
S.Bergamaschi, D.Beneventano, S.Quattrini, E.Kazazi

User Guide

MOMIS Version 1.2

Contents

1 The MOMIS Data Integration System 3
1.1 MOMIS Overview . 3
1.2 Data Integration Process and MOMIS Architecture 5
1.3 The WISDOM case study . 8
1.4 Important concepts in MOMIS 9
1.5 Glossary . 10

2 The MOMIS System 11
2.1 Launching MOMIS . 11
2.2 Getting Started with MOMIS 12
2.3 How to Create a new Project? 16
2.4 Local Source Schema Extraction 16

2.4.1 Microsoft SQL Server database Schema Extraction . . 18
2.4.2 Microsoft Excel File Schema Extraction 21
2.4.3 Connection to a MySQL database through Web Service 22

2.5 How to create a new Global Schema? 25
2.6 Local Sources Selection . 27
2.7 Local Sources Annotation . 28

2.7.1 Manual Annotation . 30
2.7.2 The WordNet Extender Tool 32
2.7.3 Automatic Annotation 37
2.7.4 Annotation Importer 38

2.8 Semantic Relationships Extraction 42
2.9 Mapping Table Creation and Refinement 46

2.9.1 Join Functions . 50
2.9.2 Transformation Functions Editor 53
2.9.3 Resolution Functions 56

3 Querying the Global Schema 59
3.1 Query Manager Interface . 59
3.2 Query Saving and Loading . 61

3

3.3 Query Plan Viewer . 62

4 Querying the Global Schema with the MOMIS QM Web In-
terface 67
4.1 Query Composition and Execution 67
4.2 Visualize Results in a Map . 69
4.3 Query saving . 71
4.4 Mapping table . 71

A Data Transformation Functions and Join Function (Theoret-
ical Background) 73

B Data Fusion (Theoretical Background) 79

C Query Unfolding (Theoretical Background) 85
C.1 Query Unfolding steps . 85
C.2 Multiple Class Queries . 87

D The OQLI3 query language syntax 89

4

List of Figures

1.1 The Data Integration Process 4
1.2 The MOMIS Data Integration Process 5
1.3 Mapping Refinement . 6
1.4 The MOMIS architecture . 7
1.5 The WISDOM Project dataset 9

2.1 MOMIS Welcome Page . 12
2.2 MOMIS Main Window . 13
2.3 Menu bar . 14
2.4 Project Generation Process 16
2.5 New Project dialog . 17
2.6 Local Source Type Selection 17
2.7 Microsoft SQL Server Connection Parameters 18
2.8 Tables and Attributes Selection 19
2.9 Data Preview . 20
2.10 Microsoft Excel File Configuration Parameters 21
2.11 Web Service Connection Settings 24
2.12 New Global Schema dialog . 25
2.13 Global Schema Designer: Overview 26
2.14 Local Sources Details . 27
2.15 Annotation with WordNet . 28
2.16 Source Annotation Section . 29
2.17 Annotation Icons . 30
2.18 WordNet Icons . 30
2.19 Annotation of Class and Attribute Names 31
2.20 hotel name annotation . 31
2.21 Using WordNet Extender for exending WordNet database. . . 33
2.22 Hypernym Graph of the lemma “telephone” 35
2.23 Steps to follow for associating a new or existing lemma with

an existing synset . 36
2.24 Steps to follow for associating a new or existing lemma with a

new synset . 37

5

2.25 Automatic Annotation Process 38
2.26 Annotation Importing . 39
2.27 Hypernym Graph Viewer: “hotel” 41
2.28 Hypernym Graph Viewer: New Synset for “hotel” 41
2.29 Semantic Relationships Type 42
2.30 Semantic Relationships Editor 44
2.31 User-provided Relationships Interface 45
2.32 Global Classes Generation . 46
2.33 Global Schema Editor: Icons Legend 47
2.34 Mapping Refinement Panel . 48
2.35 Join Function . 50
2.36 Transformation Function Panel for the Local Attributes rating

and user rating of the local class Venere.Hotels 54
2.37 Transformation Function applied for the Local Attributes rat-

ing and user rating of the local class Venere.Hotels 55
2.38 Resolution Function Interface 57

3.1 Launch the Query Manager 59
3.2 The Query Manager Interface 60
3.3 Query Manager icon buttons 61
3.4 Save the Executed Query . 61
3.5 Local Queries Execution . 63
3.6 Query Processing . 63
3.7 Query Plan Viewer . 64
3.8 Data Preview . 65
3.9 Mapping Table of “structure”global class 65

4.1 Main steps for Query Composition and Execution 67
4.2 Add Condition panel . 68
4.3 Add Sorting Options panel . 68
4.4 Row Data shown in a new window 69
4.5 Select Attribute . 69
4.6 Google Map . 70
4.7 Query Saving . 71
4.8 Opening a saved Query . 71
4.9 Hotels Mapping Table . 72

6

Introduction

This User Guide helps you learning how to integrate heterogeneous and dis-
tributed sources with the MOMIS Data Integration System.

The User Guide is organized as follows: Section 1 presents the MOMIS
system, by describing its architecture and and by identifying the main phases
of the data integration process; in Section 2, the MOMIS GUI and the Global
Schema generation process are explained with images and examples; Section
3 explains how to query the obtained Global Schema and finally Section 4
explains in details how to use the MOMIS Query Manager Web Interface.

If you are looking for a quicker MOMIS guide, have a look at the MOMIS
Video Tutorials, available on the DataRiver YouTube channel
(http://www.youtube.com/user/DataRiverSrl) or on the Datariver Web Site
(http://www.datariver.it).
You can find all MOMIS publications on the DBGroup publications page:
http://www.dbgroup.unimo.it/site2012/index.php/publications

1

2

Chapter 1

The MOMIS Data Integration
System

1.1 MOMIS Overview

”Data integration is the problem of combining data residing at different sources,
and providing the user with a unified view of these data” [6].

The MOMIS Data Integration System (Mediator envirOnment for Multi-
ple Information Sources) is a framework able to integrate data coming from
heterogeneous and distributed data sources (structured and semi-structured)
in a semi-automatic way, to bring out new information from apparently unre-
lated existing data. An object-oriented language, with an underlying Descrip-
tion Logic, called ODLI3 , derived from the standard ODMG is introduced for
information extraction. A software component, named wrapper (Fig. 1.1)
extracts the schema of a source, translating it in the ODLI3 language. The
discovery of relationships between the schemas of the information sources ex-
ploits the semantics of the data sources, clustering techniques and description
logics inferences. The integration process gives rise to a mediated schema,
also called Global Schema (GS) (Fig. 1.1) that is a reconciled, integrated,
and virtual view of the underlying sources. MOMIS performs data integra-
tion following a virtual approach, no centralized copy of data is made and
follows a global-as-view (GAV) approach: the obtained global schema is ex-
pressed in terms of the local source schemas. A full and detailed description
of the MOMIS system from a theoretical point of view is out of our scope
and can be found in [5, 2, 4].

The goal of the MOMIS system [3] is the minimization of the integration
process costs. In traditional Data Integration Systems, designers have to
manually build the integrated schema, defining all the mappings between

3

Fig. 1.1: The Data Integration Process

each global class/attribute and the corresponding local classes/attributes on
the local data sources, thus the integration process requires several days or
weeks depending on the size of the integration project. Another drawback
is due to the fact that designers can see the global result of the integration
only at the end of the overall integration process, and it is only at that time
that they can refine mappings in order to improve the integrated schema. To
overcome these problems, a first result of integration is semi-automatically
derived by MOMIS and proposed to the designer in few minutes; she/he can
then improve this integration result, through an iterative refinement process
and a set of features. Some of these features are listed below:

• a GUI that facilitates the integration process

• a set of explore and preview tools that allow the designer to preview
the integration result during each phase

• the possibility to create different unified views to explore the global
result of the data integration process

• a suite of tools to semantically annotate data sources w.r.t. a common
lexical reference; these tools allow the designer to import/export the
local source annotations, and permit to extend the lexical reference
itself with domain glossaries

• a preview of the query plan that allows the designer to visualize, for
each executed global query, the set of queries that compose the query
plan

4

1.2 Data Integration Process and MOMIS Ar-

chitecture

MOMIS builds a unified schema, called Global Schema (GS), of several (het-
erogeneous) data sources (also called local sources), and allows users to for-
mulate queries on it. As reported in the previous section it follows a Global-
As-View (GAV) approach for the definition of mappings between the GS and
local schemas: the GS is expressed in terms of the local schemas. The GS
generation process is composed by four main phases:

Fig. 1.2: The MOMIS Data Integration Process

5

1. Local Schema Acquisition: (Fig. 1.2-1) The extraction of the Local
Source Schema is performed by wrappers1, that logically extract the
schema of each local source and convert it into the common language
ODLI3 .

2. Local Source Annotation: (Fig. 1.2-2) the designer is asked to an-
notate the local sources, i.e. to associate to each class and attribute
name one or more meanings w.r.t. a common lexical reference, that
in this case is the lexical database WordNet [7]. WordNet is a the-
saurus for the English language, that groups terms (called lemmas in
the WordNet terminology) into sets of synonyms called synsets, pro-
vides short definitions (called gloss), and connects the synsets through
a wide network of semantic relationships.

The designer can perform automatic annotation and/or can manu-
ally select a base form and the appropriate WordNet meaning(s) (i.e.
synset(s)) for each term. Moreover, the designer can extend Word-
Net with Domain Glossaries. The Local Source Annotation phase is
performed by the Global Schema Designer tool (Fig. 1.4).

Fig. 1.3: Mapping Refinement

3. Semantic Relationships Extraction: (Fig. 1.2-3) starting from
the annotated local schemas, MOMIS derives a set of intra and inter-
schema semantic relationships in the form of: synonyms (SYN), broader
terms/narrower terms (BT /NT) and related terms (RT) relationships.
The set of semantic relationships is incrementally built by adding:
structural relationships (deriving from the structure of each schema),
lexical relationships (deriving from the element annotations, by ex-
ploiting the WordNet semantic network), designer-supplied relation-
ships (representing specific domain knowledge) and inferred relation-

1The type of sources supported at present are MySQL, Microsoft SQL Server, Oracle,
DB2, PostgreSQL, JDBC Sources, JDBC-ODBC Sources, Microsoft Excel File, CSV File,
Web Service.

6

ships (deriving from Description Logics equivalence and subsumption
computation). The Semantic Relationship Extraction phase is per-
formed by the Global Schema Designer tool.

Fig. 1.4: The MOMIS architecture

4. GS generation: starting from the discovered semantic relationships
and the local sources schemas, MOMIS generates a GS consisting of a
set of global classes, plus Mapping Tables which contain the mappings
to connect the global attributes of each global class with the local source
attributes. The GS generation is a process where classes describing the
same or semantically related concepts in different sources are identified
and clusterized into the same global class (Fig. 1.2-4). The designer
may interactively refine and complete the proposed integration result
through the GUI provided by the Global Schema Designer tool. In par-
ticular, she/he can: modify the proposed global classes and mappings
(Fig. 1.3); select the appropriate Join Function for each global class;
define Transformation Functions in order to transform the local at-
tribute values into the corresponding global attribute values; and solve
possible data conflicts through the definition of Resolution Functions
(applied to each global attribute to obtain, starting from the values
computed by the Transformation Functions the corresponding value of
the global attribute).

7

Finally, once obtained the desired integration result, a user can pose
queries on the GS by using the Query Manager tool (see Fig. 1.4). As
MOMIS follows a GAV approach, the query processing is performed by means
of query unfolding. The query unfolding process generates for each global
query (i.e. a query on the GS) a Query Plan composed by a set of queries:

• a set of local queries that have to be executed on the local sources
simultaneously by means of wrappers,

• a mapping query for merging the partial results (defined by means of
the join function),

• a final query to apply the resolution functions and residual clauses.

Moreover, MOMIS provides the Query Manager Web Service which al-
lows to integrate MOMIS with other applications (e.g. Business Intelligence
solutions), and a user-friendly Web Application (Fig. 1.4) to guide an end-
user, without experience on data integration solutions, to easily compose and
execute query on the integrated schema (see Chapter 4).

1.3 The WISDOM case study

In this user guide we used an integration project that involves a set of local
sources representing Hotels and Campings, the data sources has been ex-
tracted from three popular Websites: www.venere.com/it, www.saperviaggiare.it
and www.guidacampeggi.com.

These sources have been used in the WISDOM project (Web Intelligent
Search based on DOMain ontologies) (www.dbgroup.unimo.it/wisdom) for
the development of a Tourism Vertical Web Portal (Fig. 1.5).

8

Fig. 1.5: The WISDOM Project dataset

1.4 Important concepts in MOMIS

As reported in the Section 1.1, data integration is the problem of combining
data residing at different Local Sources, and providing the user with a unified
view of these data. These unified view is called Global Schema. Different
Global Schemas may be created starting from the same set of Local Sources.
Project
A Project is a set of Local Sources and a set of Global Schemas. Projects
will be described in Section 2.3. Global Schema A Global Schema is a set
of global classes and relationships among them; on the other, in a Project,
we use the term Global Schema to denote not only classes and relationships
among them, but also a set of information: local sources and for each local
source the local classes and local attributes involved in the integration, local
sources annotation, semantic relationships, mappings between global classes
and local classes etc. All these informations related to a Global Schema are
stored in an xml file.

A workspace is the directory where you store all your project folders.
You need to have one workspace directory.

You can create as many projects as you need and they are saved in the
workspace.

9

1.5 Glossary

In this tutorial some abbreviations will be used:

• GS stands for Global Schema;

• GC stands for Global Class;

• GA stands for Global Attribute;

• LC stands for Local Class;

• LA stands for Local Attribute;

• TF stands for Transformation Function;

• RF stands for Resolution Function;

• JF stands for Join Function;

• Label is the name of an attribute or a class;

• Sense is a meaning of a label.

10

Chapter 2

The MOMIS System

2.1 Launching MOMIS

MOMIS, is a Java based application and as such a Java Runtime Environment
(JRE) is required in order to run it. It is developed as an Eclipse Rich Client
Platform1 (RCP) application, so no installation is required. To tun MOMIS
complete the following steps:

• Download2 the right zip folder corresponding to your operating system.

• Unzip the MOMIS zip file and, in the folder, double-click the executable
file.

• A License window displays. Read and accept the terms of the license
agreement to continue3 .

That is all, now you can start integrating sources and querying them.

1http://wiki.eclipse.org/Rich Client Platform
2You can dowload the zip folder from http://www.datariver.it -> Download menu
3The License displays only the first time you run MOMIS, you will be asked to accept

the MOMIS License GPL Version 2, if you don’t accept the license the application will
not start and will exit

11

2.2 Getting Started with MOMIS

The MOMIS Main Window

MOMIS starts presenting a Welcome Page (Fig. 2.1), in which you can find
some information about Data Integration and the MOMIS Application. If
you click on MOMIS Demo Project the Welcome Page will close and the
project used in this user guide will load in the workspace.

Fig. 2.1: MOMIS Welcome Page

MOMIS main window is divided into 3 views (Fig. 2.2):

1. Source Explorer, where are visualized the sources of the current project;

2. Global Schema Explorer, where are visualized the global schemas of the
current project;

3. Editor Panel, where you will be able to edit the global schemas of the
current project.

12

Fig. 2.2: MOMIS Main Window

13

Menu bar and Toolbar

Fig. 2.3: Menu bar

The menu bar is composed of three menus (Fig. 2.3):

1. Project : is composed of a set of menu items that enables the acquisi-
tion of a local source schema, permits you to create a new integration
project, upload an existing one, upload the demo project or save the
current project.

2. Global Schema: is composed of a set of menu items that permits you to
create a new global schema, upload an existing one or save the current
global schema.

3. Help: is composed of a set of menu items that permits you to open the
Welcome Page and the About Dialog.

In the tables below are listed the menu items and the toolbar items avail-
able to you.

14

Table 2.1: Menu
Icon Menu Item Description

New Project Create a new empty project

Load Project Load a previously created project

Load Demo Project Load the project used in this user guide

Save Project Save the current project

Save Project as ... Create a copy of the current project

New Local Source ... Upload the schema of a new source

Exit Exit the application

Table 2.2: Global Schema Menu
Icon Menu Item Description

New Global Schema Create a new global schema in the current project

Save Global Schema Save the current global schema

Save Global Schema as ... Create a copy of the current global schema

Table 2.3: Toolbar Items
Toolbar Icon Description

Create a new empty project

Load a previously created project

Load the demo project used in this user guide

Save the current global schema

Save the current project

Upload the schema of a new source

Upload the schema of a new source through web service

Launch Query Manager on the current schema

15

Project Generation Process

A Project is a set of Local Sources and a set of Global Schemas; the main
steps of the Project Generation Process are:

1. Local Source Schema Extraction (Section ??)

2. Global Schema Generation (Section 2.5)

Once completed the integration process, it is possible to pose query on the
obtained Global Schema by using:

• the Query Manager Interface

• the MOMIS QM Web Interface

Fig. 2.4: Project Generation Process

2.3 How to Create a new Project?

Click Project -> New Project and in the displayed dialog box (Fig. 2.5) enter
a name for your project, click OK. The system will open the Local Source
Schema Acquisition wizard (see Section 2.4).

2.4 Local Source Schema Extraction

The extraction of the local source schema is performed by wrappers. A wrap-
per is a software component that logically converts the source data structure

16

Fig. 2.5: New Project dialog

Fig. 2.6: Local Source Type Selection

17

into the ODLI3data language4. Let’s see how to extract the local source
schema. Click Project -> New Local Source and a wizard that will guide
you, in the local source schema acquisition process, will start. Choose from
the list the local source type (Fig. 2.6), and enter a name in the text field
(the name entered should be unique within a project). Depending on the
source type selected, the next wizard page can be different. Let us see how
to extract the schema of a Microsoft SQL Server database, a Microsoft Excel
file and a MySQL Database through Web Service.

2.4.1 Microsoft SQL Server database Schema Extrac-
tion

In the first wizard page select Microsoft SQL Server database as source type
and enter a name.

Fig. 2.7: Microsoft SQL Server Connection Parameters

4The type of sources supported in this version are: MySQL, Microsoft SQL Server,
Oracle, DB2, PostgreSQL, JDBC Sources, JDBC-ODBC Sources, Microsoft Excel File,
CSV File, Web Service. For each data source a wrapper component is implemented.

18

Fig. 2.8: Tables and Attributes Selection

19

As you can see in Fig. 2.7, you have to enter the correct parameters to
establish the connection with the database server:

• Server Domain: the server hostname

• Port: the port number

• Username and Password

Then by clicking the Connect button, the Database list will be populated.
Choose the database name you want to connect to, from the list.

Click the Next button to see the database tables and attributes. Depend-
ing on the integration needs you can choose to acquire, by selecting the tree
nodes, a subset of the source tables and attributes (Fig. 2.8). A Data Pre-
view functionality gives you access to the data stored in the different tables.
By selecting a table and clicking on Data Preview you are allowed to explore
the first one hundred records of the table or of a single attribute and see the
table total records number (Fig. 2.9).

Fig. 2.9: Data Preview

20

Then click on Finish to complete the source schema extraction. Once
the local source schema extraction process is finished the tables of the source
(called in the ODLI3 language local classes) will appear in the Source Ex-
plorer view. From there you can access at any time the local Data Preview
functionality by right-clicking on a local class and choosing Data Preview.

2.4.2 Microsoft Excel File Schema Extraction

In the first wizard page select Microsoft Office Excel file as source type and
enter a name5

Fig. 2.10: Microsoft Excel File Configuration Parameters

As you can see in figure Fig. 2.10, you have to enter the absolute path of
the Excel File and complete the configuration parameters reported below:

• Column Name Line Number: The line number from which to get the

5The Microsoft Excel Wrapper and CSV Wrapper are based on the Metamodel library:
http://metamodel.eobjects.org/

21

names of the columns6

• Skip Empty Lines: Boolean that defines if empty lines in the Excel
spreadsheet should be skipped while reading the spreadsheet

• Skip Empty Columns: Boolean that defines if empty columns in the
Excel spreadsheet should be skipped while reading the spreadsheet

• Transform Column Types: Boolean that defines if the system should
try to transform column data types7

Click the Next button to see the sheets of the file and the columns of each
sheet. Depending on the integration needs you can choose to acquire, by
selecting the tree nodes, a subset of the sheets and columns. You can use the
Data Preview tool on a sheet (to explore the first one hundred rows of the
sheet) or on a column (to explore the first one hundred values of a column).

Then click on Finish to complete the source schema extraction. Once
the local source schema extraction process is finished the sheets of the file
(called in the ODLI3 language local classes) will appear in the Source Explorer
view. From there you can access at any time the local Data Preview by right-
clicking on a local class and choosing Data Preview.

2.4.3 Connection to a MySQL database through Web
Service

If it’s not possible to establish a direct JDBC connection with a particular
source that is distributed over the Internet then the Web Service Wrapper
can be used. This wrapper has two main components: a server and a client.

1. Wrapper Web Service Server component : On the server side, a daemon
(WSDLWrapper impl) runs: it offers a Web Service server object and
give you access to a data source for which a wrapper in MOMIS exists.
Let’s see how to start the Web Service Server? Obtain:

• datariver-communication-1.2.jar

• datariver-core-1.2.jar

• velocity-1.4.jar

• commons-collections-20040616.jar;

6Note that this line number is affected by the Skip Empty Lines property! If Skip
Empty Lines is set to true, the line numbers will begin from the first non-empty line.

7If set to false all columns types will be string

22

• log4j-1.2.14.jar

• mysql-connector-java-5.1.6.jar

packages from the source distribution.

Then, you can directly start the Web Service as follows:

java -cp list-of-the-jars-reported-above it.unimo.datariver.communication.tools.wsdl.WSDLWrapper.WSDLWrapper impl

End Point URL schemaName.xml source name

• End Point URL: an enpoind url describes the port and the path
where the service will response to, eg http://localhost:8080/test

• schemaName.xml: schemaName.xml it is an xml file that contains
the source connection/configuration parameters.

• sourceName: the name of the source

Below is reported the xml schema of the schemaName.xml:

<?xml version="1.0"?>

<Schema

name="name" momisCodeVersion="momis.0.0.1-SNAPSHOT compiled.${today.date}" >

<Source

name="source_name"

description=""

type="relational"

>

<SourceCommunicationConfiguration

driverName="it.unimo.datariver.communication.core.jdbc.WrapperJdbcCore_MySql">

WrapperJdbcCore.DriverClassName=com.mysql.jdbc.Driver

WrapperJdbcCore.Password=password

WrapperJdbcCore.Url=jdbc\:mysql\://hostname\:3306/database_name

WrapperJdbcCore.User=user

WrapperJdbcCore.schemaName=source_name

</SourceCommunicationConfiguration>

</Source>

</Schema>

2. Wrapper Web Service client component : The Client is the wrapper
component used to access a published web service. So first of all you
have to publish the service as shown above.

23

Click on the toolbar item to upload the schema of the source through web service.
Enter the connection parameters as shown in figure Fig. 2.11 and then
click Finish.

Fig. 2.11: Web Service Connection Settings

The new source displays in the Source Explorer view.

24

2.5 How to create a new Global Schema?

Click on Global Schema -> New Global Schema, enter a name for the new
global schema and click OK (Fig. 2.12). The name of the global schema
must be unique within a project. The new GS displays in the Global Schema
Explorer view. The system automatically loads the just created GS in the
Global Schema Designer editor (Fig. 2.13).

Fig. 2.12: New Global Schema dialog

25

Fig. 2.13: Global Schema Designer: Overview

26

From here you can edit any of the following sections:

• Local Sources

• Sources Annotation

• Semantic Relationships

• Mapping Refinement

You have to complete each section, in order to obtain a correct GS.

2.6 Local Sources Selection

In this section you have to select the sources you want to include in your GS,
by choosing them among the sources you acquired before. Right-click on a
source from the Source Explorer view and click on Add selected source to the
Global Schema; for each selected source you can see more information in the
Source Details: ODLI3Representation section, as shown in Fig. 2.14.

Fig. 2.14: Local Sources Details

27

2.7 Local Sources Annotation

Fig. 2.15: Annotation with WordNet

In the first step we selected the local sources that we want to integrate
(Fig. 2.14). In this step we want to express the meaning of classes and at-
tributes, therefore the annotation procces must be performed. What is the
annotation? It is a mapping of a given term (class or attribute name) to
a well-defined set of concepts of a lexical ontology. The annotation process
consists in associating to each term one or more meanings w.r.t. a common
lexical reference. For example, the attribute “name” will be annotated with
the meaning“a language unit by which a person or thing is known”. In the cur-
rent version of MOMIS, we adopt as lexical reference the WordNet database8.
WordNet is a thesaurus for the English language, that groups words (called
lemmas in the WordNet terminology) into sets of synonyms called synsets,
provides short definitions (called gloss), and connects the synsets through a
wide network of semantic relationships. Usually integration projects involve
large data sources, with hundreds of tables and attributes, coming from a
particular domain of interest (e.g. tourism), that’s why it is possible to im-
port domain glossaries in order to annotate terms belonging to a specific
domain. For example for our project we included the glossary of the Tourism
domain(Fig. 2.15). Why do we need to annotate? Because, starting from the
local source annotations, MOMIS can derive lexical relationships among el-
ements of different local sources(this process is called Semantic Relationship

8WordNet is freely and publicly available for download see
http://wordnet.princeton.edu. In the current version we used WordNet version 3.0.
WordNet is distributed as-it-is and we extrapolated the WordNet internal organization,
into a relational DBMS (DataBase Management System) and used it to store also the
domain glossaries

28

Extraction phase and it is explained in details in 2.8 section). The manual
annotation is a two steps process:

• Base form choice9: the system automatically proposes the base form
if the term exists in WordNet or in the domain glossary, if no base form
is found or the base form found is not satisfactory, we can manually
insert it by choosing among all the base forms available in WordNet or
in the domain glossary.

• Meanings choice10: we have to map the term on one or more mean-
ings among all the available meanings of the inserted base form.

Fig. 2.16: Source Annotation Section

As you can see from Fig. 2.16, on the left, there is a tree representing
the local source classes and attributes. The colored icons help you find the
elements that are not annotated and the elements already annotated (see
Fig. 2.17).

You can perform an automatic annotation and then manually refine the
annotations proposed by the system. You are not forced to annotate all

9The base form is the english root form of a word (only the root form is stored in the
database unless it has irregular inflected forms)

10The meaning is a definition that represents the sense or the significance of a word, i.e.
a dictionary definition of a particular word

29

Fig. 2.17: Annotation Icons

terms, but in this case there is a loss of semantics. This means that the
system will be able to discover less Lexical Relationships and this impacts
on the quality of the proposed global source.

2.7.1 Manual Annotation

As we described in the previous section, the manual annotation is a two steps
process:

1. Base form choice;

2. Meaning/s choice.

This process must be repeated for each term you want to annotate.
In WordNet lemmas and synsets are classified into four syntactic cate-

gories:nouns, verbs, adjectives and adverbs. Each syntactic category is iden-
tified by the symbols shown in Fig. 2.18.

Fig. 2.18: WordNet Icons

Let us see how to annotate class and attribute names. Click on the
tree node (Fig. 2.16) that represents the attribute/class that you want to
annotate and click on Add annotation button; a new window will be opened.
If the term exists in WordNet or in the domain glossary then the base form
is automatically proposed by the system. If you don’t find it satisfactory,
you can enter another one. Then click on Add base form button and choose
among the possible meanings of the base form(Fig. 2.19). You can select one
or more meanings.

If the term does not exists in WordNet or in the domain glossary, then
the system shows a message: ”ATTENTION: lemma .. doesn’t exist into
WordNet database”; in this case you have three possible choices:

30

Fig. 2.19: Annotation of Class and Attribute Names

Fig. 2.20: hotel name annotation

31

1. do not annotate the term

2. insert a different base form that is present in WordNet; for example in
fig. 2.20 you may see that the base form “hotel name” is not present
in WordNet, so we decided to choose the base form “name”; since we
used “name” for annotating another element before (Fig. 2.19), a green
arrow notices us which meanings have been previously choosen for that
base form.

3. insert the lemma “hotel name” into the WordNet database using the
WordNet Extender Tool (which will be explained in depth in the sub-
section 2.7.2), by clicking on the Open WordNet Extender button.

Since the manual annotation is time consuming, MOMIS provides two
particular tools for accelerating this process:

1. The Automatic Annotation;

2. The import of Source Annotations.

These tools will be described in details in the subsections 2.7.3 and 2.7.4.

2.7.2 The WordNet Extender Tool

The WordNet Extender [1] tool enables the extension of the lexical reference
with domain glossaries. In order to understand how to use the WordNet
Extender, it is important to get the sense of some concepts related to Word-
Net. In WordNet, english nouns, verbs, adjectives, and adverbs are organized
into sets of synonyms (called synset), each synset has a short definition called
gloss. One ore more base forms (called lemmas) are associated to each synset;
for example the gloss “the number is used in calling a particular telephone”
is the definition of a synset associated to the lemma “phone number”.

A word that has more than one sense is said to be polysemous ; two words
that share at least one sense in common are said to be synonyms. So in
WordNet each lemma is associated to one or more synsets as the same word
can be used with different meanings in different contexts.

Each synset is associated to one or more lemmas; several words can be
used to express the same concept; for example “zip” and “postal code” are
associated to the synset identified by the gloss “a code of letters and digits
added to a postal address to aid in the sorting of mail”.

The synsets are linked through semantic relations:

32

• A hypernym relationship connects two synsets where the first general-
izes the second, e.g. “animal” is a hypernym of “dog”11;

• A hyponym relationship connects two synsets where the first specializes
the second, e.g. “student” is a hyponym of “person”footnoteThis means
that the synset associated to “student” is a hyponym of the synset
associated to “person”.. The hyponym is the opposite relationship of
hypernym.

Fig. 2.21: Using WordNet Extender for exending WordNet database.

Both nouns and verbs are organized into hierarchies, defined by hypernym
relationships. By using the WordNet Extender you will be able to:

1. extend WordNet by inserting a new association between an existing
lemma and an existing synset(Fig. 2.21-1); for example, we could as-
sociate the lemma “telephone”, which is already present in WordNet,
with one of the synsets of the lemma “phone numbe”;

2. extend WordNet by inserting a new lemma and associate it with an
existing synset (Fig. 2.21-2); for example, we could create the new
lemma“winter contact”, which is not present in WordNet, and associate
it with the synsets“the number is used in calling a particular telephone”;

11This means that the synset associated to “animal” is a hypernym of the synset asso-
ciated to “dog”.

33

3. extend WordNet by inserting a new lemma and a new synset for it
(Fig. 2.21-3); for example, we could create the lemma “fax number”,
and associate it with a new synset with gloss: “the number is used to
send a document over the telephone line”;

4. extend WordNet by inserting a new synset and associate it with an
existing lemma (Fig. 2.21-4); for example, we could create the new
synset “an establishment that provides lodging and usually meals and
other services for travelers and other paying guests” and associate it
with the existing lemma “hotel”;

5. in case you are adding a verb or a noun synset (as in the previous
case number 3 and 4), it is necessary to link the new synset to the
hierarchy. You should specify at least one new hypernym relationship
with another synset in the graph.

Fig. 2.22: Hypernym Graph of the lemma “telephone”

The Hypernym Graph Viewer, is very helpful to create sound relationships
between the added synsets and the pre-existing ones during the extension
of the lexical reference. From the annotation tree, right click on a class
or attribute name, then select the View Hypernym Graph menu item. It
is possible to navigate the graph by focusing on a specific synset to view
only the branch of its hypernyms, or by using the keyword search. For
example the direct hypernyms of the two synsets associated to “telephone”

34

Fig. 2.23: Steps to follow for associating a new or existing lemma with an
existing synset

are“telecommunication, telecom”and“electronic equipment”(Fig. 2.22). By
double-clicking on a synset you will see its whole hierarchy12.

The wordnet Extender usage is quite simple: for associating a (new or
existing) lemma with an existing synset you are asked to follow the steps
shown in fig. 2.23:

1. insert the new lemma;

2. choose the lemma’s syntactic category;

3. search the synset by inserting similar lemmas or gloss keywords (to
make a search among synset glosses);

4. select the synset(s) you want the lemma to be associated with;

12The synset associated to “entity” is the top parent of the hierarchy, for synsets of the
noun syntactic category

35

Fig. 2.24: Steps to follow for associating a new or existing lemma with a
new synset

5. click on finish;

Then you will be able to annotate the term by using the new association
lemma-synset just inserted into WordNet. If, at step 4, you do not find the
proper synset for your new lemma, you can add a new synset simply by
following the next steps.

For associating a (new or existing) lemma with a new synset you are asked
to follow the steps shown in Fig. 2.24:

1. insert the lemma;

2. choose the lemma’s syntactic category;

3. check Insert a new synset ;

4. click on Next ;

5. insert the gloss for the new synset;

36

6. click on search hypernym synset : a new window will appear, for help-
ing you in finding the more appropriate hypernym synset in order to
accurately place the new synset in the WordNet hierarchy;

7. choose one or more keywords among the ones proposed by the system
or insert other keywords and search among glosses or lemmas, then
click on search; a list of synsets will appear;

8. select the hypernym synset and click on View Hypernym Chart for
having a look at its collocation in the WordNet hierarchy, in order to
check if it is the more appropriate hypernym for the new synset;

9. click on OK

10. the system will notice the new relationships that will be added into the
WordNet database.

11. click on Finish to complete the process; at this point you can annotate
the term by using the new synset just added into the WordNet database.

2.7.3 Automatic Annotation

In order to optimize the annotation phase and increase the annotation ac-
curacy, we implemented an automatic annotation algorithm which includes
stemming and stop words removal functionalities. The main advantage of
automatic annotation is simply speed: wholly or partially automated meth-
ods facilitate the annotation of large sets of classes. If the lexical reference
has been extended, the automatic annotation algorithm associates to each
data source element the more recent meaning of the domain glossary, else, it
associates to the data source element the first meaning (most common used
meaning) present in WordNet13 By clicking on the Automatic Annotation
button the system will try to annotate all the terms (Fig. 2.25). The algo-
rithm gives good results in presence of English words but is not able to deal
with several compound words. That’s why we added the Data Preview tool,
right click on a tree node and explore the values of the class/attribute. For
example “winter contact”; through the data preview tool we can notice that
“winter contact” is the number that should be used in winter so we choose
the base form phone number and select the firts meaning.

After the automatic annotation you can manually refine the annotations
proposed by the system.

13Synsets in WordNet are ranked in the order of their utilization frequency.

37

Fig. 2.25: Automatic Annotation Process

Notice that the automatic annotation will not try to annotate the ele-
ments you have preaviously manually annotated so you will not lose your
work.

2.7.4 Annotation Importer

The reuse of previous annotations is an important feature. For this rea-
son, a tool for easily importing source annotations from a GS to another
GS has been developed. If one of the sources has been annotated already
in another global schema you can import the source annotation by right-
clicking on the source name, select Import source annotation from another
global schema and selecting the schema from which you want to import the
annotations(Fig.2.26). For example we create a new global schema, named
NewGlobalSchema and we want to import the annotation of the local source
guidacampeggi, so we right click on the source name and choose Import Source
Annotation from another Global Schema, choose TourismGlobalSchema and
you will see that all the annotations for that source have been imported.

An example

Let’s see how all these tools are useful with an example. In the annotation
phase, we found as the most adequate annotation for the term guidacam-
peggi.campings: Base form: “camp” and Meaning: “temporary lodgings
in the country for travelers or vacationers”, while a problem arise from the
source venere. We didn’t find satisfactory the meaning associated to hotel:
“a building where travelers can pay for lodging and meals”because it refers to

38

Fig. 2.26: Annotation Importing

hotel as a building and not as a service. From the Hypernym Chart we can no-
tice that the synset associated to hotel is a hyponym of the synset“a structure
that has a roof and walls and stands more or less permanently in one place”
identified also by the set of lemmas building, edifice (Fig. 2.27) and camp is
a hyponym of the synset “structures collectively in which people are housed”,
identified also by the set of lemmas living accommodations, housing, lodging
Through the WordNet Extender tool we created a new synset for the lemma
hotel by introducing the gloss“a lodging that provides accommodation, meals
and other services for travelers and other paying guests”. Then we have to
build a relation between the added concept and pre-existing ones. We are
asked to select some keywords (the system automatically suggest a set of rele-
vant keywords, deriving them from the inserted gloss) or insert new keywords
and make a search among existing synsets. In our case, we want to relate
hotel with the already existing synset “structures collectively in which peo-
ple are housed”, identified also by the set of lemmas living accommodations,
housing, lodging and create a new hypernym relationship (Fig. 2.28). That
means into the WordNet database will be added two symmetric relationships:

• hotel is a hyponym of living accommodations, housing, lodging

• living accommodations, housing, lodging is a hypernym of hotel

39

Fig. 2.27: Hypernym Graph Viewer: “hotel”

Fig. 2.28: Hypernym Graph Viewer: New Synset for “hotel”

40

2.8 Semantic Relationships Extraction

Starting from the annotated local schemas, MOMIS builds a Common The-
saurus that describes intra and inter-schema knowledge in the form of the
following semantic relationships: synonyms (SYN), broader terms/narrower
terms (BT /NT) and related terms (RT).

• SYN : A SYN B means that A and B are synonyms. SYN is a symmetric
relationship.

• BT /NT : A BT B means that A is a broader than B. The opposite
relationship of BT is NT (A NT B means that A is more specific than
B).

• RT : A RT B means that the terms are related.

Fig. 2.29: Semantic Relationships Type

The Common Thesaurus is incrementally built by adding four types of
relationships (Fig. 2.33):
Schema-derived relationships (also called Structural relationships):
automatic extraction of intra schema relationships from each schema sepa-
rately. For example, we extract intra schema RT relationships from foreign
keys in relational source schemas. In the relational model, a foreign key is a
set of attributes in a relation used to express a reference to another relation.
In guidacempeggi source we have a foreign key, so a Structural relationship
is automatically discovered:

FK: facility(url) REFERENCES campings(url) => guidacampeggi.facility
RT guidacampeggi.campings

When a foreign key is also a primary key, in both the original and reference
relations, MOMIS extracts BT and NT relationships, which are derived from
inheritance relationships in object oriented schemas. In venere source we have
a foreign key that is also a primary key in both the original and reference
relations, so a structural relationship is automatically discovered.

41

FK: maps(url) REFERENCES hotels(url) => venere.maps NT
venere.hotels

Lexicon-derived relationships (also called Lexical relationships):
inter-schema lexical relationships derived by the annotated terms and Word-
Net interaction. As described in the previous section WordNet connects the
synsets through a wide network of semantic relationships. Actually, it is
possible to exploit the following semantic relationships:

• Synonymy: terms that share the same meaning, i.e. belong to the same
synset

• Hypernymy/Hyponymy: Generalization relation/Specialization relation.
Hypernym and Hyponym are opposite relations.

• Meronymy/Holonymy: is the partwhole or HASA relation14. Meronymy
and Holonymy are opposite relations

• Correlation: is a relation between two terms in two synsets that shares
the same father in the hypernymy graph.

The relations coming from WordNet are added to the Common Thesaurus
according to the following mapping:

• Synonymy: corresponds to a SYN relationship, e.g. guidacampeggi.campings.zip
SYNvenere.hotels.postal code

• Hypernymy/Hyponymy: correspond respectively to a BT/NT relation-
ship, e.g. venere.hotels.hotel name NTguidacampeggi.campings.name

• Meronymy/Holonomy: correspond to a RT relationship.

• Correlation: corresponds to a RT relationship, e.g. venere.hotels.hotel name
RTvenere.facility.facility name15

Designer-supplied relationships: specific domain knowledge capture. The
designer can supply new relationships. This operation is important because
if meaningless or incorrect relationshipis are inserted, the subsequent inte-
gration process can produce a wrong global schema.
Inferred relationships: MOMIS exploits a Description Logic reasoner,

14A concept represented by the synset X is a meronym of a concept represented by the
synset Y if in English we can assert X is a part of Y

15From the Hypernym Graph Viewer you can notice that hotel name and facility name
share the same father: name

42

ODB-Tools16, to infer new relationships by applying equivalence and sub-
sumption computation. For example in the Common Thesaurus we have:
Structural relationship: guidacampeggi.facility RT guidacampeggi.campings
Lexical relationship: guidacampeggi.facility syn venere.facility
Thanks to ODB-tools the system automatically infers a new relationship:
venere.facility rt guidacampeggi.campings

In Fig. 2.30 you can see the Semantic Relationships section.

Fig. 2.30: Semantic Relationships Editor

To compute the Structural and the Lexical relationships press the Com-
pute Structural and Lexical Rels. button (see 1 in Fig. 2.30). To supply
new relationships press the Add button (see 2 in Fig. 2.30). A new dia-
log will be open and it allows you to add one ore more relationships among
attributes/classes of different sources (Fig 2.31). If a relationship is meaning-
less, you can delete it from the Common Thesaurus; select the relationship
and then press the Delete button (see 3 in Fig. 2.30). Then to infer new
relationshpis starting from the ones present in the Common Thesaurus press
the Compute Inferred Rels. button (see 4 in Fig. 2.30).

16The ODB-Tools is a fully modular software for schema validation and query optimiza-
tion in OODB. For more information see: http://www.dbgroup.unimo.it/ODB-Tools.html

43

Fig. 2.31: User-provided Relationships Interface

The GUI also allows you to view filtered relationships: by Producer,
Source, Type (SYN, RT, BT/NT) or Destination (see 5 in Fig. 2.30).

Note: each time you modify any annotation, all the Semantic Relation-
ships have to be computed again (It is not necessary to erase them all before
computing).

44

2.9 Mapping Table Creation and Refinement

The first step of the generation of a GS is the automatic creation of clus-
ters: classes describing the same or semantically related concepts in different
sources are grouped together in clusters using hierarchical clustering tech-
niques; for each cluster a global class, with a set of global attributes and a
mapping table, expressing mappings between local and global attributes, is
defined.

After generating the clusters we can interactively refine and complete the
proposed integration result.

By means of this interface we can set the parameters used by MOMIS to
compute the clusters(Fig. 2.32). Starting from the left, the first 3 parameters
set the ”weight” of the different relationships, and the other 4 parameters set
the threshold of affinity among local classes that have to be mapped together
in the same global class, depending on the local class names and structures.
You can set those parameters in order to obtain the more appropriate global
schema.

If you click on the button Generate Clusters, the Global Classes will be
created and loaded in the Global Sources tree of the Mapping Refinement
section (Fig. 2.34). Depending on which configuration you chose, the system
will build different clusters. It’s your job to decide which configuration is
better for your sources integration process.

Fig. 2.32: Global Classes Generation

In Fig. 2.33 we report the icons used by the GUI and their intended
meanings.

In this section you can also see the Mapping Table generated by the
System for each Global Class, whose columns represent the local classes be-
longing to the GC and whose rows represent the global attributes of the GC.
The element (GlobalAttribute,LocalClass) of the Mapping Table represents

45

Fig. 2.33: Global Schema Editor: Icons Legend

the set of local attributes of LC which are mapped into the GlobalAttribute:
in this way a GlobalAttribute may correspond to one o more local attributes
of a LC; the element (GlobalAttribute,LocalClass) is empty if no LA of LC
is mapped into the GlobalAttribute.

The context menu of the Global Sources tree (right click on global source,
global class or global attribute) allows you to:

• add, remove or rename global classes/global attributes;

• set or modify the type of a GA;

• have a look at the local data using the Data Preview feature.

• set an attribute as join attribute(involved in a join condition);

• edit join functions of global classes.

• have a look at the global data using the Global Data Preview feature
(available just after having selected the join attributes for the global
class).

• edit the Transformation Function of a LA;

• edit the Resolution Function of a GA;

The ”Mapping” phase permits the user to visualize and manage the GA
of each Global Class created.

By selecting a node or a leaf of the Global Classes Tree the contents of the
selected GC is shown. In particular, the user may visualize and manage the

46

Fig. 2.34: Mapping Refinement Panel

47

Global Attributes (blue icon) and, by opening each node, the local attributes
that are mapped on it (yellow icon).

If you right-click on a GA and choose Remove Global Attribute the at-
tribute will be removed and the previously local mapped attributes are moved
in the Unmapped Elements panel on the right. Attributes from the Un-
mapped elements panel can be mapped into a GA moving them on it, using
Drag&Drop.

48

2.9.1 Join Functions

From the Mapping Refinement interface you can impose join conditions be-
tween local classes mapped on a GC, by right-clicking on a GC, choosing edit
Join Function, writing the function in the Join Function Panel and save it.
The system can provide a default Join Function as shown in Fig. 2.35.

Fig. 2.35: Join Function

MOMIS follows a Global-As-View (GAV) approach for the definition of
mappings between the GS and local schemata: the GS is expressed in terms
of the local schemata. This means that for each Global Class C a view VC
over the Local Classes of C must be defined.

One of the main innovation of the MOMIS system is that the view asso-
ciated to a GC may be automatically composed by the system, i.e. this view
need not be explicitly defined by the integration designer.

The automatic composition of the view is based on the following assump-
tion: a GC performs Data Fusion among its local class instances, where
Data Fusion is the process of fusing multiple records representing the same
real-world object into a single and consistent representation.

The first step in a Data Fusion process is Object Identification, i.e. to
identify instantiation of the same object in different sources (also known as
record linkage, duplicate detection, reference reconciliation, and many oth-
ers). In the MOMIS system, Object Identification is performed by Join
Conditions among local classes belonging to the GC; this join condition is

49

specified on the transformed local attributes. More precisely, Object Identi-
fication requires to specify a set of global attributes, called Join Attributes,
such that for each JoinAttribute, the element (JoinAttribute, LocalClass) is
not null for each LocalClass belonging to the GC; then Join Conditions are
automatically defined as follows.

Let JA1,..., JAk be the join attributes specified by the integration de-
signer. Given the element (JAi,LC), let TF(JA,LC) be the corresponding
Transformation Function.

For each pair of local classes LC1,LC2 belonging to the GC, the Join
Condition between LC1 and LC2, denoted by JC(LC1,LC2) is defined as
follows

TF(JA1,LC1) = TF(JA1,LC2)
AND
...
AND
TF(JAk,LC1) = TF(JAk,LC2)

As an example, for the GC structure and the local classes
LC1=guidacampeggi.campings
LC2=saperviaggiare.hotel
LC3=venere.hotels
in the mapping table we have respectively

• (name,LC1)=name with Identity as TF

• (name,LC2)=name with Identity as TF

• (name,LC3)=hotel name Identity as TF

• (city,LC1)=city with Identity as TF

• (city,LC2)=city with Identity as TF

• (city,LC3)=city with Identity as TF

If the GA name is chosen as Join Attribute, i.e. JA=name, then

• JC(LC1,LC2) : LC1.name = LC2.name

• JC(LC1,LC3) : LC1.name = LC3.hotel name)

• JC(LC2,LC3) : LC2.name = LC3.hotel name

50

If name and city are chosen as Join Attributes, i.e. JA1=name and
JA2=city, then

• JC(LC1,LC2) : (LC1.name = LC2.name) AND (LC1.city = LC2.city)

• JC(LC1,LC3) : (LC1.name = LC3.hotel name) AND (LC1.city = LC3.city)

• JC(LC2,LC3) : (LC2.name = LC3.hotel name) AND (LC2.city = LC3.city)

JC(LC1,LC2,LC3) : (LC1.name = LC2.name) AND (LC1.city = LC2.city)

On the basis of these Join Conditions, multiple records (coming from dif-
ferent local classes and representing the same real-world object) are combined
in a single record by means of a full outer join operator.

For example, assuming the last case of join conditions, the view for the
GC structure is automatically obtained as:

LC1 full outer join LC2 on ((LC1.name = LC2.name) AND (LC1.city
= LC2.city)) full outer join LC3 on ((LC1.name = LC3.hotel name) AND
(LC1.city = LC3.city)) OR (LC2.name = LC3.hotel name) AND (LC2.city
= LC3.city)

Note: if you want to read more about Join Functions see
Appendix B.

2.9.2 Transformation Functions Editor

When a GC is selected, the corresponding Mapping Table is shown in the
lower panel of the window. By right-clicking on a non empty element (Glob-
alAttribute, LocalClass) or on a local attribute in the Global Classes Tree
and choosing Edit Transformation Function a new window appears (Fig.
2.36). The Transformation Function transforms the type of a Local mapped
Attribute into the one of the Global Attribute.

When you define a new TF you have to bear in mind the following con-
siderations:

1. if only a LA of LC is mapped into a GA, the default Transformation
Function is Identity , i.e. no transformation is needed and the type of
the GA is assumed as the type of the LA;

51

Fig. 2.36: Transformation Function Panel for the Local Attributes rating
and user rating of the local class Venere.Hotels

2. if more than one LA of LC are mapped into a GA, you have to select
the type of the GA and apply the proper TF to the Local Attributes.

As shown in Fig. 2.36, the Mapped Local Attributes area will show all
the attributes of the Local Class Venere.Hotels mapped on the GA rating.

The Function area will show all the functions applicable to the local at-
tributes to transform their values.

In order to compose the TF you have to double click on a function (so it
will be written in the Function editor), then choose the attributes you want
to involve and put them into the function as parameters by clicking twice.
You may manually edit the function in the Function editor.

In the example shown in Fig. 2.36 the TF applied calculates the average
value between the local attributes venere.hotels.rating and user rating, and is
explained in fig. 2.37: the local attributes venere.hotels.rating, venere.hotels.user rating
and saperviaggiare.hotel.rank refer to an evaluation of the hotel quality and
are mapped together on the same global attribute rating. Now, we need
to define the type and then the possible values for this global attribute.after
having a look at the local sources through the Data Preview tool, we discover

52

Fig. 2.37: Transformation Function applied for the Local Attributes rating
and user rating of the local class Venere.Hotels

53

that rank is a string containing a number from 1 to 5, rating and user rating
instead are urls linking to an image containing the stars; if we want rating
and user rating to look similar to rank, we need to apply a substring function,
that extracts just the number of the stars from the whole url, the stringtoint
function for casting it to an integer value, the sum and the division operator
for calculating the average value.

Finally click on Save to save the inserted funcition.
The icon ”f” for a non empty element of a Mapping Table means that a

TF is defined for that element.

Note: if you want to read more about Transformation Functions see
Appendix A.

54

2.9.3 Resolution Functions

Another issue is how to obtain the GA value when it is mapped onto more
Local Attributes; in this case, we need to define a Resolution Function. Its
application will permit to obtain, starting from the values of the Local At-
tributes (eventually transformed by a TF), the value for the GA.

By right-clicking on a GA and choosing edit Resolution Function a new
window appears (Fig. 2.38). The interface is similar to the Transformation
Function’s one, but the available functions are different:

• If function :

functionif (${@condition}, ${@true}, ${@false})

• Coalesce function:

coalesce(${@function1},${@function2})

• String Concatenation Function:

@function1 + @function2

Fig. 2.38: Resolution Function Interface

55

The If function allows you to impose a condition among attributes: if the
condition is true the function returns the first value, else returns the second
one.

For example:

FUNCTIONIF (state <> ’Italy’, LC2.name, LC1.name + LC3.hotel name)

returns LC2.name if state value is different from ’Italy’, otherwise returns
LC.name+LC3.hotel name.

The Coalesce function returns the first not null value of a given list of
Local Attributes transformed by the Transformation Function.

For example:

COALESCE(LC2.name, LC1.name, LC3.hotel name)

returns LC2.name if it’s not null, if null it returns LC1.name if it’s not
null, otherwise returns LC3.hotel name.

The String concatenation function returns concatenation of the values
computed by the Transformation Functions applied to the local attributes
(the String concatenation function accepta only string values as it’s input).

For example:

STRINGCONCATENATION(LC2.name, LC1.name, LC3.hotel name)

Note: Resolution Functions have to be defined only after the definition
of Transformation Functions.

56

Chapter 3

Querying the Global Schema

3.1 Query Manager Interface

Finally, once completed the integration process, you can pose query on the
obtained Global Schema by using the Query Manager Interface. To launch
the Query Manager right click on the GS in the Global Schema Explorer
view or click on Launch Query Manager hyperlink in the overview page (see
Fig. 3.1).

Fig. 3.1: Launch the Query Manager

The Query Manager interface lets you compose, run and save queries. It
is composed by:

57

• The global source panel (see 1 in Fig. 3.2)

• The query text field (see 2 in Fig. 3.2)

• The result panel (see 3 in Fig. 3.2)

The global source tree helps you write the query (by clicking the global
source tree nodes). To execute the inserted query click on Run Query button
and you can see the result appear in the tabular panel (see 3 in Fig. 3.2).

Fig. 3.2: The Query Manager Interface

In the MOMIS system, a global query (i.e. a query over the GS) is
expressed by using the OQLI3 language1, an extension of the ODMG OQL
language.

Let us execute the global query reported below (see 2 in Fig. 3.2)

SELECT name, address, phone_number, fax

FROM structure

WHERE city = ’roma’

AND name LIKE ’%jolly%’

ORDER BY name

Click on Run Query2, the query will be executed and the result will be
shown in the tabular panel (see 3 in Fig. 3.2).

1You can find the full OQLI3 syntax in Appendix D
2In order to obtain a result in the query phase all the local sources must be reachable.

58

3.2 Query Saving and Loading

As shown in Fig: 3.4 you can save the executed query. To save the query
just click on Save query button (see 1 in Fig. 3.3) and insert the name you
want to assign to it3.

Fig. 3.3: Query Manager icon buttons

Fig. 3.4: Save the Executed Query

Also by clicking on Load query button (see 2 in Fig. 3.3) you can load
an already saved query. Just select the file that contains the query and the
query will appear in the text field (see 2 in Fig. 3.2).

3The file must have the .oql extension

59

3.3 Query Plan Viewer

Let us see how the result of a query is obtained?
MOMIS follows a Global-As-View (GAV) approach for the definition of map-
pings between the GS and local schemas: the GS is expressed in terms of the
local schemas. The mapping is expressed by defining, for each global class
GC, a mapping query qG over the schemas of a set of local classes L belonging
to GC. The query translation is performed by means of query unfolding, i.e.,
by expanding a global query on a global class GCof the GS according to the
definition of the mapping query qG for more details see Appendix C.

The query unfolding process generates for each global query a Query Plan
composed by a set of queries:

• a set of local queries that have to be executed on the local sources
simultaneously by means of wrappers (see Fig. 3.5),

• the mapping query that will fuse the partial results coming from the
local sources, on the basis of the join function (see Fig. 3.6),

• a final query to apply the resolution functions and residual clauses (see
Fig. 3.6).

Fig. 3.5: Local Queries Execution

A relational database QMDB gives support to the Query Manager for the
fusion of partial results, that are stored in temporary tables (see Fig. 3.6).

60

Fig. 3.6: Query Processing

For each executed query you can view the Query Plan, that means you can
view the set of queries that compose the query plan and also through the
data preview tool you can explore the content of the temporary tables, so
you can understand how the data fusion process is performed.

In order to clarify, let us execute the query:

SELECT name, address, price, rating, fax

FROM structure

WHERE price > 100

AND price < 200

AND rating = ’3’

AND city = ’Bologna’

ORDER BY price

To open the Query Plan Viewer (see Fig. 3.7)just click on the Information
button (see 4 in Fig. 3.3). By clicking on the tree nodes (see 2 in Fig. 3.7)
you can visualize in the text field (see 1 in Fig. 3.7) the selected query. Also
each query can be executed on the QMDB by right clicking on a tree node
and choosing Data Preview (see Fig. 3.8), you will get the first one hundred
records and the total number of records of the table. Let’s explore the query
plan of the previous executed query. You can notice that three local queries
have been generated, a local query is generated for each local class mapped
in the global class and involved in the query, and this query translation is

61

Fig. 3.7: Query Plan Viewer

performed by considering the mappings among the global class and the local
schemas (see Fig. 3.9):

62

Fig. 3.8: Data Preview

Fig. 3.9: Mapping Table of “structure”global class

63

LQ1:

guidacampeggi.campings

SELECT campings.name, campings.city, campings.fax

FROM campings WHERE (city) = (’Bologna’)

LQ2:

venere.hotels

SELECT hotels.address, hotels.hotel_name, hotels.city,

hotels.price, hotels.user_rating,hotels.rating

FROM hotels

WHERE ((price) > (100)

and ((price) < (200)

and (city) = (’Bologna’)))

LQ3:

saperviaggiare.hotel

SELECT hotel.address, hotel.name, hotel.city, hotel.rank, hotel.fax_number

FROM hotel

WHERE (city) = (’Bologna’)

The local queries are executed by means of wrappers and partial results
are materialized in temporary tables into the QMDB relational database.
Through the Data Preview tool you can visualize the content of this tables.
The partial results are fused together by executing the mapping query. At
the end the final query that applies the resolution functions and the residual
clauses is executed:

SELECT name, address, price, rating, fax

FROM je1_structure

WHERE (price > 100)

and (price < 200)

and (rating = ’3’)

and (city = ’Bologna’)

ORDER BY price ASC

64

Chapter 4

Querying the Global Schema
with the MOMIS QM Web
Interface

4.1 Query Composition and Execution

To compose and execute your query you have to follow some main steps (Fig.
4.1):

Fig. 4.1: Main steps for Query Composition and Execution

1. Upload the Global Schema you previously created with MOMIS; the
left-panel of the interface will load the Global Source tree.

65

2. Click on a global class of the tree to see its attributes as checkbox down
in the ”Class Attributes” panel where you can select them.

3. The attributes you choose will be written in the query editor, together
with the class.

Note: If you want to perform a two-way JOIN between classes, you
have to click on the first class, then click on a class referenced; an alert
message will ask you if you want to join the classes; after clicking the
”yes” button you will see the attributes of both classes in the ”Class
attributes” panel, in two different tabs, and the join condition will be
automatically written in the query editor. In the GlobalSources Tree
the node referred to the second class will be expanded, and the reference
to the first class will be enlighten.

4. After choosing the attributes you can add and/or conditions by clicking
the ”add condition” button (Fig. 4.2). Conditions may concern any
attribute of the classes involved, even the ones you didn’t select.

5. If you want the query result to be ordered by a specific attribute set you
may also add sorting options (Fig. 4.3), by clicking the corresponding
button. Sorting options may concern only the attributes included in
the query.

Fig. 4.2: Add Condition panel

Fig. 4.3: Add Sorting Options panel

6. At any step of this sequence the query is automatically obtained by
your interaction, and you may manually modify it in the Query Editor,
but it’s recommended to do it only after point 5, just before running
the query.

7. Run the query and you will see the corresponding output in the ”Re-
sults” grid.

66

The results are paginated 50 at a time, and you can look through them
using the bottom bar of the grid. You may expand the grid by collapsing the
top panel of the view port.

Lastly, if you click on one of the rows of the results Grid, you will see a
new window (Fig. 4.4) containing all the attributes of that row, in order to
look through them in a more readable way.

Fig. 4.4: Row Data shown in a new window

4.2 Visualize Results in a Map

Once the query has been executed you can visualize the query result on a
Google Map1. First of all click on Visualize in Google Map button (see 8 in
Fig. 4.1) and then select the attribute you want to geocode2, so it’s values
will be used to place the markers on the Google Map (see Fig. 4.5), and click
on View Results in Map button. Now your records are shown in the map
(see Fig. 4.6)

Fig. 4.5: Select Attribute

1https://developers.google.com/maps/
2Geocoding is the process of converting an address into geographic coordinates, which

are used to place markers on the map.

67

Fig. 4.6: Google Map

68

4.3 Query saving

At any time you can save your query, by clicking on the ”Save Query” button
and inserting the name you want to assign to it (Fig. 4.7).

Fig. 4.7: Query Saving

Fig. 4.8: Opening a saved Query

If you click on the ”Open Query” button a new window will appear (Fig.
4.8), containing all the queries you saved before, their names and the Global
Schema on which they had been executed.

From there you can run or delete any of this queries by clicking on the
corresponding button.

4.4 Mapping table

If you right-click on a globalClass of the globalSource Tree, a new window
will appear, containing the Mapping Table of the Global Class (Fig. 4.9),
that shows how local attributes are ”mapped” into a global attribute. The
leftmost column of the ”Mapping Table” represents the list of all the global
attributes, the first row represents all the local classes belonging to the global
class; the table elements are the local attributes (that are part of a local
class) ”mapped” in a specific global attribute (row). More attributes may be
mapped into the same global attribute.

69

Fig. 4.9: Hotels Mapping Table

70

Appendix A

Data Transformation Functions
and Join Function (Theoretical
Background)

Data Transformation Functions

For each not null element MT[GA][L] (an element MT[GA][L] represents the
set of local attributes of L which are mapped onto the global attribute GA)
we define a Data Transformation Function, denoted by MTF[GA][L], which
represents how the local attributes of L are mapped into the global attribute
GA. MTF[GA][L] is a function that must be executable/supported by thse
local source of the local class L. For relational sources MTF[GA][L] can be
also a SQL value expression.

As an example, let’s take the global class structure, the global attribute
phone number and the local class guidacampeggi.campings. In the Mapping
Table we can notice that:

MT[phone number][guidacampeggi.campings] = telephone, winter contact

One transformation function that can be applied is the String Concate-
nation:

telephone + “Winter Phone Number:” + winter contact

Join Functions

MOMIS follows a Global-As-View (GAV) approach for the definition of map-
pings between the GSand local schemas: the GSis expressed in terms of the

71

local schemas. This means that for each Global Class GC a view VC over
the Local Classes of GC must be defined.

One of the main innovation of the MOMIS system is that the view associ-
ated to GC is automatically defined by the system, i.e. this view don’t need
to be explicitly defined by the integration designer. Data Fusion is the pro-
cess of fusing multiple records representing the same real-world object into a
single and consistent representation. In the MOMIS system, Data Fusion is
performed at the global classes level, by the mapping query qG associated to
a Global Class. The first step in the Data Fusion process is Object Identi-
fication, i.e. to identify instantiation of the same object in different sources
(also known as record linkage, duplicate detection, reference reconciliation,
and many others). In the MOMIS system, Object Identification is performed
by Join Function (also called Join Condition). Join Conditions is a conve-
nient way to perform Object Identification when it is possible to assume that
error-free and shared object identifiers exist among different sources. Join
Conditions are defined among pairs of local classes belonging to the same
global class. More precisely, we specify a set of global attributes JA of GC,
called Join Attributes, such that for each join attribute JAi that belongs
to JA, i= 1 .. k, and for each local class L L(G) belonging to G, the element
MT[JA][L] is not null. Given JA = JA1,JA2, ... ,JAk, for each pair of local
classes L1, L2 belonging to L(G), the Join Condition between L1 and L2,
denoted by JC(L1,L2) is defined as follows:

MTF[JA1][L1] = MTF[JA1][L2] and . . . and MTF[JAk][L1] =
MTF[JAk][L2]

Join conditions are specified at design time, and they are used at query
time to identify tuples referring to the same real-world entity. If two tuples
satisfy a join condition imposed over the corresponding relations, then the
two tuples are assumed to be semantically equivalent. If they differ on cor-
responding attributes (attributes that are mapped to the same attribute in
the global schema) then a ’̈correct valuë’ is obtained by applying appropriate
conflict resolution functions.

As an example, let’s take the global class structure and suppose that two
local classes are mapped on it:
L1=venere.hotels
L2=saperviaggiare.hotel

If the global attribute name is chosen as Join Attribute, i.e. JA=name,
then

72

JC(L1,L2): L1.hotel name = L2.name

If the global attributes name and city are chosen as Join Attributes, i.e.
JA1=name and JA2=city, then

JC(L1,L2): L1.hotel name = L2.name AND L1.city = L2.city

On the basis of these Join Conditions, multiple records (coming from dif-
ferent local classes and representing the same real-world object) are combined
in a single record by means of a full outer join operator.

Resolution Functions

The second step in a Data Fusion process is Data Reconciliation, i.e. to solve
conflicts among instantiations of the same object in different sources. In the
Data Fusion process considered in the MOMIS system, conflicts may arise
for global attributes mapped onto more than one LC; Data Reconciliation is
then performed by Resolution Functions; in fact, as explained in the previous
section, for each GlobalAttribute such that there are more than one non
empty elements (GlobalAttribute, LocalClassi), we must define a Resolution
Function to obtain, starting from the values computed by the Transformation
Functions specified for (GlobalAttribute, LocalClassi), the corresponding
value for GlobalAttribute.

To resume, in the MOMIS system, Data Fusion is performed by combining
the SQL operator of full outer join with resolution functions. From a theo-
retical point of view, this operation is called full outer join merge operator
(Felix Naumann, Johann Christoph Freytag, and Ulf Leser. Completeness of
integrated information sources. Inf. Syst., 29(7):583Ű615, 2004). This data
fusion operation is automatically defined by the MOMIS system; the inte-
gration designer must only define Transformation and Resolution Functions
and the Join Attributes.

On the other hand, the integration designer may change the view auto-
matically associated to a GC by explicitly defining a specific Join Condition,
by right-clicking on a GC, choosing edit Join Function, writing the function
in the Join Function Panel and save it. The default Join Function provided
by the system is based on Join Attributes as defined before.

The choice of Join Attributes is fundamental to perform a correct Data
Fusion process. For more technical details on the Data Fusion process please
see Section B. In the following we list the conditions for a correct definition of
Join attributes; please note that in this version of the software if a condition

73

is not satisfied, no errors and/or no warnings will be displayed.
Condition 1) For a GC you need to select Join Attributes or to defined

explicitly join conditions.
If no JoinAttribute is defined for a GC and no Join Condition is explic-

itly defined (see next section), then no join condition is defined for the full
outer join operation that then corresponds to a Cartesian Product. As a
consequence, no fusion is performed.

Condition 2) For each selected JoinAttribute, if for the corresponding
element (JoinAttribute, LocalClass) is null, then all Join Condition related
to this LC are considered true.

Condition 3) For each selected JoinAttribute, no Resolution Function
needs to be defined.

Condition 4) A more subtle condition which need to be satisfied by the
Join Attribute is that the corresponding local attributes must be a key in all
local classes (see Section B.

Warning 1) For a GC you need to select Join Attributes or to define
explicitly join conditions. If no JoinAttribute is defined for a GC and no Join
Condition is explicitly defined, then no join condition is defined for the full
outer join operation and thus no fusion is performed.

Warning 2) For each selected JoinAttribute, the element (JoinAttribute,
LocalClass) of the mapping table must be not null for each LC belonging to
the GC.

If for the selected JoinAttribute, the element (JoinAttribute, LocalClass)
is null, then all Join Condition related to this element are considered true
and then the fusion is not properly performed for the instances coming from
this LocalClass.

As an example, let us consider that in the above GC Hotel the element
(Name,LC2) is null; then, if the global attribute Name is chosen as Join
Attribute, we have that JC(LC1,LC2) is true and thus no fusion is performed.
If Name and City are chosen as Join Attributes we have that JC(LC1,LC2)
is true AND LC2.city = LC1.city, i.e. JC(LC1,LC2) is LC2.city = LC1.city
and thus fusion is performed only on the City attribute.

74

Appendix B

Data Fusion (Theoretical
Background)

Data fusion is the process of fusing multiple records representing the same
real-world object into a single, consistent, and clean representation. In
MOMIS Data fusion is performed with the so-called emphFULL OUTER
JOIN MERGE OPERATOR [8]

To give an intuition about this FULL OUTER JOIN MERGE OPERA-
TOR, we introduce a simple example of GS. The relational schema of the
local classes (relation tables)

LL1(K1,A), K1 primary key
LL2(K1,A), K1 primary key
LL3(K1,A), K1 primary key

are integrated in the global class C with the following Mapping Table:

LL1 LL2 LL3
K1 K1 K1 K1
A A A A

For the sake of simplicity, we consider that all local attributes are not
transformed with respect to the global class, i.e. for each local attributes the
identity transformation function is considered.

As said before, MOMIS follows a Global-As-View (GAV) approach for
the definition of mappings between the GVV and local schemata: this means

75

that for the global class C a view VC over the local classes LL1, LL2 and LL3
must be defined; this view is defined with the FULL OUTER JOIN MERG
OPERATOR: in the following we will show an SQL implementation of this
operator.

First of all, if K1 is defined as Join Attribute , the join condition among
the local classes will be performed on the basis of the corresponding K1
attributes of the local classes, as follows

select * from

LL1 full outer join LL2 on (LL1.K1 = LL2.K1)

full outer join LL3 on (LL3.K1 = LL2.K1 OR LL3.K1 = LL1.K1)

It can be demonstrated that the order of local classes in the full outer
join operation is not relevant1, i.e., the same result will be obtained with the
following expression:

select * from

LL3 full outer join LL2 on (LL3.K1 = LL2.K1)

full outer join LL1 on (LL1.K1 = LL2.K1 OR LL1.K1 = LL3.K1)

Then in the following we will use the first expression given above.
To complete the definition of the view associated to the global class,

we need to define its K1 and A values. The K1 value is one of the not
null values among LL1.K1,LL2.K1 and LL3.K1 ; then it can be computed
as isnull(isnull(LL1.K1,LL2.K1), LL3.K1) (the order of LL1.K1,LL2.K1 and
LL3.K1 is not relevant).

The A value depends on the chosen resolution function; as an example,
let us consider the coalesce resolution function:

A = coalesce(LL1.A,LL2.A,LL3.A)

Then the view associated to the global class is:

select isnull(isnull(LL1.K1,LL2.K1),LL3.K1) AS K1,

coalesce(LL1.A,LL2.A,LL3.A) AS A

from LL1 full outer join LL2 on (LL1.K1 = LL2.K1)

full outer join LL3 on (LL3.K1 = LL2.K1 OR LL3.K1 = LL1.K1)

In other words, at the query

select * from C

on the global class C will correspond the above query on its local classes.

1This is true when the join attribute K1 is a key in each local class

76

To give an example of the result of this view, let us consider the following
instances of local classes (LL1,LL2 and LL3 respectively):

Please notice that the value 123 for K1 means that a record with this
value for K1 is present in local classes LL1, LL2 and LL3, value 12 means
that the record is present in local classes LL1 and LL2, and so on.

The result is as follows

We can observe that, for each K1 value in the local classes, there is only

77

a record with this K1 value in the result, and the A value is computed on
the basis of the resolution function.

To highlight the importance of choosing a key as Join Attribute, let us
suppose that K1 is not a key in a local class, say LL2, i.e.

LL2(K1,A)

This means that inLL2 we can more than one record with the same value
for K1:

Now the result of the view is as follows:

We can observe that, for each repeated value in LL2.K1, we have a re-
peated value in K1 of the global class, and, due to the resolution function,

78

some of these repeated values (see second and third records in the above
result) can have the same A value.

To illustrate several scenario and how to define Mapping Table, Resolution
Functions and Join Condition for these scenario

Customer1 (Code,Address1), Code primary key
Customer2 (Code,Address2), Code primary key
Customer3 (Code,Address3), Code primary key

1. The Join Attribute Code is key in each local class.

(a) A unique address chosen among addresses from local sources on
the basis of some criteria: in this case Address local attributes
are mapped onto a unique global attribute Address defined by an
appropriate resolution function

(b) A unique address containing all addresses from local sources: in
this case Address local attributes are mapped onto a unique global
attribute Address defined by the (string) concatenation resolution
function

2. The Join Attribute Code is not a key in some local classes.

(a) A unique address chosen among addresses from local sources on
the basis of some criteria

(b) A unique address containing all addresses from local sources

79

80

Appendix C

Query Unfolding (Theoretical
Background)

The query unfolding process is performed for each global query Q over a
global class GC of the global schema. Given the global query Q and the
mapping defined on the Mapping Table MT , the query unfolding process
generates the set of local queries LQs to be executed on the sources, the
mapping query qG for merging the partial results, and the final query to
apply the resolution functions and residual clauses. We give an intuitive
explanation of the main steps in the query unfolding process, you can find
more information in [9].

C.1 Query Unfolding steps

Given a global query Q as following:

Q = SELECT < Q SELECT − list >

FROM G

WHERE < Q condition >

where < Q condition > is a boolean expression of positive atomic constraints
(GA1 op value) or (GA1 op GA2), with GA1 and GA2 attributes of GC.

The query unfolding process is made up of the following three steps:

• Step 1: generation of the local queries LQs;

• Step 2: generation of the mapping query qG;

• Step 3: generation of the final query.

81

Step 1. Generation of the local queries LQs. Each local query LQ is
expressed as following:

LQ = SELECT < SELECT − list >

FROM L

WHERE < condition >

where L is a local class related to GC. The < SELECT list > is computed
by considering the union of:

• the global attributes in < Q SELECT−list > with a not null mapping
in L,

• the global attributes used to express the join condition for L,

• the global attributes in < Q condition > with a not null mapping in
L.

The set of global attributes is transformed in the corresponding set of local
attributes on the basis of the Mapping Table MT . The < condition > is
computed by performing an atomic constraint mapping: each atomic con-
straint of < condition > is rewritten into one that is supported by the local
source. The atomic constraint mapping is performed on the basic of the Data
Transformation Functions and Resolution Functions defined in the Mapping
Table. For example, if a numerical global attribute GA is mapped onto the
local classes L1 and L2, and an average resolution function AV G is defined
for GA, the constraint (GA = value) cannot be pushed at the local source,
because the AV G function has to be computed at a global level. In this
case, the constraint will be mapped as true in both the local sources, and
the resolution function will be computed only at a global level. On the other
hand, if GA is an homogeneous attribute (no resolution function defined), the
constraint will be pushed at the local sources.

Thus, an atomic constraint (GA1 op value) will be rewritten on the local
class L as follows:

(MTF [GA][L] op value) if MT [GA][L] is not null and
the op operator is supported by L and
the data transformation function MTF is supported by L
the resolution function f is supported by L

true else

Atomic constraints of the kind (GA1 op GA2) will be rewritten in a similar
way.

82

Step 2. Generation of the mapping query qG. The LQs partial results
will be merged together by means of the full outerjoin-merge operator.

Step 3. Generation of the final query. The final query performs the
application of resolution functions and residual clauses :

• for Homogeneous Attributes (no conflict on data values), the system
can consider one of the values without preference;

• for non Homogeneous Attributes, the system have to apply the associ-
ated Resolution Function.

C.2 Multiple Class Queries

Given the global classes GC1, GC2, ..., GCn we consider a Global Query Q :

Q = select <Q_select-list>

from G1,G2, ..., Gn

where <Q_condition>

order by <order_by_list>

where <Q_condition> is a Boolean expression of positive atomic constraints:
(Gi.GA1 op value) or (Gi.GA1 op Gj.GA2), where GA1 and GA2 are global
attributes.

The query unfolding is performed in two steps. In the first step, with
standard rewriting rules, the <Q_condition> is unfolded w.r.t. the global
classes Gi of the query Q. In this way we obtain the following rewriting:

Q’ = select <Q_select-list>

from Q1,Q2, ..., Qn

where <join_condition>

and <residual_predicate>

order by <order_by_list>

where

• Qi is a Single Class Query:

Qi = select <Qi_select-list>

from Gi

where <Qi_condition>

83

where

– <Qi_select-list> is the union of the attributes in <Q_select-list>,
in <join_condition> and in <residual_predicate>.

– <Qi_condition> is a condition which can be solved w.r.t. the
global class Gi, i.e., is a condition which uses global attributes of
Gi.

• <join_condition> is a conjunction of constraints (Qi.GA1 op Qj.GA2)

• <residual_predicate> are the residual predicates.

In the second step, each single class query is unfolded w.r.t. local classes
by taking into account the mappingsM; this step has been discussed in the
previous section.

84

Appendix D

The OQLI3 query language
syntax

In the following we included the OQLI3 syntax accepted by the MOMIS
Query Manager. From the 1.2 version the aggregate functions has been
added to the OQLI3syntax accepted by the MOMIS Query Manager.

<asterisk> ::= *

<comma> ::= ,

<period> ::= .

<quote> ::= ’

<underscore> ::= _

<equals operator> ::= =

<not equals operator> ::= !=

<less than operator> ::= <

<less than or equals operator> ::= <=

<greater than operator> ::= >

<greater than or equals operator> ::= >=

<left paren> ::= (

<right paren> ::=)

<query> ::=

SELECT [<quantifier>] <select clause>

<from clause>

[<where clause>]

[<order by clause>]

[<group by clause>]

[<having clause>]

<quantifier> ::= DISTINCT

85

<select clause> ::= <asterisk> | <select list> [{ <comma> <select list> }

<select list> ::=

<qualifier> <period> <asterisk> | <select sublist> [<correlation specification>]

<select sublist> ::= <attribute reference> | <set function specification>

<attribute reference> ::= [<qualifier> <period>] <global attribute name>

<qualifier> ::= <global interface name> | <correlation name>

<global interface name> ::= <identifier>

<global attribute name> ::= <identifier>

<correlation name> ::= <identifier>

<set function specification> ::=

COUNT <left paren> <asterisk> <right paren> | <general set function>

<general set function> ::=

<set function type> <left paren> [<quantifier>] <attribute reference> <right paren>

<set function type> ::= AVG | MAX | MIN | SUM | COUNT

<from clause> ::=

FROM <global interface reference> [{ <comma> <global interface reference> }...]

<global interface reference> ::=

<global interface name> [<correlation specification>]

<correlation specification> ::= AS <correlation name>

<where clause> ::= WHERE <search condition>

<search condition> ::=

<boolean term>

| <search condition> OR <boolean term>

<boolean term> ::=

<boolean factor>

| <boolean term> AND <boolean factor>

86

<boolean factor> ::= <boolean primary>

<boolean primary> ::=

<predicate>

| <left paren> <search condition> <right paren>

<predicate> ::=

<comparison predicate>

| <like predicate>

| <null predicate>

| <join predicate>

<comparison predicate> ::=

<attribute reference> <comp op> <value expression>

<comp op> ::=

<equals operator>

| <not equals operator>

| <less than operator>

| <greater than operator>

| <less than or equals operator>

| <greater than or equals operator>

<null predicate> ::= [NOT] IS NULL <attribute reference>

<like predicate> ::= <attribute reference> LIKE <pattern>

<pattern> ::= <quote> <value expression> <quote>

<join predicate> ::= <attribute reference> <comp op> <attribute reference>

<order by clause> ::= ORDER BY <sort specification list>

<sort specification list> ::=

<sort specification> [{ <comma> <sort specification> }...]

<sort specification> ::= <sort key> [<ordering specification>]

<sort key> ::= <attribute reference>

<ordering specification> ::= ASC | DESC

<group by clause> ::= GROUP BY <grouping attribute reference list>

87

<grouping attribute reference list> ::=

<grouping attribute reference> [{ <comma> <grouping attribute reference> }...]

<grouping attribute reference> ::= <attribute reference>

<having clause> ::= HAVING <search condition>

88

Bibliography

[1] R. Benassi, S. Bergamaschi, A. Fergnani, and D. Miselli. Extending a lex-
icon ontology for intelligent information integration. In R. L. de Mántaras
and L. Saitta, editors, ECAI, pages 278–282. IOS Press, 2004.

[2] D. Beneventano, S. Bergamaschi, F. Guerra, and M. Vincini. Synthesizing
an Integrated Ontology. IEEE Internet Computing Journal, pages 42–51,
Sep-Oct 2003.

[3] S. Bergamaschi, D. Beneventano, A. Corni, E. Kazazi, M. Orsini, L. Po,
and S. Sorrentino. Open Source release of the MOMIS Data Integration
System. In G. Mecca and S. Greco, editors, Proc. of the Nineteenth
Italian Symposium on Advanced Database Systems, SEBD, 26-29 June
2011, Maratea, Italy, pages 175–186, 2011.

[4] S. Bergamaschi, D. Beneventano, F. Guerra, and M. Orsini. Data integra-
tion. In D. W. Embley and B. Thalheim, editors, Handbook of Conceptual
Modeling Springer, Berlin, Germany, pages 443–478, 2011.

[5] S. Bergamaschi, S. Castano, M. Vincini, and D. Beneventano. Seman-
tic integration of heterogeneous information sources. Data Knowl. Eng.,
36(3):215–249, 2001.

[6] M. Lenzerini. Data Integration: A Theoretical Perspective. In L. Popa,
editor, PODS, pages 233–246. ACM, 2002.

[7] G. A. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. Miller. Word-
Net: An on-line lexical database. International Journal of Lexicography,
3:235–244, 1990.

[8] F. Naumann, J. C. Freytag, and U. Leser. Completeness of integrated
information sources. Inf. Syst., 29(7):583–615, 2004.

[9] M. Orsini. Query Management in Data Integration Systems: the MOMIS
approach. PhD thesis, Doctorate School in ICT - Computer Engineering
and Science , University of Modena and Reggio Emilia, 2009.

89

	1 The MOMIS Data Integration System
	1.1 MOMIS Overview
	1.2 Data Integration Process and MOMIS Architecture
	1.3 The WISDOM case study
	1.4 Important concepts in MOMIS
	1.5 Glossary

	2 The MOMIS System
	2.1 Launching MOMIS
	2.2 Getting Started with MOMIS
	2.3 How to Create a new Project?
	2.4 Local Source Schema Extraction
	2.4.1 Microsoft SQL Server database Schema Extraction
	2.4.2 Microsoft Excel File Schema Extraction
	2.4.3 Connection to a MySQL database through Web Service

	2.5 How to create a new Global Schema?
	2.6 Local Sources Selection
	2.7 Local Sources Annotation
	2.7.1 Manual Annotation
	2.7.2 The WordNet Extender Tool
	2.7.3 Automatic Annotation
	2.7.4 Annotation Importer

	2.8 Semantic Relationships Extraction
	2.9 Mapping Table Creation and Refinement
	2.9.1 Join Functions
	2.9.2 Transformation Functions Editor
	2.9.3 Resolution Functions

	3 Querying the Global Schema
	3.1 Query Manager Interface
	3.2 Query Saving and Loading
	3.3 Query Plan Viewer

	4 Querying the Global Schema with the MOMIS QM Web Interface
	4.1 Query Composition and Execution
	4.2 Visualize Results in a Map
	4.3 Query saving
	4.4 Mapping table

	A Data Transformation Functions and Join Function (Theoretical Background)
	B Data Fusion (Theoretical Background)
	C Query Unfolding (Theoretical Background)
	C.1 Query Unfolding steps
	C.2 Multiple Class Queries

	D The OQLI3 query language syntax

