

Windows™
User Guide
For 32-bit and 64-bit Windows

 Pro Fortran

Pro Fortran
Windows™

 User Guide
 For 32-bit and 64-bit Windows

 2075 West Big Beaver Road, Suite 250
 Troy, MI 48084
 U.S.A.
 Tel (248) 220-1190
 Fax (248) 220-1194
 support@absoft.com

All rights reserved. No part of this publication may be reproduced or used in any form by
any means, without the prior written permission of Absoft Corporation.

THE INFORMATION CONTAINED IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE
AND RELIABLE. HOWEVER, ABSOFT CORPORATION MAKES NO REPRESENTATION OF
WARRANTIES WITH RESPECT TO THE PROGRAM MATERIAL DESCRIBED HEREIN AND
SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR ANY PARTICULAR PURPOSE. FURTHER, ABSOFT RESERVES THE RIGHT TO
REVISE THE PROGRAM MATERIAL AND MAKE CHANGES THEREIN FROM TIME TO TIME
WITHOUT OBLIGATION TO NOTIFY THE PURCHASER OF THE REVISION OR CHANGES. IN
NO EVENT SHALL ABSOFT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE PURCHASER'S USE OF THE PROGRAM
MATERIAL.

U.S. GOVERNMENT RESTRICTED RIGHTS — The software and documentation are provided with
RESTRICTED RIGHTS. Use, duplication, or disclosure by the Government is subject to restrictions set
forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at
252.227-7013. The contractor is Absoft Corporation, 2075 West Big Beaver, Suite 250, Troy, Michigan
48084.

ABSOFT CORPORATION AND ITS LICENSOR(S) MAKE NO WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE
SOFTWARE. ABSOFT AND ITS LICENSOR(S) DO NOT WARRANT, GUARANTEE OR MAKE ANY
REPRESENTATIONS REGARDING THE USE OR THE RESULTS OF THE USE OF THE
SOFTWARE IN TERMS OF ITS CORRECTNESS, ACCURACY, RELIABILITY, CURRENTNESS,
OR OTHERWISE. THE ENTIRE RISK AS TO THE RESULTS AND PERFORMANCE OF THE
SOFTWARE IS ASSUMED BY YOU. THE EXCLUSION OF IMPLIED WARRANTIES IS NOT
PERMITTED BY SOME STATES. THE ABOVE EXCLUSION MAY NOT APPLY TO YOU.

IN NO EVENT WILL ABSOFT, ITS DIRECTORS, OFFICERS, EMPLOYEES OR LICENSOR(S) BE LIABLE
TO YOU FOR ANY CONSEQUENTIAL, INCIDENTAL OR INDIRECT DAMAGES (INCLUDING
DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS
INFORMATION, AND THE LIKE) ARISING OUT OF THE USE OR INABILITY TO USE THE SOFTWARE
EVEN IF ABSOFT HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME
STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL
OR INCIDENTAL DAMAGES, THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU. Absoft and its
licensor(s) liability to you for actual damages for any cause whatsoever, and regardless of the form of the action
(whether in contract, tort, (including negligence), product liability or otherwise), will be limited to $50.

Absoft, the Absoft logo, Fx, Fx2, Fx3, Pro Fortran, CLM, and MacFortran are trademarks of Absoft Corporation
Apple, the Apple logo, Velocity Engine, OS 9, and OS X are registered trademarks of Apple Computer, Inc.
AMD64 and Opteron are trademarks of AMD Corporation
CF90 is a trademark of Cray Research, Inc.
IBM, MVS, RS/6000, XL Fortran, and XL C/C++ are trademarks of IBM Corp.
Macintosh, NeXT, and NeXTSTEP, are trademarks of Apple Computer, Inc., used under license.
MS-DOS is a trademark of Microsoft Corp.
Pentium, Pentium Pro, and Pentium II are trademarks of Intel Corp.
PowerPC is a trademark of IBM Corp., used under license.
Sun and SPARC are trademarks of Sun Microsystems Computer Corp.
UNIX is a trademark of the Santa Cruz Operation, Inc.
Windows 95/98/NT/ME/2000 and XP are trademarks of Microsoft Corp.
All other brand or product names are trademarks of their respective holders.

Copyright © 2004-2015 Absoft Corporation and its licensor(s).
All Rights Reserved
Printed and manufactured in the United States of America. 15.0.082514

 i

Contents

PRO FORTRAN .. I

CHAPTER 1 INTRODUCTION ... 1

Introduction to Absoft Pro Fortran ... 1
Absoft Fortran 90/95 .. 1
Absoft FORTRAN 77 ... 1

Conventions Used in this Manual .. 2

Road Maps ... 2
FORTRAN Road Map .. 2
Windows Programming Road Map... 3

Year 2000 Problem .. 3
Fortran 90 DATE_AND_TIME Subroutine ... 3
Unix Compatibility Library .. 4

CHAPTER 2 GETTING STARTED ... 5

Compiling Basics ... 5

Application Basics ... 11

CHAPTER 3 USING THE EDITOR ... 13

Text Selection ... 13

File Menu ... 14
New…(Ctrl+N) ... 14
Open…(Ctrl+O) ... 14
Save (Ctrl+S) .. 14
Save As… ... 14
Save All .. 14
Close (Ctrl+W) ... 14
Close All ... 15
Close Others ... 15
Recent Files .. 15
Check For Updates ... 15
Preferences ... 15

Edit menu and Pop-up menus... 16
Find/Replace (F) ... 16

Text in File ... 16
Replace With ... 16
Replace .. 16
Find and Replace ... 16
Replace and Find ... 16
Replace All .. 16
Match Case .. 17
Find Previous ... 17

ii

Whole Words .. 17
Find/Replace Again (Ctrl+G) ... 17
Go to Line (Ctrl+L) .. 17
Undo (Ctrl+Z) .. 17
Redo (Ctrl+Y) .. 17
Cut (Ctrl+X) ... 17
Copy (Ctrl+C) .. 17
Paste (Ctrl+V) .. 18
Select All (Ctrl+A) ... 18
Comment (Ctrl+D) ... 18
Uncomment (Ctrl+Shift+D) ... 18
Indent (Tab) ... 18
Unindent (Ctrl+Shift+Tab) .. 18
To Uppercase (Ctrl+U) .. 18
To Lowercase (Ctrl+Shift+U) .. 18
Back (Ctrl +J) ... 18
Forward (Ctrl +Shift+J) .. 18
Bookmarks ... 19

Bookmarks Menu .. 19
Toggle Bookmark (Alt+K) .. 19
Previous Bookmark (Ctrl+Shift+K) .. 19
Next Bookmark (Ctrl+K) .. 19
Clear File Bookmarks.. 20
Clear All Bookmarks ... 20

Code Completion (Ctrl+E) ... 20

Syntax Highlight (Context menu only) ... 20

View menu and Pop-up menus .. 21
Line Numbers ... 21
F77 Coding Form ... 21
Dual Screen Display... 22
Elements Browser .. 23
Bookmarks ... 23
Files.. 24
Build .. 24
Find in Files ... 24
File Tool Bar .. 24
Build Tool Bar ... 24
Project Tool Bar... 24

Project menu ... 25
New Project ... 25
Open Project .. 25
Recent Projects .. 25

CHAPTER 4 DEVELOPER TOOLS INTERFACE .. 27

Working with Projects ... 27

Docked Displays .. 28

Adding Files to the Project... 28

Files Dock .. 29
New File in Project .. 30

 iii

Add File(s) .. 30
Add Directory ... 30
Check Syntax .. 30
Set Options for .. 30
Use Default Options ... 30
Remove ... 31
Show Full Paths .. 31
Show Relative Paths ... 31
Elements Browser ... 32

Build Configurations ... 33
Adding a New Build Configuration .. 33
Creating A New Build Configuration Template ... 34

Setting Compiler Options ... 34
Target Options .. 35

Target Type .. 35

Multiple build and options example ... 36

Building .. 37

Execute/Debug ... 38

Find In Files ... 38

SMP Analyzer .. 38

CHAPTER 5 USING THE COMPILERS ... 41

Compiling Programs ... 41

Using the Command Line ... 41

File Name Conventions ... 42

Compiler Process Control ... 42
Generate Assembly Language (-S) ... 42
Generate Relocatable Object (-c) .. 43
Passing Options To The Linker .. 43

Executable File Name (-o name) ... 43
Linker Options (-X) ... 43
Library Specification ... 43

Linker/Library Manager Preference (-use_vctools) .. 44
Preprocessor Options (-cpp and –no-cpp) .. 44
Code Generation Model (-mcmodel={small | medium}) ... 44
Stack Size (-stack:reserved) .. 44
Application Type .. 44
Generate 32-bit code (-m32) ... 44
Generate 64-bit code (-m64) ... 45
Generate Debugging Information (-g) .. 45

Optimizations ... 45
Basic Optimizations (-O1) .. 45
Normal Optimizations (-O2) ... 45

iv

Advanced Optimizations (-O3) .. 45
Advanced Optimizations (-O4) .. 46
Dynamic AP (-O5) ... 46

Automatic Parallelization (-apo) ... 46
CPU Specific Optimizations (–cpu:type) ... 46

Loop unrolling (-U and -hnn and -Hnn) .. 47
SSE2 instructions (-msse2 and –mno-sse2) ... 47
SSE3 instructions (-msse3) ... 47
SSE4a instructions (-msse4a).. 48
SSSE4.1 instructions (-msse41) .. 48
Math Optimization Level (-speed_math=n) ... 48
Enable OpenMP Directives (-openmp).. 48
OpenMP optimization Level (-speed_openmp=n) .. 48
Safe Floating-Point (-safefp) .. 48
Report Parallelization Results (-LNO:verbose=on) .. 49
Report Vectorization Results (--LNO:simd_verbose=on) .. 49

Debugging .. 49
Generate Debugging Information (-g) .. 49

FPU Control Options .. 49
FPU Rounding Mode (-OPT:roundoff=n) ... 49
FPU Exception Handling ... 50

Absoft Fortran 95 Options ... 50
Compiler control .. 50

Warn of Non-Standard usage (-en).. 50
Suppress warnings (-w) ... 51
Suppress Warning number(s) (-Znn) ... 51
Quiet (-q) ... 51
Verbose (-v) .. 51
Warning level (-znn) ... 51
Error Handling (-dq and -ea) ... 51
Output Version number (-V) ... 52
Default Recursion (-eR) .. 52
Max Internal Handle (-T nn) ... 52
Temporary string size (-t nn) ... 52
Set Module Paths (-p path) .. 52
Module File Output Path (-YMOD_OUT_DIR=path) ... 52

Compatibility - F95 Options .. 53
Disable compiler directive (-xdirective) .. 53
Integer Sizes (-i2 and -i8) .. 53
Demote Double Precision to Real (-dp) .. 53
Promote REAL to REAL(KIND=8) (-N113) ... 53
One trip DO loops (-ej) ... 53
Static storage (-s) .. 54
Check Array Boundaries (-Rb) ... 54
Check Array Conformance (-Rc) .. 54
Check Substrings (-Rs) ... 54
Check Pointers (-Rp) .. 54
Character Argument Parameters (-YCFRL={0|1}) ... 54
Pointers Equivalent To Integers (YPEI={0|1}) ... 55
DVF/CVF Character Arguments (-YVF_CHAR) ... 55

Format - F95 Options ... 55
Free-Form (-f free) ... 55
Fixed-Form (-f fixed) .. 55

 v

Alternate Fixed form (-f alt_fixed) .. 56
Fixed line length (-W nn) .. 56
YEXT_NAMES={ASIS | UCS | LCS} ... 56
Treat as Big-Endian (-N26) ... 56
Treat as Little-Endian (-N27) .. 56
External Symbol Prefix (-YEXT_PFX=string) ... 56
External Symbol Suffix (-YEXT_SFX=string) ... 56
Escape Sequences in Strings (-YCSLASH=1) .. 57
No Dot for Percent (-YNDFP=1) .. 57
MS Fortran 77 Directives (-YMS7D) .. 57

Miscellaneous - F95 Options .. 57
COMMON Block Name Prefix (-YCOM_PFX=string) ... 57
COMMON Block Name Suffix (-YCOM_SFX=string) ... 57
COMMON Block Name Character Case (-YCOM_NAMES={ ASIS | UCS | LCS }) 58
Loop unrolling (-U and -h nn and -H nn) ... 58
Add Microsoft GLOBAL prefix (-YMSFT_GLB_PFX) .. 58

Other F95 Options .. 59
Conditional Compilation (-YX).. 59
Check Argument Interface (-Ra) ... 59
Check Argument Count (-Rn) .. 59
Disable Default Module File Path (-nodefaultmod) ... 59
Variable Names Case Sensitivity (-YVAR_NAMES={ASIS | UCS | LCS}) 59
Variable Names Case Sensitivity (-YALL_NAMES={ASIS | UCS | LCS}) 60
Ignore CDEC$ directives (-YNO_CDEC) .. 60

Absoft Fortran 90/95 Compiler Directives ... 60
NAME Directive .. 61
FREE Directive .. 61
FIXED Directive .. 61
STACK Directive .. 61

Absoft FORTRAN 77 Options ... 62
General - F77 Options .. 62

Suppress Warnings (-w) ... 62
Warn of non-ANSI Usage (-N32) .. 62
Quiet (-q) ... 62
Show Progress (-v) ... 62
Check Array Boundaries (-C) .. 63
Conditional compilation (-x) .. 63
Max Internal Handle (-T nn) ... 63
Temporary string size (-t nn) ... 63
Compiler Directives (-Dname[=value]) ... 63

Compatibility - F77 Options ... 64
Folding to Lower Case (-f) ... 64
Static Storage (-s) .. 64
Folding to Upper Case (-N109) ... 64
One-Trip DO Loops (F66) (-d) .. 64
Promote REAL and COMPLEX (-N113) ... 65
Integer Sizes (-i2 and -i8) .. 65

Format - F77 Options.. 65
ANSI Fortran 77 Fixed .. 65
Fortran 90 Free-Form (-8) ... 65
VAX Tab-Format (-V) ... 65
Wide Format (-W) ... 65
Treat as Big-Endian (-N26) ... 66
Treat as Little-Endian (-N27) .. 66
Escape Sequences in Strings (-K) .. 66

DLL Compatibility ... 66

vi

CDECL.. 66
STDCALL ... 66

CHAPTER 6 PORTING CODE ... 69

Porting Code from VAX .. 69
Compile Time Options and Issues ... 70

Porting Code from IBM VS FORTRAN .. 72
Compile-time Options and Issues... 72

Porting Code From Microsoft FORTRAN ... 72
Compile-time Options and Issues... 73

Porting Code from Sun Workstations ... 74

Porting Code from the NeXT Workstation .. 74

Porting Code from the IBM RS/6000 Workstation ... 74
Distribution Issues ... 74

Other Porting Issues ... 75
Memory Management .. 75
File and Path Names .. 75
Tab Character Size ... 76
Runtime Environment .. 76
Floating Point Math Control .. 78

Rounding Direction ... 79
Exception Handling ... 79

CHAPTER 7 BUILDING PROGRAMS.. 81

An Overview of Program Building.. 81
The Components of an Application ... 81
Working with Resources .. 82

Creating Object Files .. 82
Fsplit - Source Code Splitting Utility ... 83

Linking Programs ... 84
@ .. 84
-ALIGN .. 85
-ALLOWBIND .. 85
-ALLOWISOLATION ... 85
-ASSEMBLYDEBUG ... 85
-ASSEMBLYLINKRESOURCE ... 85
-ASSEMBLYMODULE .. 85
-ASSEMBLYRESOURCE .. 85
-BASE .. 85
-CLRIMAGETYPE ... 85
-CLRSUPPORTLASTERROR .. 85
-CLRTHREADATTRIBUTE .. 85
-CLRUNMANAGEDCODECHECK .. 86
-DEBUG .. 86
-DEF .. 86

 vii

-DEFAULTLIB .. 86
-DELAY ... 86
-DELAYLOAD .. 86
-DELAYSIGN .. 86
-DLL ... 86
-DRIVER .. 86
-ENTRY ... 86
-errorReport .. 86
-EXPORT ... 87
-FIXED ... 87
-FORCE .. 87
-FUNCTIONPADMIN ... 87
-HEAP .. 87
-IDLOUT .. 87
-IGNOREIDL ... 87
-IMPLIB ... 87
-INCLUDE ... 87
-INCREMENTAL .. 87
-KEYCONTAINER .. 87
-KEYFILE .. 87
-LARGEADDRESSAWARE ... 88
-LIBPATH .. 88
-LTCG .. 88
-MACHINE .. 88
-MANIFEST ... 88
-MANIFESTDEPENDENCY .. 88
-MANIFESTFILE (Name Manifest File) ... 88
-MAP .. 88
-MAPINFO ... 88
-MERGE ... 88
-MIDL... 88
-NOASSEMBLY .. 88
-NODEFAULTLIB... 89
-NOENTRY .. 89
-NOLOGO .. 89
-NXCOMPAT .. 89
-OPT ... 89
-ORDER ... 89
-PDB ... 89
-PDBSTRIPPED .. 89
-PGD ... 89
-PROFILE ... 89
-RELEASE ... 90
-SAFESEH.. 90
-SECTION .. 90
-STACK .. 90
-STUB .. 90
-SUBSYSTEM ... 90
-SWAPRUN ... 90
-TLBID ... 90
-TLBOUT ... 90
-TSAWARE.. 90
-VERBOSE ... 90
-VERSION ... 90
-WX .. 91

Creating Libraries ... 91

viii

DLL Import Libraries... 92
Syntax of a Definition File .. 93
Name Mangling ... 94

Building Programs .. 95
The Elements of amake .. 96

Using Macros .. 97
Advantages of using macros ... 97
Defining macros ... 97
Special macros .. 98
Cautions in using macros .. 98

Using Description Files ... 99
Working with dependency blocks... 99
Defining a target more than once .. 100
Using include directives ... 100
A sample description file .. 101

Using Dependency Rules .. 101
The default rules ... 102
Creating your own rules.. 104

amake Usage and Syntax.. 105
Special Targets .. 106
Dummy Files ... 107
Environment Variables .. 107
Example: Rebuilding an Executable File .. 108

Error Handling and Cautions ... 109
Syntax Errors ... 109
Other Common Errors ... 110
Cautions .. 110

CHAPTER 8 THE ABSOFT WINDOW ENVIRONMENT 111

AWE Preferences .. 112

Opening Additional Text Windows ... 113

Determining When a Window Closes.. 113

AWE Menus .. 114

Spread Sheets .. 115

Alert Boxes .. 117

Plots .. 117
Pie Charts ... 118
Bar Charts .. 119
XY Plots... 120
Contour Plots ... 123
Polar Plots .. 125

Canvases .. 126
Canvas Derived Types ... 127
Canvas Routines ... 129

Dialogs ... 132
Creating an AWE dialog .. 133

 ix

Adding Items to an AWE dialog ... 133
Dialog Labels ... 133
Dialog Combo Box .. 134
Dialog Check Box .. 134
Dialog Text Edit Box ... 135
Dialog Radio Buttons ... 136
Dialog File Selection Box .. 136

Display an AWE Dialog ... 137

Timers ... 138

CHAPTER 9 INTERFACING WITH OTHER LANGUAGES 139

Interfacing with C ... 139
FORTRAN Data Types in C ... 140
Passing arguments Between C and FORTRAN .. 140

Reference Parameters ... 141
Value Parameters ... 142

Indirection (the LOC Function) .. 143
Function Results ... 143

A Call to C from FORTRAN ... 144
A Call to FORTRAN from C ... 144

Passing Strings to C .. 144
Naming Conventions .. 145

Procedure Names ... 145
Accessing COMMON Blocks from C.. 146

Declaring C Structures In FORTRAN .. 146

APPENDIX A ABSOFT COMPILER OPTION GUIDE 147

Absoft Compiler Options .. 147

Floating Point Unit Control Options ... 147

FORTRAN 90/95 General Options .. 148

FORTRAN 90/95 Compatibility Options .. 148

FORTRAN 90/95 Format Options ... 148

FORTRAN 90/95 MiscelLaneous Options .. 149

FORTRAN 77 General Options ... 149

FORTRAN 77 Control Options ... 149

FORTRAN 77 Compatibility Options ... 150

FORTRAN 77 Format Options .. 150

FORTRAN 77 COMMON Options ... 150

FORTRAN 77 Other Options... 150

x

APPENDIX B ASCII TABLE ... 151

APPENDIX C BIBLIOGRAPHY ... 155

References on the Fortran 90/95 language ... 155

References on the FORTRAN 77 language .. 155

References on the C/C++ Programming languages ... 156

References on Windows Programming ... 156

APPENDIX D AWE RGB COLORS .. 159

APPENDIX E SPEED_MATH OPTION .. 163

APPENDIX F TECHNICAL SUPPORT ... 165

APPENDIX G VISUAL BASIC DLLS .. 167

Creating The Fortran DLL .. 167

Creating the Visual Basic code .. 168

Passing Visual Basic Arrays to a DLL .. 168

Passing Visual Basic Strings to a DLL .. 168

64-bit DLL Notes .. 170

 1

 Fortran User Guide

CHAPTER 1

Introduction

INTRODUCTION TO ABSOFT PRO FORTRAN

Absoft specializes in the development of Fortran compilers and related tools. Full
implementations of Fortran 77 and Fortran 90/95 are available for Windows, Macintosh
and Linux platforms. Absoft will continue to focus on Fortran in the future, but the
popularity of C/C++ in the Unix environment has required many of today's Fortran
programmers, who are moving code to their desktop, to link Fortran code with C
libraries. To facilitate this process, certain Absoft Fortran implementations are object
code compatible with C/C++ objects, allowing users to create mixed Fortran/C
applications from within a single development environment.

Absoft Fortran is a native 32-bit application designed for Windows™ XP/Vista/7.

Absoft Fortran implementations include all of the tools necessary for you to create stand-
alone, double-clickable Windows applications. The purpose of this User Guide is to offer
step-by-step instructions on the operation of each compiler, writing, compiling,
debugging, linking and running your program. AWE, Absoft's application framework, can
automatically build a standard Windows interface for each compiled application.

Absoft Fortran 90/95

A complete ANSI Fortran 90/95 implementation plus extensions, Absoft Fortran 90/95 is
the result of a five year joint development effort with Cray Research. It utilizes a version
of the CF90 front-end and is source compatible with several Cray F90 releases. It
provides full support for the Win32 API directly from Fortran and is capable of building
DLLs. Several popular VAX and workstation extensions have also been added.

Absoft FORTRAN 77

Refined over 15 years, with emphasis on porting legacy code from workstations, Absoft
Fortran 77 is full ANSI 77 with MIL-STD-1753, Cray-style POINTERs, plus most
extensions from VAX FORTRAN as well as many from IBM, Sun, HP, and Cray. Absoft
Fortran 77 supports legacy extensions which are not part of the Fortran 90/95 standard.
See the chapter on Porting Code in this manual for further information. Fortran 77 is
fully link compatible with Fortran 90/95 so existing, extended FORTRAN 77 routines
can be easily compiled and linked with new Fortran 90/95 code. The entire Win32 API is
supported and DLLs can be created directly from Fortran.

2 Introduction

Fortran User Guide

CONVENTIONS USED IN THIS MANUAL

There are a few typographic and syntactic conventions used throughout this manual for
clarity.

• [] square brackets indicate that a syntactic item is optional.

• … indicates a repetition of a syntactic element.

• Term definitions are underlined.

• -option font indicates a compiler option.

• Italics is used for emphasis and book titles.

• On-screen text such as menu titles and button names look the same as

in pictures and on the screen (e.g. the File menu).

• The modifier keys on PC keyboards are Shift, Alt, and Control. They

are always used with other keys and are referenced as in the following:

 Shift-G press the Shift and ‘G’ keys together
 Alt-F4 press the Alt and F4 function keys together
 Control-C press the Control and ‘C' keys together

• Unless otherwise indicated, all numbers are in decimal form.

• FORTRAN examples appear in the following form:

 PROGRAM SAMPLE
 WRITE(9,*) "Hello World!"
 END

ROAD MAPS

Although this manual contains all the information needed to write programs with Absoft
Fortran for Windows, there are a number of other manuals that describe FORTRAN
extensions and the Windows programming environment in further detail. The two road
maps in this chapter will guide you to these manuals for introductory or advanced
reference. The bibliography in the Appendices lists further information about each
manual.

FORTRAN Road Map

The Absoft implementations of Fortran 90/95 and FORTRAN 77 are detailed in the
online manual, Absoft Fortran Language Reference Manual, also in the Documentation
folder of the Pro Fortran CDROM. A discussion of floating point precision can be found

 Introduction 3

 Fortran User Guide

in the chapter, Porting Code of this User Guide. Figure 1-1 shows additional manuals
that can be used for referencing the FORTRAN language and internal math operations.

 Absoft Fortran User Guide

ANSI FORTRAN 77 Standard
ANSI X3.9-1978

IEEE Floating Point Standard
P754

ANSI Fortran 90 Standard
ANSI X3.198-1992

Microsoft Win32
Programmer’s Reference

FORTRAN language road map

Windows Programming Road Map

Absoft Fortran 90/95 and FORTRAN 77 each provide complete access directly to the
Windows System Services routines. The Windows Programming chapter of this manual
describes the interface to these routines, but does not describe each of the hundreds of
routines available. The Win32 SDK Help command in the Absoft Pro Fortran menu
describes most of the Win32 API functions. Programmers wishing to make use of these
routines to add graphics to their programs or to extend the user interface provided by
MRWE may wish to obtain additional documentation on the Win32 programming model.

YEAR 2000 PROBLEM

All versions of Absoft Pro Fortran products for Macintosh, Power Macintosh, Windows
95/98, Windows NT/2000/XP/Vista/7, Linux, and UNIX operate correctly across the date
transition to the year 2000. Neither the compilers nor the runtime libraries have ever used
2-digit years in their internal operation.

The only caveat may be for those porting code from VAX/VMS systems. Since the early
1980s, Absoft Pro Fortran products have included software libraries designed to facilitate
porting code from the VAX/VMS environment. Included in these VAX compatibility
libraries are two subroutines that emulate the VAX/VMS DATE and IDATE subroutines.
These subroutines return the year using a two-digit format. If you use DATE or IDATE in
a program that stores or compares dates, you may need to recode portions of your
application. Below are listed some of the alternatives supplied with Pro Fortran:

Fortran 90 DATE_AND_TIME Subroutine

4 Introduction

Fortran User Guide

This subroutine is part of the Fortran 90/95 language and returns integer data from the
date and real time clock. Refer to the Absoft Fortran Reference Manual for further
information.

Unix Compatibility Library

There are a number of subroutines in the Unix Compatibility Library that return the date
and time in both INTEGER and CHARACTER format. Refer to the Support Library Guide for
information on their format and use.

 5

 Fortran User Guide

CHAPTER 2

Getting Started

The tutorial in this chapter introduces the two main functions of the Absoft Pro Fortran
Software Development package for Windows: compiling source code and running
compiled applications. If you are familiar with the basics of compiling and running
programs, please see the table below as a guide to topics you may find useful.

TO DO THIS… TURN TO THIS SECTION…
Use the editor Using the Absoft Editor, Chapter 3

Use the tools interface Developer Tools Interface, Chapter 4

Use the compiler and options Using the Compilers, Chapter 5

Port from other platforms Porting Code, Chapter 6

Create applications Building Programs, Chapter 7

Program Windows Windows Programming, Chapter 8

Debug programs FX Debugger Manual

Road map for experienced users

COMPILING BASICS

The Absoft compilers can be run either from a command line or from the Absoft
Developer Tools Interface. This chapter describes how to use the Developer Tools
Interface —the command line interface is described in the Chapter 5, Using the
Compilers.

Note: Throughout this chapter and the rest of the manual, it is assumed that the

compiler has been installed on the C: drive. If this is not the case,
substitute the correct drive letter in the examples as appropriate.

Selecting Programs from the Start menu and then Developer Tools Interface from the
Absoft Pro Fortran submenu opens the Absoft Developer Tools Interface. It can also be
started by selecting Run… from the Start menu and typing
c:\Absoft15.0\bin\AbsoftTools or by typing AbsoftTools at a console or command
line window. The Windows Command Prompt or should be opened by selecting
Programs from the Start menu and then Development Command Prompt from the Absoft
Pro Fortran submenu. Opening the console window in this way automatically sets the
environment variables by executing the c:\Absoft15.0\bin\absvars32.bat batch file.

6 Getting Started

Fortran User Guide

During the installation process, several example programs were placed in the
c:\Absoft15.0\examples directory. The example program used in this tutorial is
Fibonacci.f95. Follow the tutorial on the following pages to learn how to use the
graphical interface to quickly compile small to medium size programs.

First, start up the interface to the compiler:

What to do How to do it
Invoke the Absoft Developer
Tools Interface.

Select Programs from the
Start menu, then select
Developer Tools Interface
from the Absoft Pro Fortran
submenu.

Note: The first time you run the interface, it may ask you if you want certain

standard file extensions to be associated with the Absoft Editor. This will
allow you to automatically open the editor by double-clicking on files with

 Getting Started 7

 Fortran User Guide

these extensions. You can choose to have this association established at
this time, or defer the decision to later.

The Absoft Developer Tools Interface is project oriented, so the first thing you must do is
to establish a name and location for your project.

What to do How to do it
Set the project name and
location.

Select New Project from the
Project menu or type
Ctrl+Shift_N.

On the General options page, change the Project Name to “Fibonacci” and the Target
Filename to “Fibonacci.exe” as shown above. You may also want to change the Project
Directory from the default to a Fortran specific directory.

8 Getting Started

Fortran User Guide

You will now want to set the target type to AWE Application. AWE is the Absoft Window
Environment. It provides an automatic Windows interface for your program with menus,
a scrollable text window for program output, and the ability to print.

What to do How to do it
Set the project Target Type to
AWE Application (a Windows
program).

Click on Target in the left
panel to select the target
options and then choose AWE
Application from the Target
Type drop menu in the upper
left corner.

These are the only options you will want to set for this application, so click on the OK
button to dismiss the Default Tools Options dialog.

 Getting Started 9

 Fortran User Guide

The next step is to specify the file (or files) that the project consists of:

What to do How to do it
Add the file Fibonacci.f95 to
the project.

Choose Add File(s)… from the
Project menu. The file section
dialog will open automatically

If you are not already in the C:\Absoft 15.0\examples folder, browse to that directory.
Click on the file named Fibonacci.f95 and click OK to add it to the project. The project
Files pane will now contain your source file and the options that will be used to compile
it. This pane maintains all of the files in your project. Each file type will be kept in a
separate folder. If you wish, you can also manage the files in your project directly from
this window; you delete selected files and drag new files into this window.

10 Getting Started

Fortran User Guide

The last step is to build (compile) your application:

What to do How to do it
Compile the source file
Fibonacci.f95 into the
application file
Fibonacci.exe.

Choose the Build command
from the Build menu.

 Getting Started 11

 Fortran User Guide

The compiler will then create Fibonacci.exe from Fibonacci.f95. More detailed
information concerning the creation of an application can be found in the chapters
Developer Tools Interface and Using the Compilers.

APPLICATION BASICS

The application is now ready to execute.

What to do How to do it
Execute the compiled
application.

Choose the Execute
command from the Build
menu.

You can also select Run… from the Start menu, browse to the c:\Absoft15.0\examples
directory, select Fibonacci.exe, and run it or double-click on the application icon in an
Explorer window.

12 Getting Started

Fortran User Guide

Additional examples that may be helpful in writing Fortran 90/95 or FORTRAN 77
programs can be found in the c:\Absoft15.0\examples directory. Each example source
file starts out with a large comment, referred to as the header. Before compiling an
example, look at the header in the source code. It will list all of the compiler options
necessary to insure that the example will compile and run correctly. In addition, the
header describes the purpose of the example and other useful information.

 Fortran User Guide

CHAPTER 3

Using The Editor

This chapter describes how to use the editor in Absoft Tools to create and edit source files
written in FORTRAN. Since word processors embed formatting characters in a
document, using a word processor to create source files is not recommended. You can
create source files in a word processor or another editor and export them in text format,
but the features of the Absoft Editor make this unnecessary. The Absoft Editor
incorporates powerful features for editing FORTRAN 77, FORTRAN 90/95, C, and C++
source files. However, this chapter will concentrate specifically on editing FORTRAN
programs.

The Absoft Editor is a powerful tool for creating and maintaining program source files. It
is source language sensitive and will display keywords and comments in different text
colors, making them easier to distinguish in your source code.

Basic editing functions are available as menu commands and there is usually more than
one way to initiate any command:

• Select the command from the menu or tool bar.
• Type in the key equivalent (such as typing the Control and the letter O for the

Open command).
• Right click on the text edit window to display a context menu

TEXT SELECTION

Text may be selected by dragging the cursor over the text while holding the mouse button
down. Choosing Select All from the Edit menu or Ctrl+A will select the whole document.

14 Using The Editor

Fortran User Guide

FILE MENU

The File menu contains commands for creating, opening,
saving, and closing files. There are also commands for
printing and for establishing your preferences for the way that
Absoft Tools operates.

New…(Ctrl+N)

This menu contains commands for creating new tabs for
entering and editing text. The tab will be untitled (it will have
the name “Untitled”) with the extension of the type of file you
choose until the first time you save it.

Open…(Ctrl+O)

Use this command to open an existing file. This command
displays a standard file selection dialog box to select the file
to be opened. If you select a file that is already open, the tab
that contains that file will be brought to the front of the editor.

Save (Ctrl+S)

Choose this command to save the text in the active tab. If the file does not exist, you will
be asked to provide a name and a path for the file.

Save As…

Use the Save As command to save the text in the active tab to a different file. A standard
file save dialog will appear, allowing you to specify the name of file. The active tab
becomes the newly named file.

Save All

Use this command to save the text in all open tabs.

Close (Ctrl+W)

This command closes the file displayed in the active tab. If any unsaved changes had been
made to the text, you will be asked to save it. This action is also available by right-
clicking on the tab name.

 Using The Editor 15

 Fortran User Guide

Close All

This command closes all files. If any unsaved changes had been made to any files, you
will be asked to save them.

Close Others

This command is only available by right-clicking on the tab name. The command closes
all files except for the active tab. If any unsaved changes had been made to any files, you
will be asked to save them.

Recent Files

Up to 8 files will appear in this list. Each menu item represents the file that has been most
recently opened or saved. They are listed as a convenience for quickly opening files for
editing. The Clear Recent Files selection in this menu will remove all 8 files from the list
without any warning.

Check For Updates

This menu selection opens a dialog to check for updates to your Absoft product.

Preferences

Opens a dialog to edit the preferences for Absoft Tools.

16 Using The Editor

Fortran User Guide

EDIT MENU AND POP-UP MENUS

Right-clicking the mouse button in a text edit
window will display a pop-up menu of
context sensitive commands. These
commands are also available under the Edit
menu. The Edit menu is not available if a file
is not open for editing.

Find/Replace (F)

Use this command to open the Find dialog
for locating or replacing specified text within
the front-most window. The controls in the
Find dialog are used as follows:

Text in File

Enter the text string you wish to locate here.

Replace With

Enter the text string that will replace found
text. This text is used with the Replace All
and Replace buttons.

Replace

Replaces selected text with Replace With

Find and Replace

Executes a Find and then a Replace.

Replace and Find

Executes a Replace on selected text and executes a Find

Replace All

Replaces all text in the file.

 Using The Editor 17

 Fortran User Guide

Match Case

Check this box to find text occurrences in your source file that match your specified text
exactly. Uncheck to search regardless of case.

Find Previous

Check this box to find text searching backwards from the cursor.

Whole Words

Match only whole word matches of the find text. For example, if the find text is soft,
Absoft will not match when this is checked.

Find/Replace Again (Ctrl+G)

This command repeats the last Find/Replace command in the active tab.

Go to Line (Ctrl+L)

This command opens the Goto dialog. Enter the line number of the line you wish to go to
and click on the Ok button.

Undo (Ctrl+Z)

The undo command undoes the last edit in the active tab. You can undo all actions since
the document was opened.

Redo (Ctrl+Y)

The redo command redoes the last edit in the active tab. You can redo all actions since
the document was opened.

Cut (Ctrl+X)

The cut command removes the selected text from the active tab and places it on the
clipboard. Text on the clipboard may be pasted into other windows.

Copy (Ctrl+C)

The Copy command copies the selected text from the active tab and places it on the
clipboard. Text on the clipboard may be pasted into other windows.

18 Using The Editor

Fortran User Guide

Paste (Ctrl+V)

The paste command replaces the selected text in the active tab with the text on the
clipboard. If no text is selected in the active tab, the clipboard text is inserted at the
insertion point.

Select All (Ctrl+A)

The Select All command selects all text in the document.

Comment (Ctrl+D)

This command inserts a comment character in column one of the current line if there is no
selected text section. Otherwise, it will comment the entire selected text. . For C/C++
files this is a double forward slash (“//”) and for all other files it is an exclamation mark
(‘!’).

Uncomment (Ctrl+Shift+D)

This command deletes a comment character in column one of the current line or the
selected lines. For C/C++ files this is a double slash (“//”) and for all other files it is an
exclamation mark (‘!’).

Indent (Tab)

Use this command to shift either the selected text or current line to the right by one tab
stop.

Unindent (Ctrl+Shift+Tab)

Use this command to shift either the selected text or current line to the left by one tab
stop.

To Uppercase (Ctrl+U)

This command converts the selected text to upper case.

To Lowercase (Ctrl+Shift+U)

This command converts the selected text to lower case.

Back (Ctrl +J)

Use this command to navigate back to the last cursor position in the file or project.

Forward (Ctrl +Shift+J)

 Using The Editor 19

 Fortran User Guide

Use this command to navigate forward to the last cursor position in the file or project.

Bookmarks

Bookmarks provide an easy way to “save your place” in a file so that you can later return
there quickly. Positioning the insertion caret on the line where you want the bookmark set
and then typing Alt+K sets (or unsets) a bookmark. In other words, Alt+K toggles a
bookmark.

A bookmark appears as a small flag at the beginning of the line. Pressing the Ctrl+K key
alone moves the insertion caret to the next bookmarked line in the file. Holding the Shift
key down and pressing the Ctrl+K key moves the insertion caret to the previous
bookmarked line in the file. The Clear File Bookmarks action in the Edit menu or context
menu clears all bookmarks in the file. The Clear All Bookmarks action clears all the
bookmarks for all files.

The View->Bookmarks action will open a display showing all available bookmarks in all
files. Clicking on a bookmark opens the file (if not already opened) and sets the cursor to
the line of the bookmark clicked. Double clicking on a bookmark name will allow you to
edit the name.

Note: Bookmarks are either associated with a specific project (see Developer

Tools Interface in the next chapter) or with no project (editor bookmarks).
Editor bookmarks are only accessible with no project open, and project
bookmarks are only accessible with the associated project open.
Bookmarks are saved in a project save file.

Bookmarks Menu

The Bookmarks sub-menu provides commands for
setting, clearing, and moving between bookmarks.

Toggle Bookmark (Alt+K)

Use this command to set or unset a bookmark on the line where the insertion caret is
positioned.

Previous Bookmark (Ctrl+Shift+K)

Use this command to move to a previous bookmark location in the file.

Next Bookmark (Ctrl+K)

Use this command to move to the next bookmark location in the file.

20 Using The Editor

Fortran User Guide

Clear File Bookmarks

Use this command to remove all bookmarks in the file.

Clear All Bookmarks

Use this command to remove all bookmarks in all files.

Code Completion (Ctrl+E)

Code completion is a pop-up box that suggests possible ways of completing the words or
strings based on previously used words in that file. It is automatically turned on once the
length of the word typed is more than 3 characters. Typing Ctrl+E can also manually
bring up the pop-up box. To navigate the pop-up box, use up and down arrow keys. The
selection can be made by either pressing the enter key or left clicking the mouse. When
the pop-up box is open, you can dismiss it by pressing the Esc key.

SYNTAX HIGHLIGHT (CONTEXT MENU ONLY)

The Syntax Highlight command will specify which programming language to highlight
the document with. This is automatic for common FORTRAN and C file extensions. The
current highlighting language may be changed through this menu. Choices are F95, F77,
C/C++, and None. It is recommended to use standard file extensions so you do not have
to change this setting.

Standard file extensions are:

F95: *.f95, *.f90, .F95, .F90
F77: *.f, *.for, .F, .FOR
FORTRAN headers: *.inc
C: *.c, *.C
C++: *.cpp
C/C++ headers: *.h

 Using The Editor 21

 Fortran User Guide

VIEW MENU AND POP-UP MENUS

The view menu allows you to change what is displayed in
Absoft Tools.

Line Numbers

Toggles line number display in the margin for the active tab.

F77 Coding Form

Toggle coding form background for the active tab. Coding
form highlights significant F77 columns in gray. The
highlighted columns are columns 6, and 72-80. You must have
a fixed form font for this the columns to be highlighted
correctly. You can change fonts in the File->Preferences menu.
F77 Coding Form cannot be toggled on in other file formats.

22 Using The Editor

Fortran User Guide

Dual Screen Display

Dual Screen display provides a convenient way to open files side-by-side. Toggling dual
screen display on will create another text editor window pane to the right of the existing
one. By default, toggling it on will give the focus to this second text editor pane. For
example, if you open a file, the file will be opened in this new pane. This can be used for
comparing two different files. Note that the same file cannot be opened twice. All the edit
actions such as cut, copy, and paste apply on both panes.

 Using The Editor 23

 Fortran User Guide

Elements Browser

Toggles the elements display. The elements display contains a hierarchal list of all
elements in the program. Clicking on a ‘+’ will expand the element to show all its
children. Clicking on a ‘–‘ will collapse an element. Clicking on an element will open
the file if it is not already open and move the text cursor to the element declaration or
implementation line. Clicking the refresh button will cause the project or editor file to be
re-parsed. Saving the file will also cause it to be reparsed. Clicking the Show Filter
Options will show a selection of item types to filter. To exclude variables from the
elements list, uncheck the Variable checkbox. To enable, check the Variable checkbox.

Bookmarks

Toggles the bookmark display. The bookmark display contains all the bookmarks that are
currently available sorted by file. (See Bookmarks description in the Edit menu for
additional information). Whenever a bookmark is added or removed, this list will be
updated. Clicking on a bookmark in this window will open the file if it is not already
open and move the text cursor to the bookmarked line. The name of the bookmark may be
edited by double clicking on the name and entering the text for the name.

24 Using The Editor

Fortran User Guide

Files

Toggles the files display for an open project. See project documentation for more details.
Note: this will not be selectable if you do not have a project open.

Build

Toggles the build display for an open project. See project documentation for more details
Note: this will not be selectable if you do not have a project open.

Find in Files

Toggles the Find in Files display for an open project. See project documentation for more
details. Note: this will not be selectable if you do not have a project open.

File Tool Bar

Toggles the visibility of the File tool bar.

Build Tool Bar

Toggles the visibility of the Build tool bar. Note: this will not be selectable if you do not
have a project open.

Project Tool Bar

Toggles the visibility of the Project tool bar.

 Using The Editor 25

 Fortran User Guide

PROJECT MENU

New Project

This command opens a new project dialog to
create a new project. Your open files will not be
closed or added to the new project.

Open Project

This command opens a file browser to select a
saved project file dialog to open. Your open
files will not be closed or added to the project.

Recent Projects

Up to 8 files will appear in this list. Each menu item represents the project file that has
been most recently opened or saved. They are listed as a convenience for quickly opening
projects.

 27

 Fortran User Guide

CHAPTER 4

Developer Tools Interface

WORKING WITH PROJECTS

A project allows you to organize the entire source, object, include, library, and resource
files that constitute an application. It keeps track of which files are associated with the
application, which ones are dependent on other files, which ones have been recently
modified and need to be rebuilt. Also, it allows you to set specific options to be used with
the compilation tool associated with the various files in the project.

The first step in working with a project is to create a new one. Use the Project menu New
Project… command to create a new project. The New Project dialog will appear as shown
below:

28 Developer Tools Interface

Fortran User Guide

Project Name is the name that will be applied to the project. It will be shown whenever
the project is identified in Absoft Tools. Target Filename is the name of the executable
program or library to be created. Project Directory is the base directory of the project.
Clicking the “...” button will allow you to choose a directory from a standard file dialog.
This can only be set when creating a new project. Options Packages are libraries that are
included or purchased as add-ons to the Absoft product. Checking the boxes will add the
add-on to the project.

The left column contains groups of options for the general project or specific tools.
General, Target, Run, Make and Run apply to the project globally. FORTRAN, C/C++,
Resources, and Linker apply to the specific tools used for compiling their respective files.
Changing options in the New Project dialog will create the initial options for the project.
All may be changed any time a project is open. Clicking OK will create a project with the
options specified.

DOCKED DISPLAYS

A dock is a movable, resizable, and detachable display window. Several project specific
docks will appear after you have created a new project. The default docks are the Files
dock, Find in Files dock and the Build Dock.

Docks can be moved to customize the appearance of Absoft Tools. Docks can be moved
to the top, bottom, left, or right edged of the screen by clicking and dragging the name of
the dock to a new location. Dropping a dock on top of an existing dock will create a
tabbed set of docks. Selecting the name of the dock under the View menu will toggle the
visibility of the dock.

When a project is created or opened, the default docks Files, Find in Files, and Build will
be shown on the screen.

ADDING FILES TO THE PROJECT

Files can be added in two ways. The first is right clicking on the files window and
choosing Add File(s) from the context menu or select Add File(s) from the Project menu.
This will display a standard file dialog where you can select a single file by clicking or
multiple files by holding down the Control key as you select the files to add. The second
way is to select Add Directory from the Project menu or right click on the files display and
choose Add Directory from the menu. This will bring up the following dialog:

 Developer Tools Interface 29

 Fortran User Guide

Click the Add File button to add files through a standard file dialog. Click the Add
Directory button to add all files in a directory. Check Add Directories to add all files in the
subdirectories under the chosen directory. Check Include Object Files to add object files to
the project.

Once you finish with either the Add File or Add Directories selection and click OK, the
chosen files will be added to the Files to be Added list box if Absoft Tools has a tool to
compile the files. If a file is unknown, it will be added to the Unknown File Types To Be
Ignored list box. Selecting a file in the Files to be Added list box and clicking the Ignore
File button will move the file to the Unknown File Types To Be Ignored list box. Selecting
a file in the Unknown File Types To Be Ignored list box and clicking the Add File button
will move the file to the Files to be Added list box. All files in the Files to be Added list
box will be added to the project once Ok is clicked.

FILES DOCK

Files that are in the project are located in the Files dock window. Files are organized by
file type. Each type can be expanded or collapsed by clicking the + or – next to the type
name.

30 Developer Tools Interface

Fortran User Guide

Multiple files may be selected. Right-clicking on the file list will bring up a context
menu. The menu commands are listed below:

New File in Project

This menu allows you to choose the type of new file to add to the project. Selecting the
type of file will cause a standard file dialog to appear. Choose the name and directory to
save the file as, and the new file will be saved and opened in the active window for
editing.

Add File(s)

Opens a standard file dialog for adding files (see Adding Files To Project).

Add Directory

Opens a directory dialog for adding files (see Adding Files To Project).

Check Syntax

Compiles selected files using the options displayed in the files view. The results will
appear in the build view. This is used to check the syntax of a file without recompiling
the whole project.

Set Options for

Opens an option dialog to set options for the selected files only (see Setting Compiler
Options).

Use Default Options

 Developer Tools Interface 31

 Fortran User Guide

Removes any file specific options set by “Set Options for.” The project options set in
Project Options from the Project menu will be used.

Remove

Removes files from project.

Show Full Paths

Adds another column to the file list that contains the full paths of each file.

Show Relative Paths

Adds another column to the file list that contains the relative paths of each file.

32 Developer Tools Interface

Fortran User Guide

Elements Browser

Toggles the elements display. The elements display contains a hierarchal list of all
elements in the program. Clicking on a ‘+’ will expand the element to show all its
children. Clicking on a ‘–‘ will collapse an element. Clicking on an element will open
the file if it is not already open and move the text cursor to the element declaration or
implementation line. Clicking the refresh button will cause the project or editor file to be
re-parsed. Saving the file will also cause it to be reparsed. Clicking the Show Filter
Options will show a selection of item types to filter. To exclude variables from the
elements list, uncheck the Variable checkbox. To enable, check the Variable checkbox.

 Developer Tools Interface 33

 Fortran User Guide

BUILD CONFIGURATIONS

Absoft Tools has two built in build configurations, Release and Debug. The Release build
configuration is an optimized build. It uses the optimization options that are set in the
options dialog and builds object and mod files in <project directory>/Release. The Debug
build configuration is a debug build. It uses the debug options that are set in the options
dialog and builds object and mod files in <project directory>/Debug. You can switch
between build configurations by selecting Set Build from the Build menu or selecting the
build name from the Active Build combo box on the project tool bar.

Absoft Tools allows you to create your own build configurations. To create a new
configuration, select Create New Build from the Build menu. This will open a dialog that
will allow you to add custom builds.

Adding a New Build Configuration

To add a new build configuration, click the Add button below the Current Build
Configurations pane. A text cursor will appear in the list of current build configurations,
allowing you to enter the name of the new configuration. If the name you enter ends with
“debug”, the new configuration will be considered a Debug build when using the Project
Options dialog to modify build options. You can also add a build configuration to a
project using a previously defined configuration template by selecting the name of the
template in the Templates pane and clicking Add To Project.

After a new build configuration has been added to a project, you can make it the active
build using Set Build command the Build menu or selecting the build name from the
Active Build combo box on the project tool bar.

34 Developer Tools Interface

Fortran User Guide

Creating A New Build Configuration Template

To create a new build configuration template, click Create New below the Templates
pane. Type in the name of the new build (case is significant) and press enter. If a template
name ends with the characters “debug”, it will be considered a Debug build when added
to a project. After template name has been entered, the Project Options dialog will open
and allow you set the various options for your new template. When you are finished, click
OK and the new template will be added to the list of available templates. You can add the
new template to the current project by clicking on Add To Project.

SETTING COMPILER OPTIONS

You can set options for tools or specific files. Options are described in the chapter Using
the Compilers. Options for tools will apply to all files that the tool can compile. For
example, setting the FORTRAN options will apply to all FORTRAN files (.f, .f90, f95,
etc.). To set tool options, select Project Options from the Project menu. This will bring up
an option dialog:

 Developer Tools Interface 35

 Fortran User Guide

Selecting a tool name in the left list will show the corresponding options tabs in the right
display. For example, selecting FORTRAN will show the General, Warnings/errors,
Format, Compatibility, Name Mangling and Optimize/Debug tabs.

By default, any changes apply only to the option set for the active build configuration
(shown in the Active Build combo box on the project tool bar). To apply the changes to
the option sets for multiple build configurations, select the desired build configurations
under Option Sets. If Ignore Debug and Optimize Options is checked, all options except
for debug and optimization options will be applied to the selected builds. If Ignore Debug
and Optimize Options is not checked, debug options will be applied to the selected debug
builds (builds with names that end case insensitively in “debug”), and optimization
options will be applied to the selected release builds.

When two or more builds are selected, the Ignore Debug and Optimize Options is
automatically checked and you must explicitly uncheck it to change the behavior.

Target Options

Target Type

36 Developer Tools Interface

Fortran User Guide

Terminal Application Application that will be run from the terminal. This is the
default.

MPI Application Creates an application that will be built and executed with MPI.
Static Library Creates a static library
DLL Creates a DLL for Windows
AWE Application Uses the Absoft AWE application framework. This framework

can be used to create a native graphical application.

MULTIPLE BUILD AND OPTIONS EXAMPLE

To make multiple builds and setting options easier to understand, let's go through an
example for editing the options for a single build:

Start a new project and add a file to it:

1. Open the AbsoftTools application
2. Select New Project from the Project menu
3. Enter the directory (type the directory name or click the “...” button and select the

directory from the dialog)
4. Click Ok. You will now have a new project open
5. Right click in the Files window and select F95 file from the New File In Project

menu.
6. Type a name in the dialog to save the file as. The name should appear in the Files

list under F95. Options will be listed as -O2 and -m32 (or -m64 if you have a 64
bit processor)

7. Select “Debug” from the Active build combo box in the project tool bar. The Files
list options should change to -g and -m32 (or -m64 if you have a 64 bit processor).

Create multiple builds:

8. From the Build menu, select Create New Build... An Add Builds dialog will appear.
9. Click Add under the Current Build Configurations list.
10. Type “Fast” and press enter.
11. Click Add again Add under the Current Build Configurations list.
12. Type “FullDebug” and press enter.
13. Click Ok.

Examine builds:

The Active Builds combo box will now contain “Release”, “Debug”, “Fast”, and
“FullDebug”. When you change active builds by selecting the build from the
Active Build combo box, the Files list should contain -O2 for Release and Fast,
and -g for Debug and FullDebug.

 Developer Tools Interface 37

 Fortran User Guide

Set Options for each set:

15) Select “FullDebug” from the Active Build combo box.
16) Select Project Options from the Project menu. The option dialog should appear.

We are editing the FullDebug build, since FullDebug is selected as the Active
build.

17) Select FORTRAN and click on the General tab.
18) Select Check Pointers
19) Click Ok. The options in the File list should read -O2, -m32 (or -m64) and -Rp.
20) Select “Fast” from the Active Build combo box.
21) From the Project menu, select Project Options. The option dialog should appear.

We are editing the Fast build, since Fast is selected as the Active build.
22) Select FORTRAN and click on the Optimize/Debug tab.
23) Select Level 4 from the optimize combo box.
24) Click Ok. The options in the File list should read -O4, -m32 (or -m64).

We now have 4 builds to choose from.

Fast sets -O4 for fast optimizations
Release sets -O2 for normal optimizations
Debug sets -g for debug
FullDebug sets -g standard debug and -Rp for pointer checking

Add -s to all builds:

25) Select Project Options from the Project menu. The option dialog should appear.
26) Select FORTRAN and click on the Compatibility tab and check Static Storage.
27) Select all four builds (Release, Debug, Fast, and FullDebug) under Option Sets.
28) Note that Ignore Debug and Optimize Options is checked when you have more

than one build checked.
29) Click Ok.

All the builds now have -s as an option. You can verify this by selecting the different
releases in the Active Builds combo box.

BUILDING

To build a project, click the build icon on the tool bar or select Build from the Build menu.
The build dock will display the output from the build. If an error occurs in a FORTRAN
compilation, the build tab will switch to the Errors/Warnings tab and a summary of the
FORTRAN error will be displayed. Clicking on the error in the Errors/Warnings tab will
open the file with the error and go to the line and column of the error. Right-clicking on
an error and clicking explain will cause a dialog to appear with a detailed explanation of
the error.

Selecting Clean from the Build menu will remove all files created during the build
process.

38 Developer Tools Interface

Fortran User Guide

Selecting Rebuild from the Build menu will clean a project and then build from scratch.

Clicking the stop icon in the tool bar or selecting Stop from the Build menu may be used
to stop a build.

EXECUTE/DEBUG

Once an executable program is built, you may execute the program by selecting Execute
from the Build menu or clicking the execute icon in the tool bar. Clicking Debug from the
Build menu or clicking the debug icon will start Fx3 with the executable program.

Environment variables and program arguments are set in the Project Options dialog under
the Run item. If OpenMP is checked in the Target options page, the environment
variables will be populated with the OpenMP runtime variables.

FIND IN FILES

The Find in Files Dock can be hidden and shown by selecting Find in Files from the View
menu. Find in Files will search each file in the project for the text specified. To search for
text, make sure the Find in Files dock is visible, then enter the text to search for in the
Find in File text box and press enter. Checking Case Sensitive will make case significant.
Checking Whole Words will search for whole word references. A list of files will appear
above the text. Clicking on a reference will open the file and go to the line the reference is
in.

To replace, type the text to be replaced in the Find in File text box and the replacement
text in the Replace With text box then press enter. This will only replace one occurrence
in the current file; hitting the Replace button achieves the same result. If you hit the enter
key again, it will replace the next occurrence. Both the Case Sensitive and Whole Words
check boxes also apply when replacing. If you click Replace All button, it will replace
every occurrence in all the files in the project, including the ones that are not opened. All
the files that have been affected by this action are listed in the above text box. At the end,
a summary of how many replacements have been made in how many files is displayed.
Clicking on a reference will also open that file.

Note: if you want to replace every occurrence in one file only, use Find/Replace action
under the Edit Menu.

SMP ANALYZER

When the Auto-Parallelization option (-apo) is checked, Optimize Advanced (-O3, auto-
vectorization) is selected, or Optimize Level 5 (-O5, auto-parallization and auto-
vectorization) is selected, the Absoft SMP Analyzer is enabled. This tool provides
detailed feedback and analysis of where advanced optimizations were performed and
where they could not be performed. The analysis includes the line number of the code

 Developer Tools Interface 39

 Fortran User Guide

considered for optimization, a brief report, and an expanded explanation. The analyzer is
selected by clicking on the SMP Analyzer tab in the Build window:

When the SMP Analyzer is enabled, the source file is highlighted, indicating loops that
were considered for optimization. Three types of highlighting are displayed:

1. Positive indicates the loop was optimized
2. Neutral indicates the loop could be optimized, but was not
3. Negative indicates the loop could not be optimized

Unchecking its box can selectively disable each type of highlighting. Typically, loops that
could be optimized, but were not, have an iteration count too small to benefit from
parallelization. Loops that cannot be optimized at all typically contain constructs that
cannot be parallelized such as I/O statements and external function references with
unknown side effects.

 41

 Fortran User Guide

CHAPTER 5

Using the Compilers

This chapter describes how to use the Absoft Fortran 90/95 and FORTRAN 77 compilers
to create executable files on the Windows operating system for the Intel and AMD
families of processors. Beginning with an overview of the compilers, this chapter
explains how to compile a small number of Fortran source files into an executable
application. File name conventions and process control options are described first. The
final sections of this chapter describe the compiler options in detail.

COMPILING PROGRAMS

Three methods of compiling programs are available: a traditional command line, the
Absoft Developer Tools Interface, and makefiles. The Absoft Developer Tools Interface
was discussed in the previous chapter. Makefiles and the Absoft make utility, amake, are
described in the chapter Building Programs. All three methods allow you to compile
source files quickly and easily

Source file names and compiler options are selected with the mouse pointer in the Absoft
Developer Tools Interface. Arguments to the command line version are typed in on the
command line.

USING THE COMMAND LINE

To use a command line version of any of the Absoft compilers, you must first open a
command line window and set a number of environment variables that assist and control
the use of the compilers. A shortcut to open a command line window has been provided
in the Absoft menu: Development Command Prompt (32-bit) and Development Command
Prompt (64-bit) for 32-bit applications and 64-bit applications respectively. These
commands are shortcuts to the normal command line prompt for your system. On startup,
they execute a batch file: absvars32.bat and absvars64.bat for 32-bit and 64-bit
applications respectively. These batch files are located in the Absoft15.0\Bin directory and
set a number of environment variables. Examine the batch file for further details.

A command line version of an individual compiler can be started with one of the
commands: f95, f77, or cl.

 f95 [options] file[s]
 f77 [options] file[s]
 cl [options] file[s]

The various options are described in the specific compiler options sections next in this
chapter.

42 Using the Compilers

Fortran User Guide

FILE NAME CONVENTIONS

Compilation is controlled by the two compiler drivers: f77 and f95. These drivers take a
collection of files and, by default, produce an executable output file. Acceptable inputs to
f95 are:

File Type Default form
Free format Fortran 90/95 source files file.f90 or file.f95

Free format Fortran 90/95 preprocessor files file.F90 or file.F95

Fixed format Fortran 90/95 source files file.f

Fixed format Fortran 90/95 preprocessor files file.F

Assembly language source files file.s

Relocatable object files file.o

Acceptable inputs to f77 are:

File Type Default form
FORTRAN 77 source files file.f or file.for

FORTRAN 77 preprocessor files file.F or file.FOR

Assembly language source files file.s

Relocatable object files file.o

File names that do not have one of these default forms are passed to the linker.

Output file names take the form:

File Type Default form
Assembly language source files file.s

Relocatable object files file.obj

Precompiled module file file.mod

Executable object files file.exe

COMPILER PROCESS CONTROL

By default the f77 and f95 compiler drivers construct and execute the necessary
commands to produce an executable application. This process requires compilation,
assembly and linkage. As each of these processes finishes, all files that were created by
the preceding stage are deleted. In some cases it may be desirable to save these
intermediate files. Options controlling this are described here. These switches, in
conjunction with the input file names, can also be used to stop the compilation process at
any stage.

Generate Assembly Language (-S)

Specifying the –S option will cause the compilers to generate assembly language output
in a form suitable for the system assembler. The file created will have the suffix “.s”. For
example, compiling test.f with the –S option will create test.s. If any C source files

 Using the Compilers 43

 Fortran User Guide

are given as arguments to f77 or f95, this option will be passed to the C compiler. If no
other compiler process control options are specified and there are no relocatable object
files specified on the command line, the compilation process will halt after all Fortran
90/95, FORTRAN 77, and any C source code files have been compiled to assembly
language source.

Generate Relocatable Object (-c)

Specifying the –c option will cause the compilers to generate relocatable object files. In
the Windows environment, this option indicates that all source files (Fortran 90/95,
FORTRAN 77, C, and assembly) should be processed to relocatable object files. If no
linker options are present (see below), then the compilation process stops after all object
files have been created. If any C source files are given as arguments to f77 or f95, this
option will be passed to the C compiler.

Passing Options To The Linker

For ease of use within the Windows environment, many of the options that are available
to the system linker are also available to the f77 and f95 compiler drivers. Specifying any
of these options indicates that all files specified on the command line should be processed
through the linkage phase. Unless the –S or –c options are specified, all intermediate files
(relocatable objects and/or assembly source) will be deleted. See the section Linking
Programs in the chapter Building Programs for documentation on link. In brief, the
options are as follows:

Executable File Name (-o name)

Use of the –o name option will cause the linker to produce an executable file called name.
The default is to produce an executable file called file.exe where file is the root name
of the first source file provided on the command line.

Linker Options (-X)

Use the –Xoption switch to pass an option directly to the linker. The FORTRAN 77 or
Fortran 90/95 driver will pass option to the linker. If you want to pass an option that takes
an argument, use the –X option twice.

Library Specification

On Windows, no special option is necessary to specify a library. Simply give the entire
library name to pass a library to the linker.

44 Using the Compilers

Fortran User Guide

Linker/Library Manager Preference (-use_vctools)

This option instructs the compiler to invoke the linker and library manager
from the active version of Microsoft Visual C/C++ instead of using the
versions bundled with Absoft Pro Fortran. The active version is determined
from the contents of the environment variable named VCINSTALLDIR..

Preprocessor Options (-cpp and –no-cpp)

If a source file name has an upper case extension (F, FOR, F90, F95), the compiler first
passes it to the C preprocessor to handle C-style includes, macros, and conditional
directives. Use the –cpp option to force the compiler to invoke the C preprocessor
regardless of the source file extension. Use the –no-cpp option to force the compiler to
not invoke the C preprocessor regardless of the source file extension.

Code Generation Model (-mcmodel={small | medium})

This option specifies the code generation model for 64-bit processors. The small code
model limits the combined code and data size to 2 gigabytes. The medium code model
allows data to be larger than 2 gigabytes. The default is the small model.

Stack Size (-stack:reserved)

Use this option to establish the amount of memory in bytes reserved for stack use only.
The default reserved amount is 0x800000 (8 megabytes). The reserved argument can be
given in decimal or hexadecimal.

Application Type

By default, a stand-alone console or command line application. Use -cons to select this
option on a command line. An application linked with AWE creates an application with a
Windows style interface (see the chapter, Windows Programming for more
information). Use -awe to select this option on a command line. Use the -plainappl option
when you are creating an application with an interface that you supply. This type of
application will have neither an AWE interface nor a console interface – you are
responsible for the interface presented to the user. This option includes all of the standard
Windows API import libraries and leaves the linker -entry and -subsystem arguments
to their respective defaults.

Generate 32-bit code (-m32)

Use the –m32 option to generate code that can be run on any X86 class processor.

 Using the Compilers 45

 Fortran User Guide

Generate 64-bit code (-m64)

Use the –m64 option to generate code that can only be run on AMD or Intel 64-bit
processors.

Generate Debugging Information (-g)

Specifying the –g option will cause the compilers to include Dwarf2 symbol and line
information appropriate for debugging a compiled program with Fx3, the Absoft
debugger, or other source level debuggers which can read Dwarf2 symbol information.

OPTIMIZATIONS

These options control compile time optimizations to generate an application with code
that executes more quickly. Absoft Fortran 90/95 is a globally optimizing compiler, so
various optimizers can be turned on which affect single statements, groups of statements
or entire programs. There are pros and cons when choosing optimizations; the application
will execute much faster after compilation but the compilation speed itself will be slow.
Some of the optimizations described below will benefit almost any Fortran code, while
others should only be applied to specific situations.

Basic Optimizations (-O1)

The –O1 option will cause most code to run faster and enables optimizations that do not
rearrange your program. The optimizations include common subexpression elimination,
constant propagation, and branch straightening. This option is generally usable with
debugging options. –cpu:host is implied with this option.

Normal Optimizations (-O2)

The –O2 option enables normal optimizers that can substantially rearrange the code
generated for a program. The optimizations include strength reduction, loop invariant
removal, code hoisting, and loop closure. This option is not usable with debugging
options. –cpu:host is implied with this option.

Advanced Optimizations (-O3)

The –O3 option enables advanced optimizers that can significantly rearrange and modify
the code generated for a program. The optimizations include loop permutation (loop
reordering), loop tiling (improved cache performance), loop skewing, loop reversal,
unimodular transformations, forward substitution, and expression simplification. This
option is not usable with debugging options. –cpu:host is implied with this option.

46 Using the Compilers

Fortran User Guide

Advanced Optimizations (-O4)

The –O4 option enables advanced optimizers that can significantly rearrange and modify
the code generated for a program. The optimizations include all optimizations that are
included with –O3 as well as turning on inter-procedural analysis.

Dynamic AP (-O5)

The –O5 option enables auto parallelization and dynamic load scheduling. When your
program begins execution, the CPU load is measured and your program will
automatically only use those processors that are actually available (idle). The
optimizations include all optimizations that are included with –Ofast.

Automatic Parallelization (-apo)

The –apo option enables automatic parallelization of your source program.

CPU Specific Optimizations (–cpu:type)

Use the –march= option to target object code to a specific type of processor. Valid values
for type are:

anyx86 any processor using the x86 instruction set
pentium4 Intel Pentium 4
em64t Intel Pentium 4 with 64-bit extensions
core Intel Core and Core 2
opteron AMD Athlon 64/FX/X2 and AMD opteron
barcelona AMD Opteron and Phenom with K10 Barcelona architecture
wolfdale Intel Core I7 technology
host automatically establishes type based on the processor in the

machine that the program is compiled with. If the CPU type cannot
be determined, anyx86 is used.

 Using the Compilers 47

 Fortran User Guide

Loop unrolling (-U and -hnn and -Hnn)

The Absoft Fortran 95 compiler has the ability to automatically unroll some of the loops
in your source code. Loops may be unrolled by any power of two. Generally it is
beneficial to unroll loops that execute a large number of iterations, while the benefit is
small for loops that iterate only a few times. Due to this, only innermost loops are
considered for unrolling. The -hnn option will cause the compiler to unroll your
innermost loops nn times, where nn is any power of two. The -Hnn option will cause the
compiler to consider loops containing nn or fewer operations for unrolling. When the –O3
option is used, the default is to only consider loops of a forty operations and unroll them
four times. Using the -U option is equivalent to using -h4 -H40, causing innermost loops of
forty or fewer operations to be unrolled four times. Loop unrolling will provide a speed
increase in most cases, but will make your application larger and it will require more
memory to compile. Consider the following example:

Original code: Becomes:
SUBROUTINE SUB(A,N,X)
INTEGER A(100)

DO i=1,N
 A(i) = X*A(i)
END DO
RETURN
END

SUBROUTINE SUB(A,N,X)
INTEGER A(100)

DO i=1,MOD(N,4)
 A(i) = X*A(i)
END DO
DO i=MOD(N,4)+1,N,4
 A(i) = X*A(i)
 A(i+1) = X*A(i+1)
 A(i+2) = X*A(i+2)
 A(i+3) = X*A(i+3)
END DO
RETURN
END

This is similar to the effect of loop unrolling. At least three comparisons and three branch
instructions are saved each time the second loop is executed. Note that if your code
contains extended range DO loops, unrolling loops will invalidate your program.

SSE2 instructions (-msse2 and –mno-sse2)

The –msse2 and –mno-sse2 options enable and disable respectively the use of SSE2
instructions for floating-point operations. This –msse2 option is automatically enabled on
processors which support SSE2. It may be disabled with the –mno-sse2 option.

SSE3 instructions (-msse3)

The -msse3 option enables the use of SSE3 instructions for floating-point operations.
This option is automatically turned on when the -march=host option is specified and the
host supports SSE3 instructions.

48 Using the Compilers

Fortran User Guide

SSE4a instructions (-msse4a)

The -msse4a option enables the use of SSE4a instructions. This option is automatically
turned on when the -march=host option is specified and the host supports SSE4a
instructions.

SSSE4.1 instructions (-msse41)

The -msse4a option enables the use of SSE4.1 instructions. This option is automatically
turned on when the -march=host option is specified and the host supports SSSE4.1
instructions.

Math Optimization Level (-speed_math=n)

The -speed_math=n option enables aggressive math optimizations that may improve
performance at the expense of accuracy. Valid arguments for n are 0-11. See speed_math
option Appendix for more information.

Enable OpenMP Directives (-openmp)

The -openmp option enables the recognition of OpenMP directives. OpenMP directives
begin in column one in the form of:

C$OMP for fixed source format
!$OMP for free source format

OpenMP optimization Level (-speed_openmp=n)

The –speed_openmp= enables progressively more aggressive OpenMP optimizations on
the value of n as follows:
n effect
0 allow code optimization and movement through OpenMP Barrier
1 enable loose memory equivalence algorithm during optimization
2 Enable MU generation in SSA generation for OpenMP pragma
3 Enable CHI generation in SSA generation for OpenMP pragma
4 Allow loop unrolling for loops with OpenMP chunksize directive
5 Use a risky but faster algorithm to handle thread private common blocks

Each level includes all previous optimizations (e.g. 3 includes 0,1, and 2).

Safe Floating-Point (-safefp)

The –safefp option is used to disable optimizations that may produce inaccurate or invalid
floating point results in numerically sensitive codes. The effect of this option is to
preserve the FPU control word, enable NAN checks, disable CABS inlining, and disable
floating-point register variables.

 Using the Compilers 49

 Fortran User Guide

Report Parallelization Results (-LNO:verbose=on)

The –LNO:verbose=on option is used to display the results of the –apo option. It will
report which loops were parallelized and which were not and why not.

Report Vectorization Results (--LNO:simd_verbose=on)

The –LNO:simd_verbose=on option is used to display the results of vectorization of loops
which occurs at optimization levels greater than –O3. It will report which loops were
vectorized and which were not and why not.

DEBUGGING

Generate Debugging Information (-g)

The –g option produces an object file containing debugging information with entry points,
line numbers, and program symbols. This is the standard debugging option.

This -gmin switch produces an object file containing debugging information with entry
points and line numbers only. No information for program symbols is produced. Use this
option when you are only interested in stepping through the program.

FPU CONTROL OPTIONS

These options provide control over several aspects of the operation of the Floating-Point
Unit of the processor including rounding mode, exception handling, control word state,
and FPU stack integrity.

FPU Rounding Mode (-OPT:roundoff=n)

Set the level of acceptable rounding (# can be 0,1,2, or 3)

0 - Turn off optimizations that may be harmful to floating point calculations.
1 - Allow simple optimization that may affect floating point accuracy.
2 - Allow more extensive optimization that may affect floating point accuracy.
3 - Allow all optimizations affecting floating point accuracy.

50 Using the Compilers

Fortran User Guide

FPU Exception Handling

When a floating-point exception is produced, the default action of an application is to
supply an IEEE P754 defined value and continue. For undefined or illegal operations
(such as divide by zero or square root of a negative number) this value will usually be
either Infinity (INF) or Not A Number (NaN) depending on the floating-point operation.

Checking any of the exception boxes will cause the program to stop and produce a core
dump, rather than continue, if the exception is encountered. If the program is being
debugged, it will stop in the debugger at the statement line that caused the exception. The
syntax for using this option on the command line is:

 -TENV:exception=off

 where exception is one of:

simd_imask – Invalid operation exception.
simd_dmask – Denormalized operand exception.
simd_zmask – Divide by zero exception.
simd_omask – Overflow exception.
simd_umask – Underflow exception.
simd_pmask - Precision exception.

ABSOFT FORTRAN 95 OPTIONS

The compiler options detailed in this section give you a great deal of control over the
compilation and execution of Fortran 90/95 programs. Select the Set Project Options
command in the Configure menu to access the Options Property Sheet. The Fortran 90/95
options fall into four categories: General, Compatibility, Miscellaneous, and Format.

Each option is listed with the corresponding option letter(s) and a description. Options
that take arguments may optionally have a space to separate the option from its argument.
The only exceptions are the B and N options; they cannot have a space between the option
and its argument (e.g. -N33).

Compiler control

These options control various aspects of the compilation process such as warning level,
verbosity, code generation, where module files can be found, and the definition of
compiler directive variables. The generation of debugging information, for the symbolic
source-level debugger, Fx, is also controlled by compiler control options.

Warn of Non-Standard usage (-en)

Use of the -en option will cause the compiler to issue a warning whenever the source
code contains an extension to the Fortran 90/95 standard. This option is useful for
developing code which must be portable to other environments.

 Using the Compilers 51

 Fortran User Guide

Suppress warnings (-w)

Suppresses the listing of warning messages. For example, unreachable code will generate
a warning message.

Suppress Warning number(s) (-Znn)

Use the -Znn option to suppress messages by message number, where nn is a message
number. This option is useful if the source code generates a large number of messages
with the same message number, but you still want to see other messages. See also the -
znn option.

Quiet (-q)

The Absoft Fortran 90/95 compiler normally displays information to standard output (the
command line window) as it compiles an application. Enabling the -q option will
suppress any messages printed to standard output. Errors will still be printed, however.

Verbose (-v)

Enabling the -v option will cause the f95 command, described later in the Building
Programs chapter, to display the commands it is sending to the compiler and linker.

Warning level (-znn)

Use the -znn option to suppress messages by message level, where nn is a message level.
Diagnostics issued at the various levels are:

 0 errors, warnings, cautions, notes, comments
 1 errors, warnings, cautions, notes
 2 errors, warnings, cautions
 3 errors, warnings
 4 errors

The default level is -z3; the compiler will issue error and warning diagnostics, but not
cautions, notes, and comments. See also the -znn option.

Error Handling (-dq and -ea)

Normally, the Absoft Fortran 90/95 compiler will stop if more than 100 errors are
encountered. This many errors usually indicate a problem with the source file itself or the
inability to locate an INCLUDE file. If you want the compiler to continue in this
circumstance, select the Allow > 100 or -dq option. The Stop on Error or -ea option will
cause the f95 compiler to abort the compilation process on the first error that it
encounters.

52 Using the Compilers

Fortran User Guide

Output Version number (-V)

The -V option will cause the f95 compiler to display its version number. This option may
be used with or without other arguments.

Default Recursion (-eR)

If you select the -eR option, all FUNCTIONs and SUBROUTINEs are given the RECURSIVE
attribute. Normally, if the compiler detects a recursive invocation of a procedure not
explicitly given the RECURSIVE attribute, a diagnostic message will be issued. The -eR
option disables this.

Max Internal Handle (-T nn)

This option is used to change the number of handles used internally by the compiler.
Under most conditions, the default value of 100000 handles is sufficient to compile even
extremely large programs. However, under certain circumstances, this value may be
exceeded and the compiler will issue a diagnostic indicating that the value should be
increased.

The default value can be increased by powers of ten by specifying the -T nn, where nn is a
positive integer constant. When this option is specified, the number of handles will be
100000x10nn bytes.

Temporary string size (-t nn)

In certain cases the compiler is unable to determine the amount of temporary string space
that string operations will require. The compiler will assume that the operation in
question will require 1024 bytes of temporary string space. This default value can be
increased by powers of ten by specifying the -t nn, where nn is a positive integer constant.
When this option is specified, the default temporary string size will be 1024x10nn bytes.

Set Module Paths (-p path)

The Absoft Fortran 90/95 compiler will automatically search the local directory for
precompiled module files. If module files are maintained in other directories, use the -p
option to specify a path or complete file specification. See Fortran 90/95 Module Files
in the chapter, Building Programs for more information.

Module File Output Path (-YMOD_OUT_DIR=path)

The Absoft Fortran 90/95 compiler will automatically create module files in the current
directory. If module files are to be maintained in another directory, the
-YMOD_OUT_DIR=path option can be used to specify target directory.

 Using the Compilers 53

 Fortran User Guide

Compatibility - F95 Options

These options allow Absoft Fortran 90/95 to accept older or variant extensions of Fortran
source code from other computers such as mainframes. Many of these can be used for
increased compatibility with Fortran compilers on various mainframe computers.

Disable compiler directive (-xdirective)

The -x option is used to disable compiler directives in the source file. directive may be
any of the following:

 NAME
 FIXED
 FREE
 STACK
 INTEGER

See the section Absoft Fortran 90/95 Compiler Directives for more information on
using compiler directives in your source code.

Integer Sizes (-i2 and -i8)

Without an explicit length declaration, INTEGER data types default to thirty-two bits or
four bytes (KIND=4). The –i2 option can be used to change this default length to sixteen
bits or two bytes (KIND=2). The –i8 option can be used to change the default INTEGER size
to 64 bits or 8 bytes (KIND=8). However, an explicit length specification in a type
declaration statement always overrides the default data length.

Demote Double Precision to Real (-dp)

The -dp option will cause variables declared in a DOUBLE PRECISION statement and
constants specified with the D exponent to be converted to the default real kind. Similarly,
variables declared in a DOUBLE COMPLEX statement and complex constants specified with
D exponents will be converted to the complex kind in which each part has the default real
kind.

Promote REAL to REAL(KIND=8) (-N113)

Without an explicit length declaration, single precision REAL and COMPLEX data types
default to thirty-two bits or four bytes (KIND=4) and sixty-four bits or eight bytes
(KIND=4), respectively. The -N113 option is used to promote these to their double
precision equivalents (KIND=8). This option does not affect variables which appear in type
statements with explicit sizes (such as REAL (KIND=4) or COMPLEX (KIND=4)).

One trip DO loops (-ej)

Fortran 90/95 requires that a DO loop not be executed if the iteration count, as established
from the DO parameter list, is zero. The -ej option will cause all DO loops to be executed at
least once, regardless of the initial value of the iteration count.

54 Using the Compilers

Fortran User Guide

Static storage (-s)

The -s option is used to allocate local variables statically, even if SAVE was not specified
as an attribute. In this way, they will retain their definition status on repeated references to
the procedure that declared them. Two types of variables are not allocated to static
storage: variables allocated in an ALLOCATE statement and local variables in recursive
procedures.

Check Array Boundaries (-Rb)

When the –Rb compiler option is turned on, code will be generated to check that array
indexes are within the bounds of an array. Assumed size arrays whose last dimension is *
cannot be checked. In addition, file names and source code line numbers will be displayed
with all run time error messages.

Check Array Conformance (-Rc)

The –Rc compiler option is used to check array conformance. When array shapes are not
known at compile time and where they must conform, runtime checks are created to
insure that two arrays have the same shape.

Check Substrings (-Rs)

When the –Rs compiler option is turned on, code will be generated to check that character
substring expressions do not specify a character index outside of the scope of the
character variable or character array element.

Check Pointers (-Rp)

Use –Rp compiler option is used to generate additional program code to insure that
Fortran 90 style POINTER references are not null.

Character Argument Parameters (-YCFRL={0|1})

Use the –YCFRL=1 option to force the compiler to pass CHARACTER arguments in a manner
that is compatible with g77 and f2c protocols. Use the –YCFRL=0 option (the default) to
pass CHARACTER arguments in a manner that is compatible with Absoft Compilers on
other platforms. Note: this option should be used consistently on all files that will be
linked together into the final application.

 Using the Compilers 55

 Fortran User Guide

Pointers Equivalent To Integers (YPEI={0|1})

This option controls whether or not the compiler will allow a CRI style pointer to be
equivalent to an integer argument. By default the Absoft Fortran 90/95 compiler allows
this. Even with this relaxed error checking the compiler will correctly choose the right
interface for the following example:

 interface generic
 subroutine specific1(i)
 integer i
 end subroutine specific1
 subroutine specific2(p)
 integer i
 pointer (p,i)
 end subroutine specific2
 end interface
 call generic(i)
 call generic(loc(i))
 end

Regardless of the switch setting, this example will compile and the executable generated
will be equivalent to:

 call specific1(i)
 call specific2(loc(i))

DVF/CVF Character Arguments (-YVF_CHAR)

The –YVF_CHAR option causes the compiler to pass and expect CHARACTER arguments in
a manner compatible with Digital/Compaq Visual Fortran. The length of the argument (as
a value) immediately follows the argument itself as opposed to the more common method
of passing the length(s) at the end of the argument list.

Format - F95 Options

For compatibility with other Fortran environments and to provide more flexibility, the
compiler can be directed to accept source code that has been written in a number of
different formats. The two basic formats are free-form and fixed-form.

Free-Form (-f free)

The -f free option instructs the compiler to accept source code written in the format for the
Fortran 90/95 Free Source Form. This is the default for file names with an extension of
“.f95”.

Fixed-Form (-f fixed)

The -f fixed option instructs the compiler to accept source code written in the format for
the Fortran 90/95 Fixed Source Form which is the same as the standard FORTRAN 77
source form.

56 Using the Compilers

Fortran User Guide

Alternate Fixed form (-f alt_fixed)

The -f alt_fixed option instructs the compiler to accept source code written in following
form:

If a tab appears in columns 1 through 5, then the compiler examines the next character. If
the next character is not a letter (a-z, or A-Z) then it is considered a continuation character
and normal rules apply. If it is a zero, a blank, another tab, or a letter, the line is not a
continuation line.

Fixed line length (-W nn)

Use the -W option to set the line length of source statements accepted by the compiler in
Fixed-Form source format. The default value of nn is 72. The other legal values for nn are
80 and 132 — any other value produces an error diagnostic.

YEXT_NAMES={ASIS | UCS | LCS}

The -YEXT_NAMES option is used to specify how the external names of globally visible
symbols, such as FUNCTION and SUBROUTINE names, are emitted. By default, names are
emitted entirely in lower case. Set this option to UCS to emit names entirely in upper case.
Set this option to ASIS to force external names to emitted exactly as they appear in the
source program. This option controls how external names will appear to other object files.

Treat as Big-Endian (-N26)

Use this option to force the compiler to consider the byte ordering of all unformatted files
to be big-endian by default. The CONVERT specifier in the OPEN statement may be used to
override this setting for individual files. In the absence of specification, handling of byte
ordering depends on the system.

Treat as Little-Endian (-N27)

Use this option to force the compiler to consider the byte ordering of all unformatted files
to be little-endian by default. See discussion under N26

External Symbol Prefix (-YEXT_PFX=string)

The -YEXT_PFX option can be used to prepend a user specified string to the external
representation of external procedure names.

External Symbol Suffix (-YEXT_SFX=string)

The -YEXT_SFX option can be used to append a user specified string to the external
representation of external procedure names.

 Using the Compilers 57

 Fortran User Guide

Escape Sequences in Strings (-YCSLASH=1)

If the -YCSLASH=1 option is turned on, the compiler will transform the following escape
sequences marked with a ‘\’ embedded in character constants:
 \a Audible Alarm (BEL, ASCII 07)
 \b Backspace (BS, ASCII 8)
 \f Form Feed (FF, ASCII 12)
 \n Newline (LF, ASCII 10)
 \r Carriage Return (CR, ASCII 13)
 \t Horizontal Tab (HT, ASCII 09)
 \v Vertical Tab (VT, ASCII 11)
 \xh[h] Hexidecimal, up to 2 digits
 \o[o[o]] Octal number, up to 3 digits
 \\ Backslash

The default is -YCSLASH=0.

No Dot for Percent (-YNDFP=1)

This option instructs the compiler to disallow the use of a ‘.’ (period) as a structure field
component dereference operator. The default is to allow both ‘%’ (percent), which is the
Fortran 90/95 standard, and a period which is typically used with DEC style RECORD
declarations. The use of a period may cause certain Fortran 90/95 conforming programs
to be mis-interpreted (a period is used to delineate user defined operators and some
intrinsic operators). The default is -YNDFP=0. This switch implements Fortran 90/95
standard parsing for structure component referencing.

MS Fortran 77 Directives (-YMS7D)

The -YMS7D option causes the compiler to recognize Microsoft Fortran 77 style directives
in the form of $directive where the dollar-sign character is in column one of the source
file. directive must be from the set of supported MS directives.

Miscellaneous - F95 Options

These options are used to control the global names of COMMON blocks. Their primary use is
for managing the character case and decoration applied to COMMON block names when
interfacing with external procedures written in FORTRAN 77 or the C Programming
Language.

COMMON Block Name Prefix (-YCOM_PFX=string)

The -YCOM_PFX option can be used to prepend a user specified string to the external
representation of COMMON block names.

COMMON Block Name Suffix (-YCOM_SFX=string)

The -YCOM_SFX option can be used to append a user-specified string to the external
representation of COMMON block names.

58 Using the Compilers

Fortran User Guide

COMMON Block Name Character Case (-YCOM_NAMES={ ASIS | UCS | LCS })

The -YCOM_NAMES option is used to specify how the external names of COMMON blocks
are emitted. The default (-YCOM_NAMES=LCS) is to emit COMMON block names entirely in
lower case. Set this option to UCS to emit names entirely in upper case.

Loop unrolling (-U and -h nn and -H nn)

The Absoft Fortran 95 compiler has the ability to automatically unroll some of the loops
in your source code. Loops may be unrolled by any power of two. Generally it is
beneficial to unroll loops that execute a large number of iterations, while the benefit is
small for loops that iterate only a few times. Due to this, only innermost loops are
considered for unrolling. The -h nn option will cause the compiler to unroll your
innermost loops nn times, where nn is any power of two. The -H nn option will cause the
compiler to consider loops containing nn or fewer operations for unrolling. When the –O3
option is used, the default is to only consider loops of a forty operations and unroll them
four times. Using the -U option is equivalent to using -h 4 -H 40, causing innermost loops
of forty or fewer operations to be unrolled four times. Loop unrolling will provide a speed
increase in most cases, but will make your application larger and it will require more
memory to compile. Consider the following example:

Original code: Becomes:
SUBROUTINE SUB(A,N,X)
INTEGER A(100)

DO i=1,N
 A(i) = X*A(i)
END DO
RETURN
END

SUBROUTINE SUB(A,N,X)
INTEGER A(100)

DO i=1,MOD(N,4)
 A(i) = X*A(i)
END DO
DO i=MOD(N,4)+1,N,4
 A(i) = X*A(i)
 A(i+1) = X*A(i+1)
 A(i+2) = X*A(i+2)
 A(i+3) = X*A(i+3)
END DO
RETURN
END

This is similar to the effect of loop unrolling. At least three comparisons and three branch
instructions are saved each time the second loop is executed. Note that if your code
contains extended range DO loops, unrolling loops will invalidate your program.

Add Microsoft GLOBAL prefix (-YMSFT_GLB_PFX)

This option causes common block names declared with GLOBAL to be prefixed with
"__imp_" for the Microsoft linker. It is useful when creating DLLs that will share data
through Fortran common blocks.

 Using the Compilers 59

 Fortran User Guide

Other F95 Options

The following options are not available with the graphical interface to the compiler but
may used with the command line interface or the make facility (See the chapter, Building
Programs).

Conditional Compilation (-YX)

Statements containing an X or a D in column one are treated as comments by the
compiler unless the -YX compiler option is selected. This option allows a restricted form
of conditional compilation designed primarily as a means for removing debugging code
from the final program. When the -YX option is selected, a blank character replaces any
occurrence of an X or a D in column one. The only source formats for which conditional
compilation is valid are standard FORTRAN 77, VAX Tab-Format, and wide format.

Check Argument Interface (-Ra)

When the –Ra compiler option is specified, code will be generated to check 1) actual and
dummy argument count mismatches, 2) non-writable arguments passed to dummy
arguments declared as INTENT OUT or INTENT INOUT, and 3) type/kind mismatches. Note
that this option requires that all components of an executable be compiled with the –Ra
option, including module procedures.

Check Argument Count (-Rn)

The –Rn compiler option is used to check actual and dummy argument count mismatches.
Note that this option requires that all components of an executable be compiled with the
-Rn option, including module procedures.

Disable Default Module File Path (-nodefaultmod)

The Absoft Fortran 90/95 compiler will automatically search the directory
%ABSOFT%\F90INC for precompiled module files. Use the –nodefaultmod to disable this.

Variable Names Case Sensitivity (-YVAR_NAMES={ASIS | UCS | LCS})

The -YVAR_NAMES option is used to specify how the case of variable names is treated. By
default, variable names are processed entirely in lower case (LCS), regardless of the how
they appear in the source code. Set this option to UCS to fold variable names to upper
case. Set this option to ASIS to force variable names to be processed exactly as they
appear in the source program.

60 Using the Compilers

Fortran User Guide

Variable Names Case Sensitivity (-YALL_NAMES={ASIS | UCS | LCS})

The -YALL_NAMES option is used to specify how the case of all symbolic names is
treated. By default, symbolic names are processed entirely in upper case (UCS), regardless
of the how they appear in the source code. Set this option to LCS to fold all symbolic
names to lower case. Set this option to ASIS to force symbolic names to be processed
exactly as they appear in the source program. This option is the same as using the
-YVAR_NAMES, -YCOM_NAMES, and -YEXT_NAMES, which may appear after the
-YALL_NAMES option to control an individual symbolic name type.

Ignore CDEC$ directives (-YNO_CDEC)

The compiler recognizes CDEC$ directives that contain conditional compilation
directives. Use this option disable them.

Absoft Fortran 90/95 Compiler Directives

Compiler directives are lines inserted into source code that specify actions to be
performed by the compiler. They are not Fortran 90/95 statements. If you specify a
compiler directive while running on a system that does not support that particular
directive, the compiler ignores the directive and continues with compilation.

A compiler directive line begins with the characters CDIR$ or !DIR$. How you specify
compiler directives depends on the source form you are using.

If you are using fixed source form, indicate a compiler directive line by placing the
characters CDIR$ or !DIR$ in columns 1 through 5. If the compiler encounters a nonblank
character in column 6, the line is assumed to be a compiler directive continuation line.
Columns 7 and beyond can contain one or more compiler directives separated by
commas. If you are using the default 72 column width, characters beyond column 72 are
ignored. If you have specified 80 column lines, characters beyond column 80 are ignored.

If you are using free source form, indicate a compiler directive line by placing the
characters !DIR$ followed by a space, and then one or more compiler directives separated
by commas. If the position following the !DIR$ contains a character other than a blank,
tab, or newline character, the line is assumed to be a compiler directive continuation line.

 Using the Compilers 61

 Fortran User Guide

NAME Directive

The NAME directive allows you to specify case-sensitivity for externally visible names.
You can use this directive, for example, when writing calls to C routines or declaring
functions to be called outside of Fortran 90/95. The case-sensitive external name is
specified on the NAME directive, in the following format:

!DIR$ NAME (fortran=“external” [,fortran=“external”]...)

where: fortran is the name used for the object throughout the Fortran
program whenever the external name is referenced.

 external is the external name.

FREE Directive

The FREE directive specifies that the source code in the program unit is written in the free
source form. The FREE directive may appear anywhere within your source code. The
format of the FREE directive is:

!DIR$ FREE

You can change source form within an INCLUDE file. After the INCLUDE file has been
processed, the source form reverts back to the source form that was being used prior to
processing the INCLUDE file.

FIXED Directive

The FIXED directive specifies that the source code in the program unit is written in the
fixed source form. The FIXED directive may appear anywhere within your source code.
The format of the FIXED directive is:

!DIR$ FIXED

You can change source form within an INCLUDE file. After the INCLUDE file has been
processed, the source form reverts back to the source form that was being used prior to
processing the INCLUDE file.

STACK Directive

The STACK directive causes the default storage allocation to be the stack in the program
unit that contains the directive. This directive overrides the -s command line option in
specific program units of a compilation unit. The format for this compiler directive is:

!DIR$ STACK

62 Using the Compilers

Fortran User Guide

ABSOFT FORTRAN 77 OPTIONS

The compiler options detailed in this section are provided for compatibility with the
Absoft legacy FORTRAN 77 compiler. This compiler is no longer supplied as all of its
capabilities have been incorporated into the Fortran 95 compiler. These options are
deprecated and will eventually no longer be supported. It is suggested that the equivalent
Fortran 95 options be used instead.

Each option is listed with the corresponding option letter(s) and a short description.
Options that take arguments (e.g. -h 4 or -o file) must have a space to separate the
option from the argument. The only exceptions are the B and N options; they do not have a
space between the option and the argument (e.g. -N33).

General - F77 Options

These options control the general characteristics of the FORTRAN 77 components of the
program being built. They are primarily concerned with debugging information.

Suppress Warnings (-w)

Suppresses the listing of warning messages. For example, unreachable code or a missing
label on a FORMAT statement generate warning messages. Compile time diagnostic
messages are divided into two categories: errors and warnings. Error messages indicate
that the compiler was unable to generate an output file. Warning messages indicate that
some syntactic element was not appropriate, but the compiler was able to produce an
output file.

Warn of non-ANSI Usage (-N32)

Use of the -N32 option will cause the compiler to issue a warning whenever the source
code contains an extension to the ANSI FORTRAN 77 standard (American National
Standard Programming Language FORTRAN, X3.9-1978). This option is useful for
developing code which must be portable to other environments.

Quiet (-q)

The Absoft Fortran 77 compiler normally displays information to standard output (the
command line window) as it compiles an application. Enabling the -q option will
suppress any messages printed to standard output. Errors will still be printed, however.

Show Progress (-v)

Enabling the -v option will display the individual commands that are sent to the command
line window, such as the front and back ends of the compiler and the linker.

 Using the Compilers 63

 Fortran User Guide

Check Array Boundaries (-C)

When the -C compiler option is turned on, code will be generated to check that array
indexes are within the bounds of an array. Exceptions: arrays whose last dimension is *
and dummy arguments whose last dimension is 1 cannot be checked. In addition, file
names and source code line numbers will be displayed with all run time error messages.

Conditional compilation (-x)

Statements containing an X or a D in column one are treated as comments by the
compiler unless the -x compiler option is selected. This option allows a restricted form of
conditional compilation designed primarily as a means for removing debugging code
from the final program. When the -x option is selected, any occurrence of an X or a D in
column one is replaced by a blank character. The only source formats for which
conditional compilation is valid are standard FORTRAN 77, VAX Tab-Format, and wide
format. The compiler also incorporates a complete set of statements for conditional
compilation which are described in the Conditional Compilation Statements section
The Fortran Program chapter of the Absoft Fortran Language Reference Manual.

Max Internal Handle (-T nn)

This option is used to change the number of handles used internally by the compiler.
Under most conditions, the default value of 20000 handles is sufficient to compile even
extremely large programs. However, under certain circumstances, this value may be
exceeded and the compiler will issue a diagnostic indicating that the value should be
increased.

Temporary string size (-t nn)

In certain cases the compiler is unable to determine the amount of temporary string space
that string operations will require. This undetermined length occurs when the REPEAT
function is used or when a CHARACTER*(*) variable is declared in a subroutine or
function. In these cases, the compiler will assume that the operation in question will
require 1024 bytes of temporary string space. This default value can be changed by
specifying the -t nn, where nn is a positive integer constant. When this option is specified,
the default temporary string size will be nn bytes.

Compiler Directives (-Dname[=value])

Use this text box to enter the names and optional values of conditional compilation
variables. The -D option is used to define conditional compilation variables from the
command line. value can only be an integer constant. If value is not present, the variable
is given the value of 1. Conditional compilation is described in the Conditional
Compilation Statements section of the chapter The Fortran Program of the Absoft
Fortran Language Reference Manual.

64 Using the Compilers

Fortran User Guide

Compatibility - F77 Options

These options allow Absoft Fortran 77 to accept older or variant extensions of
FORTRAN source code from other computers such as mainframes. Many of these can be
used for increased compatibility with FORTRAN compilers on various mainframe
computers.

Folding to Lower Case (-f)

The -f option will force all symbolic names to be folded to lower case. By default, the
compiler considers upper and lower case characters to be unique, an extension to
FORTRAN 77. If you do not require case sensitivity for your compilations or specifically
require that the compiler not distinguish between case, as in FORTRAN 77, use this
option. This option should be used for compatibility with VAX and other FORTRAN
environments.

Static Storage (-s)

In FORTRAN 66, all storage was static. If you called a subroutine, defined local
variables, and returned, the variables would retain their values the next time you called
the subroutine. FORTRAN 77 establishes both static and dynamic storage. Storage local
to an external procedure is dynamic and will become undefined with the execution of a
RETURN statement. The SAVE statement is normally used to prevent this, but the -s
compiler option will force all program storage to be treated as static and initialized to
zero.

Folding to Upper Case (-N109)

By default, the compiler considers upper and lower case characters to be unique, an
extension to FORTRAN 77. If you do not require case sensitivity for your compilations or
specifically require that the compiler not distinguish between case, as in FORTRAN 77,
including the -N109 option on the compiler invocation command line will force all
symbolic names to be folded to upper case.

One-Trip DO Loops (F66) (-d)

FORTRAN 66 did not specify the execution path if the iteration count of a DO loop, as
established from the DO parameter list, was zero. Many processors would execute this
loop once, testing the iteration count at the bottom of the loop. FORTRAN 77 requires
that such a DO loop not be executed. The -d option will cause all DO loops to be executed
at least once, regardless of the initial value of the iteration count.

 Using the Compilers 65

 Fortran User Guide

Promote REAL and COMPLEX (-N113)

Without an explicit length declaration, single precision REAL and COMPLEX data types
default to thirty-two bits (four bytes) and sixty-four bits (eight bytes), respectively. The
-N113 option is used to promote these to their double precision equivalents: DOUBLE
PRECISION and DOUBLE COMPLEX. This option does not affect variables which appear in
type statements with explicit sizes (such as REAL*4 or COMPLEX*8).

Integer Sizes (-i2 and -i8)

Without an explicit length declaration, INTEGER and LOGICAL data types default to thirty-
two bits (four bytes). The –i2 option can be used to change this default length to sixteen
bits (two bytes) for both INTEGER and LOGICAL. The –i8 option can be used to change the
default INTEGER size to 64 bits (8 bytes). However, an explicit length specification in a
type declaration statement always overrides the default data length.

Format - F77 Options

For compatibility with other FORTRAN environments and to provide more flexibility,
the compiler can be directed to accept source code that has been written in a variety of
different formats. The default setting is to accept only ANSI standard FORTRAN source
code format. See the chapter The Fortran Program of the Absoft Fortran Language
Reference Manual for more information on alternative source code formats.

ANSI Fortran 77 Fixed

The default source form is ANSI FORTRAN 77 as described in the chapter The Fortran
Program of the Absoft Fortran Language Reference Manual. There is no option for this
setting.

Fortran 90 Free-Form (-8)

Use of the -8 option instructs the compiler to accept source code written in the format for
the Fortran 90 Free Source Form.

VAX Tab-Format (-V)

Use of the -V option causes the compiler to accept source code in the form specified by
VAX Tab Format.

Wide Format (-W)

Use of the -W option causes the compiler to accept statements which extend beyond
column 72 up to column 132.

66 Using the Compilers

Fortran User Guide

Treat as Big-Endian (-N26)

Use this option to force the compiler to consider the byte ordering of all unformatted files
to be big-endian by default. The CONVERT specifier in the OPEN statement may be used to
override this setting for individual files. In the absence of specification, handling of byte
ordering depends on the system

Treat as Little-Endian (-N27)

Use this option to force the compiler to consider the byte ordering of all unformatted files
to be little-endian by default. See discussion under N26.

Escape Sequences in Strings (-K)

If the -K option is turned on, the compiler will transform certain escape sequences marked
with a ‘\’ embedded in character constants. For example ‘\n’ will be transformed into a
newline character for your system. Refer to chapter The Fortran Program of the Absoft
Fortran Language Reference Manual for more information on the escape sequences that
are supported.

DLL Compatibility

The actual form of an external entry point name in a DLL (an exported name) is
dependent on the system that created the DLL. Various forms of name mangling are
employed by programming language suppliers. Name mangling involves decorating
external names in such a way that they do not conflict with other global names or so that
they can supply argument list and stack size information to the linker. In addition, there
are two call/return sequences defined in the Win32 API (Application Programming
Interface):

CDECL

This is the default call/return sequence generated by Absoft compilers. The caller pushes
arguments from right to left onto the stack. The callee accesses the parameters in the
stack and returns. The caller cleans up (removes the arguments from) the stack.

STDCALL

This is the call/return sequence used by most of the Windows 32-bit operating system
functions. The caller pushes arguments from right to left onto the stack. The callee
accesses the parameters in the stack, but is also responsible for removing them from the
stack.

 Using the Compilers 67

 Fortran User Guide

Obviously, the two mechanisms cannot be intermixed and passing too many or two few
arguments with the STDCALL protocol is disastrous (the wrong number of arguments
will be removed from the stack by the callee). As a protection against this, STDCALL
function names in the object code are often mangled by appending a commercial at sign
(‘@’) and the size of the stack (in bytes) to the function name. In this way, the caller and
the callee must agree on the number of arguments, or the program will not link.

 69

 Fortran User Guide

CHAPTER 6

Porting Code

This chapter describes issues involved in porting FORTRAN 77 code from other
platforms. One of the major design goals for Absoft Fortran 77 is to permit easy porting
of FORTRAN source code from mainframe computers such as VAX and IBM, and from
workstations such as Sun. The result is the rich set of statements and intrinsic functions
accepted by Absoft Fortran 77. The last section of this chapter describes Windows-
specific issues about porting code.

The Absoft Fortran 77 compiler is recommended for porting most legacy codes because
of the number extensions and features it supports. Consequently, FORTRAN 77 options
and language features will be described in this chapter. However, in most cases, the
Fortran 90/95 compiler has equivalent options and can also be used. Refer to the Using
the Compilers chapter for information on Fortran 90/95 compile time options.

As a general rule when porting code, use the following compiler option:

 -s Force all program storage to be treated as static and initialized to zero.

Ported programs that have incorrect runs or invalid results are usually caused by the
differences between Windows and other environments such as floating point math
precision or stack-size issues. See the section Other Porting Issues later in this chapter
for special considerations when porting code to Windows. In addition, you may want to
use this option:

-C Check array boundaries and generate better runtime errors. Using this option
makes programs slightly larger and they will execute slower.

If you want to use the Absoft debugger, Fx3, add the -g option to generate debugging
information.

PORTING CODE FROM VAX

Absoft FORTRAN 77 automatically supports most of the VAX FORTRAN language
extensions. Below is a list of key VAX FORTRAN extensions that are supported and a
list of those that are not supported. Using various options, the compiler can also accept
VAX Tab-Format source lines and/or 132-column lines. Otherwise, only ANSI
FORTRAN 77 fixed format lines are accepted.

Key Supported VAX FORTRAN Extensions

• NAMELIST—the NAMELIST terminator may be either “$” or “&”
• STRUCTURE, RECORD, UNION, MAP, %FILL statements

70 Porting Code

Fortran User Guide

• DO WHILE loops
• INCLUDE statement
• ENCODE, DECODE, ACCEPT, TYPE, and most OPEN I/O specifiers
• Hollerith and hexadecimal constant formats
• “!” comments
• Variable Format Descriptors (I<w>.<d> where w and d are variables)

Key Unsupported VAX FORTRAN Extensions

• Absoft Pro Fortran uses IEEE floating point representation
• I/O statements DELETE, DEFINE FILE, and REWRITE
• Data dictionaries

Compile Time Options and Issues

Absoft Fortran 77 can be made even more compatible with VAX FORTRAN by using the
compiler option:

 -s Force all program storage to be treated as static and initialized to zero.

VAX-compatible time, date, and random number routines are available by linking with
the library file vms.lib in the lib directory. The routine names are:

DATE subroutine returns current date as CHARACTER*9
IDATE subroutine returns current date as 3 INTEGER*4
TIME subroutine returns current time as CHARACTER*8
SECNDS subroutine returns seconds since midnight
RAN function returns random number

 Porting Code 71

 Fortran User Guide

The following list of VAX FORTRAN “qualifiers” shows the equivalent Absoft Fortran
77 options or procedures:

/ANALYSIS_DATA no equivalent
/CHECK BOUNDS -C to check array boundaries
/CHECK NONE do not use the -C option
/CHECK OVERFLOW no equivalent
/CHECK UNDERFLOW no equivalent
/CONTINUATIONS no equivalent
/CROSS_REFERENCE no equivalent
/DEBUG -g to generate debugging information
/D_LINES -x to compile lines with a “D” or “X” in column 1
/DIAGNOSTICS append 2>filename to the f77 command line to create a file

containing compiler warning and error messages
/DML no equivalent
/EXTEND_SOURCE -W to permit source lines up to column 132 instead of 72
/F77 do not use the -d option
/NOF77 -d for FORTRAN 66 compatible DO loops
/G_FLOATING see the section on “Numeric Precision” later in this chapter
/I4 do not use the -i option
/NOI4 -i for interpreting INTEGER and LOGICAL as INTEGER*2 and

LOGICAL*2
/LIBRARY no equivalent
/LIST no equivalent
/MACHINE_CODE no equivalent
/OBJECT no equivalent—you can use the COPY command to copy an object

file to another name
/OPTIMIZE -O to use basic optimizations
/PARALLEL no equivalent
/SHOW no equivalent
/STANDARD -N32 to generate warnings for non-ANSI FORTRAN 77 usage
/WARNINGS DECLARATIONS
 the IMPLICIT NONE statement may be used to generate warnings for

untyped data items
/WARNINGS NONE -w to suppress compiler warnings

72 Porting Code

Fortran User Guide

PORTING CODE FROM IBM VS FORTRAN

Absoft Fortran 77 automatically supports most of the IBM VS FORTRAN language
extensions. Below is a list of key VS FORTRAN extensions that are supported and not
supported. Using a compiler option, Absoft Fortran 77 can also accept VS FORTRAN
Free-Form source lines that use 80 columns, otherwise, only ANSI FORTRAN 77 fixed
format lines are accepted.

Key Supported VS FORTRAN Extensions

• “*” comments in column 1
• Can mix CHARACTER and non-CHARACTER data types in COMMON blocks
• The NAMELIST terminator may be an ampersand “&”
• Hollerith constants

Key Unsupported VS FORTRAN Extensions

• Absoft Fortran 77 uses IEEE floating point representation (more accurate)
• Debug statements
• I/O statements DELETE, REWRITE, and WAIT
• INCLUDE statement syntax is different

Compile-time Options and Issues

Absoft Fortran 77 can be made even more compatible with VS FORTRAN by using this
compiler option:

 -s Force all program storage to be treated as static and initialized to zero

PORTING CODE FROM MICROSOFT FORTRAN

Absoft Fortran 77 automatically supports many of the Microsoft FORTRAN language
extensions. Below is a list of key Microsoft FORTRAN extensions that are supported and
not supported. Absoft Fortran 77 does not have the code size restrictions found in the
segmented Microsoft FORTRAN models.

Key Supported Microsoft FORTRAN Extensions

• The NAMELIST terminator may be an ampersand “&”
• The Free-Form Source Code is very similar to VS FORTRAN (-V
option)
• STRUCTURE, RECORD, UNION, MAP statements
• SELECT CASE statements
• DO WHILE loops
• INCLUDE statement
• Conditional compilation statements

 Porting Code 73

 Fortran User Guide

Key Unsupported Microsoft FORTRAN Extensions

• Metacommands
• MS-DOS specific intrinsic functions
• INTERFACE TO statement
• OPEN statement displays standard file dialog when using FILE=""

Compile-time Options and Issues

Absoft Fortran 77 can be made even more compatible with Microsoft FORTRAN by
using this compiler option:

 -s Force all program storage to be treated as static and initialized to zero

The following list of Microsoft FORTRAN metacommands shows the equivalent Absoft
Fortran 77 options or procedures:

$DEBUG -C to check array boundaries and other run-time checks
$DECLARE the IMPLICIT NONE statement may be used to generate errors or

warnings for untyped data items
$DO66 -d for FORTRAN 66 compatible DO loops
$FLOATCALLS all floating point is calculated inline or with a threaded math library in

Absoft Fortran 77
$FREEFORM -V for IBM VS FORTRAN Free-Form source code
$INCLUDE use the INCLUDE statement
$LARGE not necessary — Absoft Fortran 77 does not have the data size

restrictions found in the segmented Microsoft FORTRAN models
$LINESIZE not applicable
$LIST no equivalent
$LOOPOPT -O for optimization
$MESSAGE no equivalent
$PAGE not applicable
$PAGESIZE not applicable
$STORAGE:2 -i for interpreting INTEGER and LOGICAL as INTEGER*2 and

LOGICAL*2
$STORAGE:4 do not use the -i option
$STRICT -N32 to generate warnings for non-ANSI FORTRAN 77 usage
$SUBTITLE not applicable
$TITLE not applicable
$TRUNCATE no equivalent

74 Porting Code

Fortran User Guide

PORTING CODE FROM SUN WORKSTATIONS

Absoft Fortran 77 automatically supports most of the Sun FORTRAN language
extensions. Below is a list of key Sun FORTRAN extensions that are supported and not
supported. The Sun FORTRAN compiler appends an underscore to all external names to
prevent collisions with the C library. Absoft Fortran 77, by default, does not append an
underscore to maintain compatibility with Windows functions and other development
languages.

Key Supported Sun FORTRAN Extensions

• the NAMELIST terminator may be either “$” or “&”
• STRUCTURE, RECORD, POINTER, UNION, MAP, %FILL statements
• DO WHILE loops
• INCLUDE statement
• ENCODE, DECODE, ACCEPT, TYPE, and most OPEN I/O specifiers
• Hollerith and hexadecimal constant formats
• “!” comments in column 1

PORTING CODE FROM THE NEXT WORKSTATION

Absoft FORTRAN 77, formerly available, but now discontinued on the NextStep
operating system for either Motorola or Intel microprocessors had the same optimizations
and language extensions as Absoft Fortran 77. The object-oriented extensions of the
NeXT compiler are specific to the NextStep environment and are not supported with
Absoft Fortran 77 for Windows with Intel or PowerPC processors. The compilers are
100% source-compatible.

PORTING CODE FROM THE IBM RS/6000 WORKSTATION

Absoft FORTRAN 77, formerly available, but now discontinued for the IBM RS/6000
computer and had the same optimizations and language extensions as Absoft Fortran 77
for Windows with Intel or PowerPC processors. The compilers are 100% source
compatible.

Distribution Issues

If you plan to distribute executable programs generated with Absoft Fortran 77, you must
obtain a copy of the Absoft “Redistribution License Agreement”, complete it, and return
it to Absoft. There is no charge for this license or the redistribution of programs created
with Absoft Fortran 77. To obtain the Absoft “Redistribution License Agreement”, write
to:

Absoft Corporation
2075 West Big Beaver Road, Suite 250
Troy, MI 48084

 Porting Code 75

 Fortran User Guide

OTHER PORTING ISSUES

Not all porting and compatibility issues can be solved automatically by Absoft Fortran 77
or by using various option combinations. There are six issues that must be addressed on a
program-by-program basis for Windows based computers:

Memory Management Tab Character Size
Stack Issues Numeric Precision
File and Path Names Floating Point Math Control

Memory Management

A Win32 API application’s address space differs slightly between Windows NT/XP and
Windows 95/98. A Windows NT/XP address spaces ranges from 0x00010000 to
0x7ffeffff, while Windows 95/98 makes the space between 0x0040000 and 0x7fffffff
available to the application. Since Win32 is a virtual, memory-managed environment,
there is no real need for the programmer to be concerned with address spaces or virtual to
physical memory mapping. A Win32 application will generally run without any memory
management intervention by the programmer. There are however, two tunable memory
parameters available that may be used to improve performance with memory usage
intensive programs.

The Windows memory manager will automatically allocate memory beyond the initial
0x100000 byte (1 megabyte) heap and stack allocations to your program as it requires it.
If you know that your program will use significantly more memory than this, it can be
more efficient to reserve it initially rather than allocate it incrementally. Initial stack and
heap allocations are established with the -stack and -heap compiler options (refer to the
chapter Using the Compilers for details on the stack size and heap size options). The
optional commit argument is used to specify the size of actual memory pages.

File and Path Names

Almost every operating system has a unique set of rules for valid file and path names and
Windows is no exception. File names may be up to 255 characters in length, but may not
contain any of the following characters: ? “ \ / < > * | :. Case is preserved in file
names, but file names themselves are not case sensitive. To reference a file in the current
directory of a running application, the file name can be used without having to specify a
path as in this example with a file called file.dat (8 characters including the period).

OPEN(UNIT=5,FILE="file.dat")

Path names are the concatenation of drive names, directory names, and file names and are
used to specify files in other directories. Each component of a path name is separated by a
back slash (\). A full path name always begins with the name of a drive and includes each
of the directory names in the path to the file. A full path name is a complete and
unambiguous identification for a file. Another type of path name is a partial path name

76 Porting Code

Fortran User Guide

that describes the path to a file starting from the current directory. Parent directories can
be specified by beginning the path name with two periods and a backslash.

Programmers should be aware that Windows XP “personalizes” directories so the
complete path name for a file may appear different from different sign in accounts. The
same file will be seen in “Jane’s Documents” by Fred, but in “My Documents” by Jane.

Tab Character Size

Absoft Fortran 77 expands each tab character in a FORTRAN source file into the
equivalent number of spaces during compilation. The size of a tab character is determined
from the following list in order.

• From the environment variable TABSIZE, which can be established
with the SET command as follows:

 SET TABSIZE=6 set tabs to six characters
 SET TABSIZE “unset” the TABSIZE variable

• If the environment variable TABSIZE is not set, the value 8 is used.

Tabs are also expanded at runtime when reading formatted files. They are expanded
modulo TABSIZE where TABSIZE is an environment variable. If TABSIZE is not set,
tabs are expanded modulo 8. If TABSIZE is set to 0, the tab is passed unmolested to the
application.

Runtime Environment

A number of the aspects of the runtime environment can be controlled with the
ABSOFT_RT_FLAGS environment variable. This variable can be a combination of any of
the following switches (the leading minus sign is required for each switch and multiple
switches must be separated by one or more spaces):

-defaultcarriage

Causes the units preconnected to standard output to interpret carriage
control characters as if they had been connected with ACTION='PRINT'.

-fileprompt

Causes the library to prompt the user for a filename when it implicitly
opens a file as the result of I/O to an unconnected unit number. By default,
the library creates a filename based on the unit number.

 Porting Code 77

 Fortran User Guide

-vaxnames

Causes the library to use 'vax style' names (FORnnn.DAT) when creating a
filename as the result of I/O to an unconnected unit number.

-unixnames

Causes the library to use 'unix style' names (fort.nnn) when creating a
filename as the result of I/O to an unconnected unit number.

-bigendian

Causes the library to interpret all unformatted files using big endian byte
ordering.

-littleendian

Causes the library to interpret all unformatted files using little endian byte
ordering.

-noleadzero

Causes the library to surpress the printing of leading zeroes when
processing an Fw.d edit descriptor. This only affects the limited number of
cases where the ANSI standard makes printing of a leading zero
implementation defined.

-reclen32

Causes the library to interpret the value specified for RECL= in an OPEN
statement as 32-bit words instead of bytes.

-f90nlexts

Allows f90 namelist reads to accept non-standard syntax for array
elements. Without this flag, the following input results in a runtime error:

$ONE
A(1)=1,2,3,4
$END

When -f90nlexts is set, the values are assigned to the first four elements of
A.

-nounit9

Causes UNIT 9 not to be preconnected to standard input and output.

78 Porting Code

Fortran User Guide

-maceol

Formatted sequential files are in Classic Macintosh format where each
record ends with a carriage return,

-doseol

Formatted sequential files are in Windows format where each record ends
with a carriage return followed by a line feed.

-unixeol

Formatted sequential files are in Unix format where each record ends with
a line feed.

-hex_uppercase

Data written with the Z edit descriptor will use upper case characters for
A-F.

Floating Point Math Control

This section describes the basic information needed to control the floating point unit
(FPU) built into Intel processors. The FPU provides a hardware implementation of the
IEEE Standard For Binary Floating Point Arithmetic (ANSI/IEEE Std 754-1985). As a
result it allows a large degree of program control over operating modes. There are two
aspects of FPU operation that can affect the performance of a FORTRAN program:

Rounding direction

Exception handling

A single subroutine is provided with the compiler that is used to retrieve the current state
of the floating point unit or establish new control conditions:

CALL fpcontrol(cmd, arg)

where: cmd is an INTEGER expression that is set to 0 to retrieve the state of

the floating point unit and 1 to set it to a new state.

 arg is an INTEGER variable that receives the current state of the

floating point unit if cmd is 0 or contains the new state if cmd is 1.

 Porting Code 79

 Fortran User Guide

Rounding Direction

The first aspect of FPU operation that may affect a FORTRAN program is rounding
direction. This refers to the way floating point values are rounded after completion of a
floating point operation such as addition or multiplication. The four possibilities as
defined in the fenv.inc include file are:

 FE_TONEAREST round to nearest
 FE_TOWARDZERO round toward zero
 FE_UPWARD round toward +infinity
 FE_DOWNWARD round toward -infinity

Exception Handling

The second aspect of FPU operation that affects FORTRAN programs is the action taken
when the FPU detects an error condition. These error conditions are called exceptions,
and when one occurs the default action of the FPU is to supply an error value (either
Infinity or NaN) and continue program execution. Alternatively, the FPU can be
instructed to generate a floating point exception and a run time error when an exception
takes place. This is known as enabling the exception. The five exceptions that can occur
in a FORTRAN program are:

 FE_INEXACT inexact operation
 FE_DIVBYZERO divide-by-zero
 FE_UNDERFLOW underflow
 FE_OVERFLOW overflow
 FE_INVALID invalid argument

For example, to retrieve the state of the FPU, and then enable divide-by-zero exceptions,
the following sequence would be used:

 INCLUDE "fenv.inc"
 INTEGER state

 CALL fpcontrol(0, state)
 CALL fpcontrol(1, FE_DIVBYZERO)

 81

 Fortran User Guide

CHAPTER 7

Building Programs

This chapter covers the specifics of building Fortran 90/95 and FORTRAN 77 programs,
including a discussion of the linker, library manager, and make facility. This chapter
details the Absoft tools available for advanced programming and linking using the
command line. The Fsplit utility is also described. You use each tool on the command
line – the syntax and a description of each command is given below.

This chapter also describes the features, capabilities, and extensions in the Absoft
implementations of Fortran 90/95 discussed in language reference manuals. The Absoft
implementation of Fortran 90/95 and FORTRAN 77 is described the Absoft Fortran
Language Reference Manual

AN OVERVIEW OF PROGRAM BUILDING

There are several different ways of building an application with the Absoft software
development tools. The general overview of building a completed application is as
follows:

Create Fortran 90/95 or FORTRAN 77 and compile them into object files
with the proper interface and include files. See the section on Creating
Object Files later in this chapter.

Create non-code resources with rc.exe, the resource compiler. See the

section on Working with Resources in this chapter.

Create the executable program by using the link tool to link object files

with the necessary resources and library routines from the Windows
system. For more information on the link tool, see the section on
Linking Programs, also in this chapter.

The Components of an Application

Program code, system calls, library routines, and features of the Windows operating
system and interface are all important components of an application. Output from tools
such as amake and link are combined with your object code to create a Windows
application.

82 Building Programs

Fortran User Guide

Working with Resources

A resource is one of the most important concepts in Windows programming. A resource
is a collection of information used by the Windows system, such as menus, dialog
definitions, or icons. These and other types of special information are stored in the
executable image of a program file. The application itself may use some of the resources
and other applications may use the resources for getting information about the
application.

Resources are added to your program by the linker and are created using special tools and
programs. Various dialog editors provide an interactive method of modifying existing
resources or copying resources between files. The Microsoft program, rc.exe, included
with the Absoft software development tools, is a resource compiler that creates new
resources based on a textual resource description file. rc.exe is documented in a help file
supplied with the compiler.

CREATING OBJECT FILES

After you create and edit source files, or port files from other environments (see the
chapter, Porting Code), these files are compiled using one or more of the Absoft
compilers (described in the chapter, Using the Compilers).

The compiler is invoked by using one of the commands: f95.exe, f77.exe, or f90.exe
– these command control both components of the compiler (front and back ends) and the
link tool (see the section below on Linking Programs). The features of the f95, f77,
and f90 commands simplify the process of creating finished applications, especially if
you are working with a limited number of source files.

To initiate one of the Absoft compilers from the command line, follow these command
syntax guidelines:

f95 [option…] [file…]
f77 [option…] [file…]
cl [option…] [file…]

where option… represents one or more of the compiler options described in the chapter,
Using the Compilers. These options must begin with a dash (-); if more than one option
is used, separate each option with a space. Also, some arguments appended to an
individual option, such as a filename, may need to be separated from the option letter
with a space — see the chapter, Using the Compilers for specific option rules.

When these commands are invoked on the command line, each file will be compiled to
generate an executable application. By default, the resulting application will be given a
name the same as the base file name of the first file on the command line with an
extension of .exe. For example, if you enter f77 hello.f on the command line, the
source code from the hello.f file is compiled and an application will be generated in the
file hello.exe. To compile hello.f with the static local storage option, and generate an
application named welcome.exe, enter:

 Building Programs 83

 Fortran User Guide

f77 -s -o welcome.exe hello.f

The option, -o name, specifies the name of the executable file overriding the default
name of hello.exe. The name of the file must appear after the -o option as shown
above. This option is passed directly to the linker; therefore, it has no effect when used in
conjunction with the -c option. In this case, a space is required between the -o and name.

Remember that the f77 and f95 commands are used to control the compilation process.
The actual compilers consist of the front-end (parsers and syntax analyzers) and the back-
end (code generator).

If you need to create object files that are to be combined in a library, use the compiler
commands with the -c option. This will suppress any linking functions and an executable
file will not be created, as in the following example:

f95 -c Hello.f95 Goodbye.f95

The files are compiled into the object files Hello.obj and Goodbye.obj. After a source
file has been compiled into an object file, it contains object code as well as any symbolic
external references not known at compile time.

Since the linker is directly accessed in the f77 and f95, any set of options may be passed
directly to the linker. To do this, append the following option to the compiler command:

-link opts

The argument opts is a string enclosed in quotes to be passed to the linker. For example,
-link -verbose will pass the -verbose option (display additional information) to the
linker.

Fsplit - Source Code Splitting Utility

When you need to manage large files, work on small portions of Fortran code, or port
code from other environments, you may want to split large, cumbersome source files into
one procedure per file. This can be done using the Fsplit tool. The command syntax for
the tool is shown below.

fsplit [option…] [file…]

Fsplit splits FORTRAN source files into separate files with one procedure per file. The
following command line will generate individual files for each procedure:

fsplit largefile.f

A procedure includes block data, function, main, program, and subroutine program
declarations. The procedure, proc, is put into file proc.f with the following exceptions:

84 Building Programs

Fortran User Guide

• An unnamed main program is placed in MAIN.f.
• An unnamed block data subprogram is placed in a file named

blockdataNNN.f, where NNN is a unique integer value for that file. An
existing block data file with the same name will not be overwritten.

• Newly created procedures (non-block data) will replace files of the same
name.

• File names are truncated to 14 characters.

Output files are placed into the directory in which the fsplit command was executed.
The tab size is pulled from the environment variable TABSIZE if it exists, otherwise, a tab
size of 8 is used. Options for the command are:
 -v Verbose progress of fsplit is displayed on standard diagnostic.
 -V Source files are in VAX FORTRAN Tab-Format.
 -I Source files are in IBM VS FORTRAN Free-Form.
 -8 Source files are in Fortran 90 Free Source Form.
 -W Source files are in wide format.

LINKING PROGRAMS

Linking programs is the process of combining a group of object files into an application.
The result is a new executable file. The Absoft tool that provides this feature is the link
tool, or otherwise called the Linker. This tool is also used to create a Dynamic-Link
Library, or a DLL (see the section Creating Libraries below for details).

The link tool links these object files into an application or tool called the output file. The
Linker creates (or replaces) program code and places the object files as a linked
application in the output file. The default output name is the root name of the first object
file with the extension .exe appended.

If you use the f77 command with the /c option to create an ordinary object file only, it
contains object code and symbolic references to global variables and identifiers unknown
at compile time. If you execute the f77 command without the /c option, the link
command is automatically invoked, creating the executable file.
The format for the link command is:

link [option…] [file…]

The options for the link command are:

@

Specifies a response file

 Building Programs 85

 Fortran User Guide

-ALIGN

Specifies the alignment of each section

-ALLOWBIND

Specifies that a DLL cannot be bound

-ALLOWISOLATION

Specifies behavior for manifest lookup.

-ASSEMBLYDEBUG

Adds the DebuggableAttribute to a managed image.

-ASSEMBLYLINKRESOURCE

Create a link to a managed resource.

-ASSEMBLYMODULE

Specifies that a Microsoft Intermediate Language (MSIL) module should be imported into
the assembly

-ASSEMBLYRESOURCE

Embeds a managed resource file to an assembly

-BASE

Sets a base address for the program

-CLRIMAGETYPE

Sets the type (IJW, pure, or safe) of a CLR image.

-CLRSUPPORTLASTERROR

Preserves the last error code of functions called through the P/Invoke mechanism.

-CLRTHREADATTRIBUTE

Specify which threading attribute you want applied to the entry point of your CLR
program.

86 Building Programs

Fortran User Guide

-CLRUNMANAGEDCODECHECK

/CLRUNMANAGEDCODECHECK specifies whether the linker will apply the
SuppressUnmanagedCodeSecurity attribute to linker-generated PInvoke stubs that call
from managed code into native DLLs.

-DEBUG

Creates debugging information

-DEF

Passes a module-definition (.def) file to the linker

-DEFAULTLIB

Searches the specified library when resolving external references

-DELAY

Controls the delayed loading of DLLs

-DELAYLOAD

Causes the delayed loading of the specified DLL

-DELAYSIGN

Partially sign an assembly.

-DLL

Builds a DLL

-DRIVER

Creates a Windows NT kernel mode driver

-ENTRY

Sets the starting address

-errorReport

Report internal linker errors to Microsoft.

 Building Programs 87

 Fortran User Guide

-EXPORT

Exports a function

-FIXED

Creates a program that can be loaded only at its preferred base address

-FORCE

Forces a link to complete in spite of unresolved or symbols defined more than once

-FUNCTIONPADMIN

Creates a hotpatchable image.

-HEAP

Sets the size of the heap in bytes

-IDLOUT

Specifies the name of the .idl file and other MIDL output files

-IGNOREIDL

Prevents processing attribute information into an .idl file

-IMPLIB

Overrides the default import library name

-INCLUDE

Forces symbol references

-INCREMENTAL

Controls incremental linking

-KEYCONTAINER

Specify a key container to sign an assembly.

-KEYFILE

Specify key or key pair to sign an assembly.

88 Building Programs

Fortran User Guide

-LARGEADDRESSAWARE

Tells the compiler that the application supports addresses larger than two gigabytes

-LIBPATH

Allows the user to override the environmental library path

-LTCG

Specifies link-time code generation

-MACHINE

Specifies the target platform

-MANIFEST

Create a side-by-side manifest file.

-MANIFESTDEPENDENCY

Specify a <dependentAssembly> section in your manifest file.

-MANIFESTFILE (Name Manifest File)

Change the default name of the manifest file.

-MAP

Creates a mapfile

-MAPINFO

Includes the specified information in the mapfile

-MERGE

Combines sections

-MIDL

Specifies MIDL command line options

-NOASSEMBLY

Suppresses the creation of a .NET Framework assembly

 Building Programs 89

 Fortran User Guide

-NODEFAULTLIB

Ignores all (or specified) default libraries when resolving external references

-NOENTRY

Creates a resource-only DLL

-NOLOGO

Suppresses startup banner

-NXCOMPAT

Marks an executable as having been tested to be compatible with Windows Data
Execution Prevention feature.

-OPT

Controls LINK optimizations

-ORDER

Places COMDATs into the image in a predetermined order

-OUT

Specifies the output file name

-PDB

Creates a program database (PDB) file

-PDBSTRIPPED

Creates a program database (PDB) file with no private symbols

-PGD

Specify .pgd file for profile guided optionizations.

-PROFILE

Produces an output file that can be used with the Performance Tools profiler.

90 Building Programs

Fortran User Guide

-RELEASE

Sets the Checksum in the .exe header

-SAFESEH

Specify that the image will contain a table of safe exception handlers.

-SECTION

Overrides the attributes of a section

-STACK

Sets the size of the stack in bytes

-STUB

Attaches an MS-DOS stub program to a Win32 program

-SUBSYSTEM

Tells the operating system how to run the .exe file

-SWAPRUN

Tells the operating system to copy the linker output to a swap file before running it

-TLBID

Allows you to specify the resource ID of the linker-generated type library

-TLBOUT

Specifies the name of the .tlb file and other MIDL output files

-TSAWARE

Creates an application that is specifically designed to run under Terminal Server

-VERBOSE

Prints linker progress messages

-VERSION

Assigns a version number

 Building Programs 91

 Fortran User Guide

-WX

Treat linker warnings as errors.

CREATING LIBRARIES

Windows based computers support two types of libraries: static and dynamic. A static
library is a collection of object files (modules), each containing one or more routines,
which are maintained in a single file — a library. When a library file is presented to the
linker, modules that are required to satisfy unresolved external references are selected for
inclusion into the application file. The advantage of a library is that only those modules
that are required to satisfy unresolved external references are linked into the application.
The FORTRAN runtime library af77math.lib is an example of a static library. Not
every FORTRAN program requires a hyperbolic tangent function, so it is only linked into
those programs that require it.

A dynamic library is similar to a static library in that it contains a collection of routines in
object modules. The difference is that the elements of the library are not linked into the
final application file, but rather are available for linking when the application is executed.
The advantage to this type of library is that the individual applications can be smaller and
several applications can share the same library. The disadvantage is that the dynamic or
shared library must be available on every computer where the application is to be run.

The link command, introduced earlier, is used to create dynamic libraries or DLL’s by
combining multiple object files into a single DLL and the loader glue code. The linker
can also be used to create static library files, but the library manager, lib, supplied with
the Absoft Fortran compiler, is the primary tool for manipulating static libraries. Use lib
to create libraries from multiple object files and to add, delete, or replace object modules
in existing libraries.

The syntax of the lib command is given below. Options can be preceded with either a
dash (-) or a slash (/).

lib [option…] [files…]

A new library is created by using the -out option to specify the new library name and the
files argument to indicate the object files. To add an object file to an existing library,
specify both the existing library name and the object file name in the files argument and
use the -out option to specify the resulting library name. The input and output library
name may be the same.

/extract:objname

 This option is used to copy the objname from the library to a file. The output
filename is the same as objname unless the /out option is given. /remove
and /extract cannot be used at the same time.

92 Building Programs

Fortran User Guide

/list

 Use this option to display to standard output a list of the object modules in the
library.

/out:filename

 This option sets the name of the output file.

/remove:objname

 Use this option to delete the specified objname from the library. /remove and
/extract cannot be used at the same time.

DLL Import Libraries

The Win32 API supports two types of libraries: static and dynamic, which were described
earlier in this chapter. One requirement to link against a dynamic link library or DLL is an
import library. An import library is a type of library that describes to the linker all of the
available function entry points in the DLL. link automatically creates an import library
when it creates a DLL. If you are given a DLL and no import library, you can still use the
DLL by creating the import library yourself, provided you have a definition file
(described below). The utility imptool creates import libraries from definition files.

The syntax of the imptool command is given below. Options can be preceded with either
a dash (-) or a slash (/).

imptool [option…] [files…]

/def:filename

This option is required. It specifies the definition file (described below) which is

used as input to imptool. The file must have an extension of .def.

/out:filename

This option specifies the name of the output file. If it is not used, the name of the

output will be the root of the definition file name with an extension of .lib
added.

/nounderscores

This option specifies that the symbol names not have an underscore prepended to

the entry names.

/w

This option suppresses warnings. imptool will not output any warning messages.

 Building Programs 93

 Fortran User Guide

Syntax of a Definition File

The input file for imptool is a definition file. This file describes the entry points into a
dynamic-link library, the DLL. A definition file has a list of the entry point names, and
some keywords to describe them. The syntax of a definition follows.

There are many statements available that can be used in a definition file. Most of them are
not supported by imptool, but are used by other applications. imptool will produce a
warning, and ignore them. The three statements that imptool supports are.

NAME [application][BASE=address]

This statement specifies the application to which the definition file is associated
with. If NAME is not specified, the default will be the output file name with a .dll
extension. The BASE keyword has no effect as far as an import library is
concerned; it is used by other applications, but is still legal syntax. This statement
can only appear on the first line of the definition file; otherwise it will produce a
warning. If you use a NAME statement, you cannot use a LIBRARY statement
(described next).

LIBRARY [library][BASE=address]

This statement specifies the DLL that the definition is associated with. If this is
not specified, the default will be the output file name with a .dll extension. The
BASE keyword has no effect as far as an import library is concerned; it is used by
other applications, but is still legal syntax. This statement can only appear on the
first line of the definition file; otherwise it will produce a warning. If you use a
LIBRARY statement, you cannot use a NAME statement.

EXPORTS definitions

This statement makes one or more definitions available as exports to other
programs. The syntax of an export definition is:

entryname[=internalname] [@ordinal[NONAME]] [DATA] [PRIVATE]

entryname the name of the entry point into the DLL
internalname is used by other applications and is ignored by imptool
ordinal the ordinal associated with the entry point
NONAME a keyword that means import by ordinal only
DATA a keyword that means you are importing data
PRIVATE a keyword that means to leave the entry name out of the import

library

Other statements ignored by imptool are:

DESCRIPTION

94 Building Programs

Fortran User Guide

STACKSIZE
IMPORTS
SECTIONS
VERSION
NAME (after the first line)
LIBRARY (after the first line)

Comments in a definition file are signified by a semi-colon (;) at the first position
of a line.

Name Mangling

Entry point names are the most important parameter when creating a definition file.
imptool will automatically prepend an underscore (_) to all entry point names unless the
/nounderscores is specified on the command line. If /nounderscores is specified,
imptool will place the entry point in the import library exactly as it appears in the
definition file. The best way to insure that your import library will correctly describe the
entry points of a DLL is to specify the entry point name exactly as it appears in the DLL
and use the /nounderscores option. Name mangling, prepending an underscore to a
symbol name is standard in the Win32 API, so it is best to add an underscore yourself and
use the/nounderscores option.

When creating a definition file, keep in mind that using STDCALL will require you to
append some characters to the entry point names that must be present in the definition
file, since that is how they appear in the object code and the DLL. The extra characters
are a commercial at sign (@) followed by the size, in bytes, of the parameter block for the
function or subroutine. An example follows:

FUNCTION my_func(INTEGER parameter1, INTEGER parameter2)

 STDCALL my_func

This should appear as:

_my_func@8

in your definition file.

Because imptool will not have any of this information available regarding the type or
calling convention used with the function, it will not add any of these characters, so it is
important that you append them yourself.

This form of name mangling, appending @ and a number is different from using an
ordinal value. If you are specifying an ordinal value, the value is separated by whitespace
on the same line as the entry point name. If the value following the @ is the size of the
parameter block required when using STDCALL, it is appended to the entry point name,
with no white space between. An example to illustrate this follows:

If using STDCALL as above:

 Building Programs 95

 Fortran User Guide

_my_func@8

should be the export line name in your definition file.

If specifying an ordinal value:

_my_func @32

should be the export line in your definition file.

When you are creating the definition file it is important to keep in mind how the entry
point names are being represented. Again, the most direct way is to add the characters
that are needed and use the /nounderscores command line option. This will insure that
names are handled exactly as they appear, and are not being mangled by imptool in any
way.

BUILDING PROGRAMS

It is often necessary in software development to maintain large numbers of files, many of
which are dependent on other files in some way. It can become very difficult and time-
consuming to manage these complex file relationships manually and to ensure that the
appropriate files are updated when modifications are made to other related files. For
example, when a source file is altered, it is necessary to recompile it in order to build or
rebuild an updated object file and to link the object file with the appropriate auxiliary
files (such as libraries) to form a complete and up-to-date executable file. It may also be
necessary to use multiple languages and other programming resources during this process.

The Absoft amake utility allows you to automate much of this process of file
maintenance by keeping a record of file dependencies according to rules that are either
built-in to amake or specified by the user. (The amake utility is also referred to as
"amake", the "make program", or the "make command" throughout this section.)
Following these rules, the program determines whether any files need to be updated, and
if so, rebuilds them automatically. If a file needs to be updated and does not exist, amake
will create it based on the dependency rules for that file.

While amake is used primarily in software development, it can also be employed in other
types of routine project management activities that involve file dependency relationships
such as deleting temporary files, updating documents, or performing backups. In this
section, we will focus on the use of amake to maintain an up-to-date executable file
during the course of a software project.

The major advantages of using amake in this type of environment are that it:

• saves considerable time and computing resources since only the files
that need to be updated at a particular time are rebuilt;

96 Building Programs

Fortran User Guide

• simplifies project management by performing many routine functions
automatically and helping to coordinate the activities of projects
involving multiple programmers; and

• frees programmers from the need to perform routine file maintenance

activities manually.

This section discusses the operation of the Absoft amake program and explains how you
can define your own rules to adapt the program to your particular environment. It also
covers the topics of creating description files and macros, command usage and options,
using environment variables, and handling errors. The level of presentation assumes a
familiarity with programming and the process of developing software, but does not
require any previous knowledge of the amake utility itself.

The Elements of amake

A key concept in understanding the operation of the amake program is that of file
dependency. Files that are required to build (or rebuild) other files are referred to here as
prerequisite files (or prerequisites). A file that is dependent on these prerequisites is
called a target file (or target). For example, an object file (the target) is dependent on one
or more source files (the prerequisites). The amake program searches through a file
dependency tree to establish the relationships between targets and prerequisites. If a
prerequisite file has been updated more recently than its target file (or at exactly the same
time), amake will (re)build the target file. [Note: The term (re)build is used in this section
to indicate that a file will be built (created) if it does not exist, or rebuilt (updated) if it
does exist.]

As mentioned above, the Absoft amake program operates based on rules that are: built-in
to the program, specified by the user, or a combination of both. The program uses
information from the following sources to determine whether a particular file needs to be
(re)built and, if so, how this will be done:

• A description file supplied by the user that specifies:
 (a) dependency relationships between targets and prerequisites, and
 (b) the commands needed to (re)build the target file.

• File names and the date/time each file was last modified.

• A set of default rules that define how files are (re)built based on the

relationships between their suffixes.

 Building Programs 97

 Fortran User Guide

Using Macros

Before discussing how a description file is created and used, it is necessary to have some
understanding of how macros are used with amake. The term macro, as used here, refers
to a symbol or character string that substitutes for something else, such as a set of
commands. Macros are very useful in defining dependency relationships.

Advantages of using macros

The amake tool allows you to define macros, either within the description file itself, or as
arguments on the amake command line. By using macros, you can:

• Represent recurring strings, such as file names or commands, in
simplified form, reducing redundancy and thus, file size.

• Improve the consistency, readability, and maintainability of your

description files.
• Allow for variation in the value of a macro from one (re)build to the

next, and for values to be changed globally by redefining the
corresponding macro.

Defining macros

A macro definition is made up of three basic elements: a name, followed by an equal
sign, followed by a symbol or string that defines what the macro represents (in
description files, usually a command string). You invoke a macro by placing a $ symbol
immediately before the name and enclosing the name in either parentheses () or braces {
}. [Exception: A name of only one character can be invoked without being enclosed in
parentheses or braces.] By convention, macro names are written in uppercase characters,
but any combination of upper or lower case letters or other non-reserved characters is
acceptable. The following are examples of valid macro definitions and their
corresponding invocations:

Macro Definition Macro Invocation
DEBUGOPT = -g $(DEBUGOPT)
SRCFILES = one.f two.f $(SRCFILES)
OBJFILES = one.obj two.obj $(OBJFILES)
ALLFILES = $(SRCFILES) $(OBJFILES) $(ALLFILES)
RESFILES = $(RCFILES:.rc=.res) $(RESFILES)

The last example invokes the two previous macros within the definition, producing a list
of the two FORTRAN source files and two object files as follows:

one.f two.f one.obj two.obj

The order of precedence for macro definitions is (from highest to lowest): the amake
command line, the description file, and the default definitions.

98 Building Programs

Fortran User Guide

Special macros

The amake utility includes a set of special-purpose macros that you may find useful in
building your description files and rules. The most commonly-used are:

Macro Function
$@ Represents the full name of the current target—for use only

on a (re)build command line. (When building a library it
represents the name of the library.)

$* Represents the base name of the current target—for use
only on a (re)build command line.

$< Represents a current prerequisite—for use only on a
(re)build command line.

$$@ Represents the base name of the current target—for use
only on a dependency line.

$? Represents a list of prerequisites that have been changed
more recently than the current target—for use only on a
(re)build command line.

Other special macros that are provided with Absoft amake include:

Macro Function
MAKE Used for recursive makes—that is, when a make

command is included as part of a description file.
MAKEFLAGS Sets the command-line options available to make—

usually defined as an environment variable (see
Environment Variables later in this section).

SUFFIXES Contains the default list of suffixes for the
.SUFFIXES special target (see Special Targets later
in this section).

Cautions in using macros

In addition to being aware of the order of precedence for macro definitions (see above)
you should use caution in defining and using macros for the following reasons:

• A description file macro should be defined before the first time it is
used in a dependency block.

• A macro should be defined only once within a description file.
• Macros may not be recursive—a macro may not directly or indirectly

reference itself\.
• If you reference an undefined macro, amake will assign it a null string

and no error message will be given.

 Building Programs 99

 Fortran User Guide

• While other characters are acceptable, it is advisable to use upper-case
characters for macro names and to avoid characters that have special
meanings in the operating system environment.

Using Description Files

The relationships between target files and their prerequisite files are specified in a
description file which is called either makefile or Makefile by default (in that order).
This file contains one or more dependency blocks, each consisting of the following
elements:

• The target file name followed by a colon.
• The prerequisite file names (if any) following the colon.
• White space (a tab or spaces) followed by the commands needed to

rebuild the target file.

[Note: Description files are also commonly referred to as makefiles. The term description
file is used in this section for the sake of consistency.]

Working with dependency blocks

The general form of a dependency block is:

target: prerequisite1 prerequisite2...
 command(s) to (re)build target

For readability and ease of maintenance, we recommend that you:

• Place the target file name, colon, and prerequisite file name(s) on the
first line and command(s) on the second line whenever possible; and

• Use a tab rather than spaces to precede commands.

For example, the first line of the following block:

test: a.f95 b.f95 lib.lib
 f95 -o test.exe a.f95 b.f95 lib.lib

specifies that the target samp.exe is dependent on the prerequisites a.f95, b.f95, and
lib.lib. If any of the three prerequisites have been updated at the same time or after the
target, test.exe will be rebuilt automatically using the command specified on the second
line. The first line is referred to here as the dependency line and the second as the
(re)build command line, or simply, the command(s). [Note: The term (re)build command
line in this context applies only to dependency blocks and should not be confused with
the make command line discussed later in this section.]

100 Building Programs

Fortran User Guide

If desired, the entire dependency block can be placed on one line by including a
semicolon after the last prerequisite file name. The example above would look like:
test: a.f95 b.f95 lib.lib; f95 -o test.exe a.f95 b.f95 lib.lib

If a line exceeds the maximum length allowed on your system, or you wish to shorten it
and continue it onto the next line, you can use the continuation character for your
environment. Using the example above, the backslash character (\) must be the last
character on the first line as follows:

test: a.f95 b.f95 lib.lib; f95 -o test.exe a.f95 \
b.f95 lib.lib

Defining a target more than once

There may also be times when you will need to define the same target more than once
within the same description file. This can be done using the double-colon feature of
Absoft amake. This allows you to define two different sets of prerequisites (and the
associated (re)build commands) for the same target. This feature is particularly useful in
updating archive libraries. For example:

graph.lib:: vertex.f95
 $(F95) /c /g -DDEBUG vertex.f95
 lb /out:$@ $@ vertex.obj
 del vertex.obj

graph.lib:: edge.f95
 $(F95) /c /O edge.f95
 lb /out:$@ $@ edge.obj
 del edge.obj

In this example, two different sets of commands are passed to the Fortran 90/95 compiler
during the process of building the library graph.lib.

Using include directives

An include directive can be used to include a text file within a description file. Such a
text file could consist of macro definitions, dependency blocks, or any other components
you would include as part of a description file. An include directive consists of the word
include, left-justified, followed by one or more spaces or tabs, followed by the name of
the file that is to be included at that point in the description file. For example:

include mymacros.txt

Included files are processed before the next line in the current description file. They can
also be nested.

 Building Programs 101

 Fortran User Guide

A sample description file

The following is an example of a simple description file:

program name
NAME = util

set FLAGS for command line
F95FLAGS = /g
LDFLAGS =

SRCS = util.f95 build.f95 parse.f95 tstring.f95
OBJS = util.obj build.obj parse.obj tstring.obj
PROG = $(NAME)

$(PROG): $(OBJS)
 $(F95) $(F95FLAGS) $(OBJS) /o $(PROG) $(LDFLAGS)

util.obj: util.f95 util.inc tstring.inc decl.inc

build.obj: build.f95 util.inc tstring.inc decl.inc

parse.obj: parse.f95 util.inc tstring.inc decl.inc

tstring.obj: tstring.f95 tstring.inc

Explanation:
• Lines beginning with a pound sign (#) are interpreted as comments.
• Lines containing an equal sign (=) are macro definitions; macros

should be defined before they are used in a dependency block. (See
Defining macros and Cautions in using macros earlier in this
section).

• The lines containing a colon are dependency lines.
• Lines indented under dependency lines are (re)build commands.
• A dependency line and a set of (re)build commands together constitute

a dependency block.

Although the order of these components may not affect the operation of amake, we
suggest that you follow the format shown above in creating and maintaining your
description files, that is: macro definitions, followed by user-defined suffix rules,
followed by dependency blocks—with each definition, rule, or block separated by a blank
line.

Using Dependency Rules

The amake utility uses a set of internal rules, commonly referred to as dependency rules
or suffix rules to determine how to (re)build a particular target file. These rules determine
file relationships based on filename suffixes. Absoft amake looks for dependency rules in
two locations:

1. a default file that is automatically read by amake, and

102 Building Programs

Fortran User Guide

2. your description file.

Rules specified in a description file always override the corresponding default rules.

The default rules

The default dependency rules (or suffix rules) automatically handle the common file
transformations that amake performs, such as compiling source files to produce object
files. Without these default rules, you would have to specify all file relationships in a
description file; this would tend to become very complex and redundant in a large
software development project. The default rules are located in:

c:\absoft15.0\bin\default.amk.

The following is a list of the default dependency rules included with Absoft amake for
Fortran 90/95, FORTRAN 77, and C files. The macros shown within these rules are pre-
defined in the default.amk file. [Note: The numbers on the left are not part of the rules
and are included for reference only.]

Default Rules for Fortran 90/95 files

(1) .f95:
 $(F95) $(F95FLAGS) $(LDFLAGS) -o $@ $<

(2) .f95.obj:
 $(F95) $(F95FLAGS) -c $*.f95

(3) .f95.lib:
 $(F95) $(F95FLAGS) -c $*.f95
 $(LIB) $(LIBFLAGS) $@ $*.obj
 $(RM) $*.obj

(4) .rc.res
 $(RC) $RCFLAGS) $<

 Explanation:

(1) Compiles a Fortran 90/95 source file into an executable target.
(2) Creates an object file from a Fortran 90/95 source file.
(3) Compiles a Fortran 90/95 source file into an object file and then adds

it to a library (.lib) file.
(4) Creates a resource file from a resource script.

 Building Programs 103

 Fortran User Guide

Default Rules for FORTRAN 77 files

(1) .f:
 $(F77) $(FFLAGS) $(LDFLAGS) -o $@ $<

(2) .f.obj:
 $(F77) $(FFLAGS) -c $*.f

(3) .f.lib:
 $(F77) $(FFLAGS) -c $*.f
 $(LIB) $(LIBFLAGS) $@ $*.obj
 $(RM) $*.obj

(4) .rc.res
 $(RC) $RCFLAGS) $<

 Explanation:

(1) Compiles a FORTRAN 77 source file into an executable target.
(2) Creates an object file from a FORTRAN 77 source file.
(3) Compiles a FORTRAN 77 source file into an object file and then adds

it to a library (.lib) file.
(4) Creates a resource file from a resource script.

Default Rules for C files

(1) .c:
 $(CC) $(CFLAGS) $(LDFLAGS) $< -o $@

(2) .c.obj:
 $(CC) $(CFLAGS) -c $<

(3) .c.i:
 $(CC) $(CFLAGS) -P $<

(4) .c.lib:
 $(CC) -c $(CFLAGS) $<
 $(LIB) $(LIBFLAGS) $@ $*.obj
 $(RM) $*.obj

 Explanation:

(1) Compiles a C source file into an executable target.
(2) Creates an object file from a C source file.
(3) Creates an intermediate (.i) file by running a C source file through the

C preprocessor.
(4) Compiles a C source file into an object file and then adds it to a

library (.lib) file.

104 Building Programs

Fortran User Guide

Creating your own rules

In general, it is best to rely on the default dependency rules as much as possible. There
will be times, however, when you may need to modify the behavior of amake by creating
your own dependency rules. There are two possible ways to do this:

• Include dependency rules in your description file, or

• Modify the file of default rules by adding your own rule(s), or
deleting/changing existing rule(s).

We recommend that you use the first alternative if possible, and avoid modifying the
default rules unless absolutely necessary. Since rules in a description file always override
any corresponding default rules, the first alternative should be sufficient for virtually any
circumstance. [Caution: Unless you are replacing an existing default rule, it is advisable
to avoid using suffixes that are pre-defined in amake to avoid conflicts with the default
rules.]

The following is an example of a user-specified dependency rule included in the
description file discussed earlier in this section:

program name
NAME = util

set FLAGS for command line
F95FLAGS = /g
LDFLAGS =

SRCS = util.f95 build.f95 parse.f95 tstring.f95
OBJS = util.obj build.obj parse.obj tstring.obj
PROG = $(NAME)

.f95.obj:
 $(F95) $(F95FLAGS) /c $<
 copy $< c:\usr\workdir

$(PROG): $(OBJS)
 $(F95) $(F95FLAGS) $(OBJS) /o $(PROG) $(LDFLAGS)

util.obj: util.f95 util.inc tstring.inc decl.inc

build.obj: build.f95 util.inc tstring.inc decl.inc

parse.obj: parse.f95 util.inc tstring.inc decl.inc

tstring.obj: tstring.f95 tstring.inc

The user-supplied rule:

.f95.obj:
 $(F95) $(F95FLAGS) -c $<
 copy $< c:\usr\workdir

will override the corresponding default rule in the default.mk file:

 Building Programs 105

 Fortran User Guide

.f95.obj:
 $(F95) $(F95FLAGS) -c $<

Rather than following the default rule for creating an object file from a Fortran 90/95
source file, the new suffix rule will override the default to invoke the Fortran compiler
and copy the resulting object file to the working directory. (The default rule only invokes
the Fortran 90/95 compiler.)

amake Usage and Syntax

The amake command accepts options, description file names, macro definitions, and
target file names as arguments in the form:

make [options] [description file] [macros] [target(s)]

Arguments specified on the amake command line override any corresponding definitions
found in a description file or in the default dependency rules.

amake command-line options may specified with either a dash (-) or a slash (/):

/d Lists the prerequisites for each dependency block that caused
amake to rebuild a target. All prerequisites that are newer than the
target are displayed. Useful for determining why certain (re)build
commands are executed.

/D Displays the contents of a description file as it is read by the amake
program.

/e Causes environment variables to override macros defined in a
description file. By default, user-defined macros override
environment variables (see Environment Variables below).

/f Takes an argument in the form filename which specifies the name
of a description file to be used in place of the default name
makefile. A file name consisting of a dash (-) uses the standard
input rather than filename as input. If there are no /f arguments,
the program will search (by default) for a file named makefile or
Makefile in the current directory.

/i Ignores error codes returned by commands. This is equivalent to
using the .IGNORE special target in a description file (see Special
Targets below). Useful in situations when it is not necessary that
certain commands execute successfully.

/k This option stops processing on the current entry when an error
occurs, but continues processing on other branches of the
dependency tree that do not depend on the current entry.

106 Building Programs

Fortran User Guide

/n Displays all commands, but does not execute them. (Command
lines beginning with an @ character are also displayed.) Useful in
debugging/testing description files.

/p Prints a complete list of macro definitions, dependency blocks, and
suffix rules.

/q Returns a zero or nonzero status code depending on whether the
target is or is not up-to-date, respectively. Useful when amake is
called from a script or tool that requires the current target.

/r Does not use the default rules (i.e., does not read in the
default.mk file). Useful for situations where you want to
completely isolate the environment in which amake operates.

/s Does not print command lines before executing. This is equivalent
to using the .SILENT special target in a description file.

/t Touches the target files (assigning them the current date/time)
without executing the commands to (re)build them. Used to bypass
the (re)build process for particular targets—should be used with
caution.

Any command-line arguments other than options, description file names, or macros are
assumed to be the names of targets to be (re)built; these are evaluated in left-to-right
order. If there are no such arguments, the first target in the description file whose name
does not begin with a period is rebuilt (see below).

Special Targets

In addition to the options listed above, the following special targets can be used in a
dependency block (rule) to further customize the behavior of amake:

.DEFAULT Used when there is no target name specified or
default rule for building a target file. A set of pre-
defined commands are invoked by the .DEFAULT
target.

.DONE This target and its prerequisites are processed after
all other targets have been (re)built.

.IGNORE Ignores all error codes; equivalent to the /i option
on the make command line.

.INIT This target and its prerequisites are processed before
any other targets are (re)built.

 Building Programs 107

 Fortran User Guide

.SILENT Executes commands, but does not send them to the
standard output; equivalent to the /s option on the
make command line.

.SUFFIXES Used to add dependency rules to the default rules
(specify .SUFFIXES as the target followed by the
suffixes to be added as the prerequisites), or to
delete the default rules entirely (specify .SUFFIXES
as the target without prerequisites).

Dummy Files

There may be times when you will want to run amake without actually (re)building a
target or when you need to force a target to be (re)built regardless of when the last
modification was made to a prerequisite. You can do this by using dummy files—i.e.,
specifying one or more filenames in your description file that do not represent an actual
file, but that cause the behavior of amake to change. Often, this can be used to bypass the
established dependency tree and force amake to behave in a desired manner.

The most common type of dummy filename is a dummy target. For example:

clobber :
 del *.obj

will execute the commands on the second line without (re)building any files.

Environment Variables

Each time you run amake, the environment variables that exist at that time are read and
added to the existing macro definitions. Essentially, environment variables are handled in
the same manner as macros by amake. As briefly described earlier in this section, the
MAKEFLAGS variable (also sometimes referred to as the MAKEFLAGS macro) defines the
command-line options available to amake and is usually defined as an environment
variable; the MAKEFLAGS environment variable is read and processed prior to any options
specified on the amake command line.

When you run amake, the following order of precedence is followed (from highest to
lowest priority):

1. command-line arguments

2. description file entries (definitions)

3. environment variables

4. default dependency rules

108 Building Programs

Fortran User Guide

If you invoke the /e command-line option, priority levels 2 and 3 are reversed so that the
order of precedence becomes:

1. command-line arguments

2. environment variables

3. description file entries (definitions)

4. default dependency rules

Example: Rebuilding an Executable File

Generally, in a software development environment, you would run the amake utility
whenever there is a need to update an executable file, such as after changes have been
made to source files or libraries. To summarize the operation of amake, the program:

1. Searches for a description file called makefile (or, if that name does
not exist, Makefile) by default, or another name assigned through the
/f option.

2. Checks dependencies in a bottom-up manner, establishing
relationships between targets and their prerequisites and building a
dependency tree in the process.

3. (Re)builds target files when they are out-of-date with respect to their
prerequisites according to commands specified in the description file,
the default rules, or both.

Using our sample description file, amake will: read in the macro definitions, check the
syntax of all entries, and (re)build the executable file util based on the .f95.obj suffix
rule and the dependency blocks (lines) following it:

 Building Programs 109

 Fortran User Guide

program name
NAME = util

set FLAGS for command line
F95FLAGS = /g
LDFLAGS =

SRCS = util.f95 build.f95 parse.f95 tstring.f95
OBJS = util.obj build.obj parse.obj tstring.obj
PROG = $(NAME)

.f95.obj:
 $(F95) $(F95FLAGS) /c $<
 copy $< c:\usr\workdir

$(PROG): $(OBJS)
 $(F95) $(FFLAGS) $(OBJS) /o $(PROG) $(LDFLAGS)

util.obj: util.f95 util.inc tstring.inc decl.inc

build.obj: build.f95 util.inc tstring.inc decl.inc

parse.obj: parse.f95 util.inc tstring.inc decl.inc

tstring.obj: tstring.f95 tstring.inc

Error Handling and Cautions

The following is a list of common errors you may encounter while using amake and
possible reasons for their occurrence.

Syntax Errors

Error Message Explanation

Badly formed macro Incorrect syntax for a macro definition—
often, the macro name is missing.

Improper macro An error occurred during macro expansion.
Often, the problem is a missing parenthesis
or bracket.

Macro too long ... A macro name is too long; cannot be longer
than 100 characters.

Rules must be after target Occurs when a line beginning with a space
or tab has been encountered before a depen-
dency line in a description file.

110 Building Programs

Fortran User Guide

Other Common Errors

Error Message Explanation

Cannot open file The description file specified in an include
directive could not be found or was not
accessible. (See Using include directives
earlier in this section.)

Don't know how to make target There is no target entry in a description file,
none of the default rules apply, and there is
no .DEFAULT rule.

Too many options The amake program has exceeded the
allocated space while processing command-
line options or a target list.

Too many rules defined for target Multiple sets of rules have been defined for
a target; targets may only have one set of
rules.

Unexpected end of line seen The colon in a dependency line is missing.

Cautions

In addition to handling the errors described above, particular caution should be exercised
as follows when running amake:

• Use of the /t (touch) or /i (ignore errors) options can be destructive
in the way that they override the normal behavior of amake (see amake
Usage and Syntax earlier in this section). These options should be
used with great care and, if possible, tested first before being used with
actual files. The /t option, in particular, can save considerable time by
"updating" files without (re)building them, but it erases the file
relationships that would normally be established.

• Unforeseen problems can arise by changing default rules or variables,
such as the MAKEFLAGS environment variable. It is best not to change
these default values but, if this must be done, caution is advisable.

• Caution should be used when defining and using macros, especially
when macros are to be invoked recursively and when using any of the
special pre-defined macros described earlier in this section.

 111

 Fortran User Guide

CHAPTER 8

The Absoft Window Environment

This chapter describes AWE, the Absoft Window Environment. AWE provides an
alternate executable format to a simple terminal application. AWE supplies a windowed
application for program input and output with the ability to save and print the output. In
addition, you can open new windows and communicate with them through normal
Fortran READ and WRITE statements.

An Absoft Window Environment application is selected by choosing a Target Type of
AWE Application from the Target pane of the Options dialog. An AWE application can
also be selected from the command line with –awe option.

112 The Absoft Window Environment

Fortran User Guide

AWE PREFERENCES

When an AWE application is selected, AbsoftTools automatically adds the file
AWE_Prefences.f95 to the project. This file contains functions and subroutines that set
the default settings for the behavior of the AWE application. You can alter the default
behavior by simply editing this file. The procedures are:

Integer function AWE_getStackSize()

This routine specifies the stack size for an AWE application. The default stack size is 32
megabytes.

logical function AWE_getMdiMode()

This function controls whether windows opened in AWE will appear inside a single
"frame" window or whether they open as individual windows. The default is to open
windows inside the frame.

logical function AWE_getShowMaximized()

This function can be used to open the AWE window already maximized. The default is
.false..

logical function AWE_promptSaveOnExit()

This function controls whether AWE prompts to save the output window(s) at program
exit. If this prompt is disabled, the contents of the window(s) will be lost if not explicitly
saved. The default is to display a prompt to save the output.

integer function AWE_getMainWindowWidth()

This function controls the initial width of the window. The default is 1024.

integer function AWE_getMainWindowHeight()

This function controls the initial height of the window. The default is 768.

integer function AWE_defaultFontSize()

This function controls the height of the font use in the window. The default is 10.

subroutine AWE_defaultFontFamily(family)

This subroutne controls the family of the font use in the window. The default is “Sans”.

logical function AWE_autoSave()

 The Absoft Window Environment 113

 Fortran User Guide

This function controls whether the window text is automatically saved when the program
exits. If this function returns .true., the content of any windows will be automatically
saved to files with the names of the windows. The default is .false..

logical function AWE_showDefaultOutputWindow()

This function controls whether default AWE window is shown or not. If you only want to
show a plot or a canvas without the default text window, set this to .false.. The default
is .true.. Note that if this window is not shown, input/output to the system device is not
available.

OPENING ADDITIONAL TEXT WINDOWS

Additional text windows can be created with the Fortran OPEN statement setting the
ACCESS= specifier to:

 "window [,height, width]"

The optional arguments, height and width, are integers which specify the dimensions of
the window in pixels. The window title will be the argument of the FILE= specifier of the
OPEN statement. For example:

OPEN(15, FILE=”my window”, ACCESS=”window, 800, 400”)

DETERMINING WHEN A WINDOW CLOSES

If your program needs to know when a window closes (perhaps by the user clicking in the
close box for it), add a subroutine named AWE_windowDidClose to your program. It will
be called when a window closes with the name of the window as a CHARACTER argument.

SUBROUTINE AWE_windowDidClose(WindowName), &
 BIND(C,NAME=”_AWE_windowDidClose”)
CHARACTER(LEN=*) WindowName
END SUBROUTINE AWE_windowDidClose

114 The Absoft Window Environment

Fortran User Guide

AWE MENUS

You can add your own menus and callback subroutines to an AWE application. After
adding all of your menu commands and connecting them to callback subroutines, you exit
your program normally. Then, when a menu command is chosen, your callback
subroutine is entered. This section describes the functionality that is available. The
interfaces indicate these are integer functions. They do not return any useful information
and the result can be discarded.

interface
 subroutine AWE_addMenu (unit, title, text, callback)
 integer(kind=any) :: unit
 character(len=*) :: title, text
 external :: callback
 end subroutine AWE_addMenu
end interface

unit is Fortran unit number used to open the window. The unit number of the default
input/output window is -2. title is the name of the menu and text is the name of the
menu command. callback is the name of a subroutine in your program that is called
when the menu command is selected.

To add an accelerator to a menu use the ampersand character (&) before the letter in the
menu command (the text variable) that will be the accelerator. For example:

CALL AWE_addMenu(MyUnit, "My Menu", "&A Command", MyCallbackA)

If an accelerator is used with the name of menu (the title argument), then all calls to
AWE_addMenu must specify the accelerator. For example:

CALL AWE_addMenu(MyUnit, "&My Menu", "&A Command", MyCallbackA)
CALL AWE_addMenu(MyUnit, "&My Menu", "&B Command", MyCallbackB)

interface
 subroutine AWE_setItemCheckable(unit, title, text, flag)
 integer(kind=any) :: unit
 character(len=*) :: title, text
 logical(kind=4) :: flag
 end subroutine AWE_setMenuItemCheckable
end interface

unit is Fortran unit number used to open the window. The unit number of the default
input/output window is -2. title is the name of a previously added menu and text is the
name of a previously added menu command. The menu command will be checkable if
flag is .true..

interface
 logical function AWE_isMenuItemChecked(unit, title, text)
 integer(kind=any) :: unit
 character(len=*) :: title, text
 end function AWE_ isMenuItemChecked
end interface

 The Absoft Window Environment 115

 Fortran User Guide

unit is Fortran unit number used to open the window. The unit number of the default
input/output window is -2. title is the name of a previously added menu and text is the
name of a previously added menu command. The functions returns .true. if the menu
item is checked.

interface
 subroutine AWE_setItemChecked(unit, title, text, flag)
 integer(kind=any) :: unit
 character(len=*) :: title, text
 logical(kind=4) :: flag
 end subroutine AWE_setItemChecked
end interface

unit is Fortran unit number used to open the window. The unit number of the default
input/output window is -2. title is the name of a previously added menu and text is the
name of a previously added menu command. The menu command must also have been
specified in a previous AWE_setMenuItemCheckable reference. The menu command will
be checked if flag is .true.. The menu command will be unchecked if flag is .false..

interface
 subroutine AWE_menuItemEnable(unit, title, text, flag)
 integer(kind=any) :: unit
 character(len=*) :: title, text
 logical(kind=4) :: flag
 end subroutine AWE_menuItemEnable
end interface

unit is Fortran unit number used to open the window. The unit number of the default
input/output window is -2. title is the name of a previously added menu and text is the
name of a previously added menu command. The menu command will be enabled if flag
is .true.. The menu command will be disabled if flag is .false..

SPREAD SHEETS

You can create spread sheet windows in AWE to display rank 2 arrays. Subroutines are
provided to open, close, read, write, and label spread sheets. Menu commands, described
above, can be added to an AWE program to manipulate the data in the spread sheet.

interface
 subroutine AWE_CreateSpreadsheet(unit, title, rows, columns)
 integer(kind=4) :: unit
 character(len=*) :: title
 logical(kind=4) :: rows, columns
 end subroutine AWE_CreateSpreadsheet
end interface

This subroutine creates a spread sheet window. unit is the value used to identify the
spread sheet in subsequent spread sheet write, read, and close subroutine references,
described next. title is the title that will be displayed in the spread sheet window. rows
and columns are the number of rows and columns respectively in the spread sheet.

116 The Absoft Window Environment

Fortran User Guide

interface
 subroutine AWE_setHorizontalHeaderLabels(unit, labels)
 integer(kind=4) :: unit
 character(len=*), dimension(:) :: array
 end subroutine AWE_setHorizontalHeaderLabels
end interface

This subroutine is used to set the horizontal labels of the spread sheet. unit is the value
that was used to identify the spread sheet when it was opened. labels is a rank 1
character array used to label the columns.

interface
 subroutine AWE_setVerticalHeaderLabels(unit, labels)
 integer(kind=4) :: unit
 character(len=*), dimension(:) :: array
 end subroutine AWE_setVerticalHeaderLabels
end interface

This subroutine is used to set the vertical labels of the spread sheet. unit is the value that
was used to identify the spread sheet when it was opened. labels is a rank 1 character
array used to label the rows.

interface
 subroutine AWE_writeSpreadsheet(unit, array)
 integer(kind=4) :: unit
 any, dimension(:,:) :: array
 end subroutine AWE_writeSpreadsheet
end interface

This subroutine is used to transfer data from an array in your program to the spread sheet.
unit is the value that was used to identify the spread sheet when it was opened. array
can be any type or kind. Its shape must match the number of rows and columns specified
when the spreadsheet was opened.

interface
 subroutine AWE_readSpreadsheet(unit, array)
 integer(kind=4) :: unit
 any, dimension(:,:) :: array
 end subroutine AWE_readSpreadsheet
end interface

This subroutine is used to read the spread sheet data into an array in your program. unit
is the value that was used to identify the spread sheet when it was opened. array should
be the same type and kind used in writes to the spread sheet. The shape of array must
match the number of rows and columns specified when the spreadsheet was opened.

 The Absoft Window Environment 117

 Fortran User Guide

interface
 subroutine AWE_closeSpreadsheet(unit)
 integer(kind=4) :: unit
 end subroutine AWE_closeSpreadsheet
end interface

This subroutine closes the spread sheet window. unit is the value that was used to
identify the spread sheet when it was opened.

ALERT BOXES

An alert box can be displayed with the following function:

interface
 subroutine AWE_alertBox(title, text)
 character(len=*) :: title, text
 end subroutine AWE_alertBox
end interface

title is used as the title of the alert box text is the text that will be displayed in it.

PLOTS

AWE can be used to create several different types of plots: XY plots, contour plots, polar
charts, bar charts, and pie charts. The plots can be printed and saved to PNG (Portable
Network Graphics) format files. Default values are supplied for all label and color
parameters allowing you to quickly display your data. Each of these parameters is easily
customized giving you the flexibility to produce professional looking plots.

AWE plots use RGB colors extensively. Although default values are always supplied, you
can replace them with any RGB value you want. The Appendix, AWE RGB Colors, in this
manual lists a number of predefined values supplied in the AWE_Interfaces module that
are available to you by simply using their symbolic names.

An example of using AWE to create each of the three types of plots in provided in the
Absoft examples directory.

118 The Absoft Window Environment

Fortran User Guide

Pie Charts

Only three subroutine calls are needed to create, display and close pie charts. An AWE
derived type called AWE_PieChart is used with each subroutine to specify the pie chart. It
is defined as follows:

 TYPE AWE_PieChart
 INTEGER, PRIVATE :: id
 CHARACTER*(128) :: title = "Pie Chart"
 INTEGER :: chartBackgroundColor = z'FFE8E8E8'
 INTEGER :: chartTextColor = AWE_black
 CHARACTER*(128), ALLOCATABLE :: legendNames(:)
 INTEGER, ALLOCATABLE :: legendColors(:)
 END TYPE

id is the internal pie chart identifier. AWE will automatically assign a unique value when
the pie chart is created.

title it the pie chart title. It is centered and displayed on top of the chart.

chartBackgroundColor is the RGB background color the chart is displayed on.

chartTextColor is the RGB color of the legend text.

legendNames is an array of the names used for legends. The legend is displayed vertically
on the right side of the chart.

legendColors is an array of the RGB colors used for chart wedges.

To create a pie chart, declare an instance of AWE_PieChart, supply the parameters you
want to customize and call the AWE_createPiechart subroutine with the AWE_PieChart
variable as an argument:

 USE AWE_Interfaces
 TYPE(AWE_PieChart) :: piechart
 CALL AWE_createPiechart(piechart)

To display the pie chart, call the AWE_writePiechart subroutine with the AWE_PieChart
variable used to create the pie chart and a rank 1 array with your data. The rank 1 array
can be either INTEGER(KIND=4), INTEGER(KIND=8), or REAL of any KIND.

 REAL, DIMENSION(3) :: array=[3,4,5]
 CALL AWE_writePiechart(piechart, array)

To close the pie chart, call the AWE_closePiechart subroutine with the AWE_PieChart
variable used to create the pie chart:

 CALL AWE_closePiechart(piechart)

To save a pie chart to a file, call the AWE_savePiechart subroutine the AWE_PieChart
variable used to create the chart and the name of the file to save it to. The format will

 The Absoft Window Environment 119

 Fortran User Guide

automatically be determined by the file name extension. The default is PNG. PNG and
BMP are supported on all operating systems.

 CALL AWE_savePiechart(piechart,”chart.png”)

Bar Charts

Only three subroutine calls are needed to create, display and close bar charts. An AWE
derived type called AWE_BarChart is used with each subroutine to specify the bar chart. It
is defined as follows:

 TYPE AWE_BarChart
 INTEGER, PRIVATE :: id
 CHARACTER*(128) :: title = "Title"
 CHARACTER*(128) :: xAxisName = "xAxis"
 CHARACTER*(128) :: yAxisName = "yAxis"
 INTEGER :: chartBackgroundColor = z'FFE8E8E8'
 CHARACTER*(128), ALLOCATABLE :: legendNames(:)
 INTEGER, ALLOCATABLE :: legendColors(:)
 END TYPE

id is the internal bar chart identifier. AWE will automatically assign a unique value when
the bar chart is created.

title it the bar chart title. It is centered and displayed on top of the chart.

xAxisName is the name of the X axis. It is centered and displayed on bottom of the chart.

yAxisName is the name of the Y axis. It is centered and displayed on the left side of the
chart.

chartBackgroundColor is the RGB background color the chart is displayed on.

legendNames is an array of the names used for legends. The legend is displayed vertically
on the right side of the chart.

legendColors is an array of the RGB colors used for chart bars.

To create a bar chart, declare an instance of AWE_BarChart, supply the parameters you
want to customize and call the AWE_createBarchart subroutine with the AWE_BarChart
variable as an argument:

 USE AWE_Interfaces
 TYPE(AWE_BarChart) :: barchart
 CALL AWE_createBarchart(barchart)

To display the bar chart, call the AWE_writeBarchart subroutine with the AWE_BarChart
variable used to create the bar chart and a rank 2 array with your data. The rank 2 array
can be either INTEGER(KIND=4), INTEGER(KIND=8), or REAL of any KIND. The first
dimension is the number of bars per interval and second dimension is the intervals.

120 The Absoft Window Environment

Fortran User Guide

 REAL, DIMENSION(3,3):: array
 array = RESHAPE([4,2,8,4,3,6,1,8,2], [3,3])
 CALL AWE_writeBarchart(barchart, array)

To close the bar chart, call the AWE_closeBarchart subroutine with the AWE_BarChart
variable used to create the bar chart:

 CALL AWE_closeBarchart(barchart)

To save a bar chart to a file, call the AWE_saveBarchart subroutine the AWE_BarChart
variable used to create the chart and the name of the file to save it to. The format will
automatically be determined by the file name extension. The default is PNG. PNG and
BMP are supported on all operating systems.

 CALL AWE_saveBarchart(barchart,”chart.png”)

XY Plots

Only three subroutine calls are needed to create, display and close XY plots. Two AWE
derived types are used are used to specify the appearance of XY plots. The first one is
used for titles, and axis scaling. It is defined as follows:

 TYPE AWE_XYPlot
 INTEGER, PRIVATE :: id
 CHARACTER*(128) :: title = "Title"
 CHARACTER*(128) :: xAxisName = "xAxis"
 CHARACTER*(128) :: yAxisName = "yAxis"
 INTEGER :: chartBackgroundColor = z'FFE8E8E8'
 INTEGER :: xAxisScaleType = AWE_ScaleType_Linear
 REAL(KIND=8) :: xAxisScaleUB = undefined
 REAL(KIND=8) :: xAxisScaleLB = undefined
 REAL(KIND=8) :: xAxisScaleStep = undefined
 INTEGER :: yAxisScaleType = AWE_ScaleType_Linear
 REAL(KIND=8) :: yAxisScaleUB = undefined
 REAL(KIND=8) :: yAxisScaleLB = undefined
 REAL(KIND=8) :: yAxisScaleStep = undefined
 INTEGER :: showHorizontalGridLines = .TRUE.
 INTEGER :: showVerticalGridLines = .TRUE.
 END TYPE

id is the internal XY plot identifier. AWE will automatically assign a unique value when
the XY plot is created.

title is the XY plot title. It is centered and displayed on top of the chart.

xAxisName is the name of the X axis. It is centered and displayed on bottom of the plot.

yAxisName is the name of the Y axis. It is centered and displayed on the left side of the
plot.

 The Absoft Window Environment 121

 Fortran User Guide

chartBackgroundColor is the RGB background color the plot is displayed on.

xAxisScaleType specifies the scale type of the X axis. The two possible values are
AWE_ScaleType_Linear and AWE_ScaleType_Logarithmic.

xAxisScaleUB specifies the upper bound of the X axis. The default is the upper bound of
the x data.

xAxisScaleLB specifies the lower bound of the X axis. The default is the lower bound of
the x data.

xAxisScaleStep specifies the step increments of the X axis. The default is an increment
appropriate to the range of the x data.

yAxisScaleType specifies the scale type of the Y axis. The two possible values are
AWE_ScaleType_Linear and AWE_ScaleType_Logarithmic.

yAxisScaleUB specifies the upper bound of the Y axis. The default is the upper bound of
the y data.

yAxisScaleLB specifies the lower bound of the Y axis. The default is the lower bound of
the y data.

yAxisScaleStep specifies the step increments of the Y axis. The default is an increment
appropriate to the range of the y data.

showHorizontalGridLines enables or disables horizontal grid lines. The default is
.TRUE..

showVerticalGridLines enables or disables vertical grid lines. The default is .TRUE..

Multiple curves can plotted on a single XY plot. The color, style, and label for each curve
is specified in a unique AWE_XYPlot_Data derived type:

 TYPE AWE_XYPlot_Data
 CHARACTER*(128) :: curveLabel = "Label"
 INTEGER :: curveColor = AWE_steel_blue
 INTEGER :: curveWidth = 1
 INTEGER :: plotSymbolColor = AWE_crimson
 INTEGER :: plotSymbolSize = 6
 INTEGER :: plotSymbolStyle = AWE_PlotSymbol_NoSymbol
 INTEGER :: fittedCurve = AWE_InvertedCurve
 END TYPE AWE_XYPlot_Data

curveLabel is the label used to identify the curve. It is listed on the right side of the plot.

curveColor is the RGB color used to draw the curve.

curveWidth is the size of the pen used to draw the curve.

122 The Absoft Window Environment

Fortran User Guide

plotSymbolColor is the RGB color used to draw the symbol at the data points of the
plot. See plotSymbolStyle below.

plotSymbolSize is the size of the symbol drawn at the data points of the plot. See
plotSymbolStyle below.

plotSymbolStyle is the style of the symbol drawn at the data points of the plot. It can be
one of the following:

AWE_PlotSymbol_NoSymbol AWE_PlotSymbol_Ellipse
AWE_PlotSymbol_Rect AWE_PlotSymbol_Diamond
AWE_PlotSymbol_Triangle AWE_PlotSymbol_DTriangle
AWE_PlotSymbol_UTriangle AWE_PlotSymbol_LTriangle
AWE_PlotSymbol_RTriangle AWE_PlotSymbol_Cross
AWE_PlotSymbol_XCross AWE_PlotSymbol_HLine
AWE_PlotSymbol_VLine AWE_PlotSymbol_Star1
AWE_PlotSymbol_Star2 AWE_PlotSymbol_Hexagon

fittedCurve can be either AWE_InvertedCurve or AWE_FittedCurve.

To create an XY plot, declare an instance of AWE_XYPlot, supply the parameters you want
to customize and call the AWE_createXYPlot subroutine with the AWE_XYPlot variable as
an argument:

 USE AWE_Interfaces
 TYPE(AWE_XYPlot) :: xyplot
 CALL AWE_createXYPlot(xyPlot)

To plot an XY curve, call the AWE_writeXYPlot subroutine with the AWE_XYPlot
variable used to create the plot, a rank 2, shape (2,:) array, and an instance of
AWE_XYPlot_Data variable. The rank 2 array can be either INTEGER(KIND=4),
INTEGER(KIND=8), or REAL of any KIND.

 TYPE(AWE_XYPlot_Data) :: plotData
 REAL, DIMENSION(2,5) :: array
 array = RESHAPE([2,5,4,3,6,7,8,5,10,11], [2,5])
 CALL AWE_writeXYPlot(xyplot, array, plotData)

To close the XY plot, call the AWE_closeXYPlot subroutine with the AWE_XYPlot
variable used to create the plot:

 CALL AWE_closeXYPlot(xyPlot)

To clear an XY plot, call the AWE_clearXYPlot subroutine with the AWE_XYPlot variable
used to create the plot:

 CALL AWE_clearXYPlot(xyPlot)

To save a plot to a file, call the AWE_saveXYPlot subroutine the AWE_XYPlot variable
used to create the plot and the name of the file to save it to. The format will automatically

 The Absoft Window Environment 123

 Fortran User Guide

be determined by the file name extension. The default is PNG. PNG and BMP are
supported on all operating systems.

 CALL AWE_saveXYPlot(xyplot,”plot.png”)

Contour Plots

A contour plot is a two-dimensional representation of a three dimensional dat. Two AWE
derived types are used are used to specify the appearance of contour plots. The first one is
used for titling the plot. It is defined as follows:

TYPE AWE_ContourPlot
 INTEGER, PRIVATE id
 CHARACTER*(128) :: title = "Title"
 LOGICAL :: showHorizontalGridLines = .FALSE.
 LOGICAL :: showVerticalGridLines = .FALSE.
 LOGICAL :: showImageBlend = .TRUE.
 LOGICAL :: showContourLines = .FALSE.
END TYPE

title is the contour plot title. It is centered and displayed on top of the plot.

showHorizontalGridLines enable or disable horizontal grid lines. The default is
.FALSE.

showVerticalGridLines enable or disable vertical grid lines. The default is .FALSE.

showImageBlend enable or disable display of contour color map. The default is .TRUE.

showContourLines enable or disable display of contour lines for the contour levels. The
default is .FALSE.

The second derived type supplies the color map, thresholds, and axis limits.

TYPE AWE_ContourPlot_Data
 CHARACTER*(128) :: rightAxisName = "Label"
 INTEGER, ALLOCATABLE :: mapColors(:)
 REAL(KIND=KIND(1.0d0)), ALLOCATABLE :: mapThresholds(:)
 REAL(KIND=KIND(1.0d0)), ALLOCATABLE :: contourLevels(:)
 REAL(KIND=KIND(1.0d0)) xmin, xmax, ymin, ymax, zmin, zmax
END TYPE AWE_ContourPlot_Data

rightAxisName is the name of the Z axis and is displayed on the right side of the plot.

mapColors is an array of colors used to define three dimensional depths.

mapThresholds is an array of z axis color thresholds. The thresholds must be a vector
greater than 1 and range from 0.0 - 1.0. The z values are mapped into the thresholds to
produce the color.

124 The Absoft Window Environment

Fortran User Guide

contourLevels is an array of values that determine the placement of contour lines when
they are enabled.

xmin, xmax, ymin, ymax, zmin, and zmax are the axes limits.

To create a contour plot, declare an instance of AWE_ContourPlot, supply the parameters
you want to customize and call the AWE_createContourPlot subroutine with the
AWE_ContourPlot variable as an argument:

 USE AWE_Interfaces
 TYPE(AWE_ContourPlot) :: ContourPlot
 CALL AWE_createContourPlot(ContourPlot)

To plot contour, call the AWE_writeContourPlot subroutine with the AWE_ContourPlot
variable used to create the plot, a double precision function name to generate the z axis
data, and an instance of AWE_ContourPlot_Data variable..

 TYPE(AWE_ContourPlot_Data) :: plotData
 REAL(KIND=KIND(1.0d0), EXTERNAL :: ContourCallback
 CALL AWE_writeContourPlot(ContourPlot, ContourCallback, plotData)

ContourCallback is a pure, double precision function that takes two double precision
arguments, x and y, and returns z as its result:

 INTERFACE
 PURE REAL(KIND=KIND(1.0d0) FUNCTION ContourCallback (x,y)
 REAL(KIND=KIND(1.0d0), INTENT(IN) :: x,y
 END FUNCTION ContourCallback
 END INTERFACE

NOTE: ContourCallback is called from a separate thread and cannot be used to reliably
create and/or share data with other routines in your program as there is no way to ensure
synchronization.

To close the contour plot, call the AWE_closeContourPlot subroutine with the
AWE_ContourPlot variable used to create the plot:

 CALL AWE_closeContourPlot(ContourPlot)

To clear a contour plot, call the AWE_clearContourPlot subroutine with the
AWE_ContourPlot variable used to create the plot:

 CALL AWE_clearContourPlot(ContourPlot)

To save a plot to a file, call the AWE_saveContourPlot subroutine the AWE_ContourPlot
variable used to create the plot and the name of the file to save it to. The format will
automatically be determined by the file name extension. The default is PNG. PNG and
BMP are supported on all operating systems.

 CALL AWE_saveContourPlot(ContourPlot,”plot.png”)

 The Absoft Window Environment 125

 Fortran User Guide

Polar Plots

Only three subroutine calls are needed to create, display and close polar plots. Two AWE
derived types are used are used to specify the appearance of polar plots. The first one is
used for the plot title and background. It is defined as follows:

 TYPE AWE_PolarPlot
 INTEGER, PRIVATE id
 CHARACTER*(128) :: title = "Title"
 INTEGER :: chartBackgroundColor = AWE_dark_blue
 END TYPE PolarPlot

id is the internal polar plot identifier. AWE will automatically assign a unique value
when the polar plot is created.

title it the polar plot title. It is centered and displayed on top of the chart.

chartBackgroundColor is background color of the polar axis.

The color, style, and label for each plot is specified in a unique AWE_PolarPlot_Data
derived type:

 TYPE AWE_PolarPlot_Data
 CHARACTER*(128) :: curveLabel = "Label"
 INTEGER :: curveColor = AWE_yellow
 INTEGER :: curveWidth = 1
 INTEGER :: plotSymbolColor = AWE_red
 INTEGER :: plotSymbolSize = 3
 INTEGER :: plotSymbolStyle = AWE_PlotSymbol_NoSymbol
 END TYPE AWE_PolarPlot_Data

curveLabel is the label used to identify the curve. It is listed on the bottom of the plot.

curveColor is RGB color used to draw the curve.

curveWidth is the size of the pen used to draw the curve.

plotSymbolColor is the RGB color used to draw the symbol at the data points of the
plot. See plotSymbolStyle below.

plotSymbolSize is the size of the symbol drawn at the data points of the plot. See
plotSymbolStyle below.

plotSymbolStyle is the style of the symbol drawn at the data points of the plot. It can be
one of the following:

AWE_PlotSymbol_NoSymbol AWE_PlotSymbol_Ellipse
AWE_PlotSymbol_Rect AWE_PlotSymbol_Diamond
AWE_PlotSymbol_Triangle AWE_PlotSymbol_DTriangle
AWE_PlotSymbol_UTriangle AWE_PlotSymbol_LTriangle
AWE_PlotSymbol_RTriangle AWE_PlotSymbol_Cross
AWE_PlotSymbol_XCross AWE_PlotSymbol_HLine
AWE_PlotSymbol_VLine AWE_PlotSymbol_Star1
AWE_PlotSymbol_Star2 AWE_PlotSymbol_Hexagon

126 The Absoft Window Environment

Fortran User Guide

To create a polar plot, declare an instance of AWE_PolarPlot, supply the parameters you
want to customize and call the AWE_createPolarPlot subroutine with the
AWE_PolarPlot variable as an argument:

 USE AWE_Interfaces
 TYPE(AWE_PolarPlot) :: plot
 CALL AWE_createPolarPlot(plot)

To plot an polar plot, call the AWE_writePolarPlot subroutine with the AWE_PolarPlot
variable used to create the plot, a rank 2, shape (2,:) array, and an instance of
AWE_PolarPlot_Data variable. The rank 2 array can be either INTEGER(KIND=4),
INTEGER(KIND=8), or REAL of any KIND.

 TYPE(AWE_PolarPlot_Data) :: plotData
 REAL, DIMENSION(2,600) :: array
 CALL AWE_writePolarPlot(plot, array, plotData)

To close the polar plot, call the AWE_closePolarPlot subroutine with the
AWE_PolarPlot variable used to create the plot:

 CALL AWE_closePolarPlot(plot)

To clear a polar plot, call the AWE_clearPolarPlot subroutine with the AWE_PolarPlot
variable used to create the plot:

 CALL AWE_clearPolarPlot(plot)

To save a plot to a file, call the AWE_savePolarPlot subroutine the AWE_PolarPlot
variable used to create the plot and the name of the file to save it to. The format will
automatically be determined by the file name extension. The default is PNG. PNG and
BMP are supported on all operating systems.

 CALL AWE_savePolarPlot(plot,”plot.png”)

CANVASES

A canvass provides a drawing surface and graphics primitives that can be used to create a
free form drawing. Among the many primitives provided are line, rectangle, arc, are
polygon, and commands. A number of derived types are used with canvases. They will be
described first.

 The Absoft Window Environment 127

 Fortran User Guide

Canvas Derived Types

The AWE_Canvas type is used to specify the canvas for creation and all subsequent calls.

 TYPE AWE_Canvas
 INTEGER, PRIVATE :: id
 CHARACTER(LEN=128) :: title = ""
 INTEGER :: width = 500
 INTEGER :: height = 500
 INTEGER :: backgroundColor = AWE_white
 END TYPE AWE_Canvas

id is the internal canvas identifier. AWE will automatically assign a unique value when
the canvas is created.

title is the canvas window title.

Width and height are the dimensions of the canvas. The defaults are 500 x 500.

backgroundColor is the color of the drawing background.

An AWE_CanvasPen defines the style of the pen used with various other drawing
commands.

 TYPE AWE_CanvasPen
 REAL :: penWidth = 0.0
 INTEGER :: penStyle = CanvasPenStyle_SolidLine
 INTEGER :: capStyle = CanvasPenCapStyle_SquareCap
 INTEGER :: joinStyle = CanvasPenJoinStyle_BevelJoin
 INTEGER :: penColor = AWE_black
 END TYPE AWE_CanvasPen

penWidth is the width of the pen.

penStyle is the style of the pen. The following styles are available:

CanvasPenStyle_NoPen CanvasPenStyle_SolidLine
CanvasPenStyle_DashLine CanvasPenStyle_DotLine
CanvasPenStyle_DashDotLine CanvasPenStyle_DashDotDotLine

capStyle defines the shape of the end cap of line segment drawn with the pen. The
following styles are available:

 CanvasPenCapStyle_SquareCap CanvasPenCapStyle_FlatCap
 CanvasPenCapStyle_RoundCap

joinStyle defines the shape of joint between two line segments drawn with the pen. The
following styles are available:

 CanvasPenJoinStyle_BevelJoin CanvasPenJoinStyle_MiterJoin = 1
 CanvasPenJoinStyle_RoundJoin

128 The Absoft Window Environment

Fortran User Guide

penColor defines the color of the pen.

An AWE_CanvasBrush defines the style of the brush used with various other drawing
commands.

 TYPE AWE_CanvasBrush
 INTEGER :: brushColor = AWE_black
 END TYPE AWE_CanvasBrush

brushColor defines the color of the brush.

An AWE_Point defines a point on the canvas.

 TYPE AWE_Point
 REAL x,y
 END TYPE AWE_Point

x and y are the coordinates of the point.

An AWE_Size defines two dimensional space.

 TYPE AWE_Size
 REAL width,height
 END TYPE AWE_Size

width and height are the dimensions.

An AWE_Line defines a line on the canvas.

 TYPE AWE_Line
 TYPE(AWE_Point) :: start, end
 END TYPE AWE_Line

start and end are the end points of the line. They are given as instances of an
AWE_Point type.

An AWE_Rect defines a rectangle on the canvas.

 TYPE AWE_Rect
 TYPE(AWE_Point) :: origin
 TYPE(AWE_Size) :: size
 END TYPE AWE_Rect

origin is given an AWE_Point and is the origin of the rectangle.

size is given an AWE_Size and is the width and height of the rectangle.

 The Absoft Window Environment 129

 Fortran User Guide

An AWE_Font defines a font for use with text drawing routines on the canvas.

 TYPE AWE_Font
 CHARACTER(LEN=64) :: familyName = "Sans"
 INTEGER :: pointSize = 12
 INTEGER :: weight = AWE_FontWeight_Normal
 LOGICAL :: italic = .false.
 END TYPE AWE_Font

familyName defines the font family of the font.

pointSize defines the size of the font.

weight defines the weight of the font. The following weights are available:

 AWE_FontWeight_Light AWE_FontWeight_Normal
 AWE_FontWeight_DemiBold AWE_FontWeight_Bold
 AWE_FontWeight_Black

italic specified if the font is be in italics. The default is .false..

Canvas Routines

The following routines are used to create, close, and draw on the canvas.

To create a canvas, declare an instance of AWE_Canvas, supply the parameters you want to
customize and call the AWE_createCanvas subroutine with the AWE_Canvas variable as
an argument:

 USE AWE_Interfaces
 TYPE(AWE_Canvas) :: canvas
 CALL AWE_createCanvas(canvas)

To draw lines on a canvas, use the AWE_canvasDrawLines subroutine.

 USE AWE_Interfaces
 TYPE(AWE_Canvas) :: canvas
 TYPE(AWE_Line) :: lines(:)
 TYPE(AWE_CanvasPen), OPTIONAL :: pen
 CALL AWE_createDrawLines(canvas, lines, pen)

Note that lines is an array of AWE_Line types. If the optional pen argument is omitted,
the last pen used will be supplied.

130 The Absoft Window Environment

Fortran User Guide

To draw an arc on a canvas, use the AWE_canvasDrawArc subroutine.

 USE AWE_Interfaces
 TYPE(AWE_Canvas) :: canvas
 TYPE(AWE_Rect) :: rect
 REAL startAngle, spanAngle
 TYPE(AWE_CanvasPen), OPTIONAL :: pen
 CALL AWE_canvasDrawArc(canvas, rect, startAngle, spanAngle, pen)

rect defines the bounding rectangle. startAngle specifies the beginning of the arc in
degrees. spanAngle defines the arc in degrees. If the optional pen argument is omitted,
the last pen used will be supplied.

To draw rectangles on a canvas, use the AWE_canvasDrawRects subroutine.

 USE AWE_Interfaces
 TYPE(AWE_Canvas) :: canvas
 TYPE(AWE_Rect) :: rects(:)
 TYPE(AWE_CanvasPen), OPTIONAL :: pen
 TYPE(AWE_CanvasBrush), OPTIONAL :: brush
 CALL AWE_canvasDrawRects(canvas, rects, pen, brush)

Note that rects is an array of AWE_Rect types. If the optional pen and/or brush
arguments are omitted, the last pen and/or brush used will be supplied.

To draw rounded rectangles on a canvas, use the AWE_canvasDrawRoundedRects
subroutine.

 USE AWE_Interfaces
 TYPE(AWE_Canvas) :: canvas
 TYPE(AWE_Rect) :: rects(:)
 REAL :: xradius, yradius
 TYPE(AWE_CanvasPen), OPTIONAL :: pen
 TYPE(AWE_CanvasBrush), OPTIONAL :: brush
 CALL AWE_canvasDrawRoundedRects(canvas, rects, xradius,&
 yradius, pen, brush)

Note that rects is an array of AWE_Rect types. xradius and yradius control the rounded
corners. If the optional pen and/or brush arguments are omitted, the last pen and/or brush
used will be supplied.

To draw a polygon on a canvas, use the AWE_canvasDrawPolygon subroutine.

 USE AWE_Interfaces
 TYPE(AWE_Canvas) :: canvas
 TYPE(AWE_Point) :: points(:)
 TYPE(AWE_CanvasPen), OPTIONAL :: pen
 TYPE(AWE_CanvasBrush), OPTIONAL :: brush
 CALL AWE_canvasDrawPolygon(canvas, points, pen, brush)

If the optional pen and/or brush arguments are omitted, the last pen and/or brush used
will be supplied.

 The Absoft Window Environment 131

 Fortran User Guide

To draw a chord on a canvas, use the AWE_canvasDrawChord subroutine.

 USE AWE_Interfaces
 TYPE(AWE_Canvas) :: canvas
 TYPE(AWE_Rect) :: rect
 REAL startAngle, spanAngle
 TYPE(AWE_CanvasPen), OPTIONAL :: pen
 TYPE(AWE_CanvasBrush), OPTIONAL :: brush
 CALL AWE_canvasDrawChord(canvas, rect, startAngle, spanAngle, &
 pen, brush)

rect defines the bounding rectangle. startAngle specifies the beginning of the arc in
degrees. spanAngle defines the arc in degrees. If the optional pen and/or brush
arguments are omitted, the last pen and/or brush used will be supplied.

To draw a pie segment on a canvas, use the AWE_canvasDrawPie subroutine.

 USE AWE_Interfaces
 TYPE(AWE_Canvas) :: canvas
 TYPE(AWE_Rect) :: rect
 real startAngle, spanAngle
 TYPE(AWE_CanvasPen), OPTIONAL :: pen
 TYPE(AWE_CanvasBrush), OPTIONAL :: brush
 CALL AWE_canvasDrawPie(canvas, rect, startAngle, spanAngle, &
 pen, brush)

rect defines the bounding rectangle. startAngle specifies the beginning of the arc in
degrees. spanAngle defines the arc in degrees. If the optional pen and/or brush
arguments are omitted, the last pen and/or brush used will be supplied.

To draw an ellipse on a canvas, use the AWE_canvasDrawEllipse subroutine.

 USE AWE_Interfaces
 TYPE(AWE_Canvas) :: canvas
 TYPE(AWE_Rect) :: rect
 TYPE(AWE_CanvasPen), OPTIONAL :: pen
 TYPE(AWE_CanvasBrush), OPTIONAL :: brush
 CALL AWE_canvasDrawEllipse(canvas, rect, pen, brush)

rect defines the bounding rectangle. The ellipse will be sized to fit the rectangle. If the
optional pen and/or brush arguments are omitted, the last pen and/or brush used will be
supplied.

To draw text on a canvas, use the AWE_canvasDrawText subroutine.

 USE AWE_Interfaces
 TYPE(AWE_Canvas) :: canvas
 TYPE(AWE_Rect) :: rect
 CHARACTER(LEN=*) text
 INTEGER, optional :: flags
 TYPE(AWE_Font) :: font
 INTEGER, OPTIONAL:: textColor = AWE_black
 CALL AWE_canvasDrawText(canvas, rect, text, flags, font, &
 textColor)

132 The Absoft Window Environment

Fortran User Guide

rect defines the bounding rectangle. The ellipse will be sized to fit the rectangle. If the
optional textColor argument is omitted, it defaults to AWE_black. The flag arguments
can be a combination of:

AWE_TextFlag_None AWE_TextFlag_AlignLeft
AWE_TextFlag_AlignRight AWE_TextFlag_AlignHCenter
AWE_TextFlag_AlignJustify AWE_TextFlag_AlignTop
AWE_TextFlag_AlignBottom AWE_TextFlag_AlignVCenter
AWE_TextFlag_AlignCenter AWE_TextFlag_TextDontClip
AWE_TextFlag_TextSingleLine AWE_TextFlag_TextExpandTabs
AWE_TextFlag_TextShowMnemonic AWE_TextFlag_TextWordWrap
AWE_TextFlag_TextIncludeTrailingSpaces

To display a picture on a canvas, use the AWE_canvasDrawPicture subroutine.

 USE AWE_Interfaces
 TYPE(AWE_Canvas) :: canvas
 TYPE(AWE_Rect) :: rect
 CHARACTER(LEN=*) filename
 CALL AWE_canvasDrawPicture(canvas, rect, filename)

rect defines the bounding rectangle.

To close the canvas, call the AWE_closeCanvas subroutine with the AWE_Canvas variable
used to create the canvas:

 CALL AWE_closeCanvas(canvas)

To clear a canvas, call the AWE_clearCanvas subroutine with the AWE_Canvas variable
used to create the canvas:

 CALL AWE_clearCanvas(canvas)

To save a canvas to a file, call the AWE_saveCanvas subroutine the AWE_ContourPlot
variable used to create the canvas and the name of the file to save it to. The format will
automatically be determined by the file name extension. The default is PNG. PNG and
BMP are supported on all operating systems.

 CALL AWE_saveCanvas(canvas,”canvas.png”)

DIALOGS

Modal dialogs can be easily created and displayed using AWE. A modal dialog requires
the user to interact with it before returning to the main program flow. A typical use of an
AWE dialog is to establish initial program parameters; however, they can be displayed at
any point in the program where you need them.

There are three steps to working with AWE dialogs: create the dialog, add items to the
dialog, and display the dialog. Dialog items automatically arranged vertically in the dialog
box in the order they are added.

 The Absoft Window Environment 133

 Fortran User Guide

Creating an AWE dialog

Before you can add items to a dialog you must create it. This done with the
AWE_createDialog subroutine call:

 USE AWE_Interfaces
 TYPE(AWE_FormDialog) :: dialog
 CALL AWE_createDialog(dialog)

The derived type AWE_FormDialog is defined as follows:

 TYPE AWE_FormDialog
 INTEGER, PRIVATE :: dialogID
 CHARACTER(LEN=128) title
 END TYPE

dialogID is the internal dialog identifier. AWE will automatically assign a unique value
when the dialog is created.

title is the text that will be displayed in the dialog title bar.

Adding Items to an AWE dialog

Dialog items are displayed in a dialog in the order they are added. Items are added to a
dialog with the AWE_addToDialog subroutine call:

 CALL AWE_addToDialog(item, dialog)

item is the dialog item to add (see below).

dialog is the instance of the AWE_FormDialog derived type used to create the dialog.

The following sections describe the items and how to add them to a dialog.

Dialog Labels

Static text is added to a dialog with an AWE_FormLabel derived type:

 TYPE AWE_FormLabel
 INTEGER, PRIVATE :: id
 CHARACTER(LEN=128) :: text = ""
 END TYPE

id is the internal dialog item identifier. AWE will automatically assign a unique value
when the item is added to the dialog.

text is the text that will be displayed in the dialog box.

 USE AWE_Interfaces
 TYPE(AWE_FormDialog) :: dialog
 TYPE(AWE_FormLabel) :: label

134 The Absoft Window Environment

Fortran User Guide

 dialog%title = "title"
 Label%text = "label"
 CALL AWE_createDialog(dialog)
 CALL AWE_AddToDialog(label, dialog)

Dialog Combo Box

A combo box is a type of drop down menu with a title and selections. It is added to a
dialog with an AWE_FormComboBox derived type:

 TYPE AWE_FormComboBox
 INTEGER, PRIVATE :: id
 CHARACTER (LEN=128) :: title = ""
 CHARACTER (LEN=128), ALLOCATABLE, DIMENSION(:) :: items
 INTEGER selected = 1
 END TYPE

id is the internal dialog item identifier. AWE will automatically assign a unique value
when the item is added to the dialog.

title is the text that will be displayed to the left of the combo box.

items is the array of items text that will be displayed in the combo box menu.

selected contains the array index of the selected combo box item when the dialog is
dismissed. The default is 1, but can be preset to any of the menu items by setting
selected to the desired value before the item is added to the dialog.

 USE AWE_Interfaces
 TYPE(AWE_FormDialog) :: dialog
 TYPE(AWE_FormComboBox) :: comboBox
 dialog%title = "title"
 ALLOCATE(comboBox%items(3))
 comboBox%title = "label"
 comboBox%items(1) = "Item1"
 comboBox%items(2) = "Item2"
 comboBox%items(3) = "Item3"
 CALL AWE_createDialog(dialog)
 CALL AWE_AddToDialog(comboBox, dialog)

Dialog Check Box

A check box is a dialog item with a title and a checkable box. It is added to a dialog with
an AWE_FormCheckBox derived type:

 TYPE AWE_FormCheckBox
 INTEGER, PRIVATE :: id
 CHARACTER (LEN=128) :: title = ""
 LOGICAL checked = .false.
 END TYPE

id is the internal dialog item identifier. AWE will automatically assign a unique value
when the item is added to the dialog.

 The Absoft Window Environment 135

 Fortran User Guide

title is the text that will be displayed to the left of the check box.

checked indicates the state of the check box item when the dialog is dismissed. A value
of .true. means the box is checked and a value of .false. means it is unchecked. The
default is unchecked. To preset the state to checked, set checked=.true. before adding
the item to the dialog.

 USE AWE_Interfaces
 TYPE(AWE_FormDialog) :: dialog
 TYPE(AWE_FormCheckBox) :: checkBox
 dialog%title = "title"
 checkBox%title = "label"
 CALL AWE_createDialog(dialog)
 CALL AWE_AddToDialog(checkBox, dialog)

Dialog Text Edit Box

A text edit box is a dialog item with a title and a box where text can be entered. It is
added to a dialog with an AWE_FormLineEdit derived type:

 TYPE AWE_FormLineEdit
 INTEGER, PRIVATE :: id
 CHARACTER (LEN=128) :: title = ""
 CHARACTER (LEN=128) :: text = ""
 CHARACTER (LEN=128) :: placeholder = ""
 END TYPE

id is the internal dialog item identifier. AWE will automatically assign a unique value
when the item is added to the dialog.

title is the text that will be displayed to the left of the box.

text is the variable that any text entered by the user will be returned in. If this variable is
initialized before adding the item to the dialog, it will be displayed in the dialog as the
default value.

placeholder is text that will be displayed, grayed out, in the box. As soon as the cursor
is placed in the text box, placeholder disappears. It is often useful as a prompt. If text
is initialized, placeholder is ignored.

 USE AWE_Interfaces
 TYPE(AWE_FormDialog) :: dialog
 TYPE(AWE_FormLineEdit) :: lineEdit
 dialog%title = "title"
 LineEdit%title = "label"
 CALL AWE_createDialog(dialog)
 CALL AWE_AddToDialog(LineEdit, dialog)

136 The Absoft Window Environment

Fortran User Guide

Dialog Radio Buttons

Radio buttons are a dialog item with a title and an array of buttons representing a single
choice that may be made. They are added to a dialog with an AWE_FormRadioButtons
derived type:

 TYPE AWE_FormRadioButtons
 INTEGER, PRIVATE :: id
 CHARACTER (LEN=128) :: title = ""
 CHARACTER (LEN=128), ALLOCATABLE, DIMENSION(:) :: items
 INTEGER :: selected = 1
 END TYPE

id is the internal dialog item identifier. AWE will automatically assign a unique value
when the item is added to the dialog.

title is the text that will be displayed above the buttons.

items is an array of character variables containing the text for the buttons. There will be
as many buttons as there are array elements.

selected returns the index of the selected button when the dialog is dismissed. It may be
initialized to any value between 1 and the dimension extent of items. The default
initialization is 1, the first radio button.

 USE AWE_Interfaces
 TYPE(AWE_FormDialog) :: dialog
 TYPE(AWE_FormRadioButtons) :: radioButtons
 dialog%title = "title"
 radioButtons%title = "Model"
 allocate (radioButtons%items(3))
 radioButtons%items(1) = "Small"
 radioButtons%items(1) = "Medium"
 radioButtons%items(1) = "Large"
 CALL AWE_createDialog(dialog)
 CALL AWE_AddToDialog(radioButtons, dialog)

Dialog File Selection Box

A file selection box item in a dialog consists of a title, a text box, and a file selection
browse button. It is used to select files or directories. A file name can be entered directly
in the text box. If the browse button is used, then the selection from the file selection
dialog will be entered in the box automatically. A file selection box item is added to a
dialog with an AWE_FormFileDialog derived type:

 TYPE AWE_FormFileDialog
 INTEGER, PRIVATE :: id
 CHARACTER (LEN=128) :: title = ""
 CHARACTER (LEN=128) :: defaultDirectory = ""
 CHARACTER (LEN=128) :: placeholder = ""
 CHARACTER (LEN=128) :: text = ""
 INTEGER :: chooseMode = AWE_FormFileDialog_chooseExistingFile
 END TYPE

 The Absoft Window Environment 137

 Fortran User Guide

id is the internal dialog item identifier. AWE will automatically assign a unique value
when the item is added to the dialog.

title is the text that will be displayed to the left of the box.

defaultDirectory is used to set a default directory for the file selection dialog that is
shown when the browse button is used.

text is the variable that any text entered by the user will be returned in. If this variable is
initialized before adding the item to the dialog, it will be displayed in the dialog as the
default value.

placeholder is text that will be displayed, grayed out, in the box. As soon as the cursor
is placed in the text box, placeholder disappears. It is often useful as a prompt. If text
is initialized, placeholder is ignored.

chooseMode determines the type of file selection dialog that is shown when the browse
button is used. Three types are available:

 AWE_FormFileDialog_chooseExistingFile
 AWE_FormFileDialog_chooseDirectory
 AWE_FormFileDialog_chooseNewFiles

Add a file selection box item to a dialog:

 USE AWE_Interfaces
 TYPE(AWE_FormDialog) :: dialog
 TYPE(AWE_ FormFileDialog) :: fileDialog
 dialog%title = "title"
 fileDialog%title = "label"
 CALL AWE_createDialog(dialog)
 CALL AWE_AddToDialog(fileDialog, dialog)

Display an AWE Dialog

To display an AWE dialog, use the AWE_showDialog function:

 INTEGER :: result
 result = AWE_showDialog(dialog)

If result==0, the Cancel button was clicked. If result==1, the OK button was clicked.

138 The Absoft Window Environment

Fortran User Guide

TIMERS

A timer schedules a subroutine in your program to be executed at specified intervals. A
derived type is used to define the timer interval and if the timer is to fire only once or be
rescheduled after it goes off.
 TYPE AWE_Timer
 INTEGER, PRIVATE :: id
 INTEGER :: interval = 100
 LOGICAL :: singleShot = .false.
 END TYPE AWE_Timer

id is the internal timer item identifier. AWE will automatically assign a unique value
when the timer is scheduled.

interval is the timer interval in milliseconds.

singleShot is used to indicate if the timer is be rescheduled after it goes off. The default
is .false..

To create a timer, declare an instance of AWE_Timer, supply the parameters you want to
customize and call the AWE_createTimer subroutine with the AWE_Timer variable and the
name of the subroutine to be called as arguments:

 USE AWE_Interfaces
 TYPE(AWE_Timer) :: timer
 EXTERNAL callBack
 CALL AWE_createTimer(timer, callBack)

If the main program has exited, the timer is started immediately. Otherwise, the timer is
queued and will start as soon as the main program exits or a STOP statement is executed.

To cancel a timer, call the AWE_destroyTimer subroutine with the AWE_Timer variable
used to create the timer:

 SUBROUTINE AWE_destroyTimer(timer)
 TYPE(AWE_Timer) :: timer
 END SUBROUTINE

 139

 Fortran User Guide

CHAPTER 9

Interfacing With Other Languages

This chapter discusses interfacing Absoft Pro Fortran with the C Programming Language
and assembly language, debugging programs, and profiling executables. Although Fortran
programs can call C functions easily with just a CALL statement, the sections below
should be read carefully to understand the differences between argument and data types.

INTERFACING WITH C

Absoft FORTRAN 77 is designed to be fully compatible with the Microsoft C/C++
compilers. The linker can be used to freely link C modules with FORTRAN main
programs and vice versa. However, some precautions must be taken to ensure proper
interfacing. Data types in arguments and results must be equivalent and some changes to
the linking procedure must be made. All of these rules are detailed below. Be sure to
follow them closely, or the results will be both unpredictable and invalid.

140 Interfacing With Other Languages

Fortran User Guide

FORTRAN Data Types in C

Declarations for FORTRAN data types and the equivalent declarations in C are as
follows:

 FORTRAN C

LOGICAL*1 l unsigned char l;
LOGICAL*2 m unsigned short m;
LOGICAL*4 n unsigned long n;

CHARACTER*n c char c[n];

INTEGER*1 i char i;
INTEGER*2 j short j;
INTEGER*4 k int k;
 long k;
INTEGER*8 l long long l;

REAL*4 a float a;
REAL*8 d double d;

COMPLEX*8 c struct complx {
 float x;
 float y;
 };
 struct complx c;

COMPLEX*16 d struct dcomp {
 double x;
 double y;
 };
 struct dcomp d;

RECORD ... struct ...

1. On 64-bit systems, long is equivalent to INTEGER*8.

The storage allocated by the C language declarations will be identical to the storage
allocated by the corresponding FORTRAN declaration. There are additional cautions
when passing FORTRAN strings to C routines. See Passing Strings to C later in this
chapter for more information.

Passing arguments Between C and FORTRAN

The Absoft FORTRAN 77 compiler uses the calling conventions of the C language.
Therefore, a FORTRAN routine may be called from C without being declared in the
C program and vice versa, if the routine returns all results in parameters. Otherwise, the
function must be typed compatibly in both program units. In addition, care must be taken
to pass compatible parameter types between the languages. Refer to the table in the
previous section.

 Interfacing With Other Languages 141

 Fortran User Guide

By default, Fortran external names are emitted with all lowercase letters and a single
trailing underscore.

Reference Parameters

By default, all FORTRAN arguments to routines are passed by reference, which means
pointers to the data are passed, not the actual data. Therefore, when calling a FORTRAN
procedure from C, pointers to arguments must be passed rather than values. Both integer
and floating point values may be passed by reference. Consider the following example:

SUBROUTINE sub(a_dummy,i_dummy)
REAL*4 a_dummy
INTEGER*4 i_dummy

WRITE (*,*) 'The arguments are ',a_dummy, ' and ',i_dummy
RETURN
END

The above subroutine is called from FORTRAN using the CALL statement:

a_actual = 3.3
i_actual = 9
CALL sub(a_actual, i_actual)
END

However, to call the subroutine from C, the function reference must explicitly pass
pointers to the actual parameters as follows:

main()
{
float a_actual;
int i_actual;

 a_actual = 3.3;
 i_actual = 9;
 sub_(&a_actual,&i_actual);
}

Note that the values of the actual parameters may then be changed in the FORTRAN sub-
routine with an assignment statement or an I/O statement.

142 Interfacing With Other Languages

Fortran User Guide

When calling a C function from FORTRAN with a reference parameter, the C parameters
are declared as pointers to the data type and the FORTRAN parameters are passed
normally:

PROGRAM convert_to_radians
WRITE (*,*) 'Enter degrees:'
READ (*,*) c
CALL c_rad(c)
WRITE (*,*) 'Equal to ',c,' radians'
END

void c_rad_(c)
float *c;
{
 float deg_to_rad = 3.14159/180.0;
 *c = *c * deg_to_rad;
}

Value Parameters

Absoft FORTRAN 77 provides the intrinsic function [%]VAL for passing value
parameters. Although there is generally no need to pass a value directly to a FORTRAN
procedure, these functions may be used to pass a value to a C function:

WRITE (*,*) 'Enter an integer:'
READ (*,*) i
CALL c_fun(VAL(i))
END

void c_fun_(i)
int i;
{
 printf ("%d is ", i);
 if (i % 2 == 0)
 printf ("even.\n");
 else
 printf ("odd.\n");
}

The value of i will be passed directly to c_fun, and will be left unaltered upon return.

Value parameters can be passed from C to FORTRAN with use of the VALUE statement.
The arguments that are passed by value are declared as VALUE.

 void c_fun()
 {
 void fortran_sub_();
 int i;

 fortran_sub(i);
 }

 SUBROUTINE fortran_sub_(i)
 VALUE i

 Interfacing With Other Languages 143

 Fortran User Guide

 ...
 END

Note that C will pass all floating point data as double precision by default.

Indirection (the LOC Function)

The [%]LOC function is provided to give one level of indirection. The argument to [%]LOC
must be a scalar name, an array name or the name of an external procedure. The function
returns the address of its argument as a 32-bit integer.

This example illustrates the use of LOC to pass an array. Note that this is a one-
dimensional array. Due to the different ordering used by C and FORTRAN for arrays,
multi-dimensional arrays cannot be freely passed and indexed between the languages:

INTEGER*4 ia(10)

CALL c_fun(LOC(ia))
WRITE(*,*) ia
END

void c_fun_(i)
int *i[10];
{
int j;

 for(j=0; j<10; j++)
 (*i)[j] = j;
}

Function Results

In order to obtain function results in FORTRAN from C language functions and vice
versa, the functions must be typed equivalently in both languages: either INTEGER, REAL,
DOUBLE PRECISION, RECORD, or POINTER. All other data types must be returned in
reference parameters. The following are examples of the passing of function results
between FORTRAN and C.

144 Interfacing With Other Languages

Fortran User Guide

A Call to C from FORTRAN

PROGRAM callc
INTEGER*4 cmax, A, B

WRITE (*,*) 'Enter two numbers:'
READ (*,*) A, B
WRITE (*,*) 'The largest of', A,' and', B,' is', cmax(A,B)
END

int cmax_(x,y)
int *x,*y;
{
 return((*x >= *y) ? *x : *y);
}

A Call to FORTRAN from C

main()
{
float qt_to_liters_(), qt;

 printf ("Enter number of quarts:\n");
 scanf ("%f",&qt);
 printf("%f quarts = %f liters.\n", qt, qt_to_liters_(&qt));
}

REAL*4 FUNCTION qt_to_liters(q)
REAL*4 q

qt_to_liters = q * 0.9461
END

Passing Strings to C

FORTRAN strings are a sequence of characters padded with blanks out to their full fixed
length, while strings in C are a sequence or array of characters terminated by a null
character. Therefore, when passing FORTRAN strings to C routines, eliminate the extra
blanks and terminate them with a null character. The following FORTRAN expression
will properly pass the FORTRAN string anystring to the C routine CPrint:

PROGRAM cstringcall
character*255 string
string = 'Moscow on the Hudson'
CALL cprint(TRIM(string)//CHAR(0))
END

void cprint_(anystring)
char *anystring[];
{
 printf ("%s\n",anystring);
}

 Interfacing With Other Languages 145

 Fortran User Guide

This example will neatly output “Moscow on the Hudson”. If the TRIM function was not
used, the same string would be printed, but followed by 235 blanks. If the CHAR(0) was
omitted, C would print characters until a null character was encountered, whenever that
might be.

In Absoft FORTRAN, the -K option may be used to allow embedded escape sequences in
strings. The sequence for a null “\0” may be used to pass string constants as argument:

character*15 Fstring
CALL cprint("string constant\0") ! null terminated string

Fstring = "string constant" ! blank padded string
CALL cprint(TRIM(Fstring)//"\0") ! append a null

You can also take advantage of the method Absoft Fortran compilers employ to pass the
lengths of CHARACTER arguments on the stack. After the end of the formal argument list,
the lengths of any CHARACTER arguments in the list are passed by value as 32-bit integers.
The lengths are passed in the order they appear in the argument list and only CHARACTER
argument lengths are passed. For example:

main()
{
int i = 1;
double d = 3.0;
void fortran_sub_();

 fortran_sub_(&i, "two", &d, 3);
}

SUBROUTINE fortran_sub(i, s, d)
INTEGER i
CHARACTER*(*) s
DOUBLE PRECISION d

PRINT *, i, s, d
END

Naming Conventions

Global names in FORTRAN include procedure names and COMMON block names, both
of which are significant to 31 characters. All global procedure names are folded to lower
case and have a single underscore (“_”) appended unless the compiler character case and
symbol decoration options are used. All COMMON block names are folded to lower case
and have the characters “_C” prepended unless the compiler character case and symbol
decoration options are used. All other symbols in FORTRAN are manipulated as
addresses or offsets from local labels and are invisible to the linker.

Procedure Names

Names of functions and subroutines in Fortran programs will appear in the assembly
language source output or object file records with their names folded to lower case and

146 Interfacing With Other Languages

Fortran User Guide

with a single underscore (“_”) appended. Symbolic names in the C language are case
sensitive, distinguishing between upper and lower case characters. To make FORTRAN
code compatible with C, use the –YEXT_NAMES=ASIS and –YEXT_SFX=”” options,
the !DIR$ NAME directive, or the BIND attribute.

Accessing COMMON Blocks from C

COMMON block names are global symbols formed in Absoft Pro Fortran folding the
name of the common block to lower case and then prepending the characters “_C” to the
name of the COMMON block. The elements of the COMMON block can be accessed
from the C language by declaring an external structure using this name.

For example:

COMMON /comm/ a,b,c

can be accessed with the global declaration:

extern struct {
 float a;
 float b;
 float c;
 } _Ccomm;

Declaring C Structures In FORTRAN

If there are equivalent data types in FORTRAN for all elements of a C structure, a
RECORD can be declared in FORTRAN to match the structure in C:

C FORTRAN

struct str { STRUCTURE /str/
char c; CHARACTER c
long l; INTEGER*4 l
float f; REAL*4 f
double d; REAL*8 d
}; END STRUCTURE
struct str my_struct; RECORD /str/ my_struct

By default, the alignment of the C structure should be identical to the FORTRAN
RECORD. Refer to the Specification and DATA Statements chapter of the Absoft Fortran
Language Reference Manual for more information on the FORTRAN RECORD type.

 147

 Fortran User Guide

Appendix A

Absoft Compiler Option Guide

This appendix summaries the options for the Absoft Fortran 90/95, FORTRAN 77, and
C/C++ compilers. Refer to the chapter, Using the Compilers for detailed descriptions of
the options

ABSOFT COMPILER OPTIONS

Option Effect
-c suppresses creation of an executable file — leaves compiled files in

object code format
-cpp always run C pre-processor regardless of file extension
-no-cpp never run C pre-processor
-g generates symbol information for Fx3™.
-l used to supply a comma separated list of directory paths which are

prepended to file names used with the INCLUDE statement
-O1 enables a group of basic optimizations which cause most code to run

faster and enables optimizations that do not rearrange your program
-O2 enables a group of moderate optimizers that can rearrange the code

generated for a program
-O3 enables a group of advanced optimizers including the IPA (Inter-

Procedural Analyzer) linker that can substantially rearrange the code
generated for a program

-O4 enables a group of advanced optimizers that can substantially rearrange
the code generated for a program

-m64 directs the compiler to produce a 64-bit executable file
-o name directs the compiler to produce an executable file called name where

name is a Windows file name
-cpu:type specifies the target processor where type is one of 486, p5, p6, p7, athlon,

or host

FLOATING POINT UNIT CONTROL OPTIONS
-OPT=roundoff changes the rounding mode of the FPU to roundoff.
-TENV=exception enables FPU exception trapping for exception.

148 Absoft Compiler Option Guide

Fortran User Guide

FORTRAN 90/95 GENERAL OPTIONS
-en causes the compiler to issue a warning whenever the source code

contains an extension to the Fortran 90/95 standard.
-w suppresses listing of all compile-time warning messages.
-Zn suppresses messages by message number.
-q suppresses any messages printed to standard output during the

compilation process
-v directs the compiler to print status information as the compilation

process proceeds
-zn suppresses messages by message level.
-dq continue compilation if more than 100 errors are encountered.
-ea causes the f95 compiler to abort the compilation process on the first error

that it encounters.
-V causes the f95 compiler to display its version number.
-eR default recursion
-Tn changes the number of handles used internally by the compiler.
-tn this option increases the default temporary string size to 1024x10n bytes.
-p path specify module search path

FORTRAN 90/95 COMPATIBILITY OPTIONS

-xdirective disable compiler directive in the source file.
-in changes the default storage length of INTEGER data types to n bytes

which can be either 2 or 8
-dp causes variables declared in a DOUBLE PRECISION statement and

constants specified with the D exponent to be converted to the default
real kind.

-ej causes all DO loops to be executed at least once, regardless of the initial
value of the iteration count.

-N113 changes REAL(KIND=4) and COMPLEX(KIND=4) data types without
explicit length declaration to REAL(KIND=8) and COMPLEX(KIND=8)

-s allocate local variables statically
-Rb enables array boundary checking
-Rc enables array conformance checking
-Rs enables substring checking
-Rp enables null pointer checking
-YCFRL= controls how CHARACTER arguments are passed to FUNCTION and

SUBROUTINE programs
-YPEI= allows Cray-style pointers to be equivalent to integers

FORTRAN 90/95 FORMAT OPTIONS

-YEXT_NAMES controls the case of external procedure names
-YEXT_PFX= establishes the prefix of external procedure names
-YEXT_SFX= establishes the suffix of external procedure names

 Absoft Compiler Option Guide 149

 Fortran User Guide

-fform sets the form of the source file to fixed, free, alt_fixed.
-Wn sets the line length of source statements accepted by the compiler in

Fixed-Form source format
-N26 force the compiler to consider the byte ordering of all unformatted files to

be big-endian by default
-N27 force the compiler to consider the byte ordering of all unformatted files to

be little-endian by default
-YCSLASH= directs the compiler to transform certain escape sequences marked with a

‘\’ embedded in character constants
-YNDFP= disallow the use of a ‘.’ as a structure field separator. The default value is

0 or false
-TMS7D recognize Microsoft style compiler directives beginning with a ‘$’ in

column 1

FORTRAN 90/95 MISCELLANEOUS OPTIONS

-YCOM_NAMES controls the case of COMMON block names
-COM_PFX= establishes the prefix of COMMON names
-YCM_SFX= establishes the suffix of COMMON names
-h, -H, -U loop unrolling control options
-safefp disable floating point optimizations in numerically sensitive codes

FORTRAN 77 GENERAL OPTIONS
-w suppresses listing of all compile-time warning messages
-N32 directs the compiler to issue a warning whenever the source code

contains an extension to the ANSI FORTRAN 77 standard
-q suppresses any messages printed to standard output during the

compilation process
-v directs the compiler to print status information as the compilation

process proceeds
-C generates code to check that array indexes are within array bounds — file

names and source code line numbers will be displayed with all run time
error messages

-x replaces any occurrence of X or D in column one with a blank character:
allows a restricted form of conditional compilation

-T used to change the number of handles used internally by the compiler.
-t modifies the default temporary string size to nn bytes from the default of

1024 bytes

FORTRAN 77 CONTROL OPTIONS

-D used to define conditional compilation variables from the command line
(-D name[=value]) — if value is not present, the variable is assigned
the value of 1

150 Absoft Compiler Option Guide

Fortran User Guide

FORTRAN 77 COMPATIBILITY OPTIONS

-f folds all symbolic names to lower case
-s forces all program storage to be treated as static
-N109 folds all symbolic names to UPPER CASE
-in changes the default storage length of INTEGER data types to n bytes

which can be either 2 or 8
-N113 changes REAL and COMPLEX data types without explicit length declara-

tion to DOUBLE PRECISION and DOUBLE COMPLEX

FORTRAN 77 FORMAT OPTIONS

-8 directs the compiler to accept source code written in Fortran 90 Free
Source Form

-V directs the compiler to accept VAX Tab-Format source code
-W directs the compiler to accept statements which extend beyond column

72 up to column 132
-N26 force the compiler to consider the byte ordering of all unformatted files

to be big-endian by default
-N27 force the compiler to consider the byte ordering of all unformatted files

to be little-endian by default
-K directs the compiler to transform certain escape sequences marked with a

‘\’ embedded in character constants

FORTRAN 77 COMMON OPTIONS

-N22 append trailing underscore to COMMON block names
-N25 export COMMON block names in DLLs
-N110 do not mangle COMMON block names with leading “_c”

FORTRAN 77 OTHER OPTIONS

-h, -H, -U loop unrolling control options

 151

 Fortran User Guide

Appendix B

ASCII Table

ASCII codes 0 through 31 are control codes that may or may not have meaning on
Windows. They are listed for historical reasons and may aid when porting code from
other systems. Codes 128 through 255 are extensions to the 7-bit ASCII standard and the
symbol displayed depends on the font being used; the symbols shown below are from the
Times New Roman font. Most of these characters may be typed with keystrokes; use the
Key Caps desk accessory to determine which keystrokes to use. The Dec, Oct, and Hex
columns refer to the decimal, octal, and hexadecimal numerical representations.

Character Dec Oct Hex Description
NULL 0 000 00 null
SOH 1 001 01 start of heading
STX 2 002 02 start of text
ETX 3 003 03 end of text
ECT 4 004 04 end of trans
ENQ 5 005 05 enquiry
ACK 6 006 06 acknowledge
BEL 7 007 07 bell code
BS 8 010 08 back space
HT 9 011 09 horizontal tab
LF 10 012 0A line feed
VT 11 013 0B vertical tab
FF 12 014 0C form feed
CR 13 015 0D carriage return
SO 14 016 0E shift out
SI 15 017 0F shift in
DLE 16 020 10 data link escape
DC1 17 021 11 device control 1
DC2 18 022 12 device control 2
DC3 19 023 13 device control 3
DC4 20 024 14 device control 4
NAK 21 025 15 negative ack
SYN 22 026 16 synch idle
ETB 23 027 17 end of trans blk
CAN 24 030 18 cancel
EM 25 031 19 end of medium
SS 26 032 1A special sequence
ESC 27 033 1B escape
FS 28 034 1C file separator
GS 29 035 1D group separator
RS 30 036 1E record separator
US 31 037 1F unit separator

Character Dec Oct Hex Description
 32 040 20 space
! 33 041 21 exclamation
" 34 042 22 quotation mark
35 043 23 number sign
$ 36 044 24 dollar sign
% 37 045 25 percent sign
& 38 046 26 ampersand
' 39 047 27 apostrophe
(40 050 28 opening paren
) 41 051 29 closing paren
* 42 052 2A asterisk
+ 43 053 2B plus
, 44 054 2C comma
- 45 055 2D minus
. 46 056 2E period
/ 47 057 2F slash
0 48 060 30 zero
1 49 061 31 one
2 50 062 32 two
3 51 063 33 three
4 52 064 34 four
5 53 065 35 five
6 54 066 36 six
7 55 067 37 seven
8 56 070 38 eight
9 57 071 39 nine
: 58 072 3A colon
; 59 073 3B semicolon
< 60 074 3C less than
= 61 075 3D equal
> 62 076 3E greater than
? 63 077 3F question mark

152 ASCII Table

Fortran User Guide

Character Dec Oct Hex Description
@ 64 100 40 commercial at
A 65 101 41 upper case letter
B 66 102 42 upper case letter
C 67 103 43 upper case letter
D 68 104 44 upper case letter
E 69 105 45 upper case letter
F 70 106 46 upper case letter
G 71 107 47 upper case letter
H 72 110 48 upper case letter
I 73 111 49 upper case letter
J 74 112 4A upper case letter
K 75 113 4B upper case letter
L 76 114 4C upper case letter
M 77 115 4D upper case letter
N 78 116 4E upper case letter
O 79 117 4F upper case letter
P 80 120 50 upper case letter
Q 81 121 51 upper case letter
R 82 122 52 upper case letter
S 83 123 53 upper case letter
T 84 124 54 upper case letter
U 85 125 55 upper case letter
V 86 126 56 upper case letter
W 87 127 57 upper case letter
X 88 130 58 upper case letter
Y 89 131 59 upper case letter
Z 90 132 5A upper case letter
[91 133 5B opening bracket
\ 92 134 5C back slash
] 93 135 5D closing bracket
^ 94 136 5E circumflex
_ 95 137 5F underscore
` 96 140 60 grave accent
a 97 141 61 lower case letter
b 98 142 62 lower case letter
c 99 143 63 lower case letter
d 100 144 64 lower case letter
e 101 145 65 lower case letter
f 102 146 66 lower case letter
g 103 147 67 lower case letter
h 104 140 68 lower case letter
i 105 151 69 lower case letter
j 106 152 6A lower case letter
k 107 153 6B lower case letter
l 108 154 6C lower case letter
m 109 155 6D lower case letter
n 110 156 6E lower case letter
o 111 157 6F lower case letter
p 112 160 70 lower case letter
q 113 161 71 lower case letter
r 114 162 72 lower case letter
s 115 163 73 lower case letter
t 116 164 74 lower case letter
u 117 165 75 lower case letter
v 118 166 76 lower case letter
w 119 167 77 lower case letter
x 120 170 78 lower case letter
y 121 171 79 lower case letter
z 122 172 7A lower case letter

Character Dec Oct Hex Description
{ 123 173 7B opening brace
| 124 174 7C vertical bar
} 125 175 7D closing brace
~ 126 176 7E tilde
 127 177 7F delete
� 128 200 80
� 129 201 81
‚ 130 202 82
ƒ 131 203 83
„ 132 204 84
… 133 205 85
† 134 206 86
‡ 135 207 87
ˆ 136 210 88
‰ 137 211 89
Š 138 212 8A
‹ 139 213 8B
Œ 140 214 8C
� 141 215 8D
� 142 216 8E
� 143 217 8F
� 144 220 90
‘ 145 221 91
’ 146 222 92
“ 147 223 93
” 148 224 94
• 149 225 95
– 150 226 96
— 151 227 97
˜ 152 230 98
™ 153 231 99
š 154 232 9A
› 155 233 9B
œ 156 234 9C
� 157 235 9D
� 158 236 9E
Ÿ 159 237 9F
 160 240 A0
¡ 161 241 A1
¢ 162 242 A2
£ 163 243 A3
¤ 164 244 A4
¥ 165 245 A5
¦ 166 246 A6
§ 167 247 A7
¨ 168 250 A8
© 169 251 A9
ª 170 252 AA
« 171 253 AB
¬ 172 254 AC
- 173 255 AD
® 174 256 AE
¯ 175 257 AF
° 176 260 B0
± 177 261 B1
² 178 262 B2
³ 179 263 B3
´ 180 264 B4
µ 181 265 B5

 ASCII Table 153

 Fortran User Guide

Character Dec Oct Hex
¶ 182 266 B6
· 183 267 B7
¸ 184 270 B8
¹ 185 271 B9
º 186 272 BA
» 187 273 BB
¼ 188 274 BC
½ 189 275 BD
¾ 190 276 BE
¿ 191 277 BF
À 192 300 C0
Á 193 301 C1
Â 194 302 C2
Ã 195 303 C3
Ä 196 304 C4
Å 197 305 C5
Æ 198 306 C6
Ç 199 307 C7
È 200 310 C8
É 201 311 C9
Ê 202 312 CA
Ë 203 313 CB
Ì 204 314 CC
Í 205 315 CD
Î 206 316 CE
Ï 207 317 CF
Ð 208 320 D0
Ñ 209 321 D1
Ò 210 322 D2
Ó 211 323 D3
Ô 212 324 D4
Õ 213 325 D5
Ö 214 326 D6
× 215 327 D7
Ø 216 330 D8
Ù 217 331 D9
Ú 218 332 DA
Û 219 333 DB
Ü 220 334 DC
Ý 221 335 DD
Þ 222 336 DE
ß 223 337 DF
à 224 340 E0
á 225 341 E1
â 226 342 E2
ã 227 343 E3
ä 228 344 E4
å 229 345 E5
æ 230 346 E6
ç 231 347 E7
è 232 350 E8
é 233 351 E9
ê 234 352 EA
ë 235 353 EB
ì 236 354 EC
í 237 355 ED
î 238 356 EE
ï 239 357 EF
ð 240 360 F0
ñ 241 361 F1
ò 242 362 F2
ó 243 363 F3

ô 244 364 F4
õ 245 365 F5
ö 246 366 F6
÷ 247 367 F7
ø 248 370 F8
ù 249 371 F9
ú 250 372 FA
û 251 373 FB
ü 252 374 FC
ý 253 375 FD
þ 254 376 FE
ÿ 255 377 FF

154 ASCII Table

Fortran User Guide

 155

 Fortran User Guide

Appendix C

Bibliography

REFERENCES ON THE FORTRAN 90/95 LANGUAGE

Michael Metcalf and John Reid, FORTRAN 90/95 explained, Oxford University Press
(1996)

Jeanne C. Adams, Walter S. Brainerd, Jeanne T. Martin, and Brian T. Smith, Fortran Top
90, Unicomp, Inc, Albuquerque, NM (1994)

American National Standard Programming Language Fortran 90, X3.198-1992, ANSI,
1430 Broadway, New York, N.Y. 10018

REFERENCES ON THE FORTRAN 77 LANGUAGE

These books and manuals are useful references for the FORTRAN language and the float-
ing point math format used by Absoft Fortran 77 on Windows.

Page, Didday, and Alpert, FORTRAN 77 for Humans, West Publishing Company (1983)
Highly recommended for beginners

Kruger, Anton, Efficient FORTRAN Programming, John Wiley & Sons, Inc. (1990)
Highly recommended for beginners

Loren P. Meissner and Elliot I. Organick, FORTRAN 77, Addison-Wesley Publishing
Company (1980)

Harry Katzan, Jr., FORTRAN 77, Van Nostrand Reinhold Company (1978)

J.N.P. Hume and R.C. Holt, Programming FORTRAN 77, Reston Publishing Company,
Inc. (1979)

Harice L. Seeds, FORTRAN IV, John Wiley & Sons (1975)

Jehosua Friedmann, Philip Greenberg, and Alan M. Hoffberg, FORTRAN IV, A Self-
Teaching Guide, John Wiley & Sons, Inc. (1975)

James S. Coan, Basic FORTRAN, Hayden Book Company (1980)

Brian W. Kernighan and P.J. Plauger, Software Tools, Addison-Wesley Publishing
Company (1976)

156 Bibliography

Fortran User Guide

Brian W. Kernighan and P.J. Plauger, The Elements of Programming Style, McGraw-Hill
Book Company (1978)

American National Standard Programming Language FORTRAN, X3.9-1978, ANSI,
1430 Broadway, New York, N.Y. 10018

COMPUTER, A Proposed Standard for Binary Floating-Point Arithmetic, Draft 8.0 of
IEEE Task P754, 10662 Los Vaqueros Circle, Los Alamitos, CA 90720 (1981)

M. Abramowitz and I.E. Stegun, Handbook of Mathematical Functions, U.S. Department
of Commerce, National Bureau of Standards (1972)

Fortran Forum, Association for Computing Machinery. Phone: 1-212-869-7440.

Fortran Journal, Fortran Users Group. Phone: 1-714-441-2022.

REFERENCES ON THE C/C++ PROGRAMMING LANGUAGES

Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice
Hall (1988)

Samuel P Harbison and Guy L. Steele Jr., C: A Reference Manual, Prentice Hall (1987)

Bjarne Stroustrup, The C++ Programming Language, Addison-Wesley (1991)

Margaret A. Ellis and Bjarne Stroustrup, The Annotated C++ Reference Manual,

Addison-Wesley (1990)

Stanley B. Lippman, C++ Primer, Addison-Wesley (1991)

Ira Pohl, C++ for C Programmers, Benjamin/Cummings (1989)

James T Smith, C++ For Scientists and Engineers, McGraw-Hill (1991)

Scott Meyers, Effective C++, Addison-Wesley (1992)

American National Standard Programming Language C, X3.159-1989, ANSI, 1430

Broadway, New York, N.Y. 10018

REFERENCES ON WINDOWS PROGRAMMING

These books are suggested reading for learning how to program in the Win32 API for
Windows. Most of these books are available in book stores.

 Bibliography 157

 Fortran User Guide

Microsoft Win32 Programmer's Reference, Volumes 1-5, Mircosoft Press (1993)

Charles Petzold, Programming Windows 3.1, Mircosoft Press (1992)

Jerry Richter, Advanced Windows, The Developer's Guide to the Win32 API for Windows

NT 3.5 and Windows 95, Mircosoft Press (1995)

 159

 Fortran User Guide

Appendix D

AWE RGB Colors

AWE plots use RGB colors extensively. Although default values are always supplied, you
can replace them with any RGB value you want. This appendix lists a number of
predefined values supplied in the AWE_Interfaces module that are available to you by
simply using their symbolic names.

INTEGER, PARAMETER :: AWE_maroon = z'800000'
INTEGER, PARAMETER :: AWE_dark_red = z'8B0000'
INTEGER, PARAMETER :: AWE_brown = z'A52A2A'
INTEGER, PARAMETER :: AWE_firebrick = z'B22222'
INTEGER, PARAMETER :: AWE_crimson = z'DC143C'
INTEGER, PARAMETER :: AWE_red = z'FF0000'
INTEGER, PARAMETER :: AWE_tomato = z'FF6347'
INTEGER, PARAMETER :: AWE_coral = z'FF7F50'
INTEGER, PARAMETER :: AWE_indian_red = z'CD5C5C'
INTEGER, PARAMETER :: AWE_light_coral = z'F08080'
INTEGER, PARAMETER :: AWE_dark_salmon = z'E9967A'
INTEGER, PARAMETER :: AWE_salmon = z'FA8072'
INTEGER, PARAMETER :: AWE_light_salmon = z'FFA07A'
INTEGER, PARAMETER :: AWE_orange_red = z'FF4500'
INTEGER, PARAMETER :: AWE_dark_orange = z'FF8C00'
INTEGER, PARAMETER :: AWE_orange = z'FFA500'
INTEGER, PARAMETER :: AWE_gold = z'FFD700'
INTEGER, PARAMETER :: AWE_dark_golden_rod = z'B8860B'
INTEGER, PARAMETER :: AWE_golden_rod = z'DAA520'
INTEGER, PARAMETER :: AWE_pale_golden_rod = z'EEE8AA'
INTEGER, PARAMETER :: AWE_dark_khaki = z'BDB76B'
INTEGER, PARAMETER :: AWE_khaki = z'F0E68C'
INTEGER, PARAMETER :: AWE_olive = z'808000'
INTEGER, PARAMETER :: AWE_yellow = z'FFFF00'
INTEGER, PARAMETER :: AWE_yellow_green = z'9ACD32'
INTEGER, PARAMETER :: AWE_dark_olive_green = z'556B2F'
INTEGER, PARAMETER :: AWE_olive_drab = z'6B8E23'
INTEGER, PARAMETER :: AWE_lawn_green = z'7CFC00'
INTEGER, PARAMETER :: AWE_chartreuse = z'7FFF00'
INTEGER, PARAMETER :: AWE_green_yellow = z'ADFF2F'
INTEGER, PARAMETER :: AWE_dark_green = z'006400'
INTEGER, PARAMETER :: AWE_green = z'008000'
INTEGER, PARAMETER :: AWE_forest_green = z'228B22'
INTEGER, PARAMETER :: AWE_lime = z'00FF00'
INTEGER, PARAMETER :: AWE_lime_green = z'32CD32'
INTEGER, PARAMETER :: AWE_light_green = z'90EE90'
INTEGER, PARAMETER :: AWE_pale_green = z'98FB98'
INTEGER, PARAMETER :: AWE_dark_sea_green = z'8FBC8F'
INTEGER, PARAMETER :: AWE_medium_spring_green = z'00FA9A'
INTEGER, PARAMETER :: AWE_spring_green = z'00FF7F'
INTEGER, PARAMETER :: AWE_sea_green = z'2E8B57'
INTEGER, PARAMETER :: AWE_medium_aqua_marine = z'66CDAA'
INTEGER, PARAMETER :: AWE_medium_sea_green = z'3CB371'
INTEGER, PARAMETER :: AWE_light_sea_green = z'20B2AA'
INTEGER, PARAMETER :: AWE_dark_slate_gray = z'2F4F4F'
INTEGER, PARAMETER :: AWE_teal = z'008080'

160 AWE RGB Colors

Fortran User Guide

INTEGER, PARAMETER :: AWE_dark_cyan = z'008B8B'
INTEGER, PARAMETER :: AWE_aqua = z'00FFFF'
INTEGER, PARAMETER :: AWE_cyan = z'00FFFF'
INTEGER, PARAMETER :: AWE_light_cyan = z'E0FFFF'
INTEGER, PARAMETER :: AWE_dark_turquoise = z'00CED1'
INTEGER, PARAMETER :: AWE_turquoise = z'FF40E0D0'
INTEGER, PARAMETER :: AWE_medium_turquoise = z'48D1CC'
INTEGER, PARAMETER :: AWE_pale_turquoise = z'AFEEEE'
INTEGER, PARAMETER :: AWE_aqua_marine = z'7FFFD4'
INTEGER, PARAMETER :: AWE_powder_blue = z'B0E0E6'
INTEGER, PARAMETER :: AWE_cadet_blue = z'5F9EA0'
INTEGER, PARAMETER :: AWE_steel_blue = z'4682B4'
INTEGER, PARAMETER :: AWE_corn_flower_blue = z'6495ED'
INTEGER, PARAMETER :: AWE_deep_sky_blue = z'00BFFF'
INTEGER, PARAMETER :: AWE_dodger_blue = z'1E90FF'
INTEGER, PARAMETER :: AWE_light_blue = z'ADD8E6'
INTEGER, PARAMETER :: AWE_sky_blue = z'87CEEB'
INTEGER, PARAMETER :: AWE_light_sky_blue = z'87CEFA'
INTEGER, PARAMETER :: AWE_midnight_blue = z'191970'
INTEGER, PARAMETER :: AWE_navy = z'000080'
INTEGER, PARAMETER :: AWE_dark_blue = z'00008B'
INTEGER, PARAMETER :: AWE_medium_blue = z'0000CD'
INTEGER, PARAMETER :: AWE_blue = z'0000FF'
INTEGER, PARAMETER :: AWE_royal_blue = z'4169E1'
INTEGER, PARAMETER :: AWE_blue_violet = z'8A2BE2'
INTEGER, PARAMETER :: AWE_indigo = z'4B0082'
INTEGER, PARAMETER :: AWE_dark_slate_blue = z'483D8B'
INTEGER, PARAMETER :: AWE_slate_blue = z'6A5ACD'
INTEGER, PARAMETER :: AWE_medium_slate_blue = z'7B68EE'
INTEGER, PARAMETER :: AWE_medium_purple = z'9370DB'
INTEGER, PARAMETER :: AWE_dark_magenta = z'8B008B'
INTEGER, PARAMETER :: AWE_dark_violet = z'9400D3'
INTEGER, PARAMETER :: AWE_dark_orchid = z'9932CC'
INTEGER, PARAMETER :: AWE_medium_orchid = z'BA55D3'
INTEGER, PARAMETER :: AWE_purple = z'800080'
INTEGER, PARAMETER :: AWE_thistle = z'D8BFD8'
INTEGER, PARAMETER :: AWE_plum = z'DDA0DD'
INTEGER, PARAMETER :: AWE_violet = z'EE82EE'
INTEGER, PARAMETER :: AWE_magenta = z'FF00FF'
INTEGER, PARAMETER :: AWE_orchid = z'DA70D6'
INTEGER, PARAMETER :: AWE_medium_violet_red = z'C71585'
INTEGER, PARAMETER :: AWE_pale_violet_red = z'DB7093'
INTEGER, PARAMETER :: AWE_deep_pink = z'FF1493'
INTEGER, PARAMETER :: AWE_hot_pink = z'FF69B4'
INTEGER, PARAMETER :: AWE_light_pink = z'FFB6C1'
INTEGER, PARAMETER :: AWE_pink = z'FFC0CB'
INTEGER, PARAMETER :: AWE_antique_white = z'FAEBD7'
INTEGER, PARAMETER :: AWE_beige = z'F5F5DC'
INTEGER, PARAMETER :: AWE_bisque = z'FFE4C4'
INTEGER, PARAMETER :: AWE_blanched_almond = z'FFEBCD'
INTEGER, PARAMETER :: AWE_wheat = z'F5DEB3'
INTEGER, PARAMETER :: AWE_corn_silk = z'FFF8DC'
INTEGER, PARAMETER :: AWE_lemon_chiffon = z'FFFACD'
INTEGER, PARAMETER :: AWE_light_golden_rod_yellow = z'FAFAD2'
INTEGER, PARAMETER :: AWE_light_yellow = z'FFFFE0'
INTEGER, PARAMETER :: AWE_saddle_brown = z'8B4513'
INTEGER, PARAMETER :: AWE_sienna = z'A0522D'
INTEGER, PARAMETER :: AWE_chocolate = z'D2691E'
INTEGER, PARAMETER :: AWE_peru = z'CD853F'
INTEGER, PARAMETER :: AWE_sandy_brown = z'F4A460'
INTEGER, PARAMETER :: AWE_burly_wood = z'DEB887'

 AWE RGB Colors 161

 Fortran User Guide

INTEGER, PARAMETER :: AWE_tan = z'D2B48C'
INTEGER, PARAMETER :: AWE_rosy_brown = z'BC8F8F'
INTEGER, PARAMETER :: AWE_moccasin = z'FFE4B5'
INTEGER, PARAMETER :: AWE_navajo_white = z'FFDEAD'
INTEGER, PARAMETER :: AWE_peach_puff = z'FFDAB9'
INTEGER, PARAMETER :: AWE_misty_rose = z'FFE4E1'
INTEGER, PARAMETER :: AWE_lavender_blush = z'FFF0F5'
INTEGER, PARAMETER :: AWE_linen = z'FAF0E6'
INTEGER, PARAMETER :: AWE_old_lace = z'FDF5E6'
INTEGER, PARAMETER :: AWE_papaya_whip = z'FFEFD5'
INTEGER, PARAMETER :: AWE_sea_shell = z'FFF5EE'
INTEGER, PARAMETER :: AWE_mint_cream = z'F5FFFA'
INTEGER, PARAMETER :: AWE_slate_gray = z'708090'
INTEGER, PARAMETER :: AWE_light_slate_gray = z'778899'
INTEGER, PARAMETER :: AWE_light_steel_blue = z'B0C4DE'
INTEGER, PARAMETER :: AWE_lavender = z'E6E6FA'
INTEGER, PARAMETER :: AWE_floral_white = z'FFFAF0'
INTEGER, PARAMETER :: AWE_alice_blue = z'F0F8FF'
INTEGER, PARAMETER :: AWE_ghost_white = z'F8F8FF'
INTEGER, PARAMETER :: AWE_honeydew = z'F0FFF0'
INTEGER, PARAMETER :: AWE_ivory = z'FFFFF0'
INTEGER, PARAMETER :: AWE_azure = z'F0FFFF'
INTEGER, PARAMETER :: AWE_snow = z'FFFAFA'
INTEGER, PARAMETER :: AWE_black = z'000000'
INTEGER, PARAMETER :: AWE_dim_gray = z'696969'
INTEGER, PARAMETER :: AWE_gray = z'808080'
INTEGER, PARAMETER :: AWE_dark_gray = z'A9A9A9'
INTEGER, PARAMETER :: AWE_silver = z'C0C0C0'
INTEGER, PARAMETER :: AWE_light_gray = z'D3D3D3'
INTEGER, PARAMETER :: AWE_gainsboro = z'DCDCDC'
INTEGER, PARAMETER :: AWE_white_smoke = z'F5F5F5'
INTEGER, PARAMETER :: AWE_white = z'FFFFFF'

 163

 Fortran User Guide

Appendix E

speed_math option

The -speed_math=n option enables aggressive math optimizations that may improve
performance at the expense of accuracy. Valid arguments for n are 0-11. The following
table describes the effect of each level:

n effect
0 enable wrap around optimization
1 allow relational operator folding; may cause signed integer overflow
2 enable partial redundancy elimination for loads and stores
3 enable memory optimization for functions without aliased arrays
4 inline NINT and related intrinsics with limited-domain algorithm
 use fast_powf in libm instead of powf
5 use multiplication and square root for exp() where faster
6 allow optimizations that reassociate floating point operators
7 see notes below
8 allow use of reciprocal instruction; convert a/b to a*(1/b)
9 use fast algorithms with limited domains for complex norm and divide
 use x*rsqrt(x) for sqrt(x) on machines where faster
 dead casgn function elimination
10 use AMD ACML library if applicable
11 allow relational operator folding; may cause unsigned integer overflow
 use IEEE rounding instead of Fortran rounding for NINT intrinsics
 use IEEE rounding instead of Fortran rounding for ANINT intrinsics

NOTES:

A. Departure from strict rounding is applied at 3 levels: level 1 is applied at n=5,
level 2 is applied at n=7, and level 3 is applied at n=10.

B. Conformance to IEEE-754 arithmetic rules is relaxed at 2 levels: level 1 is applied
at n=6, level 2 is applied at n=10

C. At n=10, the loop unrolling constraints are modified: loop size is increased to
7000, limit is increased to 9, minimum iteration is decreased to 200.

 165

 Fortran User Guide

Appendix F

Technical Support

The Absoft Technical Support Group will provide technical assistance to all registered
users. They will not answer general questions about operating systems, operating system
interfaces, graphical user interfaces, or teach the FORTRAN language. For further help
on these subjects, please consult this manual and any of the books and manuals listed in
the bibliography.

Before contacting Technical Support, please study this manual and the Fortran User
Guide to make sure your problem is not covered here. Specifically, look at the chapter
Using The Compilers in the Fortran User Guide and the Error Messages appendices of
both manuals. To help Technical Support provide a quick and accurate solution to your
problem, please include the following information in any correspondence or have it
available when calling.

Product Information:

Name of product .
Version number.
Serial number.
Version number of the operating system.

System Configuration:

Hardware configuration (hard drive, etc.).
System software release (i.e. 4.0, 3.5, etc).
Any software or hardware modifications to your system.

Problem Description:

What happens?
When does it occur?
Provide a small (20 line) reproducible program or step-by-step example if
possible.

Contacting Technical Support:

Address: Absoft Corporation
 Attn: Technical Support
 2075 West Big Beaver Road, Suite 250
 Troy, MI 48084

166 Technical Support

Fortran User Guide

Technical Support: (248) 220-1191 9am - 3pm EST
FAX (248) 220-1194 24 Hours
email support@absoft.com 24 Hours
World Wide Web http://www.absoft.com

 167

 Fortran User Guide

APPENDIX G

Visual Basic DLLs

This appendix describes how to use the Absoft Fortran compiler and linker to create
DLLs that are callable from Microsoft Visual Basic™. A DLL, Dynamic Link Library, is
a library of routines that are callable at runtime from any application that conforms to the
Windows API. The following discussion applies primarily to 32-bit DLLs. See the section
at the end for 64-bit DLL notes.

CREATING THE FORTRAN DLL

Write your FORTRAN source code in the usual manner, declaring the program unit as
either a subroutine or a function. Insert the additional keyword STDCALL before each
SUBROUTINE or FUNCTION keyword. Adhere to the normal FORTRAN CALL/RETURN
sequences and argument passing rules. For example, consider the following subroutine

 subroutine DegreeSin(input, output)

 implicit none

 stdcall DegreeSin
 double precision input
 double precision output

 output = dsind(input)

 return

 end

This subroutine simply computes the double precision sin in degrees of the input
argument and returns the result in the output argument. If you are using the Developer
Tools, set the target type to DLL in the Project menu with the Default Tool Options menu
command. If you are compiling from the command line, use the –dll option which
instructs the compiler to produce a DLL. You must use the option the compiler option
preserve the case of external names (-YEXT_NAMES=ASIS) so that the case of the
routine name is preserved. You should also use the use the option to prevent the compiler
from automatically appending an underscore to external names (-YEXT_SFX=””) or add
an underscore in your Visual Basic code.

f95 –dll -YEXT_NAMES=ASIS –YEXT_SFX=”” DegreeSin.f

168 Visual Basic DLLs

Fortran User Guide

CREATING THE VISUAL BASIC CODE

Note: The default argument passing method for Visual Basic .NET is different from
what was in previous versions. Arguments are now passed ByVal by default.
Note below that ByRef must be specified.

Complete documentation about calling Fortran DLLs from Microsoft Visual Basic can be
found in the Microsoft Visual Basic Programmer’s Guide. This section will describe the
basics of referencing a Fortran Subroutine or Function.

The first step is to declare the Fortran subprogram in your Basic program. The declaration
for the subroutine discussed in the previous section would be:

Imports System.Runtime.InteropServices
Imports System.Text

Public Class Form1

...

<DllImport("c:\...\DegreeSin.dll")> _
 Public Shared Sub DegreeSin@8(_
 ByRef inval As System.Double, ByRef outval As System.Double)

End Sub

The string following the Lib keyword should be the path to the DLL.

The actual reference to the Fortran subroutine is:

Dim inval As Double
Dim outval As Double
 .
 .
 .
Call DegreeSin(inval, outval)

PASSING VISUAL BASIC ARRAYS TO A DLL

The Microsoft Visual Basic Programmer's Guide describes how to pass arrays to DLLs.
Visual Basic passes entire arrays using OLE Automation argument protocols. Absoft
F77/F95/C/C++ expect CDECL arguments. The Visual Basic manual section explains
how to pass the address of the first argument of the array. Basically:

 Declare ... lParam as Any

 Dim array(100)

 Call DLL(array(0))

PASSING VISUAL BASIC STRINGS TO A DLL

 Visual Basic DLLs 169

 Fortran User Guide

Visual Basic strings are maintained in a data structured referred to as a BSTR which is
not compatible with other languages in a DLL. However, you can pass a null terminated,
C programming language string in Visual Basic. The declaration and usage would take
the following form:

Imports System.Runtime.InteropServices
Imports System.Text

Public Class Form1

...

<DllImport("c:\test\vbstring\test.dll")> _
 Public Shared Sub getString@4(ByVal text As System.String)
End Sub

Private Sub Button1_Click()
Dim text As String
text = "hello, world"
Call getString(text)
End Sub

The key is to pass the string by value (ByVal).

At the FORTRAN end:

 subroutine getString(p_theString)

 use windows

 implicit none

 stdcall getString

C FORTRAN expects the string lengths to be passed
C after the formal argument list as values. Since
C Visual Basic does not do this and because this is
C a STDCALL procedure, we need to accept the argument
C as a general pointer to a string passed by value.

 integer p_theString; value p_theString

C Local variables
 character*1024 string ! longer than expected pointer (p_string,
string)
 pointer (p_string, string)
 character*1024 temp, title
 integer length, p_temp, p_title, i

C The Visual Basic string is passed as a null terminated
C C string. The first thing we have to do is find the
C null to determine the length of the string.
 p_string = p_theString
 length = index(string, char(0))
 if ((length .lt. 2) .or. (length .gt. 1024)) return

C Copy the string to a local (and safe) variable.

170 Visual Basic DLLs

Fortran User Guide

C Initialize the message box title string
 temp = string(1:length-1)
 title = "FORTRAN DLL"

C Null terminate the strings for the call to "Message Box".
 temp = trim(temp)//char(0)
 title = trim(title)//char(0)

C Create pointers to the strings so they can be
C passed by value to the Win32 API function "MessageBox".
 p_temp = loc(temp)
 p_title = loc(title)
 i = MessageBox(0, p_temp, p_title, MB_OK)

C Null terminate the string so that we can get the length
 temp ="Goodbye World"//char(0)

C Get the length of the string
 length = index(temp, char(0))

C Copy the string character by character
 do i=1,length-1
 string(i:i)=temp(i:i)
 end do
 string(length:length)=char(0)

 end

Use the following commands to build the DLL (assuming the FORTRAN source file is
"test.f"):

f95 -dll -YEXT_NAMES=ASIS –YEXT_SFX=”” test.f

64-BIT DLL NOTES

The STDCALL declaration should be omitted from the Fortran source code. 64-bit code
does not use the STDCALL call/return convention.

Because the STDCALL call/return convention and its associated name mangling is not used
for 64-bit code, the Visual Basic declarations for the above examples should be:

<DllImport("c:\...\DegreeSin.dll")> _
 Public Shared Sub DegreeSin(_
 ByRef inval As System.Double, ByRef outval As System.Double)

<DllImport("c:\test\vbstring\test.dll")> _
 Public Shared Sub getString(ByVal text As System.String)

 Fortran User Guide

132 column source code, 56, 65
Absoft address, 165
Absoft Editor, 13
Absoft Tools, 13, 27
ABSOFT_RT_FLAGS, 76
advanced optimizations, 45, 46
amake tool, 95
array

boundary checking, 54, 63
ASCII table, 151
assembly language, 42
basic optimizations, 45
bibliography, 156
bookmarks, 19, 23
books, reference, 155, 156
build configurations, 33
build example, 36
building programs, 37
C

function results, 143
structures, 146

CDECL, 66
CHARACTER length arguments, 145
Character Map application, 151
colon, in path names, 75
comment source, 18
COMMON blocks

from C, 146
compiler directives, 60

FIXED directive, 61
FREE directive, 61
NAME directive, 61
STACK directive, 61

compiler options, 147
- LNO

simd_verbose=on, vectorization results, 49
- m64, 64-bit code generation, 45
-8, Fortran 90, 65
-apo, automatic parallelization, 46
-awe, Absoft Window Environment, 111
-C, check boundaries, 63
-c, relocatable object, 43
-cpp, run C preprocessor, 44
-cpu, CPU specific optimization, 46
-D, define compiler variable, 63
-d, one trip DO loops, 64
-ea , stop on error, 51
-ej, one trip DO loops, 53
-en, non-standard usage, 50
-ep, demote Double Precision, 53
-eq, allow greater than 100 errors, 51
-eR, default recursion, 52
-et, exception traceback, 45
-f, case fold, 64, 69
-f, case folding, 145
-f, fixed source form, 55, 56
-f, freed source form, 55
-g, debugging information, 45
-g, Fx debugging, 69
-H, operations to unroll, 47, 58
-h, unroll count, 47, 58

-i, integer sizes, 53, 65
-K, escape sequences, 57, 66
-K, escape sequences in strings, 145
-LNO

verbose=on, parallelization results, 49
-m32, 32-bit code generation, 44
-mcmodel, code generation model, 44
-mno-sse2, disable SSE2 instructions, 47
-MS7D, Microsoft directives, 57
-msse2, enable SSE2 instructions, 47
-msse3, enable SSE3 instructions, 47
-msse41, enable SSE4.1 instructions, 48
-msse4a, enable SSE4a instructions, 48
-N1, static storage, 64
-N109, case fold, 64
-N113, floating point sizes, 53, 65
-N26, set big-endian, 56, 66
-N27, set little-endian, 56, 66
-N32, non-ANSI, 62
-N9, MRWE Events, 45
-no-cpp, do not run C preprocessor, 44
-nodefaultmod, MODULE path, 59
-o, executable file name, 43
-O1, basic optimizations, 45
-O2, normal optimizations, 45
-O3, advanced optimizations, 45
-O4, advanced optimizations, 46
-O5, dynamic AP, 46
-openmp, enable OpenMP directives, 48
-p , module files, 52
-q, quiet, 51, 62
-Ra, check argument interface, 59
-Rb, check array conformance, 54
-Rb, check boundaries, 54
-Rn, check argument count, 59
-Rp, check pointers, 54
-Rs, check substrings, 54
-S, assembly language, 42
-s, static storage, 54, 64, 69
-safefp, safe floating-point, 48
-speed_math=n, math optimizations, 48, 163
-stack, stack size, 44
-T, max internal handle, 52, 63
-t, temporary strings, 52, 63
-trap=, FPU exception handling, 50
-U, loop unrolling, 47, 58
-use-vctools, use MSVC linker, 44
-v , show progress, 51, 62
-V , show version, 52
-V, VAX Tab-Format, 65
-W, line length, 56
-w, suppress compiler warnings, 51, 62
-W, wide format, 65
-x , disable compiler directive, 53
-x, conditional compilation, 63
-X, linker options, 43
-YALL_NAMES, symbolic names, 60
-YCFRL=1, CHARACTER argument parameters,

54
-YCOM_NAMES, COMMON block case, 58
-YCOM_PFX, COMMON block prefix, 57

 Index

Fortran User Guide

-YCOM_SFX, COMMON block suffix, 57
-YEXT_NAMES, external names, 56
-YEXT_PFX, external symbol prefix, 56
-YEXT_SFX, external symbol suffix, 56
-YMOD_OUT_DIR, MODULE output path, 52
-YMSFT_GLB_PFX, Add Microsoft GLOBAL

prefix, 58
-YNDFP, type elements, 57
--YNO_CDEC, ignore CDEC$ directives, 60
-YPEI, pointers/integers, 55
-YVAR_NAMES, variable names, 59
-YVF_CHAR, DVF/CVF CHARACTER, 55
-YX, conditional compilation, 59
-z, suppress messages, 51
-Z, suppress warning number, 51

compiler version, 52
compiling FORTRAN source code, 5
conditional compilation, 59, 63
conditional compilation variables, 63
contacting Absoft, 166
continuation lines, 71
conventions used in the manual, 2
DATE subroutine, 70
debugging

conditional compilation, 59
debugging information, 45
default MODULE path, 59
distribution issues, 75
divide by zero exceptions, 79
DLLs, 167
DO loops

one trip, 64
DO Loops, 53
docks, 28
documentation conventions, 2
enabling the exception, 79
errors, 51
exceptions

divide by zero, 79
operand error, 79
overflow, 79

executable file name, 43
extensions

key Microsoft FORTRAN, 72
key Sun FORTRAN ones, 74
key VAX FORTRAN ones, 69
key VS FORTRAN ones, 72

f77.exe, 82
file

names, 75
file options, 34
Find in Files, 38
FIXED directive, 61
floating point

unit, 78
floating point unit

exception handling, 79
rounding direction, 79

FORM='BINARY' specifier, 73
Fortran 77

options, 50, 62
FORTRAN 77 extensions, 59

conditional compilation, 59

Fortran 77 Fixed Source Form, 65
Fortran 90 Fixed Source Form, 55, 56
Fortran 90 Free Source Form, 55, 65
Fortran coding form, 21
Fortran Forum, 156
FPU exception handling;, 50
FREE directive, 61
Fsplit utility tool, 83
full path name, 75
global symbols, 146
highlight, 20
IBM RS/6000, porting from, 74
IDATE subroutine, 70
ident source, 18
IEEE floating point math, 78
italicized text, defined, 2
lb tool, 92
lib tool, 91
library specification, 43
license for redistribution, 75
link tool, 84
LOC intrinsic function, 143
loop unrolling, 47, 58
memory management, 75
metacommands, Microsoft FORTRAN, 73
Microsoft FORTRAN

metacommands, 73
porting from, 72

modifier keys, 2
module files, 52
MODULE output path, 52
MS-DOS, porting from, 72
NAME directive, 61
naming conventions, 145
NeXT, porting from, 74
non ANSI warnings, 62
normal optimizations, 45
one trip DO, 64
OpenMP

-speed_openmp, enable aggressive OpenMP
optimization, 48

operand error exceptions, 79
optimization, 45
optimizations

loop unrolling, 47, 58
options, 147
options, manual convention, 2
other porting issues, 75
overflow exceptions, 79
partial path name, 76
path names, 75
phone number, technical support, 166
pop-up menus, 16
porting code, 69

from IBM RS/6000, 74
from Microsoft FORTRAN, 72
from MS-DOS, 72
from NeXT, 74
from Sparc, 74
from Sun FORTRAN, 74
from VAX FORTRAN, 69
from VS FORTRAN, 72

problems, technical support for, 165

 Index

 Fortran User Guide

procedure naming conventions, 145
Project menu, 25
projects, 27
qualifiers, VAX FORTRAN, 71
RAN function, 70
rc, resource compiler, 82
RECORD statement, 146
relocatable object, 43
road maps, 2
RS/6000, porting from, 74
running compiled applications, 5
SECNDS subroutine, 70
setting file options, 34
setting tab size, 76
show compiler progress, 51
source line length, 56
Sparc, porting from, 74
square brackets, defined, 2
stack, 44
STACK directive, 61
static storage, 54
STDCALL, 67
string length, 52
Sun FORTRAN, porting from, 74

suppress list of compiler warning messages, 51
syntax highlight, 20
tab character, 76
tab size

compile time, 76
runtime, 76

TABSIZE variable, 84
target file, updating, 96
technical support, 165
TIME subroutine, 70
tutorial

books for beginners, 155, 156
underlined text, defined, 2
updating target file, 96
VALUE statement, 142
VAX FORTRAN

porting from, 69
qualifiers, 71

VAX Tab-Format source, 65
Visual Basic, 167, 168
VS FORTRAN, porting from, 72
wide source format, 65
Windows System Services, 3
Y2K bug, 3

	Absoft Pro Fortran User Guide
	Contents
	CHAPTER 1 Introduction
	Introduction to Absoft Pro Fortran
	Absoft Fortran 90/95
	Absoft FORTRAN 77

	Conventions Used in this Manual
	Road Maps
	FORTRAN Road Map
	Windows Programming Road Map

	Year 2000 Problem
	Fortran 90 Date_and_Time Subroutine
	Unix Compatibility Library

	CHAPTER 2 Getting Started
	Compiling Basics
	Application Basics

	CHAPTER 3 Using The Editor
	Text Selection
	File Menu
	New…(Ctrl+N)
	Open…(Ctrl+O)
	Save (Ctrl+S)
	Save As…
	Save All
	Close (Ctrl+W)
	Close All
	Close Others
	Recent Files
	Check For Updates
	Preferences

	Edit menu and Pop-up menus
	Find/Replace ((F)
	Text in File
	Replace With
	Replace
	Find and Replace
	Replace and Find
	Replace All
	Match Case
	Find Previous
	Whole Words

	Find/Replace Again (Ctrl+G)
	Go to Line (Ctrl+L)
	Undo (Ctrl+Z)
	Redo (Ctrl+Y)
	Cut (Ctrl+X)
	Copy (Ctrl+C)
	Paste (Ctrl+V)
	Select All (Ctrl+A)
	Comment (Ctrl+D)
	Uncomment (Ctrl+Shift+D)
	Indent (Tab)
	Unindent (Ctrl+Shift+Tab)
	To Uppercase (Ctrl+U)
	To Lowercase (Ctrl+Shift+U)
	Back (Ctrl +J)
	Forward (Ctrl +Shift+J)
	Bookmarks
	Bookmarks Menu
	Toggle Bookmark (Alt+K)
	Previous Bookmark (Ctrl+Shift+K)
	Next Bookmark (Ctrl+K)
	Clear File Bookmarks
	Clear All Bookmarks

	Code Completion (Ctrl+E)

	Syntax Highlight (Context menu only)
	View menu and Pop-up menus
	Line Numbers
	F77 Coding Form
	Dual Screen Display
	Elements Browser
	Bookmarks
	Files
	Build
	Find in Files
	File Tool Bar
	Build Tool Bar
	Project Tool Bar

	Project menu
	New Project
	Open Project
	Recent Projects

	CHAPTER 4 Developer Tools Interface
	Working with Projects
	Docked Displays
	Adding Files to the Project
	Files Dock
	New File in Project
	Add File(s)
	Add Directory
	Check Syntax
	Set Options for
	Use Default Options
	Remove
	Show Full Paths
	Show Relative Paths
	Elements Browser

	Build Configurations
	Adding a New Build Configuration
	Creating A New Build Configuration Template

	Setting Compiler Options
	Target Options
	Target Type

	Multiple build and options example
	Building
	Execute/Debug
	Find In Files
	SMP Analyzer

	CHAPTER 5 Using the Compilers
	Compiling Programs
	Using the Command Line
	File Name Conventions
	Compiler Process Control
	Generate Assembly Language (-S)
	Generate Relocatable Object (-c)
	Passing Options To The Linker
	Executable File Name (-o name)
	Linker Options (-X)
	Library Specification

	Linker/Library Manager Preference (-use_vctools)
	Preprocessor Options (-cpp and –no-cpp)
	Code Generation Model (-mcmodel={small | medium})
	Stack Size (-stack:reserved)
	Application Type
	Generate 32-bit code (-m32)
	Generate 64-bit code (-m64)
	Generate Debugging Information (-g)

	Optimizations
	Basic Optimizations (-O1)
	Normal Optimizations (-O2)
	Advanced Optimizations (-O3)
	Advanced Optimizations (-O4)
	Dynamic AP (-O5)

	Automatic Parallelization (-apo)
	CPU Specific Optimizations (–cpu:type)
	Loop unrolling (-U and -hnn and -Hnn)
	SSE2 instructions (-msse2 and –mno-sse2)
	SSE3 instructions (-msse3)
	SSE4a instructions (-msse4a)
	SSSE4.1 instructions (-msse41)
	Math Optimization Level (-speed_math=n)
	Enable OpenMP Directives (-openmp)
	OpenMP optimization Level (-speed_openmp=n)
	Safe Floating-Point (-safefp)
	Report Parallelization Results (-LNO:verbose=on)
	Report Vectorization Results (--LNO:simd_verbose=on)

	Debugging
	Generate Debugging Information (-g)

	FPU Control Options
	FPU Rounding Mode (-OPT:roundoff=n)
	FPU Exception Handling

	Absoft Fortran 95 Options
	Compiler control
	Warn of Non-Standard usage (-en)
	Suppress warnings (-w)
	Suppress Warning number(s) (-Znn)
	Quiet (-q)
	Verbose (-v)
	Warning level (-znn)
	Error Handling (-dq and -ea)
	Output Version number (-V)
	Default Recursion (-eR)
	Max Internal Handle (-T nn)
	Temporary string size (-t nn)
	Set Module Paths (-p path)
	Module File Output Path (-YMOD_OUT_DIR=path)

	Compatibility - F95 Options
	Disable compiler directive (-xdirective)
	Integer Sizes (-i2 and -i8)
	Demote Double Precision to Real (-dp)
	Promote REAL to REAL(KIND=8) (-N113)
	One trip DO loops (-ej)
	Static storage (-s)
	Check Array Boundaries (-Rb)
	Check Array Conformance (-Rc)
	Check Substrings (-Rs)
	Check Pointers (-Rp)
	Character Argument Parameters (-YCFRL={0|1})
	Pointers Equivalent To Integers (YPEI={0|1})
	DVF/CVF Character Arguments (-YVF_CHAR)

	Format - F95 Options
	Free-Form (-f free)
	Fixed-Form (-f fixed)
	Alternate Fixed form (-f alt_fixed)
	Fixed line length (-W nn)
	YEXT_NAMES={ASIS | UCS | LCS}
	Treat as Big-Endian (-N26)
	Treat as Little-Endian (-N27)
	External Symbol Prefix (-YEXT_PFX=string)
	External Symbol Suffix (-YEXT_SFX=string)
	Escape Sequences in Strings (-YCSLASH=1)
	No Dot for Percent (-YNDFP=1)
	MS Fortran 77 Directives (-YMS7D)

	Miscellaneous - F95 Options
	COMMON Block Name Prefix (-YCOM_PFX=string)
	COMMON Block Name Suffix (-YCOM_SFX=string)
	COMMON Block Name Character Case (-YCOM_NAMES={ ASIS | UCS | LCS })
	Loop unrolling (-U and -h nn and -H nn)
	Add Microsoft GLOBAL prefix (-YMSFT_GLB_PFX)

	Other F95 Options
	Conditional Compilation (-YX)
	Check Argument Interface (-Ra)
	Check Argument Count (-Rn)
	Disable Default Module File Path (-nodefaultmod)
	Variable Names Case Sensitivity (-YVAR_NAMES={ASIS | UCS | LCS})
	Variable Names Case Sensitivity (-YALL_NAMES={ASIS | UCS | LCS})
	Ignore CDEC$ directives (-YNO_CDEC)

	Absoft Fortran 90/95 Compiler Directives
	NAME Directive
	FREE Directive
	FIXED Directive
	STACK Directive

	Absoft FORTRAN 77 Options
	General - F77 Options
	Suppress Warnings (-w)
	Warn of non-ANSI Usage (-N32)
	Quiet (-q)
	Show Progress (-v)
	Check Array Boundaries (-C)
	Conditional compilation (-x)
	Max Internal Handle (-T nn)
	Temporary string size (-t nn)
	Compiler Directives (-Dname[=value])

	Compatibility - F77 Options
	Folding to Lower Case (-f)
	Static Storage (-s)
	Folding to Upper Case (-N109)
	One-Trip DO Loops (F66) (-d)
	Promote REAL and COMPLEX (-N113)
	Integer Sizes (-i2 and -i8)

	Format - F77 Options
	ANSI Fortran 77 Fixed
	Fortran 90 Free-Form (-8)
	VAX Tab-Format (-V)
	Wide Format (-W)
	Treat as Big-Endian (-N26)
	Treat as Little-Endian (-N27)
	Escape Sequences in Strings (-K)

	DLL Compatibility
	CDECL
	STDCALL

	CHAPTER 6 Porting Code
	Porting Code from VAX
	Compile Time Options and Issues

	Porting Code from IBM VS FORTRAN
	Compile-time Options and Issues

	Porting Code From Microsoft FORTRAN
	Compile-time Options and Issues

	Porting Code from Sun Workstations
	Porting Code from the NeXT Workstation
	Porting Code from the IBM RS/6000 Workstation
	Distribution Issues

	Other Porting Issues
	Memory Management
	File and Path Names
	Tab Character Size
	Runtime Environment
	Floating Point Math Control
	Rounding Direction
	Exception Handling

	CHAPTER 7 Building Programs
	An Overview of Program Building
	The Components of an Application
	Working with Resources

	Creating Object Files
	Fsplit - Source Code Splitting Utility

	Linking Programs
	@
	-ALIGN
	-ALLOWBIND
	-ALLOWISOLATION
	-ASSEMBLYDEBUG
	-ASSEMBLYLINKRESOURCE
	-ASSEMBLYMODULE
	-ASSEMBLYRESOURCE
	-BASE
	-CLRIMAGETYPE
	-CLRSUPPORTLASTERROR
	-CLRTHREADATTRIBUTE
	-CLRUNMANAGEDCODECHECK
	-DEBUG
	-DEF
	-DEFAULTLIB
	-DELAY
	-DELAYLOAD
	-DELAYSIGN
	-DLL
	-DRIVER
	-ENTRY
	-errorReport
	-EXPORT
	-FIXED
	-FORCE
	-FUNCTIONPADMIN
	-HEAP
	-IDLOUT
	-IGNOREIDL
	-IMPLIB
	-INCLUDE
	-INCREMENTAL
	-KEYCONTAINER
	-KEYFILE
	-LARGEADDRESSAWARE
	-LIBPATH
	-LTCG
	-MACHINE
	-MANIFEST
	-MANIFESTDEPENDENCY
	-MANIFESTFILE (Name Manifest File)
	-MAP
	-MAPINFO
	-MERGE
	-MIDL
	-NOASSEMBLY
	-NODEFAULTLIB
	-NOENTRY
	-NOLOGO
	-NXCOMPAT
	-OPT
	-ORDER
	-PDB
	-PDBSTRIPPED
	-PGD
	-PROFILE
	-RELEASE
	-SAFESEH
	-SECTION
	-STACK
	-STUB
	-SUBSYSTEM
	-SWAPRUN
	-TLBID
	-TLBOUT
	-TSAWARE
	-VERBOSE
	-VERSION
	-WX

	Creating Libraries
	DLL Import Libraries
	Syntax of a Definition File
	Name Mangling

	Building Programs
	The Elements of amake
	Using Macros
	Advantages of using macros
	Defining macros
	Special macros
	Cautions in using macros

	Using Description Files
	Working with dependency blocks
	Defining a target more than once
	Using include directives
	A sample description file

	Using Dependency Rules
	The default rules
	Creating your own rules

	amake Usage and Syntax
	Special Targets
	Dummy Files
	Environment Variables
	Example: Rebuilding an Executable File

	Error Handling and Cautions
	Syntax Errors
	Other Common Errors
	Cautions

	CHAPTER 8 The Absoft Window Environment
	AWE Preferences
	Opening Additional Text Windows
	Determining When a Window Closes
	AWE Menus
	Spread Sheets
	Alert Boxes
	Plots
	Pie Charts
	Bar Charts
	XY Plots
	Contour Plots
	Polar Plots

	Canvases
	Canvas Derived Types
	Canvas Routines

	Dialogs
	Creating an AWE dialog
	Adding Items to an AWE dialog
	Dialog Labels
	Dialog Combo Box
	Dialog Check Box
	Dialog Text Edit Box
	Dialog Radio Buttons
	Dialog File Selection Box

	Display an AWE Dialog

	Timers

	CHAPTER 9 Interfacing With Other Languages
	Interfacing with C
	FORTRAN Data Types in C
	Passing arguments Between C and FORTRAN
	Reference Parameters
	Value Parameters

	Indirection (the LOC Function)
	Function Results
	A Call to C from FORTRAN
	A Call to FORTRAN from C

	Passing Strings to C
	Naming Conventions
	Procedure Names
	Accessing COMMON Blocks from C

	Declaring C Structures In FORTRAN

	Appendix A Absoft Compiler Option Guide
	Absoft Compiler Options
	Floating Point Unit Control Options
	FORTRAN 90/95 General Options
	FORTRAN 90/95 Compatibility Options
	FORTRAN 90/95 Format Options
	FORTRAN 90/95 MiscelLaneous Options
	FORTRAN 77 General Options
	FORTRAN 77 Control Options
	FORTRAN 77 Compatibility Options
	FORTRAN 77 Format Options
	FORTRAN 77 COMMON Options
	FORTRAN 77 Other Options

	Appendix B ASCII Table
	Appendix C Bibliography
	References on the Fortran 90/95 language
	References on the FORTRAN 77 language
	References on the C/C++ Programming languages
	References on Windows Programming

	Appendix D AWE RGB Colors
	Appendix E speed_math option
	Appendix F Technical Support
	APPENDIX G Visual Basic DLLs
	Creating The Fortran DLL
	Creating the Visual Basic code
	Passing Visual Basic Arrays to a DLL
	Passing Visual Basic Strings to a DLL
	64-bit DLL Notes

	Index

