all the possible projects, and all
the starting months that let the project finish before the end of the planning period. For the project to complete it
must start no later than month NMTH-DURp. Thus the profit is:

Mosel User Guide Part B

28

pmp

NPROJ

p

DURNMTH

m
p xDURmNMTHBENprofit

p

)1(
1 1

+−−= ∑ ∑
=

−

=

Each project must be done once, so it must start in one of the months 1 to NMTH-DURP:

px
PDURNMTH

m
pm ∀=∑

−

=
 1

1

We next need to consider the implications of the limited resource availability each month. Note that if a project p
starts in month m it is in its (k-m+1)th month in month k, and so will be using PROFp,k-m+1 units of the resource.
Adding this up for all projects and all starting months up to and including the particular month k under consideration
gives:

kRESMAXxPROF kpm

NPROJ

p

k

m
mkp ∀≤∑ ∑

= =
−+

1 1
1,

The start month of a project is given by:

pstartmx p

DURNMTH

m
pm

P

∀=∑
−

=

1

since if an xpm is 1 the summation picks up the corresponding m.

Finally we have to specify that the xpm are binary (0 or 1) variables. This is done by the statement:

mpx pm , }1,0{ ∀∈

The model as specified to Mosel is as follows:

model Pplan
 uses "mmxprs"

 declarations
 RProj = 1..3 ! Range of projects
 NMTH = 6 ! Time horizon (months)
 RMonth = 1..NMTH ! Range of time periods (months) to plan for

 DUR: array(RProj) of integer ! Duration of project p
 PROF: array(RProj,RMonth) of integer
 ! Resource usage of project p in its t'th month
 RESMAX: array(RMonth) of integer
 ! Resource available in month t
 BEN: array(RProj) of real ! Benefit per month once project finished

 x: array(RProj,RMonth) of mpvar
 ! 1 if proj p starts in mnth t, else 0

 start: array(RProj) of mpvar ! Month in which project p starts
 end-declarations

 DUR := [3, 3, 4]
 RESMAX:= [5, 6, 5, 5, 4, 5]
 BEN := [10.2, 12.3, 11.2]
 PROF(1,1):= [3, 4, 2]
 PROF(2,1):= [4, 1, 6]
 PROF(3,1):= [3, 2, 1, 2] ! Other PROF entries are 0 by default

! Objective: Maximize Benefit
! If project p starts in month t, it finishes in month
! t+DUR(p)-1 and contributes a benefit of BEN(p) for
! the remaining NMTH-(t+DUR(p)-1) months:
 MaxBen:=
 sum(p in RProj, m in 1..NMTH-DUR(p)) (BEN(p)*(NMTH-m-DUR(p)+1)) * x(p,m)

Mosel User Guide Part B

29

! Resource availability
! A project starting in month m is in its k -m+1'st month in month k:
 forall(k in RMonth) ResMax(k):=
 sum(p in RProj, m in 1..k) PROF(p,k+1-m)*x(p,m) <= RESMAX(k)

! Each project starts once and only once:
 forall(p in RProj) One(p):= sum(m in RMonth) x(p,m) = 1.0

! Connect variables x(p,t) and start(p)
 forall(p in RProj) Connect(p):= sum(m in 1..NMTH-DUR(p)) m*x(p,m) = start(p)

! Make all the x variables binary
 forall(p in RProj, m in RMonth) x(p,m) is_binary

 maximize(MaxBen) ! Solve the MIP-problem
 writeln("Solution value is: ", getobjval)

end-model

A6.3 The Project Planning Model Using Special Ordered Sets

The example can be modified to use Special Ordered Sets of type 1 (SOS1). The xmt variables for a given p form a
set of variables which are ordered by m, the month. The ordering is induced by the coefficients of the x(p,m)in
the specification of the SOS. For example, xp1's coefficient, 1, is less than xp2's, 2, which in turn is less than xp3's
coefficient, and so on

The fact that the xpm variables for a given p form a set of variables is specified to Mosel as follows:

(! Define SOS-1 sets that ensure that at most one x is non -zero for
 each project p. Use month index to order the variables !)

forall(p in RProj) XSet(p):= sum(m in RTime) m*x(p,m) is_sos1

The is_sos1 specification tells Mosel that Xset(p) is a Special Ordered Set of type 1.The sum term is not a
summation operator but really Mosel’s equivalent to the set theoretic union concept. In this context it says that all
the x(p,m) variables for m in the RTime index range are members of an SOS1 with reference row entries t. If the
set were an SOS2 set then the is_sos1 specification would be replaced by is_sos2.

The specification of the x(p,m) as binary variables must now be removed. The binary nature of the x(p,m) is
implied by the SOS1 property, since if the x(p,m) must add up to 1 and only one of them can differ from zero,
then just one is 1 and the others are 0.

If the two formulations are equivalent why were Special Ordered Sets invented, and why are they useful? The
answer lies in the way the reference row gives the search procedure in Integer Programming (IP) good clues as to
where the best solution lies. Quite frequently the Linear Program (LP) that is solved as a first approximation to an
Integer Program gives an answer where xp1 is fractional, say with a value of 0.5, and xpM takes on the same fractional
value. The IP will say:

"my job is to get variables to 0 or 1. Most of the variables are already there so I will try moving xp1 or xpT. Since
the set members must add up to 1.0, one of them will go to 1, and one to 0. So I think that we start the project
either in the first month or in the last month."

A much better guess is to see that the xpm are ordered and the LP is telling us it looks as if the best month to start is
somewhere midway between the first and the last month. When sets are present, the IP can branch on sets of
variables. It might well separate the months into those before the middle of the period, and those later. It can then
try forcing all the early xpm to 0, and restricting the choice of the one xpm that can be 1 to the later xpm. It has this
option because it now has the information to "know" what is an early and what is a late xpm, whereas these variables
were unordered in the binary formulation.

The power of the set formulation can only really be judged by its effectiveness in solving large, difficult problems.
When it is incorporated into a good IP system such as XpressMP it is often found to be an order of magnitude better
than the equivalent binary formulation for large problems.

Mosel User Guide Part B

30

Part B

This Part takes the reader who wants to use Mosel as a modeling, solving and programming environment through its
powerful programming language facilities. The following topics, most of which have already been briefly mentioned
in Part A, are covered in a more detailed way:

selections and loops

working with sets

output to files and producing formatted output

functions and procedures

Whilst the first 4 chapters in this part present pure programming examples, the last two chapters contain some
advanced examples of LP and MIP that make use of the programming facilities in Mosel.

Mosel User Guide Part B - Flow Control Constructs

31

Part B - Chapter 1: Flow Control Constructs

Flow control constructs are mechanisms for controlling the order of the execution of the actions in a program. In
this chapter we take a closer look at two fundamental types of control constructs in Mosel: selections and loops.

Actions in a program frequently need to be repeated a certain number of times, for instance for all possible values of
some index or depending on whether a condition is fulfilled or not. This is the purpose of loops. Since in practical
applications loops are often interwoven with conditions (selection statements), these are introduced first.

B1.1 Selections

Mosel provides several statements to express a selection between different actions to be taken in a program.

The simplest form of a selection is the if-then statement:

B1.1.1 if-then

"If a condition holds, do something". For example:

if A >= 20 then
 x <= 7
end-if

For an integer number A and a variable x of type mpvar, x is constrained to be less than or equal to 7 if A is greater
than or equal to 20.

Note that there may be any number of expressions between then and end-if, not just a single one. In other cases,
it may be necessary to express choices with alternatives.

B1.1.2 if-then-else

"If a condition holds, do this, otherwise do something else". For example:

if A >= 20 then
 x <= 7
else x >= 35
end-if

Here the upper bound 7 is applied to the variable x if the value of A is greater than or equal to 20, otherwise the
lower bound 35 is applied to it.

B1.1.3 if-then-elif-then-else

"If a condition holds do this, otherwise, if a second condition holds do something else etc."

if A >= 20 then
 x <= 7
elif A <= 10 then
 x >= 35
else
 x = 0
end-if

Here the upper bound 7 is applied to the variable x if the value of A is greater than or equal to 20, and if the value of
A is less than or equal to 10 then the lower bound 35 is applied to x. In all other cases (that is, A is greater than 10
and smaller than 20), x is fixed to 0.

Mosel User Guide Part B - Flow Control Constructs

32

Note that this could also be written using two separate if-then statements but it is more efficient to use if-
then-elif-then[-else] if the cases that are tested are mutually exclusive.

B1.1.4 case

"Depending on the value of an expression do something".

case A of
 -MAX_INT..10 : x >= 35
 20..MAX_INT : x <= 7
 12, 15 : x = 1
 else x = 0
end-if

Here still the upper bound 7 is applied to the variable x if the value of A is greater than or equal to 20, and the lower
bound 35 is applied if the value of A is less than or equal to 10. In addition, x is fixed to 1 if A has a value 12 or 15,
and fixed to 0 for all remaining values.

An example of the use of the case statement is given in Chapter B-5.

The following example uses the if-then-elif-then statement to compute the minimum and the maximum of
a set of randomly generated numbers:

model Minmax

 declarations
 SNumbers: set of integer
 LB=-1000 ! Elements of SNumbers must be between LB
 UB=1000 ! and UB
 end-declarations

 ! Generate a set of 50 randomly chosen numbers
 forall(i in 1..50) SNumbers += {round(random*200) -100}

 writeln("Set: ", SNumbers, " (size: ", getsize(SNumbers), ")")

 minval:=UB
 maxval:=LB
 forall(p in SNumbers)
 if p<minval then
 minval:=p
 elif p>maxval then
 maxval:=p
 end-if

 writeln("Min: ", minval, ", Max: ", maxval)

end-model

Instead of writing the loop above, it would of course be possible to use the corresponding operators min and max
provided by Mosel:

 writeln("Min: ", min(p in SNumbers) p, ", Max: ", max(p in SNumbers) p)

It is good programming practice to indent the block of statements in loops or selections as in the preceding example
so that it becomes easy to get an overview where the loop or the selection ends. At the same time this may serve as a
control whether the loop or selection has been terminated correctly (i.e. no end-if or similar key words
terminating loops have been left out).

B1.2 Loops

Loops group actions that need to be repeated a certain number of times, either for all values of some index or
counter (forall) or depending on whether a condition is fulfilled or not (while, repeat-until).

This section presents the complete set of loops available in Mosel, namely forall, forall-do, while,
while-do, and repeat-until.

Mosel User Guide Part B - Flow Control Constructs

33

B1.2.1 forall

The forall loop repeats a statement or block of statements for all values of an index or counter. If the set of
values is given as an interval of integers (range), the enumeration starts with the smallest value. For any other type
of sets the order of enumeration depends on the current (internal) order of the elements in the set.

The forall loop exists in two different versions in Mosel. The inline version of the forall loop (i.e. looping
over a single statement) has already been used repeatedly, for example as in the following loop that constrains
variables x(i) (i=1,...,10) to be binary.

forall(i in 1..10) x(i) is_binary

The second version of this loop, forall-do, may enclose a block of statements, the end of which is marked by
end-do.

Note that the indices of a forall loop can not be modified inside the loop. Furthermore, they must be new objects:
a symbol that has been declared cannot be used as an index of a forall loop.

The following example that calculates all perfect numbers between 1 and a given upper limit combines both types of
the forall loop. (A number is called perfect if the sum of its divisors is equal to the number itself.)

model Perfect

 parameters
 LIMIT=100
 end-parameters

 writeln("Perfect numbers between 1 and ", LIMIT, ":")

 forall(p in 1..LIMIT) do
 sumd:=1
 forall(d in 2..p-1)
 if p mod d = 0 then
 sumd+=d
 end-if
 if p=sumd then
 writeln(p)
 end-if
 end-do

end-model

The outer loop encloses several statements, so we need to use forall-do. The inner loop only applies to a single
statement (if statement) so that we may use the inline version forall.

If run with the default parameter settings, this program computes the solution 1, 6, 28.

Multiple indices

The forall statement (just like the sum operator and any other statement in Mosel that requires index set(s)) may
take any number of indices, with values in sets of any basic type or ranges of integer values. If two or more indices
have the same set of values as in

forall(i in 1..10, j in 1..10) y(i,j) is_binary

(where y(i,j) are variables of type mpvar) the following equivalent short form may be used:

forall(i,j in 1..10) y(i,j) is_binary

Conditional Looping

The possibility of adding conditions to a forall loop via the `¦' symbol has already been mentioned in Chapter A-
5. Conditions may be applied to one or several indices and the selection statement(s) can be placed accordingly.

Consider the following example where A and U are one- and two-dimensional arrays of integers and reals
respectively, and y is a two-dimensional array of decision variables (mpvar):

Mosel User Guide Part B - Flow Control Constructs

34

forall(i in -10..10, j in 0..5 | A(i) > 20) y(i,j) <= U(i,j)

For all i from -10 to 10, the upper bound U(i,j) is applied to the variable y(i,j) if the value of A(i) is greater
than 20.

The same conditional loop may be reformulated (in an equivalent but usually less efficient way) using the if
statement:

forall(i in -10..10, j in 0..5)
 if A(i) > 20
 y(i,j) <= U(i,j)
 end-if

If we have a second selection statement on both indices with B a two-dimensional array of integers or reals, we may
either write

forall(i in -10..10, j in 0..5 | A(i) > 20 and B(i,j) <> 0) y(i,j) <= U(i,j)

or, more efficiently, since the second condition on both indices is only tested if the condition on index i holds:

forall(i in -10..10 | A(i) > 20, j in 0..5 | B(i,j) <> 0) y(i,j) <= U(i,j)

B1.2.1 while

A while loop is typically employed if the number of times that the loop needs to be executed is not known
beforehand but depends on the evaluation of some condition: a set of statements is repeated while a condition holds.

As with forall, the while statement exists in two versions, an inline version (while) and a version (while-
do) that is to be used with a block of program statements.

The following example computes the largest common divisor of two integer numbers A and B (that is, the largest
number by which both, A and B, can be divided without remainder). Since there is only a single if-then-else
statement in the while loop we could use the inline version of the loop but, for clarity's sake, we have given
preference to the while-do version that marks where the loop terminates clearly.

model Lcdiv1

 declarations
 A,B: integer
 end-declarations

 write("Enter two integer numbers:\n A: ")
 readln(A)
 write(" B: ")
 readln(B)

 while (A <> B) do
 if (A>B) then
 A:=A-B
 else B:=B-A
 end-if
 end-do

 writeln("Largest common divisor: ", A)

end-model

B1.2.3 repeat until

The repeat-until structure is similar to the while statement except that the actions in the loop are executed
once before the termination condition is tested for the first time.

The following example combines the three types of loops (forall, while, repeat-until) that are available
in Mosel. It implements a Shellsort algorithm for sorting an array of numbers into numerical order. The idea of this
algorithm is to first sort, by straight insertion, small groups of numbers. Then several small groups are combined and
sorted. This step is repeated until the whole list of numbers is sorted.

Mosel User Guide Part B - Flow Control Constructs

35

The spacings between the numbers of groups sorted on each pass through the data are called the increments. A good
choice is the sequence which can be generated by the recurrence i(1)=1, i(k+1)=3i(k)+1, k=1,2,...

model ShellSort
 declarations
 N: integer ! Size of array ANum
 ANum: array(range) of real ! Unsorted array of numbers
 end-declarations

 N:=50
 forall(i in 1..N)
 ANum(i):=round(random*100)

 writeln("Given list of numbers (size: ", N, "): ")
 forall(i in 1..N) write(ANum(i), " ")
 writeln

 inc:=1 ! Determine the starting increment
 repeat
 inc:=3*inc+1
 until (inc>N)

 repeat ! Loop over the partial sorts
 inc:=inc div 3
 forall(i in inc+1..N) do ! Outer loop of straight insertion
 v:=ANum(i)
 j:=i
 while (ANum(j-inc)>v) do ! Inner loop of straight insertion
 ANum(j):=ANum(j-inc)
 j -= inc
 if j<=inc then break; end-if
 end-do
 ANum(j):= v
 end-do
 until (inc<=1)

 writeln("Ordered list: ")
 forall(i in 1..N) write(ANum(i), " ")
 writeln
end-model

The example introduces a new statement: break. It can be used to interrupt one or several loops. In our case it
stops the inner while loop. Since we are jumping out of a single loop, we could just as well write break 1. If we
wrote break 3, the break would make the algorithm jump 3 levels of looping higher, that is outside of the
repeat-until loop.

Note that in Mosel, there is no limit to the number of nested loops and/or selections.

Mosel User Guide Part B - Sets

36

Part B - Chapter 2: Sets

A set collects objects of the same type without establishing an order among them (which is the case with arrays). In
Mosel, sets may be defined for all elementary types, that is the basic types (integer, real, string, boolean)
and the MP types (mpvar and linctr).

This chapter presents in a more systematic way the different ways sets may be initialized (all of which the reader has
already encountered in the examples in Part A), and also shows more advanced ways of working with sets.

B2.1 Initializing Sets

In the revised formulation of the Burglar Problem in Chapter 3 and in the models in Chapter A-5 we have already
seen different examples of the use of index sets. We recall here the relevant parts of the respective models.

B2.1.1 Constant Sets

In the Burglar example the index set is assigned directly in the model:

declarations
 Items={"camera", "necklace", "vase", "picture", "tv", "video",
 "chest", "brick"}
end-declarations

Since in this example the set contents are set in the declarations section, the index set Items is a constant set (its
contents cannot be changed). To declare it as a dynamic set, the contents need to be assigned after its declaration:

declarations
 Items: set of string
end-declarations

Items:={"camera", "necklace", "vase", "picture", "tv", "video",
 "chest", "brick"}

B2.1.2 Set Initialization from File, Finalized and Fixed Sets

In Chapter 5 the reader encountered several examples of how the contents of sets may be initialized from data files.

The contents of the set may be read in directly as in the following case:

declarations
 EXIST: set of integer
end-declarations

initilizations from 'Idata.dat'
 EXIST
end-initializations

where Idata.dat contains data in the following format:

EXIST: [1 4 7 11 14]

Unless a set is constant, arrays that are indexed by this set are created as dynamic arrays. Since in many cases the
contents of a set do not change further after its initialization, Mosel provides the finalize statement that turns a
(dynamic) set into a constant set. Consider the continuation of the example above:

Mosel User Guide Part B - Sets

37

finalize(EXIST)

declarations
 x: array(EXIST) of mpvar
end-declarations

The array of variables x will be created as a static array; without the finalize statement it would be dynamic
since the index set EXIST may still be subject to changes. Declaring arrays in the form of static arrays is preferable
if the indexing set is known beforehand because this allows Mosel to handle them more efficiently.

Index sets may also be initialized indirectly during the initialization of dynamic arrays:

declarations
 REGION: set of string
 DEMAND: array(REGION) of real
end-declarations

initializations from 'transprt.dat'
 DEMAND
end-initilizations

If file transprt.dat contains the data:

DEMAND: [(Scotland) 2840 (North) 2800 (West) 2600 (SEast) 2820 (Midlands) 2750]

then printing the set REGION after the initialization will give the following output:

{`Scotland',`North',`West',`SEast',`Midlands'}

Once a set is used for indexing an array (of data, decision variables etc.) it is fixed, that is, its elements can no longer
be removed, but it may still grow in size.

The indirect initialization of (index) sets is not restricted to the case where data is input from file. In the following
example we add an array of variable descriptions to the chess problem introduced in the first chapter of this manual.
These descriptions may, for instance, be used for generating nice output. Since the array DescrV and its indexing
set Allvars are dynamic they grow with each new variable description that is added to DescrV.

model Chess3
 uses "mmxprs"

 declarations
 Allvars: set of mpvar
 DescrV: array(Allvars) of string
 small: mpvar
 large: mpvar
 end-declarations

 DescrV(small):= "Number of small chess sets"
 DescrV(large):= "Number of large chess sets"

 profit:= 5*small + 20*large
 mc_time:= 3*small + 2*large <= 400
 wood:= small + 3*large <= 200

 maximize(profit)

 writeln("Solution:\n Objective: ", getobjval)
 writeln(DescrV(small), ": ", getsol(small))
 writeln(DescrV(large), ": ", getsol(large))

end-model

The reader may have already noted another feature that is illustrated by this example: the indexing set Allvars is
of type mpvar. So far only basic types have occurred as index set types but as mentioned earlier, sets in Mosel may
be of any elementary type, including the MP types mpvar and linctr.

Mosel User Guide Part B - Sets

38

B2.2 Working with Sets

In all examples of sets given so far sets are used for indexing other modeling objects. But they may also be used for
different purposes. The following example demonstrates the use of basic set operations in Mosel: union (+),
intersection (*), and difference (-):

model "Set example"

 declarations
 Cities={"rome", "bristol", "london", "paris", "liverpool"}
 Ports={"plymouth", "bristol", "glasgow", "london", "calais",
 "liverpool"}
 Capitals={"rome", "london", "paris", "madrid", "berlin"}
 end-declarations

 Places:= Cities+Ports+Capitals ! Create union of all 3 sets
 In_all_three:= Cities*Ports*Capitals ! and intersection of all 3 sets
 Cities_not_cap:= Cities-Capitals ! Create the set of all cities that are not capitals

 writeln("Union of all places: ", Places)
 writeln("Intersection of all three: ", In_all_three)
 writeln("Cities that are not capitals: ", Cities_not_cap)

end-model

The output of this example will look as follows:

Union of all places:
{`rome',`bristol',`london',`paris',`liverpool',`plymouth',`bristol',`glasgow',`calais',`liverp
ool',`rome',`paris',`madrid',`berlin'}
Intersection of all three: {`london'}
Cities that are not capitals: {`b ristol',`liverpool}

Sets in Mosel are indeed a powerful facility for programming, as in the following example that calculates all prime
numbers between 2 and some given limit. Starting with the smallest one, the algorithm takes every element of a set
of numbers SNumbers (positive numbers between 2 and some upper limit that may be specified when running the
model), adds it to the set of prime numbers SPrime and removes the number and all its multiples from the set
SNumbers.

model Prime

 parameters
 LIMIT=100 ! Search for prime numbers in 2..LIMIT
 end-parameters

 declarations
 SNumbers: set of integer ! Set of numbers to be checked
 SPrime: set of integer ! Set of prime numbers
 end-declarations

 SNumbers:={2..LIMIT}

 writeln("Prime numbers between 2 and ", LIMIT, ":")

 n:=2
 repeat
 while (not(n in SNumbers)) n+=1
 SPrime += {n} ! n is a prime number
 i:=n
 while (i<=LIMIT) do ! Remove n and all its multiples
 SNumbers-= {i}
 i+=n
 end-do
 until SNumbers={}

 writeln(SPrime)
 writeln(" (", getsize(SPrime), " prime numbers.)")

end-model

Mosel User Guide Part B - Sets

39

This example uses a new function, getsize, that if applied to a set returns the number of elements of the set. The
condition in the while loop is the logical negation of an expression, marked with not. The loop is repeated as long
as the condition n in SNumbers is not satisfied.

B2.3 Set Operators

The preceding example introduced the operator += to add sets to a set ((there is also an operator -= to remove
subsets from a set). Another set operator used in the example is in denoting that a single object is contained in a set.
We have already encountered this operator in the enumeration of indices for the forall loop.

Mosel also defines the standard operators for comparing sets: subset (<=), superset (>=), different (<>), end equality
(=). Their use is illustrated by the following example:

model "Set comparisons"

 declarations
 RAINBOW = {"red", "orange", "yellow", "green", "blue", "purple"}
 BRIGHT = {"yellow", "orange"}
 DARK = {"blue", "brown", "black"}
 end-declarations

 writeln("BRIGHT is included in RAINBOW: ", BRIGHT <= RAINBOW)
 writeln("RAINBOW is a superset of DARK: ", RAINBOW >= DARK)
 writeln("BRIGHT is different from DARK: ", BRIGHT <> DARK)
 writeln("BRIGHT is the same as RAINBOW: ", BRIGHT = RAINBOW)

end-model

As one might have expected, this example produces the following output:

 BRIGHT is included in RAINBOW: true
 RAINBOW is a superset of DARK: false
 BRIGHT is different from DARK: true
 BRIGHT is the same as RAINBOW: false

Mosel User Guide Part B - Functions and Procedures

40

Part B - Chapter 3: Functions and Procedures

When programs grow larger than the small examples presented so far, it becomes necessary to introduce some
structure that makes them easier to read and to maintain. Usually, this is done by dividing the tasks that have to be
executed into subtasks which may again be subdivided, and indicating the order in which these subtasks have to be
executed and which are their activation conditions.

To facilitate this structured approach, Mosel provides the concept of subroutines. Using subroutines, longer and
more complex programs can be broken down into smaller subtasks that are easier to understand and to work with.

Subroutines may be employed in the form of procedures or functions. Procedures are called as a program statement,
they have no return value, whereas functions must be called in an expression that uses their return value.

Mosel provides a set of predefined subroutines (for a comprehensive documentation the reader is referred to the
Reference Manual), and it is possible to define new functions and procedures according to the needs in a specific
program. A procedure that has occurred repeatedly in this document is writeln. Typical examples of functions are
mathematical functions like abs, floor, ln, sin etc.

User defined subroutines in Mosel have to be marked with procedure / end-procedure and function /
end-function respectively. The return value of a function has to be assigned to returned as shown in the
following example.

model "Simple subroutines"

 declarations
 a:integer
 end-declarations

 function three:integer
 returned := 3
 end-function

 procedure printstart
 writeln("The program starts here.")
 end-procedure

 printstart
 a:=three
 writeln("a = ", a)

end-model

This program will produce the following output:

The program starts here.
a = 3

B3.1 Parameters

In many cases, the actions to be performed by a procedure or the return value expected from a function depend on
the current value of one or several objects in the calling program. It is therefore possible to pass parameters into a
subroutine. The (list of) parameter(s) is added in parentheses following the name of the subroutine:

 function timestwo(b:integer):integer
 returned := 2*b
 end-function

Mosel User Guide Part B - Functions and Procedures

41

The structure of subroutines being very similar to the one of model, they may also include declarations
sections for declaring local parameters local that are only valid in the corresponding subroutine. It should be noted
that such local parameters may mask global parameters within the scope of a subroutine, but they have no effect on
the definition of the global parameter outside of the subroutine as is shown below in the extension of the example
"Simple subroutines".

Whilst it is not possible to modify function/procedure parameters in the corresponding subroutine, the declaration of
local parameters may hide these parameters. Mosel considers this as a likely mistake and prints a warning during
compilation (without any consequence for the execution of the program).

model "Simple subroutines"

 declarations
 a:integer
 end-declarations

 function three:integer
 returned := 3
 end-function

 function timestwo(b:integer):integer
 returned := 2*b
 end-function

 procedure printstart
 writeln("The program starts here.")
 end-procedure

 procedure hide_a_1
 declarations
 a: integer
 end-declarations

 a:=7
 writeln("Procedure hide_a_1: a = ", a)
 end-procedure

 procedure hide_a_2(a:integer)
 writeln("Procedure hide_a_2: a = ", a)
 end-procedure

 procedure hide_a_3(a:integer)
 declarations
 a: integer
 end-declarations

 a := 15
 writeln("Procedure hide_a_3: a = ", a)
 end-procedure

 printstart
 a:=three
 writeln("a = ", a)
 a:=timestwo(a)
 writeln("a = ", a)
 hide_a_1
 writeln("a = ", a)
 hide_a_2(-10)
 writeln("a = ", a)
 hide_a_3(a)
 writeln("a = ", a)

end-model

During the compilation we get the warning

Mosel: W-165 at (30,3) of `subrout.mos': Declaration of `a' hides a parameter.

which is due to the redefinition of the parameter in procedure hide_a_3. The program results in the following
output:

Mosel User Guide Part B - Functions and Procedures

42

 The program starts here.
 a = 3
 a = 6
 Procedure hide_a_1: a = 7
 a = 6
 Procedure hide_a_2: a = -10
 a = 6
 Procedure hide_a_3: a = 15
 a = 6

B3.2 Recursion

 following example returns the largest common divisor of two numbers, just like the example Lcdiv1 in the previous
chapter. This time we implement this task using recursive function calls, that is, from within function lcdiv we
call again function lcdiv.

model Lcdiv2

 function lcdiv(A,B:integer):integer
 if(A=B) then
 returned:=A
 elif(A>B) then
 returned:=lcdiv(B,A-B)
 else
 returned:=lcdiv(A,B-A)
 end-if
 end-function

 declarations
 A,B: integer
 end-declarations

 write("Enter two integer numbers:\n A: ")
 readln(A)
 write(" B: ")
 readln(B)

 writeln("Largest common divisor: ", lcdiv(A,B))

end-model

This example uses a simple recursion (a subroutine calling itself). In Mosel, it is also possible to use cross recursion,
that is, subroutine A calls subroutine B which again calls A. The only pre-requisite is that any subroutine that is
called prior to its definition must be declared before it is called by using the forward statement (see below).

B3.3 forward

A subroutine has to be "known" at the place where it is called in a program. In the preceding examples we have
defined all subroutines at the start of the programs but this may not always be feasible or desirable. Mosel therefore
enables the user to declare a subroutine separately from its definition by using the keyword forward. The
declaration of a subroutine states its name, the parameters (type and name) and, in the case of a function, the type of
the return value. The definition that must follow later in the program contains the body of the subroutine, that is, the
actions to be executed by the subroutine.

The following example implements a quick sort algorithm for sorting a randomly generated array of numbers into
ascending order. The procedure qsort that starts the sorting algorithm is defined at the very end of the program, so
it needs to be declared at the beginning, before it is called. Procedure qsort_start calls the main sorting routine,
qsort. Since the definition of this procedure precedes the place where it is called there is no need to declare it (but
it still could be done). Procedure qsort calls yet another subroutine, swap.

The idea of the quicksort algorithm is to partition the array that is to be sorted into two parts. The "left" part
containing all values smaller than the partitioning value and the "right" part all the values that are larger than this
value. The partitioning is then applied to the two subarrays, and so on, until all values are sorted.

Mosel User Guide Part B - Functions and Procedures

43

model "Quick Sort 1"

 parameters
 LIM=50
 end-parameters

 forward procedure qsort_start(L:array(range) of integer)

 declarations
 T:array(1..LIM) of integer
 end-declarations

 forall(i in 1..LIM) T(i):=round(.5+random*LIM)
 writeln(T)
 qsort_start(T)
 writeln(T)

! Swap the positions of two numbers in an array
 procedure swap(L:array(range) of integer,i,j:integer)
 k:=L(i)
 L(i):=L(j)
 L(j):=k
 end-procedure

! Main sorting routine
 procedure qsort(L:array(range) of integer,s,e:integer)
 v:=L((s+e) div 2) ! Determine the partitioning value
 i:=s; j:=e
 repeat ! Partition into two subarrays
 while(L(i)<v) i+=1
 while(L(j)>v) j-=1
 if i<j then
 swap(L,i,j)
 i+=1; j-=1
 end-if
 until i>=j
 ! Recursively sort the two subarrays:
 if j<e and s<j then qsort(L,s,j); end-if
 if i>s and i<e then qsort(L,i,e); end-if
 end-procedure

! Start of the sorting process
 procedure qsort_start(L:array(r:range) of integer)
 qsort(L,getfirst(r),getlast(r))
 end-procedure

end-model

The quicksort example above demonstrates typical uses of subroutines, namely regrouping actions that are executed
repeatedly (qsort) and isolating subtasks (swap) in order to structure a program and increase its readability.

The calls to the procedures in this example are nested (procedure swap is called from qsort which is called from
qsort_start): in Mosel there is no limit on the number of nested calls to subroutines (it is not possible, though,
to define subroutines within a subroutine).

B3.4 Overloading of Subroutines

In Mosel, it is possible to re-use the names of subroutines, provided that every version has a different number
and/or types of parameters. This functionality is commonly referred to as overloading.

An example of an overloaded function in Mosel is getsol: if a variable is passed as a parameter it returns its
solution value, if the parameter is a constraint the function returns the evaluation of the corresponding linear
expression using the current solution.

Function abs (for obtaining the absolute value of a number) has different return types depending on the type of the
input parameter: if an integer is input it returns an integer value, if it is called with a real value as input parameter it
returns a real.

Mosel User Guide Part B - Functions and Procedures

44

Function getcoeff is an example of a function that takes different numbers of parameters: if called with a single
parameter (of type linctr) it returns the constant term of the input constraint, if a constraint and a variable are
passed as parameters it returns the coefficient of the variable in the given constraint.

The user may define (additional) overloaded versions of any subroutines defined by Mosel as well as for his own
functions and procedures. Note that it is not possible to overload a function with a procedure and vice versa.

Using the possibility to overload subroutines, we may rewrite the preceding example "Quick Sort" as follows.

model "Quick Sort 2"

 parameters
 LIM=50
 end-parameters

 forward procedure qsort(L:array(range) of integer)

 declarations
 T:array(1..LIM) of integer
 end-declarations

 forall(i in 1..LIM) T(i):=round(.5+random*LIM)
 writeln(T)
 qsort(T)
 writeln(T)

 procedure swap(L:array(range) of integer,i,j:integer)
 (...) (same procedure body as in the preceding example)
 end-procedure

 procedure qsort(L:array(r ange) of integer,s,e:integer)
 (...) (same procedure body as in the preceding example)
 end-procedure

! Start of the sorting process
 procedure qsort(L:array(r:range) of integer)
 qsort(L,getfirst(r),getlast(r))
 end-procedure

end-model

The procedure qsort_start is now also called qsort. The procedure bearing this name in the first
implementation keeps its name too; it has got two additional parameters which suffice to ensure that the right
version of the procedure is called. On the contrary, it is not possible to give procedure swap the same name qsort
because it takes exactly the same parameters as the original procedure qsort and hence it would no longer be
possible to differentiate between these two procedures.

Mosel User Guide Part B - Output

45

Part B - Chapter 4: Output

B4.1 Producing Formatted Output

In some of the previous examples the procedures write and writeln have been used for displaying data,
solution values and some accompanying text. To produce more easily readable output, these procedures can be
combined with the formatting procedure strfmt that indicates the (minimum) space reserved for printing an item
and its placement within this space (negative values mean left justified printing, positive right justified).

The following example prints out the solution of model Transport (Chapter A-5) in table format. The reader may be
reminded that the objective of this problem is to compute the product flows from a set of plants (PLANT) to a set of
sales regions (REGION) so as to minimize the total cost. The solution needs to comply with the capacity limits of the
plants (PLANTCAP) and satisfy the demand DEMAND of all regions.

procedure printtab
 declarations
 rsum: array(REGION) of integer ! Data table for printing
 psum,prsum,ct,iflow: integer ! Counters
 end-declarations

 ! Print heading and the first line of the table
 writeln("\nProduct Distribution\n--------------------")
 writeln(strfmt("Sales Region",44))
 write(strfmt("",14))
 forall(r in REGION) write(strfmt(r,9))
 writeln(strfmt("TOTAL",9), " Capacity")
 ! Print the solution values of the flow variables and
 ! calculate totals per region and per plant
 ct:=0
 forall(p in PLANT) do
 ct += 1
 if ct=2 then
 write("Plant ",strfmt(p,-8))
 else
 write(" ",strfmt(p,-8))
 end-if
 psum:=0
 forall(r in REGION) do
 iflow:=integer(getsol(flow(p,r)))
 psum += iflow
 rsum(r) += iflow
 if iflow<>0 then
 write(strfmt(iflow,9))
 else
 write(" ")
 end-if
 end-do
 writeln(strfmt(psum,9), strfmt(integer(PLANTCAP(p)),9))
 end-do

 ! Print the column totals
 write("\n", strfmt("TOTAL",-14))
 prsum:=0
 forall(r in REGION) do
 prsum += rsum(r);
 write(strfmt(rsum(r),9))
 end-do
 writeln(strfmt(prsum,9))

Mosel User Guide Part B - Output

46

 ! Print demand of every region
 write(strfmt("Demand",-14))
 forall(r in REGION) write(strfmt(integer(DEMAND(r)),9))

 ! Print objective function value
 writeln("\n\nTotal cost of distribution = ",strfmt(getobjval/1 e6,0,3)," million.")
end-procedure

With the data from Chapter A-5 the procedure produces the following output:

Product Distribution

 Sales Region
 Scotland North SWest SEast Midland s TOTAL Capacity
 Corby 180 820 2000 3000 3000
Plant Deeside 1530 920 250 2700 2700
 Glasgow 2840 1270 4110 4500
 Oxford 1500 2000 500 4000 4000

TOTAL 2840 2800 2600 2820 2750 13810
Demand 2840 2800 2600 2820 2750

Total cost of distribution = 81.018 million.

B4.2 File Output

If we do not want the output of procedure printtab in the previous section to be displayed on screen but to be
saved in the file solout.txt, we simply open the file for writing at the beginning of the procedure by adding

fopen("solout.txt",F_OUTPUT)

before the first writeln statement, and close it at the end of the procedure, after the last writeln statement with

fclose(F_OUTPUT)

If we do not want any existing contents of the file solout.txt to be deleted, so that the table is appended at the
end of the file, we need to write the following for opening the file (closing it the same way as before):

fopen("solout.txt",F_OUTPUT+F_APPEND)

Similarly to the input of data from file, in Mosel there are several ways of outputting data (e.g. solution values) to a
file. The following example demonstrates three different ways of writing the contents of a table A to a file.

model "trio output"
 uses "mmetc"

 declarations
 A: array(1..3,1..3) of real
 end-declarations

 A := [2, 4, 6,
 12, 14, 16,
 22, 24, 26]

! First method: use an initializations block
 initializations to "out_1.dat"
 A as "myout"
 end-initializations

! Second method: use the built-in writeln function
 fopen("out_2.dat",F_OUTPUT)
 forall(i,j in 1..3)
 writeln('A_out(',i,' and ',j,') = ', A(i,j))
 fclose(F_OUTPUT)

! Third method: use diskdata
 diskdata(ETC_OUT+ETC_SPARSE,"out_3.dat", A)

end-model

Mosel User Guide Part B - Output

47

File out_1.dat will contain the following:

'myout': [2 4 6 12 14 16 22 24 26]

If this file already contains a data entry myout, it is replaced with this output without modifying or deleting any
other contents of this file. Otherwise, the output is appended at the end of it.

The nicely formatted output to out_2.dat results in the following:

A_out(1 and 1) = 2
A_out(1 and 2) = 4
A_out(1 and 3) = 6
A_out(2 and 1) = 12
A_out(2 and 2) = 14
A_out(2 and 3) = 16
A_out(3 and 1) = 22
A_out(3 and 2) = 24
A_out(3 and 3) = 26

The output with diskdata simply prints the contents of the array to out_3.dat. With option ETC_SPARSE
each entry is preceded by the corresponding indices:

1,1,2
1,2,4
1,3,6
2,1,12
2,2,14
2,3,16
3,1,22
3,2,24
3,3,26

Without option ETC_SPARSE out_3.dat looks as follows:

2,4,6
12,14,16
22,24,26

Mosel User Guide Part B - More about Linear Programming

48

Part B - Chapter 5: More about Integer Programming

This chapter presents two applications to (Mixed) Integer Programming of the programming facilities in Mosel that
have been introduced in the previous chapters.

B5.1 Cut Generation

Cutting plane methods add constraints (cuts) to the problem that cut off parts of the convex hull of the integer
solutions, thus drawing the solution of the LP relaxation closer to the integer feasible solutions and improving the
bound provided by the solution of the relaxed problem.

The Xpress-Optimizer provides automated cut generation (see the Optimizer documentation for details). To show
the effects of the cuts that are generated by our example we switch off the automated cut generation.

B5.1.1 Example Problem

The problem we want to solve is the following: a large company is planning to outsource the cleaning of its offices
at least cost. The NSITES office sites of the company are grouped into NAREAS areas. Several professional cleaning
companies (with a total number of NCONTRACTORS) have submitted bids for the different sites, a cost of 0 in the
data meaning that a contractor is not bidding for a site.

To avoid dependency on a single contractor, adjacent areas have to be allocated to different contractors. Every site s
(s in 1,...,NSITES) is to be allocated to a single contractor, but there may be between LOWCONa and UPPCONa
contractors per area a.

B5.1.1.1 Problem Formulation

The problem stated above may be summarized as follows:

Objective:

Minimize the total cost of all contracts.

Constraints:

Each site must be cleaned by exactly one contractor.

Adjacent areas must not be allocated to the same contractor.

The lower and upper limits on the number of contractors per area must be respected.

For the mathematical formulation of the problem we introduce two sets of variables:

xcs indicates whether contractor c is cleaning site s

y
ca
 indicates whether contractor c is allocated any site in area a

To express the relation between these two sets of variables we need another collection of constraints:

A contractor c is allocated to an area a if and only if he is allocated a site s in this area, that is, yca is 1 if and only
if some x

cs
 (for a site s in area a) is 1.

Mosel User Guide Part B - More about Linear Programming

49

model "Office cleaning"

 uses "mmxprs","mmsystem"

 forward procedure cutgen

 declarations
 PARAM: array(1..3) of integer
 end-declarations

 initializations from 'Data/clparam.dat'
 PARAM
 end-initializations

 declarations
 NSITES = PARAM(1) ! Number of s ites
 NAREAS = PARAM(2) ! Number of areas (subsets of sites)
 NCONTRACTORS = PARAM(3) ! Number of contractors
 RA = 1..NAREAS
 RC = 1..NCONTRACTORS
 RS = 1..NSITES
 AREA: array(RS) of integer ! Area site is in
 NUMSITE: array(RA) of integer ! Number of sites in an area
 LOWCON: array(RA) of integer ! Lower limit on the number of
 ! contractors per area
 UPPCON: array(RA) of integer ! Upper limit on the number of
 ! contractors per area
 ADJACENT: array(RA,RA) of integer ! =1 if areas adjacent
 PRICE: array(RS,RC) of real ! Price per contractor per site

 x: dynamic array(RC,RS) of mpvar ! 1 iff c allocated to site s
 y: array(RC,RA) of mpvar ! 1 iff ctrctor allocated to
 ! a site in area a
 end-declarations

 initializations from 'Data/cldata.dat'
 NUMSITE
 LOWCON
 UPPCON
 ADJACENT
 PRICE
 end-initializations

 ct:=1
 forall(a in RA) do
 forall(s in ct..ct+NUMSITE(a)-1)
 AREA(s):=a
 ct+= NUMSITE(a)
 end-do

 forall(c in RC)
 forall(s in RS | PRICE(s,c) > 0.01)
 create(x(c,s))

 ! Objective: Minimize total cost of all cleaning contracts
 cost:= sum(c in RC, s in RS) PRICE(s,c)*x(c,s)

 ! Each site must be cleaned by exactly one contractor
 forall(s in RS)
 clean(s):= sum(c in RC) x(c,s) = 1

 ! Ban same contractor from serving adjacent areas
 forall(c in RC, a in RA, a2 in RA | a > a2 a nd ADJACENT(a,a2) = 1)
 adj(c,a,a2):= y(c,a) + y(c,a2) <= 1

 ! Specify lower & upper limits on contracts per area
 forall(a in RA | LOWCON(a)>0)
 area_low(a):= sum(c in RC) y(c,a) >= LOWCON(a)
 forall(a in RA | UPPCON(a)<NCONTRACTORS)
 area_upp(a):= sum(c in RC) y(c,a) <= UPPCON(a)

Mosel User Guide Part B - More about Linear Programming

50

 ! Define y[c,a] to be 1 iff some x[c,s]=1 for sites s in area a
 forall(c in RC, a in RA) do
 y_upp(c,a):= y(c,a) <= sum(s in RS| AREA(s)=a) x(c,s)
 y_low_area(c,a):= y(c,a) >= 1.0/NMSITE(a) * sum(s in R S| AREA(s)=a) x(c,s)
 end-do

 forall(c in RC) do
 forall(s in RS) x(c,s) is_binary
 forall(a in RA) y(c,a) is_binary
 end-do

 starttime:= gettime

 cutgen

 minimize(cost); ! Solve the MIP problem
 writeln("(", gettime-starttime, " sec) Global status ",
 getparam("XPRS_MIPSTATUS"), ", best solution:", getobjval);
....

In the preceding model, we have chosen to implement the constraints that force the variables yca to become 1
whenever an xcs is 1 for some site s in area a in an aggregated way (this type of constraint is usually referred to as a
Multiple Variable Lower Bound, MVLB, constraint). Instead of

 forall(c in RC, a in RA)
 y_low_area(c,a):= y(c,a) >= 1.0/NMSITE(a) * sum(s in RS| AREA(s)=a) x(c,s)

we could have used the stronger formulation

 forall(c in RC, s in RS) y_low_site(c,s):= y(c,AREA(s)) >= x(c,s)

but this considerably increases the total number of constraints.

The aggregated constraints are sufficient to express this problem, but this formulation is very loose, with the
consequence that the solution of the LP relaxation only provides a very bad approximation of the integer solution
that we want to obtain. For large data sets the branch-and-bound search may therefore take a long time. To improve
this situation without blindly adding many unnecessary constraints, we implement a cut generation loop at the top
node of the search that only adds those constraints y_low_site that are violated by the current LP solution.

The cut generation loop (procedure cutgen) performs the following steps:

1. solve the LP and save the basis

2. get the solution values

3. identify violated constraints and add them to the problem

4. load the modified problem and load the previous basis

 procedure cutgen

 declarations
 MAXCUTS = 2500 ! Max no. of constraints added in total
 MAXPCUTS = 1000 ! Max no. of constraints added per pass
 MAXPASS = 50 ! Max no. passes
 ncut, npass, npcut: integer ! Counters for cuts and passes
 ztolrhs:real ! Zero tolerance
 solx: array(RC,RS) of real ! Sol. values for variables x
 soly: array(RC,RA) of real ! Sol. values for variables y
 objval,starttime: real
 cut: array(range) of linctr
 end-declarations

 starttime:=gettime
 setparam("XPRS_CUTSTRATEGY", 0) ! Disable automatic cuts
 setparam("XPRS_PRESOLVE", 0) ! Switch presolve off
 ztolrhs:= getparam("XPRS_FEASTOL") ! Get the zero tolerance
 ztolrhs:= ztolrhs * 10
 ncut:=0
 npass:=0

Mosel User Guide Part B - More about Linear Programming

51

 while (ncut<MAXCUTS and npass<MAXPASS) do
 npass+=1
 npcut:= 0
 minimize(XPRS_LIN, cost) ! Solve the LP
 savebasis(1) ! Save the current basis
 objval:= getobjval ! Get the objective value

 forall(c in RC) do ! Get the solution values
 forall(a in RA) soly(c,a):=getsol(y(c,a))
 forall(s in RS) solx(c,s):=getsol(x(c,s))
 end-do

 ! Search for violated constraints and add them to the problem:
 forall(s in RS)
 forall(c in RC)
 if(solx(c,s)-soly(c,AREA(s)) > ztolrhs) then
 cut(ncut):= y(c,AREA(s)) >= x(c,s)
 ncut+=1
 npcut+=1
 if(npcut>MAXPCUTS or ncut>MAXCUTS) then break 2; end -if
 end-if

 writeln("Pass ", npass, " (", gettime -starttime,
 " sec), objective value ",
 objval, ", cuts added: ", npcut, " (total ", ncut,")")

 if(npcut=0) then
 break
 else
 loadprob(cost) ! Reload the problem
 loadbasis(1) ! Load the save d basis
 end-if
 end-do

 ! Display cut generation status
 write("Cut phase completed: ")
 if(ncut >= MAXCUTS) then writeln("space for cuts exhausted")
 elif(npass >= MAXPASS) then writeln("max. num. of passes r eached")
 else writeln("no more violations")
 end-if

 end-procedure

end-model

B5.2 Column Generation

The technique of column generation is used for solving linear problems with a huge number of variables when it is
not practical to generate all columns of the problem matrix explicitly. Starting with a very restricted set of columns,
after each solution of the problem a column generation algorithm adds one or several columns that improve the
current solution. These columns must have a negative reduced cost (in a minimization problem) and are calculated
based on the dual value of the current solution.

For solving large MIP problems, column generation typically has to be combined with a branch-and-bound search,
leading to a so-called branch-and-price algorithm. The example problem described subsequently is solved by solving
a sequence of LPs without starting a tree search.

B5.2.1 Example Problem

A paper mill produces rolls of paper of a fixed width MAXWIDTH that are subsequently cut into smaller rolls
according to the orders by the customers. The rolls can be cut into NWIDTHS different sizes. The orders are given as
demand per width i (DEMANDi). The objective of the paper mill is to satisfy the demand with the smallest possible
number of paper rolls in order to minimize the losses.

Mosel User Guide Part B - More about Linear Programming

52

B5.2.1.1 Problem Formulation

The objective of minimizing the total number of rolls can be expressed as choosing the best set of cutting patterns
for the current set of demands. Since it may not be obvious how to calculate all possible cutting patterns by hand, we
start off with a basic set of patterns (PATTERN1,...,PATTERNNWIDTH), that consists of cutting small rolls all of the
same width as many times as possible out of the large roll.

When we define variables patj to denote the number of time a cutting pattern j is used, the objective is to minimize
the sum of these variables, subject to the constraints that the demand for all sizes have to be met.

model Papermill

 uses "mmxprs"

 forward procedure colgen
 forward function knapsack(c:array(range) of real,
 a:array(range) of real,
 b:real,
 xbest:array(range) of integer):real
 forward procedure shownewpat(dj:real, vx: array(range) of integer)

 declarations
 NWIDTHS = 5 ! Number of different widths
 RW = 1..NWIDTHS ! Range of widths
 RP: range ! Range of cut ting patterns
 MAXWIDTH = 94 ! Maximum roll width
 EPS = 1e-6 ! Zero tolerance

 WIDTH: array(RW) of real ! Possible widths
 DEMAND: array(RW) of integer ! Demand per width
 PATTERNS: array(RW, RW) of integer ! (Basic) cutting patterns

 pat: array(RP) of mpvar ! Rolls per pattern
 solpat: array(RP) of real ! Solution values for vars
 dem: array(RW) of linctr ! Demand constraints
 minRolls: linctr ! Objective function
 knap_ctr, knap_obj: linctr ! Knapsack constraint+objective
 x: array(RW) of mpvar ! Knapsack variables
 end-declarations

 WIDTH:= [17, 21, 22.5, 24, 29.5]
 DEMAND:= [150, 96, 48, 108, 227]
 ! Make basic patterns
 forall(j in RW) PATTERNS(j,j):= floor(MAXWIDTH/WIDTH(j))

 forall(j in RW) do
 create(pat(j)) ! Create NWIDTHS variables pat
 pat(j) is_integer ! Variables are integer and bounded
 pat(j) <= integer(ceil(DEMAND(j)/PATTERNS(j,j)))
 end-do
 forall(j in RW) x(j) is_integer ! Knapsack variables are integer
 minRolls:= sum(j in RW) pat(j) ! Objective function

 ! Satisfy all demands
 forall(i in RW) dem(i):= sum(j in RW) PATTERNS(i,j) * pat(j) >= DEMAND(i)

 colgen ! Column generation at top node

 minimize(minRolls) ! Compute the best integer solution for
 ! the current problem (including the
 ! new columns)
 writeln("Optimal solution: ", getobjval, " rolls)
 write(" Rolls per pattern: ")
 forall(i in RP) write(getsol(pat(i)),", ")
 writeln

With the basic set of cutting patterns the mill can satisfy the demand, but it is likely to incur significant losses
through wasting more than necessary of every large roll and by cutting more small rolls than its customers have
ordered. We therefore employ a column generation heuristic to find more suitable cutting patterns.

Mosel User Guide Part B - More about Linear Programming

53

The following function colgen defines a column generation loop that is executed at the top node (this heuristic
was suggested by M. Savelsbergh for solving a similar cutting stock problem). The column generation loop
performs the following steps:

1. solve the LP and save the basis

2. get the solution values

3. compute a more profitable cutting pattern based on the current solution

4. generate a new column (=cutting pattern): add a term to the objective function and to the corresponding
demand constraints

5. load the modified problem and load the saved basis

To be able to increase the number of variables patj in this function, these variables have been declared at the
beginning of the program as a dynamic array without specifying any index range.

procedure colgen

 declarations
 dualdem: array(RW) of real
 xbest: array(RW) of integer
 dw, zbest, objval: real
 end-declarations

 setparam("XPRS_CUTSTRATEGY", 0) ! Disable automatic cuts
 npatt:=NWIDTHS
 npass:=1

 while(true) do
 minimize(XPRS_LIN, minRolls) ! Solve the LP
 savebasis(1) ! Save the current basis
 objval:= getobjval ! Get the objective value
 ! Get the solution values
 forall(j in 1..npatt) solpat(j):=getsol(pat(j))
 forall(i in RW) dualdem(i):=getdual(dem(i))

 zbest:=knapsack(dualdem, WIDTH, MAX WIDTH, xbest) - 1

 write("Pass ", npass, ": ")
 if(zbest < EPS) then
 writeln("no profitable column found. \n")
 break
 else
 shownewpat(zbest, xbest) ! Print the new pattern
 npatt+=1
 create(pat(npatt)) ! Create a new variable
 pat(npatt) is_integer

 minRolls+= pat(npatt) ! Add new variable to the objective
 dw:=0
 forall(i in RW) ! Add new variable to demand constraints
 if(xbest(i) > EPS) then
 dem(i)+= xbest(i)*pat(npatt)
 dw:= maxlist(dw, ceil(DEMAND(i)/xbest(i)))
 end-if
 pat(npatt) <= dw ! Set upper bound on the new variable

 loadprob(minRolls) ! Reload the problem
 loadbasis(1) ! Load the saved basis
 end-if
 npass+=1
 end-do

 end-procedure

The preceding procedure colgen calls the following auxiliary function knapsack to solve an integer knapsack
problem of the form

Mosel User Guide Part B - More about Linear Programming

54

 z = max{cx : ax<=b, x is integer}

function knapsack(c:array(range) of real,
 a:array(range) of real,
 b:real,
 xbest:array(range) of integer):real

 forall(j in RW) sethidden(dem(j) , true) ! Hide the demand constraints

 knap_ctr:= sum(j in RW) a(j)*x(j) <= b ! Define the knapsack constraint
 knap_obj:= sum(j in RW) c(j)*x(j) ! Define the objective function

 maximize(knap_obj) ! Solve the knapsack problem
 returned:=getobjval ! Get the objective value
 ! Get the solution values
 forall(j in RW) xbest(j):=round(getsol(x(j)))

 knap_ctr:= 0 ! Delete (reset) knapsack constraint
 knap_obj:= 0 ! Delete (reset) knapsack objective
 forall(j in RW) sethidden(dem(j), false) ! Unhide demand constraints
 end-function

The knapsack problem is a second, completely independent optimization problem that is stated within the same
model as the main problem. The formulation above uses a procedure that has not yet been introduced:

 sethidden(c:linctr, b:boolean)

With this procedure, constraints can be removed (`hidden') from the problem that is solved by the optimizer without
deleting them in the problem definition. This means that the optimizer solves a subproblem of the complete problem
stated in Mosel. In the current case, when solving the knapsack problem the optimizer only takes into account the
knapsack constraint. At the end of function knapsack the definition of the knapsack problem is removed and the
demand constraints are re-activated so that the next call to the optimizer in the loop of function colgen will solve
the main, cutting stock problem.

The constraints of the knapsack problem are defined globally because problem definition in Mosel is incremental.
The constraints defined in a subroutine are not deleted at the end of it (hence the need to reset the knapsack
constraint explicitly before leaving function knapsack).

The following procedure is called from procedure colgen to print out every new pattern that is found:

procedure shownewpat(dj:real, vx: array(range) of integer)
 declarations
 dw: real
 end-declarations

 writeln("new pattern found with marginal cost ", dj)
 write(" Widths distribution: ")
 dw:=0
 forall(i in 1..NWIDTHS) do
 write(WIDTH(i), ":", vx(i), " ")
 dw += WIDTH(i)*vx(i)
 end-do
 writeln("Total width: ", dw)
end-procedure

Mosel User Guide Part B - Extensions to Linear Programming

55

Part B - Chapter 6: Extensions to Linear Programming

The two examples (recursion and goal programming) in this chapter show how Mosel can be used to implement
extensions of Linear Programming.

B6.1 Recursion

Recursion, more properly known as Successive Linear Programming, is a technique whereby LP may be used to
solve certain non-linear problems. Some coefficients in an LP problem are defined to be functions of the optimal
values of LP variables. When an LP problem has been solved, the coefficients are re-evaluated and the LP re-solved.
Under some assumptions this process may converge to a local (though not necessarily a global) optimum.

Consider the following financial planning problem: we wish to determine the yearly interest rate x so that for a given
set of payments we obtain the final balance of 0. Interest is paid quarterly according to the following formula:

interest(t) = (92/365) * balance(t) * interest_rate

The balance at time t (t=1,...,T) results from the balance of the previous period t-1 and the net of payments and
interest:

net(t) = Payments(t) - interest(t)

balance(t) = balance(t-1) - net(t)

This problem cannot be modeled just by LP because we have the T products

balance(t) * interest_rate

which are non-linear. To express an approximation of the original problem by LP we replace the interest rate
variable x by a (constant) guess X of its value and a deviation variable dx

x = X + dx

The formula for the quarterly interest payment i(t) therefore becomes

i(t) = 92/365 * (b(t-1) * x)
 = 92/365 * (b(t-1) * (X + dx))
 = 92/365 * (b(t-1) * X + b(t-1) * dx)

We now also replace the balance b(t-1) in the product with dx by a guess B(t-1) and a deviation db(t-1)

i(t) = 92/365 * (b(t-1) * X + (B(t-1)+db(t-1)) * dx)
 = 92/365 * (b(t-1) * X + B(t-1) * dx + db(t-1) * dx)

which can be approximated by dropping the product of the deviation variables

i(t) = 92/365 * (b(t-1) * X + B(t-1) * dx)

To ensure feasibility we add penalty variables epl and emn for positive and negative deviations in the formulation of
the constraint:

i(t) = 92/365 * (b(t-1) * X + B(t-1) * dx + epl - emn)

The model then looks as follows (note the balance variables b(t) as well as the deviation dx and the quarterly nets
n(t) are defined as free variables, that is they may take any values between minus and plus infinity using
is_free):

Mosel User Guide Part B - Extensions to Linear Programming

56

model Fin_nlp

 uses "mmxprs"

 forward procedure solverec

 declarations
 T=6 ! Time horizon
 RT=1..T ! Range of time periods
 P,R,V: array(RT) of real ! Payments
 B: array(RT) of real ! An INITIAL GUESS as to balances b(t)
 X: real ! An INITIAL GUESS as to interest rate x

 i: array(RT) of mpvar ! Interest
 n: array(RT) of mpvar ! Net
 b: array(RT) of mpvar ! Balance
 x: mpvar ! Inte rest rate
 dx: mpvar ! Change to x
 epl, emn: array(RT) of mpvar ! + and - deviations
 end-declarations

 X:= 0.0
 B:= [1, 1, 1, 1, 1, 1]
 P:= [-1000, 0, 0, 0, 0, 0]
 R:= [206.6, 206.6, 206.6, 206.6, 206.6, 0]
 V:= [-2.95, 0, 0, 0, 0, 0]

 ! net = payments - interest
 forall(t in RT) net(t):= n(t) = (P(t)+R(t)+V(t)) - i(t)

 ! Money balance across periods
 forall(t in RT) bal(t):= b(t) = if(t>1, b(t-1), 0) - n(t)

 ! Approximation of interest
 forall(t in 2..T)
 interest(t):= -(365/92)*i(t) + X*b(t-1) + B(t-1)*dx + epl(t) - emn(t) = 0

 def:= X + dx = x ! Define the interest rate: x = X + dx

 feas:= sum(t in RT) (epl(t)+emn(t)) ! Objective: get feasible

 i(1) = 0 ! Initial interest is zero
 forall (t in RT) n(t) is_free
 forall (t in 1..T-1) b(t) is_free
 b(T) = 0 ! Final balance is zero
 dx is_free

 minimize(feas) ! Solve the LP-problem

 solverec ! Recursion loop

 ! Print the solution
 writeln("\nThe interest rate is ", getsol(x))
 write(strfmt("t",5), strfmt(" ",4))
 forall(t in RT) write(strfmt(t,5), strfmt(" ",3))
 write("\nBalances ")
 forall(t in RT) write(strfmt(getsol(b(t)),8,2))
 write("\nInterest ")
 forall(t in RT) write(strfmt(getsol(i(t)),8,2))
 writeln

end-model

In the above model we have declared the procedure solverec that executes the recursion but it has not yet been
defined. The recursion on x and the b(t) (t=1,...,T-1) is implemented by the following steps:

1. The B(t-1) in constraints interest(t) get the prior value of b(t-1)

2. The X in constraints interest(t) get the prior value of x

3. The X in constraint def gets the prior value of x

Mosel User Guide Part B - Extensions to Linear Programming

57

We say we have converged when the change in dx (variation) is less than 0.000001 (TOLERANCE).

procedure solverec

 declarations
 TOLERANCE=0.000001 ! Convergence tolerance
 variation: real ! Variation of x
 BC: array(RT) of real
 end-declarations

 variation:=1.0
 ct:=0

 while(variation>TOLERANCE) do
 savebasis(1) ! Save the current basis
 ct+=1
 forall(t in 2..T)
 BC(t-1):= getsol(b(t-1)) ! Get solution values for b(t)'s
 XC:= getsol(x) ! and x
 write("Round ", ct, " x:", getsol(x),
 " (variation:", variation,"), ")
 writeln("Simplex iterations: ", getparam("XPRS_SIMPLEXITER"))

 forall(t in 2..T) do ! Update coefficients
 interest(t)+= (BC(t-1)-B(t-1))*dx
 B(t-1):=BC(t-1)
 interest(t)+= (XC-X)*b(t-1)
 end-do
 def+= XC-X
 X:=XC
 oldxval:=XC ! Store solution value of x

 loadprob(feas) ! Reload the problem into optimizer
 loadbasis(1) ! Reload previous basis
 minimize(feas) ! Re -solve the LP-problem

 variation:= abs(getsol(x)-oldxval) ! Change in dx
 end-do

end-procedure

With the initial guesses 0 for X and 1 for all B(t) the model converges to an interest rate of 5.94413% (x =
0.0594413).

B6.2 Goal Programming

Goal Programming is an extension of Linear Programming in which targets are specified for a set of constraints. In
Goal Programming there are two basic models: the pre-emptive (lexicographic) model and the Archimedean model.
In the pre-emptive model, goals are ordered according to priorities. The goals at a certain priority level are
considered to be infinitely more important than the goals at the next level. With the Archimedean model weights or
penalties for not achieving targets must be specified, and we attempt to minimize the sum of the weights.

If constraints are used to construct the goals, then the goals are to minimize the violation of the constraints. The
goals are met when the constraints are satisfied.

The example in this section demonstrates how Mosel can be used for implementing pre-emptive goal programming
with constraints. We try to meet as many goals as possible, taking them in priority order. The objective is to solve a
problem with two variables x, y, the constraint

100*x + 60*y ≤ 600

Mosel User Guide Part B - Extensions to Linear Programming

58

and the three goal constraints

7*x + 3*y ≥ 40
10*x + 5*y = 60
5*x + 4*y ≥ 35

where the given order corresponds to their priorities.

To increase readability, the model is organized into three blocks: the problem is stated in the main part, procedure
preemptive implements the solution strategy via preemptive goal programming, and procedure printsol
produces a nice solution printout.

model GoalCtr

 uses "mmxprs"

 forward procedure preemptive
 forward procedure printsol(i: integer)

 declarations
 NGOALS=3 ! Number of goals
 x,y: mpvar ! Variables
 dev: array(1..2*NGOALS) of mpvar ! Deviation from goals
 mindev: linctr ! Objective function
 goal: array(1..NGOALS) of linctr ! Goal constraints
 end-declarations

 limit:= 100*x + 60*y <= 600 ! Define a constraint

! Define the goal constraints
 goal(1):= 7*x + 3*y >= 40
 goal(2):= 10*x + 5*y = 60
 goal(3):= 5*x + 4*y >= 35

 preemptive ! Pre-emptive goal programming

 procedure preemptive
(!
 Add successively the goals to the problem and solve it, until all
 goals have been added or a goal cannot be satisfied. This assumes
 that the goals are given ordered by pri ority.
!)

! Remove (=hide) goal constraint from the problem
 forall(i in 1..NGOALS) sethidden(goal(i), true)

 i:=0
 while (i<NGOALS) do
 i+=1
 sethidden(goal(i), false) ! Add (=unhide) the next goal
 case gettype(goal(i)) of ! Ad d deviation variable(s)
 CT_GEQ: do
 deviation:= dev(2*i)
 mindev += deviation
 end-do
 CT_LEQ: do
 deviation:= -dev(2*i-1)
 mindev += dev(2*i-1)
 end-do
 CT_EQ : do
 deviation:= dev(2*i) - dev(2*i-1)
 mindev += dev(2*i) + dev(2*i-1)
 end-do
 else writeln("Wrong constraint type")
 break
 end-case
 goal(i)+= deviation

 minimize(mindev) ! Solve the LP-problem

Mosel User Guide Part B - Extensions to Linear Programming

59

 writeln(" Solution(", i,"): x: ", getsol(x), ", y: ", getsol(y))

 if(getobjval>0) then
 writeln("Cannot satisfy goal ",i)
 break
 end-if
 goal(i)-= deviation ! Remove deviation variable(s) from goal
 end-do

 printsol(i) ! Solution printout
 end-procedure

 procedure printsol(i:integer)
 declarations
 STypes={CT_GEQ, CT_LEQ, CT_EQ}
 ATypes: array(STypes) of string
 end-declarations

 ATypes:=[">=", "<=", "="]

 writeln(" Goal", strfmt("Target",12), strfmt("Value",9))
 forall(g in 1..i)
 writeln(strfmt(g,5), strfmt(ATypes(gettype(goal(g))),3),
 strfmt(-getcoeff(goal(g)),9),
 strfmt(getact(goal(g)) -getsol(dev(2*g))+getsol(dev(2*g-1)) ,9))

 forall(g in 1..NGOALS)
 if(getsol(dev(2*g))>0) then
 writeln(" Goal(",g,") deviation from target: -", getsol(dev(2*g)))
 elif(getsol(dev(2*g-1))>0) then
 writeln(" Goal(" ,g, ") deviation from target: +",
 getsol(dev(2*g-1)))
 end-if

 end-procedure

end-model

This example again uses procedure sethidden to remove constraints from the problem that is solved by the
optimizer without deleting them in the problem definition. So effectively, the optimizer solves a series of
subproblems of the problem stated originally in Mosel.

When running the program, the user will find that the first two goals can be satisfied, but not the third.

Mosel User Guide Part C

60

Part C

This part presents some advanced uses of Mosel that go beyond the functionality that is typically required for
working with this software. Whilst the two previous parts have shown how to work with the Mosel language, this
Part introduces Mosel's C interface. The C interface is provided in the form of two libraries.

It may be of special interest to users who want to

integrate models and/or solution algorithms written with Mosel into some larger system

 (re)use already existing parts of algorithms written in C

interface Mosel with other software, for instance for graphically displaying results

Mosel User Guide Part C - C Interface

61

Part C - Chapter 1: The C Interface

This chapter gives an introduction to the C interface of Mosel. It shows how to execute models from C and how to
access modeling objects from C. It is not possible to make changes to Mosel modeling objects from C, but the data
and parameters used by a model may be modified via files or run time parameters.

C1.1 Basic Tasks

To work with a Mosel model, in the C language or with the command line interpreter, the model always needs to be
compiled, then loaded into Mosel, and finally executed. In this section we show how to perform these basic tasks in
C.

C1.1.1 Compiling a Model in C

The following example program shows how Mosel is initialized and terminated in C, and how a model file
(extension .mos) is compiled into a BIM file (extension .bim). To use the Mosel Model Compiler Library, we
need to include the header file xprm_mc.h at the start of the C program.

For the sake of readability, in this program, as for all others in this chapter, we only implement rudimentary testing
for errors.

#include <stdlib.h>
#include "xprm_mc.h"

int main()
{
 if(XPRMinit()) /* Initialize Mosel */
 return 1;

 if(XPRMcompmod(NULL, "Models/burglar3", NULL, "Knapsack example"))
 return 2; /* Compile the model burglar3.mos,
 output the file burglar3.bim */
 XPRMfree(); /* Free Mosel, clear everything */
 return 0;
}

Mosel User Guide Part C - C Interface

62

C1.1.2 Executing a Model in C

The example in this section shows how a Mosel binary model file (BIM) can be executed in C. The BIM file can of
course be generated within the same program as where it is executed, but here we leave out this step. A BIM file is
an executable version of a model, but it does not include any data that is read in by the model from external files. It
is portable, that is, it may be executed on a different type of architecture from the one it has been generated on.

A BIM file produced by the Mosel compiler first needs to be loaded into Mosel (function XPRMloadmod) and can
then be run by a call to function XPRMrunmod. To use these functions, we need to include the header file
xprm_rt.h at the beginning of our program.

#include <stdio.h>
#include "xprm_rt.h"

int main()
{
 XPRMmodel mod;
 int result;

 if(XPRMinit()) /* Initialize Mosel */
 return 1;

 if((mod=XPRMloadmod("Models/burglar3.bim",NULL))==NULL) /* Load a BIM file */
 return 2;

 if(XPRMrunmod(mod,&result,NULL)) /* Run the model */
 return 3;

 XPRMfree(); /* Free Mosel, clear everything */
 return 0;
}

C1.2 Parameters

In Part A the concept of parameters in Mosel was introduced: when a Mosel model is executed from the command
line, it is possible to pass new values for its parameters into the model. The same is possible with a model run in C.
If, for instance, we want to run model Prime from Chapter B2 to obtain all prime numbers up to 500 (instead of the
default value 100 set for the parameter LIMIT in the model), we may start a program with the following lines:

 int result;

 if(XPRMinit()) /* Initialize Mosel */
 return 1;

 if((mod=XPRMloadmod("Models/prime.bim",NULL))==NULL) /* Load a BIM file */
 return 2;

 if(XPRMrunmod(mod,&result,"LIMIT=500")) /* Run the model */
 return 3;

C1.3 Accessing Modeling Objects and Solution Values

Using the Mosel libraries we can easily access information on the different modeling objects.

C1.3.1 Accessing Sets

A complete version of a program for running the model Prime mentioned in the previous section may look as
follows (we work with a model prime2 that corresponds to the one printed in Chapter B2 but with all output printing
removed because we are doing this in C):

Mosel User Guide Part C - C Interface

63

#include <stdio.h>
#include "xprm_rt.h"

int main()
{
 XPRMmodel mod;
 XPRMalltypes rvalue, setitem;
 XPRMset set;
 int result, type, i, size, first, last;

 if(XPRMinit()) /* Initialize Mosel */
 return 1;

 if((mod=XPRMloadmod("Models/prime2.bim",NULL))==NULL) /* Load a BIM file */
 return 2;

 if(XPRMrunmod(mod,&result,"LIMIT=500")) /* Run the model */
 return 3;

 type=XPRMfindident(mod,"SPrime",&rvalue); /* Get the object 'SPrime' */
 if((XPRM_TYP(type)!=XPRM_TYP_INT)|| /* Check the type: */
 (XPRM_STR(type)!=XPRM_STR_SET)) /* it must be a set of integers */
 return 6;
 set = rvalue.set;

 size = XPRMgetsetsize(set); /* Get the size of the set */
 if(size>0)
 {
 first = XPRMfirstsetndx(set); /* Get the number of the first index */
 last = XPRMlastsetndx(set); /* Get the number of the last index */
 printf("Prime numbers from 2 to %d: \n", LIM);
 for(i=first;i<=last;i++) /* Print all set elements */
 printf(" %d,",XPRMgetelsetval(set,i,&setitem) ->integer);
 printf("\n");
 }

 XPRMfree(); /* Fr ee Mosel, clear everything */
 return 0;
}

To print the contents of set SPrime that contains the desired result (prime numbers between 2 and 500), we first
retrieve the Mosel reference to this object using function XPRMfindident. We can then enumerate the elements
of the set and obtain their respective values.

C1.3.2 Retrieving Solution Values

The following program executes the model Burglar3 (the same as model Burglar2 from Chapter A3 but with all
output printing removed) and prints out its solution.

#include <stdio.h>
#include "xprm_rt.h"

int main()
{
 XPRMmodel mod;
 XPRMalltypes rvalue, itemname;
 XPRMarray varr, darr;
 XPRMmpvar x;
 XPRMset set;
 int indices[1], result, type;
 double val;

 if(XPRMinit()) /* Initialize Mosel */
 return 1;

 if((mod=XPRMloadmod("Models/burglar3.bim",NULL))==NULL) /* Load a BIM file */
 return 2;

 if(XPRMrunmod(mod,&result,NULL)) /* Run the model (includes

Mosel User Guide Part C - C Interface

64

 optimization) */
 return 3;

 if((XPRMgetprobstat(mod)&XPRM_PBRES)!=XPRM_PBOPT)
 return 4; /* Test whether a solution is found */

 printf("Objective value: %g\n", XPRMgetobjval(mod));
 /* Print the objective function value */

 type=XPRMfindident(mod,"x",&rvalue); /* Get the model object 'x' */
 if((XPRM_TYP(type)!=XPRM_TYP_MPVAR)|| /* Check the type: */
 (XPRM_STR(type)!=XPRM_STR_ARR)) /* it must be an array of unknowns */
 return 5;
 varr = rvalue.array;

 type=XPRMfindident(mod,"VALUE",&rvalue); /* Get the model object 'VALUE' */
 if((XPRM_TYP(type)!=XPRM_TYP_REAL)|| /* Check the type: */
 (XPRM_STR(type)!=XPRM_STR_ARR)) /* it must be an array of reals */
 return 6;
 darr = rvalue.array;

 type = XPRMfindident(mod,"Items",&rvalue); /* Get the model object 'Items' */
 if((XPRM_TYP(type)!=XPRM_TYP_STRING)|| /* Check the type: */
 (XPRM_STR(type)!=XPRM_STR_SET)) /* it must be a set of strings */
 return 7;
 set = rvalue.set;

 XPRMfirstarrentry(varr, indices); /* Get the first entry of array varr
 (we know that the array is dense
 and has a single dimension) */
 do
 {
 XPRMgetarrval(varr,indices,&x); /* Get a variable from varr */
 XPRMgetarrval(darr,indices,&val); /* Get the corresponding value */
 printf("x(%s) : %g\t (item value: %g)\n", XPRMgetelsetval(set, indices[0],
 &itemname)->string, XPRMgetvsol(mod,x), val);
 /* Print the solution value */
 } while(!XPRMnextarrentry(varr, indices)); /* Get the next index */

 XPRMfree(); /* Free Mosel, clear everything */
 return 0;
}

The array of variables x is enumerated using function XPRMnextarrentry. This function may be applied to
arrays of any type and dimension (for higher numbers of dimensions, merely the size of the array indices that is
used to store the index-tuples has to be modified). This function systematically runs through all possible
combinations of index-tuples, hence the hint at dense arrays in the example. In the case of sparse arrays it is
preferable to use a different enumeration function that only enumerates those entries that are defined (see next
section).

C1.3.3 Sparse Arrays

In Chapter A5 the Transport problem was introduced. The objective of this problem is to calculate the flows flowpr
from a set of plants to a set of sales regions that satisfy all demand and supply constraints and minimize the total
cost. Not all plants may deliver goods to all regions. The flow variables flowpr are therefore defined as a sparse
array. The following example prints out all existing entries of the array of variables.

Mosel User Guide Part C - C Interface

65

#include <stdio.h>
#include "xprm_rt.h"

int main()
{
 XPRMmodel mod;
 XPRMalltypes rvalue;
 XPRMarray varr;
 XPRMset *sets;
 int *indices, dim, result, type, i;

 if(XPRMinit()) /* Initialize Mosel */
 return 1;

 if((mod=XPRMloadmod("Models/transport.bim",NULL))==NULL) /* Load a BIM file */
 return 2;

 if(XPRMrunmod(mod,&result,NULL)) /* Run the model */
 return 3;

 type=XPRMfindident(mod,"flow",&rvalue); /* Get the model object named 'flow' */
 if((XPRM_TYP(type)!=XPRM_TYP_MPVAR)|| /* Check the type: */
 (XPRM_STR(type)!=XPRM_STR_ARR)) /* it must be an array of unkn owns */
 return 4;
 varr=rvalue.array;

 dim = XPRMgetarrdim(varr); /* Get the number of dimensions of
 the array */
 indices = (int *)malloc(dim*sizeof(int));
 sets = (XPRMset *)malloc(dim*sizeof(XPRMset));

 XPRMgetarrsets(varr,sets); /* Get the indexing sets */
 XPRMfirstarrtruentry(varr,indices); /* Get the first true index tuple */
 do
 {
 printf("flow(");
 for(i=0;i<dim-1;i++)
 printf("%s,",XPRMgetelsetval(sets[i],indices[i],&rvalue)->string);
 printf("%s), ",XPRMgetelsetval(sets[dim-1],indices[dim-1],&rvalue)->string);
 } while(!XPRMnextarrtruentry(varr,indices)); /* Get next true index tuple*/
 printf("\n");

 free(sets);
 free(indices);

 XPRMfree(); /* Free Mosel, clear everything */
 return 0;
}

C1.4 Problem Solving in C with Xpress-Optimizer

In certain cases, for instance if the user wants to re-use parts of algorithms that he has written in C for the Xpress-
Optimizer, it may be necessary to pass from a problem formulation with Mosel to solving the problem in C by direct
calls to the Xpress-Optimizer. The following example shows how this may be done for the Burglar problem. We use
a slightly modified version of the original Mosel model:

Mosel User Guide Part C - C Interface

66

model Burglar4
 uses "mmxprs"

 declarations
 Items={"camera", "necklace", "vase", "picture", "tv", "video", "chest", "brick"}
 ! Index set for items
 VALUE: array(Items) of real ! Value of items
 WEIGHT: array(Items) of real ! Weight of items
 WTMAX=102 ! Max weight allowed
 x: array(Items) of mpvar ! 1 if we take item i; 0 otherwise
 end-declarations

 ! Item: ca ne va pi tv vi ch br
 VALUE := [15, 100, 90, 60, 40, 15, 10, 1]
 WEIGHT:= [2, 20, 20, 30, 40, 30, 60, 10]

 ! Objective: maximize total value
 MaxVal:= sum(i in Items) VALUE(i)*x(i)

 ! Weight restriction
 WtMax:= sum(i in Items) WEIGHT(i)*x(i) <= WTMAX

 ! All x are 0/1
 forall(i in Items) x(i) is_binary

 setparam("XPRS_LOADNAMES", true) ! Enable loading of object names
 loadprob(MaxVal) ! Load problem into the optimizer

end-model

The procedure maximize to solve the problem has been replaced by loadprob. This procedure loads the
problem into the optimizer without solving it. We also enable the loading of names from Mosel into the optimizer so
that we may obtain an easily readable output.

The following C program reads in the Mosel model and solves the problem by direct calls to the optimizer. To be
able to address the problem loaded into the optimizer, we need to retrieve the optimizer problem pointer from
Mosel. Since this information is a parameter that is provided by module mmxprs, we first need to obtain the
reference of this library (by using function XPRMfinddso).

#include <stdio.h>
#include "xprm_rt.h"
#include "xprs.h"

int main()
{
 XPRMmodel mod;
 XPRMdsolib dso;
 XPRSprob prob;
 int result, ncol, len, i;
 double *sol, val;
 char *names;

 if(XPRMinit()) /* Initialize Mosel */
 return 1;

 if((mod=XPRMloadmod("Models/burglar4.bim",NULL))==NULL) /* Load a BIM file */
 return 2;

 if(XPRMrunmod(mod,&result,NULL)) /* Run the model (no opti mization) */
 return 3;

 /* Retrieve the pointer to the problem loaded in the Xpress-Optimizer */
 if((dso=XPRMfinddso("mmxprs"))==NULL)
 return 4;
 if(XPRMgetdsoparam(mod, dso, "xprs_problem", &result, (XPRMalltypes *)&prob))
 return 5;

 if(XPRSmaxim(prob, "g")) /* Solve the problem */
 return 6;

Mosel User Guide Part C - C Interface

67

 if(XPRSgetintattrib(prob, XPRS_MIPSTATUS, &result))
 return 7;
 /* Test whether a solution is found */
 if((result==4) || (result==6))
 {
 if(XPRSgetdblattrib(prob, XPRS_MIPOBJVAL, &val))
 return 8;
 printf("Objective value: %g\n", val); /* Print the objective function value */
 if(XPRSgetintattrib(prob, XPRS_COLS, &ncol))
 return 9;
 if((sol = (double *)malloc(ncol * sizeof(doub le)))==NULL)
 return 10;
 if(XPRSgetsol(prob, sol, NULL, NULL, NULL))
 return 11; /* Get the primal solution values */
 if(XPRSgetintattrib(prob, XPRS_NAMELENGTH, &len))
 return 11; /* Get the max imum name length */
 if((names = (char *)malloc((len*8+1)*ncol*sizeof(char)))==NULL)
 return 12;
 if(XPRSgetnames(prob, 2, names, 0, ncol -1))
 return 13; /* Get the variable names */
 for(i=0; i<ncol; i++) / * Print out the solution */
 printf("%s: %g\n", names+((len*8+1)*i), sol[i]);
 free(names);
 free(sol);
 }

 XPRMfree(); /* Free Mosel, clear everything */
 return 0;
}

Since the Mosel language provides ample programming facilities, in most applications there will be no need to
switch from the Mosel language to problem solving in C. Nevertheless, if this mode of implementation is chosen, it
should be noted that it is not possible to get back to Mosel, once the Xpress-Optimizer has been called directly from
C: the solution information and any possible changes made to the problem directly in the optimizer are not
communicated back to Mosel.

Mosel User Guide Index

68

Index

arrays
assigning values to, 8
enumerating, 63
multi-dimensional, 8

binary variables, 8, 26, 28
break, 35
built-in functions, 25
case statement, 32
chess set problem, 3
column generation, 53
comments, 9
conditional generation, 19
conditional looping, 33
constants, 8
constraints, 3

conditional, 19
hiding, 54
modelling logical conditions, 26

continuation lines, 10
conventions, 2
data

importing, 11
text files, 11

data tables
sizing from spreadsheet data, 17

data, reading from disk by diskdata, 13
data, reading sparse data, 23
decision variables, 3. see also variables
difference, 38
different, 39
discrete entities

see global entities, 26
discrete set, 26
diskdata, 13, 47

sparse output, 47
enumerate

array, 63
equality, 39
executing models

C interface, 62
files

appending to, 46
closing, 46
opening, 46

flow control constructs, 31
forall loop, 9, 33

versions, 33

forall, multiple indices, 33
forall-do loop, 33
forward, 42
free variables, 55
function

return value, 40
functions, 40

recursive, 42
functions, built-in, 25
global entities, 26
goal programming, 57
hiding constraints, 54
if-then, 31
if-then-elif-then-else, 31
if-then-else, 31
in, 39
index range, 7
index sets, 10
initializations from block, 13
initializing C interface, 61
integer programming, 26
integer variables, 8, 26
intersection, 38
is_free, 55
linear equations, 1
linear inequalities, 1
logical conditions, 26
looping, 9
loops
forall, 33
repeat-until, 34
while, 34

loops, 32
conditional, 33
interrupting, 35

max function, 32
min function, 32
mmetc library, 13
model, 4

blend2, 12
blending, 11
blendy, 14
burglar problem, 7
burglar2, 9
chess2, 5
cutting stock (paper mill), 52
doesx, 19

Mosel User Guide Index

69

doesx2, 20
knapsack problem, 7
largest common divisor, 34
ODBCex, 16
perfect numbers, 33
pplan, 28
prime numbers, 38
project planning, 27
quicksort, 43
Shell sort, 34
sizes, 17

multi-dimensional arrays, initializing, 21
non-linear functions, 26
objective function, 4
obtaining a solution, 5
ODBC, using, 15
parameters, 17

local, 41
partial integer variables, 26
pointer

problem, 66
problem pointer, 66
procedures, 40
project planning, 27

model, 28
recursion, 42
repeat-until loop, 34
returned, 40
selections, 31
semi-continuous integer variables, 26
semi-continuous variables, 26
sethidden

hiding constraints, 54
sets

difference, 38
dynamic, 36
enumerating in C interface, 62
getting size of, 39

intersection, 38
operations on, 38
operators, 39
union, 38

solution values
retrieving in C interface, 63

sparse data, reading, 23
sparsity, 22
special ordered sets

type 1, 26, 29
type 2, 26
why use?, 29

SQL
using, 15

strfmt, 45
string indices, 10
subroutine

declaration, 42
definition, 42
overloading, 43

subroutine parameters, 40
subset, 39
summations, 8
superset, 39
terminating C interface, 61
union, 38
variables, 3

binary, 8
binary, 26
integer, 8
integer, 26
partial integer, 26
semi continuous, 26
semi continuous integer, 26
special ordered sets, 26

while loop, 34
while-do loop, 34

