Swarm User Guide

Swarm Development Group

Paul Johnson
University of Kansas
Department of Political Science

pauljohn@ukans.edu

Alex Lancaster
Santa Fe Institute

alex@santafe.edu

Swarm User Guide
by Swarm Development Group
by Paul Johnson and Alex Lancaster

Published 10 April 2000
Copyright © 1999-2000 by Swarm Devel opment Group

A User’s Guide for the Swarm Simulation System

This document began with the Swarm Tutorial presented at SwarmFests 1998 and 1999 by Benedikt Stefansson of
CASA Inc. (formerly of UCLA Department of Economics). The Swarm Toolkit is discussed in three stages of
increasing detail. Thefirst part provides an introductory treatment and description of Swarm. The second part
provides a deeper survey of the anatomy of a swarm program. The third part goesinto significantly greater detail on
some elements of programming in Swarm that users are likely to enounter as they build programswith Swarm. Users
are encouraged to explore the Swarm sample programs and to visit the Swarm home page (http://www.swarm.org),
where they can find out the latest news and join the Swarm e-mail community.

Paul Johnson’s effort on this project was supported in part by a grant from the National Science Foundation
(SBR-9709404). Paul is the primary author of the main bulk of the Guide material.

Alex Lancaster is responsible for most of the SGML-"smithing" and markup issues in DocBook (see Colophon) and
supplied additional material and text.

Licence terms for Swarm User Guide

Reproduction of this documentation requires prior copyright release in writing, from the copyright holder (the Swarm Development Group);
except for reasonable personal use or educational purposes. Reproduction for mass distribution or profit, is not permitted. The SGML source and
associated utilites needed to generate this documentation can be found in the package: userbook-0.9.tar.gz
(ftp://ftp.swarm.org/pub/swarm/userbook-0.9.tar.gz). Permission to use, copy, modify and distribute both the swarmdocs package and the
documentation it generates (that isthe HTML, TeX, dvi, PostScript and RTF output), must be in accordance with the GNU General Public
Licence (http://www.gnu.org/copyleft/gpl.html) (GPL).

Table of Contents

ADOUL TNIS GUIAE ...ttt ettt e e e e bttt e+ i £ 22111110 9
Part |. BESIC CONCEPLS ...teeiiiiiititiiee e ittt e ettt e ettt e e e e et bttt e e s e sk bbb e e e e e s s e bbb e e e e e e nbeeeseeennnneeeeas 11

O [gLl [FTox o o [OOSR 12
1.1. BasiC FactS ADOUL SIWAIMN........cuiiiiiiieirie ettt s s 12

1.2. SwarmisaDynamicC PlatfOorm.........ccccieeieiieiecese s 13

1.3. Prerequisites for SUCCESS With SWarM.........cccececeiieiee e 14

2. Programming and SIMUIALIONecuecieiieieice et st ese e ennn 16
2.1 WHat 1S @N OBJECE?.... .ottt et st ere e e se et nneaesnenns 16

2.2. The Variety Of ODJECES.......cciuiiieiece ettt st r e e nn e e 18

2.3. The Advantages of Object Oriented Programmingcccccveeeeereneereeseeseseeseeseesesnens 18

PG T I g Tor= oS U | = 1o o P 18

2.3.2. INNEITTANCE.. ...ttt bbb bt 19

2.4. Discrete EVeNt SIMUIAHTONc.ooiieireriee et s 20

3. Nuts and Bolts of Object-Oriented Programming............cccoeeerieneneiesesessse e 21
3.1. Multilanguage SUPPOIt N0 SWEIMM........c.ciurieiriieieiieee e 21

3. L1 ODJECHVE C .ttt 21

BLi2. JAVAL...cuiiectet ettt b et s et et s e s s 21

3.1.3. Why is Swarm Written in Objective C?.........cccovvreirrienrieseseeese e 22

3.2. OBJECHVE C BASICS.....ceiveeiieeeienisieie ettt sttt ettt 22
3.2.1. Theid Variabhl@ TYPEcoueuereeeeiriee ettt 22

3.2.2. Interface File: Declaration Of @ ClasS........coevrerieirieine e 23

3.2.3. Implementation File: Defining @ Class ... 25

3.2.4. C Functions vs. Objective C Methods ... e 26

RGN - Y- 1 2 - (S o 27

3.4. Giving Lifeto Classes: INStantiationceeoerireririeeee ettt 28
3.4.1. Instantiation: ObJECtiVE C SEYIE......cviriiiircieece s 29

3.4.2. Instantiation: JAVA SLYIEcceeueie et 30

3.5. A Brief Clarification: Classes and Protocolsin Objective C........ccccocevevvveveceevieenene 30

4. ThE NOLION OF @ SWBIMN ...ttt et bbbt ee ettt se b e 33
4.1. Primary and AUXITTary AQENES.......coceeieieiieetiesee s se e se e eseese e te s sne e sresnens 33

4.2. The (SWarm) OOP WYccceieiieeiieiesieeieseseeseeseesaesesesesrestesse e ssessseseeseessensessessessessens 33

4.3. Managing MemOrY 1N SWaAIMScceeieieeeeeiereesesies e sessestesseeseesessessessessensessessessessens 34

4.4. What goesoninthebui | dObj ect s Method?.........cccoeiieviie i 34

4.5. What goesoninthebui | dACt i 0nsS MEthod?.........cccoeieeiii i 35

4.6. Merging SChedUlES 1N SWAIMSccviieiecece e st ne e 36

5. The Graphical USer INTEITaCE......ccoiciee ettt 38
5.1. Elements Of the SWarm GUI ..o e 38

5.2. GUI Probe DisSplaysS.......ccceieiieiiiesese sttt se et sae e sse st sse e esa e e e nnenne s 40

5.3. Using the GUI Probe DiSPlaycceeeieieieieeie e siseeese s sre e saenae e 42

Part Il. Swarm Applications: Examples and HUStrations...............cooie i
6. The SWarm TULOral: REDIISEiiui ettt se e st sae b aeere e e e e e e enne s 45
6.1, TULOT@l PrOgIESSION......uecuieieeieeieceesteteete sttt sttt e ettt e sttt ere e s eseese e tenneneenrenns 45
6.2. What Are You Supposed to Learn from the TULOrial?.........c.oeervnnnnieenrsecneeeee 46
6.3. After the TUtorial: WHat NOW?.........cvieeieeiee e 48
7. Creating ODJECES 1N ST ...ttt enes 49
7.1. Begin at the BEGINNINGceiriieieiiieieiirsi ettt 49
7.2. Detailed Look at cr eat eBegi n/creat €ENd ... 49
7.3. Swarm Zones and Recursive Objects Creationocccvveeneeensieienesee e 51
7.4, Using Swarm Library Objectsand Header Files.........ocoviiiniiiisceicee e 53
7.5. VariationS 0N @ THEME........ccoireeieeee et eenenen 55
7.6. How Do You Kill Off Those Poor Little DeVIlS?.......coeovvreereneeeree e 56
8. DoINg the Chores: Set and getcoo i 59
8.1. Get and SEt MEINOUS ..ottt ens 59
8.2. Using Set Methods During ObjeCt Creation...........covveerereeeiennieiinereeiceseseesesee s 60
8.3. Passing INfOrmMation ATOUNG...........oeuiriieieeiirieiere st 61
8.4. Circumventing the Object-Oriented GUIEIINES..........ccoovriiirrcic s 63
9. BUIIAING SCNEAUIES ...ttt re e ene e se e benesnesreerenneas 64
Lo I O 0 11 o [o IS Y=Y USSP 64
9.2. What'sthat M) THING?.....ceiieiiee e 65
.3, ACET ONGE OUPS. uteetiiuteieeittieeseteesesbeeessabeessabseeeasbasee s asee s s sbeeeeabsbeessabaeasebeeesanbeessasbaessasnnes 68
9.4, ACHIVALING SWAIMIS.......ecuiiieeieieieiieste e s te et ere et e e seeste b e sesresresresseeseeneeneeneennenes 69
0.5, WAL 1S AN ACE i Vi 1Y 2t itieietee e et s es et ee e st e s st e e ebae s s bae s s e s s ebessabesssbessabessasessnteesnnessanes 70
9.6. DYNamMIiC SCREAUIINGeeveiieieciece ettt sre e 71
10. WOIKING WIth LESES...c.eeiveiiie sttt sae st re st snesne e eseennennennens 73
10.1. TRELI St ClBSS...ceivciiiiiiireireetete sttt er sttt sr e n e en e nnas 73
10.2. BASIC Li St SYNEAX c.c.vivieeeeiiieeieseesetesieste s e ste s et e e eae e saesaesreteere s e snassaeseeseensenseseseennes 73
10.3. Lists: Managing Objectsin the Model Swarm..........cccceviveeicvesieeee e 74
10.4. Lists: Passing Information Among LevelsinaSwarm Modelccccoveeveceeecieneenen. 76
10.5. Lists: Organizing Repetitive Choresinside ObJeCts..........ccccvvvievecicecece e 77
11. Checking on a Swarm’s progress. The OBSEIVEccvcverevece e 81
11.1. MONITONNG 8 SIWAIMM ...ttt sttt sttt sttt ee ettt eb e b b 81
11.2. Making @ CliCKaDl @ ZoOMRASE €5vcuirieeeiriieieiiresieieeie ettt 81
11.3. Displaying RESUITS IN GIaphS.........ccoiieiriiiririiiseeeeicesiei e 86
12. Probing and Displaying the Contents of Swarm OBJECES.........ccovieinicennrer e 88
121 What'S@PIOBE?......c.eceeeee et et 88
12.2. Managing Probe DiSPlayS.......cci ettt sttt 89
12.3. How to Customize Probe DiSplayS........ccoeireiinnieeseesesie e 91
12.4. Controlling PreciSion Of DIiSPIaYcoveuiirieeireiiirieieisie e 93

12.4.1. Global Setting Of PreCiSIONcveeeieeieieeeee e 94

12.4.2. Setting Precision for Individual Probes............ccoovieiecivecccc e 95
Lol || e Y= T ol =Te [o] o] (o= TP 97

13. Anything C can do, Swarm Can DO BELLENcccceeieiiiciere e 98
13.1. Managing command [INE PAramMELENS.........cceiriruenirireeeresiere ettt 98

13.2. USiNg C FUNCLIONS N SWAIMN.....cutiiiiinirieiieirisieeeseei st 101
13.3. Examples of Useful Functions: get | nt and get Doubl ..o 103

13.4. Dynamic Memory Allocation and SWarm ZONES............ceeerreernieneneseeeessie s 104

13.5. Dropping UNUSE ODJECEScueriiriiirieieie sttt 106

14. The Swarm CollECtiONS LIDIarYc.ceiirieieirinieenerieieees e 109
14.1. Overview: theLi st, Map and Array ProtoColS..........cccoveveieiiiice i 109

14.2. Choosing between Li st S, MapS, @MU Ar F Y'S .o.eeueeeerieuereeeeresesesiesesseseesesseseesessssesseseeseens 110

1A4.3. USING SWBIT AT T AYS..eviiitenereseeteatsessee e s esesessebe e seesese st s b e sessebesesesbebeseseebesesesberenennas 111

S Y 0 1YY 3 TSRS 112

14.5. Accessing Collections With INICES..........ccirireirree e 117

15. UsiNg the RANAOM LIDIaIYc.coiiieiiiiieirieeeess bbb 119
15.1. Built-in Random Number DistribDULIONScooeeeereirie e 119

15.2. Overview of the Random Library ..o 120

15.3. The Random NUMDBDEr GENEIatOrS..........ccoueuererieiiieereereeie st e 122
15.3.1. How to use the default random generatorccceevevevesecesce s 122

15.3.2. A list Of geNeratorSin SWarcccceeveeieeeeieee e 123

15.3.3. A NOtE ON StATING SEEAS.......cceevicee ettt 124

15.4. The DistributioNS iN SWaIMN........ccuoiiiieieeee e s e e e 125
15.4.1. Classes that adopt the ProbabilityDistribution Protocolccccceveveiiennenee. 125

15.4.2. Matching generator and distribution ObjeCts...........ccccvevvicvicicce e 125

15.4.3. Setting numerical parameters of distribution objects..........cccccvvveieccerienenen, 126

15.5. How to Create Other Random Number Distributions............cocoereinenerne e 127

16, SEITAIIZALION ...ttt bbbt bbb bbbt b et b e b e nn e 129
16.1. Using the Li spAr chi ver t0 manage simulation parameters.........cccocvvvevieneeesceseeeenens 129
16.1.1. Using the Standard | | SPADPAF CRi VErI ..o 129

16.1.2. Using Custom Li spAr chi ver INSEANCES........coevviveeieseeesieste e 132

N Y= T o 1 e o £ SR 135

A.1. Web Resources for Object-Oriented LangUaGgESccvrririreeriieriniisesiseeeesisieses s 135
A.2. Debugging TiPS fOr SWAITM ..ottt 135
A 2.1 FINAING DUGS ...ttt 136
A.2.2. Preventing BUgs: ODJECHIVE C......c.oouiiiiirieiieriniee ittt saene e 136
A.2.3. Preventing BUGS: JAVA. ...ttt 137

A3 EMBCS BNG SWAIMN ..ottt ettt eeae e se s eneetesaesentesaesestesesseseeesseseenesseneens 137
A .31 ODJECHIVE C ...t 138

N B 7= RS 138

B.1. Non-Conventional Techniques, And The LibrariesIn Which They’reUsed...........ccccccueenee. 139
B2, ZONES ... bk e bR b e e R bRt en e n e ene s 139
B.2.1. ZONESTN PrNCIPIEeeee ettt et 139
B.2.2. ZONES IN PraCliCe......ceitiieiieieieie ettt ettt et 139

S T O 7= = R 140
B.3.1. The Create Phase in PriNCIPIE.......coo it 140
B.3.2. The Create Phase iN PraCtiCeccoueieereeseeee et enees 141

B.4. COllectionS @and DEfOD]c.euiiiieieireieretee e 142
(O = =T aTo (o] 0o T IT o= 1 YA AY o) o 1= o o 1 G 144
C.1. Supplemental comments on random NUMDEr GENEIBLONScvvervrerererereere e e seeeeseeeenens 144
C.2. USBOE GUITRc.eeeieeete ettt ettt bbb bbb bbb b 144
C.2.1. Usage GUIdE FOr GENEIGIOISoueuiriieieiieieeresieteeeei st 144
C.2.1.1. SIMPIE GENEIELOIS......ecuvieeeterieeieseresteieere ettt e 146

C.21. 1.1 thelAZY WaY ...cocireeieiriieeeetee et 146

C.21.1.2. using asingle SEed VAIUE. ... s 146

C.2.1.1.3. using avector of SEed VAIUES ... 147

C.2.1.1.4. antithEtiC VAIUEScveveiiieeteie et 148

C.2.1.1.5. gENErator OULPULccieeiteeieiiesiiesiesieeseesreesreessesseeseeseessesssesssesseees 148

C.2.1.2. SPIL QENEIBLOIS......eveveiecee ettt ettt sttt r e e e e e seesrerennas 149

C.2.1.3. Saving and RESEING SLALE........cccerveeeeieieieie et 151

C.2.2. Usage Guide for DIStHDULIONS.........cccvieeieecieecesee s se e e 152
C.2.2.1. Creating distribDULIONS..........ccce it 152

C.2.2.1. 1. thelaZY WaY: c.cieeeeeieeeeiee ettt 152

C.2.2.1.2. Without default parameters, using asimple generator 153

C.2.2.1.3. Without default parameters, using a split generatorcccu....... 153

C.2.2.1.4. With default parameters, using asimple generator............ccceeuenee. 154

C.2.2.1.5. With default parameters, using a split generatorccccceeveeeenene. 154

C.2.2.1.6. You may reset the default parameters this way, as often as you like 154

C.2.2.1.7. You can obtain the current values of parameters.........cccccevevennnee. 154
C.2.2.1.8. You can reset the variate counter and other state variables this way 155

C.2.2.1.9. Finally, we have the Internal State protocol methods...............c....... 155

C.2.2.2. Saving ANd RESLONNG SEALEcoveveeiririeereeeeie ettt 156

C.3. AAVANCED USAGE GUITE.......ceeeeieieeteie ettt sttt sttt enen s 156
C.3.1. ChOOSING @ GENEIBLONveeeiririieteeeresieeesese et eb et ese bt es e b b esenn 156
C.3.1.1. ChOOSING A GENEFALOTcueveieeieie sttt 156

C.3.1.2. Strategy For Using RanNdom GENEratorsSccuourveveererueeririeeeseseeeeseseenenes 157

C.3.1.3. GENErator QUAITLYoueuiriieeiiieieiresiee e 158

C.3.1.4. MOre genErator QaLacveveueirueeirerieieiieiees e 161

C.3.2. Default Generatorsfor the DistribUtioNS...........ccoevreieineiseee e 163

C.3.2.1. Random Library: Default GENErators..........ccovieveeeieseeieceeieeeseesesiese e 163

C.3.2.2. Utility Generator And DistribUtionS............cccvvevevesienisese e 164
C.3.3. Random Library TESt Programs.........ccccceieeeiirieereeieeieeieseesesieiessesaessesse e e ssesseenens 164
C.4. Resources for random NUMBEr geNEration...........coeveevireiesese et s 166
CLA. L. GENETBLOIS......cueiueeuieeeeeee ettt etttk ettt st e et s bt bt e st bt e st e e e e e se e e e nee b e neenesae e 166
C.A4.2. DISIITDULIONS. ..ottt ettt bbbt e 166
C.4.3. USEfUL WD SITES.....cueeeeeeeseceeesee ettt nrenens 167
BibliOGrapYcceeeeeiseer e 167
1211] [T = o] o V2SR
X e e et e e e e e e e e e e e e et e ae e bt e——————— e e e e e e e as

List of Tables

C-1. Random Library: Generator StatistiCal TESES.....ccviiiieiiie e 158
C-2. Random Library: GENErator Data........ccccceeuerieieiieiieseeieseseeeeseeseseestese e se e e eeeaesseseesaessensesnens 161
C-3. Random Library: Default GENEIaLOrS.........c.cceieeiiieciece et see e st ere e eeeseens 164

List of Figures

2-1. AQeNnt-Dased MOTEIING.......c.cuiirriiieeierr bbbttt 16
2-2. Interface Vs, IMPIEMENTALION ..o bbb 19
3-1. ODJECLIVE € BASICSeeveuieeieie sttt sttt ettt et b et bbbt b et b e 23
4-1. Nested hierarchy Of SWBITIS..........coviiiiieeirerete sttt b e en bt anas 36
4-2. SWAIM VITTUl COMPULESciuitiiieteiiistete sttt sttt st bbbt bbbttt en e 37
5-1. Line graphs (in this Case, atimMe SEITES).......cuiriiiriiiree et 38
B2, HISEOGIBIMS. ...ttt ettt h bbbt b bbb e bbbt bbbt 38
5-3. Rasters of discrete two-dimensional data............o.eeereeuiiriiiieeret s 39
5-4. Example probemaps for thetutorial Model Swar mand Chser ver SWar Mecveceeeeevereesesieneseesesee e 39
12-1. Combining two Var Probe and one MessagePr obeS ON @ Pr 0beDi SPl @Y ..ecveiververreereeeeseereeeereesseseeseenns 88
B-1. SchematiC Of protO-0bjECt CrEaLIONc.ccviceiieiece et 140

List of Examples

3-1. ODJECLIVE € ClBSS.. vttt sttt sttt st b et bbbt bbbt e b et bt ne b 24
3-2. C VS ODJECHIVE C...e e ettt bbbt b bbb 27
3-3L JAVA CIBSS ...ttt bbb e bbb R bR bbb eh bt 27
12-1. GENEXatiNg 801 ODEIVADecutieeteeete ettt bbb 91
12-2. NON-VErbose pr ODEIVAD CrEALIONcciiiiiieii ittt 93
12-3. Global setting precision iN Heat bugOhSEr VEr SWAr M M....c.cicveueereeieseresieseesessesesesseesesessesesessesenesessens 94
12-4. Setting precision for individual probesin Heat bughbdel SWar M Mcovovvrieererresresse e 95
e I = 1= 0 I SRR 112
16-1. Using astandard | i SPADPPNAIME INSLANCE..........cecviieieee ettt e s re e 130
16-2. Creating a Lisp parameter file with an aternate Name..........ccccoeveee e 132

About this Guide

This Guide presents an overview of the Swarm simulation toolkit. It is intended to be used in conjunction
with other materials, which include the sample programs and tutorials provided by the Swarm team and
the Swarm Documentation Set. Sincethisis auser guide, it isintended to be less formal and not so
encyclopaedic as the Reference Guide to Swvarm

(http://www.santafe.edu/proj ects/swarm/swarmdocs/ref book/refbook.html). When there is any doubt, the
Reference Guide (and the source code itself) is the final, most appropriate, authority.

« Partl. Anoverview of Swarm and a brief primer on Swarm object-oriented programming using
Objective C and Java.

PN
]

~—" At the time of writing only Part | has been written from a joint Objective C/Java perspective,
subsequent Parts assume you are using the Objective C version of Swarm, a limitation we hope
to rectify in future versions of this Guide

- Partll. A reprise on the Swarm tutorial package, explaining in-depth various non-obvious features of
Swarm coding. As previously noted, the present this only coversthe Objective C version

- Part lll. Advanced Topics: as you might guess, not for the uninitiated, these are important topics you
will need to know to become a competent in using the Swarm libraries.

The inspiration for this Guide was provided by Benedikt Stefansson <benedi kt @ost . con®™, who
prepared a series of lectures for the 1998 and 1999 SwarmFests. Benedikt generated a series of slides and
illustrations and many of them have been adapted for this Guide. He has also provided help in the form
of sample code and advice about many topics.

Conventions used in this document:

Car)

- Note

Interesting fact(s), not necessarily of vital significance to the user.

f kT
| i |

e’ Tip

A coding tip, a suggested convention to adopt or suggested usage.

About this Guide

PN
I
- Important

Important fact(s) you should know before proceeding to the next section.

e
IffCaution

A note of caution, generally regarding a changed usage, deprecated functionality or other
compatibility issue.

.Warning

Vital information that a user needs to be aware of before proceeding.

10

Part |. Basic Concepts

Chapter 1. Introduction

The Swarm project was started in 1994 by Chris Langton, then at Santa Fe Institute
(http://www.santafe.edu) (SFI)in New Mexico. It is currently based at the non-for-profit organization,
Swarm Development Group (http://www.swarm.org) also based in Santa Fe, New Mexico. The aim was
to develop both a vocabulary and a set of standard computer tools for the devel opment of multi-agent
simulation models (so-called ABMss, short for Agent-Based Models). Armed with this framework,
researchers are able to focus on the substance of the modeling task, avoiding some of the complicated
details of computer coding.

The Swarm project has benefitted from the contributions of many programmers, including Roger
Burkhart, Nelson Minar, Manor Askenazi, Glen Ropella, Sven Thommesen, Marcus Daniels, Alex
Lancaster, Vladimir Jojic, and Irene Lee.

1.1. Basic Facts About Swarm

Swarm is a collection of software libraries which provide support for simulation programming. Among
the most prominent features are the following.

« Swarm Code is Object-Oriented.The swarm libraries are written in a computer language called
"Objective-C", a superset of the C language. Objective-C adds the ability to create software "classes'
from which individual instances can be created. These instances are self-contained entities, and the
terminology of object-oriented programming turns out to be very well suited to discussions of
agent-based models.

- Swarm Programs are Hierarchical. Most swarm applications have a structure that roughly goes like
this. First, atop level—often called the "observer swarm"—is created. That layer creates screen displays
and it also creates the level below it, which is called the "model swarm™. The model swarm in turn
creates the individual agents, schedulestheir activities, collects information about them and relays that
information when the observer swarm needsit. Thisterminology is not required by Swarm, but its use
doesfacilitate it.

« Swarm Provides Many Handy Tools.Aswe shall seein later sections, the Swarm libraries provide a
number of convenient pieces of code that will facilitate the design of an agent-based model. These
tools facilitate the management of memory, the maintenance of lists, scheduling of actions, and many
other chores.

Users build simulations by incorporating Swarm objects in their own programs. Users are encouraged to
study a number of tutorial examplesin order to make full use of the Swarm libraries and the strategy of
modeling that inspires them.

12

Chapter 1. Introduction

1.2. Swarm is a Dynamic Platform

Swarmis free software (http://www.gnu.org/philosophy/free-sw.html) *. The current Swarm distribution
is effectively ? released under the GNU Genera Public License (GPL
(http://www.gnu.org/copyleft/gpl.html)). The free software model of software development is
particularly effective for atool like Swarm, for both theoretical and practical reasons:

« Complete Observability. With full source available, if necessary, the modeller can always track the
execution of the simulation right down to the operating system level. Thisis very important for
reproducibility, and ultimately allows you to go about proving (in an abstract mathematical sense) a
simulation’s ‘ correctness'.

- Developer Mind-Share.More practically, Swarm is open source so that we can harness devel oper
mind-share: more technically minded users can identify bugs, write patches, implement new features
generaly contribute to the evolution of Swarm. These are al identical to the reasons that the
GNUY/Linux operating system has grown so fast (and is so robust) [DiBona et. al. 1999]. As Swarm
grows, more programmers, and technically curious modellers are becoming involved in the project.

The development work is being done by the Swarm Development Group (http://www.Swarm.org),
located in Santa Fe, New Mexico. (The Swarm project relocated from the SFI at the end of October
1999). Their results are periodically released on the Internet and users have access to the source code.
The creators fully intended for users to take the code, experiment with it, and propose changes and
enhancements. This open source strategy is designed to capture the contributions of alively research
community. When users make improvementsin the libraries, they are encouraged to announce them to
the community and make them available. Asaresult of the interaction of the community and the Swarm
team, the Swarm libraries are constantly being revised.

To get an idea of how much things change, consider the brief history of the project. Swarm was
originally intended for Unix operating systems that support the X Windows System. Thefirst beta
version of Swarm was released in 1995. In January 1997, version 1.0 was released to the public. It would
run on Solaris and Linux operating systems. Quickly after that, minor releases followed that opened up
Swarm to the DEC Alphaplatform and other flavors of Unix. In April 1998, the reach of Swarm again
broadened, as version 1.1 was released and, with the help of the Cygnus Win32 package, Swarm could
be used on the Microsoft Windows 95/NT (and now 98) operating systems. In late 1999 the Swarm

sometimes referred to as " open source" source software, see the Open Source Definition
(http://www.opensource.org/osd.html)

The core Swarm libraries are currently released under the LGPL (http://www.gnu.org/copyleft/Igpl.html), but the standard
binary distributions generally include many GPL ed support components, which effectively mean that Swarm is GPL ed.

13

Chapter 1. Introduction

releases 2.0 and 2.0.1 introduced a Java layer for Swarm to enable Java programmersto access Swarm
libraries and enabled the export of data through the HDF5 binary data format from NSCA.

Because Swarm does grow and change as a result of the complex interaction within aresearch
community, its precise path for development is not predictable. Current priorities for the Swarm team at
the SDG include the further generalization of Swarm to be useful on a broader array of platformsand in
conjunction with additional computer languages. Prototype XML and Scheme layers for Swarm have
been tested, for example.

1.3. Prerequisites for Success with Swarm.

Swarm was originally conceived as a set of standardized methods for the design of multi-agent
simulation models. One need not be a highly accomplished computer program to user the Swarm
libraries. In fact, as the installation process for Swarm becomes increasingly streamlined, it is quite easy
for anyone with suitable hardware to test some of the sample applications. For people who have
Windows 98/NT or Linux operating systems, compiled versions of the Swarm libraries are available and
installation is quite painless

However, it is not easy to create new Swarm applications. Doing so requires the creation of a computer
program. While one need not be an expert programmer, one must have a rudimentary understanding of
vital computing concepts. The required knowledge will vary with the sort of model that one is intending
to create, of course, but, at the bare minumum, users must have:

+ abasic understanding of computer programming

- and, at the time of writing, either of the two object-oriented programming languages, Java or
Objective C 3

Javais a straightforward language to learn, and has the advantage of being a mainstream, well-supported
language in terms of both tools and documentation. Objective-C is, well, truly elegant and fun to use and
people who know C say it isfairly easy tolearn (C isaso a highly useful language and it is relatively

easy to learn).

People who have not done computer programming will thus need to do some background preparation
before they try to make a serious effort at building a Swarm model.

If you choose to implement your models in Objective C, we suggest that the first step isto find one of the
many elementary guides to computing with C, such as The C Programming Language, [Kernighan &

3. inthe Objective C case, an understanding of the C computer language, is also helpful, since Objective C is a superset of the C
language

14

Chapter 1. Introduction

Ritchie, 1988]. Written by the authors of C, Brian Kernighan and Dennis Ritchie, it isatruly readable
and informative manual that all users ought to investigate.

If you choose to implement your models in Java, there are literally thousands of introductory
programming-in-Javaresources on the market, both in paper and el ectronic form (see Section A.1 for
some starting points).

A manual with examples and exercisesis vital. These will teach the basics about writing code and
compiling it into programs.

The Objective-C languageis best learned from the online book Object Oriented Programming and the
Objective C Language [NeXT, 1993].

15

Chapter 2. Programming and Simulation

Swarm is designed to help researchers build models in which low-level actorsinteract (often called
"complex systems"). The researcher has to give content to "agents,” possibly by thinking of them as
honey bees, investors, trees, or (the ubiquitous) "bugs." One research goal isto discern overall patterns
that emerge from these detailed behaviors at the individual level.

Figure 2-1. Agent-based modeling

Bottom up modeling

If
<cond>
then
<actionl>
else
<action2>

Object oriented programming isideally suited to represent models of this sort. Aswe shall see, the
objects are self-contained. Objects may be designed to convey information (answer questions) from other
objects and also they can retain, categorize, and summarize information.

2.1. What is an Object?

16

Chapter 2. Programming and Smulation

A careful study of either of the object-oriented programming languages (Java or Objective-C) isrequired
before any significant progress can be made in building a Swarm model. The material presented hereis
intended as a summary or reminder of such a study, rather than a substitute.

An object consists of two kinds of information

- Variables. Thelist of variables summarizesthe "state" of the agent--its age, wealth, its ability, and so
forth. These variables may be of any typethat is allowed in C, such asinteger (i nt), floating-point
number (f | oat), an array, a pointer, and so forth. These variables might also be of typei d, which
means they might also be instances of classes, and;

« Methods. Methods determine what the object can do. Typically, there will be methods that receive
information from the "outside world", methods that send messages to the outside, and methods that
process information.

Variables and methods are given meaningful names, so codeis easier to read. The custom isto run words
together to make meaningful tags, such asgoToSt or e or goHone.

Objects are created through a process called "instantiation." Put tersely, code is writtenin "classes' and
then objects are created as instances of their classes. The varibles that an instance, or object, keepsinside
itself are called "instance variables'. The information contained inside instance variablesis available to
all methods inside that object. If one of the methodsin an object needs to have "jprivate” information that
is not available to other methodsin the object, then "method variables' can be created to hold that
information.

In both Objective-C and Java, the term message is often used to refer to an instruction that tells an object
to carry out one of its methods. (For readers more familiar to C++, the term member function, refersto
the same thing as the term method). Here is an example of a message that tells an object known as
bobDol e to executeits method r unFor Pr esi dent .

Objective C example Java example

[bobDol e runFor President]; bobDol e. runFor Presi dent () ;

In Objective C, some methods have parameters that specify details and they are added with colons (:)
after the name of the method to be executed. In Java, the entire method name s listed before the
parameters are given . For example, if the method r unFor Pr esi dent required additional
parameters, such as the year and the name of the runningmate, then the message might look like so:

Objective C example Java example

1. Inour Javaexample we use adollar sign (s) inline between the parts of the method that are separated in the Objective C case.
Thisis purely a convention introduced to stay as close to conventions adopted by the Java Swarm libraries. Thisisin no way
enforced by the Java language itself.

17

marco
An object consists of two kinds of information

marco
Variables. The list of variables summarizes the "state" of the agent

marco
type id, which
means they might also be instances of classes,

marco
Methods. Methods determine what the object can do.

marco
code is written in "classes" and
then objects are created as instances of their classes.

marco
message is often used to refer to an instruction that tells an object
to carry out one of its methods.

marco
If one of the methods in an object needs to have "private" information

marco
method variables" can be created

marco
The varibles that an instance, or object, keeps inside
itself are called "instance variables". The information contained inside instance variables is available to
all methods inside that object.

marco
that
is not available to other methods in the object, then "method variables" can be created to hold that
information.

marco
Objects are created through a process called "instantiation." Put tersely, code is written in "classes" and
then objects are created as instances of their classes. The varibles that an instance, or object, keeps inside
itself are called "instance variables". The information contained inside instance variables is available to
all methods inside that object. If one of the methods in an object needs to have "private" information that
is not available to other methods in the object, then "method variables" can be created to hold that
information.

Chapter 2. Programming and Smulation

Objective C example Java example
[bobDol e runFor Presi dent: 2000 with: bobDol e. runFor Presi dent $wi t h (2000,
RossPerot]; RossPerot);

We will have plenty of additional examplesin the rest of the Guide.

2.2. The Variety of Objects

In a Swarm model, there can be many types of agents (see Figure 2-1) Obviously, if amodel is going to
describe honey bees, it hasto have honey bee agents. It will also have objects that represent other actors
in the model, and not al other actors are animate. There might be other insects and bears, but there will
also be objects that represent the environment (trees, rainstorms, etc). The model will typically also have
objects that facilitate the modeling process and collect information about the simulation and relay it to
the researcher.

2.3. The Advantages of Object Oriented
Programming

Object oriented programming (OOP)is well suited to describe autonomous agents,so it should have
appeal to scientists and modelers on that basis alone. However, that is not the end of the subject. OOP it
has virtues that are equally important to computer programmers. OOP, asit isfound in Objective-C, is
not exactly the same as OOP in C++ or Java, but these |anguages have some significant featuresin
common. The features we emphasize here are encapsulation and inheritance.

2.3.1. Encapsulation

The values of the variablesinside an object are private, unless methods are written to pass
that information outside of the object.

This has both substantive and practical implications. The substantive importanceis that the
representation of an individual actor now presumes that the actor is a self-contained entity and that other
actors do not automatically have accessto all information inside that actor. Like humans, objects have to
take effort to convey information to each other about their internal states. The practical advantages of
encapsul ation, however, are just as important. Computer projects can be broken down into separable
components (code for the classes) and when the code is finished, the details of what goes on inside each
object may not be important to the programmer. For example, if an object gr ocer y St or e can respond
to an messaget akeMoney, and it gets the job done, we might not care how it doesiit.

18

marco
The values of the variables inside an object are private, unless methods are written to pass
that information outside of the object.

Chapter 2. Programming and Smulation

Figure 2-2. Interface vs. Implementation

irk rface irgale e rtad o

: . _ User only hasto be familiar
Objects hide their with the interface of an object,
functions and data not it'simplementation

Thisis commonly referred to as the separation of "interface” from "implementation." While the interface
declares what methods the object can execute, the implementation may remain hidden (see Figure 2-2),
the user only has to be familiar with the interface of an object, not it's implementation

2.3.2. Inheritance

Each subclass inherits all variables and methods of its superclass.

Inheritance works because code for each class designates that class as a subclass of a superclass. For
example, in the GNU Objective-C compiler used in the Swarm project, thereis amost basic class,
"object". From the object class, the Swarm libraries create subclasses, and subclasses are created from
them, and so forth until the programmer in a swarm project wants to create a new class of actorsthat is
subclassed from swar mvj ect . I the programmer needs to create several varieties of that class, thereisno
need to totally rewrite each one. Subclasses can be created that have as a base all variables and methods
of the class but then new methods and variables can be added as well.

When amethod, say t akeMbney, existsin aclass st or e, and then a subclassis created, say
G ocerySt or e, then al objects instantiated from the subclass will respondto t akeMoney. If the
programmer wants to rewrite thet akeMoney method for & ocer yst or eS, however, then the method can

19

marco
Each subclass inherits all variables and methods of its superclass.

marco
Inheritance = Eredità

Chapter 2. Programming and Smulation

be revised inside the code for the subclass and then all instances of the G oceryst ore class will respond
tot akeMoney inthat specialized way. The method inside the G ocer yst or e subclass will overridethe
super-class's definition of the method.

2.4. Discrete Event Simulation

A Swarm simulation proceedsin discrete time steps. Objects are created and then interact according to a
scheduling mechanism. As the simulation proceeds, the agents update their instance variables and they
may be asked to report their state to the observer swarm layer of the simulation.

The modeling processin Swarm, then, is quite different from simulation modeling in a non-object
oriented language, such as Fortran or Pascal. These so-called "procedural languages' do not allow the
modeler to take advantage of reusable classes through inheritance or the preservation of data allowed by
encapsulation. Here's an example of asimulation in a procedural language:

Procedural language pseudo-code
1. getparameters
2. initialize?
3. for 1 totimesteps do:
a. for 1to num_agents do:
i. agent-i-do-something®
b. show state’

4. quit

2. Generally sets up data structures and support for output.

3. Heremust provide data structure to save agent’s state and implement behavior

4.

Implementation of output often left to the programmer

20

Chapter 3. Nuts and Bolts of
Object-Oriented Programming

3.1. Multilanguage support and Swarm

Swarm is not asingle application that is ‘turned on’. Swarm is a set of libraries that you can pick and
choose features from. In order to use the Swarm libraries, it is necessary to create or use code that calls
Swarm features.

3.1.1. Objective C

Until recently, there was one way to use Swarm features: write and compile a program in Objective C.
Thisis aflexible and way to write amodel using Swarm. Objective C models tend to have good
performance because they are compiled by a native code optimizing compiler, namely GCC.

Objective C was created by Brad Cox [NeX T, 1993]. The aim was to create an elegant, object-oriented
extension of C in the style of the Smalltalk language [Goldberg & Robson, 1989]. Objective C was used
most intensively in the design of the NeXT computer operating system, which is now owned by Apple
and is basis of Applée's runtime environment WebObjects.

3.1.2. Java

Since Swarm 2.0, modellers can use Java. For new users of Swarm, writing modelsin Javais
considerably harder to get wrong. Javais also a more attractive languages for new usersto learn since it
isapopular language that has benefits outside of Swarm modelling.

Javawas created by Sun Microsystems, initially to provide a platform-independent layer or interface for
embedded devices (such as set-top boxes for digital television) and was originally known as Oak. With
the advent and growth of the world wide web from 1992 onwards, Oak was renamed Java and redirected
at the market created by the web. “Write once, run anywhere” was the motto of the original Java
developers, the ideabeing to create an abstraction layer between the programmer and the underlying chip
architecture (ix86, Sparc, Alpha) known as a virtual machine (or interpreter)

1

In theory all programmers needed to do was to write so-called "pure Java' code that targeted the virtual machine, whilst the
virtual machine itself only needed to ported once to each new architecture or chip, by the maintainers of the language itself
(rather than the applications programmer). With certain caveats, this has been largely realized, and Javais now arobust
platform that is used in both web client GUI programming (applets) as well as server applications (servlets). Use of Java does
come at acost, the extra step of trandating the virtual machine instructions into the native machine instructions at run-time
does have a performance penalty at run-time, but with the advent of so-called native compilers which do this translation at

21

Chapter 3. Nuts and Bolts of Object-Oriented Programming

The purpose of the Javalayer of Swarm (actually it is a system that is potentially extensible to other
languages such as Scheme or C++) isto mirror the protocols of the Swarm libraries as Java interfaces.

=
-~ For more details on the ongoing work of integrating Swarm with other languages and simulation
technologies such as XML and Scheme, see the paper Integrating Simulation Technologies With

Swarm [Daniels, 1999].

3.1.3. Why is Swarm Written in Objective C?

Since Objective Cis not currently a mainstream programming language, it is natural to ask why the
Swarm project chose Objective C. There are a number of reasons:

« Objective C is easier to learn Objective C takes the familiar C language and adds afew simple
elements. Objective C does not allow overloading or multiple inheritance of classes (although the use
of protocols enables this, to an extent)

- Objective C allows run-time binding. In contrast to other languages which check the match between
the receiver of acommand and its ability to carry out the command when a program is compiled,
Objective C |leaves that matching exercise until the programis running. This means, for example, that
one can have a program that builds alist of objects and then sends a message to each one. In Objective
C, the compiler won’t worry about which type of object isin thelist. The advantage, conceptually, is
that one can put commands in their code without knowing the precise identity of the receiver, so code
can be written to allow an environment and set of objectsto change and evolve. The disadvantage, as
critics of run-time binding will quickly point out, is that programs crash when an object recievesa
message and it does not have the method that it is being told to execute. The organization of Swarm
into protocols reduces the risk of these crashes, however, because the compiler does check and issue a
warning if amethod is not implemented in a class that advertises a certain protocol.

3.2. Objective C Basics

3.2.1. Theid Variable Type

compile-time (rather than at run-time), many applications can, in principle, run much faster than they currently do.

22

Chapter 3. Nuts and Bolts of Object-Oriented Programming

The variable type that is added by Objective C isi d. It is the default type for objects in Objective C.
Think of thisas a special variable type (which is actually a pointer to aspecia data structure - namely the
object)

All objects can refer to themselves by using the label sel f . Thisis necessary if, in the code that defines
the object, the programmer wants to make the object execute one of its methods. For example, suppose
an object has amethod called updat eRecor ds. If acommand

[sel f updateRecords];

isreceived, thenthe updat eRecor ds command will be executed, presumably to cause the updating of
instance variables.

All objects can refer to superclass by the name super . For example:

[super updat eRecords]

3.2.2. Interface File: Declaration of a Class

If you look in adirectory where some Objective C Swarm code resides, you will seefilesin pairs, such
as oser ver Swar m h and ser ver Swar m m Model Swarm.h and Mdel Swar m m and so forth. The"h" files
are the interface files (commonly called header files), while the "m" files are the implementation files

23

marco
All objects can refer to themselves by using the label self.

marco
make the object execute one of its methods.

marco
All objects can refer to superclass by the name super.

marco
"m" files are the implementation files

marco
interface files

marco
The "h" files
are the interface files

Chapter 3. Nuts and Bolts of Object-Oriented Programming

Figure 3-1. Objective C Basics

@interface|Bug| : [SwarmObject| {

v v ‘

Super class

int xPos, yPos; : ‘
int worldXSize, world¥YSize; [|

id foodSpace; L ‘
} >

Sub classes
| nstance

-setX: (int) x Y: (int) vy —

-step;

@end

Variables

\\ M ethods

Asillustrated in Figure 3-1, the interface declares the name of the class and the name of its superclass.
Then it givesalist of variable types and names enclosed by braces ({}), and then the names of the
methods that the class can implement are listed. The variables defined in this list can be used by any of
the methods defined for the class. (These are often called "ivars’, short for instance variables.)

Example 3-1. Objective C class

(1)@nterface Bug(2) : SwarnChbject(3)
{

int xPos, yPos;

int worl dXSize, worldYSize; (4)

id foodSpace;

setX: (int) x Y: (int) y;(5)
- step; (6)
- (return_type)look: (direction_type) d;(7)

@nd

24

Chapter 3. Nuts and Bolts of Object-Oriented Programming

(1) Declarations of instance variables and methods

(2) Subclass

(3) Super class

(4) Instance Variables

(5) declaresmethod called set that takes two arguments
(6) declaresamethod called st ep.

(7) declaresamethod called | ook that takes one argument of type di recti on_t ype and returns an
argument of typeret urn_t ype.

3.2.3. Implementation File: Defining a Class

Each implementation file-the . mthat parallels the . h — must import its header file. For the header file
described above, called Bug. h, for example, the implementation looks like:

#i nport "Bug. h"

@npl enentation Bug

- setX (int) x Y: (int) vy
{

xPos = Xx;

yPos = y;

return self;

}

- step

{
/1 body

return self;

}

- (return_type)look: (direction_type)d
{

return_type returnval;
/1 body of nethod
return returnval;

}

This example shows a number of important features. First, note that the method | ook specifies areturn
type, (return_type). Inthisexample, r et ur n_t ype would have to be replaced by avariable type, such
asint, float, or whatever, and r et ur nval would haveto be avariable of that type. When that method
is called, the receiving code must be able to accept a return of that type. In contrast, the method st ep

25

Chapter 3. Nuts and Bolts of Object-Oriented Programming

does not specify areturn type. That meansthe default type, i d, is returned. The code that calls this
method must be consistent with that return type.

Thereturn sel f command is used for two types of situations. Suppose the method is not intended to
create any output, but rather it changes some instance variables. For example, suppose thereis some
program that creates an instance of Bug called aBug. Then that object is sent this message:

[aBug step]

In such a case, the code that calls that method does not expect anything back from it (except itself).
Rather than fuss with voi d as the return type, as one might in C, one can simply return sel f .

In another case, one might actually intend to return the object to alist or another object. In such a case,
return self will also be appropriate. If oneis making alist of collected bugs, for example, then the usage
of return sel f inthat method will give back aBug i d to the calling program. To be perfectly concrete
about it, suppose the calling code hasalist called col | ect edBugs. Then using theaddLast
notation from the Swarm collectionslibrary, the command to add aBug to thelist after being collected
might look like this:

[col | ectedBugs addLast: [aBug | ook:
aDirection]];

3.2.4. C Functions vs. Objective C Methods

For readers who are aready familiar with C, perhaps a comparison of C functions against Objective C
methodsisin order. Since Objective C is asuperset of C, an Objective C method can include any valid C
commands. A method can return any type that a C function can return, and in addition it can anid
(which, strictly speaking, is a pointer to an object).

In the abstract, an Objective C method has this structure:

- (type)name: (type)argl argNane2: (type)arg2
{

(body)

return returnval;

}
In comparison, a C function would look like this:

(type)name((type) argl, (type) arg2))
{

(body)

return returnval ;

}

26

Chapter 3. Nuts and Bolts of Object-Oriented Programming

The code in body of an Objective C method can be exactly the sasme asin C. The two languages are
compared side-by-sidein the following example, which describes how afunctionr and_nove() might
compareto amethodr and_rnove: . Of course, each of these assumes there are other functionsand
variables that can be accessed, but the contrast in style should be informative.

Example 3-2. C vs Objective C

C Objective C

void rand_nove(int i) { int tnp_loc; dof - rand_nove: p { id loc; do{ |oc=[self

tnp_l oc=get _rand_l oc(); } get RandLoc]; } while([world at: loc]!=nil); [p
while(val [tnp_loc]!=0); val[location[i]]=0; noveTo: loc]; return self; }

val [tnp_loc]l=i; }

3.3. Java Basics

One of the most obvious and immediate differences between Objective C (and incidentally C++) and
Java, isthat Java does not partion classes into "declarations” (header files) and "implementations"
(implementation files). All information for any Java classis contained in asingle. j ava file.

Perhaps the best way to illustrate thisis to consider the Java equivalent of the previous Objective C
Example 3-1.

Example 3-3. Java class
(1) public class Bug(2) extends SwarnCbject(3)
{

int xPos, yPos;
int worl dXSize, worldYSize; (4)
FoodSpace foodSpace;

public Object setX$Y (int x, int y)(5)
{
xPos = x;
yPos = y;
return this;
}
public Qbject step()(6)

{
/'l body of step() code

27

Chapter 3. Nuts and Bolts of Object-Oriented Programming

return this;

}
public return_type |ook(direction_type d)(7)

{

return_type returnval;
/1 body of |ook() code
return returnval;

}
}

(1) Complete class defintion

(2) Subclass

(3) Super class

(4) Instance Variables

(5) declaresmethod called set $Y() that takes two arguments
(6) declaresamethod called st ep() takesno arguments.

(7) declaresamethod called | ook() that takes one argument of typedirecti on_t ype and returnsan
argument of typer et urn_t ype.

One important distinction to notice is that Java does not have anotion of ani d or "generic"' datatype. All
variables must be assigned atype, in the above example the f oodSpace instance variable is declared as
being of type Foodspace. Thisis because Javais a strongly typed language. The compiler checks all types
of al variablesto ensure all receiver objects respond to the messages that are sent to them by the
programmer. Most of the rest of the other differences between the Objective C and Java examples given,
lie ailmost purely in deviations of syntax. Here are afew obvious ones (thislist is by no means exhaustive
and the reader is encouraged to consult their Java or Objective C reference manual for al the detailed
syntax):

« In Objective C, method names and the parameters are interspersed, whilst in Java, the entire method
name is given before the parameters.

- InJavasel f isreferredtoast hi s (super retainsits meaning and syntax in both languages).

3.4. Giving Life to Classes: Instantiation

After the code is written to implement the class (with . h and . mfiles for Objective C and . j ava in the
Java case), thereis still work to be done. Instances of the class must be created. The creation of instances

28

marco
Java does not have a notion of an id or "generic" data type.

marco
foodSpaceinstance variable is declared as
being of type FoodSpace.

Chapter 3. Nuts and Bolts of Object-Oriented Programming

of aclassisone of the specialized features of Swarm. Since the instantiation process can be sometimes
different from the that described in the Objective C and Java literature, it is worth some special attention.

The creation of the substantively important objects is often handled in the model swarm. This process
uses the specialized memory management and object creation code in the Swarm library.

3.4.1. Instantiation: Objective C Style

The objects that represent the actorsin a simulation-the substantively important entities—are usually
subclassed from the swar nbj ect class. The "inheritance hierarchy" that leads to the class swar mbj ect
passes through classes that allow the creation and deletion of objects from a simulation. Objects are often
created by a pair of "bookend" commands, cr eat eBegi n and cr eat eEnd. Thisisnot part of the
Objective C syntax. Rather, it is unique to Swarm.

Suppose the Bug. h and Bug. mfiles from previous exist, and one wants to create an instance of that class.
In afile mdel swar m m one would typically have amethod called bui | dObj ect s, whichisusualy a
method that houses all object creation. For example:

/'l Excerpt from Mddel Swarm m that creates a Bug instance
#i mport " Bug. h"
Il {other inports and code that defines schedul es, etc}
- buil dObj ects
{
id aBug;
bug = [Bug createBegin: self];
/1 comands that set pernmanent features of the agent can apppear here
bug = [Bug createEnd];

}

The class's "factory object", Bug, istold to create an object in a memory zone that is provided by

Model Swar m (Model Swar misthe sel f.). Then the object aBug isinstructed to finish the creation process,
after optional commands are added to define the features of the object (typically, to set permanent
structural aspects of the class). Many of these subtleties are explained in depth in later sections (see also
Appendix B).

Object instances need not be created by the cr eat eBegi n/cr eat eEnd pair. Objects can often be
created by a simple create command 2.

aBug = [Bug create: self];

In code written for older versions of Swarm, one will often see a dlightly different syntax in
Model Swar m i

2. For example, the Swarm collections library includes a class called Li st , which is most often created this way.

29

Chapter 3. Nuts and Bolts of Object-Oriented Programming

aBug = [Bug create: [self getZone]];

In Objective C, this usageis still valid, although it is deprecated. Since now the objects of type swar m
like the model swarm itself, are memory zones, there is no need to get azone in which to put the bug.
Rather, the bug can be put in the zone that is provided by the model swarm itself.

3.4.2. Instantiation: Java Style

For most stock objects created in application Java code (including user-created Java classes), the entire
cr eat eBegi n/ cr eat eEnd apparatus can be dispensed with. Java uses the term constructor for the
method that creates an instance of a class. The Javainterface to the Swarm libraries have " convenience"
constructors which essentially bracket the entire set of create-time messagesin asingle call to the
constructor (or call the constructor with no arguments as in the present case). The simplest method to
create a JavaBug object isto invoke the following:

aBug = Bug (this.getZone());

Thisis equivalent to the final Objective C example given in the last section. In summary here is the
comparison:

Objective C example Java example

aBug = [Bug create: [self getZone]]; aBug = Bug (this.getZone());

Note that the explicit cr eat e: method in the Objective C case, is made implicit in the Java case.

)

a"’flt is still possible to use the cr eat e and cr eat eBegi n/ cr eat eEnd apparatus in Java, but due to
Java’s strongly-typed nature, it can require considerably more coding overhead than in Objective C,
and will be left to later version of the Guide.

3.5, A Brief Clarification: Classes and Protocols in
Objective C

There is one additional complication that readers should be aware of. Objective C alows the creation of
entities called protocols. A protocol, as readers will recall from their study of Objective C, isalist of
methods that an object is able to execute. Swarm is structured by protocols, which meansthat there are
lists of methods assigned to various names and classes inside the library "adopt" those protocols and then
implement the methods listed in the protocols. Hence, in the Swarm Reference materials present the
libraries as a collection of classes, each of which adheres to a given set of protocols.

30

marco
A protocol,

marco
is a list of
methods that an object is able to execute.

Chapter 3. Nuts and Bolts of Object-Oriented Programming

To the Swarm user, the distinction between class and protocol is not vital most of the time. The most
important Swarm protocols, such as the type swar m (from obj ect base/ Swar m h) OF Swar mbj ect (from

obj ect base/ Swar nbj ect . h), can be used asif they were classes. In the Swarm Reference Guide, thereis
alist of al protocols. The protocolsthat adopt the creaTABLE protcol are the ones that users can use as if
they were factory objects. For example, the Eza aph protocol adopts the CREATABLE protocol, so when
the user needs to create an instance, so the observer swarm file can use the EZGraph to create graphs.

Almost al of the Swarm protocols adopt the CREATABLE protocol, so they can be used asiif they were
classes from which users subclass to make model swarms or individual agents. It should not matter to the
user that these are abstract defined types that have adopted protocols (taken on the obligation to
implement methods listed in protocols). The class swar nbj ect , for example, adopts protocols o eat e and
Drop as Well as CREATABLE. This means that the user can act as if thereis aclass called swar nthj ect ,
and that the SwarmObject will be able to respond to class methods like cr eat eBegi n, and that
instances created by SwarmObject will be able to respondto cr eat eEnd, dr op, or any other method
that islisted in aprotocol listed by SwarmObject.

One of the principal advantages of protocol usage is that there will be compile-time warningsif the
user’s code tries to send a "bad message” to an object. If a message tells an object to goQut si de, and
none of the protocols adopted by that agent have a method called goQut si de, then the compiler will
warn the user about it. In a crude way, adopting a protocol is like advertising that a class can do certain
things, and the compiler enforces a‘truth in advertising’ policy. If the compiler flags include -WERROR,
causing all warnings to be treated as errors, then these warnings will stop the compilation.

The fact that many of the important components of the Swarm library are organized as protocols can,
however, be important in some notation. Early versions of Swarm had less emphasis on protocols than
the current version. As aresult of the introduction of protocols, usage conventions have changed. In
Swarm, thereisaclassLi st that can be used to create collections. In the "old days' of Swarm, one would
create a statically typed object of class Li st , as this code indicates:

List * |istO Puppies;
listOf Puppi es=[List create: [self getZone]];

Swarm no longer allows users to statically allocate objects in this way. This code will make the compiler
crash, because thereis no classinside Swarm called List, thereis only a protocol. The compiler will fail,
and the user will get a vague warning about a parse error in the vicinity of the List usage.

We know from the Swarm Reference Guide that the Li st protocol advertises that it adopts the CREATABLE
protocol, so the mistake is not in the usage of List to create the listOf Puppies. Rather, the mistakeisin
the declaration of the listOf Puppiesitself. If one needsto defineavariable/ i st OF Puppi es that has
the properties of aLi st classitem, the recommended approach is to create avariable of typei d and
indicate the protocols adopted by that object in brackets:

id < List > 1istOPuppies;
i stOf Puppi es=[List create: [self getZone]];

31

marco
List * listOfPuppies;
listOfPuppies=[List create: [self getZone]];
Swarm no longer allows users to statically allocate objects in this way. This code will make the compiler
crash, because there is no class inside Swarm called List, there is only a protocol.

Chapter 3. Nuts and Bolts of Object-Oriented Programming

It isalso legal to define listOf Puppies as a generic object, asin

id listOPuppies;
i st Of Puppi es=[List create: [self getZone]];

Thisusageis legal, and the program should compile without difficulty. The only shortcoming is that the
user will not be warned if the listOf Puppies object is sent any inappropriate messages within the
program. When these inappropriate messages are sent during the run, then the program will crash,
possibly with a message that the object istOf Puppies does not respond to the message it was sent.

Since amost all of the important pieces of functionality in the Swarm library are now written in the
protocol format and are CREATABLE, these details may be important. However, these details do not
significantly change the way applications are designed. Swarm entities can still be treated as classes.

32

Chapter 4. The notion of a Swarm

As explained in an earlier section, Swarm is designed for hierarchical creation of computer objects. The
observer swarm object is created first, and it creates a user interface and it also instantiates the model
swarm, and the model swarm then creates |levels below and schedules their activities.

One of the original intentions of the Swarm project was to give users the ability to create high quality
code with a minimum of fuss. The Swarm library creates a sequence of classes that accumulate and
refine the ability to create simulation objects, manage memory for them, and schedule their activities.

4.1. Primary and Auxiliary Agents

Terminology can cause confusion because computer programmers may use the term "agent” in away
that befuddles scientists. To the scientist, the term agent refers to a theoretically important entity that is
modeled by a simulation. To a programmer, the term agent is usually broader, something like object. As
aresult, there is sometimes slippage in a discussion of "agent-based modeling” because an understanding
of the term agent is not shared.

We intend to finesse this (big surprise!) by creating terminology for two kinds of agents. This separation
of agentsinto primary and auxiliary groupsis created solely for discussion in this manual. Theideais
that primary agents are the ones that the research sets out to model in the first place. They are described
in atheory, they have substantive importance. Usually in this sense we have representations of important
"actors" and one or more objects to represent the world in which they interact.

To the surprise of most new users, it is often also necessary to create auxiliary agents that facilitate the
work of the primary agents. For example, in amodel of mgjority rule voting, one can have primary
agents like voters and candidates. There may be a need for an auxiliary class called count er, a class that
can spawn objects that can be used to tally the votes that are cast.

In most cases, when we talk about multi-agent systems, we are referring to the primary agents.

4.2. The (Swarm) OOP way

Swarm models follow a common syntax that helps users to understand the way their partsinteract. The
observer swarm and the model swarm are typically designed in asimilar way. Methods that will appear
in many classes, for example, include;

Objective C example Java example
+ createBegin; - createEnd; - buildObjects; - createBegin (); createEnd () buildObjects ();
bui | dActions; - activateln; bui | dActions (); activateln ();

There are also methods that allow the input and output of information from the object. By custom, these

33

Chapter 4. The notion of a Svarm

are usually prefaced by the wordsget and set . For example:

Objective C example Java example
-set ParaneterVal ue: (int) value; -(int) oj ect set ParaneterValue (int value); int
get Par anet er Val ue; get Par anet er Val ue ();

These methods can be written to so that set Par anet er Val ue causes an object to set someinternal
parameter equal to avalue, and get Par anet er Val ue will cause the agent to report back the value.

In addition,there will be methods that carry out the specialized actions dictated by the substance of the
research problem.

The model swarm object is usually subclassed from Swarm and it is the primary object that is
responsible for telling subclassesto build their agents. The model swarm also give those agentsa place in
memory, and schedules their activities.

4.3. Managing Memory in Swarms

The allocation and deall ocation of memory is a necessary feature in any simulation project. Allocating
and deall ocating memory is one of the most troublesome elements of designing software and Swarmis
well equipt to deal with that problem. Swarm provideslibraries for this purpose which make the process
transparent to user.

In Swarm, objects are created and dropped using a notion of memory zones, and the "dirty work™ of
alocating memory is handled inside the libraries. In the next sections, we discuss the way objects are
created and given a place in memory. When those objects are no longer needed, the program can send
that object the dr op message, which removesit from memory.

4.4. What goes on in the bui | dObj ect s method?

If the reader inspectsjust afew of the sample Swarm programs, the importance of the building objects
should become apparent. Objects are named and memory is set aside for them in this stage. In the

bui | dObj ect s method, one typically finds commands that not only create the objects being used in
the current class, but there will also be a command which instructs the next-lower level of agent to create
its objects.

Consider the rich example provided by the code from the Arborgames model. Inthebui | dObj ect s
method of the observer swarm, one finds a large number of commands that create graphical display
objects (objects subclassed from the graph library). One also finds commands that create the simulation
control panel, which will appear on the screen and offer the user the ability to start and stop the
simulation.

Chapter 4. The notion of a Svarm

Itisvital to note also that the bui | dObj ect s method in the observer swarm file triggers the creation
of the next lower level of agents. It creates amemory zone and creates a model swarm in that memory
zone. Using the current style, the code would |ook like so:

Objective C example Java example

forest Model Swarm = [For est Mbdel Swar m cr eat e: forest Model Swarm = For est Mbdel Swar m
sel f]; [forestMbdel Swarm bui | dObj ect s] ; (this.getZone());
forest Model Swar m bui | dObj ects ();

In the Objective C case only, users may find older versions of this code which accomplish the same
purpose, but are dightly more verbose and do not take into account the fact that the observer swarm
object isitself amemory zone.

nodel Zone = [Zone create: [self getZone]];
forest Model Swarm = [For est Model Swar m create: nodel Zone];
[f orest Model Swar m bui | dObj ect s] ;

Note theimportance of the last linein either of these excerpts. Thefirst line of the code creates the model
swarm object (inthiscase, itiscalled f or est Mbdel Swar nm), but the last line tells that object to create
its own objects by telling the f or est Mbdel Swar mto execute itsown bui | dObj ect s method. To
find out what that implies, one must go look in the implementationfile (or . j ava file in the Java case) for
the For est Model Swar mto See what objects it creates.

4.5. What goes on in the bui | dAct i ons method?

In the standard case, the bui | dAct i ons method has two important components. It creates objects of
these two classes.

« ActionG oup: an ordered set of "simultaneous' events and

« Schedul e: controls how often the elements in the action group are executed

Inthebui | dAct i ons methods of the Arborgames model, there are plenty of interesting examples. In
the observer swarm, for example, there are commands that schedul e the updating of the graphical display
and also there are commands that instruct the lower level classes to execute their own bui | dAct i ons
methods.

In the mdel swar ms bui | dAct i ons method, one typically finds the heart of the substantive action of
the simulation. Commands tell agents, or lists of agents, that they should carry out their methods. These
commands are placed into instances of the Acti ona oup class, which means that they will al be repeated
whenever the group is repeated. The repetition is controlled by commands that create schedules and
indicate how often those schedules will be repeated.

35

Chapter 4. The notion of a Svarm

4.6. Merging Schedules in Swarms

As mentioned above, there can be bui | dAct i ons methodsin many different classes. Since each one
can create action groups and schedules, it is important that all of these activities are coordinated in a
logical way. One of the strengths of the Swarm toolkit is that it maintains a coherent, master schedule.
The schedules of each sub Swarm are merged into the schedule of next higher level. Finally all schedules
are merged in the top level Swarm. This synchronization is managed by the Swarm Activity library when
theact i vat el n: methodis called in each successive element of the hierarchy.

This multi-level integration of swarm schedules means that the model can indeed be thought of asa
nested hierarchy of models.

Figure 4-1. Nested hierarchy of Swarms

Schedule The Model

@
The Interface 4.

Agent
Sub-Swarm

Swarm

Sub-sub-Swarm

36

Chapter 4. The notion of a Svarm

A Swarm as a Virtual Computer

Figure 4-2. Swarm virtual computer

r A Edod

GUI || Model

3 ¥

Swarm kernel

At an even more abstract level, the Swarm libraries can be thought of as alayer on top of the operating
system’s kernel. This notion is especially relevant when the user can pause a simulation and individually
interact with agents, reviewing and changing their internal values.

37

Chapter 5. The Graphical User Interface

5.1. Elements of the Swarm GUI

Swarm provides a number of classes and protocolswhich generate a graphical user interface (GUI) to the
user running a Swarm simulation, including:

Figure 5-1. Line graphs (in this case, a time series)

Unhappiness of bugs vs. time

. | I —— unhappiness

0.6 | |
@ |
8 |
= |
S 0.4 —
"
=
E \
0.2 —
P,
M,
| ! | ' |
0 500 1000
time

38

Chapter 5. The Graphical User Interface

Figure 5-2. Histograms

Histogram of stacks

sditeslisi

Stack offset

Figure 5-3. Rasters of discrete two-dimensional data

39

Chapter 5. The Graphical User Interface

Figure 5-4. Exampleprr obeMaps for the tutorial Mdel Swar mand coser ver Swar m

A custom ProbeMap

= with 1 MessageProbes
worldxSize a0 J
4

woHdY Size ISD
seedProb ID.S
bugDensity ID.1

A custom ProbeMap

with 4 M essageProbes ControlPand is Nt |
provided by kernel |5

All except the last (probes) are fairly self-explanatory and will be dealt with in subsequent chapters. This
section describes how probes appear to the user running a Swarm simulation, and how the user can
manipulate them. Probes al so serve purposes other than assisting graphical widgets that the user can
manipulate. However, in this section we will focus only on their rolein the context of the GUI of a

running simulation. The construction of the probes using the Swarm librariesis also left to a subsequent
chapter.

5.2. GUI Probe Displays

Graphical probes allow a user to view a snapshot of any object in a Swarm simulation in a graphical
form. There are two distinct kinds of displays the user might see:

- DefaultProbeMaps.If an object to be probed is specified without any particular Probemvap being
specified, then the pr obeDi spl ay generated will provide awindow of class Def aul t ProbeDi spl ay,
which displays all the variables resident in that class structure.

40

Chapter 5. The Graphical User Interface

Figure 5-5. Default ProbeMap (also showing the superclass)

Swamm

i buildObjects

2l (¥
|

i buildActions

|

activateln: ﬁ

getProbeMap

getComplete Probe Map

MousetrapModelSwarm

getProbeForVariable: EE

gridSize ;50

triggerLikelihood ;1

|

|
numberOutputTriggers {2
maxTriggerDistance 4

maxTriggerTime {16

trapDensity 1

modelActions :nil

modelSchedule :Schedule_c

stats iMousetrapStatistics

modelActCont iModel Swarm Controller

randomGenerator :PMMLCG1gen

UniformDoubleDist

!
]
|
grid {Grided
!
!
uniform0to1 |

getStats

getGridSize

getTriggerLikelihood

getNumberOutputTriggers

getMaxTriggerDistance

getMaxTriggerTime

i getWorld

i getSchedule

B S Do, Do S S Do Do

getMousetrapAtx: ;g ¥:

createEnd

|

buildObjects

|

buildActions g
scheduleTriggerAt: H For: I

activateln: ;rﬂm&

41

Chapter 5. The Graphical User Interface

« CustomProbeMaps.If aprobeMap is specified then the probebi spl ay follows exactly the specification
as represented by the contents of a probeMap. When used in this manner, probeDi spl ays can generate
tailored interfaces to objects (so for example, we have purposefully hidden certain instance variablesin
the Muset r apMdel Swar m class, and have shown only one of the methods which the class understands).

Figure 5-6. Custom ProbeMap

MousetrapModel Swamm
gridSize {50
triggerLikelihood :1
numberOutputTriggers ;2

De
¥

maxTriggerDistance 34

111

maxTriggerTime {16

trapDensity §1 L4

5.3. Using the GUI Probe Display

Common to both the standard Pr obebi spl ay and the Conpl et ePr obeDi spl ay:

- Thedifferent fieldsin the probeDi spl ay can be updated by typing in new values and pressing Return.
However, certain fields (containing pointersor i ds, for example) cannot be modified and will generate
abeep if such amodification is attempted.

- If aninstance variable/argument slot is defined to hold an object, then that object can be
drag& dropped into another variable/argument slot by clicking on it with thefirst nouse button (a
small rectangle with the name of the object will appear - smply drag it to another object-typed
variable/argument slot and release the mouse button).

« Also, if an instance variable/argument slot is defined to hold an object, then that object can be
inspected by clicking the entry for that variable/argument slot with thethird nouse button (a
ProbeDi spl ay for that object will be generated).

Available Only on the Customized pr obeDi spl ay:

42

Chapter 5. The Graphical User Interface

« Notethat the sunken label at the top of the probebi spl ay is aso active. By clicking on it with the first
mouse button you get a drag& drop’ able representation of sel f . By clicking on it with the third
mouse button you get a conpl et ePr obeDi spl ay to sel f .

Available only on the conpl et ePr obeDi spl ay:

- Thegreen superclass button can be used to display the succesive superclasses of the object being
probed.

- Thered hide button can be used to hide classes which are irrelevant thus reducing clutter.

- Thehide button on the lowest class in the hierarchy has a special meaning since clicking on it
dismisses the entire pr obebi spl ay.

Part II. Swarm Applications:
Examples and lllustrations

Chapter 6. The Swarm Tutorial: Reprise

Most Swarm users share terminology and perspective that allows them to communicate with each other
about modeling projects. These shared elements are first introduced to most usersin the Swarm Tutorial,
aseries of exercises prepared by Christopher Langton. The Tutorial exercises are distributed on the SDG
web sitein the swarmapps package.

PN
]

~—~"Do Your Homework!
There is no way to get anywhere with Swarm unless you are willing to get your hands dirty. The
Swarmapps package provides some examples of swarm programs that deserve study. That
package also provides the bug tutorial, a series of exercises that all Swarm users must read, edit,
compile, study, test, explore, and investigate.

If you are new to Swarm, and don’t know much about programming in general, and possibly less
about Objective-C in particular, the tutorial series is a perfect place to start. Even if you are an expert
programmer, a study of the tutorial is the right place to start. Many of key terms in Swarm model
building are introduced in the tutorial and there is simply no substitute for a careful analysis of the
material.

.Java Stops Herel!

From hereon in, the Guide will only refer to examples in Objective C. The Guide is in the process of
being updated to include Java examples of the basic Swarm concepts covered in the following
chapters. That said, although many of the concepts described are described in Objective C terms,
most of the concepts carry over intact into the Java context, and (mostly!) only differ in fairly trivial
syntactical ways, so it possible that Java users can benefit from the following sections

6.1. Tutorial Progression

The tutorial gameplanis as follows: Begin with a program written in C that is little more than a basic
"hello world" program about a"bug" creature that wanders. Through a series of steps which first
introduce Objective-C and then the Swarm hierarchical modeling approach, one can gain a good
grounding in Swarm modeling.

Thetutoria outlineis asfollows:

1. simpleCBug. Simple C code about a bug

45

Chapter 6. The Svarm Tutorial: Reprise

2. simpleObjCBug. Bug is now Objective-C class
3. simpleObjCBug2. Adds FoodSpace object

4. simpleSwarmBug.Introduces the mdel swar mas the central organizing element. From the class
swar min the Swarm library, this code creates subclass Mdel swar m and the instance of Mdel Swar mis
created and called nodel Swar m(in mei n. m). In the class mdel swar m one finds an implementation
of the schedul e class, the workhorse that keeps the Swarm train moving on time.

5. simpleSwarmBug2.Introducesthe bugLi st , an instance of the Li st class, and illustrates some
ways in which simulations with many agents can be organized.

6. simpleSwarmBug3.Introduces the Swarm class aj ect Loader that the can grab datafrom afile and
read it into an object (in this case, the nodel Swar nm).

7. simpleObserverBug.Subclasses from the Swarm class swar maul to create a new class
Obser ver Swar m an instance of which is created and called obser ver Swar m Thisisthe first
example with a complete Swarm hierarchy which begins with main.m and trandates actions from
Obser ver Swar mt0 Model Swar mto individual agents.

8. simpleObserverBug2.This example adds probes that allow users to click on graphicsto reveal
information inside them.

9. simpleExperBug.Introduces the possibility that a simulation might be run over and over in "batch"
mode while the graphical interface reports summaries of the runsto the user.

6.2. What Are You Supposed to Learn from the
Tutorial?

So, after you worked on the tutorial for 20 hours or so, what then? You should know all kinds of details
about how Swarm can be used, of course, but there are some bigger themes.

It isnot vital to know how to model bugs (although, perhaps for an entomologist...), rather, it isvital to
understand that Swarm is atoolkit that provides a housing for a modeling exercise. Swarm imposes no
inherent limitations on the nature of agents that can be represented within its framework.

r'._ LY

| -

“_Don’t read much further in this user guide until you work on the tutorial. You will know if you have
worked on it long enough when you understand clearly each of the following points.

- Swarm has many classes to make the modeling job easighere are workhorse classes like swar m
Swar naUl, and swar moj ect , but also there are many "little helpers' like Li st . Getting to know the

46

Chapter 6. The Svarm Tutorial: Reprise

ins-and-outs of these little helpersis extremely important.

« Swarm handles memory detailsDid you note that there are no mal | oc and free and other standard
C memory-managing commandsin Swarm code? Those commands exist, but they exist inside the
Swarm library, and they are accessed on behalf of userswho use cr eat e or cr eat eBegi n and
dr op to access memory for objects and get rid of them. To create objects (instances of classes) in
Swarm, there must either be acr eat emessage sent to a class or there must be a
cr eat eBegi n/cr eat eEnd pair that serves as bookends for commands that create an instance, set
itsinternal state, and complete the instantiation.

- Case is important.Including the right header files may give you access to "factory objects’ like Li st
or schedul e. YOu can use any name you like for the objects that are created as instances. By custom, an
instance of a class—an object—is named in small letters, such as bugLi st asaninstance of Li st or
nmodel Schedul e asan instance of schedul e. Inthetutorial, when there is a single instance of aclass
to be created, by convention, it is typically named the lowercase version of the class name, such as the
f oodSpace object which is an instantiation of FoodSpace.

- Neatness countsAsin any kind of programming task, neatness counts. Classes in Swarm are created
with methods that group together their jobs by functions. One will often find, in coser ver Swar mfor
example, commandsthat create a nodel Swar minstance and then issue it these commands:

[nrodel Swar m bui | dObj ect s];
[mrodel Swar m bui | dActions];

Thebui | dObj ect s method creates objectsand bui | dAct i ons creates schedules. If one wanted to,
one could build a gigantic method in the Mdel swar mclass called doSt uf f and then call that method
with:

[rodel Swar m doSt uff];

Programs written with this approach are hard to proofread and manage. It is much better to write small
methods, each of which accomplishes arelatively specific task.

- There is often a need for "record keeping" classes.n order for data to be displayed meaningfully
in agraph, for example, it must be provided to the graph object in a format that the graph object can
handle. The classver 1 d in simpleObserverBug is subclassed from Swarm’'s ari d2d class.

« Graphics are optional, but nice. Commandsin the Observer Swarm control the graphical display.
There are many kinds of graphs and ways to alter their appearance. It is not necessary to design a
Swarm program to make pretty pictures, however. One might just aswell runin a"batch" mode that
prints numbersinto files for later inspection. Thereis a useful example of the batch modein the
Heatbugs code.

- Open Source means open the sourceéo find out what messages an instance of a class will respond
to, you should first consult the API *: the Swarm Reference Guide. In most cases the average user will

1. Application Programmers Interface

47

Chapter 6. The Svarm Tutorial: Reprise

encounter, consulting the API is sufficient, but when you really need to know how something is
implemented (either to understand the efficiency implications of using a certain method in your
program or if a particular method appears to not behave as documented), you can go look in the
Swarm source code itself. That's what the members of the Swarm team do when users ask questions.

6.3. After the Tutorial: What now?

After the tutorial exercises are finished, one can then proceed to study the example applicationsin
swarmapps and othersthat are available (for free!) on the web. The application called Heatbugs in
the swarmapps package gives a rich and workable example of asimulation that builds on theideasin
the tutorial.

48

Chapter 7. Creating Objects In Swarm

The way in which objects are created depends on a computer’s compiler and the software libraries
available to the user. The implementation of Objective C on a system using the GNU compiler will not
be exactly the same as the implementation on a Next system. While most of the points madein the
literature on Objective C easily carry over to Swarm modeling, the commands needed to create objects
are an exception. In the Objective C manual for Next systems, for example, one finds a syntax methods
i nit andal | oc that are not used in Swarm. That’swhy a brief study of object creation isimportant.

7.1. Begin at the Beginning

Pick any Swarm application you like, such as Heatbugs. Look in nei n. m What do you find? There'sa
check to seeif the GUI mode or batch mode is to be run, and depending on that choice, either the
Obser ver Swar mOf the Bat chswar misdesignated ast heTopLevel Swar m

Suppose we have do not do anything special when compiling and running the heatbugs executable, so
the GUI modeis used. In that case, the relevant code in nai n. misthis:

if (swarnGU Mde == 1)

{
t heTopLevel Swar m = [Heat bugCbser ver Swar m cr eat eBegi n: gl obal Zone] ;

SET_W NDOW GEOVETRY_RECORD_NAME (t heTopLevel Swar) ;
t heTopLevel Swarm = [t heTopLevel Swar m creat eEnd] ;

}

The first command inside the brackets tells the class Heat bugbser ver Swar m to execute its

cr eat eBegi n method and return an object which isto be named t heTopLevel Swar mInthis
example, the Heat bugObser ver Swar mis the class and also serves as a "factory object”, an object that can
build instances of its class. The second command is a macro that saves window positions on subsequent
runs of the program. It is set between the cr eat eBegi n and cr eat eEnd methods becauseit is
setting permanent features of the object t heTopLevel Swar m The last command "seals' off the
creation phase by telling the recently created object t heTopLevel Swar mto runitscr eat eEnd method.

In the Swarm Reference guide, many of the protocols have methods that are divided between three
phases. The phases are "Creating”, "Setting", and "Using". It isimportant to pay attention to the phasein
which amethod is listed. Methods or macros listed in the Creating phase must only be used between the
cr eat eBegi n and cr eat eEnd messages. If such amethod is used after the createEnd, it will cause
the program to fail. Similarly, amethod in the Using phase must be used only after the createEnd method
has finished. Methods in the Setting phase can be used at any time in an object’slife cycle.

49

Chapter 7. Creating Objects In Svarm

7.2. Detailed Look at cr eat eBegi n/cr eat eEnd

Now take the next step and look at the cr eat eBegi n and cr eat eEnd methods that are called by the
codein mai n. m Follow the steps into Heat bugtbser ver Swar m m Here you find the methods

+cr eat eBegi nand - cr eat eEnd. Theplussignon cr eat eBegi n indicates that this method
cannot be executed by an instance of the class Heat bugvbdel Swar m but rather only by the factory object.
Hereis aportion of the method cr eat eBegi n:

+ createBegin: aZone

{
Heat bugCbser ver Swar m *obj ;
id <ProbeMap> probeMap;
obj = [super createBegin: aZone];
obj - >di spl ayFrequency = 1;

/] [Code that creates "probenmaps” onitted here]
return obj;

}

This agood example of how the Swarm toolkit handles the creation of objects. The pointer to the class
Heat bugObser ver Swar m Named obj IS defined. Since Heat bugbser ver Swar m IS subclassed from cul swar m
it isimportant to be sure that al of the important variables of a cu swar m object are initialized and
inherited by Heat bugbser ver Swar m Thisis donein one step by telling the superclass to execute its

cr eat eBegi n method. Since the classes are linked together in a hierarchy, each higher level classin
turn executesitscr eat eBegi n statement. That is how the instance of the class ends up setting values
for al the variablesthat it inherits.

Thecr eat eBegi n method of its superclassis called to put the created objectsin azone, whichisthe
name of the space passed in from nai n. m The memory zonethat is created is returned and set equal to
obj . Thenthereturn obj command gives back the created object to the calling code, in this case

mai n. m which then treatsit ast heTopLevel Swar m

The reader can investigate in the Swarm source code to see that cul swar minherits through a hierarchical
chain the ability to create memory zones and objects. aul swar mis subclassed from Swarm, which in turn
inherits from cswar nProcess. That classis defined in the activity directory of the source codein afile
called swar nProcess. m Thisisthefirst place where you will find cr eat eBegi n and cr eat eEnd
methods as you move up the inheritance tree, so it must be that these are the methods that are executed
when super istold to do something in this code.

Thecr eat eEnd method in Heat bugtbser ver Swar m mis quite simple:

- createEnd

{

return [super createEnd];

}

50

Chapter 7. Creating Objects In Svarm

In acaselike this, when the super classisinside the Swarm library, it may be hard to figure out exactly
why this command is needed. As amatter of fact, it is not necessary in this case at al, but it does not do
any harm. If it were omitted from this class, then this class would just inherit cr eat eEnd method from
the somewhere above in the family tree. By using it in this way, we make sure that the commands of the
super class's createEnd method are executed, and this may be important because those steps might
initialize some variables that this class inherits.

There are casesin which the cr eat eEnd statement may be more substantial. Inthecr eat eBegi n
phase, we typically find commands that set permanent features of objects. Some methodsthat initialize
instance variables can also be included. In the example above, thevariable di spl ay frequency
inside*obj isset equal to 1. These variables are set at the first possible opportunity because other
variables may depend on them. After mai n. mcallsthe cr eat eBegi n method, nei n. mmay include
statements that further tailor the state of the object and those commands may depend on values set in
cr eat eBegi n. Finally, when mai n. mcallscr eat eEnd, anew slew of commands may be executed
that define further elements of the object.

Thecr eat eEnd statement may be a convenient place to put any code that completes the initialization
of an object. For example, suppose inside thereis avariable called age. Incr eat eEnd, one might find
this:

creat eEnd

[super createEnd];
age=0;
return self;

}

The super class'scr eat eEnd method is executed, which will assure that any variablesinitialized there
are set properly. Then the instance variable age is set equal to 0. (Sometimes you will find examplesin
which cr eat eEnd isa"garbage can" that collects alarge number of commandsthat set initial values
for variablesinside the object. These commands might as well be regrouped and put into a new method
inside the object that might be called set 1 ni ti al val ues that would be executed after the cr eat eEnd.
The readability of the code is enhanced that way.)

The cr eat e message causes the receiver to carry out bothitscr eat eBegi n and cr eat eEnd
methods. Why didn’t we always use cr eat e? Well, sometimes we need to define variables between the
creat eBegi nandcr eat eEnd steps, as seen in mai n. m If there is no need to set valuesin that way
(no methods are listed in the Creating phase in the Swarm Reference Guide are used), thencr eat e is
enough.

7.3. Swarm Zones and Recursive Objects Creation

51

Chapter 7. Creating Objects In Svarm

One of the most troublesome exercises in computer programming is the management of dynamically
allocated memory. The correct usage of dynamic memory requires agreat deal of care, and when a
portion of memory is no longer needed, is must be "freed,” made available to the central processor. If
memory is allocated and then forgotten, a "memory leak” is said to exist because the program does not
tell the operating system to reclaim unused memory addresses.

The Swarm libraries are designed to handle memory allocation with a minimum of user intervention. The
cr eat eBegi n and create commands allocate memory and the user is not expected to think about where
the RAM comes from to store an object. Similarly, when a program is finished with an object, that object
can be sent the dr op message and that should take care of freeing the memory that the object used.

The create statements used in Swarm typically have this flavor:

sonmeUser Creat edhj ect = [SoneSwar nLi braryObj ect create: soneMenoryZoneHere];

(Themethod cr eat e can bereplaced by acr eat eBegi n/cr eat eEnd pair as described above.)
More specific examples are discussed below and are of course scattered throughout the Swarm exampl es.
The important thing is that an object in the Swarm library is able to respond to a method that creates an
instance of itself and that instance lives in amemory zone that is managed by the Swarm library.

In the mai n. mfile, thetop level Swarm is created and it is alocated into an instance of zone called
gl obal Zone.

t heTopLevel Swar m = [Heat bugObser ver Swar m cr eat eBegi n: gl obal Zone] ;

This gl obal Zone is created when the initSwarm function is called at the beginning of a swarm
program. Thetop level Swarm istold to createitself in that space. Any Swarm objects of type swar mor
GU swar mare able to serve as memory zones. Inside the mdel swar mone sees a command such as:

probeMap = [EnptyProbeMap createBegin: self];

Thistells the Enpt yPr obeMap class in the Swarm library to create an instance of itself in the memory zone
alocated by the mdel swar m and that allocated object isto be named pr obeMap.

The objects at the top level of the swarm hierarchy (whether Swarm or GUISwarm) have the power to
"create space” for objectsthat liveinside them. Asthe code in mai n. mproceeds through the creation of
t heTopLevel Swar mitisallocating memory and setting other important creation-state variables.
Then, that newly created object is told to go through its paces:

[theTopLevel Swar m bui | dObj ect s] ;
[theTopLevel Swar m bui | dActi ons];
[theTopLevel Swarm activateln: nil];
[theTopLevel Swar m go] ;

When you go look at the bui | dObj ect s method executed by the t heTopLevel Swar m what do
you find? Depending on what edition of the Heatbugs source you have, you will find something like this:

52

Chapter 7. Creating Objects In Svarm

heat bughbdel Swar m = [Heat bugMbdel Swarm create: self];

Inthiscode, the sel f isthe observer level, meaning that the Heat bugModel Swar m classistold to create an
instance of itself in the memory zone provided by the observer, and that allocated object is named
heat bughbdel Swar m

If you then follow the code into the Heat bughvbdel swar m mfile, you find it hascr eat eBegi n commands
that initialize a number of instance variables and objects. Unless you have a pretty old piece of code,
those objects will be created in the memory zone sel f, the space provided by the model swarm itself.

Objects that are of type swar nbj ect are not memory zones, and so when objects are created inside
classes that inherit from swar nobj ect , @ command to allocate memory must be used.

bugPi xmap = [Pi xmap createBegin: [self getZone]];

The bugPi xmap object is created inside Heat bug. m but the name of the memory zone where that object
"lives' hasto be retrieved with the[sel f get Zone] command. The [self getZone] method returns the
name of the zone in which the bug exists, which in this case is heatbugM odel Swarm.

7.4. Using Swarm Library Objects and Header Files

It often seems as if objects appear by "magic.” It is more reasonable to say they are provided by the
Swarm library in away that is not entirely obvious. For example, suppose you want to create a list of
objects. One can declare an object | i st OF Fr i ends and then createit, like so:

idlistOFriends;
listOFriends = [List create: self];

You see little bits like this al over example code from Swarm projects. Where does thisLi st class object
come from? Why are you able to use it even though there is no import statement for List.h at the top of
the program? It seems as though, if you want to make a call on the List class, you ought to include

Li st. h at the top of your file, right?

To use many of the Swarm classes, it is hot necessary to use such an explicit import statement since you
are not subclassing. Instead, it is necessary to include one of the "general purpose” header files that
corresponds to the major sections of the Swarm library. To create List instances, for example, one needs
to import the "general purpose" collections.h, which declares not only List, but other collections classes
aswell.

The general purpose header files can be found in the include directory of your swarm installation. They
are:

- activity.h

53

Chapter 7. Creating Objects In Svarm

« anaysish

« collections.h
« collections.h
« gui.h

« oObjectbase.h
« random.h

« simtools.h

« simtoolsgui.h
+ space.h

As you browse the Swarm Reference Guide, you will find many protocols that adopt the CREATABLE
protcol, which means that you can use them to create objects in your code. When you use them, import
one of these library headers. For example, to create List objects, import col | ecti ons. h. That header file
should be included in any file that refersto a List, Map, Set, or any of the other creatable collections
objects.

Should the general purpose header file be included in the .h (header) file or the .m (implementation) file
of your class? Generally speaking, it isonly necessary in the .mfile, since that is where you are doing the
work of creating the object. The only exception to thisrule arisesif you refer to the protocol protocol in
your header file. It is necessary to include the collections.h in your header file if you want to declare an
object that will adopt a protocol, asin

id <List> alist;

If you forget to import collections.h, the compiler will fail and say there was a parse error. This happens
because it does not have a class or protocol List in its purview, and so it assumes you have made a
typographical error.

On the other hand, if your header file uses a general declaration, asin

id aList;

then there is no need to include collections.h in the header file. It should only beincluded in the
implementation file for your class.

Explicit importing of a class-specific header file is only required when you need to subclass from that
file. Since your header file declares that you are creating a class, and it defines the superclass, then the
import statement must be included in your header file. SwarmObject is the most frequently used
superclass, so consider it for example. Your class's header file should import both the general purpose
library header objectbase.h as well as obj ect base/ Swar nvj ect . h

We will summarize this by offering two rules of thumb:

Chapter 7. Creating Objects In Svarm

- if you use aclass that conformsto a protocol (such as Li st) to create objects in your own program,
you need to include one of the general Swarm library headers.

- if, however, you are subclassing from a class that adheresto a protocol, you need to import the header
filefor that class.

We hasten to point out that not all of the Swarm protocolswill alow you to subclass from them. To avoid
some serious complications, the List type cannot be used to create user-specific classes. One can create
Lists and use them as intended, but one cannot create variants of the Swarm List class to customize their
behavior for a specific project.

As good coding practice, you should try to keep your files clean. Each file should only include imports
for header files that you actually reference in that particular interface/implementation file pair. Don’t
adopt a"include everything" mentality when importing files.

7.5. Variations on a Theme

Once you have seen how an object can be created, you should start thinking about how your simulation
will be organized. Within the standard Swarm approach, you begin with nei n. mallocating space for the
top level swarm, which may be either a gui or batch swarm. Then the model swarm object is created in
that top level, and the model swarm in turn creates the substantively important objects that embody the
model you seek to investigate.

There are anumber of different ways in which the creation of objects can be managed. Some are more
intuitive than others, some are more "reusable” than others. Since the first Swarm exercise for most
peopleinvolves bugs, it is not surprising that many examples of Swarm code follow the convention of the
bugs project. Asfound in SimpleSwarmBug3, for example, the mdel swar m mfile creates the bug objects
in thisway:

bui | dObj ect s

Bug *aBug;

int x, vy;

[some lines onitted here]
bugLi st = [List create: self];

for (y = 0; y < worldYSize; y++)
for (x = 0; x < worldXSize; x++)
if ([unifornDbl Rand get Doubl eWthM n: 0.0 withMax: 1.0] < bugDensity)
{

aBug = [Bug createBegin: self];
[aBug setWrld: world Food: food];
aBug = [aBug creat eEnd];

[aBug setX: x Y: y];

[bugLi st addLast: aBug];
}

55

Chapter 7. Creating Objects In Svarm

reportBug = [bugList renoveFirst];
[bugLi st addFirst: reportBug];
return self;

}

This code cycles over the spaces in alattice, and if the conditions areright, it causes the Bug classto
create an instance of itself, called aBug, and then that instance is added to the bugLi st .

Some changes can be made to make this code a little more versatile. For example, create a new method
called spawnOneBug that moves out the bug creation steps.

bui | dObj ect s

Bug *aBug;

int x, vy;

[some lines onmtted here]
bugList = [List create: self];

for (y 0; y < worldYSize; y++)
for (x 0; x < worldXSize; x++)
if ([unifornDbl Rand get Doubl eWthM n: 0.0 wi thMax: 1.0] < bugDensity)
{
[sel f spawnOneBug] ;
}

reportBug = [bugList renoveFirst];
[bugLi st addFirst: reportBug];
return self;

spawnOneBug

aBug = [Bug createBegin: self];
[aBug setWorld: world Food: food];
aBug = [aBug createEnd];

[aBug setX: x Y: y];

[bugLi st addLast: aBug];

return self;

}

Why is this more versatile? By isolating the steps necessary to create abug and add it to the bugLi st in
the spawnOneBug method, we make it much easier to add new bugsto the simulation as time goes by.

7.6. How Do You Kill Off Those Poor Little Devils?

56

Chapter 7. Creating Objects In Svarm

If you look at Swarm examples for any amount of time, you can’t help but run into objects that get
dropped. Little "helper objects” like indexesfor lists are created and just as readily discarded with the
command:

[sonel ndexNane drop];

If everything goes the way it is supposed to, this should take the abject out of memory and free that
memory for the program to reuse.

What if the objectsinside your simulation are supposed to be born and killed through time? The Swarm
bug tutorial mainly focuses on models in which a population of actorsis created at the outset and those
individuals remain in existence throughout the length of the program. What if we wanted code to model a
world in which the happy HeatBugs could reproduce themselves, or what if the unhappy ones could die
and be freed from their never ending search for a place neither too cool or too hot?

The Swarm SugarScape model provides an excellent example of away to manage the birth and death
of agentsin an on-going model. The sss model’s Mdel swar m mfile contains the critical ingredients. It
has amethod addNewRandomAgent which does what spawnOneBug does-it includes all the
commandsthat create an instance of a swar mvj ect and initializesit. sss also provides a handy structure
to kill off agents and replace them with new ones. Thisis managed in athree stage process. The model
swarm creates a Swarm list object called r eaper Queue. When an event occurs that forces an object
below the survival threshold, then that object is added to the r eaper Queue by theagent Deat h
method. Then the model Swarm’s schedul e includes a command that removes the dead agents from the
reaper Queue. Ther eapAgent s method transverses the list of agentswho areto die, it removes
them from the list of active agents and then tells them to drop themselves from memory.

- agent Deat h: (SugarAgent *)agent
{
[reaper Queue addLast: agent];
if (replacenent) /'l Replacenent rule R (p.32)
[sel f addNewRandomAgent];
return self;

}

/1 renpbve all the agents on the reaperQueue from the agentLi st

/1 This allows us to defer the death of an agent until it’'s safe to
/1 renpove it fromthe list.
- reapAgents

{

idindex, agent;

index = [reaperQueue begin: [self getZone]] ;
while ((agent = [index next])) {
[agent Li st renove: agent];
[agent drop];
}
[reaper Queue renoveAll];
[index drop];

57

Chapter 7. Creating Objects In Svarm

return self;

}

58

Chapter 8. Doing the Chores: set and get

Obj ect-oriented programming organi zes the way programmersthink about information in a new way.
The objects maintain their variables (the "instance variables', or IVARs for short) and the information
contained in those variablesis private, self-contained within the object. This has benefits in the design of
code and it also captures some intuitions the autonomy of individual agentsin a simulation exercise.

Objects are thus insulated, more or less, and although this makes some things easier to code, it also
makes some things more difficult. For example, in C avariable can be set and its value can be changed
anywherein the program. In object-oriented languages like Objective-C, an object can hold several
variables and those values can only be changed by the object itself if we remain within the recommended
limits of good programming habits. Some ways to go outside those boundswill be discussed below, but
generally speaking it is agood ideato respect the fact that objects maintain their own data.

If objects are maintaining their own data, how do we manage information in a Swarm project. Early onin
the devel opment of Swarm, the coders adopted a convention (common to Objective C, Java, Smalltalk
and numerous other object-oriented languages) that the term set starts a method name that sets a value
inside an object, suchasset | deal Tenper at ur e or set Age. Thetermget isused as the beginning
of amethod that causes the agent to return some value, such asget | deal Tenper at ur e or get Age.

8.1. Get and Set Methods

Get and set methods are needed to pass information among objects. For example, consider Heatbugs.
In the Heat bug. m code, one finds a methods that set information inside the bug and also methods that
retrieve information from it. Consider the method set | deal Tenper at ur e

- setldeal Tenperature: (HeatValue)i
{

i deal Tenperature = i;
return self;

}

The Heat bug Object has an instance variable called i deal Tenper at ur e, and this sets the value of that
variable.

If some other object needs to know the heatbug’sideal temperature, what has to be done? We would have
to add a method to the Heat bug. mthat returnsthe value of i deal Tenper at ur e. Something like this
might suffice:

- (doubl e) getldeal Tenperature
{

return ideal Tenperature;

}

59

Chapter 8. Doing the Chores: set and get

As much as possible, it is recommended that information be exchanged in this way. Hence, when the
observer swarm needs alist of all the agentsin asimulation in order to create a graph, the model swarm
should have a method, such asget Agent Li st , that returnsalist of agentsthat the observer swarm can
use.

8.2. Using Set Methods During Object Creation

Consider the way the model swarm level of asimulation can be designed. If the values of many variables
are set inside the model swar m mfile, and those values are to be passed to the individual agents at the time
of creation, then the code that creates individual objects might be designed like this:

aBug = [Bug createBegin: gl obal Zone];

aBug = [aBug createEnd];

[aBug setWorl dSi zeX: xsize Y: ysize];

[aBug set FoodSpace: foodSpace];

[aBug setX: xPos Y: yPos];

[aBug setldeal Tenp: [unifornDbl Rand get Doubl eSanple]];

This code presupposes that the mdel swar m mfile has pre-existing variables (probably integers) xsi ze,

si ze, xPos, and yPos, aswell as an object f oodSpace and an object uni f or nDbl Rand that can
give back arandom number. This code also presupposes that set methods exist for the Bug class that can
get these jobs done.

There are some matters of "taste” and "judgment” that affect model design. One might ask, for example:
“why does this code set the ideal temperaturein thisway?’ Why not create a method inside the Bug. m
file,suchasi nitial i zeVal ues like so:

- initializeVal ues

{

i deal Tenperature= [uni fornDbl Rand get Doubl eSanpl e]
return self;

}

If this method existed, then the code that creates the bug and sets valuesin it could have the command
[aBug setldeal Tenp: [unifornDbl Rand get Doubl eSanpl e]];
replaced with this:

[aBug initializeVal ues];

This would achieve the purpose of setting the i deal Tenper at ur e variable inside the object called
aBug. And, from the information-hiding perspective of object-oriented programming, it seems better
because the value drawn for the variable i deal Tenper at ur e is never exposed to any other object.

60

Chapter 8. Doing the Chores: set and get

There are afew practical reasons why the first way of setting the ideal temperature might be preferred.
First, for the programmer’s convenience, it is nice to have as many of the "parametric” changesin a
single file as possible. The Bug class can be written and never edited again if al of the changes needed
are kept in the model swar m mfile. Second, you might save memory dealing with these thingsin the

Model Swar m mfile. Suppose that the object uni f or nDbl Rand hasto be created in order to draw a
random number. If you insist on writing amethod likei ni t i al i zeVal ues inside the Bug. m then you
need to worry about how that random number generator object is created inside each bug object. It
certainly saves memory to create just one random generator in the Mdel swar m mfile and then draw
numbers from it inside the model swarm itself. There are some good arguments for this approach in the
literature on random number generation. The issue seems somewhat esoteric, but the argument is that
oneis better off making repeated draws from the same random number generator than making one call
against each of the many random number generators. For reasons like this, Swarm examples tend to have
information translated into objects from the model swarm level, even though it is technically allowable to
have that information-creation process completely isolated within the object.

8.3. Passing Information Around

In order to send messages to objects from another class, it is necessary not only to use the correct
message, but also to import that class's header file into the code. The cbser ver swar m mfile can only tell
the Heat bugModel Swar mto runitscr eat eBegi n method if abser ver swar m mincludes the header file for
the Heat bugMbdel Swar m 1N Heat bugCbser ver Swar m m we find this:

#i nport "Heat bugMdel Swar m h"

Theinclusionin the"m" fileis sufficient if no referenceto the Heat bughbdel Swar mis necessary in the
Heat bugCbser ver Swar m h file. It may be necessary to move the import statement into the header file (the
"h" file), however, if any referencesto a class are contained in the "h" file. In Heat bughodel Swarm h, for
example, one finds these import statements:

#i nport "Heat bug. h"
#i nport "Heat Space. h"

Since these are included, the variable and method definitions can refer to el ements of these classes. The
variable list declares a pointer to an object of type Heat Space:

Heat Space *heat

and there is amethod that has an object of type Heat bug as an argument:

-addHeat bug: (Heat bug *) bug;

61

Chapter 8. Doing the Chores: set and get

Many Swarm programmers have run into the following problem. As we have seen, It is not difficult to
have the model swarm level create an object. Through the set methods, various values can be set inside
the object by commandsin the model swarm. However, the programmer wants the agent to be able to
access variables inside the model swarm as the simulation progresses. Suppose the Heat bugModel Swar m
has an instance variable called nunber OF BugsAl i ve, and inside HeatbugM odel Swarm we define a
method get Nunmber OF BugsAl i ve that returns that number. Suppose further we want any heatbug to
be able to find out how many bugs are alive at any instant. It is tempting to write inside Heat bugs. m
something like:

[heat bugMbdel Swar m get Nunber Of BugsAl i ve] ;

to access that information. That construction will not work, however, unless we take some special
precautions. First, each Heat bug has to be made "aware" of what model swarm it belongsto. Inside
Heat bug. h, avariable would have to be defined:

id heat bughbdel Swar m

To set the value of this variable, the Heat bug. mfile needs to have a method like this:

- set Model Swarm (id) naned Swarm

{
heat bughbdel Swar m = nameO Swar m
return self;

}

The value of the instance variable heat bugMbdel Swar mhasto be set in the model swarm when other
values are set. When the Heat bugModel Swar mis creating bugs, it sets the other values like the ideal
temperature and the position, but further it would set itself as the model swarm to which that bug
belongs, like so:

aBug = [Bug createBegin: gl obal Zone];

aBug = [aBug createEnd];

[aBug setWorl dSi zeX: xsize Y: ysize];

[aBug set FoodSpace: foodSpace];

[aBug setX: xPos Y: yPos];

[aBug setldeal Tenp: [unifornDbl Rand get Doubl eSanple]];
[aBug set Model Swarm sel f];

This assures that, inside aBug, the value of the instance variable heat bughbdel Swar mis defined.

Thefina precaution is that the header file Heat bugvbdel Swar m h must be imported into Heat bug. m Itis
very important that the import statement is added to Heat bug. m Nnot Heat bug. h. If it is added to

Heat bug. h, then the program will not compile because the inclusion causes a circularity: Heat bug. h IS
included in Heat bughbdel Swar m h, but Heat bughbdel Swar m h is also included in Heat bug. h. Putting the
import statement in the "m" file avoids that ciruclarity. And, since the import hasto bein the "m" file, the

62

Chapter 8. Doing the Chores: set and get

definition of the variable heat bughbdel Swar min Heat bug. h uses the generic typei d, rather than a
specific type, such as Heat bughodel Swar m

Many swarm examples are designed to avoid the need to allow objects created by model swarm to also
access information directly fromit. Thisis usually done by creating a"space” object that keeps records
on the model swarm. Individual agents report their positions to the space and the space cal cul ates any
necessary statistics about the swarm. The code for the space object can include get methods that the
individual agents can execute when they need information about their environment. This approach has
the added advantage that additional methods can be inherited from the general space objectsin the
Swarm library.

8.4. Circumventing the Object-Oriented Guidelines

If one wants to avoid treating objects as containers that hold both data and methods, one can do so. The
C language allows the creation of global variables, ones that can be accessed in any part of the code.
These ext er nal variables exist outside a particular class and are thus available to it. The names used for
external variables must be unique. One cannot have aglobal variable called t enper at ur e aswell asa
temperature variabl e defined as an instance variable for each object. There are some occasionsin which a
program can be made to run more quickly if the wholeget /set exerciseis circumvented by creating a
global variable.

Another way in which the object-oriented guidelines can be circumvented is the use of the - > operator.
Suppose we have an object called dog and it has instance variables nunmber OF Bones and

ti neSpent Sl eepi ng. Ordinarily, within the object-oriented paradigm, the nunmber Of Bones
would haveto be set by amethod such as set Nunmber Of Bones. However, the language does allow a
shortcut of the following sort. The syntax dog- >nunber o Bones refersto the value of the instance variable
number OF Bones inside the object named dog. Hence, one could have a statement:

dog- >nunber O Bones = 3;

that setsthe nunmber OF Bones to 3 inside the dog. Thiskind of codeis considered to be heavy-handed
and brutish because it does not use the methods written for the dog class with which it can set that value
and updateit. A mistake made with the - > operator can corrupt the values inside an object.

Even though the usage of - > is discouraged, one does find examples of this syntax in Swarm code.
Almost all Swarm examples use this kind of shortcut in the cr eat eBegi n phase of the model swarm
file, for example. Thisis done, however, because there is no aternative. We want the GUI probe display
to alow the user to adjust parameter values before the simulation commences. It is thus necessary to set
values inside some objects even before those objects have finished their createBegin/createEnd routine.

63

Chapter 9. Building Schedules

The core of the Swarm system is the set of features that enhance the design process of simulation
projects. The scheduling apparatus is one of the truly important elements of the Swarm system because it
offersaway to integrate the actions (and responses) many different agentsin many different levels of a
simulation.

The actions that go onin asimulation are orchestrated by a objects that respond to the schedul e protocol.
Schedul eS are generally builtin thebui | dAct i ons method of an object. A schedul e is something like
acalendar in which one might put ared letter X when an important event is supposed to occur. The user
then defines what the important events are and integrates them into the schedul e. Then the schedul e must
be activated within the larger Swarm hierarchy of the object.

9.1. Building schedul eS

Hereis an example of some code that makes a simple schedul e. This sort of schedul e might appear in
the Mbdel Swar mlevel of the bug tutorial, for example.

bui | dActi ons

nodel Schedul e=[Schedul e createBegin: self];
[model Schedul e set Repeatlnterval: 1];
nodel Schedul e = [nodel Schedul e creat eEnd] ;

[model Schedul e at: 0 createActi onTo: aBug nessage: Mstep)];

return self;

}

Thefirst three lines in the method create the schedul e named nodel Schedul e. It might as well be
aBugsLi f e or any other name the user chooses. Between the cr eat eBegi n and cr eat eEnd
methods, the only detail that this schedul e setsisthe repeat interval, which is one. That means that all of
the actions assigned to the nodel Schedul e will be executed at each time step.

Once the code has created a schedul e object and set the repeat interval, then that object can be told to
insert actionsinto its schedul e. These actions cause the nodel Schedul e to build commands that
make the desired actions happen. No two simultions are exactly the same, of course, and so there are no
hard-and-fast rules. Generally, however, the nbdel Schedul e isusualy told to do either of two
methods, at : cr eat eActi onTo: nessage or at : cr eat eAct i onFor Each: nessage. The
first is used when the action of a single object must be schedul ed, while the second is used to schedul e
activitiesfor wholellists.

In this simple example, the nodel Schedul e has only asingle action, which instructs the one bug in
the simulation, whose nameis aBug, to carry out its method called st ep. It might be that thereisa

Chapter 9. Building Schedules

wholelist of bugs, bugLi st , and each bug has to be instructed to carry out its st ep action. In such a
case, the command would be;

[model Schedul e at: 0 createActionFor Each: bugLi st nessage: Mstep)];

Some additional scheduling topics are discussed, but first the abstract question of selectors and the M
operator must be addressed.

9.2. What’s that M) Thing?

The commands that tell aschedul e to add actions usually have notation like like

M sonmeMet hodNane) at theend. M) isamacro used in Swarm to mean that the selector for the
message "step"” is returned. Selector, or SeL, is avariable type in Objective C which refers to the abstract
name used in the compiler to refer to amethod, in this case st ep. Mis short for message (or method)
and was "created to save the time of typing @el ect or (myMet hod) ," in the words of Nelson Minar.
Many of the methods available in the Swarm library want input in the form of a selector, an symbolic
reference to a method name, and the M) notation is one shorthand way of giving it what it wants.

Some of the methods in the Swarm library will also want alist of parameters that go with the selector.
Suppose, for example, you have a psychologist agent that has this method:

- deal Wt hProbl enBet ween: anObj ect And: (id) anotherObject;
Presumably, you have some code in which there are objects, perhapsnamed bi / | and susan, and

when you are not needing the Swarm libraries for anything, you just tell your psychologist agent to carry
out that method with a command such as:

[your Shri nksNane deal Wt hProbl enBetween: bill And: susan];

The name of thismethod isdeal W t hPr obl enBet ween: And: and itsinput variables are two
objects.

Now suppose you have awholelist of psychologists, and that you want each one of them to deal with the
problem between bill and susan. Furthermore, you want them to do it over and over again. To do that,
you need Swarm to schedule the job, so you run into that selector problem again. Notice in the Swarm
documentation that the schedul e protocol can respond to a method called cr eat eAct i onFor Each,
which has a prototype like this:

- at: (tineval _t)tVal createActionForEach: target nessage: (SEL)aSel : argl : arg2

At the end of this definition, we see this method wants to be given a selector, and then the two arguments
that go with it. We know we can grab the selector of the command we want with

65

Chapter 9. Building Schedules

M deal Wt hPr obl enBet ween: And:) , so when we tell the schedule object to make each
psychologist look into the bi | | and susan problem, we need a command like this:

[model Schedul e at: 0 createActionForEach: |istOf Shrinks nes-
sage: M deal Wt hProbl enBet ween: And:) : bil | : susan];

Admittedly, this notation seems ungainly, but it works.

It isadifficult understand the reason why the selector is needed in thefirst place. If oneis not well versed
in Objective C, it may be best just to follow the form of the examples provided with Swarm and not
worry about the M) until it is absolutely necessary. *

You can go look in the Swarm libraries to see many examplesto show why selectors are so vital. Just by
coincidence, we happened to be looking at the aj ect 2dDi spl ay. mfile, where thereis a particularly clear
example of how these selectors come into play. The obj ect 2dDi spl ay’s di spl ay methodis often
scheduled in the observer swarm level of projectsthat draw on zoonRast er grids. In order to make this
possible, the selector is required.

When an instance of aj ect 2dDi spl ay is created, one of the first thing the user doesit tell that object
what the display message for its membersis. The oj ect 2dDi spl ay IS passed a selector by the
"setDisplayMessage”" method.. Thisbit of codeis from SwarmSugarScape’'s toser ver Swar m mfile.

agent Di splay = [Obj ect2dDi splay createBegin: [self getZone]];
[agent Di spl ay setDi spl ayWdget: worl dRaster];
[agent Di spl ay setDi screte2dToDi spl ay: [sugarSpace getAgentGid]];
[agent Di spl ay set Obj ect Col | ection: [npdel Swarm get AgentList]];
[agent Di spl ay set Di spl ayMes-

sage: MdrawSel fOn:)]; /1 note the draw nethod passed as sel ector
agent Di spl ay = [agentDi splay createEnd];

The j ect 2dDi spl ay istold which widget it isaddressedto set Di spl ayW dget and which agent list
([rodel Swar m get Agent Li st]). Note how the object agent Di spl ay istold to set insideit the
value of the selector M dr awSel f On:) . It does not ask for the additional information of the input
variables that would ordinarly follow dr awSel f On: . It only wants the selector.

On the off chance that you have reached a point of necessity, and that is why you are reading this guide, consider this
explanation of the problem. Many jobs happen inside the swarm library. If you want each member of a certain list to receive a
message every time period, you need to give Swarm away to keep track of the members and the message. Since the objects at
which you want the messages aimed aready exist and are objects, it is quite straightford to pass a Swarm object that object’s
name. Passing a Swarm object a method name is, however, more difficult. You need to give the Swarm object something
symbolic if it isto receive and remember it. You wouldn’t want the Swarm library to be built around the passing of character
strings, right? (Well, maybe you would, but pretend your answer isno!) If you pass the selector, you are passing avariable
type that the Swarm libraries can remember and use when they need it.

66

Chapter 9. Building Schedules

Each item in the list of agents, which is retrieved by the command [nodel Swar m get Agent Li st],
has the method dr awSel f On: . Hereisthe method dr awSel f On: , which can be found in

Sugar Agent . i

- drawSel fOn: (id < Raster >)r

{
[r drawPointX: x Y: y Color: 100];
return;

}

If the agent gets the message dr awSel f On: r, then the agent in turn tells the object r to useits
dr awPoi nt X: Y: Col or: method to put the agent on the picture.

The importance of the selector becomes apparent after a study of the file aoj ect 2dDi spl ay.m inthe
Swarm space library. In oj ect 2d0bi spl ay. m we find this method:

- setDisplayMessage: (SEL)s
{
di spl ayMessage = s;
return self;

}

This takes the selector and putsits value into an instance variable called di spl ayMessage. The other
set methodsin ooj ect 2dDi spl ay have already set the variable obj ect Col | ect i onand

di spl ayW dget . So, floating around inside the mj ect 2dDi spl ay instance, are instance variables that
can be put to use in scheduling the actions.

When thedi spl ay method of j ect 2dDi spl ay gets scheduled by the ObserverSwarm, this method
from obj ect 2dDi spl ay. mis called:

- display
{

[...some irrelevant lines omtted...]
/1 if we have a collection to display, just use that.

[obj ect Col | ection forEach: displayMessage: displayWdget];
}

Thef or Each: method in the Swarm library takes a selector asitsfirst argument, and any parameters
needed by the selector follow, separated by semicolons. So, in thisexample, the di spl ayMessage
variable has been set asdr awSel f On and the di spl ayW dget has been set asthe wor | dRast er .
So whenthedi spl ay method executes, it passes to each object in the list a message that tells it to draw
itself onthe wor | dRast er .

Almost al uses of the selector typein Swarm allow a variable number of arguments. It isimportant to
note, however, that these arguments are generally required to be objects. We would have some trouble if
the arguments were floating point values, for example. When such a case arises, oneif usually forced to
write "wrapper" objects around floats in order to pass them to the Swarm library. For example, consider a

67

Chapter 9. Building Schedules

change in the problem faced by the hypothetical psychologists discussed above. Suppose instead of
dealingwith bi | | and susan, they are instructed instead to set some variables inside themselves, such
asi deal Tenper at ur e or set Lengt hOf Feel er s (these are buggish psychologists, say). The
method in the psychol ogist class might have this interface:

- setTenperature: (float)tenp And: (float)feeler;

Now, if you wanted the Swarm to schedulethisset Tenper at ur e: And: method to happen every
time step, perhapsto "reinitialize" the objectsto a"fresh" state, then you would be in aworld of hurt. If
you need the temperature to be set at 37.3 and the feeler to be 54.1, you would be tempted to write this,
but you would be making a big mistake:

[model Schedul e at: 0 createActionForEach: |istOf Shrinks nes-
sage: M set Tenperature: And): 37.3:54.1];

Thecr eat eAct i onFor Each: method islooking for something like SELECTOR: i d: i d at the end,
but this command instead givesit SELECTOR: f | oat : f | oat .

When you need to pass float values in this way, you may have to redesign your methods so that they can
take objects. For example, you might make a new kind of object to hold the values of those floating point
numbers. This new classis often called a"wrapper" class. If that new class, cal it the Par anet er Hol der
for discussion, is able to respond to methods like get Tenp and get Feel r, then this problem could be
tackled by rewriting the set Tenper at ur e: And: method into something like:

- setParaneters: hol di ngloj ect;

If you have an instance of Par anet er Hol der, called aHol der for short, then the psychologist can be told
toset Par anet er s by acommand like this:

[aShrink setParaneters: aHol der];

Presumably, insidethe set Par amet er s method there are actions that get the values from the
aHol der which is passed in, as necessary.

If you need to schedule awholelist of psychologiststo reset themselves, the schedule command could be
written as:

[model Schedul e at: 0 createActionForEach: |istOf Shrinks nessage: M setParaneters): aHol der];

9.3. Acti onGroupS

An ActionG oup iSaset of actionsthat are supposed to happen in sequence. Thebui | dAct i ons
method is often designed to first create an Acti onGr oup and then to schedule that is be repeated every
now and then.

68

Chapter 9. Building Schedules

Consider the Swarm SugarScape again. Its model swarm hasthisbui | dAct i ons method %

bui | dActi ons
[super buil dActions];

/1 One tine tick, a set of several actions:

11 random ze the order of agent updates (to be fair)

I update all the agents

11 kill off the agents who just died

I update the sugar on the world

nodel Actions = [ActionGoup create: [self getZone]];

[nodel Actions createActionTo: sugar Space nessage: MupdateSugar)];

[model Actions createActionTo: shuffler nmessage: Mshufflelist:) : agentlList];
[model Acti ons createActi onFor Each: agentList nessage: Mstep)];

[model Actions createActionTo: self nessage: MreapAgents)];

/'l The schedule is just running our actions over and over again

nodel Schedul e = [Schedul e createBegin: [self getZone]];
[model Schedul e set Repeatlnterval: 1];
nodel Schedul e = [nodel Schedul e creat eEnd] ;

[nodel Schedul e at: O createAction: nodel Actions];

return self;

}

Acti onGr oupS group together events at same timestep. schedul e then executes the actions. If thereis only
one Act i onG oup in a schedule, then one might as well not create agroup and just add the actionsto a
schedule one at atime. The use of Acti onGroupS is most valuable when several sets of separate actions
are considered and they need to be scheduled to start at different times or repeat at different intervals.

9.4. Activating Swarms

Thebui | dAct i ons methodisintended to be the place in which one creates Swarm schedul es, but that
does not make the simulation carry out the scheduled actions. In order to put the object’s schedule into
the "grander scheme of things" in Swarm, it is necessary to activate it. Through the activation
mechanism, the Swarm library integrates the many diverse actions of the different objects that exist in
the simulation. It is done through a hierarchical series of act i vat el n methods. The nei n. mtells the
top level swarm to activate itself (after it has been told to create its objects and schedules, of course).
Then the top level swarm activates any schedules it might have created and (here's where the hierarchy
comes into play) it tells the next lower level to activate itself. That next level activatesits schedules and
tellsthe level below to activate itself. Thisis how the activities of many different levels are synchronized.

2. Note: the use of shuffler to mix the agentsin the list has been integrated into the Swarm libraries and by the time you read this
there may be some new syntax involved.

69

Chapter 9. Building Schedules

Virtually any Swarm program will offer a sufficient example of the progression of acti vat el n
methods from top to bottom. The mai n. min Heatbugs hasthis:

[theTopLevel Swarm activateln: nil];

Thetop level swarm istold to activate itself in ni | , which isaway of telling thetop level that it isin
fact at the top of the hierarchy. It is not told to activate itself within the zone of any other swarm, in other
words. When the time comes, the lower levels are told to activate themselvesin the zone of the swarm
that is one step aboveit (as we shall see).

Assuming we are doing a graphical model, theact i vat el n: method of the top level isfound in

Heat bugObser ver Swar m m In the Heat bugbser ver swarm ms act i vat el n: method, we find commands
that both activate schedules within the observer swarm and also activate schedules in the next lower level
of the simulation:

- activateln: swarnCont ext

{

[super activateln: swarnContext];
[heat bugModel Swar m activateln: self];
[di spl aySchedul e activateln: self];

return [self getActivity];

It isimportant to recognize that theact i vat el n methods of each class within the hierarchy fulfill a
vital role in synchronizing the schedules of the levels. These are typically written so that, first, the
activateln method of the superclassis executed. Then the schedules of the current class are told to
activate themselvesin the current context, and then theact i vat el n method of the next lower level
Swarmistold to activate itself.

Theact i vat el n: method returns an object of class Activity, which is a sufficiently important concept
that it is treated on its own in the next section.

9.5. What is an Activity?

Theactivity classisavita element of the Swarm approach. It's fundamental purposeisto mergeall the
subjective points of view of agents at different levelsinto a single objective time sequence. Somehow, the
name Act i vi ty does not seem powerful enough. Perhaps perhapsit would be better called an

Act i vi t yManager AndI nt egr at or , OF something grand. Of course, on a practical level, it respondsto
messages liker un, st op, next ,t er m nat e, and so forth.

70

Chapter 9. Building Schedules

If you have an object subclassed from Acti vi ty, you can tell it to make the simulation run, stop,
terminate, or respond to a number of other commands. Swarm programs are designed hierarchically, so
that if you tell an activity from one level to stop, you stop al lower levels of the simulation as well. Many
Swarm programmers do not come face-to-face with the Activity class because it sits behind the scenes.
The control panel, in particular, allows users to start and stop their ssimulations, and all the while the
Activity class objects are behind the scenes, doing the actual work.

Itiseasy to "grab" the activity object of a given Swarm. The method which returnsthe activity of a
Swarmisget Acti vi t y. If one needsto tell the object model Swarm to stop, for example, then the
command:

[[model Swar m get Activity] stop];

will get the job done. Thisfirst grabs that object’s activity, and tells that activity to stop. To make that
object start up again, it can be sent ther un message.

The ability to start, stop, and terminate an activity is particularly handy when designing a program that
repeats a Swarm experiment. These methods are used in the Swarm tutoria’s " SimpleExperBug2" model
aswell as the "RepeatingHeatbugs" application that is available at the Swarm ftp site.

9.6. Dynamic Scheduling

The schedules described so far are of a particular static sort. Each agent, or each agent in alist, istold to
execute some action at some particular time. What if the simulation is designed so that the activation of a
certain agent is conditional on events within the model? The need to create a flexible schedule givesrise
to an important feature of Swarm that is referred to as a dynamic schedule. The Mousetrap application
isafully worked out example that shows the power of dynamic scheduling.

The idea behind dynamic scheduling is so simple that one can be in danger of confusing it by explaining
it too much. Simply put, the strategy is as follows. First, create an object from the Swarm schedul e class.
Don’t put any actionsin the schedule, just let it sit therein the bui | dAct i ons method, doing nothing
(yet). Second, write amethod that tells that schedule to add things that are to be executed at particul ar
times. It isas simple as that.

The concept is quite simple, but, as the Mousetrap application illustrates, it can be quite complicated in
the implementation. The simplest possible dynamic scheduling project of which we are aware was made
available in the package Swarmfest99-demos (in the swarm ftp site, it should be available in the
users-cont ri b/ anar chy section). The applicationis called simpleObserverBug-growth. It begins
with the familiar exercise from the Swarm tutorial and then models the regeneration of the food supply.

Inthe simpleObserverBug-growth example, the model swar m mfile hasal of the usual ingredients.
The dynamic scheduleis created inthe bui | dAct i ons method, like so:

growt hSchedul e = [Schedul e createBegin: self];

71

Chapter 9. Building Schedules

[growt hSchedul e set AutoDrop: 1];
growt hSchedul e = [growt hSchedul e creat eEnd];

The gr omt hSchedul eis created and the set Aut oDr op feature is set, so that actions are executed
one time and then dropped from the gr owt hSchedul e. Otherwise, once we add an action into the
schedule, it will repeat itself forever.

In the mdel swar m m one also finds the method that has the power to add items to the schedule. It is
caled schedul eG owt hAt X: Y: . When this method is called, it grows morefood at a particular spot.

schedul eGowm hAt X: (int)x Y: (int)y

long tine;
tinme=[[self getActivity] getCurrentTine];
[growt hSchedul e at: tine+growt hinterval
createActionTo: foodSpace
nessage: MputValue:atX Y:):1:x:y];
return self;

}

Asyou can see, this method retrieves the current time, and then it tells the growth schedule to create an
action to the foodspace at atime in the future. And the ungainly M) notation appears, which we
described in greater detail in Section 9.2. Note that the putValue:atX:Y: method requires 3 integer
parameters, which represent the value being put in the space and the two coordinates.

The preceeding steps are the essence of creating the dynamic schedule. The empty scheduleis created,
and amethod is created that can tell that schedule to add an item. The only remaining step isto design
the simulation so that this method actually gets executed during the course of the program. That means
that some class has to have a method that can tell the nodel Swar mto executeits

schedul eGr owt hAt X: Y: method. In this example, it is done by making the f oodSpac e object
aware of the nodel Swar mand the, when a piece of food is consumed, the dynamic scheduling process
is put to use. From the FoodSpace. mclass, here is the relevant method:

- eatX (int)x Y: (int)y

{
[self putValue: 0 atX: x Y: y];
[nodel schedul eGowt hAtX: x Y: y];
return self;

}

72

Chapter 10. Working with Lists

Programmers who have worked primarily in non-object-oriented languages like Fortran, Pascal, or C, are
sometimes perplexed at the way Swarm programs manage repetitive tasks. While thereis no hard rule
that iterative chores have to be managed in a certain way, one will find afairly common approach that
uses a Swarm object called Li st . Since this usage is both widespread in Swarm and different from the
usual strategy in other languages, it deserves some discussion.

10.1. The Li st Class

This section is not intended as a comprehensive review of Swarm'’s Collectionslibrary. That job isleft to
alater chapter. Instead, the purpose of this section is to introduce some popular usages of the Li st class
and discuss the implications for simulation modeling.

The concept of a"linked list" may be familiar to C programmers. The motivating idea of alinked list is
that one can develop a collection of entities by defining a series of structures that refer to each other. The
first structure contains not only the information needed to describe a single entity a pointer to the next
entity in the series. A linked list has a mgjor advantage that it is flexible. Unlike an array that is allocated
to alow N members, alinked list can grow indefinitely as members are added and it can shrink as
members are deleted. The complicated problem is to make sure that the structures always correctly refer
to each other as entities are added and removed.

The Swarm Collections library provides a protocol called Li st that provides the swarm program with all
of the benefits of alinked list and none of the hassles. The usage of Li st objects seemsrather informal. A
list can be told to add an object at the end or the beginning, or to retrieve an object that isin a certain
positionin alist. Working together with another Swarm protocol, the 1 ndex protocol, theLi st object has
agreat deal of power and many uses. It should be noted that Swarm provides other, more structured
"container" classes aswell (array, o der edset , Map, and so forth), but atreatment of them isleft to alater
chapter.

10.2. Basic Li st Syntax

A listis created by making acall to the Li st class object. Since there are probably not going to be any
creation-time variables to set, the method used istypically create, rather than a

cr eat eBegi n/cr eat eEnd pair. In order to use method calls against the Li st object, one can import
the header file col I ecti ons. h from the Swarm library, and then this command will create aLi st object:

id nameCOf Soreli st ;
nameOf SonelLi st = [List create: self];

73

Chapter 10. Working with Lists

Recall from the discussion of object creationthat sel f refersto the memory zonein which thelist is
created. Thisis appropriatein a swar mor Gul Swar minstance, while other classes would use| sel f
get zone] inplaceof sel f.

Once alist object exists, it can carry out many instructions. Inthe Li st protocol, methods that can add
and remove either thefirst or last object in alist are defined. For example, to add an object called f r ed
at theend of alist called | i st Of Dogs, one could write:

[IistOfDogs addLast: fred];

and, if it were necessary to remove the last object in the list, one could write:

[1istOfDogs renopvelast];

The object of typeLi st isablenot only to carry out theaddFi r st : ,addLast : ,renoveFirst:,
andr enovelast : methods, it can aso inherits methods from the col | ecti ons protocol. Some of the
useful methodsin the col I ecti ons protocol are:

- get Count : Usethisto find out how many items are already in thelist
- begi n: aZone: Thiscreatesan i ndex object that can be used to traverse thislist.

« renove: aMenber . Thiswill search through alist to find aMember and it will remove that object
(and return it).

- renmoveAl | : Thistake all elementsout of thelist, but it will not destroy thelist or the elementsin the
list.

- del et eAl | : Be careful: this removes the elements from memory asit clearsthelist

Lists have many usesin Swarm projects. The following sections discuss them, in turn. First, lists are used
to manage collections of objects and schedule their activitiesin the model swarm layer of asimulation.
Second, lists are used to pass information back and forth between levels of asimulation. Third, lists can
be used by individual agentsto keep track of their experiences and manage their information

10.3. Lists: Managing Objects in the Model Swarm

Inthe swarmapps package, one can find the Hello World example exercises. This exercise providesa
good example of the way in which lists are used to organize the agents in amodel swarm. In section
three of the Hello World package, alist of people called pp/ Li st iscreated. Here is a skeleton

74

Chapter 10. Working with Lists

showing the important commands that create and use the Li st protocol in the model swarm level. The
fileis called ppl Mbdel Swarm m

@ npl enent ati on Ppl Model Swar m
bui | dObj ect s
/...

/1 build the list to keep track of the ppl
ppl List = [List create: [self getZone]];

for (inci = 0; inci < nunPpl; inci++)
{

Person * person;

id nane;

/] allocate nmenory for a tenporary person

person = [Person createBegin: [self getZone]];
/...

[person setWorld: pplList Room room Party: self];
/...

person = [person createEnd];

/1 add the person to the list of people
[ppl Li st addLast: person];

}
}
- bui |l dActi ons
{
/...
nodel Actions createActionFor Each: pplList nessage: Mstep)];
Il
}

Asin most Swarm examples, the list is created inthe bui | dObj ect s method. TheLi st classobject is
a"factory object," it can create instances that can answer to the Li st protocol. In this case, thelist is
caled ppl Li st .

In order to instruct the factory object Li st to manufacture an object that acts like aLi st , onewould
ordinarily have to import the col I ecti ons. h header file. However, asin many Swarm examples, the

col ections. h file has already been included in afile that has been included in thisfile, and so an explicit
import statement is not needed.

After an object that respondsto the Li st protocol is created, then objects can be added onto that list. In
this example, after pp/ Li st iscreated, thenthebui | dCbj ect s method proceedsinto afor loop that
creates the people objects. At the end of that loop, each personis added to the pp/ Li st by the
command:

[ppl Li st addLast: person];

75

Chapter 10. Working with Lists

The Swarm libraries take care of allocating memory and al the other details.

Oncethislist of peopleis created, what happens? In this case, the list of people becomes the central
organizing element of actions that are to be scheduled. The object nodel Act i ons istold to go through
the peoplelist, one at atime, and cause each person to carry out its st ep method. The ins-and-outs of
activity and schedule design are discussed elsewhere. Thiscr eat eAct i onFor Each method works
because the target is a Swarm collection item, the pp! Li st , and the Swarm library knows how to
traverse through the list of people.

10.4. Lists: Passing Information Among Levels in a
Swarm Model

Simplified scheduling is not the only usage for lists. It is equally important that list objects can be used to
quickly communicate agreat deal of information between objects. Thisis done by creating methods that
can get alist and pass it to another object.

In the Ppl Model swar m mfile, for example, one finds this method:

- get Ppl Li st
{
return ppl List;

}

When another object needs alist of people, the Ppl Model Swar mis able to supply it.

This design is extremely convenient when it comes time to consider the observer swarm level of the
simulation. The ppl tbser ver swar m mfile gets the list of people from the Ppl Model swar mand uses that list
to collect datain order to construct graphs. Consider the avgFr i endG aph object, for example, which
charts the average number of friends per person. Thebui | dObj ect s section of Ppl oser ver Swarm m
has this command:

[avgFri endG aph creat eAver ageSequence: "avgNunfri ends"
wi t hFeedFrom [ppl Model Swar m get Ppl Li st]
andSel ector: M get Nunfriends)];

Themethod cr eat eAver ageSequence: wi t hFeedFr om andSel ect or isequipped to takea
list of objects, ask each one to supply a piece of data (the get Nunfr i ends returns an integer from the
person object), and builds an average that is plotted. This powerful, easy method of passing information
for presentation is possible because the various Swarm libraries are designed to work together. While the
user could certainly ignoretheLi st protocol and design her own setup for managing collections, doing
so would indeed be costly because one would be forced to forfeit the convenient features of the other
libraries that can handle Swarm Li st objects.

76

Chapter 10. Working with Lists

The ability to pass alist to the observer swarm in order to create agraph isjust one benefit of Swarm

Li st protocol. Note in the Ppl Model swar m example that when people are created, one of the set messages
(set Wr | d: Room Party:)telstheindividual personinwhichlist it is currently residing. When
that method executes, it sets the value of an instance variable called pp! Pr esent inside the person.
(Look at the code in per son. mto verify it!) Since each individual person hasthat list available, it can ask
the list for information. For example, to find out how many other people are still in the list, the Per son
object can do this:

[pp! Present getCount]-1

which returns an integer equal to the number of objectsinthe pp/ Li st minus 1. The per son object
does not have to do anything to update the ppl Pr esent variableto reflect current conditions. Since the
ppl Present variableis actually a pointer to the ppl/ Li st asit currently existsin the ppl Model Swar m
thisis aways "up to date". Some additional usages that the per son class might include requirethe
creation of 1 ndex objects, which are introduced in the next section.

10.5. Lists: Organizing Repetitive Chores inside
Objects

Inthe Hello World example, each instance of the per son classis aware of the pp/ Li st that existsin
the Ppl Model swar m Inside the individual person, the name used to refer to that list is ppl Present .
Because ppl Pr esent refersto an object that conformsto the Li st protocol, and al Li st objectsfollow
the col I ecti ons protocol, then a number of interesting features can be put to use.

Suppose the we want to have the person go through the list of peoplein the list and make anew list that
includes all of the peoplein that list who have alot of friends, say more than 3. In order to carry this out,
code has to be designed to traverse through the ppl Pr esent list, ask each one how many friend it has,
and then if that person has more than 3, then add that person to another list.

One of the most interesting protocolsin Swarm isthe | ndex protocol. In mathematics, one might have
seen avariable X, and the index variablei can range from 1 through the number of possible values. In
Swarm, | ndex means much more than that. A Swarm 1 ndex isa"living, breathing" object that can be
moved around in alist, and the 1 ndex can & so respond to requests for information.

For new Swarm users, the most puzzling thing about the usage of I ndex is the creation process. | ndex
objects are not created with the standard swarm cr eat eBegi n/cr eat eEnd pair. Instead, any object
fromthe col 1 ecti ons class, such asali st, can spawn an index by using the begi n: method. In one
step, thebegi n: method will create an object that conformsto the 1 ndex protocol and positions that
index object before the first element of the collection. Here is an example of how the pp/ Present list
might create an index called pp/ | ndex:

id <l ndex> pplIndex;

7

Chapter 10. Working with Lists

ppl I ndex = [ppl Present begin: [self getZone]];

Thefirst line declares the instance variable that will be the index. It is not necessary to include the
protocol name <1 ndex > in the declaration, so it might as well have beenjustid ppl I ndex. Some
programmers prefer to include the extrainformation in the declaration because it clarifies the code and
also may help to catch programming mistakes.

After it iscreated, the pp/ | ndex can respond to messages. Many of the methods that 1 ndex objects can
carry out will do two things at the same time: the 1 ndex will be positioned and the identity of the object at
which theindex currently resides will be returned. For example, consider this code that sets avariable
caled el enent Fronli st equa to the next one, as provided by the index:

el ement FronLi st = [ppl I ndex next];

When it isfirst created, the pp/ | ndex is positioned at the edge of the collection, just before the first
object in the collection. If we want the index to move to the next object, and give us a pointer to the next
object intheligt, it is donewith that command. (Asin C, collections are numbered beginning with the
number zero).

It iscommon in Swarm examplesto use the next method of the 1 ndex object in awhile statement that
cycles through the elements of alist. Hereis a bit of code that would go through the list of peoplein
Hello World and ask each one how many friendsit has. And, if the number is larger than 3, then that
object isaddedto alist popul ar Peop! e (which we assume is created somewhere else in the code).

id <lIndex> pplIndex = nil;
id element = nil;
int nunmber O Fri ends;

ppl I ndex = [ppl Present begin: [self getZone]];
while ((element = [pplIndex next]) !'= nil)

{
nunber O Fri ends = [el enent get Nunfri ends];
if (nunmber O Friends > 3)
[popul ar Peopl e addLast: el enent];

}
[i ndex drop];

This example uses a number of convenient features from the C language. One is that the conditions
evaluated in logical statements are actually calculated. Hence, the conditional in the while statement
causes the ppl I ndex to moveto the next element, in the process setting the variable element equal to
that object. Asaresult, inside the curly braces, the variable element can be used to refer to that particular
element from thelist. In this case, that object is asked to give us its number of friends.

78

Chapter 10. Working with Lists

Theindex object, pp! | ndex playsavita rolein thisexample. The index index is accessed inside the
whi | e statement so that we can cycle through the elementsin alist. The while statement in the previous
example will begin with the first element of the list, and one-by-oneit will movethrough the pp/ Li st .
What happens when it gets to the end? When it is positioned at the last element of the list, then the

[pp! I ndex next] command will return ni I . Thelogical condition is set so that the program exits the
while loop at that point.

If one inspects a number of Swarm examples, one will find the while loop is constructed in slightly
different ways, but the effect is the same. For example, the logical condition is sometimes written simply
as ([pp! I ndex next]). Thisisallowed because of the convention that, aslong as this does not return ni [,
then the while loop will continue. If that approach is used, instead of using element in the while loop, we
replace all occurrences of element with [i ndex get], like so:

id <Index> ppl I ndex =nil;
int nunmber O Fri ends;

ppl I ndex = [ppl Present begin: [self getZone]];
while (([ppl!lndex next]))

{
nunber O Friends = [[ppl I ndex get] getNunfriends];
if (nunmber O Friends > 3)
[popul ar Peopl e addLast: [pplIndex get]];

}
[pp! I ndex drop];

This last change would cause a performance penalty because the pp/ | ndex object is asked to evaluate
and return on object three times.

It is hard to overstate the value of the 1 ndex protocol in working with Swarm lists. One especially
important feature of 1 ndex isthat it can be used to manage itemsin thelist itself. That is, the index can
do morethan just point to objects. If an index is positioned at an object, and one wants to cut that object
from the list, then the command [pp! I ndex renove] will get the job done. Theindex will automatically
reorient itself, so that the next time the index receivesthe next instruction, it will point to the next valid
member of thelist.

A
a"’fWatch out for nil objects when using "while" loops

If you loop through a list, checking only that the index is not positioned over a nil object, your loop
might end before you expect if there is a nil object in your list.

A variable of type id might be unintialized, or nil. Suppose that, through intention or error, an object
per sonl hasbeen set tonil, asin

79

Chapter 10. Working with Lists

personl=nil;

This could happen if, for example, the object referred to by the name personl has been dropped, and the
user is careful to set the name equal to nil in order to be safe.

Now suppose the program adds personl to alist, and other (nonnil) objects are added as well. If the
program creates an index and tries to loop through thislist with the while construction described above,
there will be amajor problem. The loop will be executed, until the index object arrives at personl. Since
personlisequa to nil, then [pplindex next] will return nil, and the programwill exit the while list and
continue with the next commands. If there is a danger that some of the objectsin alist might be nil, and
the programmer wants the loop to continue after " skipping over" the nil objects, then the best approachis
afor loop that takes advantage of some symbols defined in the Swarm libraries. For each object in alist,
the Index protocol’s method get Loc will tell us whether the index is positioned in thelist ona
"Member." If the [index next] message causes the index to "step off the last” object in alist, then the
return from that message is "End."

{

id <Index> pplIndex = [ppl Present begin: aZone];
id nenber;
for (menber = [pplIndex next]; [ppllndex getLoc] == Menber; menber = [pplIndex next])

{

/] do sonething with nenber ...

}
[index drop];

}

When it is created, the index is automatically positioned at the Start. The first argument in the for
statement positions the index on the first member of the collection. The second argument says that the for
loop continues as long as the returned value from get Loc is equal to the symbol Member. And after the
loop is compl ete, the third argument says that the index is supposed to step to the next object in the list.

<
s Be sure to drop index objects when you are finished with them

It isimportant to dr op the instance of | ndex when its use is completed. That's accomplished by the
[ppl I ndex drop]; command in the last example. If thisis forgotten, the index will continue to occupy
memory and waste resources.

80

Chapter 11. Checking on a Swarm’s
progress: The Observer

11.1. Monitoring a Swarm

When a Swarm program is running in the GUI mode, what the user seesis controlled by the top level
Swarm that we often call the observer swarm. The observer swarm adopts the cul swar m protocol, which
means that it has all of the features of a Swarm plus some "optional added extras.” The file that contains
the source that controls the user interface for a specific project may be called smply coserver Swarm m In
many examples, authors have customized the name of the file to include the name of their project, asin
Heat bugCObser ver Swar m m OF For est Mbdel Swar m m

The most prominent of the extrafeatures of the observer swarm is the control panel. The control panel is
the familiar set of buttons that can Start and Stop a swarm model. The control panel also can "step” the
simulation through its paces one time-unit at-at-time using the Next button. The Save button on the
control panel isintended to save the window positions of objects that are able to do so.

Apart from the control panel, what the user sees at run-time is completely dependent on the particular
examplethat is being considered. It is probably safe to say, however, that if one stays within the Swarm
library, without adding external support from the Graph library or other toolkits, then there two
especially important kinds of display objects that can be created in cbser ver Swar m m These two are:

« The zoonRast er. Injust about any of the common swarm applications, there is some sense of
geometry or spatial position. The zoonRast er graphisthetool that is used to represent the positioning
of agents and other objectsin that space.

« The Data Display Graphs.For the visual presentation of summary information, Swarm provides a set
of tools for presenting information in graphic format. Two of the most common sorts are the
histogram, which shows the relative frequency of various values occurring in a stream of data, and a
line graph which displays the changes over time in one or more variables as a simulation progresses.
These capabilities are provided by the Swarm protocolSEzDi st ri buti on and EzGr aph, respectively.

The following sections discuss the achitecture of these two classes of displaysin greater depth. Most of
the examples for discussion are taken from the Arborgames code provided by Melissa Savage.

11.2. Making a clickable zoonRast er

There is no doubt that one of the most impressive aspects of a Swarm presentation is the visualy
intriguing movement of agents on alandscape. The ability to stop a simulation from the control panel

81

Chapter 11. Checking on a Swvarm’s progress. The Observer

and then click on objects, open up displaysthat reveal their internal variables and alow them to be
changed, is one of the main strengths of the Swarm library.

In order to introduce the way in which these zoonRast er displays are created, we have to introduce a
number of inter-linked Swarm toolkit items. Before we are done, we have to talk about objects created
using the space library, aswell as objectsfrom the gui library. Inthe Arborgames simulation, thereisa
set of standard examplesthat quite nicely illustrate the vital steps. For emphasis, we now consider these
elementsindividually.

1. Create acol or vap. Swarm was first developed for the Unix operating system. Programmers who

2.

have worked in X will probably already know that the X server offersalonglist of possible colors.
If we want to access those colors, we can build a col or Map 0bject in Swarm. After it is defined, and
commands are executed which draw on the screen, then the col or Map 0Object will control which
colorsare displayed.

Hereis an excerpt from the file For est tbser ver swar m min which an object, called col or map, is
created and then told to remember that the numbers 25, 26,and 27 refer to the colors
"white","LightCyanl" and "PaleTurquoise" which is defined deep in the bowels of the video display.

colormap = [Colornap create: [self getZone]];

[colormap setColor: 25 ToNane: "white"];
[col ormap setCol or: 26 ToName: "LightCyanl"];
[col ormap setColor: 27 ToNane: "Pal eTurquoise"];

Col or MapS can have fancier items. For example, colors need not be referred to by simple names.
Rather, each color can be referred to in a numerical format. All colors can be referred to by the
intensity of their red, blue, and green components, for example. If one needs to assign the many
available shades of red to the numbers between 100 and 150, it can easily be done with commands
that use the RGB format. There is an example of such a use of the col or Map protocol in the
heatbugs source code.

Create azoonRast er . A ZoonRast er isavisual placeholder, a rectangular entity of a certain size.
After trimming out some of the detail, the steps that create the zoonRast er called f or est Rast er
in Arborgames look like this:

forest Raster = [ZoonRaster createBegin: [self getZone]];
SET_W NDOW GEOMETRY_RECORD_NAME (forestRaster);
forestRaster = [forestRaster createEnd];

[forestRaster setCol ornap: col ornap];

[forestRaster setZoonFactor: 4];

[forestRaster setWdth: [forestMdel Swarm get Wrl dSi ze]
Hei ght: [forestMdel Swarm get Wrl dSi ze]];

[forestRaster setWndowTitle: "The Forest"];

[forestRaster pack];

82

Chapter 11. Checking on a Swvarm’s progress. The Observer

This code should be viewed as foundation-building. The zoonRast er 0Object is created, and the macro
SET_W NDOW GEOVETRY_RECORD_NAME is executed. This means that, when the user clicks
save on the control panel, the window position of the f or est Rast er object will be savedin a
filein the user’s account.

To briefly summarize the effect of the other commands, we note the following. The fourth line tells
the new raster object to use the colormap we just created. The fifth line controls the magnification of
the display, which in this caseis 4. The sixth line asksthe f or est Mbdel Swar mobject to report
back the horizontal and vertical dimensions of the grid on which trees exist and then uses those to
set the width and height of the zoonRast er object’s display. The eighth line gives the display window
aname and the last ling, which tellsthe f or est Rast er to pack itself, causes the display to be
initialized according to the settings we just provided.

. Map a Swarm Space object onto theoonRast er . By itself, azoonRast er isjust a nice looking set
of edges around a blank background. In order to display thingsinside that window, we need to create
a connection between the agents who live in the model swarm (and lower level swarms) and then
display them in the observer swarm. Thisis done most commonly by telling each agent that it lives
in a Swarm object known as aai d2d. As the agent goes through its lifetime, one of its activitiesis
to put itself at a position in the grid and then (possibly) erase itself from the old spot and put itself in
the new spot.

The Swarm protocol oj ect 2dDi spl ay can handle the work of drawing the positions of agentsin a
Gi d2d object on azoonRast er. Inthe Arborgames example, the f or est Rast er isused by an
object called t r eeDi spl ay which connectsthe agentsin the ai d2d to the graphical display.

treeDisplay = [Obj ect2dDi spl ay createBegin: [self getZone]];
treeDi splay setDisplayWdget: forestRaster];

treeDi splay setDiscrete2dToDi spl ay:

[forest Model Swar m get TheForest] getTreeGid]];

treeDi spl ay set Qbj ectCol | ection:

[forest Model Swar m get TheForest] getTreelist]];

treeDi splay setDi splayMessage: MdrawSel fOn:)];

treeDisplay = [treeDi splay createEnd];

This exampleis slightly more complicated than most, because the ai d2d object is not retrieved
directly from f or est Mbdel Swar m, but rather from another object that is defined in the
forest Mbdel Swar m. Except for that wrinkle, thisis a standard example. The oj ect 2dDi spl ay
protocol istold to usethe f or est Rast er asits"display widget." It is necessary to tell the

t reeDi spl ay which ari d2d to use, and this chore is accomplished by the setDiscrete2dDisplay
command.

Why theset Obj ect Col | ect i on messageandtheset Di spl ayMessage areusedis
interesting and important. The j ect 2dDi spl ay protocol has a method called di spl ay, which can
be put in a schedule by the user. When the display method is executed, the t r eeDi spl ay (sinceit
follows the aj ect 2dDi spl ay protocol) will send each of the agent-objectsin the i d2d a message
telling it to draw itself inthe f or est Rast er . How doesit tell the object to draw itself? Wetell it

83

Chapter 11. Checking on a Swvarm’s progress. The Observer

how by passing it the selector for the agent-object’'sdr awSel f On: method. Each agent must be
able to respond to a message of this sort:

[anAgent drawSel f On: aRaster];

The program will crash if each agent that is positioned in the ari d2d is not able to respond to
drawSel f On: .

The message set oj ect Col | ection: [[forest Model Swar m get TheForest] get TreeList]] iSnot
strictly necessary and the program will run without it. It may not run so quickly, however. Without
thiscommand, the t r eeDi spl ay will respondto thedi spl ay message by searching in each
possible position of the ai d2d and sending each object it findsthe dr awSel f On: message. If the
gridislarge relative to the number of agents, then this might be avery slow process. The

set Obj ect Col | ect i on method eliminates the need for t r eeDi spl ay to search through the
whole grid. When the object collection is set, thenthe t r eeDi spl ay will simply go through the
list of objects and tell each one to display itself.

4, Tell the zoonrast er Where to Send Mouse ClicksA zoonRast er object is highly self-aware. If you
stop asimulation and right-click on an object, you may see a probe display pop up. That does not
happen by magic, of course. It is necessary to tell the raster that, when thereis a certain kind of
click, that it is supposed to pass that click to some other object that knows what to do with it. That's
why thereisacommand likethisinthebui | dObj ect s phase:

[forestRaster setButton: ButtonR ght
Cient: treeD splay
Message: M nmakeProbeAt X Y:)];

Thet reeDi spl ay istold to make a probe for the object that exists at a particular point in the grid.

5. Schedule the DisplayThisis one of the aspects of Swarm that could use some standardization. In
the schedule, one generally includes steps that erase the raster, then the oj ect 2dbi spl ay istold to
update itself by the di spl ay command, and then that display is drawn to the screen by telling the
ZoonRaster todr awSel f .

In asimple model, onein which we only have one zoonRast er to update, then the schedule could be
assimple. Inthebui | dAct i ons part of the code, one could create an Act i onG oup likethis:

di spl ayActions = [ActionGoup create: self];

[di spl ayActions createActionTo: forestRaster nessage: Merase)];

[di spl ayActions createActionTo: treeDisplay nessage: Mdisplay)];

[di spl ayActions createActionTo: forestRaster nessage: MdrawSel f)];
(Of course, that action group has to be put into a schedule, which will probably executeit at each
time point.) Thebui | dAct i ons method in arborgames is abit more complicated than that
since a large number of displays are managed.

6. Make sure the Agents Put Themselves in the Grid!Inside the code that creates the individual
agents who are to be drawn on the grid, one must be careful to accomplish two things. First, the

Chapter 11. Checking on a Swvarm’s progress. The Observer

dr awSel f On: method must be created. Second, if one wantsto have a clickable zoonRast er that
alows agents to be probed, it is also vital to have the agents report their positions.

Itisfairly standard in Swarm modelsto manage this by creating aa i d2d object in the model swarm
level and then, when an agent is created, use aset Wr | d method to notify the agent whereit lives.
In heatbugs, for example, each heatbug hasast ep method that controls how it searches for heat
and movesto find a better spot. When it has decided where to go, the heatbug puts "nil" at it spot in
the grid where it used to be and then it putsitself at the new coordinates. Here is the relevant code
from Heat bug. mi

[world putCbject: nil atX: x Y: y];
[world putoject: self atX newX Y: newY];

Inthe Arborgames example, the trees don’t consciously move themselves. Rather, they are created
and destroyed according to a set of rules that put them in aspot for awhile. When atreeis created, it
is added to the grid with this command that is in the For est . mfile:

- addTree: aTree atX (int) xVal Y: (int) yVal
{

[treeList addFirst: aTree];
[treeGid putCbject: aTree atX: xVal Y: yVal];
return self;

}

Trees don’'t move (so far as we know), so we only need to update this tree’s position arises when the
tree dies. The Forest . mfile creates a class of methods common to the different kinds of forests, and
then the subclasses like Mat ur eFor est are created to provide additional detail. There are methods that
remove atree from the simulation and take it off the grid. The trees that are supposed to die are
added to aSwarm list called the exi t Q. For each timestep, the forest tells each kind of tree to do its
st ep method, which adds treesto the exi t Qlist, and then the forest’s st ep method removes
those trees from the grid. In the mat ur eFor est . mfile,

- step
{

id aTree, index;
[treeList forEach: Mstep)];

index = [exitQ begin: [self getZone]];

while((aTree = [index next]))

{

treeList renove: aTree];

treeGid putObject: nil atX [aTree getX Y: [aTree getVY]];
i ndex renove];

aTree drop];

[
[
[
[

}
[i ndex drop];
return self;

85

Chapter 11. Checking on a Swvarm’s progress. The Observer

11.3. Displaying Results in Graphs

The most commonly used graphs in Swarm are histograms, which display the frequency distribution of a
variable, and line plots, which show changes over timein real-valued numbers. There are some little
details that arise in some applications, but for the most part creating graphsis easy.

The Swarm protocol that can create line plotsis called Eza aph. The essential steps require the user to
create a graph object, and optionally to assign labels for various display attributes. For example,
returning to the Arborgames simulation, one can create a graph showing the numbers of trees of
various sorts. Thefirst step isto create the graph object, in this case called pop G- aph.

popGaph = [EZG aph createBegin: [self getZone]];
SET_W NDOW GEOVETRY_RECORD_NAME (popGr aph) ;

[popG aph setTitle: "population"];

[popG aph set Axi sLabel sX: "tine" Y: "population"];
popGaph = [popG aph creat eEnd];

After the Eza aph object isin existence, then it can be instructed to prepare itself to plot somelines. A
stream of numbersis thought of as a sequence, and internal to the Swarm library thereis an object type
called sequence that is used by the graph tools to keep track of the numbersthey are to present.

When the graph object is told to create the sequence, it can be told to formulate a summary statistic and
plot it. Inthe Heatbugs simulation, the aim is to plot a summary of the unhappiness of al bugs. The
average level of unhappinessof all bugsis the chosen indicator. Here is a code excerpt that shows how an
object called unhappy G- aph is told to create a sequence for plotting:

[unhappyG aph creat eAver ageSequence: "unhappi ness"
wi t hFeedFrom [heat bugMbdel Swar m get Heat bugLi st]
andSel ector: M get Unhappi ness)];

Thisusesthecr eat eAver ageSequence: wi t hFeedFr om andSel ect or method. Note that the
sequenceis assigned the name "unhappiness'. The quotation marks are needed because the name of the
sequenceis a character string. The unhappy G aph istold to take datafrom the list of bugs, whichis
found by asking the heat bugMbdel Swar mto get the list. Each bug in the list responds to a method
get Unhappi ness. The combined effect of these elementsis to create the sequence which will collect
the average values.

We hasten to point out that not all sequences need be averages. Output from individual objects can be
plotted as well. For an example, we return to the Arborgames eza aph object called popG-aph. The
population graph is intended to show how numbersfor each sort of tree. Thereisa Swarm list of all
speciescaled speci esLi st . Thefollowing codeiterates through the list of al species and tells the
popG aph to create a sequence for each one.

for (i = 0; i < speciesNunber; i++)

{

86

Chapter 11. Checking on a Swvarm’s progress. The Observer

id aSpeci es;
aSpecies = [speciesList atOffset: i];
[popG aph createSequence: [aSpecies get Speci esNane]
wi t hFeedFrom aSpecies andSel ector: Mget Count)];

}

Each speciesis able to give its name (respond to get Speci esNane) and provide a count of the
number of trees (respond to get Count). If some kind of mistake occurs, say a different kind of object
isadded into the speci esLi st , then the program will crash during the run (and there probably will
also be a compiler warning).

The work to this point has created the graph object, and told it what to graph, but it does not cause the
graph to be presented as the simulation runs. In order to see the plots, the commands have to be part of
the observerSwarm’s scheduled activity. Asit turns out, an Eza aph has a very simple method called

st ep that can do the necessary work, so somewhereinthebui | dAct i ons method, acommand such
asthisisrequired:

[di spl ayActions createActionTo: popG aph nessage: Mstep)];

Thisis often part of an Act i onG oup that is scheduled to update all graphs and zoonRast er s.

87

Chapter 12. Probing and Displaying the
Contents of Swarm Objects

Probes allow the user to dynamically interact with the objectsin their smulation. As the simulation
progresses, the user can observe and adjust the values of the instance variables. Furthermore, the user can
cause objects to execute their methods, taking parameter values or input specified by the user during the
simulation. generating method calls. The main appeal of this approach is that these interactions are not
hardwired into the program code, but occur due to user-generated requests. This interactive processis
managed by objects and methods that are, for the most part, hidden from the user. Still, the interaction
can be customized easily.

12.1. What's a Probe?

Anyonewho has run Heatbugs (or any of the demo programs, for that matter) has seen a probe display.
It isarectangular window that has rowswhich list attributes of the object being displayed. The data being
displayed may be gathered from a high level object, such as the observer swarm or the model swarm, or
it may be collected from an individual agent. Almost all Swarm projects have a probe display for the
observer and model swarms because starting values for the parameters can be set with those displays.
Probe displaysfor individual agents are typically created during a run by user interaction with the Swarm
program (for example, by clicking on a"clickable zoonrast er ", as discussed in the previous section).

The key to this capability isthe probe. A probeis an object that can gather information from one object
and relay it to other objects, including displays on the screen. Swarm provides two kinds of probes. The
Swarm class var Probe extracts the value of a specific instance variable from an object. The second kind
of probeis provided by the vessagePr obe class. The vessageProbe. A message probe gives the user the
ability to access methods inside an object—to send messages to it, in other words:

« Var Probe. Probesan instance variable. A variable probe appears to the user in a window with the name
of the instance variable and a space that may display the value of the variable (or show ablank or
"nil"). Variable probes can display the values of integers and floating point numbers, as well as
information about the identity of object variables. Variable probes do not display the contents of C
arrays or structs.

« MessageProbe . Probes a method. In the same window where the Variable Probe is shown, there may be
"buttons" that have the names of methods on them. These buttons will be executed when they are
depressed. If amethod takes arguments, there will be spacesin which the user can enter them. This
can cause agents to change their course of action during a simulation run.

88

Chapter 12. Probing and Displaying the Contents of Swarm Objects

Figure 12-1. Combining twovar Probe and onemessagePr obeS ON apr obeDi spl ay

M essageProbe

There are two main uses for probes: they can be fed into data-collection objects and serve asinterfaces to
the objects about which datais being collected (thus keeping the data-collection objects as general as
possible) - the aver ager class, for example, directly subclasses MvessagePr obe. Or, they can be used in
order to generate a GUI to theindividual objectsin the simulation (the more common usage).

Thereisamiddlie-level object between the probe display that appears on the screen and the individual
probes. It isthe Probenap. A probe map is aset that collects up all of the probesfor a given object. The
probe display does not manage individual probes, but rather it manages probe maps. Aswe shall see,
then, most of the detail in tailoring probe displays ends up in steps that add or remove probes from the
probe map.

12.2. Managing Probe Displays

The appearance of the probe display can be custom-tailored by the programmer. In order to understand
the effect of customization, it is probably best to begin with an understanding of the "default" appearance.

89

Chapter 12. Probing and Displaying the Contents of Swvarm Objects

The default probe displays for asimulation can be created quite easily. In the Heat bugbser ver Swarm m
file, for example, one finds these lines:

CREATE_ARCHI VED PROBE DI SPLAY (heat bughbdel Swar m ;
CREATE_ARCHI VED_PROBE_DI SPLAY (sel f);

These are macro commands that cause actionsinside the Swarm kernel to create the default probe
displays for the model swarm and observer swarm, respectively. That is all that is required to create the
default probe displays.

It might be agood exercise for the user to check this for herself. Leave those macro linesin

Heat bugCbser ver Swar m m and comment out everything else to do with probesin that fileand also in
Heat bughbdel Swar m m When heatbugs is executed, the user will see that the default probe display
presents alist of the instance variables of the object and, if their values are set at start time, those values
will be displayed as well.

This bare-bones setup will not automatically update the display as the simulation proceeds. It presents
only a snapshot of the creation-time settings. Many variables that have no value set before time 0 will
show blanks or theword ni | and that will never change.

If one wants the probe pisplay to be updated, then an update command has to be included in the
schedule. Inthebui | dAct i ons method of Heat bugtbser ver Swar m m, thisis the command that will
cause the updating to occur (presumably, it was commented out in the bare-bonestest described above):

[di spl ayActions createActionTo: probeDi spl ayManager nessage:
Mupdate)];

The probeDi spl ayManager isaglobal object and when it istold to update in the observer swarm'’s
schedule, it will update the probes of objectsin all other levels of the simulation.

All of this works because the Swarm kernel provides a great deal of functionality that the user may never
need to inspect or worry about. Most importantly, the object pr obeDi spl ayManager is not
explicitly created by the user. Rather, it appears automatically in any Swarm program that has the GUI
modeturned oninitsmin. m The probeDi spl ayManger isthe object that receives messages to
create displays for various objects, such as the macro statements above.

The default probe display for an object includes only the probes for the instance variables of the object. It
has no buttonsto click and execute methods inside the object (i.e., it has no message probes). If one wants
the message probes, there are two aternatives. While the program is running, a right-click on the object’s
name button in the top-1eft part of the display will cause the message probesto be displayed. A second
alternative is to change the macro used to create the probe displays. Use these macro commands instead:

CREATE_ARCHI VED_COMPLETE_PROBE_DI SPLAY (heat bughbdel Swar m ;
CREATE_ARCHI VED COMPLETE_PROBE DI SPLAY (sel f);

Thiswill cause the probe display to include all instance variables and methods.

90

Chapter 12. Probing and Displaying the Contents of Swvarm Objects

12.3. How to Customize Probe Displays

Why might one want to customize the display? Well, frankly, the default probe display may ook ugly. It
may include lots of variablesthe user does not want to see. There are some instance variables, such as C
arrays, that cannot be probed, and so their inclusion in a probe display is uninformative. Swarmis
designed to allow the user to pick and choose which variables ought to be included in the display. There
are anumber of strategies for customizing, one of the standard strategiew uses an object called
probeli brary.

Like probeDi spl ayManager ,the probelLi br ary isaglobal object provided by the Swarm
kernel. Customization is achieved by writing code that communicates back and forth from objectsto the
probeli brary.Inshort, the programmer "checks out" a unique, shared copy of apr obe/Pr obeMap
fromthe pr obelLi br ar y object (of class probelLi brary) provided by the kernel. By shared we mean
that asimilar request made at a different point in the code, will return areference to the very same probe
instance.

Hereis a skeleton example of the commandsthat can create a customized probe display using this
approach.

Example 12-1. Generating gor obeMap

To generate a pr obelVap for an instance of the class Agent called agent , which consists of two fields:
one var Pr obe for the instance variable sonel Var and one messagePr obe for the message
sonmeMessage, usethefollowing:

probeMap = [EnptyProbeMap createBegin: self];
[probeMap set Probedd ass: [self class]];
probeMap = [probeMap createEnd];

[probeMap addProbe: [probelLibrary getProbeForVariable: "sonelVar"
inC ass: [agent class]]];

[probeMap addProbe: [probelLibrary getProbeFor Message: "soneMessage"
inC ass: [agent class]] setH deResult: 1]];

[probeLi brary set ProbeMap: probeMap For: [agent class]];

Don’t forget to execute the CREATE_PROBE_DI SPLAY for this object in the observer swarm.

In the file Heat bugvbdel Swar m m one can find a fully fleshed out example of these steps.
probeMap = [Enpt yProbeMap createBegi n: aZone];

[probeMap set Probedd ass: [self class]];
probeMap = [probeMap createEnd];

91

[probeMap
[probeMap
[probeMap
[probeMap
[probeNVap
[probeNVap
[probeNVap
[probeNVap
[probeNVap

[probeNVap

[probeMap

[probeMap

addPr obe:
i nd ass:
addPr obe:
i nd ass:
addPr obe:
i nd ass:
addPr obe:
i nd ass:
addPr obe:
i nd ass:
addPr obe:
i nd ass:
addPr obe:
i nd ass:
addPr obe:
i nd ass:
addPr obe:
i nd ass:
addPr obe:

addPr obe:
i nd ass:
addPr obe:

i nd ass:

Chapter 12. Probing and Displaying the Contents of Swvarm Objects

probeli brary get ProbeFor Vari abl e:

self class]]];

probeli brary get ProbeFor Vari abl e:

self class]]];

probeli brary get ProbeFor Vari abl e:

self class]]];

probeli brary get ProbeFor Vari abl e:

self class]]];

probeLi brary get ProbeFor Vari abl e:

probelLi brary get ProbeFor Vari abl e:

self class]]];

probeLi brary get ProbeFor Vari abl e:

self class]]];

probeli brary get ProbeFor Vari abl e:

self class]]];

probeLi brary get ProbeFor Vari abl e:

self class]]];

[
[
[
[
[
[
[
[
[
[self class]]];
[
[
[
[
[
[
[
[
[probelLi brary get ProbeFor Message:

"nunBugs"

"di f fuseConst ant "
"wor | dXSi ze"
"wor | dYSij ze"

"m nl deal Tenp"
"mex| deal Tenp"
"m nCQut put Heat "

" maxQut put Heat "

"evapor ati onRat e"

"t oggl eRandom zedOr der ™
inC ass: [self class]]];

[probelLi brary get ProbeFor Vari abl e:

[self class]]];

[[probeLi brary get ProbeFor Message:

[self class]]

set Hi deResul t: 1]];

[probeLi brary set ProbeMap: probeMap For:

[self class]];

"randonMbvePr obabi i ty"

"addHeat bug: "

Asin the generic example, in the heatbugs case the user follows a three step procedure that puts a
customized probe map in place of the standard "variable probes only" default.

1. A new object called pr obeMap is created. The pr obeMap is an instance of the the Swarm class
Enpt yPr obeMap. Next we customize the probe map and pass it to the display mechanism.

2. One-by-one, tell pr obeVap to add probes for individual variables and messages, and those probes
areretrieved fromthe pr obelLi brary.

3. Tell the probelLi br ar y that, when it creates a probe display for this object, to use this special
objectpr obeMap rather than the default.

It isimportant to understand how this customization fitsin with the default probe map. The

probeDi spl ayManager creates awidget for every object that you tell it to. Unlessyou tell it
otherwise, it assumes that the widget for every object is be based on the "default probemap” which
includes probesfor all instance variables, no message probes. If you ater the probeMap by the methods
we have been discussing, you are replacing the generic "hasit all" probeMap with a customized
probeMap. If you right-click on the object name button in a customized probeMap, what popsupisa
probe display based on the compl ete probeM ap specification, a map in which all variables and methods

are listed.

92

Chapter 12. Probing and Displaying the Contents of Swvarm Objects

The procedure outlined aboveis clear and methodical. It is also open to different kinds of customization.
If thereis no need for customization of individual probes, thereis a*shortcut” that can be used to get
most of thiswork done. Swarm has a class called cust onPr obevap. The cust onPr obeMap Can create the

probeMap and fill it with the desired probes. Here is an example as it would appear in the heatbugs
model.

Example 12-2. Non-verbos@r obeMap creation

probeMap = [CustonProbeMap create: aZone forCl ass: [self class]
withldentifiers: "nunbugs",
"di ffuseConstant”, "worl dXSize",
"wor | dYSi ze", " m nl deal Tenp",
"max| deal Tenp", " m nCQut put Heat ",
"maxQut put Heat", "evaporationRate",
"t oggl eRandom zedOr der "
"random\bvePr obabi i ty",": ",
"addHeat bug: ", NULL];

[probeLi brary set ProbeMVap: probeMap For: [self class]];

The last argument to the method cr eat e: f or Cl ass: wi t hl denti fi ers: ishasicaly aset of
character stringsthat are strung together and used inside the Swarm library to do the work of creating the
individual probes. The colon separates the variable probes from the message probes. Notice the inclusion
of nuLL at the end of the input, which signals the end of the input to the cust onPr obeMap.

This method will not allow customization of individual probes, so theset Hi deResul t : 1 command
that appearsin the heatbugs example cannot be included. In order to get specialized probes of that sort,
we could break thisinto two steps, one that creates the pr obeMap with the default probes and then
another which adds the special probes. Consider this:

probeMap = [CustonProbeMap create: aZone forC ass: [self class]
withldentifiers: "nunmbugs",
"di f fuseConstant"”, "worl dXSize",

"wor | dYSi ze", " m nl deal Tenp",
"max| deal Tenp", " m nQut put Heat ",
"maxQut put Heat", "evaporationRate",
"t oggl eRandom zedOr der "
"random\VbvePr obabi i ty",
NULL] ;
[probeMap addProbe: [[probeLibrary getProbeFor Message: "addHeatbug:"
inC ass: [self class]]
set H deResul t: 1]];

[probeLi brary set ProbeMap: probeMap For: [self class]];

93

Chapter 12. Probing and Displaying the Contents of Swvarm Objects

12.4. Controlling Precision of Display

This section deals with the control of the precision of display of floating point number on pr obebi spl ayS.

12.4.1. Global setting of precision

There are two types of global precision setting via:

- -set Di spl ayPreci sion: (int) nSi gFi gsSaved Setsthe number of significant figuresfor
floating point (and double-floating) numbers diplayed on a GUI widget. Currently thisis only
implemented for VarProbes. The display uses the %* g sprintf-style formatting, which can vary slightly
from implementation to implementation. If you set the number of significant figuresto 3, then afloat
of value of 0.6344346 is displayed as 0.634 on the GUI widget.Note that thisin no way affects the
underlying stored value of the floating point number.

. -set SavedPreci sion: (int) nSi gFi gsSaved Setsthe global default for the saving of floats
through aoj ect saver . All objects with floats and doubles as instance variables are saved with the
precision specified by this method. This is independent of the displayed precision of the same instance
variable on a GUI widget.

To actualy initialise these defaults: in the top level swarm, you should add the calls to the global
probel i brary instance (whichis actually created by thei ni t Swar mcall in main) during the -
createBegin method (this sets the precision in the global instance, before any probes are checked out of
the instance. If neither method is called on pr obelLi br ar y, then the precision defaults to six
significant figuresin both cases.

Example 12-3. Global setting precision irHeat bugCbser ver Swar m m

+ createBegin: aZone

{
Heat bugCbser ver Swar m * obj ;
id <ProbeMap> probeMap;

[...1

probeMap = [Enpt yProbeMap createBegi n: aZone];
[probeMap set Probedd ass: [self class]];
probeMap = [probeMap createEnd];
// set the display defaults
[probeLi brary setDi spl ayPreci sion: 3];
// typically saved precision woul d be higher than di splayed precision
// for statistical and data anal ysis purposes
[probeLi brary set SavedPreci sion: 10];

94

Chapter 12. Probing and Displaying the Contents of Swvarm Objects

/1 Add in a bunch of variables, one per sinulation paraneters
[probeMap addProbe: [probelLibrary getProbeForVariable: "displayFrequency"
inC ass: [self class]]];

[...]

/1 Now install our custom probeMap into the probeLibrary.
[probeLi brary set ProbeMap: probeMap For: [self class]];
return obj;

12.4.2. Setting Precision for Individual Probes

The formatting for an individual probe can be set directly, using a sprintf-style formatting string.
Typically, cust onPr obeMaps are created in the +cr eat eBegi n factory method for a swar mor a
Swar mobj ect . To set the formatting for a floating point probe, the method from var probe is used:

« -set Format Fl oat: (const char *)f/l oat For mat isapplied to the instance of the var probe
"checked-out" of the global pr obelLi br ar y instance. The sprintf-formatting string can "over-ride"
the "%g" format set by the global precision (as above) (Typically "%g" chooses between the "%f" and
"%e", depending on the size of the exponent - which is implementation-dependent - this method
alows you to explicitly set the type of display).

In the following example, it is desired that the number of significant figures for the floating point variable
randomVovePr obabi | i t y isthree (3). Currently (Swarm 2.0.1) thisis only worksfor var pr obes
and not MessagePr obes, as Yet.

Example 12-4. Setting precision for individual probes inHeat bughodel Swar m mi

+ createBegin: aZone

{
Heat bughvbdel Swarm * obj ;
id <ProbeMap> probeMap;
id floatProbe;

[...]
// the -setFloatFormat is applied to the probe which is
// "returned” fromthe call to probelibrary
float Probe = [[probeLibrary getProbeForVariable: "randon\vbveProbability"
inC ass: [self class]]
setFl oat Format: ".3f"];

/1 now we have the probe - put it back into the custoniMap
[probeMap addProbe: fl oatProbe];

Chapter 12. Probing and Displaying the Contents of Swvarm Objects

[...]

return obj;

}
Or, more compactly:

+ createBegin: aZone

{
Heat bughvbdel Swar m *obj ;
id <ProbeMap> probeMap;

[...1

[probeMap addProbe: [[probeLibrary getProbeForVariable: "randomVoveProbability"
inC ass: [self class]]

setFloat Format: "% 3f"]];

[...]

return obj;

96

Part Ill. Advanced Topics

97

Chapter 13. Anything C can do, Swarm
Can Do Better

Any programming statements that will work in C can also be used in a Swarm program. Hence, if one
needs access to a programming library that can be used in C, one can also access that library in Swarm.
Furthermore, functions written for C programs can be integrated into Swarm code.

13.1. Managing command line parameters

One of the obscure and difficult parts of C programming is designing a program to handle command line
arguments. The ar gc and ar gv[] approach is difficult to manage. Swarm has built-in tools to handle
this problem.

If you compile a Swarm program, you "automatically" get some built-in command line parameters. You
can see what they are when you type the program’s name, followed by - hel p. Here is some output from
the heatbugs program:

$./ heatbugs -help
Usage: |t-heatbugs [OPTION...]

-s, -varyseed Run with a random seed

-b, -batch Run in batch node

-m - node=MODE Speci fy node of use (for archiving)
-t, -showcurrent-tine Show current tine in control panel
-no-init-file I nhibit |oading of ~/.swarmArchiver

-?, -help Gve this help list

-usage G ve a short usage nessage

-V, -version Print program version

Mandat ory or optional argunments to long options are also mandatory or optional
for any correspondi ng short options.

If you type a command line like

$./heatbugs -s -t

then Swarm will use a random number seed that is based on the system’s clock and the display of the
control panel will show the time. As aresult, the random number stream used in the program will be
different each time you run the program.

A person might want to add command line parameters to their Swarm code if they want to automate the
processing of many simulation runs. For example, if one wanted to make a simulation run 50 times for
each setting of a particular parameter value, then one would need to design away to pass that particular
parameter value from the command line. The repetition of the program can be managed by a user-created

98

Chapter 13. Anything C can do, Swvarm Can Do Better

script (written in some language like Perl, for example), or with asimulation tool like Drone
(http://drone.sourceforge.net), developed by Ted Belding of the Center for the Study of Complex
Systems at the University of Michigan.

If the user wants to pass additional parametersin the command line, Swarm has built in procedures that
make argument processing a bit easier than using the command line processing availablein C. This
functionality isfound in Swarm’s Ar gunent s protocol. The details of the usage of Argunent s are
explained quite well in the Reference Guide to Swvarm. Rather than explain every detail, we choose here
to explain one worked example.

Thefirst step isto edit the mai n. m Add an import command for our object that will manage the
parameters:

#i nport "MyPar aneters. h"

and then changethei ni t Swar mcommand to this:

initSwar mArgunents (argc, argv, [MParaneters class]);
This change tells the swarm kernel to look in your class called myPar anet er s for information about how
to process the command line arguments.

Next, write the files myPar amet er s. h and myPar anet ers. m Here they are:

|/ Paraneters. h
#i nport <defobj/Argunents. h>

@nterface MyParaneters: Argunents_c
{

int nunBugs;
}

- (int)get BugArg;
@nd

/] Paraneters. m

#i nport "MyPar aneters. h"
#import <stdlib. h>

@ npl enentati on MyParaneters

1. Thisexampleisavailablein full in the package ParameterHeatbugs.tar.gz
(http://lark.cc.ukans.edu/~pauljohn/Swarm/MySwarmCode/ParameterHeatbugs.tar.gz). All of the changes described here
begin with the Heatbugs application distributed in the package swarmapps-2.1.tar.gz
(ftp://ftp.swarm.org/pub/swarm/swarmapps-2.1.tar.gz).

99

Chapter 13. Anything C can do, Swvarm Can Do Better

+ createBegin: aZone

{

static struct argp_option options[] = {
{"nunmBugs",’ n","N', 0, "Set nunBugs", 5},
{0}

b

MyPar aneters *obj = [super createBegin: aZone];
[obj addOptions: options];

return obj;

}

- (int)parseKey: (int)key arg: (const char*)arg
{
if (key =='"n")
{
nunBugs = atoi(arg);
return O;

}

el se
return [super parseKey: key arg: arg];

}

- (int) getBugArg
{
i f (nunBugs)
return nunBugs;
el se
return -1;

}
@nd

Thepar seKey: ar g: method indicates that when the key is n, meaning the command line passed - n
after the program name, then it the corresponding argument is taken and converted to an integer (by the
at oi function, the reason for which the include of st di i b. h is needed). When another class tells our
parameter manager classto get BugAr g, then the command line argument will be returned if there was
one, otherwiseit will return -1.

The only interesting wrinkle arises when it is necessary to retrieve the value of nunBugs from the
parameter class. When the Swarm kernel isinitialized, it creates an object called ar gunent s. Any
commands that one wants to address to the mypar anet er s class are instead addressed to ar gunent s.
For example, when we want the Heat bughvbdel Swar m m class to set the initial values, we add an import
statement for myPar anet er s. h and then we make calls against the arguments class. The syntax is like this:

+ createBegin: aZone

{
Heat bughvbdel Swarm *obj; id

100

Chapter 13. Anything C can do, Swvarm Can Do Better

<Cust onProbeMap> probeMap; obj = [super createBegin: aZone];

/1 Now fill in various sinmulation paraneters with default val ues or
/1 grab values from MyParaneters.

obj - >nunBugs = 10;
if (([argunments getBugArg] != -1))obj->nunBugs=[argunments getBugArg];
[and so forth]

This example sets the number of bugs equal to 10, but if the valueis included in a command line option,
then that valueis incorporated.

Once the vakef i | e istouched up to include referencesto M Par anet er s, then the program compiles and
hthe output from the help command indicates the new parameter is recognized:

$./ heatbugs -help
Usage: |t-heatbugs [OPTION. ..]

-s, -varyseed Run with a random seed

-b, -batch Run in batch node

-m -node=MODE Speci fy nmode of use (for archiving)
-t, -showcurrent-tine Show current tine in control panel
-no-init-file I nhibit |oading of ~/.swarmArchiver
-n, -nunBugs=N Set nunBugs

-?, -help Gve this help list

- usage G ve a short usage nessage

-V, -version Print program version

Mandat ory or optional argunments to long options are also nmandatory or optional
for any correspondi ng short options.

Report bugs to bug-swar m@war m or g.

It does not make any difference whether the user starts the program with the command:

$./heatbugs -n 444
or
$./ heatbugs -nunBugs=444.

In either case, the probe map will indicate the initial number of bugsis 444.

13.2. Using C Functions in Swarm

101

Chapter 13. Anything C can do, Swvarm Can Do Better

The fundamental rules of C programming apply in Swarm. Perhaps most importantly:

- Use prototypes for functions used in many filesIf afunction is defined in onefile, and it isto be
used in another, then there must be a prototype in the header file and that header must be included in
each file that makes calls on the function.

- Type functions as "static" if they are used only in one file.When afunction’s use is confined to the
filein which it iscalled, use static to typeit in order to reduce the danger of confusion that might
result if other files use functions of the same name.

If afunction is defined at the top of a source code file—after the includes and imports but before the
implemenation line, then that function can be called anywherein that file. If the function is not used in
any other files, then thereis no need to put a prototypefor it in the header file and the declaration of the
function should start with "static".

A function can aso be defined inside a method!. It looks a bit peculiar when functions crop up inside
Objective C methods, but there is nothing wrong with doing so. Of course, when afunction is defined
inside a method, then its scope is sharply restricted. That function can be called only inside that method.

There are some occasionsin which isis extremely handy to define functions inside methods. Two
particulary useful aspects of this practice are as follows. First, Objective C callsto sel f can be madein
such functions. If afunction needs some value, and it intends to get it by calling a get method such as
[sel f get That Number] it will work aslong as the function is defined inside alegitimate Objective C
method. If the function is located at the top of the file, before the implementation statement, then the
term sel f will have no meaning and the program will not compile.

The second useful aspect is of this practice is that one can have several different functions with the same
name if those functions are set inside Objective C methods. It may seem hard to imagine situationsin
which this would be useful, but they do arise.

Suppose inside a class there are two methods and each makes use of afunction from the standard C
libraries. If the function expects to have some other user-defined function available when it is run, then
the user can customize that user-defined function inside each method. To be a bit more concrete, consider
the GNU C library’s binary search tree defined in the header file sear ch. h. Thefunctiont sear ch
(version 2.1) has this prototype:

void * tsearch(const void *key, void ** rootp, int (*conpar) (const void *, const void *));

Thet sear ch function checksto see if anode already exists by using a comparison function. If an
equal node exists, then tsearch returnsthat node. If no such node exists, t sear ch adds the node to the
tree. Note that the comparision function used in the tsearch must be included as the last argument.

102

Chapter 13. Anything C can do, Swvarm Can Do Better

The problem may arise that one wants to use different comparison functions when working with asingle
tree. Once atreeis created with a comparison function called conpar e_node, then al calls on the tree
must use a comparison function with the same name. Perhaps there is some slight wrinkle to be
introduced when deciding whether one node is equal to another when they are being inserted and when
they are being printed out or removed. By defining several compare functions, one inside each method
that makes use of the tree, one can acheive the desired level of specialization.

13.3. Examples of Useful Functions: get | nt and
get Doubl e

Functions can come in handy in many cases, but let’s begin with a particularly useful example that
continues with the project of managing parameters. Suppose you have a Swarm file myPar anet er s. mthat
sets the values of many parameters. Suppose there are 50 ints and 40 doubles. You may go insane writing
methods to get each parameter specifically by name.

Thereis no need to write specific get methods for each variable because a combination of methods from

Swarm and C can be used to create "generic" get functionsthat will retrieve the values. In the top part of
the myPar anet er s. mfile, between the include statements and the implementation statement, the functions
are defined thus:

/| MyPar aneters. m
[import statenents here]

id
makeProbe (id obj, const char *ivarNane)

{
id probe = [VarProbe createBegin: [obj getZone]];

[probe set Probedd ass: [obj getd ass]];
[probe setProbedVari abl e: ivarNange];
return [probe createEnd];

}

doubl e
get Doubl e (id obj, const char *ivarNane)

{

id probe = nakeProbe (obj, ivarNane);
doubl e ret = [probe probeAsDoubl e: obj];
[probe drop];

return ret;

}

int
getint (id obj, const char *ivarName)
{
id probe = nakeProbe (obj, ivarNane);
int ret = [probe probeAsint: obj];

103

Chapter 13. Anything C can do, Swvarm Can Do Better

[probe drop];
return ret;

}

@ npl enentati on MyParaneters
[and so forth...]

These functions are made available to calls in other files by declaring them in the header file,
MW Par anet er s. h. The declarations are inserted between the import statements and before the interface
declaration.

/| MyParaneters. h

[import statenents here]

id

makeProbe (id obj, const char *ivarNane);

doubl e

get Doubl e (id obj, const char *ivarNane);
int

getlnt (id obj, const char *ivarNane);

@nterface M/Argunents: Argunents_c
[And so forth...]

In any file that includes w/Par anet er s. h, one can retrieve the value of a parameter by using theget | nt
and get Doubl e functions. For example, if thereis an instance variable defined in mMPar anet er s called
maxHeat , it can beretrieved by the following call to the function:

getlnt(argunments, "maxHeat");

This call is made against the object called ar gunent s because, as mentioned in the previous section,
the instantiation of mM/Par anet ers isnamed ar gunent s inside the Swarm kernel.

13.4. Dynamic Memory Allocation and Swarm
Zones

Veteran C programmers have no doubt tangled with the problem of dynamic memory allocation using
mal | oc or cal | oc. Initszone protocol, Swarm has methods that can be used in place of these
functions. While there is nothing inherently wrong with using the built-in C functionsto allocate
memory, there are some advantages in the Swarm methods that may reduce the danger of memory leaks.

Swarm users who are not familiar with dynamic memory allocation may wish to consult aC manual. Ina
nutshell, the problemisthis. If one wantsto create an array, the elementary way to do so isto declare the
array like so:

104

Chapter 13. Anything C can do, Swvarm Can Do Better

int array[5];

This creates an array of 5 integers. When the program runs, memory is set aside where values can be
placed into and retrieved from the array.

This standard approach only works when the user knows that there will be exactly 5 elementsin the
array. What if some calculations are done during the run of the program and then it is necessary to create
an array that depends on that cal culated number? Thisis the kind of case for which dynamic memory
alocation is needed. If, during arun, some number N is calculated, and then one needs to have an array
of length N, then the program can grab some of the system’s physical memory and use it.

Dynamic memory in Swarm can be accessed by the methodsal | oc: andal | ocBl ock: inSwarm’s
Zone protocol. First, it is necessary to declare a pointer that will serve as the address of the dynamically
allocated memory. Second, the memory is alocated to that pointer. Hereis an example from a class
called Point, which is used to dynamically allocate space for arrays of real numbers.

/1 Point.h

@nterface Point: SwarnDbject {
doubl e * position;
int spaceSi ze;

}
-bui | dOoj ect s;

-(void) drop;
-set SpaceSi ze: (int) size;

/1 Point.m

#i nport Point.h

@ npl enent ati on Poi nt

bui | dObj ect s

[/ position = xmal | oc(spaceSi ze * sizeof (double));

// Test to nmeke sure the menory was allocated. If not, exit inmediately

/1if(position==NULL) exit(8);
position = [[self getZone] allocBlock: spaceSize * sizeof (double)];
return self;

(voi d)drop

/1 free(position);

[[sel f getZone] freeBlock: position blockSize: spaceSize * sizeof(double)];

[super drop];

set SpaceSi ze: (int)size

spaceSi ze=si ze;
return self;

105

Chapter 13. Anything C can do, Swvarm Can Do Better

}

Note that for the C programmer’sinformation there are commented-out versionsof mal | oc andf r ee
cals.

When a user wants to use the poi nt class to create anew poi nt , which has an array of doublesinsideit,
then an instance of the poi nt classis created in the usual Swarm way. Then the size is set, and then the
Poi nt istold to build its objects, which allocates the dynamic memory. For example:

id newPoint;

newPoi nt =[Poi nt createBegin: [self getZone];
newPoi nt = [newPoi nt createEnd:];

[newPoi nt setSize: N|;

[newPoi nt bui | dObj ects];

After that space is allocated, then it can be used by methods in the poi nt class asif it were an array. The
reason that one can treat the pointer to the dynamically allocated memory asif it were an array is found
in the fundamental similarity of pointersand arraysin C. Interested research should consult the C
manuals for a comparision of pointers and arrays. To consider a usage example, a method could be
written to fill the array with random numbers between 1 and 5.

- fill Randomy
{
int i;
for(i =0, i < spaceSize; i++)
{
posi tion[i]=[unifornDbl Rand get Doubl eWthM n: 1 withMax: 5];
return self;

}
}

A memory leak is aflaw in a program which causes it to access dynamic memory and then "waste" it by
dropping al referencesto it without letting the operating system know that the memory is no longer
needed. In C, thef r ee() function tells the operating system that the memory can be reallocated to
other purposes. If the programmer forgetsto free memory that is no longer needed, then the memory
demands of the program will expand with each new allocation, taking memory that might be used by
other applications and eventually causing the program to crash.

In Swarm, memory allocated with al | ocBl ock: can befreed explicitly with thef r eeBl ock:
method. Theusage of f r eeBl ock: isillustrated in the dr op method of the poi nt class. Thisdr op
method is used only to free the dynamic memory, but it would also explicitly drop any Swarm objects
that were created inside the object. The topic of designing programsto avoid memory leaks is discussed
further in the next section.

106

Chapter 13. Anything C can do, Swvarm Can Do Better

13.5. Dropping Unused Objects

Most Swarm objects will respond to the dr op message. This message causes them to execute whatever
commands are necessary to remove themselves from memory. When objects created by user-created
classes are no longer needed, they should be dropped aswell. It is vital, therefore, to customize the drop
method of a user-defined class so that all objects created within the object are explictly dropped.

In the poi nt class, the super class'sdr op method is inherited from swar mvj ect . However, if we wereto
tell aproi nt oObject to drop, it would not automatically drop the dynamically allocated memory referred to
by the pointer posi t i on. Similarly, any other Swarm objects allocated in the pPoi nt 0bject would not
be dropped. In order to be sure these are dropped, the drop method should be overridden and customized.
When that method is overridden, it is vital to make sure the super class's drop method is executed. That
isthe reason that the poi nt class's drop method begins with [super drop]. Any objects that have been
alocated in poi nt , such as the memory devoted to the variable posi t i on, should be taken care of at
that stage. Any Swarm objects that have been created, such as lists, list indexes, or other objects should
be dropped in the drop command.

Many users think that there ought to be an "automatic" way to drop all objects that exist inside an object.
Thiswould certainly be convenient, since rewriting a drop method to make sure all objects are correctly
disposed of can be tedious and possibly error-prone. While there is no such automatic object-dropping
facility, thereis away to design Swarm code that comes close.

To make sure that all objects inside another object are dropped, users might consider a strategy that uses
ZoneS more carefully. Instead of following the zone usage examples provided by most Swarm
applications, consider instead creating agents inside separate memory zones. When a zone gets the drop
method, it does drop all objectsinsideit!

Hereis how such a program might be designed. Suppose that agents are to be created in the model
swarm by afor loop. The usual approach would create the objects in the model swarm itself, using the
Zone Of the model swarm.

/1in the buildObjects nethod of Mddel Swarm m
for(i=0;i < numAgents;i ++)
{
id agent;
agent =[Agent createBegin: self];
agent =[agent creat eEnd] ;
[agent Li st addLast: agent];
}

Suppose that instead of creating the instances of the class Agent inside the model swarm itself, we create
azone object each time through the loop, and then create the agent inside that zone. For example,

//in the buildObjects nethod of Mdel Swarm m
for(i = 0;i < numAgents; i++)
{

id agent, newZone;

107

Chapter 13. Anything C can do, Swvarm Can Do Better

newZone=[Zone create: self];
agent =[Agent creat eBegi n: newZone];
agent =[agent creat eEnd];
[agent Li st addLast: agent];
}

The agent class might create all kinds of objects, and we could use the method described above to write a
drop method for the agent class. However, this second approach has simplicity onits side. If itis
necessary to drop an agent, instead of using the command [agent drop] , we instead find out what the
agent’s zoneis, and drop that:

[ffirst, suppose you want to remove an agent named "agent".
/IRemove references to agent from the list
[agent Li st renove: agent];
/[Then drop that agent’s zone
{
id agent Zone;
agent Zone=[agent get Zone];
[agent Zone drop];

}
/IThis could be achieved with a single line: [[agent getZone] drop];

This zone-oriented approach might bring a bit of peace of mind because it eliminates the danger of a
memory leak that may result when an agent is dropped but the objectsinsideit are not.

108

Chapter 14. The Swarm Collections
Library

14.1. Overview: the Li st, vap and Array Protocols

The most frequently used kinds of collectionsare the Li st , Map and Array protocols. They have some
elementsin common. They all comply with the col I ecti on protocol, most importantly, which means
they have methods with which items can be added, retrieved, and removed. Also, each can be used to
create an index object, which can make management of lists an easier chore.

It is very important to note that these collections are primarily intended to manage objects, not integers
or floating point values. * If you need an array of integers (or floats or chars or whatever else), just use an
ordinary C array. When it is necessary to use strings, integers, or floating point valuesin a Swarm
collection, there are two workarounds. One isto use typecasting to put those other valuesinside the
space allocated for a pointer to an object. For various reasons, that approach is not as desirable as the
aternative of creating "wrapper objects" that can contain those other types of variables. In short, while
typecasting will often work, it is generally a better strategy isto design more carefully the objects you
want to keep in Swarm collections and use recommended procedures for retrieving them.

Some commands that work in Swarm collections are:

- get Count : Returns the number of membersin the collection

- atOffset: i:Retrievesthei th member of the collection

- atOffset:i put: obj:Insertsobjatlocationi

- contains: obj Returnslif objismember

- renove: obj : Removesobject obj

- renmoveAl | : Removes all objects from collection, but |eaves the objectsin memory
- del et eAl | : Removes all objects from collection and del etes them from memory

. forEach: M nessage) : Sends message to all members

Type casting for both storage of variables in collections as well as usage of non-object values for keys was discussed in the
original Swarm design. Roger Burkhart defined a protocol vember Type which would have been adopted by the col 1 ecti on
protocol: “The MemberType option may be used to declare the type of member which a collection contains. Its value must be
an object having one of the ValueType types defined in defobyj. (..Currently no ValueType objects are implemented, so
MemberType is not supported.)” This protocol was to have two methods: - set Menber Type: aDat aType and

- get Menber Type.

109

Chapter 14. The Swarm Collections Library

This chapter does not discuss the Swarm set protocol because, at the current time, it has no functionality
beyond the regular Swarm Li st protocol.

14.2. Choosing between Lists, MapS, and ArraySs

The different kinds of collections objects are useful for different purposes. The Li st class can be used to
create easy-to-use containersthat make it relatively simple to manage iterative chores. Use a Swarm Li st
when you intend to have all objects processed in order, for example. (Li st s can also be processed in a
randomized order). The vap and Ar ray classes are intended for more structured maintenance of
collections.

Because they serve these specialized objectives, there are some commands uniquely available to each of
the Swarm container classes. For example, aswe saw in an earlier chapter, the Li st class can respond to
methods likeaddFi r st : ,addLast : , removeFirst, and removelL ast. A Li st object can beusedina
flexible way, objects can be thrown onto the end or the beginning of the list with these methods. These
are not available in map or Array, because vap and Array objects have moreintricate internal structure.

A Swarm array object is used when it is necessary to store objects in a specific order. The Swarm Arr ay
is somewhat similar to aC array, in the sense that objects can be inserted at a particular position and their
values can be retrieved from that position. A Swarm Array can be processed iteratively, asalLi st can.

A Swarm map is used when objects are not stored according to their numerical position in alist, but rather
according to the value of some object. For example, avap can store objects that have rankings of favorite
foods for each of several people. If each personisan object, then the person’sidentity works as a "key"
that controlsthe insertion and removal of the object from the vap.

Enhancement and streamlining of the Swarm Collections library is an ongoing chore, but at the current
time the user’s choice of Li st, map, Or Array is partly driven by the way these classes are implented in
Swarm. The Li st and map classes are comparatively slow. If one needs to make repeated accesses to a
Li st or map from randomly selected positions, the program will run comparatively slowly. Here's why:

1. Suppose you have amap and you have entered objects that represent food tastes for each of 500
people.

2. If you then tell your vap object to retrieve the food preference of the person "Bart", for example,
then the map will be processed from the beginning (the first inserted object) and each will be checked
to seeif itskey (its "owner," asit were) is "Bart."

3. If Bart’s object happensto be at the end of the map, then alot of objectswill be checked.

4. Then, when you ask for the object of person "Fred", it begins at the start of the vap and checks,
one-by-one, until it finds the object whose key is Fred.

110

Chapter 14. The Swarm Collections Library

At the time of writing, the vap object, has no way to go straight to the one you want 2, so it goes through
this repetitive checking process. The sameistrue of the Li st class. Asaresult, if there are many objects,
programswill run slowly when they try to insert and retrieve data for specific objects when using Swarm
Li st SOl MapS.

In contrast, the processing of a Swarm Array can be quite fast because the elements are entered with
integer keys. A Swarm Array can quickly retrieve item number ten. Unlike amvap, it does not start at the
beginning and go through a sequence of checks until it comesto the tenth item. Because of the internal
structuring of the Swarm arr ay, the tenth item is retrieved without checking the first nine.

As aresult of the aforementioned issue about the speed of the program, there is going to be a judgment
call. A map will work fine and quickly if there are just a few items stored, but the time wasted looking for
a specific item increases with the length of the list. An array might be a good choice, except alocating
space for an array may waste memory. For example, suppose we are preparing to survey 20 people out of
apopulation of 100,000. If each person is assigned a number, and then numbers are chosen at random,
we might end up with peoplein our sample that are numbered { 44, 63, 555, 4432, 6689, 21001, 44934,
78343, 99921} . If we use amap, we could just add the 10 objects. On the other hand, if we wanted to use
an Array with the person’s number serving asthe ar ray index, we would have to allocate an Array with
100,000 elements in order to store these ten items. This wastes memory, but objects can indeed be
retrieved quickly. Most people would prefer amap for this purpose. If there were 10,000 people being
sampled, however, the array might work best.

14.3. Using Swarm ArrayS

The Swarm Arr ay iSsthe easiest to use of the Swarm collections. At create-time, the size of the Array is
set. For example, to create an Array called f oods that has 15 elements, this code will get the job done:

id <Arraya> foods;
food=[Array create: [self getZone] setCount: 15];

If it is necessary to add elements to the Arr ay, then the set Count : method of the Arr ay class can be
used to increase the size ofthe Arr ay.

Entries are inserted, accessed, and removed from the Array in arather obviousway. Asin C, the
numbering of the Array elements beginswith O, so the last element in the Ar ray has the index value 14.
To insert an object caled st eak into the foods Array at index value 6, the appropriate command is:

2. apotentia enhancement to the collections library is an option that would allow the user to select a hash-table implementation
of the vap protocol, which would effectively alow thiskind of random-access

111

Chapter 14. The Swarm Collections Library

[foods atOffset: 6 put: steak];

When it is necessary to retrieve the st eak object, this will do:

retrievedObj ect=[foods atOffset: 6];

A Swarm Array object will allow quick access of any particular object because the objects are indexed by
an integer.

An array will work like a Swarm Li st for the purposes of repetitive processing. Since an Array includes
a fixed number of objects, they can easily be accessed with for loops, but while loops will work just as
well. An array object can betold to create an index object for itself, and that index can be used in the
way that we described in the chapter on Li st s.

There is only one surprise awaiting users of the Array protocol: objects cannot be removed from Ar r ays.
Sincethe Array protocol’s major strength isits speed, and the speed depends on maintaining a fixed list
of items, the remove method of the Collections protocol is disabled in Arr ay. Rather than remove an item
froman Array, onemust put ni | at apositionin the array. This achieves the same effect as remove, but
it preservesthe Array "placeholder” so that future objects can be inserted at that spot.

14.4. Swarm mapS

Experienced programmers are familiar with the term "key" as it refers to management of collections.
People who are new to programming and Swarm often find this idea quite confusing. Hence, we will
explain.

Think of amap astwo rows of objects. The bottom row contains the objects you want to store and
retrieve. The top row contains the names of the objects. If you put an object into amap, you tell the mvap its
name and the vap handles the problem of inserting the object into the bottom row and putting the namein
the top row. When an object is removed from a mvap, its nameis al so removed from the top row. If you
need to get an object, you tell the map its name and the map then goesto the right position in the top row
and then it gives back the corresponding object in the bottom row.

The names of the objects are called "keys' in Swarm (and other programming languages). The usage of
keysis somewhat confusing and difficult for newcomers because the keys should be Swarm objects.

Example 14-1. Maps and keys

Hereis asimple example. Suppose we are creating a series of objectsin afor loop. In each step, we tell
the class Person, which is subclassed from swar nbj ect to create an instance aFr i end and we add that
Persontoal i st OF Peopl e. Then wetell the class Preferences to create an instance and we insert the

112

Chapter 14. The Swarm Collections Library

instance into a map, using the Person object as the key. Note that the vap and Li st are declared before the
loop.

id <List> listOPeople;

id <Map> mapOf Preferences;

IistOf Peopl e=[List create: [self getZone]];
mapOf Pref erences=[Map create: [self getZone]];

for(i=0; i < 50; i++)

{

id aFriend, aPreference;

aFriend = [Person createBegin: [self getZone]];
aFriend = [aFriend createEnd];

[1istOf Peopl e addLast: aFriend];

aPr ef erence
aPr ef erence

= [Preferences createBegin: [self getZone]];
= [aPreference createEnd];
[mapOrF Preferences at: aFriend insert: aPreference];

}

To retrieve a preference object, it isfirst necessary to figure out which person you want and then tell the
Map to return that person’s preference. For example, suppose you decide to grab the 6th person and find
out what their preferences are. Then try this:

id aParticul ar Person, thePreference;

aParticul arFriend=[1istCf People atOfset: 6];

t hePref erence=[napCf Preferences at: aParticul arFriend];

/'l here you can do anything you want to with thePreference you get back.

Similarly, you could cycle throughthe | i st Of Peopl e by creating a Swarm index for the
l'i st OF Peopl e and then use the returned value from [i ndex next] asthekey:

idindex, aPerson;
index= [listOf People begin: [self getZone]l];
whi I e((aPerson=[index next])!=nil)
{
id thePreference;
thePreference = [mapOf Preferences at: aPerson];
/'l here you insert sone code that does sonething with the retrieved preference!

}

This example works because the map object automatically compares the objects acting as keys to see if
they areidentical. Thisisthe default compare: method of the class swar nbj ect . If one wishesto
compare the objects by another criterion, then a comparison function can be declared when the vap is
created. Lacking a user-defined comparison function, the vap will always usethe conpar e: thatis
defined in the key object. Lacking such afunction, the program should not run.

113

Chapter 14. The Swarm Collections Library

When an object that is being used as akey hasaconpar e: function, then the vap will use that function
to decideif the two objects are equal. If a comparison function is declared when the map is created, then
that comparison function will be used instead. Swarm includes some built-in comparison functions, but,
aswe will see, the usage of customized functionsis quite easy and convenient. If no comparison function
is declared, then the fall-back approach checksfor aconpar e: method in the key object itself. Since dll
objects that are based on Swarm inherit from the defined object class, al such objects have (at least)
access to the bare minimum conpar e: that checksto seeif two objects areidentical. Classes from
which key objects are created can, of course, create more informative comparison methods.

L ets begin with the problem of using integers as keys. There are two possible approaches, typecasting
and the creation of "integer wrappers.” The typecasting approach is used in many Swarm applications.
The essence of this approach is to use type casting to trick the Swarm library to make it treat an integer
asif it were an object. Without going too deeply into the computer science of the issue, it may not be
possible to explain this, but we will take a stab at it. On many computer systems, a pointer uses the same
amount of space as an integer. Hence, it is possible to cast an integer as a pointer to "fool™ the compiler,
and then to retrieve the value of the integer from the place in memory where the pointer was supposed to
be. (Confusing? Many users say, yes!) Instead of inserting objects into a vap with objects as keys, using
this casting trick, one can insert objects at integer values that are cast as objects of typei d. For example:

[mapOF Preferences at: (id) 13 insert: aFriend]

In order for thisto work, the mapOf Pr ef er ences hasto be created so that it knows integers are going
to be passed through in this way. At create time, the vap must be told to use the built-in comparison
function that will uncast the pointers and compare them.

mapOf Preferences = [Map createBegin: aZone];
[mapOr Pref erences set Conpar eFunction: conparel ntegers];
mapOf Preferences = [mapOf Preferences createEnd];

The GridTurtle code example gri d3b. muses this appoach.

This "casting" approach to creating a keys has some serious shortcomings. Most importantly, it is
severely nonportable. Code written in thisway on a Linux system might not work on a DEC Unix
system. Why? On DEC Unix, an integer and a pointer do not have the same size.

What is the alternative if one wants to enter objectsinto amap using integers as keys? The answer is.
create an "integer wrapper" class. Thisinteger wrapper can store and retrieve the values of integers, and
these objects can be used as keysin Swarm maps.

Hereisthe integer wrapper class 3, whichis called i nt eger :

3. Thereisan example of aprogram by Marcus Daniels that uses integer wrappers at M apl ntegerlndex.txt
(http://lark.cc.ukans.edu/~pauljohn/SwarmFag/\WorkingExampl eCode/M apl nteger ndex.txt).

114

Chapter 14. The Swarm Collections Library

/11 nteger.h
#i nport <defobj/Create. h>

@nterface Integer: CreateDrop

{
int val ue;
nenber _t |ink;

}

- setValue: (int)value;
- (int)getVal ue;

@nd

//lnteger. m
@ npl enentati on | nteger
- setValue: (int)theValue

{
val ue = theVal ue;
return self;

}

- (int)getVal ue
{

return val ue;

}
@nd

In order to usethei nt eger class keys, the map has to be told how to compare them, so it knows when it
has found a key that matches what it is searching for. In the example, the comparison functionis called
conpar el nt eger Obj ects () andit takestwo objects, and it then retrieves the value from each
object, and returns the difference of the two. When 0 isreturned, it is treated as a"match”. The following
code snip creates 50 pref er ence Objectsand it creates an | nt eger object for each one. Each time the user
wants to insert an object into amap, an I nt eger Wrapper is created.

#i nclude I nteger.h
#i ncl ude Preference. h

/1 Here is a "conparison function"

int

conpar el nteger j ects (id obj1l, id obj2)

{

return ((Integer *) obj1l)->value - ((Integer *) obj2)->val ue;

}

id <List> listOPeople;
id <Array> arraycf I ntegers;
id <Map> mapO Preferences;

mapOf Preferences = [[[Map createBegin: [self getZone]]

set Conpar eFuncti on: conparel nt eger Ooj ect s]
creat eEnd] ;

115

Chapter 14. The Swarm Collections Library

for (i = 0; i < 50; i++)
{

id aPreference;

aPreference = [Preference createBegin: [self getZone]];
aPreference = [aPreference createEnd];

anlnteger = [[Integer createBegin: [self getZone] setValue: i] createEnd];

[mapOrf Preferences at: anlnteger insert: aPreference];

}

After the mapOFf Pr ef er ences isfilled with objects, then they can be retrieved by their key values.
Onecan create asingle I nt eger object, and then insert avalue into it, and then use it asthe key. The
following will work to retrieve the pr ef er ence Object corresponding to the i nt eger key with value 23.
Supposing the pref er ence class has amethod out put Vi t al | nf o, thiswill retrieve those objects and
tell them to execute that method.

id desiredPreferenceject;

Integer * key = | NTEGER(O);

key- >val ue =23; //sane as [key setValue: 23];

desi redPref erencej ect = [mapCf Preferences at: key];
printf("The preference Object gives this output \n");
[desi redPref erenceObj ect outputVitallnfo];

Thisiswritten out this way to make the code as clear as possible. The example program cited above
includes a number of macro definitions that can be used to make working with the 1 nt eger class more
elegant (and less tedious).

The same kind of approaches can be used if one wants to use strings as keysin amap. The easiest way to
use strings as the keysisto use the Swarm st ri ng protocol to create objects that act as "wrappers" for the
string names. In the Swarm Documentation, one can find the GridTurtle test programs for the Collections
library. Thefile gri d3. mcontains an example that does exactly this. The codein gri d3. mcreates a string,
equal to theindex variablei, and then sets that string into a st ri ng object, which isin turn used as the
key. Of course, thereis no reason that the chosen character string had to be a simple number. If you want
to, you can create strings for al your friends and wrap them inside st ri ng objects.

Unless you define a comparison function, the String objects are compared according to the conpar e:
method that is defined for Swarm st ri ngs. This functionis defined in the Swarm library in thefile
Stringhj ect . m The comparison uses the C function stremp to find out if the object’s own string is the
same as the string retrieved from the other object (which iscalled aSt ri ng):

- (int)conpare: aString
{
return strenp (string, ((String_c *) aString)->string);

}

116

Chapter 14. The Swarm Collections Library

Asin the case of integers, the built-in compare: method can be over-ridden by a customized comparison
function declared by the user.

14.5. Accessing Collections with Indices

Any collection can generate an | ndex that can be used to access its members. The command to create an
I ndex for agiven collectionisbegi n: . Thetype of I ndex created by a collection depends on the type of
collection being indexed. If one desires an index of randomly shuffled members of a collection, then
begi nPer mut ed: isthe necessary command.

An i ndex object will understand messages like get , which will return the object at which the 1 ndex is
currently positioned, next , which will movethe 1 ndex object to the next object in the collection and
return that object, and f i ndNext : objectName, which will cause the | ndex object to search forward
into the collection until it finds an object that is the same as objectName.

The usage of indexes can make some code work more smoothly. For example, as we noted in our
discussion of Li st S, the 1 ndex can be used to orchestrate the repetitive processing of aLi st object in the
following way:

id aColl ection;
id <lndex> index;

aCol | ection = [List create: [self getZone]];
index = [aCollection begin: [self getZone]];5
while((anQoject=[index next]) !=nil)

{

//wite code that does sonething to anCbject

}

This code will cycle through the Li st . Because the | ndex object remembersits position in theLi st , the
processing is efficient in the sense that the next command causes just one step to be taken. Thisisa
sharp contrast with the usage of collections methodslike [acol I ection at Offset: i], which causethe
Li st to begin at the beginning and count up to the / th object.

Perhaps the most significant advantage of indicesis that they can be used manage collections. If items
are removed from a collection by its1 ndex object, then the ndex object is automatically kept up to date.
On the other hand, if items are removed directly by collections methods, such as[aCol I ection renove:
thi snj ect], then the indexes that had been previously created for that Li st will be damaged and they
must be dropped and recreated. On the other hand, if an 1 ndex is positioned on the desired member, and
then the index istold to remove that object, then the change will be made in the collection and the index
will automatically be adjusted.

In order to make an index remove objects correctly, the fundamental problemisto correctly position the
index within the collection. To make an index object reposition itself at the beginning of the collection,
the command [i ndex setlLoc: Start] canbeused. | ndex objects can be manually positioned with

117

Chapter 14. The Swarm Collections Library

methodslike[index findNext: targetCbject] Of [setOifset: i]. Thesewill, respectively, moveto the
next object which, according to the comparison function, matches the target object, or move the index to
the i th object in the collection. Once the index is positioned, then the object can be removed with [i ndex

renove] .

The Swarm Li st class creates | ndex objects that have more functionality than the other classes. The

I ndex Of aList class collection can be used to insert objects as well as delete them. For example, [i ndex
addAfter: newdbj ect] can set anew object into a collection after the object currently under the index.
The addition of objects by the index is not allowed in Swarm Ar r ays or Maps because of the internal
structure of those classes.

118

Chapter 15. Using the Random Library

The creation of random numbersis a surprisingly complicated affair. It is also vital to the success of a
simulation exercise. Sooner or later you will want to simulate some real-life stochastic phenomenon
which occursin amanner resembling an identifiable statistical distribution, for example (to take the
canonical simulation example) the time intervals between customers arriving to join aqueuein front of a
bank teller. Or perhaps you just want to add some controlled unpredictability to the behavior of your
agents. One of the strengths of Swarm, as a simulation framework, is that it includes a number of
methods for the creation of streams of random numbers that meet exacting standards.

Before we step in to the details of the Swarm random library, there is one point that needs to be made.
Thereis no such thing as arandom number, at least as far as a computer is concerned. Every number a
computer creates comes from aformula. The challengeisto find a formulathat makes the numbers
sufficiently unpredictable that we can proceed asif they are random numbersthat satisfy statistical
requirements, like statistical independence of successive draws. This means that the device puts out
numbers so that, even knowing all previous values, oneis not able to predict the next number to come out
without looking inside the program to steal the algorithm that is generating the numbers. The procedures
we describe here might are more correctly be called pseudo-random number generators. With that point
being clear, we often refer to them as random number generators.

In his section of the Swarm User Guide, we provide a survey of the basics of using the Swarm Random
Library. A detailed technical manual has been prepared and it isincluded as an appendix to this guide. It
goesinto considerably greater depth on the technical issues that arise in generating random numbers.

15.1. Built-in Random Number Distributions

Since not al users want to become expertsin random (well, pseudo-random) numbers, we will start with
the easy alternative. In the Swarm kernel—the code that executes at the beginning of any swarm
program-there are three objects that can give useful random number streams. These objects are
initialized and structured according to built-in assumptionsthat reflect the state-of-the-art in the creation
of random number streams. The first two supply integers at random, the last one supplies numberson a
continuum.

The three built-in random number distributions are:
- uni f or MunsRand This object will draw a positive integer at random within a user specified
interval. To get arandom integer between 3 and 47, this command will work:

nmyUnsi gned = [uni fornUnsRand get Unsi gnedWthM n: 3 w thMax: 47];

The object uni f or mns Rand is an instance of the Swarm class uni f or munsi gnedbi st . Readers can
consult the documentation for a full explanation of all available options.

119

Chapter 15. Using the Random Library

- uni f or M nt Rand This object will draw an ingeger at random from an interval that may include
negative or positive numbers. A usage example would be:

nylnteger = [uniform nt Rand get Unsi gnedWthM n: -44 withMax: 47];

This object is an instance of the Swarm uni f or m nt eger Di st , Which is fully documented in the Swarm
documentation.

- uni f or Dbl Rand This object will draw areal number from a user-specified interval. Unlike the
previous two, this distribution is not restricted to integers. If arandom number from the interval [1,5]
is needed, this command will work:

nyDoubl e = [uni fornDbl Rand get Doubl eWthM n: 1 withMax: 5];

This object is an instance of the Swarm uni f or nDoubl eDi st .

These are global objects that can be used in any file that is part of a Swarm program.

When a Swarm program starts, it initializes these random number creators. They will deliver the same
stream of numbers every time the programis run unless the user adds the "vary seed" parameter when the
programisrun. This parameter is-s and is added on the command line. For afull list of possible options,
type the name of the application followed by - hel p.

These built-in random distribution objects use another built-in Swarm object that is called
"randomGenerator”. The object "randomGenerator” feeds input into each distribution. The meaning of
the term "random generator” is explored in the next sections.

15.2. Overview of the Random Library

Suppose you want to draw random numbers from a Normal Distribution with a mean of 33 and variance
of 10. Thereis no "normal distribution object” created automatically in the Swarm kernel, you have to
create that in your code. In order to explain how thisis done, it is important to understand the two-step
nature of the process of creating random numbers from a distribution.

Mathematically speaking, numbers are created as draws from a particular distribution through a two-step
process. First, one or more numbers on a given interval are drawn. If oneis creating a continuous
distribution, the interval is usualy [0,1). Then using various formulae from the field of statistics, adraw
from a particular distribution is created that depends on the draw(s) in the first step. This two-step
process is documented in the literature on simulation. (A very readable and complete treatment is found
in Averill M. Law and W.David Kelton, Simulation Modeling and Analysis, New York: McGraw Hill.)

Thefirst stage in the process uses an object called arandom number generator. A random number
generator is a component that can generate unpredictable numbers within some interval that are "equally
likely" to occur. There have been many kinds of procedures proposed for creating numbers that appear to

120

Chapter 15. Using the Random Library

be random. Swarm includes a great many of these. The default random generator, the one that Swarm
uses to generate its built-in random number objects, is MT19337. The generator has a period close to
219937 (1 x 106001), so there is no danger of running a simulation long enough for the generator to
repeat itself. At one microsecond per call, it would take about 3.2 x 105987 years to exhaust this
generator. For comparison, the age of the Universeis‘only’ 2 x 1010 years! This generator can be asked
either for areal number (avariable of type double) between [0,1) or for an integer, which will be
uniformly distributed on the range [0,4294967295] = [0,232-1].

In the second stage, the output from the random number generator is used to create arandom variate that
meets the specificiations of a particular distribution. Of course, some are done more easily than others. If
one needs adraw from a Uniform distribution, then the output of the random number generator itself can
be used. On the other hand, some distributions require complicated transformationsin order to create
numbers that appear as if they were generated from the distribution. For many common statistical
distributions, the code to transform the uniformly distributed random numbersinto other distributions are
provided in the Swarm library. While there are some distributions that are not currently supported, they
can typically be constructed by users with the existing distributions as building blocks.

The Swarm Random library can be divided into two parts, which parallel the two-stage process we have
described. Thereare

. Generators
- Distributions

The following sections will dig into the details of these libraries, but first we will offer a couple of simple
usage examples.

Suppose one wants to draw numbers from a normal distribution. The normal is awell known distribution
and it has known statistical properties. The object "randomGenerator" is created when the Swarm kernel
isinitialized, so it can be used in any distribution as the random number generator. To create a

Nor mel Di st distribution object and connect it to the predefined mri19937 generator, this code will suffice:

#i mport <random h> /1 This includes the Swarm random |ibrary

id <Normal Di st > nyNormal Dist; //This names your object and adopts the Nornal D-
i st protocol

nyNormal Di st = [Nornul Di st create: [self getZone]

set Randontenerator: randonmGenerator];

If for some reason, one does not want to use Mr19937 as the generator, then one of the other Swarm
generators can be selected and explicitly created. The next code example uses a generator called rRncsgen.
This codewill first create an instance of that generator, then it will create an object to draw normally
distributed observations.

int nySeed = 123776;

121

Chapter 15. Using the Random Library

id myGenerator;

id <Nornal Di st > nyNor nal Di st;

nyGenerator = [RACBgen create: [self getZone]
set St at eFronBeed: mnySeed] ;

nmyNormal Di st = [Nornul Di st create: [self getZone]
set RandonCenerator: nyGenerator];

Therandom library is designed in a highly versatile way. Each generator must have a"seed" value, a
starting place from which to spin out the random numbers. Aslong as one leaves the seed at the same
value, then the stream of random numberswill be replicated each time the program is run. If one does
not want to specify a seed, then that chore can be | eft up to Swarm, which will insert a seed on behalf of
the user. The way to create a generator that uses the system default value for the seed is shown here:

nmyGenerator = [RAC8Bgen createWthDefaults: [self getZone]l];

Another example of the versatility of the Swarm random library is in the design of the distribution
classes themselves. We have already seen examples in which random numbers are drawn according to
user specified requirements. In the case of the Normal distribution, one can draw from a distribution with
amean of 0 and variance of 1.3 with this command:

doubl e sanpl €;
sanmpl e = [nyNor nal Di st get Sanpl eWthMean: 0.0 withVariance: 1.3];

If one expects to want many draws from a distribution with that same set of parameters, then the
distribution object can be told to set those values as the defaults. After the default values of the mean and
variance are set, then values retrieved from that distribution object can be retrieved with the simpler
method get Doubl eSanpl e. For example:

[myNor mal Di st set Mean: 0.0 setVariance: 1.3];
sanpl e = [nmyNor mal Di st get Doubl eSanpl e] ;

Of course, each distribution will have its own parameters and particular methods for setting them. These
parameters can be reset at any time.

15.3. The Random Number Generators

Recall that computers can’t create real random numbers, just streams of numbers that appear random to
the outside observer. As arule of thumb, users are well advised to choose a well tested generator which
has along period, which is the number of draws that can be made before the sequence repeats. We also
want agenerator that runs fast and uses little memory. (These wishes are of coursein conflict with each

122

Chapter 15. Using the Random Library

other, so choice involves compromise.) And the generator should perform ‘acceptably’ in a statistical
sense. Readers who wish to pursue what this might mean are referred to the bibliography.

15.3.1. How to use the default random generator

Suppose you want to draw some random numbers with the default random generator. When a swarm
program runs, it creates a globally available object called randomGenerator that can be used in any part
of the program to draw random numbers.

If you want to draw unsigned integers, try this:

unsi gned i nt nyUnsi gned;
nyUnsi gned = [randonGener at or get Unsi gnedSanpl e] ;

The values returned will be uniformly distributed in the range [0,4294967295] = [0,2 *>-1].
Or, if you need floating-point values instead, you can say

doubl e nyDoubl €;
nmyDoubl e = [randonCener at or get Doubl eSanpl e] ;

The returned values will be uniformly distributed in the range [0.0,1.0), i.e. they may be equal to 0.0 but
never 1.0.

15.3.2. A list of generators in Swarm

The default generator used in Swarm is Mr19337, but there are a number of othersthat are provided to suit
the needs of experimentation and replication of previous studies. These generators have been subjected
to various statistical tests, and the results of these tests are described in Advanced Usage Guide.

The current generatorsin Swarm are:

« ACGgen: Additive Congruential Generator

« C2LCGXgen: A short component based generator. Thisis considered a high quality generator
« C2MRG3gen: Combined Multiple Recursive Generator

« C2TAUSUSxgen: A Family of Combined Trausworthe generators

« C3MWCgen: Combined Multiply With Carry Generator

« CA4LCGXgen: Combined random generator using 4 (PMM)LGC generators

« LCGxgen: Family of Linear Congruential Generators

123

Chapter 15. Using the Random Library

MRGxgen: Family of Multiple Recrusive (LCG) Generators

MT19937gen: ' Mersenne Twister’ Twisted GFSR generator. The Swarm default
MWCxgen: Family of Multiply-With Carry generators

PMML CGxgen: Family of Prime Modulus Multiplicative Linear Congruential Generators
PSWBgen: Subract-With-Borrow Congruential Generator with prime modulus
RWC2gen: 2-lag Recursion With Carry generator

RWCB8gen: Multiply With Carry generator

SCG: Subtractive Congruential Generator

SWBxgen: Family of Subtract-With-Borrow Congruential Generators
TGFSRgen: Twisted GFSR generator

TT403gen: A single long generator recommended for use

TT775gen: A single long generator recommended for use

TT800gen: A single long generator recommended for use

All the Swarm generators except two conform to the * SimpleRandomGenerator’ protocol. The two ‘ split’
generatorsthat do not, C2L CGX and C4L CGX, are described in the Generator Usage Guide.

15.3.3. A note on starting seeds

Whenever arandom generator is created, its state has to beinitialized. It usesa"seed", apositive integer,
asits starting place. To make life easy for the user, the Swarm generators can be initialized to a
predictable and repeatabl e state. Every time you initialize a given generator with a particular seed, you
should get the same sequence of numbers fromiit.

You create and initialize a generator with a specific seed this way:

#i mport <random h>

i d <Si npl eRandontGener at or > nyCenerator;

unsi gned int nySeed;

nySeed = 123776;

nyGenerator = [RAC8gen create: [self getZone]
set St at eFr onBeed: nySeed] ;

If it is necessary to set or reset the seed after the generator has bene created, it can be done with the
set St at eFr onSeed: method:

124

Chapter 15. Using the Random Library

nmySeed = 4532657;
[randontener at or set St at eFronSeed: nySeed] ;

You may do this any time during a simulation, not just at the start.

If you start your simulation with the command line option -s, which is short for —varyseed, then the seed
will be chosen at random on the basis of the system clock. If you do not add that command line option,
your simultion will use the exact same stream of random numbers every time you run it. This makes

replication easy.

15.4. The Distributions in Swarm

All distributions are created through the two-step process outlined above. First one needs a random
number generator. Then one initializes the distribution, optionally setting its parameters at the time of
creation.

15.4.1. Classes that adopt the ProbabilityDistribution
Protocol

The distributions currently offered in the Swarm library are

« BernoulliDist: Bernoulli distributions describes the number of "successes" in a fixed number of trias
+ ExponentialDist: Exponential distribution

+ GammaDist: Gammadistribution

« LogNormalDist: log-Normal distibution

« NormalDist: Normal distribution

- RandomBitDist: Random Bit Distribution: returns Y ES or NO with equal likelihood

« UniformDoubleDist: Uniform continuous distribution on arange

+ UniformintegerDist: Equally likely integersin arange

« UniformUnsignedDist: Equally likely integersin a positive range

15.4.2. Matching generator and distribution objects

125

Chapter 15. Using the Random Library

Each distribution object must have a generator associated with it. You may create a new generator for
each distribution. Or, you may connect multiple distribution objects to one generator, so that they end up
drawing output from the generator in an interleaved fashion. (Thisis what has been done with the
predefined distributions.)

Thereis amethod called createWithDefaults that can be uses to streamline the creation process. Hereis a
usage example:

nyNormal Di st = [Nornal Di st createWthDefaults: [self getZone]];

If you create distribution objects using thecr eat eW t hDef aul t s method Distribution Usage Guide,
each distribution object is assigned its own, newly created, private random generator. Each distribution
class uses a different class of default random generator, just to keep things as statistically independent as
possible.

You can assign a seed for the private generator with code like this:

[[nmyNor mal Di st get Generator] setStateFronSeed: 9874321];

The usage of createWithDefaultsis not without its dangers, however. If createWithDefaultsis used to
create two distributions of the same type, say two Normal Distributions, then (obviously) then each will
have the same kind of private generator created for it. And, unless the simulation is started with the
—varyseed option, then both private generatorswill start with the same seed and the two distributions will
generate identical numbers.

15.4.3. Setting numerical parameters of distribution objects

Each distribution has its own set of key parameters. You may deal with these parametersin three
different ways:

1. Assign "default parameter values" when the distribution object is created For example:

#i nport <random h>
id <Normal Di st> nyNormal Di st ;
doubl e sanpl €;

nyNormal Di st = [Nornul Di st create: [self getZone]
set Generator: randonCenerator];

[myNor mal Di st set Mean: 0.0 setVariance: 2.1];
sanmpl e = [nyNor nal Di st get Doubl eSanpl e] ;

126

Chapter 15. Using the Random Library

2. Specify parameters when random numbers are drawn. These values do not override or change the
defaults that were set when the distribution was created.

#i mport <random h>
id <Normal Di st> nyNornal Di st ;
doubl e sanpl e;

nmyNormal Di st = [Nornul Di st create: [self getZone]
set Generator: randonCenerator];
sanpl e = [nyNor nal Di st get Sanpl eWthMean: 0.0 withVariance: 1.3];

3. Re-set the parameters anytime. For example,

[myNor mal Di st set Mean: 0.0 setVariance: 2.1];
sanpl e = [nyNor nal Di st get Doubl eSanple]; // from N 0.0, 2.1]

For amore detailed description of the methods available from distribution objects, see the Distribution
Usage Guide.

15.5. How to Create Other Random Number
Distributions

Suppose one wants to draw numbers according to a distribution that is not offered in Swarm. For
example, the Beta distribution is a distribution that has two parameters. The Beta distribution can take on
amost any unimodal shape, ranging from uniform, to highly skewed to the left or right (see Law and
Kelton, p. 166). The Beta distribution can be produced by taking two draws from a particular Gamma
distribution and transforming them. For example, one can first create the ganmaDi st 1 and then put it
to use:

- initializeRNGs
{

[randontGener at or set St at eFronSeed: 34733];

gammeDi st 1= [GammaDi st create: self setGenerator: randonCenerator setAl pha: 2 set-
Beta: 1];

return self;

}

- (doubl e) getBetaVari at eAl phal: (double) alphal Al pha2: (double) al pha2
{

doubl e y1, y2;

yl=[gammaDi st 1 get Sanpl eWt hAl pha: al phal w thBeta: 1];

y2=[ganmaDi st 1 get Sanpl eWt hAl pha: al pha2 withBeta: 1];

127

Chapter 15. Using the Random Library

return yl/ (yl+y2);
}

With these methods defined, then the code must simply executethei ni ti al i zeRNGs and then grab a
Beta variate by specifying the two parameters, alphal and alpha2:

id gammaDi st 1;

doubl e aDr awFr onBet a;

[self initializeRNGs];

aDrawFronBeta = [self getBetaVariateAl phal: .8 Al pha2: 2];

128

Chapter 16. Serialization

Theterm serialization refers to the ability to save more than one related object to either persistent data
storage (such as afile) or to send an object over a network stream, such as TCP/IP. When an object is
saved to disk (or sent over a‘wire') we record areference to the saved object, so that the original object
can berestored at alater date. Thisreferenceisreferred to asa‘serial number’, hence the term
‘serialization’.

Swarm has two forms of support for serialization:

- Lisp. Lisp serialization reads and generates human readable text-filein Lisp format. This form of
serialization is well-suited to applications that require either a human generated text file to create
object parameters (such as simulation parameter files), or require a human-readabl e output.

« HDF5. HDF5 (http://hdf.ncsa.uiuc.edu/HDFY/) is high density binary data storage format created by
NSCA (http://www.ncsa.uiuc.edu/). HDF5 serialization is well-suited to applications that involve
reading and/or saving large data sets. It is a database-oriented format which a number of third-party
tools (such asthe R (http://www.ci.tuwien.ac.at/R/) statistical package which is afreely-available
clone of SPlus (http://www.mathsoft.com/splus/)) can read.

16.1. Using the Li spArchi ver to manage
simulation parameters

0
If’f Earlier versions of Swarm used the protocols oj ect Saver and j ect Loader to read/write object state
to disk using an ad-hoc file format. These protocols only partially implemented the saving of certain
types and the continued use of these protocols is now officially deprecated and may go away in

future releases.

16.1.1. Using the Standard / i spAppAr chi ver

Every Swarm application comes with asingleton * instance variable for reading object data formatted in
Lisp. Thisinstanceiscalled | i spAppAr chi ver . Likethe probelLi br ary and ar gunent s
instances, it is global to your entire application. Thisinstance expects to find afile called appName. scm 2

1. A singleton classisaclass that is designed to have only one global instance per application

2. . scmisthe standard suffix for Scheme (a dialect of Lisp) files

129

Chapter 16. Serialization

, in either the current datapath for the application (SWARVHOVE! shar e/ swar ni appName) Or in the local
directory. Using this variable obviates the need for hand creation of Li spAr chi ver instances. It permits
one datafile (which can contain as many keysto objects as is required), and imposes a naming
convention for that datafile.

Example 16-1. Using a standard i spAppNane instance

The heatbugs application uses this global singleton class. The datafile heat bug. scmlooks like this:

(list
(cons ' bat chSwar m
(make-instance ' Heat bugBat chSwar m
#:1 oggi ngFrequency 1
#: experi nent Durati on 200))
(cons ' nodel Swar m
(make-instance ' Heat bugMdel Swar m
:nunBugs 200
:m nl deal Tenp 10000
: max| deal Tenp 20000
:m nQut put Heat 10000
: maxQut put Heat 20000
: randonivbveProbability 0.0)))

L

The Lisp file consists of two ‘keys' or ‘seria’ numbersbat chswar mand nodel Swar mfor the parametersfor
two different objects. These keys are completely at the discretion of the user to choose. (Note also that
the file syntax allows Lisp-style comments: a“;’ colon followed by any text).

Thisinput file would correspond with the following interface files, for the Heat bugBat chswar m class we
have Heat bugBat chSwar m h

@nterface Heat bugBatchSwarm Swarm

{
int |oggi ngFrequency; /'l Frequency of filel/O
int experinmentDuration; /1 Wien to Stop the Sim
id displayActions; /1 schedul e data structs
id di splaySchedul e;
id stopSchedul e;
Heat bughvbdel Swar m *heat bugMbdel Swar m /1 the Swarm we’re observing
/| The EZG aph will be used
id unhappyG aph; /1 in Filel/O node rather
/1 than the usual G aphics
/1 node. ..
}

/1 omtting methods

130

For the Heat bugMbdel Swar m €lass, Heat bughbdel Swar m h:
@nterface Heat bugvbdel Swarm Swar m

{

}

int nunBugs; /1 simulation paraneters
doubl e evapor ati onRat e;

doubl e diffuseConstant;

int worl dXSize, worldYSize;

int mnldeal Tenp, naxldeal Tenp;

int mnCutputHeat, maxQut put Heat ;

doubl e randonivbveProbability;

BOOL random zeHeat bugUpdat eOr der ;
id nodel Acti ons; /1 scheduling data structures
i d nodel Schedul e;

id heatbugli st; /1 list of all the heatbugs
id <Gid2d> worl d; /| objects representing
Heat Space *heat; /1 the world

/] omitting methods

Chapter 16. Serialization

Note that for each instance variable name of the form #: i var name soneval ue in the Lisp parameter file

there exists a corresponding instance variable in the class header file. However, not all instance variables

in the header file have corresponding entriesin the Lisp parameter file. Thisis because the other instance

if (swarnGU Mde == 1)

{
/1 Do GJ node creation (omtted)

}

el se

/1 No graphics - nake a batchnode swarm (using the key

variables are either unimportant as parameters (i.e. they can be regenerated by other parameters), or they
areinstance variables that pertain to the running model itself (such as nodel Schedul e, whichisa
Schedul e instance).

To generate the objects with these corresponding parameters set in each object, you need the request the
global | i spAppAr chi ver archiver to ‘generate’ an instance of the object using the appropriate ‘key’.
So here's an excerpt from nai n. mi

Il ‘“batchSwarmi fromthe default |ispAppArchiver) and run it.

if ((theTopLevel Swarm = [|ispAppArchiver getWthZone:

gl obal Zone

key: "batchSwarnm']) == nil)

rai seEvent (1 nval i dOperati on,

"Can't find the paranmeters to create batchSwarnt);

[t heTopLevel Swar m bui | dObj ect s] ;

Notethat you still passthe g/ obal Zone zone instanceto theget W t hZone: key: , asyou would if

you were using the standard cr eat e: functions.

131

Chapter 16. Serialization

The key thing to realize hereisthat theget W t hZone: key: cal actually instantiates the object (i.e.
automatically runsthe cr eat eBegi n/cr eat eEnd apparatusinternally®). This has implications for
the design of parameter files, since it means, for one thing, that all the appropriate instance variables
necessary for a complete creation of an object must be present in the input Lisp file. It is possible to have
asubset of ivars, but that subset should be sufficient to completely specify the object, i.e. no CREATE
time messages can be sent to the object once it has been created. (Of course you can still send SETTING
or USING messages to instance once it has been created).

The Heat bughModel Swar mis created in asimilar way, fromthe bui | dCbj ect s method in
Heat bugBat chSwar m ni

/] Create the nodel inside us - no longer create ‘Zone's explicitly.
/1 The Zone is now created inplicitly through the call to create the
/1 *Swarm inside ‘self’.

/] But since we don’t have any graphics, we |load the object fromthe
/1 global ‘lispAppArchiver’ instance which is created automatically
/1 fromthe file called *heatbugs.scm

/1 ‘nodel Swarmi is the key in ‘heatbugs.scm which contains the
/'l instance variables for the HeatbughMdel Swarm cl ass, such as
/'l nunBugs etc.

if ((heatbugMdel Swarm = [|ispAppArchiver getWthZone: self
key: "nodel Swarm']) == nil)
rai seEvent (1 nval i dOperati on,
"Can't find the paraneters to create nodel Swarnt);

/1 Now, let the nodel swarmbuild its objects.
[heat bugMbdel Swar m bui | dObj ect s] ;

Note that after the creation of the heat bughMbdel Swar minstance, it responds in the normal way to
valid methods, such asbui | dObj ect s.

16.1.2. Using Custom Li spArchi ver Instances

This section addreses those situations that require custom creation of multiple datafiles or aternate data
filenames.

3. Notethat thisisin contrast to the obsolete aj ect Loader method, which required the user to create the object and then make a
call to an mj ect Loader instance with the appropriate filename.

132

Chapter 16. Serialization

Example 16-2. Creating a Lisp parameter file with an alternate name

Hereis asample Lisp input parameter for the Mousetrap simulation, bat ch. scm

(list
(cons ' bat chSwar m
(make-instance 'MusetrapBatchSwarm ; paraneters for the batchSwarm
#: 1 oggi ngFrequency 1))
(cons ' nodel Swar m
(make-instance ' MusetrapMdel Snarm ; paraneters for the nodel Swarm
1 gridSize 40
ctriggerlLikelihood 1.0
:nunber Qut put Tri ggers 4
:maxTrigger Di stance 4
:maxTriggerTine 16
#: trapDensity 1.0)))

H R R

The Lisp file consists of ‘keys' or ‘serial’ numbersbat chswar mand nodel swar midentical to heatbugs

This Lisp input file has variables listed the following interface files (not shown) Muset r apBat chSwar m h

and Mbuset r apModel Swar m h, for the Muset r apBat chSwar m and Mbuset r apModel Swar m classes.

The only difference with the previous example, is that we explicitly create an instance of the

Li spAr chi ver with the named file, and then ask the archiver to ‘ generate’ an instance of the object using

the appropriate ‘key’ as per the previous example. So here's the relevant excerpt from nai n. i

/] create an instance of the LispArchiver to retrieve the file
/'l set the path to ‘batch.scni
id archiver = [LispArchiver create: global Zone setPath: "batch.scn];

Il retrieve the object fromthe archiver, if it can't be found
/'l just raise an event; note that the call to the
/1 archiver will actually *instantiate* the object if the
/1 paraneters are found in the Lisp file
if ((theTopLevel Swarm =
[archi ver get WthZone: gl obal Zone key: "batchSwarm']) == nil)
rai seEvent (I nval i dOperati on,
"Can't find archiver file or appropriate key");
[archiver drop];

The Muset rapmodel Swar mis created in asimilar way, fromthe bui | dCbj ect s method in
Mouset r apBat chSwar m mi

/] create the instance to read the file
archiver = [LispArchiver create: self setPath: "batch.scn];

/1 * ‘nodel Swarm is the key for the instance of the Musetraphvbdel Swarm
Il w th parameter values for the nodel instance variables: gridSize

11 triggerlLikelihood, nunberQutputTriggers, maxTriggerDi stance,

11 maxTri gger Ti ne, trapDensity

/1 if we can’t find the right key fromthe LispArchiver, raise an event

133

Chapter 16. Serialization

if ((nousetraphMdel Swarm =
[archiver getWthZone: self key: "nodel Swarn']) == nil)
rai seEvent (1 nval i dOperati on,
"Can't find archiver file or appropriate key");

/1 don’t need the archiver instance anynore

[archiver drop];
Note that when you have called the archiver instance to instantiate al the objects of interest, you have no
need of the archiver instance and you can safely dr op it.

Note also that, although the only difference from the previous example, is the name of the file does not
conform to the appName. scmconvention, but in principle the two keys could have been in different files,
in which case in would have not been possible to use the global | i spAppAr chi ver instance.

134

Appendix A. Swarm Tools

A.l. Web Resources for Object-Oriented
Languages

The main technical skill currently * required of a Swarm user is the ability to writein at least one of
following object oriented languages: Java or Objective C. Other recommended skillsinclude the ability
to use tools such as gdb and emacs. For the record, if you know C and have some form of experience
in either C++ or Smalltalk, then learning Objective C should take no more than a day or so.

Here are some Objective C resources:

Objective C references (http://www.swarm.org/resources-objc.html) List of Objective C referenceson
the Web. Includes a 10 minute overview to Objective C that is most of what you need to know about
Objective C. Originally contributed by Nelson Minar

Object-Oriented Programming and the Objective-C Language
(http://devel oper.appl e.com/techpubs/macosxserver/ObjectiveC/index.html) An excellent (online!)
book on Objective C. Thisisfor generic NeXT Objective C: Swarm uses GNU Objective C in addition
to our defobj extensions (see defobyj library in : Reference Guide to Swarm
(http://www.santaf e.edu/projects/swarm/swarmdocs/ref book/refbook.html))

Unlike Objective C, the market is literally bursting at the seams with books on Java, so we merely point
out afew relevant sites:

« GNU and the Java language (http://www.gnu.org/software/javaljava.html) is a page run by the Free
Software Foundation (http://www.gnu.org) that details many free/open source Java tools, most notably
the reimplementation of Sun’s JDK: Kaffe (http://www.kaffe.org).

« JavaSoft (http://java.sun.com), Sun Microsystems main Java page, and a new users section:
New-to-Java Programming Center (http://devel oper.java.sun.com/devel oper/onlineTraning/new?2javal)

A.2. Debugging Tips for Swarm

Debugging software is an art, perhaps even more so than writing the software itself. All software we
write will have bugs: it isimportant to know how to diagnose a bug when it happens and how to write
code defensively so you have less bugsin thefirst place.

1. Aswe continue extend Swarm'’s multilanguage features, further language bindings may become available.

135

Appendix A. Svarm Tools

A.2.1. Finding bugs

Bugs come in two categories: those that crash your program and those that don’t. Bugs that crash your
program are friendlier because they’re obvious. Bugs that you don’t notice are much more dangerous:
one nagging question in every programmer’s mind should be "is the program doing what | think it is
doing?'

gdb. By far the most useful tool for finding bugsis a good debugger, a shell you can run a program under
and set breakpoints, inspect the values of variables, etc. The best free debugger for Unix is probably gdb,
available from the GNU ftp site (ftp://prep.ai.mit.edu/pub/gnu/). gdb seems unfriendly and confusing at
first, but it is definitely worth your time to learn it.

The most important gdb commands are hel p: browse online help, wher e: show me a stack trace, where
did we crash?, 1i st : show me the source code where we are, br eak, Set a breakpoint, and pri nt : show me
the value of of some expression. If your program is crashing on you, run it under gdb and look at the
stack trace. If it looks to be buggy but you don’t know where, start setting breakpoints and see when
things go awry.

gdb and Objective C.Unfortunately, at this time gdb does not directly support Objective C. There are
some workarounds (http://www.cons.org/cracauer/objc-hint-gdb.html) that make debugging Objective C
programs possible. They are based on the knowledge that Objective C islittle more than a glorified
syntax for structs (objects) and strange function names (methods).

defobj: xprint(), xprintid(), xfprint(), xfprintid(), xexec(), and xfexec(). Swarm also hasafew
functions defined that can be used to make debugging easier. In particular, the function xprint(object)
prints out the class of an object, and xexec(object, "message”) calls the message specified on the object.
These can be invoked under gdb ascal I xpri nt (aHeat bug) . Note that you can’t pass argumentsto a
message, nor can you see the return value. There are also methods xfprint(collection) and
xfexec(collection, "message") that print or exec foreach member of a collection.

gdb and Java.Swarm models written in Javawill ultimately use the Swarm libraries which are still
written in Objective C. The Java Native Interface (INI) is the magic glue that binds these languages
together. Thusif the crash occursis the user (Java) portion of the code then the user is advised to use the
standard Java debugging tools jdb and the like. (If a crash happensin the Java virtual machine (JVM), it
should generally be clear from the error message that it is a Java-related problem). gdb is only useful
when the crash occursinside the Swarm libraries (i.e. outside the user’s Java code). In this case you can
invoke gdb in the following way:

$JAVASWARMCGDB=gdb j avaswar m St art Mbdel Nane

From then on the preceeding information on the use of gdb in the Objective C context, continuesto apply.

A.2.2. Preventing Bugs: Objective C

136

Appendix A. Svarm Tools

Defensive programming can help prevent a good number of bugs. When writing code, try to test it
incrementally: make small changes whose effects you think you can predict and then test them. Don’t
outsmart yourself with cleverness: write code correctly first, then go in and hack it up if you need it to be
more efficient. Put in sanity checks for conditions that shouldn’t go wrong in normal usage, but might if
you make a mistake.

-Wall. Swarm currently compiles all code with "gcc -Wall", which tells gcc to emit warnings for alot of
things that it wouldn’t normally complain about. Warnings are not (necessarily) errors - warnings will be
generated for legal codeif gce thinksthat what you're doing could easily be a mistake. You might find
thisfrustrating at first, but it helps catch alot of common errors, including forgetting to include a
prototype or forgetting to return a value from a function. Passing -Wall is good discipline.

nil_method. Objectsin Objective C are essentially pointersto structs. So what happensif you send an
object to the pointer 0x0, "nil" in Objective C parlance? Unfortunately, most implementations of
Objective C, including gcc, define methodsto nil as having no effect. The code:

aHeat bug = [Heatbug create: aZone];
aHeatbug = 0; // oops! bug.
[aHeat bug set | deal Tenperature: ideal Tenp];

will not generate any errors.

Thereason thisis unfortunateis that it's a common bug to trash a pointer accidentally, set it to O. It
would be nice if your program then crashed when you tried to send a message to that mangled object:
instead, the message send will fail silently and the program will continue to execute. This can make it
hard to find bugs.

There are two ways to make messages sent to nil crash your program. The simplest is to put a breakpoint
onni | _met hod under gdb: nil_method is invoked every time a message is sent to nil. Alternately, you can
make a copy of the libobjc runtime source and edit nil_method to do whatever you want. The source
codeinsrc/ def obj containsafileobj c. pat ch that patches the runtime from gcc 2.7.2.

A.2.3. Preventing Bugs: Java

The good news for Java programmersis that since Javais a strongly typed language, many of the pitfalls
that beset Objective C programmers, never materialize in the Java context. Neverthelessthe reader is
cautioned to use as many of the standard defensive programming techniques as possible.

A.3. Emacs and Swarm

137

Appendix A. Svarm Tools

Emacsisthe world’s best editor, infinitely configurable and powerful and free. If you're not used to a
Unix text editor and want to write programs, emacs is probably best to learn. The information here will
show you how to set up emacs to use an Objective C or Java specific mode for editing source code and
how to get emacs to colour your source code for you nicely. Emacs can also help you find compilation
errors, run adebugger, and even act like a class browser. Documentation for those things are not here, see
the Emacs documentation itself.

A.3.1. Objective C

objc-mode.One of the best things about emacsiis that one can load different *major modes' to edit types
of files. Major modes making editing files easier by providing structure to your editing. In particular,
there are programming language modes that do nice things like indentation for you.

Starting with emacs-19.30, the default C modeiscc- node. el , anice rewrite of the original c-mode.el.
Luckily for us, cc- mode. el supports Objective C directly. The basic function to invokeit is obj c- node.
The following bit of code in your .emacswill cause emacs to automatically enter objc-mode on all files
that endin. mor . h:

(setqg auto-node-alist
(append " (("\\.h$" . objc-node)
("\\.n$" . objc-node))))

Highlighting code. Emacs running under X has the ability to colour your source code according to
syntax. There are two packagesto do this: font -1 ock and hi I'i t 19.

font-lock. emacs-20 and later also has a font-lock mode for Objective-C that supports the method syntax
unique to Objective-C. We recommend the use of font-lock, over hilit19, now that the identification of
Objective C syntax in emacs is better supported, as font-lock supports’lazy-fontification’ (i.e. asyou
type fontification), a feature that hilit19 never offered. See the manual provided with emacs for how to
turn on this feature to highlight .h and .m filesin’objc-mode’ automatically.

A.3.2. Java

jde. The aforementioned cc- node. el also supports Java directly. But in the Java case we can go one
better, with the complete free/open source Integrated Devel opment Environment (IDE) known as the Java
Development Environment (jde). It's available from the Sunsite (http://sunsite.auc.dk/jde/) in Denmark

138

Appendix B. Objective C - Swarm Style

The Swarm system provides a few extensions to the syntax/style of Objective-C. This note describes
those features which are important to know as a beginner and those which can be ignored. Thisis also
peripherally relevant for Java programmers.

B.1. Non-Conventional Techniques, And The
Libraries In Which They’re Used

When building some of the internals of the Swarm system, we found that there was aneed to add a
certain amount of machinery to the conventional Objective C language. In particular, we found that the
system used for object creation needed to be expanded. The main goal of this document isto explain
very briefly what those changes are, and why the user need never know about them...

Even within the Swarm libraries, only the most fundamental ones require the usage of some of the magic
described below. Essentially, only Defobj, Collections and Activity use the features described bel ow.
Nevertheless, there are some minor conventions, which as a consequence, must be used throughout the
code.

B.2. Zones

B.2.1. Zones in Principle

Perhaps the most visible change from normal Objective C is the use of Zones within which objects are
allocated. We have requiered that objects be allocated within specific Zones for two main reasons:

« Probing. Zones will be used to facilitate the process of Probing.

- Garbage Collection.In later versions of Swarm, the Zoneswill be used to coordinate garbage
collection.

- Parallelism. In Swarm 2.0 we hope to use the Zone system to facilitate the management of distributed
memory.

B.2.2. Zones in Practice

As abeginning user, when required to provide a Zone, you can simply use the globalZone variable which
isglobal and is aready initialised to avalid zone. But, thisis discouraged because the thingsin that Zone

139

Appendix B. Objective C - Svarm Syle

are expected to be resident throughout the entire execution of the program and can lead to inefficient use
of memory. Also, you should always attempt to allocate memory from Zones rather than using malloc.
And when allocating atemporary object that won't be needed past the current scope, a scratchZoneis
provided.

B.3. Create Phase

B.3.1. The Create Phase in Principle

One of the more surprising mechanisms used in Swarm is the Create Phase protocol. The idea behind the
protocol is that when you create an object, you are not really getting the final object - only a
"proto-object”. This "proto-object” is then sent a sequence of "create phase" messages which are meant
to provide hints to the system about the way in which the object is going to be used.

So, for example, when creating a List object you may declare that you will only access the list from
either end, never from an arbitrary location. By doing so you allow the "proto-object” to provide you
with atailored implementation which attempts to meet your specific usage patterns. This sort of
approachiscrucial for the performance-critical librariesin Swarm (such as the Activity library). Hereis
a schematic of what sometimes occursin these libraries:

140

Appendix B. Objective C - Svarm Syle

Figure B-1. Schematic of proto-object creation

Factory Cbject

[Thing createBegin: aZone] ;

]
_'
=
S
=]
[}

[aThing initMessagel] ;
[aT hing initMessage2] ;
[aThing initMessage3] ;

Final Object

aThing =[aThing createEnd] ;

B.3.2. The Create Phase in Practice

Since this form of object creation is still quite rare in the object oriented community, we do not expect
the users to write code which actually implements this sort of technique. However, we do advise the
users to try and split those messages which are supposed to be sent only once in the lifetime of an object
(just after the object is created) from the ones that are sent multiple times.

For example, if your object has a variable which will never change and furthermore should be set at the
very early stages of its lifetime (say, Color), then you should declare the message which sets this variable
before the createEnd message:

-setColor: (int) aColor ; // createPhase nessage -createEnd ;

141

Appendix B. Objective C - Svarm Syle

-(int) getColor ; // normal nessage

The only other requirement is that whenever you create any object in Swarm, you should always
re-assign the object, when createEnd is called.

anQoj ect = [anObj ect createEnd] ;

Thisisbecause certain proto-objectsin the swarm library will not return themselves at createEnd time. In
fact, they may return acompletely different class of object, which happensto satisfy the needs of the
user. We therefore suggest that even when createEnding your own classes you should stick to this
standard creation format.

In some classes, you will see that some " convenience methods' for object creation have been provided.
These are basically parametrized constructors that the author of the class felt would be handy. However,
the objects that result from the use of these " convenience methods' should not differ in any way from an
object created via a sequential set of separate methods called during the create phase (as long as each of
the appropriate parameters are set). It isimportant to retain the "null constructor" for a couple of reasons:
1) it allowstheinterface for aclassto *grow* without breaking legacy code and 2) it facilitates the use of
development and design tools in handling objects. JavaBeans is one example where this particular
constraint (the requirement of anull constructor) isin use and necessary, today.

B.4. Collections and Defobj

Two last pieces of advice:

1. When using the Collections library, if you want to create your own versions of the collections, don’t
doit by subclassing the collections themselves. Instead, create a different class of object which
containsinside it, an instance of the appropriate class (thisis called delegation in the OOP
community). You should do this because the actual subclassing of objects which actively use the
createPhase stuff (by actively | mean ones that don’t return self on a createEnd), is not well
supported.

2. Defobj isthe most basic library in Swarm. It provides the foundation on which the system builds
schedules, collections and swarmObjects. It is therefore quite involved and you should not feel
disheartened if the concepts embodied within it seem unfamiliar, or if the code seems a bit cryptic.

You should now be ready to use Objective C in amore or less Swarm compliant way. Theoretically, all
you need to do is follow these standards. In particular, you should be able to code your simulations
without needing to know anything else about the language extensions (you still need to learn about the

142

Appendix B. Objective C - Svarm Syle

libraries and tools provided by Swarm, but their interface is written in straight Objective C, so there
should be no language barrier).

143

Appendix C. Random Library Appendix

C.1. Supplemental comments on random number
generators

Please consider some additional warnings about the usage of random number generators

1. DO NOT use generators with bad statistical properties. See Advanced Usage Guide for adiscussion
of the generatorsimplemented in this library.

2. DO NOT use generators whose maximum cycle length is too short for the intended application; you
don’t want your generators to start repeating themselves. Be especially aware of thisif you use the
PMMLCGgen class of generator; these have good properties but a fairly short cycle. See Advanced
Usage Guide to read more about how to select a generator.

3. AVOID having generatorsin your simulation runin ‘lock-step’, producing output that is statistically
correlated. This may happen if you have several generators of the same class, al started with the
same default seed.

4. Be aware that even the best generators can have unexpected correlations with particular
implementations of some models. As aresult, in some cases using a "better" random number
generator can result in worse (less correct) model behavior than one could obtain when using a"bad"
generator. If you suspect your model may have this kind of problem, you probably should re-run
some experiments using a different underlying generator, to make sure the results are (statistically at
least) the same. (For examples of this, see the references[Ferrenberg et al 1992] and [Nature 1994].)

C.2. Usage Guide

C.2.1. Usage Guide for Generators

144

Appendix C. Random Library Appendix

A note on ‘simple’ vs. ‘split’ generators

Most of the generators supplied are of the 'simple’ variety. Think of these as supplying a
single, long stream of pseudorandom numbers. The description in the introduction of how
to obtain generator output assumed a simple generator.

There are also two generators, C2L CGXgen and C4LCGXgen, which are of the ‘ split’
variety. Think of them as consisting of a number of virtual generators, each supplying an
independent stream of numbers which we can divide up into a number of segments of a
given length. To obtain output from such a generator, we need to specify what virtual
generator to draw from:

nyUnsi gned = [nySplitCenerator getUnsignedSanple: virtual gen];

Read more about how to manage split generators bel ow.

| shall first discuss ‘simple’ generators, and then discuss how ‘split” generators differ from ‘simple’ ones.
In the following text, wherever | use Psvegen as an example you may substitute any other generator.

Note: any name that starts with ny is meant to designate a variable of the appropriate type which you
have defined in your own program.

Note: on defining variables that hold (pointersto) generators: it is now a convention in the rest of Swarm
that if you want to specify what type of object a pointer should point to, you say:

i d <protocol nanme> var nane;
varname = [classnane create: aZone];

instead of

cl assnane *var nane;
varname = [classnanme create: aZone];

Although it is usually the case that the pr ot ocol nane = the cl assnane, in some casesit is not. And
publishing the protocols alows the programmers to keep unpublished what should remain internal
private class methods.

The generators are different from other Swarm objects, in that they all perform the same function; they
are drop-in replacementsfor each other. The'split’ generators (c2Lcaxgen, caLcaxgen) all conform to the
same protocol, <Spl i t RandonGener at or >. The'simple’ (non-split) generators al conform to the same
protocol, <Si npl eRandonGener at or >.

Thus, when defining generatorsin your own program, you should say

i d <Si npl eRandontGener at or > var nane;

145

Appendix C. Random Library Appendix

varnanme = [cl assnane create: aZone];

(Though see below for the different create methods available.)

For backward compatibility, protocols <LcGLgen>, <TT800gen> €tc. are still defined, but their useis
deprecated and they may disappear |ater.

C.2.1.1. Simple generators

You create a generator in one of 3 ways.

C.2.1.1.1. the lazy way

id <Si npl eRandontGener at or > nyGenerator;
nmyGenerator = [PSWBgen createWthDefaults: [self getZone]];

This allocates the object and initializes it with STARTSEED, which equals NEXTSEED if - varyseed
was not specified, or RANDOMSEED if it was. (These macros are defined in the file 'randomdefs.h’ in
the source directory.)

C.2.1.1.2. using a single seed value

id <Si npl eRandonCener at or > nyCenerat or;
nyGenerator = [PSWBgen create: [self getZone]
set St at eFronBeed: nySeed];

This allocates the object and initializes it with your seed value. If the object actually requires a vector of
seed values to fill the state, this method generates the rest of the values needed using an inline PMMLCG
generator.

You can find out later what seed value was used to initialize the generator:

myUnsigned = [nyGenerator getlnitial Seed];

And you can find out what the largest valid seed value is by calling

nmyUnsi gned = [nyGenerator getMaxSeedVal ue];

(In the current version of the library, the largest valid seed valueis 2%-1 for all the generators. The seed
may not be 0.)

You may reset the generator’s state at any time using this method:

146

Appendix C. Random Library Appendix

[nyGenerator setStateFronSeed: nySeedVal ue];

Thiswill also reset to O the cur rent Count variable.

Alternatively, you may use the new -reset method [myGenerator reset], which resets the generator its
state at startup, or its state at the point when -setStateFromSeed(s) was last used. Counters are zeroed.

C.2.1.1.3. using a vector of seed values

Assume we have defined afixed array at compiletime:

unsi gned int nySeedVector [vectorlLength];

Then we can do this:
id <Si npl eRandontGener at or > nyGenerat or;

nmyGenerator = [PSVBgen create: [self getZone]
set St at eFr onBeeds: mnySeedVector];

You can find out how many seed values are required by asking
nmyUnsigned = [nyGenerator |engthO SeedVector 1];

(Obviously, you must first successfully have created the object to do this, for example using
createWithDefaults! Or, see datain Generator Data Table)

And we allocate the seed vector dynamically this way:

unsi gned int *mySeedVector;
nySeedVector = [[self getZone] alloc: [nyGenerator |engthCf SeedVector]];

You can find out what vector of seed values was used to initialize the object:

unsi gned int *nyVector;
myVector = [nyCenerator getlnitial Seeds];

And you can find out the largest seed values that are allowed for the particular generator:
unsi gned int *nyVector Too;

nyVector Too = [nyGenerator getMaxSeedVal ues];

(These values vary from generator to generator, and they may not be the same for all elements of the
vector for agiven generator. Valid seeds never take the value 0.)

NOTE: in the above two calls, the variable myVector is set to point to an array internal to the generator.
If you want to preserve the array’s val ues outside the generator, you need to all ocate space in your

147

Appendix C. Random Library Appendix

program either statically or dynamically, and use afor-loop to copy data from myVector[i] to
myAllocatedVector[i].

You may reset the generator’s state at any time by using the method

[myGenerator setStateFronBSeeds: (unsigned *) nySeedVector];

Thiswill also reset to 0 the currentCount variable.

NOTE: if you set a generator’s state from a vector of seeds, the call:

nyUnsi gnedVal ue = [nyGenerator getlnitial Seed];

will return avalue of 0 (aninvalid seed). On the other hand, if you initialize the generator with asingle
seed value, the call

nySeedVector = [nyGenerator getlnitial Seeds];

will return the seed vector that would produceidentical output to what you obtained using the single seed.

C.2.1.1.4. antithetic values

You can make the generator serve up antithetic values by setting:

[nyGenerator setAntithetic: YES];

If thus set, this makes -getUnsignedSample return (unsignedM ax-x) instead of x, and the floating point
methods return (1.0 - y) instead of y. The default for this parameter isthat it is not set.

You can ascertain if thisflag is set by calling

nmyBool eanVal ue = [nyGenerator getAntithetic];

C.2.1.1.5. generator output

You obtain successive pseudorandom numbers from a generator by calling:

nyUnsi gnedVal ue = [nyGenerator getUnsignedSanple];

The largest value that may be returned can be found by asking

nmyUnsi gnedVal ue = [nyGenerator getUnsignedvax 1];

(The smallest value returned is always 0.)

If you would rather have floating point output in the range [0.0,1.0), you call one of these:

148

Appendix C. Random Library Appendix

/1 Using 1 unsigned value to fill the mantissa:
nyFl oat Val ue = [nyGenerator getFloatSanple];
nyDoubl eVal ue [nyGenerator getThi nDoubl eSanple];

/1 Using 2 unsigned values to fill the mantissa:
nyDoubl eVal ue = [nyGenerator getDoubl eSanple];
nyLongDoubl eVal ue = [nmyGenerator getLongDoubl eSanple];

NOTE that the last method is not portable, because the size of along double varies and hence the
precision varies between architectures.

Finally, you can obtain a count of how many variates have been generated:

nyLongLonglnt = [nyGenerator getCurrentCount];

(currentCount is an unsigned long long int, which counts up to 2%)

C.2.1.2. Split generators

A split generator is a generator for which we are able to split the output stream into arbitrary
non-overlapping segments, which we can access directly and easily. Such segments are statistically
independent streams of (pseudo)random numbers.

We configure a split generator as consisting of a number (A) of "virtual generators', each of which has
access to anumber (2) of segments of length 2. The parameters A,v,w are specified when the generator
is created. For example, for the CALCGXgen generator, the default creation values are A=128, v=31,
w=41. Theonly limitation is that A* (2")* (2*) must not exceed the generator’s cycle length, which is 2%
for C2LCGXgen and 2*%° for C4LCGXgen.

We specify the configuration (A,v,w) at create time this way:

id <SplitRandonGenerat or> nyGenerator;
nyCenerator = [CALCGXgen create: [self getZone]
setA: 64 setv: 20 setw 76
set St at eFr onBeed: nySeedVal ue];

id <SplitRandonGenerat or> nyGenerator;
nyCenerator = [CALCGXgen create: [self getZone]
set A 32 setv: 25 setw 60
set St at eFr onSeeds: (unsigned *) nySeedVector];

(In both cases, the only limitationisthat A * 2V * 2" must be less than the generator’s period, 2% for
C2LCGX and 2™ for C4LCGX.)

For obtaining output, we need to specify which of the A "virtual’ generators we want to draw from:

nyUnsi gnedVal ue
nyFl oat Val ue

[nyGenerator getUnsignedSanple: 12];
[nyGenerator getFloatSanple: nyVirtual Generator 1];

149

Appendix C. Random Library Appendix

nyDoubl eVal ue = [nyGenerator getThi nDoubl eSanpl e: soneUnsi gnedVal ue];
nmyDoubl eVal ue = [nmyGenerator getDoubl eSanple: 32];
nyLongDoubl eVal ue = [myGenerator getLongDoubl eSanple: 0];

Virtua generators are numbered from 0 to (A-1).

Obtaining the current count of variates generated likewise:

nyLongLonglnt = [nyGenerator getCurrent Count: nyVirtual Generator];
nmyLongLonglnt = [nyGenerator getCurrentSegnent: nyVirtual Generator];

The latter call indicates what segment number the specified virtual generator is currently drawing
numbers from.

Other than these methods, the methods discussed above under 'simple’ generators are the same for ’split’
generators.

In*addition* to this, 'split’ generators have the following methods to manage the virtual generators:

/1l Place all virtual generators at the start of the first segment:
[nyGenerator initAll]; // done automatically at creation

/1 Place all virtual generators back to the start of the current segnent:
[myGenerator restartAll];

/1 Place all virtual generators at the start of the next segment:
[nyGenerator advanceAll];

/1 Place all virtual generators at the start of the indicated segnent:
[nyGenerator junpAllToSegnent: nyLongLongl ntValue];

You may also address individual virtual generators:

nmyGenerator initGenerator: nyVgen];
nyGenerator restartGenerator: nyvVgen];
nyCener at or advanceCenerator: nyVgen];
nyGener at or junpGener ator: nyVgen toSegnent: nyLongLongl ntVal ue];

I nternal State methods common to simple and split generators:

/1 Print (nost of) the object’s state data to a stream
[nmyNormal Di st describe: nyStream];

The stream myStream may be created thus:

id nmyStream
id nmyStream

[QutStream create: [self getZone] setFileStream stdout]; or
[QutStream create: [self getZone] setFileStream stderr];

/Il Get the (class) nane of the object:
nyString = [nyNornal Di st getNane];

150

Appendix C. Random Library Appendix

/] Get the object’s 'magic nunber’, used by putStatelnto / setStateFrom
nyUnsi gned = [nyNornmal Di st getMagic];

C.2.1.3. Saving and Resetting State
You may save, and later restore, the internal state of a generator using these methods:

/Il Get the size of the nmenory buffer needed by putStatelnto / setStateFrom
myUnsigned = [nyGenerator getStateSize];

/] Extract the generator’s state data into your nenory buffer:
[nyGenerator putStatelnto: nyBuffer];

/] Set the generator’s state fromdata in a nmenory buffer:
[nmyGenerator setStateFrom nyBuffer];

To illustrate, assume the following data definitions:

FILE * nyFile;

const char * nyFileName = "M/GenFile.bin"; // or whatever
int stateSi zeG

id stateBuf G

int status;

The following code shows how to save an object’s state to disk: (You should add your own code to deal
with disk file errors, either aborting or printing out error messages.)

/1 Ask how big a buffer we need:
stateSi zeG = [nyGenerator getStateSize];

/Il Allocate nmenory for the buffer:
stateBuf G = [[self getZone] alloc: stateSizeQ;

/1 Ask the generator to put state data into the buffer:
[nyGenerator putStatelnto: (void *) stateBufG];

/1 Open a disk file for output:
nyFile = fopen(nyFil eNane, "w');
if (myFile == NULL) { }; // error on open: disk full, or no perm ssions

/Il Wite the state buffer to disk in binary form
status = fwite(stateBuf G stateSizeG 1, nyFile);
if (status < 1) { }; // error on wite: disk full?

// Cose the file

status = fclose(nyFile);
if (status) { }; // error on close ?

151

Appendix C. Random Library Appendix

/1 Free the menory allocated to the buffer:
[[sel f getZone] free: stateBuf@;

/1l O, for test purposes, just zero the buffer data instead:
/'l nenset(stateBuf G 0, stateSizeG;

This code shows how to set an object’s state from a disk file:

/1 Ask how big a buffer we need:
stateSi zeG = [nyCGenerator getStateSize];

/1 Allocate menmory for the buffer:
stateBuf G = [[self getZone] alloc: stateSizeq;

/Il Open a disk file for input:

nyFile = fopen(nyFil eNane, "r");

if (myFile == NULL) { }; // error on open: file not found
/] Read state data into the nmenory buffer:

status = fread(stateBuf G stateSizeG 1, nyFile);

if (status < 1) { }; // error on read

/'l Close the file:

status = fclose(nyFile);

if (status) { }; // error on close

/'l Ask the generator set its state fromthe buffer data:
[nyGenerator setStateFrom (void *) stateBufG];

/'l Free the nmenory allocated to the buffer:
[[sel f getZone] free: stateBuf@;

C.2.2. Usage Guide for Distributions

Where | use Nor mal Di st in examples below, substitute any other distribution and its parameters as
needed.

NOTE: any name that starts with my is meant to designate a variable of the appropriate type which you
have defined in your own program.

C.2.2.1. Creating distributions

You create adistribution in one of several ways:

152

Appendix C. Random Library Appendix

C.2.2.1.1. the lazy way:

id <Normal Di st> nyNornmal Di st;
nyNormal Dist = [Nornal Dist createWthDefaults: [self getZone]];

This method will create a distribution object with no default statistical parameters set, as well as afresh
generator object connected to it. The generator object is initialized with STARTSEED (see the discussion
above). Different distribution classes use different generators for this purpose.

C.2.2.1.2. Without default parameters, using a simple generator
id <Normal Di st> nyNornal Di st;

nyNormal Di st = [Normal Dist create: [self getZone]
set Generator: nySi npl eGenerator];

nyGener at or must of course first have been set to point to arandom generator of the ‘simple’ type. Note
that you cannot assign a different generator to a distribution after it has been created.

You can create the generator at the same time as the distribution:

id <Normal Di st> nyNornal Di st;

nyNormal Di st = [Normal Dist create: [self getZone]
set Generator: [TT800gen create: [self getZone]
set St at eFr onBSeed: 34453] 1;

C.2.2.1.3. Without default parameters, using a split generator

id <Normal Di st> nyNor nmal Di st;

nyNormal Dist = [Nornal Dist create: [self getZone]
set Cenerator: nySplitCenerator
setVirtual Generator: 7];

or perhaps

id <Normal Di st> nyNornmal Di st;

nyNormal Dist = [Nornal Dist create: [self getZone]
set Generator: [CALCGXgen createWthDefaults: [self getZone]]
setVirtual Generator: 99];

A split generator can be thought of as comprising a set of virtual generators (streams of random
numbers), and a distribution object must be ‘ connected’ to one of these streams. You cannot re-assign the
generator or the virtual generator after a distribution object has been created.

153

Appendix C. Random Library Appendix

In al these cases, when we want to obtain a random variate from this distribution object we need to
specify the statistical parameters:

nyDoubl e = [nyNornal Di st get Sanpl eWthMean: 3.3 withVariance: 1.7];

You can use different parametersfor every call. (And you can use this call even if default parameters
have been set.)

C.2.2.1.4. With default parameters, using a simple generator

id <Normal Di st> nyNornal Di st;

nmyNormal Dist = [Normal Dist create: [self getZone]
set Generator: nySi npl eGener at or
set Mean: 7.6 setVariance: 1.2];

C.2.2.1.5. With default parameters, using a split generator

id <Normal Di st> nyNornal Di st;

nyNormal Di st = [Normal Dist create: [self getZone]
set Generator: nySplitGenerator
set Virtual Generator: 33
set Mean: 3.2 setVariance: 2.1];

In these cases, we do not need to specify parametersto get a random number:

nmyDoubl e = [nyNornal Di st get Doubl eSanple];

However, you are allowed to specify parameters even if default parameters have been set.

(Of course, different distributions have different parameters. RandomBitDist has none, the Uniform
objects have minimum and maximum limit values, Normal Dist and LogNormalDist use Mean and
Variance, Exponential Dist only Mean, and GammaDist used alpha and beta. See the individual
distribution protocols or the file r andon di st ri buti ons. h for the specific methods available.)

C.2.2.1.6. You may reset the default parameters this way, as often as you like

[nyNormal Di st set Mean: 3.3 setVariance: 2.2];

154

Appendix C. Random Library Appendix

C.2.2.1.7. You can obtain the current values of parameters

/] Default paraneters:

nyDoubl el = [nyNornal Di st getMean];
nmyDoubl e2 = [nyNornul Di st getVariance];
nyDoubl e3 = [nyNornal Di st get StdDev];

/] Get a pointer to the generator object:
myQt her Generator = [nyNormal Di st get Generator];

/'l Get the nunmber of the virtual generator (if a split generator is used):
nyUnsi gnedVal ue = [nyNormal Di st getVirtual Generator];

/1 Find out if default paranmeters have been set:
nyBool ean = [nyNornal Dist getOptionsinitialized];

/1 Find out how nmany variates the object has delivered so far:
/1 (The counter is an unsigned long long int, which goes up to 2"64.)
nyLongLongl nt = [nyNornul Di st getCurrentCount];

C.2.2.1.8. You can reset the variate counter and other state variables this way

[nyNormal Di st reset];
Thisis most likely donein conjunction with resetting the connected generator, using
[nmyGenerator setStateFronBSeed: nySeedVal ue]
or smply

[nyGenerator reset];

C.2.2.1.9. Finally, we have the InternalState protocol methods

/1 Print (nost of) the object’s state data to a stream
[nmyNormal Di st describe: nyStream];

The stream myStream may be created thus:

id nmyStream = [QutStream create: [self getZone] setFileStream stdout]; or
id nmyStream = [QutStream create: [self getZone] setFileStream stderr];

/1 Get the (class) nane of the object:
nyString = [nyNornal Di st getNane];

155

Appendix C. Random Library Appendix

/] Get the object’s ‘magic nunber’, used by putStatelnto / setStateFrom
myUnsi gned = [nyNormal Di st getMagic];

C.2.2.2. Saving And Restoring State

You may save, and later restore, the internal state of a distribution object using Internal State methods.

+ Seethe Generator Usage Guide, which describes how to do this. The code for saving/restoring
distributions would be similar.

- Notethat saving the state of adistribution object will NOT automatically save the state of the attached
generator; you are responsible for doing so. (Sinceit is possible, even encouraged, to use asingle
generator to feed several distribution objects, thisis the only sane way of doingit.)

C.3. Advanced Usage Guide

This section amplifies the Usage Guide with material on how to choose a random generator for your
simulation, what default generators have been implemented for the distribution objects, and information
on the set of test programs used.

C.3.1. Choosing a Generator

C.3.1.1. Choosing A Generator

In this version of Random for Swarm there are atotal of 36 different generatorsimplemented. If you are
a serious simulationist you need to select which one(s) to use for your model.

Here are some factors to consider:

a. We want a generator to have as good statistical properties as possible. We measure this by subjecting
the generatorsto varioustests. | have subjected the implemented generators to two sets of tests,
Diehard and ENT. (Look in directory /testR6 of the test package.) (The Generators quality table
summarizesthe test results. The highlights are;

i. The LCG and SCG generators are of very poor quality (they fail many of the tests), and should
never be used. [They are likely to disappear in the next release.]

156

Appendix C. Random Library Appendix

ii. The lagged-Fibonacci generators (ACG, SWBI, PSWB) al fail the Diehard ‘ Birthday Spacings
Test’, and are therefore only conditionally recommended for use.

iii. The other 32-bit generators pass al tests, and | therefore have no reason not to recommend them
all for use.

iv. The 31-bit generators al fail certain tests because one bit has a constant value. Beyond that they
al seem to be ok.

b. We want a generator to have along enough period for our purpose, and in general the longer the
period the better. (However, note that to generate 2% random numbers from a fast generator like
MT19937 would take 2.1 million years on a 486/66, so in practice any generator with a period close
to 2%° or larger will be acceptable.) The PMMLCG generators, although they are of acceptable
quality otherwise, have a period less than 25 which we can exhaust in under 3 hours. So use those
only for quick ‘toy’ applications.

¢. We want a generator to execute efficiently, the faster the better. The Generators data table indicates
the execution times for the generators as implemented.

d. We want a generator to take as little resources (memory) as possible. The Generators data table
indicates the size of each generator’s state in bits.

e. Other things being equal, we want our generator to have asingle full period rather than a number of
shorter periods, since we may not know whether a particular starting seed will put usinto along or a
short subcycle. This disqualifies SWB, and possibly the new MWC and RWC generators (Marsaglia
does not say how many periods these generators have, but only gives the period length.)

C.3.1.2. Strategy For Using Random Generators

There are 3 possible strategies for using random generators:

a. Use one single generator for your whole simulation, and have all ‘users' of randomness
(distributions and other objects) call this single generator in an interleaved fashion. For this purpose,
generators such as MT19937, TT800, TT775, TT443 (and possibly PSWB and SWB) seem
particularly well suited since they have immense periods. The codein r andont r andom m shows how
to connect several distribution objects to a single random generator. The generator r andonGener at or
supplied thereis of class M T19937.

b. Use asingle generator of long period, but divide this long period up into a number of
non-overlapping (hence statistically independent) segments, and let each ‘user’ of randomness draw
their random numbers from separate segments. Doing this requires that we be able to quickly access
these separate segments. The ‘split’ generators C2LCGX and C4LCGX implement such a scheme.

157

Appendix C. Random Library Appendix

You can specify at creation how you want the period of these generators subdivided. (See the source
code for details.)

¢. Use a separate random generator for each ‘user’ of randomness. In this case, you need to make sure
that two or more generators of the same type are not started with the same seed, sincein this case
their output will be highly correlated. Provide your own seeds, or use RANDOM SEED or
NEXTSEED.

The distribution objects, if created with the ‘ createWithDefault: aZone’ method, will create for
themselves a fresh generator, with each class of distribution using a different class of generator. All the
generatorsin this case areinitialized with NEXTSEED (or RANDOMSEED, if you start the program

with - varyseed).

C.3.1.3. Generator Quality
These tables shows the results of testing the generator objects statistically:

Table C-1. Random Library: Generator Statistical Tests

Generator timing uS bits state period (s)# fests failed (x)
(unsigned) length
abcdef ghi j kI mopqr st uvwx
30-bit output
SCG ‘3.328 ‘1650 1 255 r(XX2XXXXXXX. . X. o XX. XX. .
32-bit output
LCG1 2.564 32 123 K. o XXXXXXK. e X ..
LCG2 2.564 32 123 K. o XXXXXXK. e X ..
LCG3 2.564 32 123 K. o XXXXXXK. e X ..
ACG 2.702 1760 1 255 K e e e
SWB1 3.285 1185 64 21178 K
SWB2 3.285 769 1536 2757 Koo
SWB3 3.285 673 192 2664 Ko
PSWB 3.452 1377 1 21376 PP
MWCA 3.399 64 P?250 L
MWCB 3.420 64 7250 L
MT19937 3.698 19968 1219037 |

158

Appendix C. Random Library Appendix

Generator timing uS bits state period (s)# fests failed (x)
(unsigned) length
TT800 4.654 800 12500
C3MWC 6.387 192 2218 L
RWC2 7.445 96 7?20 L
RWCS8 14.649 288 P?2250 L
31-bit output
C2TAUSL 4.078 62 1 260 .. -1x121x1......... X. ..
C2TAUS2 4.078 62 1 260 f..-1x111x1. X. ..
C2TAUS3 4.078 62 1 260 f..-1x111x1. X. ..
TT775 4.654 1775 1 2775 .. -1x111x1......... X. ..
TT403 4.670 403 1 2403 .. -1x121x1......... X. ..
PMMLCGL1 4.715 31 1 2x .. -1x111x1......... X. ..
PMMLCG2 4.715 31 1 2x .. -1x111x1......... X. ..
PMMLCG3 4.715 31 1 2a .. -1x111x1. X. ..
PMMLCG4 4.715 31 1 2a .. -1x111x1. X. ..
PMMLCG5 4.715 31 1 2a .. -1x111x1. X. ..
PMMLCG6 4.715 31 1 2a .. -1x111x1. X. ..
PMMLCG7 4.715 31 1 2a .. -1x111x1. X. ..
PMMLCGS8 4.715 31 12a .. -1x111x1. X. ..
PMMLCG9 4.715 31 1 2x .. -1x111x1......... X. ..
C2LCGX 7.029 62 1 260 (split) M. .-1x111x1......... X. ..
MRG5 9.674 155 1 2155 1., -1x111x1. X. ..
MRG6 10.449 186 1 2186 .. -1x111x1. X. ..
MRG7 10.913 217 1 2217 .. -1x111x1......... X. ..
C4LCGX 11.688 124 1 2210 (split) .. -1x111Xx1......... X. ..
C2MRG3 13.459 186 1 2185 .. -1x111x1. X. ..
Test code Test suite Explanation of test codes
a Diehard Birthday Spacings Test
b Diehard Overlapping 5-permutation Test
C Diehard Binary Rank Test (31x31)
d Diehard Binary Rank Test (32x32)

159

Appendix C. Random Library Appendix

Test code Test suite Explanation of test codes
e Diehard Binary Rank Test (6x8)
f Diehard Bitstream Test (overlapping
20-tuples)
g Diehard OPSO (Overlapping Pairs, Sparse
Occupancy)
h Diehard IOQSO (Overlapping Quadruples,
Sparse Occupancy)
i Diehard DNA Test
I Diehard Count-the-1's Test (integers)
k Diehard Count-the-1's Test (specific bytes)
I Diehard Parking Lot Test
m Diehard Minimum Distance Test
n Diehard 3D Spheres Test
0 Diehard Squeeze Test
p Diehard Overlapping Sums Test
q Diehard Runs Test
r Diehard Craps Test
S ENT Entropy Test
t ENT Compression test
u ENT Chi-Square Test
% ENT Arithmetic Mean
W ENT Monte Carlo value for Pi
X ENT Serial Correlation Coefficient
Indication Explanation of indications
The generator passed this test
1 The generator passed this test, except for the lowest
bit
2 The generator passed this test, except for the 2
lowest bits
X The generator failed this test completely

This test cannot be passed by this generator (too few
bits)

160

Appendix C. Random Library Appendix

Notes.

« For 31-bit generators, it is normal to fail 1 part of these tests.a,e,g,h,i k. Thisis because we left-shift
the output of these generators by 1 bit, so that the lowest bit is always 0.

« For 31-bit generators, it is normal to fail test d (32x32 rank test).

« All 31-bit generators also fail testsf, j, and u (and most othersdon’t.) Thisis *likely* dueto the
constant low bit.

Choosing A Generator.
« Clearly unacceptable generators: LCG1, LCG2, LCG3, SCG.
« Conditionally recommended generators. ACG, SWB1, SWB2, SWB3, PSWB.

« Use with caution: the PMMLCGx generators (due to their very short period 2.

« All other generators are recommended at thistime.

C.3.1.4. More generator data
And this table gives further data about the generators:

Table C-2. Random Library: Generator Data

Generator [Seeds Modulus Cycles Bits Speed State
(length)
(a) Simple Short Generators
LCG1 1 23 1m 32 1.442 32
LCG2 1 23 1lm 32 1.442 32
LCG3 1 23 1lm 32 1.442 32
PMMLCG1 |1 231-1 1m-1 31 0.784 31
PMMLCG2 |1 231-1 1m-1 31 0.784 31
PMMLCG3 |1 231-1 1m-1 31 0.784 31
PMMLCG4 |1 231-1 1m-1 31 0.784 31
PMMLCG5 [1 1231-105 1m-1 31 0.784 B1

161

Appendix C. Random Library Appendix

Generator |Seeds Modulus Cycles Bits Speed State
(length)
PMMLCG6 [1 231-225 1m-1 31 0.784 31
PMMLCG7 [1 231-325 1m-1 31 0.784 31
PMMLCG8 [1 23185 1m-1 31 0.784 31
PMMLCGY9 [1 231-249 1m-1 31 0.784 31
(b) Simple Long Generators
ACG 55 23 1 255 32 1.369 760
SCG 55 100 1 255 30 1.111 650
SWB1 37+C 232 64 21178 32 1.126 185
SWB2 24+C 23 1536 2757 32 1.126 769
SWB3 21+c 23 192 2664 32 1.126 673
PSWB 43+c 2325 1 21376 32 1.070 377
TT403 13 231 1 2403 31 0.792 103
TT775 25 231 1 2775 31 0.795 775
TT800 25 232 1 2500 32 0.795 800
MT19937 624 P32 1 219937 32 1.000 19937
MRG5 5 231-1 1 2155 31 0.382 155
MRG6 6 231-1 1 2186 31 0.354 186
MRG7 7 231-1 1 2217 31 0.339 P17
MWCA 2 232 ? 250 32 1.088 64
MWCB 2 232 ? 259 32 1.088 64
RWC2 3 232 ? 202 32 0.497 96
RWC8 18s 23 ? 2250 32 0.252 288
(c) Long Generators with Splitting Facilities: (none)
(d) Combined Generators
C2TAUSL (M))R 2311 1 260 31 0.907 62
C2TAUS2 (M)R 231-1 1 260 31 0.907 62
C2TAUS3 (M))R 2311 1 260 31 0.907 62
C2MRG3 (M) 6 2311 1 2185 31 0.275 186

162

Appendix C. Random Library Appendix

Generator |Seeds Modulus Cycles Bits Speed State
(length)

C3MWC (M) 6 23 ? 218 32 0.570 192
(e) Combined Generators with Splitting Facilities

C2LCG (M,9) R 231-85 1 260 31 0.526 62

C4ALCG (M,9) ¢4 2311 1 2120 31 0.316 124

Generator Calculating cycle lengths

LCGi cycle=m= 2z

PMMLCGi cycle=m-1<2a

ACG cycle= 2

SCG cycle= 2

SWBI cycle = (23zr- 2s25) / #oycles

PSWB cycle=mr-ms

TGFSRI cycle=2wn-1

MRGi cycle=mi-1

C2MRG3 cycle = (mls- 1ymzs- 12

C2TAUS cycle=Mask1l* Mask2

C2LCG cycle=(ml1* m2)/2

CALCG cycle=(ml1* m2* m3* m4)/8

MWCA, MWCB cycle = ? (not specified by Marsaglia)

C3MWC cycle=2?""

RWC2 cycle=2?""

RWCS8 cycle=2?""

C.3.2. Default Generators for the Distributions

C.3.2.1. Random Library: Default Generators

When distributions are created using thecr eat eW t hDef aul t s:

aZone method, they create their

own generator and initialize it with NEXTSEED (or with RANDOMSEED, if you started the program

with the - var yseed switch).

163

Appendix C. Random Library Appendix

The generators used are as follows:

Table C-3. Random Library: Default Generators

Distribution Generator
RandomBitDist uses C2TAUS1gen
BernoulliDist uses C2TAUS2gen
UniformlntegerDist uses TT403gen
UniformUnsignedDist uses TT775gen
UniformDoubleDist uses TT800gen
NormalDist uses MWCAQgen
LogNormalDist uses MWCBgen
Exponential Dist uses IC2TAUS3gen
GammaDist uses PSWBgen

These generators were chosen on the basis of quality and execution speed.

C.3.2.2. Utility Generator And Distributions

There are 4 default random objects defined in r andom random m These are:
id <Mri9937gen> randonCener at or ;

id <Uniform ntegerDi st> uni f or M nt Rand;

id <Unifornnsi gnedDi st> uni f or nnsRand;
id <UnifornDoubl eDi st> uni f or nDbl Rand;

These objects may be called from anywherein your program. Note (a): the generator is initialized with
NEXTSEED or RANDOM SEED depending on the use of the - varyseed command line option. Note (b):
the distribution objects are created without default statistical parameters.

C.3.3. Random Library Test Programs

1. In aseparate tar file (ftp://ftp.swarm.org/pub/swarm/RandomTests-0.81.tgz), available at the SFI ftp
site, there are a set of programs which exercise aspects of the generator objects’ functionality. The

164

Appendix C. Random Library Appendix

following (very utilitarian) programs are available:

« testR0O.a program which exercises every generator and distribution, verifying correct operation
and comparing output to that obtained on the author’s system.

- testR1.aprogram which prints out diagnostic output for code in random.m.

« testR2.aprogram which asks each distribution and generator to describe itself using the Swarm
Xprint method.

- testR3.aprogram which asks each distribution and generator to describe itself using the objects
"describe’ method.

- testR4.aprogram that performstiming tests on each generator and distribution, computing the
timeit takesto call each object 10,000,000 times.

- testR6.aprogram that generates a binary file containing 2.5M variates from a specified generator,
for purposes of statistical testing (e.g. with ENT or Diehard.)

« testR7.aprogram which records, for each generator, the value of unsignedMax, the number of
output bits, and the value of lengthOf SeedVector.

« testR9.aprogram which records, for each generator and distribution, the object’s ’ magic number’
and the buffer size needed for getState/setState.

2. Statistical testing: the generators have been put through the tests in the/ t est Re/ ENT and
/test Re/ Di ehar d directories. The raw data can be found there. The results are summarized in the test
log files found in the same test distribution. The distribution objects have not been tested statistically
yet.

The code here represents an effort to implement several efficient, reasonably safe generators. The
algorithms come from reading the literature (Bibliography). These algorithms have been implemented as
accurately as possible and run through some simple tests. Some generators, included here for historical
reasons only, are known to have bad statistical properties, and their use is deprecated. See Advanced
Usage Guidefor information on the quality of the included generators.

While the objectsin this library are believed to function correctly, the prudent and paranoid modeller
would do well testing them in some domain-specific way. One easy way to do thisisto run an
experiment twice: once with one class of generator (say, PMMLCG), and once with another (say, SWB).
If the results differ radically, then you can suspect one of the generators. If they don’t, well, the
generators still might be faulty!

The generators supplied with this release have been subjected to statistical testing using George
Marsaglia's Diehard tests as well as John Walker's entropy tests (ENT). The results of these tests are
summarized in Generator quality table. Other data on the properties of the generators are found there as
well. These data support a discussion of how to choose one or more generators for your simulation.

165

Appendix C. Random Library Appendix

The ENT test isincluded in the tarball of test programs mentioned above. The Diehard tests are
copyright and hence are not, but they can be downloaded from the web at:
ftp://ftp.csis.hku.hk/pub/random (ftp://ftp.csis.hku.hk/pub/random).

The distribution objects have not been statistically tested.

C.4. Resources for random number generation

This section lists some of the source reference material used in programming the random generators and
distributions. The following is alist of source articles or books from which the generator and distribution
objects were implemented

C.4.1. Generators

« LCG. agolden oldie; see [Knuth 1981] or [Numerical Recipes].

« PMMLCG. see[Park & Miller 1988], [L’' Ecuyer & Cote 1991] and [L’ Ecuyer & Andres 1997].
« ACG. agolden oldie; see [Knuth 1981] or [Numerical Recipes].

« SCG. agolden oldie; see [Knuth 1981] or [Numerical Recipes].

« SWB. see[Marsaglia & Zaman 1991]

« PSWB. see [Marsaglia& Zaman 1991]

« MRG. see[L Ecuyer et al 1993]

« C2MRGa3. see [L Ecuyer 1996(a)] and [L’ Ecuyer 1999(a)]

« C2TAUS. see[Tezuka & L Ecuyer 1991], [L'Ecuyer 1996(b)] and [L’ Ecuyer 1999(b)]. Also
[Tausworthe 1965].

« TGFSR (TT800, TT775, TT403).see [Matsumoto & Kurita1992] and [Matsumoto & Kurita 1994].
+ MT19937.see [Matsumoto & Nishimura 1998].

. MWCA, MWCB, C3MWC, RWC2, RWC8 ("Mother"). See [Marsaglia1994(a)] and [Marsaglia
1994(b)].

« C2LCGX. See[L'Ecuyer & Cote 1991]
« CALCGX. See[L'Ecuyer & Andres 1997]

166

Appendix C. Random Library Appendix

C.4.2. Distributions

- RandomBitDist. Code contributed by Nelson Minar. (mailto://nel son@media.mit.edu)

- BernoulliDist. Code contributed by Barry McMullin (mailto://memullin@santafe.edu).

- UniformintegerDist. Code contributed by Nelson Minar (mailto://nel son@media.mit.edu).

- UniformUnsignedDist. Code contributed by Nelson Minar (mailto://nelson@media.mit.edu).
« UniformDoubleDist. Code contributed by Nelson Minar (mailto://nelson@media.mit.edu).

« NormalDist. See [Numerical Recipes).

« LogNormalDist. See [Numerical Recipes].

« ExponentialDist. See [Russell 1992].

« GammabDist. See [Watkins 1994].

C.4.3. Useful Web Sites

- Pierre L’Ecuyer maintains a personal web site (http://www.iro.umontreal .ca/~lecuyer). He has many
of his own papersthere, as well as further links. He has papers both on generating random numbers
and on testing random number generators.

« George Marsaglia has a personal web site (http://stat.fsu.edu/~geo). His battery of tests for random
generators, called Diehard, is not available there, but rather from Hong Kong
(ftp://ftp.csis.hku.hk/pub/random). A GUI version of Diehard has been under development for some
time, but is not yet ready.

« The pLab (http://random.mat.sbg.ac.at) project in Salzburg, Austria, also has much useful information.
Bibliography

[Ferrenberg et a 1992] Alan M. Ferrenberg, D. P. Landau, and Y. Joanna Wong, "Monte Carlo
Smulations: Hidden Errors from"Good" Random Number Generators': Physical Review Letters,
no. 23, vol. 69, December, 1992.

[Knuth 1981] Donald Knuth, The Art of Computer Programming, 2nd ed., vol. 1, Seminumerical
Algorithms, Addison-Wesley, Reading, 1981.

[L’ Ecuyer et a 1993] Pierre L’ Ecuyer, F. Blouin, and R. Couture, " A Search for Good Multiple Recursive
Random Generators.": ACM TOMACS, vol. 3, pp. 87-98, 1993.

167

Appendix C. Random Library Appendix

[l Ecuyer 1996(a)] Pierre L’ Ecuyer, "Combined Multiple Recursive Generators.": Operations Research,
no. 5, vol. 44, pp. 816-822, 1997.

[L'Ecuyer 1996(b)] Pierre L’ Ecuyer, "Maximally Equidistributed Combined Tausworthe Generators':
Mathematics and Computation, no. 65, vol. 213, pp. 203-213, 1996.

[l Ecuyer 1999(a)] Pierre L’ Ecuyer, "Good Parameter Sets for Combined Multiple Recursive Random
Number Generators': Operations Research, no. 1, vol. 47, pp. 159-164, 1999.

[L’ Ecuyer 1999(b)] Pierre L’ Ecuyer, "Tables of Maximally-Equidistributed Combined LFSR
Generators': Mathematics and Computation, no. 225, vol. 68, pp. 261-269, 1999.

[L'Ecuyer & Andres 1997] Pierre L' Ecuyer and Terry H. Andres, "A Random Number Generator Based
on the Combination of Four LCGs.": Mathematics and Computersin Smulation, vol. 44, pp.
99-107, 1997.

[L’Ecuyer & Cote 1991] Pierre L’ Ecuyer and Serge Cote, "Implementing a Random Number Package
with Splitting Facilities': ACM TOMACS, no. 1, vol. 17, pp. 98-111, March, 1991.

[Marsaglia 1994(a)] George Marsaglia, "The Mother of All Random Generators': Posted by Bob
Wheseler to sci.stat.consult (news://sci.stat.consult) and sci.math.num-analysis
(news://sci.math.num-analysis) on behalf of George Marsaglia on October 28, 1994. The codeis
available at ftp.taygeta.com (ftp://ftp.taygeta.com/pub/c/mother.c) .

[Marsaglia 1994(b)] George Marsaglia, "Multiply-With-Carry Generators": File "mwcl.ps’ on
Marsaglia’s Diehard CD-ROM, available online at ftp.csis.hku.hk
(ftp://ftp.csis.hku.hk/pub/random).

[Marsaglia & Zaman 1991] George Marsagliaand Arif Zaman, "A New Class of Random Number
Generators.": Annals of Applied Probability, no. 3, vol. 3, pp. 462-480.

[Matsumoto & Kurita1992] M. Matsumoto and Y. Kurita, "Twisted GFSR generators': ACM TOMACS,
vol. 2, 1992, pp. 179-194.

[Matsumoto & Kurita 1994] Makoto Matsumoto and Yoshiharu Kurita, " Twisted GFSR Generators|1":
ACM TOMACS (Amended by K. Matsumoto, 8 July 1996)., no. 3, val. 4, pp. 254-266.

[Matsumoto & Nishimura1998] M. Matsumoto and T. Nishimura, "Mersenne Twister: A
623-dimensionally Equidistributed Uniform Pseudorandomnumber Generator": ACM TOMACS,
no. 1, vol. 8, pp. 3-30, 17 December 1998.

[Nature 1994] "News and Views": Nature, vol. 372, December, 1994.

168

Appendix C. Random Library Appendix

[Numerical Recipes] W. H. Press, S. A Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical
Recipesin C, 2nd ed., Cambridge University Press, 1992.

[Park & Miller 1988] Stephen K. Park and Keith W. Miller, "Random Number Generators: Good Ones
Are Hard to Find.": CACM, no. 10, vol. 31, pp. 1192-1201, October 1988.

[Tausworthe 1965] R.C. Tausworthe, "Random Numbers Generated by Linear Recurrence modulo 2":
Math. Comput., vol. 19, pp. 201-209, 1965.

[Tezuka & L' Ecuyer 1991] Shu Tezuka and Pierre L’ Ecuyer, "Efficient and Portable Combined
Tausworthe Random Number Generators.": ACM TOMACS, no. 2, val. 1, pp. 99-112.

[Russell 1992] Edward C. Russell, "Building Smulation Models With SMSCRIPT 11.5", CACI Products
Company, LaJolla, 1992, The company’ sweb siteis: http://mww.caciasl.com.

[Watkins 1994] Kevin Watkins, Discrete Event Smulation in C, McGraw-Hill, 1994.

169

Bibliography

A short bibliography of books, articles, papers useful for learning to program with the Swarm libraries.

Books

[Goldberg & Robson, 1989] Smalltalk 80 : The Language, Adele Goldberg and David Robson,
0201136880, June 1989, Addions-Wesley.

Abstract. Classic Smalltalk reference.

[Kernighan & Ritchie, 1988] The C Programming Language, K & R, , 2, Brian Kernighan and Dennis
Ritchie, 0-13-110370-9, Revised, 1988, Prentice Hall, 1988.

Prentice Hall Software Series.
Abstract. The definitive reference on the C programming language by its inventors.

[NeXT, 1993] Object Oriented Programming and the Objective C Language, NeXT Computer,
0-201-63251-9, 1993, Addison-Wesley.

Abstract. Thisbook describes the Objective-C language as it isimplemented for NeX TSTEP.
While clearly targeted at NeXTSTEP, it is agood first-read to get to learn Objective-C

Thisbook is out of print, but availble at the : Apple website
(http://devel oper.appl e.com/techpubs/macosxserver/ObjectiveC/index.html)

[Van der Linden, 1994] Expert C Programming: Deep C Secrets, Peter van der Linden, 0-13-177429-8,
1994, SunSoft Press: Prentice Hall.

Abstract. A book for more advanced Swarm users: excellent for information on more abstruse
matters of memory-management, linker issues and pointers. Covers much UNIX and C arcana

which is difficult to find documented anywhere el se (obscure man pages notwithstanding) in an
engaging and humourous style.

[DiBonaet. al. 1999] Open Sources: Voi ces from the Open Source Revolution, Edited by Chris DiBona,
Edited by Sam Ockman, Edited by and Mark Stone, 1-56592-582-3, 1999, O’ Reilly & Associates
Inc., Sebastopol.

170

Bibliography

Papers

[Daniels, 1999] Marcus Daniels, Integrating Simulation Technol ogies with Svarm
(http: //mww.swar m.org/intro-papers.html), Agent Simulation: Applications, Models and Tools,
October 1999, Argonne National Laboratory, University of Chicago.

171

Index

A

ActionGroup, 68
activateln, 36, 69
Activity, 70

starting and stopping, 71
agent-based, 16
agents

auxiliary , 33

primary , 33
arborgames, 35
Archiver

application

global, 129

Arguments protocol, 99
Array

(See collections)
atOffset:, 109

B

buildActions

(See Schedule)
buildObjects

(See object creation)

C

collections

arrays
contrast with maps, 110
usage, 111

index usage, 77, 117

lists, 73
adding and removing objects, 74
looping through members, 77

maps
contrast with arrays, 110
keys, 112
usage, 112
nil objectsin, 79
wrapper usagein, 109
complex systems, 16
control panel, 81
CREATABLE, 54
createActionForEach:
usage in schedules, 65
createActionTo:
usage in schedules, 64
createBegin
(See object creation)
Creating
(See phases)

D

deleteAll, 109

Drone, 99

drop, 52, 57, 107

dynamic scheduling
(See Schedule)

E

EZDistribution, 81
EZGraph, 81, 86

F

forEach:, 109
function
C,101

172

G

get methods, 59
getActivity
(See Activity)
getCount, 76, 109
graphical interface
(See GUISwarm)
GUISwarm, 50, 81
datadisplay graphs, 86
graph types, 38

H

HDF5, 129

heatbugs
command-line parameters, 98
creating objectsin, 49
parameter files, 130

Index Protocol

(See callections)
instance variables

intitialization, 59
instantiation

(See object creation)

J

Java, 21
constructor
(See object creation)

L

Lisp, 129

LispArchiver
application
custom, 132
List Protocol
(See callections)

M

M()
(See selector)
Map
(See collections)
memory allocation
dynamic, 104
Swarm Zones, 34, 52
mousetrap
parameter files, 133

O

object creation, 28

buildObjects method, 34

CREATABLE protocol, 31

create, 51

createBegin, 50

createBegin/createEnd, 29, 49

createEnd, 50

in Java, 30

in Objective C, 29

object recycling, 57
object-oriented programming, 21
Object2dDisplay

usage example, 66
Objective C, 21

protocols

usage inSwarm, 30

objects

getting information from, 61
0[]

173

(See object-oriented programming)

P

parameter
command-line, 98
files, 129
phases, 49
ProbabilityDistribution Protocol
(See random numbers)
probe displays, 40
programming
object-oriented programming, 16
encapsulation, 18
inheritance, 19
protocols
(See Objective C)

R

random numbers
built-in distributions, 119
creatable distributions, 125
generators, 122

removeAll, 109

S

Schedule
buildA ctions method, 35
creating, 64
dynamic, 71

selector
adding argumentsto, 65
defined, 65
in schedules, 65
justification for usage, 66

nonobject argumentsto, 68
usage in display objects, 66
serialization, 129
set methods, 59
Setting
(See phases)
simulation
agent-based, 16
discrete event, 20
stopping a simulation
(See Activity)
Swarm, 33
agents
(See agents)
common syntax, 33
described, 12
tutorial, 46
using Swarm library objects, 53

U

Using
(See phases)

V

variable declarations
protocol usagein, 31

W

wrapper, 68, 109
integer wrapper as map key, 114

Z

ZoomRaster, 81, 81

Colophon

This book is generated entirely from a single SGML source document marked up in the DocBook 3.1
DTD (http://www.0asis-open.org/docbook/). To generate the resultant output, we use the Modular
DocBook stylesheets (http://www.nwal sh.com/docbook/dsssl/index.html) provided by Norman Walsh
(http://www.nwal sh.com).

175

	Def Var Metodi Classi
	errori compilazione
	segna libro

