4\ RelmEe

R&D Lab Palermo, Italy

httpy//res.eng.it

PRACTIcal reasON Ing sySTem

PRACTIONIST Framework

User Guide

© Engineering Ingegneria Informatica S.p.A., 2008

PRACTIONIST Framework — User Guide Veersion: 1.0

PRACTIONIST

Table of contents

1 What is the PRACTIONIST frAMEWOTIK?coiiiiiiiieesieiee ettt st 3
2 PRACTIONIST FEOQUITBMENTSeeuiitiietiiteieeteate ettt ettt et sb ettt b ettt b ettt b ettt ab et et e ab et et e ebeseebearenrebeabe e 4
3 INStAIIING PRACTIONIST ...ttt ettt sttt s e st e st te s beeteene e s e e e sbesbesbesteaneeseeneenneneeanens 5
4 Developing PRACTIONIST MUIti-agent SYSLEMSoouiiiiiiiiiiiiie ettt sne s 5
5 Starting PRACTIONIST QQEBNTSccueiuiiiiiteitieieiie ettt sttt e bbbt e e e seeseesb e besbesbe et eseeseesbeseesneas 5
5.1 USING the ANTTOOL.......eieiee et b bbbt e bbbt b et b e e e et et b e 6
5.2 UsIiNg the AQENt STAEr GUIc..cveiiie ettt sttt st st e tesaeete e e e e e seesrenras 7
6 Debugging a PRACTIONIST agent: the PAIT t00]........ccociiiiiiiiiicie st sne 8
ST A o - T I o =T Y2 SR 9
8.2 EVENES ..ot 10
6.3 DESITES/INIENTIONSc.veiieeieeer et r e r e 11
B.4 BEIIETS ... 11
6.5 BEIIETS UPUALES.eiviciiiteecieet bbbt bbb bbb bbb s 12
6.6 INTENUEA MBANS ..ottt bbb bbb bbbt bt bbbt bbbt b et et enes 13
5.7 IMIBSSAUES. ... ettt E R R R R R Rt nre e 13

PRACTIeal reasONlng sy Tem WWw.practionist.org Pag. -2 -

PRACTIONIST Framework — User Guide Veersion: 1.0

1 What is the PRACTIONIST framework?

PRACTIONIST (PRACT Ical reasONIng sySTem), is a new framework built on the Bratman’s theory of practi-
cal reasoning to support the development of BDI agents in Java. The framework is built on top of JADE [11], a
widespread platform that implements the FIPA specifications and that provides some core services, such as a
communication infrastructure, agent life-cycle management, and so forth; therefore, in the PRACTIONIST
framework, agents are deployed within JADE containers and have a belief base implemented in Prolog or in
Java, as shown in the following figure:

PRACTIONIST Framework

JADE Frolog

Figure 1-1 PRACTIONIST over JADE and Prolog.

The framework adopts a goal-oriented approach to develop BDI agents and stresses the separation between the
deliberation process and the means-ends reasoning, with the abstraction of goal used to formally define both de-
sires and intentions during the deliberation phase; in other words, PRACTIONIST agents can be programmed in
terms of goals.

A PRACTIONIST agent is a software component endowed with the following elements (shown in Figure 1-2):
e aset of perceptions and the corresponding perceptors that listen to some relevant external stimuli;

o aset of beliefs representing the information the agent has got about both its internal state and the exter-
nal environment;

e aset of goals the agent wishes or wants to pursue. They represent some states of affairs to bring about
or activities to perform and will be related to either its desires or intentions (see below);

e aset of goal relations the agent uses during the deliberation process and means-ends reasoning;
e aset of plans that are the means to achieve its intentions;

e aset of actions the agent can perform to act over its environment; and

e aset of effectors that actually execute the actions.

As shown in Figure 1-2, PRACTIONIST agents are structured in two main layers: the framework defines the
execution logic and provides the built-in components according to such logic, while the top layer includes the
specific agent components to be implemented, in order to satisfy system requirements.

PRACTIeal reasONIng 578 Tem WWw.practionist.org Pag. -3 -

PRACTIONIST

PRACTIONIST Framework — User Guide Veersion: 1.0

Agentspecific components

I I I
I I
B elief Base Goal A Plan
Mo el SaES Library H

Agent-E nvirenment Interaction

»
]
H S pecific -
P Perceptors E ffectors i
perception I Agent IH Actions
h
_— — N
. FRACTIONIST .
Perception Action
Handler [——die| Abstract el oo
EDI Bvert Agerit EDI Action
PRACTIONIST ==mes: Flan
: : Flanner Deliberation ends :
Belisf Logic —— execution

PRACTIONIST Framework

PRACTIONIST Agent

Figure 1-2 Components of PRACTIONIST agents.

Moreover, by using the Belief Logic, PRACTIONIST agents are able to reason about their beliefs and the other
agent’s beliefs, since beliefs are not simple grounded literals or data structures but modal logic formulas.

2 PRACTIONIST requirements

PRACTIONIST is a framework fully implemented in Java, so you need the Java Run Time Environment 1.4 or
higher (http://java.sun.com/). Some others prerequisites of the PRACTIONIST framework are listed:

e JADE (http://jade.tilab.com/), a widespread platform that implements the FIPA specifications and pro-
vides some core services, such as a communication infrastructure, agent life-cycle management, and so
forth. We have built and tested our framework with JADE 3.3.

e tuProlog (http://tuprolog.alice.unibo.it/), a Java-based Prolog which has been included in our framework
with the version 1.3.0.

e JPL (http://www.swi-prolog.org/), a Java Interface to Prolog included in the SWI-Prolog distribution.
The SWI-Prolog installation is required if agents you use in your applications have a prolog belief base.
We have built and tested our framework with JPL 3.0.3 (it is included in the SWI-Prolog 5.4.7 executa-
ble file).

o log4j (http://logging.apache.org/), a logging framework included in the Apache Logging Services Pro-
ject. We have tested our framework with log4j 1.2.8.

e Xerces (http://xerces.apache.org/), a Java XML Parser developed by the Apache Software Foundation.
If agents you develop will use the choreography support builded in our framework, then it is mandatory
the installation of Xerces. We have tested our framework with Xerces 1.1.

PRACTIeal reasONIng 578 Tem WWw.practionist.org Pag -4 -

http://java.sun.com/
http://jade.tilab.com/
http://tuprolog.alice.unibo.it/
http://www.swi-prolog.org/
http://logging.apache.org/
http://xerces.apache.org/

PRACTIONIST Framework — User Guide Veersion: 1.0

PRACTIONIST

3 Installing PRACTIONIST

To install PRACTIONIST, you need to have the PRACTIONIST distribution file; in the download section of the
PRACTIONIST web site (http://www.practionist.org), you can find the zip archive containing the framework
already compiled.

You have to follow the steps below to install and use the PRACTIONIST framework in your projects:
1. download the zip file containing the PRACTIONIST jar archive;
2. download the JADE jar archives and the log4j jar archive;

3. download the jpl library (see the previous section for further details about the requirement of this li-
brary);

4. download the Xerces library (see the previous section for further details about the requirement of this
library);

5. import the downloaded libraries into your project;
Remember to set the path of the imported jar archives into the class path to execute correctly your applications.

If you have already installed SWI-Prolog, you has to add the jpl.dll location to the PATH environment variable
(e.g. %ProgramFiles%\pl\bin, if SWI-Prolog has been installed in the default directory).

It's strongly recommended to install Apache Ant (http://ant.apache.org/), as every executable component in the
framework has an Ant build file associated to it; moreover it's necessary to add the Ant's bin location to the
PATH environment variable (e.g. %ProgramFiles%\apache-ant-X.Y.Z\bin, where X.Y.Z denotes the Ant version
installed).

4 Developing PRACTIONIST multi-agent systems

Once the PRACTIONIST framework is correctly installed, you can start developing your own software applica-
tions. The framework supports such a development phase by providing several useful libraries, including inter-
faces, abstract classes, default components, internal services implementing the computation model of PRAC-
TIONIST agents, etc.

How to program PRACTIONIST agents is described in details in the PRACTIONIST Programmer Guide.

5 Starting PRACTIONIST agents

As stated in section 1, the PRACTIONIST framework is built on top of JADE. Therefore a running JADE plat-
form represents a mandatory requirement to start a PRACTIONIST agent. We have defined a PRACTIONIST
agent starter, which is a JADE agent with the purpose of starting a PRACTIONIST agent, initializing its main
behaviour.

This agent is represented by the Java class AgentStarter included in the package
org.practionist.core and requires some arguments to start a PRACTIONIST agent:

e the agent class, as the first parameter, which is a string representing the class name, including its pack-
age declaration (e.g. myapp . agent . MyAgent). This argument is mandatory: if it is missing then the
agent initialization phase fails;

e true if you want to start the PRACTIONIST Agent Introspection Tool (PAIT), £alse otherwise;
e others arguments to pass to the agent in a string format, if there are.
You have different options to start your PRACTIONIST agent:

e you can define a “build.xml” file with the proper targets and use the Apache Ant tool to execute
these;

PRACTIeal reasONlng sy Tem WWw.practionist.org Pag. -5 -

http://www.practionist.org/
http://ant.apache.org/

PRACTIONIST Framework — User Guide Veersion: 1.0

PRACTIONIST

e you can use the PRACTIONIST Agent Starter GUI, by which you can set some parameters, such as the
agent class, the agent name, etc., and finally

e you can use a batch file.

The following subsections describe how to start a PRACTIONIST agent by using each of the above methods.

5.1 Using the Ant tool

If you want start your agents by using the Apache Ant tool, then you have to create a build file with some tar-
gets, each one associated to an executable agent.

In the following figure, the build file required to execute the “example agent” is shown:

<property
<property
<property
<property
<property
<property n

5]
o
[ERE]

W L
5]
oo

=]
=]

1 o A

&
'

I
g 82 d 8 &8
L O T ¢

o
=}

[TeRs

10 <property ram
11 <property nam
12 <property nam
13 <property nam

15=<path id="libks">
16 <fileget dir="s[lib.dir}">
17 <include nar

8 <ffileset>
9 </path>

e="*, Jar" />

21l=<target descripticn="R
228 <java classname="5]
<classpaths>
<pathelement path=":5{
<pathelement path="5{
<path refid="liks" />
</classpath>
<arg line=":%[agent.argline} 5]
</javar
</target>

]
1

[
w

& L

[E I VI VI VI PV N

ST

)
a

o

G2=<target descriptiocn="R

338 <java classname="5]

4= <classpath>

35 <path refid="1ikas" />

36 </classpath>

37 <arg line=":|[runMainContainer.argline}l™ />
Kt </javaxr

39 «</target>

41 <«/project>

Figure 5-1 An example of Ant build file.

You should focus your attention in the definition of the agent . name property: its value contains the name of
the agent (e.g. pippo), the agent starter (org.practionist.core.AgentStarter), the PRACTIONIST
agent class (examples.ExampleAgent) and its argument, that are the string “true” (to enable the PAIT
tool) and the path of the file containing the initial belief base.

PRACTIeal reasONlng sy Tem WWw.practionist.org Pag. -6 -

.
Pl

PRACTIONIST Framework — User Guide Veersion: 1.0

PRACTIONIST

5.2 Using the Agent Starter GUI

The class AgentStarter in the package org.practionist.core represents the GUI shown in Figure
5-2, which you can use to set or to load some properties required to start your agents.

In the upper part of the GUI, you can set the parameters regarding the JADE platform and container into which
the agent has to be executed:

e The RMI Registry, that is an integer representing the port number where the Main Container is listening
to container registrations; the default value is 1099. At the moment, the Main Container must be local-
ized on a local JADE platform.

e The default PRACTIONIST container: if you select this check box, your agent will be created into a
container called “PRACTIONIST”, otherwise a new container will be created. Into the default con-
tainer, only one agent with a prolog belief base at a time can be created (see the programmer’s guide for
more details).

Instead, in the lower part of the GUI, you have to set the parameters regarding the agent to execute:
e The nickname of the agent.
e The class identifying the agent.
e The file containing the initial belief base of the agent, if any.
e Some arguments the agent requires, if any.

o The PAIT tool, if you select this check box, the GUI of the PAIT tool regarding the agent will be cre-
ated after the agent creation.

PRACTIcal reasONIng sySTem - Agent starter, E|

JADE connection parameters

hast name Francaviglia

hast address 192.1658,42,14¢

R.MI ragistry 1099

Default PRACTIONIST container

PRACTIONIST agent parameters

Mickrarme

Agent Class

Belief Baze

Argurnents

Practionizt Agent Intraspection Taol

Load properties StartUp

Figure 5-2 PRACTIONIST Agent Starter GUI.

You can also set all these properties into a configuration file with the “.properties” extension, and load it by
clicking on the “Load properties” button. An example of it is shown in the following figure:

PRACTIeal reasONlng sy Tem WWw.practionist.org Pag. -7 -

¢
F.
F.

l,l' N
h PRACTIONIST Framework — User Guide Veersion: 1.0

PRACTIONIST

E blockworld. properties - Blocco note Z E|E|

File Modifica Formato Visualizza 7

RMI_RESISTRY_PLATFORM_FROPERTY = 1099

AGENT_CLASS = examples.blockworld. BlockworTdagent
AGEMT_MAME = bwa
AGENT_BELIEFEASE = C:“blockworldwhTockworldlo. pl

AGENT_ARGUMENTS = self order blocks

Figure 5-3 An example of configuration file.

Finally, you have to click on the “StartUp” button to start the agent.

6 Debugging a PRACTIONIST agent: the PAIT tool

The framework provides developers with the PRACTIONIST Agent Introspection Tool (PAIT), a visual inte-
grated monitoring and debugging tool, which supports the analysis of the agent’s state during its execution. In
particular, the PAIT can be suitable to display, test and debug the agents’ relevant entities and execution flow.

Each of these components can be observed at run-time through a set of specific tabs (see Figure 6-1); the content
of each tab can be also displayed in an independent window.

PRACTIeal reasONlng sy Tem WWw.practionist.org Pag. - 8 -

4

PRACTIONIST

PRACTIONIST Framework — User Guide Veersion: 1.0

Q bwa@foo.com

File View Plans Events Goals Intended means Beliefs EBeliefs updating Messages Help
® | [(@/e O &
Explo_reri :,[ﬁi Plan Library | -?- Events | 0 Goals | .@_Eeliefs | &2 Beliets updating , @ Intended means | A Messanes
=) .
© b(vi:@;:: Eizrrnary Open E Select al B¢ Delete selected #) Delete ol (&P Fiter 2 Calar
Qa Events
Qg Goals Direction Time Sendar Protocol Petformative Selection I
Qa Beliefs ﬁ 3-oft-200517 2434 |bwa@foo com@Aceriegoziold: 10990JADE (fipa-contract-net cfp |:
Qg Beliets updating =3 3-0tt-2005 17 2436 |ams@Acerilegoziold: 1099, ADE fipa-contract-net failure O
Qa Intended means .
Q‘ Messages
* 3-ott-2005 17 .24 .52 senderdgent@Acertlegoziold: 1099/0UADE (fipa-request request D
* 3-ott-2005 17 .24 .55 senderdgenti@AcerMegoziold: 10990UADE fipa-request cuery-ref
ﬁ 3-ott-2005 17 .29.01 bwai@foo com@Acerhegoziold: 1099/JADE (fipa-request inform |:| |
ﬁ 3-ott-2005 17 29.01 bwvai@foo com@AcerMegoziold: 10990ADE (fipa-request inform [}
« 3-oft-2005 17.29.01 bvea@foo.com@acerMegoziold: 1099.)ADE (fipa-contract-net {=3{a} ~
:CT:lntent
A~
((action E
(agent-identifier
‘name bwa@foo com@acerNegoziond; 1099/A0E)
{order
‘hlocks
(set table3 block1 block? hlock3 blockd blocks blocks block? blocks block? block103)))
&
user click on a message
“Log
26 DEBUG!: [examples blockworld . ClearBlockPlan].body: 33 A
27 DEBUG!: -- ClearBlockFlan body started ... =
28 DEBUG!: [examples blockworld . ClearBlockPlan].body: 36
29 DEBUG!: -- Achieving clear(obj: block10)
30 DEBUG: [examples blockworld ClearBlockPlan].body:40 - ACHIEYED: true
31 DEBUG: [examples blockeorld.ClearBlockPlan].body:45
32 DEBUG: -- Querying (what_block :toMove block10 :moveTo (Variable :Name Where)) v

Figure 6-1 The PRACTIONIST Agent Introspection Tool (PAIT).

In the following subsections, the views provided by PAIT are presented.

6.1 Plan Library

This view shows the list of plans within the plan library of the considered agent (Figure 6-2). Some of these
plans may have an associated plan description, that can be displayed as in Figure 6-3.

PRACTIeal reasONlng sy Tem WWw.practionist.org Pag. -9 -

PRACTIONIST Framework — User Guide Veersion: 1.0

PRACTIONIST

o\ player@Francaviglia: 1099/LJADE

File ‘iew Plans Events Goals Intended means EBeliefs Beliefs updating Messages Help
Explorer m Plan Library | G- Events ” B Goal Model " 5;? Beliefs " A, Desires/Intentions ” 72 Beliefs updating " @ Intended Means ” BA Messages
= layer@Francaviglia: 1099 JADE
@ pa & / Identifier Class Args PlanDescription
- (g Plan Library
Qg Events org Jplay dPl ~
Q‘ Goal Model HaoldTilePlan org.practionist. examples tileworld. player. advancedPlayer....
Q‘ Belifs RandomTileSearch org.practionist, examples tileworld, player, advancedPlayer.... |Args[0] = Proxy[TWaServe..,
-2 Desires{Intentions EreadthFirstTileSearch org.practionist. examples tileworld. plavyer, advancedPlayer Args[0] = Proxy[TWAServe
-y Beliefs updating a-p ! el Ay yer. JArgslal = il
. Q‘ Intended Means RandomHoleSearch org.practionist. examples tlewaorld. plaver. advancedPlayer |args[0] = Proxy[TWaServe. ..
Q‘ Messages BreadthFirstHaoleSearch org.practionist. examples tileworld. player. advancedPlayer ... |args[0] = Proxy[TwaServe... —
FillHalePlan org.practionist. examples tileworld. player. advancedPlayer. ... |args[0] = Proxy[TWaAServe...
BestYalueHoleSearch org.practionisk. examples tleworld. plaver. advancedPlayer. ... |Args[0] = Proxy[TWaServe...
ScarePointsPlan org.practionist. examples tileworld. plaver. advancedPlayer ... ~
~Plan
~
Identifier: TimeEventHandlerPlan
Class: org.practionist examples tileworld player advancedPlayer plan. TimeEventHandlerPlan
Args: o
w
user click on a plan
{Luy

Figure 6-2 Plan Library view.

Plan description

—&uccess belief adds:

~Trigger ewent:

MagBDIEwent[Message: (REQUEST: ontology (happy :who self)
< | >
rAuccess belief deletes:
~Context:
{ready :who self)
< >
~Failure belief adds:
~Cancel:
(not :what [ordering :item blocks))
55 £
. ~Failure belief deletes:
~Imvariant:
jableTolrder :who self) (ordering :item blocks)
55 £
raduccess:

jordered thlocks (set #0 table3 #1 blockl
< | >

Figure 6-3 Plan description.

6.2 Events

This view shows the list of events (i.e. desired goals, perceptions, changes in its beliefs) that the considered
agent can handle (Figure 6-4).

PRACTIcal reasONIng sySTem WWw.practionist.org Pag. - 10 -

PRACTIONIST

PRACTIONIST Framework — User Guide

Veersion: 1.0

mi Plan Libraryl ':9:' Events | E) Goals || Q;? Eeliefs || £2 Beliets updating || @ Intended means || B4 Messages|

D Dizchare @ Dizcharge automatically E Calar
Type Ohject Arrive time Handle time Handled +
GoalEvent Achievel(fix under table3 (over bloc.. |3-ott-2005 17 .24 52 F-0tt-2005 17.24 .53 < ~
MegBdiEvent Meo (QUERY-REF ‘zender (agert-i... [3-oft-2005 17 24 52 F-ott-2005 17 .24 55 4 B
EeliefBaselpdatedEvent |(fixing :obj block1) 3-ott-200517.24.54 F-ott-20035 17.25.08 L4
GoalEvert Achievel[(clear (okj tabled)] 3-oft-2005 17.24.55 F-ott-2005 17.24 57 <

AchievedGoalEvent Achieve[(clear (obj hlock1 7] 3-oft-2005 17 .24.59 G-0tt-2005 17.25.11

AchievedGoalEvent Achievel(clear jobj blockd)] 3-ott-2005 17 .25.02 F-oft-200517.2513 ~
rEvent

Type: GoalEvent

Ohject; Achieve[iclear :obj blockd)]

Arrive time: 3-oft-2005 17 .24 .57

Handle time: S-oft-2005 17.24 .59

Handled: YES

user click an an event

6.3 Desires/Intentions

Figure 6-4 Events view.

This view shows the list of current desires and intentions of the considered agent (Figure 6-5).

A\ player@Francaviglia: 1099/JADE

File Wiew Plans Events Goals

®1 =

Intended means

Gl =l=]=

Beliefs Beliefs updating Messages Help

4 [N N
\| ([l Plan Library || G- Events || 1) Goal Maded || £ Beliefs| A Desires{Intentions | £ Beliefs updating || & Intended Means || B4 Messages
Goal Stakus Tire Flan
ScorePoinks inkention 24-ott-2006 12,25.57 SkartPlayerPlan
FillHole inkention 24-ott-2006 12,2742 ScorePointsPlan
Achieve[(hold :obj tile)] inkention Z4-0tk-2006 12,27 .47 FillHolePlan
FindTile desire 24-ott-2006 12,2753 HaldTilePlan
selected. ...
Mo goal available

6.4 Beliefs

Figure 6-5 Desires/Intentions view.

This view shows the whole belief base of the considered agent, providing the opportunity to browse it by using

the tree structure on the left.

PRACTIcal reasONIng sySTem

www.practionist.org

Pag. - 11 -

PRACTIONIST Framework — User Guide

PRACTIONIST

Veersion: 1.0

[ﬁi Plan Library || G Events || ‘0 Goals| £ Beliets | 22 Beliefs updating || ¥ Intended means || B4 Messages

rBelief Base : rBelief
|3 (on under blockE jover blockT) ~ llger [self,or !
L5 [on cunder blockd jover block10) {clear :obj blocklD),
5 (on under takle over hlock®) (clear :obj blockl))
12 (cler i bimnta o
. Expand All O dant node
I (clear : Eel(self,Bel(
|5 (clear Collapse All Descendant Mode

4 . Builderdgent(on
3 (feed properties runder hlock4d

3 (008l CrrteeT ot : oo
|3 (or under block over blocks) rover block5)))

|§ (on under block3 jover blockd)

=] AND Eel(self, (not
= @ Buildersgert EelBuilderigent {on
{on ;under blocks jover blocks) sunder tahlel
= m Architect Agert rover black3))]
{on :under blockS (over block10)
= ok Bel{self,Ubif|
(clear :obj block10) Architectigent(on
(clear :okj block1) runder hlockz
= @ Builder Agent rover hlockd))
{on :under blockd (over blocks)
= (3 Buideragert Bel(self, (not Ubif

{on :under takblel over block3)

= () architectagent
{on :under block2 (over blockd)

= (W) architectagert B
{on :under takblel over block3) b £ |

Belizelfnot{UhifiArchitectureAgent, on{over: block3, under: table1)n

Architectagent|on
sunder tablel
tover block3)))

[€

| v

Figure 6-6 Beliefs view.

6.5 Beliefs updates

This view shows the list of beliefs updates within the considered agent (Figure 6-7).

AN | player@Francaviglia: 1099/JADE

File Wiew Plans Events Goals Intended means Beliefs Beliefs updating Messages Help

®H =e

:Iﬁi Plan Library " X Events " 0 Goal Model " £33 Beliefs " A Desires,l’Intentions| £:2 Beliefs updating | i Intended Means " BA Messages

ﬁ Dizcharge old D Clear Fitter E Color

Type Time Belief Result
T T
add 24-0bb-2006 12,30,07 [{position :xPos 7 1yPos 9) true ad
add Z4-0bt-2006 12,30,07 |{hold 1obj tile) true
remove 24-0bt-2006 12,30,12 [{position 1xPos 7 1yPos 9) brue
add Z4-ott-2006 12,3012 |(position :xPaos 7 ivPos 10) true
remove 24-0bb-2006 12,30,22 |{hold 1obj tile) brue
remove 24-0bb-2006 12,30,22 [(score value 402) brue

Type: add

Time: 24-ott-2006 12.30.22
Belief: {score value 448)
Result: true

user click on an updating

Figure 6-7 Belief updates view.

PRACTIcal reasONIng syS Tem www.practionist.org

Pag. - 12 -

PRACTIONIST Framework — User Guide

PRACTIONIST

Veersion: 1.0

6.6 Intended means

This view shows the structure of intended means of the considered agent (Figure 6-8). On the left panel, the
nested structure of the intended means is reported, while the main panel includes the traced messages within the
selected intended means and its upper intended means.

** Intended means

Fcear Severty: DEBUG v B color
rintended means Severity Level Message
= E@MM, A N FixE nAnotherPlan.Clea.|1.8.1.1 ClearBlockPlan completed ~
= B 1-TopLevelPlan
= E@ 1.1-FixBlockon tan
=] m 1.1 1-ClearBlockPlan TopLevelPlan FixBlockOnaAnotherPlan Clea. |1 8.1 =
3 1.1.1.1-ClearBlockPlan
= m éﬁ-ﬁm DEBUG TopLevelPlan FixElockOnAnctherPlan 18 FixBlockOnAnatherPlan bady ended
m 1 2Fi E‘ 124 2 ERROR TopLevelPlan FixBlockOnAnctherPlan 1.8 this is an example.
=] m 1 3 FixBlocko o DEBLIG TopLevelPlan 1 Achieving (fix “uncler blockB ‘over block3)
= B3 1.31-ClearBlockPlan DEBUG TopLevelPlan Fi nictherPlan 1.9 Fis fan bocdy startec
= m 1.3.1.1-ClearBlockPlan DEBUG TopLevelPlan FixBlockOnanctherPlan 1.9 Achieving (clear :obj blocks)
o o | = 1.8 Achieving (clear b bock9)
= B 1311411-C "
= E¥131111
10 REE TopLevelPlan FixBlockOnAnctherPlan Clea]
3 1 4-FixBlockOna
£ 1.5-FixBlockonAnotherP
= B3 1 5-FixBlockOna DEBLUG TopLevelPlan FixBlockOnAnatherPlan 1.9 FixBlockOnanotherPlan body ended
= Eﬁ 1.6.1-ClearBlockPlan ERROR TaopLevelPlan FixBlockOnanctherPlan 1.9 this is an example. ..
] @ 1.6.1.1-ClearBlockPian DEBUG ToplevelPlan 1 Achieving (fix ;under blockd rover block10)
=@ &311.1811 114 DEBUG TopLevelPlan FixBlockOnasnotherPlan 1.10 FixBlockOnAnotherPian body started .,
B 1 7-FixBlocke s E DEBUG TopLevelPlan FixBlockOnAnotherPlan 1.10 Achieving (clear -obj block3)
=] m 1 B-FixBlockOnAnotherPlan DEBLG TopLevelPlan FixBlockOnAnotherPlan 1.10 Achieving (clear :obj block10)
El mlﬁ-'m DEBLG TopLevelPlan FixBlockOnAnatherPlan 110 FixBlockOnAnatherPian body ended .,
< > ERROR TopLevelPlan FixBlockCnAnotherPlan 1.10 this is an example... v
new level : TopLevelPlan FixBlockOnAnotherPlan
Figure 6-8 Intended means view.
This view shows the list of messages sent and received by the considered agent (Figure 6-9).
PRACTIeal reasONlng sy Tem WWw.practionist.org Pag - 13 -

PRACTIONIST Framework — User Guide

PRACTIONIST

Veersion: 1.0

g bwa@foo.com

File ‘iew Plans Events Goals Intended means Eeliefs Eeliefs updating Messages Help
[—
@) 21e| B &
rExplorer |ﬁi Plan Library !' Everts | o Goals | @ Biliets | £2 Belists updating‘ I. S Intended meansl i Messages |
a @ kewvai@fon.comm
Qg Plan Library Open B Select sl 6 Delete selected #) Delete al 2P Fiter B Color
QI Everts
Qg Goals Direction I Time] Sender] Protocol | Performative J Selection I
Q1 Beliets [] |3-ct-200517.24 3¢ bwa@too com@acerNegoziold: 1093/ADE [fina-contract-net [|~
Qg Beliets updating = oft-2005 17 24 36 ma@Acetiegoziold: 10985ADE fipa-contract-net O
Qﬂ Intended mesns
Qﬂ Messages
ﬂ 3-0tt-2005 17 .24 .52 senderAgent@AcerMegoziold: 1099/JADE (fipa-reguest regquest |:|
* 3-0tt-2005 17 .24 .55 sender Agent@Acerhegoziod: 1099/JADE (fipa-request ey -ref
ﬁ 3-ott-2005 17.29.01 kraea@too. com@boerMegoziold: 10994ADE fipa-request iinfarn |:| e
ﬁ 3-ott-200517.29.01 bwa@ioo com@AcerMegoziold: 10990ADE (fipa-reguest iinfarm |:|
ﬁ 3-0tt-2005 17.29.01 bwwa@ioo com@AcerMegozio0d: 1098JADE (fipa-contract-net ctp ~
rContent
~
({action =
(agent-identifier
‘name bwag@foo. com@@AcerNegoziold: 1099/A0E)
(order
‘hlocks
(set table3 block?! block2 block3 blockd blocks blocké block? blocks blockS block10)3)) |
:
user click on a message
“Log
26 DEBUG: [examples blockworld.ClearBlockPlan].body: 33 A
27 DEBUG: -- ClearBlockPlan body started .. -
28 DEBUG: [examples blockworld. ClearBlockPlan].body: 36
28 DEBUG: -- Achieving clear(ohj: block10)
30 DEBUG: [examples blockworld.ClearBlockPlan].body:40 - ACHIEYED: true
31 DEBUG: [examples blockworld.ClearBlockPlan] body:45
32 DEBUG: -- Querying (what_block ‘toMove block10 :moveTo (Wariable :Name Where)) v
Figure 6-9 Messages view.
PRACTIeal reasONlng sy Tem WWw.practionist.org Pag. - 14 -

	1 What is the PRACTIONIST framework?
	2 PRACTIONIST requirements
	3 Installing PRACTIONIST
	4 Developing PRACTIONIST multi-agent systems
	5 Starting PRACTIONIST agents
	5.1 Using the Ant tool
	5.2 Using the Agent Starter GUI

	6 Debugging a PRACTIONIST agent: the PAIT tool
	6.1 Plan Library
	6.2 Events
	6.3 Desires/Intentions
	6.4 Beliefs
	6.5 Beliefs updates
	6.6 Intended means
	6.7 Messages

