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Riassunto

Questo manuale descrive l’utilizzo di HMGC (Hybrid MHD Gyrokinetic Code), il codice di simulazione

3-D ibrido magnetoidrodinamico-girocinetico a particelle, sviluppato a Frascati nei primi anni ’90.

HMGC è stato sviluppato per studiare l’interazione nonlineare di ioni energetici con turbolenza di tipo

Alfvénico, in plasmi che bruciano. Il modello di plasma adottato nel codice HMGC consiste in una

componente di plasma termico (core) e una popolazione di ioni energetici. La prima è descritta dalle

equazioni della Magneto-idro-dinamica (MHD) ridotte O(ε3) nel limite di pressione nulla (dove ε è

l’inverso del rapporto di aspetto del toro), inclusi termini resistivi e viscosi. La popolazione di ioni

energetici è descritta dall’equazione di Vlasov girocinetica nonlineare, espansa nel limite k⊥ρH � 1

(k⊥ essendo la componente perpendicolare al campo magnetico del vettore d’onda, e ρH il raggio di

Larmor degli ioni energetici), con gli effetti di orbita di deriva magnetica pienamente ritenuti, e risolta

con tecniche particle-in-cell (PIC). Lo scopo di questo manuale utente è quello di rendere il lettore in

grado di utilizzare il codice e di analizzarne i risultati con un insieme di strumenti grafici, anch’essi

descritti con un certo dettaglio.

Parole chiave: Prodotti di fusione, Particelle alfa, particelle veloci, Magnetoidrodinamica (MHD),

Onde di Alfvén, Tokamaks, Tecniche Particle-in-cell (PIC), Simulazioni girocinetiche
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Abstract

This user guide describes the use of HMGC (Hybrid MHD Gyrokinetic Code), the hybrid MHD-particle

3-D simulation code developed in Frascati in the early 90s. HMGC has been written in order to study

nonlinear interactions of energetic ions with the Alfvénic turbulence in burning plasma conditions. The

plasma model adopted in the HMGC code consists of a thermal (core) plasma and an energetic-ion

population. The former is described by reduced O(ε3) Magneto-Hydro-Dynamics (MHD) equations in

the limit of zero pressure (ε being the inverse aspect ratio of the torus), including resistivity and viscosity

terms. The energetic-ion population is described by the nonlinear gyrokinetic Vlasov equation, expanded

in the limit k⊥ρH � 1 (with k⊥ being the perpendicular component of the wave vector to the magnetic

field, and ρH the energetic-ion Larmor radius), though fully retaining magnetic drift orbit widths, and

solved by particle-in-cell (PIC) techniques. The aim of this user guide is to make the reader able to run

the code and analyze its results using a suite of graphics tools, also described in some detail.

Keywords: Fusion products, Alpha particles, Fast particles, Magnetohydrodynamic (MHD), Alfvén

waves, Tokamaks, Particle-in-cell (PIC) techniques, Gyrokinetic simulations
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HMGC User guide

1 Introduction

In a burning plasma, fast ions (MeV energies) produced by additional heating and/or

fusion reactions are expected to transfer their energy via Coulomb collisions to the

thermal plasma particles (10keV energies). Due to their high velocity, of the order of

Alfvén velocity, they can resonate with and possibly destabilize Alfvén modes. Energetic

ion transport and confinement properties – of crucial importance for achieving efficient

plasma heating and, therefore, ignition conditions – can in turn be affected by nonlinear

interactions with the Alfvénic turbulence. Thus large efforts have been devoted to assess

the stability of shear-Alfvén modes in tokamaks and to investigate their effect on the

energetic ion transport.

The need of fully retaining nonlinear dynamics and properly taking into account

kinetic effects, such as resonant interactions between energetic ions and Alfvén modes

and the nonperturbative character of such interactions makes the numerical particle-

simulation approach the natural tool for this investigation.

A hybrid MHD-particle 3-D simulation code, HMGC (Hybrid MHD Gyrokinetic

Code) has been developed in Frascati in the early 90’s.

The plasma model adopted in the HMGC code consists of a thermal (core) plasma

and an energetic-ion population. The former is described by reduced O(ε3) Magneto-

Hydro-Dynamics (MHD) equations in the limit of zero pressure (ε being the inverse

aspect ratio of the torus), including resistivity and viscosity terms. The reduced MHD

equations expanded to O(ε3) allow us to investigate equilibria with shifted circular mag-

netic surfaces. The energetic-ion population is described by the nonlinear gyrokinetic

Vlasov equation [1, 2], expanded in the limit k⊥ρH � 1 (with k⊥ being the perpendicu-
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lar component of the wave vector to the magnetic field, and ρH the energetic-ion Larmor

radius), though fully retaining magnetic drift orbit widths, and solved by particle-in-cell

(PIC) techniques. The coupling between energetic ions and thermal plasma is obtained

through the divergence of the energetic-ion pressure tensor, which enters the vorticity

equation. Numerical simulations of experimental conditions are performed by fitting

the relevant thermal-plasma quantities – the on-axis equilibrium magnetic field, major

and minor radii (R0 and a, respectively), the safety-factor q, the electron ne and ion

ni plasma densities, the electron temperature Te –, the anisotropy of the energetic-ion

distribution function and the ratio βH between fast ion and magnetic pressures.

In order to retain the relevant finite Larmor radius effects without resolving the

details of the gyromotion, the energetic ions are evolved in their gyrocenter coordinate

system, which corresponds to averaging the single-particle equations of motion over the

fast Larmor precession.

HMGC has been successfully applied to the interpretation of the experimental evi-

dences of rapid transport of energetic ions related with fluctuations in the Alfvén-mode

frequency range in auxiliary-heated JT-60U discharges, in connection with so called

Abrupt Large-amplitude Events (ALEs) [3, 4, 5]. HMGC results have also suggested a

possible justification of the large discrepancy, observed in reversed-shear beam-heated

DIII-D discharges, between the energetic particle radial density profile expected from

classical deposition and that deduced from the experimental measurements.

In spite of the slightly simplified physical model, HMGC has been getting increasing

attention from the international plasma physics community, and it has been recently

acquired by EPFL CRPP Lausanne, University of California Irvine and IFTS Zhejiang

University.

Aim of the present report is yielding a HMGC User Guide. We proceed with a

summary description of the various sections. In Sect. (2) it is shown how to produce a

plasma equilibrium needed by HMGC. In Sect. (3) it is described the execution script

which prepares the set of input files required for compilation and execution of the code.

In particular, the script prepares both the sets of files required by the two modules that

constitute the hybrid code: the MHD module and the gyrokinetic one. Sects. (4) and

(5) describe the output files of the MHD part and of the gyrokinetic one, respectively;

they also describe the suite of graphics tools used to post-process and visualize the

results contained in these files. Sect. (6) describes the three types of energetic particles

distribution functions that can be loaded to start a simulation: the slowing down, the
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maxwellian and the bi-maxwellian distribution functions. The various operations needed

to setup a run of HMGC have been collected in Sect. (7), where a specific HMGC run

referred to a DIII-D, beam-heated discharge is used as an example. Sect. (8) shows the

list of the directories tree structure of HMGC. Finally, in Sect. (9) several excerpts of

Ref. [9] are reported to illustrate the analytical details of the model that constitutes the

basis of HMGC.

2 How to produce an MHD equilibrium file

The equilibrium file required by HMGC is produced by running the fortran file eqe3aaab.

This program solves the Grad-Shafranov equation expanded to the O(ε3) in the inverse

aspect ratio ε ≡ a/R0, with a and R0 the minor and major radius of the torus, respec-

tively for the poloidal flux function ψ (see Sect.(9)), assuming an analytic parametriza-

tion of the safety factor profile q = q(r) (with r the normalized minor radius r ≡ r/a, a

being the minor radius of the circular cross section torus) given by:

q(r) = q0

[
1 +

(
r

r0

)2λ
]1/λ

, (1)

with r0 defined in terms of λ and the q value at the centre q(r = 0) ≡ q0 and at the

edge q(r = 1) ≡ qa:

r0 =

[(
qa
q0

)λ
− 1

]−1/2λ

. (2)

The normalized (to BT/R0) current density profile and the shear profile can be

derived from the previous expressions:

j(r) =
2

q0

[
1 +

(
r
r0

)2λ
] 1
λ

+1
, (3)

ŝ(r) =

(
r

r0

)2λ
2[

1 +
(
r
r0

)2λ
] , (4)

From the above expressions the normalized (to BTa
2/R0) Fourier components ψm,0

for the equilibrium poloidal flux function are obtained, namely ψ0,0, ψ1,0 (here m is

the poloidal mode number, and the toroidal mode number n = 0 has been assumed
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for the axisymmetric equilibrium). Please note that the normalizations in the

gyrokinetic module will be different.

The expressions shown in eqs. (1), (2) (3) (4) are appropriate for describing a mono-

tonic q-profile, but they are inadequate to describe more general safety factor profiles,

as, e.g., reversed shear profiles. Thus a number of bumps on the current density profile

can be superimposed on eq. (3). Actually up to 3 bumps can be superimposed:

j(r) =
2

q0

[
1 +

(
r
r0

)2λ
] 1
λ

+1
+
∑
i=1,3

bumpeq,ie
−

„
r2−cgi
wgi

«2

, (5)

where bumpeq,i can be positive or negative. The current density profile resulting from

Eq.(5) is then rescaled and such to provide a q profile which has the minimum equal to

the parameter q0 of Eq. (1).

The meaning of the different parameters of the input file (EQUIPA) (assigned as a

namelist with the same name of the input file) are listed in Table (1).

Q0 minimum q value

Q1 maximum value of q at r/a = 1: qa (if bumpeq,i = 0)

RL λ

NREQ Number of points in the radial mesh

NMESHA parameter of non equally spaced mesh (usually not used)

NPOIDA parameter of non equally spaced mesh (usually not used)

SOLPDA parameter of non equally spaced mesh (usually not used)

APLACE(i) parameters of non equally spaced mesh (usually not used)

AWIDTH(i) parameters of non equally spaced mesh (usually not used)

EPSILO inverse aspect ratio (ε ≡ a/R0)

RHOFLG logical value, if .true. compute η(r)/η0 = j0/j(r)

BETA0 parameter for equilibrium pressure profile (usually not used)

C1, C2, C3, C4, C5 parameters for equilibrium pressure profile (usually not used)

BUMPEQ, CG, WG bumpeq,1, cg1, wg1

BUMPEQ1, CG1, WG1 bumpeq,2, cg2, wg2

BUMPEQ2, CG2, WG2 bumpeq,3, cg3, wg3

ireadcur parameter to read current density profile as alternate input

Table 1: Parameters in the file EQUIPA.
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To help in fitting an experimental q-profile, an utility to compare the experimental

profile with the one obtained with the program eqe3aaab is provided (program

plot equil, see fig. (1)). In figure (1) the effect of including or not including the

bumps in the current profile is shown (&EQUIPA Q0 = 2.4110D0, Q1 = 5.1280D0,

RL = 4.0D0, EPSILO = 0.293217665d0, BUMPEQ = 1.30D0, CG = 0.4000D0, WG =

0.350D0, bumpeq1 = -2.20D0, cg1 = 0.90D0, wg1 = 0.30D0, &END). Please note

that peculiar shaping of the current density profile should be avoided as much as

possible, in order to prevent the (not desirable) growth of MHD unstable modes. Note

that a positive bump in the current profile is used to produce an off-axis minimum in

the q-profile, whereas a positive bump at the edge is used to “pull-up” the q-profile at

the edge.

ITER-SC4-no-bumps ITER-SC4-bumps

Figure 1: ITER-SC4 q-profile example of use of current bumps: (left) no bumps, (right)

with two bumps (one bump is positive in amplitude (BUMPEQ = 1.30D0) located at r2=

CG = 0.4000D0 (r ' 0.632) having width WG = 0.350D0 and the second is negative

(bumpeq1 = -2.20D0) at r2= cg1 = 0.90D0 (r ' 0.949) having width wg1 = 0.30D0).

In figure (2) the q profile used to simulate the DIII-D discharge #122117 at t = 0.414

s is shown. Hereafter it follows the EQUIPA namelist used:

. . .

&EQUIPA
Q0 = 3.9891D0,
Q1 = 15.000D0,
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RL = 2.5D0,
NREQ= 150,

NMESHA = 0,
NPOIDA = 2,

APLACE(1) = 0.426D0, 0.9D0, 0.00D0, 0., 0., 0., 0., 0., 0., 0.,
AWIDTH(1) = 0.100D0, 0.10D0, 0.00D0, 0., 0., 0., 0., 0., 0., 0.,

SOLPDA = 0.60D0,
EPSILO= 0.360781991d0,
RHOFLG=.FALSE.,
BETA0 = 0.00000D-0,
C1 = -1.7438D0,
C2 = -2.3515D0,
C3 = 12.01D0,
C4 =-15.988D0,
C5 = 7.3964D0,
BUMPEQ= 0.75D0,
CG = 0.2000D0,
WG = 0.220D0,
bumpeq1 =-0.00D0,
cg1 = 0.90D0,
wg1 = 0.30D0,
bumpeq2 =-0.00D0,
cg2 = 0.95D0,
wg2 = 0.20d0,
ireadcur= 0,

&END

. . .

ITER-DIII-D-1

Figure 2: DIII-D discharge #122117 at t = 0.414 s. The parame-

ter used are Q0 = 3.9891D0, Q1 = 15.000D0, RL = 2.5D0, NREQ= 150, EPSILO=

0.360781991d0, BUMPEQ= 0.75D0, CG = 0.2000D0, WG = 0.220D0.

The output of the program eqe3aaab is a file named EQNEW. This file will be copied by the

HMGC execution script to the file named INCOND. Its structure is shown in table (2).
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Quantities Comments

the EQUIPA namelist see Table (1)

0.D0

NR, 1, 0 FORMAT(3I20), NR is the number of radial grid

points

R(I), I=1,NR FORMAT(2D30.15) the normalized radial coordi-

nate

a sequence of radial profiles for the (m = 0, n = 0)

and (m = 1, n = 0) Fourier components for ψ, φ

and resistivity profile η in the following format:

two blank lines

PSI 1 a line containing the following text:

PSI 1 for ψm,n(r),

PHI 3 for φm,n(r) or

RES 4 for ηm,n(r)

real(m), real(n) FORMAT(2F20.0), m,n being the poloidal and

toroidal mode numbers, respectively (for the equi-

librium is n = 0)

real(ψm,n(I)), imag(ψm,n(I)) FORMAT(2E30.15), I=1,NR+1 (only NR points

for φ and η)

Table 2: Structure of the file EQNEW.
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Note that here n = 0 (equilibrium); also note that the ψm,n(r) harmonics have one more

radial point (NR+1) corresponding to the position of a resistive wall (this option is usually

not considered). The electrostatic scalar potential φm,n(r) components for the equilibrium are

identically zero (equilibrium without fluid flow), and usually (MHD module of HMGC used in

linear mode) the resistivity profile is taken constant in radius (η0,0 = 1, η1,0 = 0). Note also

that HMGC defines the ψ0,0 to be ψ0,0(r = 1) = 0 and positive in the plasma.
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3 Execution script

The execution script of HMGC prepares a number of files used for compiling and running HMCG.

Hereafter is a list of them, referring to a DIII-D case (see fig. (2)) simulation which consider an

equilibrium with m = 0, 1 and n = 0 modes (this is mandatory) and a perturbed n = 2 mode,

with poloidal components ranging from m = 1 to m = 21. Note that because of symmetry

conditions in the Fourier space, only modes in a half (m,n) plane are required, the other ones

being considered using the rule ψm,n(r) = ψ∗−m,−n(r) (reality of ψ(r, θ, ϕ)). The choice of

considering only the mode in the positive half plane defined by n ≥ 0 is used. More over, the

conventions for the Fourier transform are:

ψ(r, θ, ϕ) = ψ0,0(r) + (6)

2
∑

l=2,LM

[Re(ψm,n(r)) cos(mθ − nϕ)− Im(ψm,n(r)) sin(mθ − nϕ)] ,

ψm,n(r) =
1

NθNϕ

∑
j=1,Nθ

∑
k=1,Nϕ

e−i(mθj−nϕk)ψ(r, θj , ϕk) , (7)

with l being the mode index, m = m(l), n = n(l), LM the total number of Fourier com-

ponents in the simulation (see Sect. (3.4)), Nθ and Nϕ the mesh points of the θ and ϕ grids,

respectively.

The choice for the poloidal Fourier components included in the simulation derives usually

from considering mmin ≈ nqmin, mmax ≈ nqmax. Some restrictions could be imposed by FFT

requirements (see Sect. (3.1)).
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3.1 Include file modi inc

Parameter definitions for compiling the MHD module (e3 complete.F) of HMGC. NR is the

MHD radial grid (must be NR=NREQ, see Table (1)). LM is the number of Fourier components

considered in the simulations. NMAX=nmax + 1 is the maximum toroidal mode included in the

simulation n plus unity. MMAX is the maximum number of poloidal Fourier components for

fixed toroidal mode number n. MAXPRI is a parameter to dimension a buffer for certain output

quantities. In Fig. (3) are shown two sketches of the (m,n) plane used by HMGC, for better

clarify the parameters meaning. A constraint given by FFT routines impose that 4*(MMAX-1)

is a valid number for the FFT (see, e.g.,

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/topic/com.ibm.cluster.essl43.guideref.doc/am501 formul2.html).

Actually, the IBM ESSL package is used, but routines which use NAG modules are also

included in the source files (although they could be out of date).

. . .

PARAMETER (NR=150,NMAX=3,MMAX=21,LM=23,MAXPRI=200)

. . .
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Figure 3: Fourier modes included in a HMGC simulation: (left) the n = 2 reference DIII-D

case, (right) a n = 2, 4 case. Black dots represent the modes actually included in the

simulations, the red crosses represent the modes considered in the simulation because

of complex conjugate condition.
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3.2 Input file PARAM

This input file contains the main input parameters for the MHD module, and for some general

input parameters for the simulation. Here is a sample for the DIII-D simulation (see also

Tables (3), (4)):

. . .

160 NCYCLE Number of GK calls; Number of Time Steps NTS=NCYCLE*NSUBCY
3 NSUBCY Number of MHD calls per each GK call
20 NOUT Number of time sequences; total time steps=NTS*NOUT
92 LR1 Maximum value should be LR1=4*LM
1.0D-5 ETA standard value: 1.0d-5
1.0D-8 VISC standard value: 1.0d-8
0.02 DT standard value: 0.02
30 NPRI NTS/NPRI<=MAXPRI
1.000001 RWALL resistive wall normalized radius

(parameter required but not used by fortran, give any real number)
1.0D10 TAUWAL resistive wall characteristic time

(parameter required but not used by fortran, give any real number)
0.0D00 VEDGE plasma bulk velocity at the edge

(parameter required but not used by fortran, give any real number)
0.0D00 CURAMP current ramp (now ignored)
.TRUE. FREZ00 l=1 (m,n)=(0,0)
.TRUE. FREZ10 l=2 (m,n)=(1,0)
.FALSE. EQUIL
.FALSE. DROP
1 NPROFI 0 DEN=1; 1 DEN=DEN(RHOA,ALFA,BETA); 2 DEN=(Q/Q0)**(-2)
3.9173d0 ALFA
0.69776d0 BETA
0.6471d0 RHOA
0.7 AGROWTH ad hoc growing factor parameter
0.01 BGROWTH ad hoc growing factor parameter
0.05 CGROWTH ad hoc growing factor parameter
0.95 DGROWTH ad hoc growing factor parameter
1 ITAERSP 1 drives TAE, 2 drives RSP (requires GROWTH .ne. 0)
1.D0 SMOFAC amplitude of the smoothing factor
(1.D-07,1.D-07) AMP complex amplitude factor for the initial perturbation
0.00D-0 GROWTH amplitude of the ad hoc growing term
.TRUE. GYRO call gyrokinetic module
.FALSE. CYLIN .true. MHD cylindrical limit
.FALSE. BISEC .true. bisection allowed
0.D-2 SKIN (el. skin depth; skin=0.D0 ==> el. inertia neglected)
0.10d0 epsil1 parameter used to reduce toroidal corrections at the edge
0.95d0 cgeps parameter used to reduce toroidal corrections at the edge
0.025d0 cweps parameter used to reduce toroidal corrections at the edge

$DIAPOS
NRCHNL=6,
RCHNL(1)=0.200,
RCHNL(2)=0.300,
RCHNL(3)=0.400,
RCHNL(4)=0.500,
RCHNL(5)=0.650,
RCHNL(6)=0.800,

&END

. . .
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Quantities Comments

NCYCLE number of calls of the gyrokinetic module for each of the NOUT time

sequences

NSUBCY Number of MHD calls per each gyrokinetic call; NCYCLE*NSUBCY is the

number of calls of the MHD module for each of the NOUT time sequences

NOUT number of time sequences; total time steps=NCYCLE*NSUBCY*NOUT

LR1 maximum number of modes per MHD fields which are read in the file

INCOND: maximum value should be LR1=4*LM

ETA normalized resistivity, i.e. the inverse of the Lundquist number S (the

ratio between resistive and Alfvén times S ≡ τη/τA0, with τη = µ0a
2/η

and τA0 ≡ ω−1
A0)

VISC similar to ETA parameter, but representing viscosity

DT elementary time step

NPRI some outputs are performed every NPRI time steps; NPRI must satisfy

NTS/NPRI<=MAXPRI

RWALL resistive wall normalized radius (parameter required but not used by

fortran, give any real number)

TAUWAL resistive wall characteristic time (parameter required but not used by

fortran, give any real number)

VEDGE plasma bulk velocity at the edge (parameter required but not used by

fortran, give any real number)

CURAMP current ramp (only significant if “equilibrium” is evolved)

FREZ00 logical variable, if .true. does not evolve (“freeze”) l=1 mode (0,0)

FREZ10 logical variable, if .true. does not evolve (“freeze”) l=2 mode (1,0)

EQUIL logical variable, if .true. the code is used to compute an “equilibrium”

(useful for nonlinear MHD runs)

DROP logical variable, if EQUIL=.true. and DROP=.true. kinetic energy is

removed by dropping φm,n by a fixed factor (useful for preparing nonlinear

MHD runs)

Table 3: Structure of the file PARAM.
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Quantities Comments

NPROFI switch for assigning the bulk density radial profile ρ̂: NPROFI=0→ ρ̂ = 1;

NPROFI=1 → ρ̂ = ρ̂(α, β, ρa); NPROFI=2 → ρ̂ = [q(r)/q(0)]−2 (aligned

toroidal gap)

ALFA,

BETA, RHOA

ρ̂(α, β, ρa) = (1− ρa) ∗ (1− rα)β + ρa

AGROWTH,

BGROWTH,

CGROWTH,

DGROWTH

parameters for an “ad hoc” growing term added

in the vorticity equation (to simulate some parti-

cle drive): for CGROWTH ≤ r ≤ (CGROWTH+ DGROWTH):

GROWTHR(I)=GROWTH*EXP(-((R(I)-AGROWTH)**2/BGROWTH)), else

GROWTHR(I)=0 (now obsolete)

ITAERSP ITAERSP=1 should drive a (1,1), (2,1) TAE using the “ad hoc” driving

term, ITAERSP=2 should drive a (1,1), (2,1) RSP (Resistive Shear Periodic

mode), requires GROWTH.ne.0.0 and n = 1, m = 1, 2 modes

SMOFAC amplitude of a “smoothing” factor to control numerical instabilities in

the center (r=0) (hyper-resistivity and hyper-viscosity terms)

AMP complex amplitude factor for the initial perturbation

GROWTH amplitude of the “ad hoc” growing factor

GYRO logical variable, ifGYRO=.true. the gyrokinetic module is called

CYLIN logical variable, ifCYLIN=.true. MHD module considers cylindrical limit

while gyrokinetic module retains finite ε correction

BISEC logical variable, ifBISEC=.true. allow time bisection in the MHD mod-

ule (and, hence, in the gyrokinetic one)

SKIN electron skin depth (if 0, electron inertia neglected, now obsolete, not

used)

epsil1 parameter used to reduce ε correction at the edge (occasionally used

to control edge numerical instabilities arising from MHD module, see

Eq. (8))

cgeps parameter used to reduce ε correction at the edge (see Eq. (8))

cweps parameter used to reduce ε correction at the edge (see Eq. (8))

namelist

DIAPOS

NRCHNL=6 diagnostic output channels, at the radii RCHNL(i=1,6), giving

Real and Imaginary part of φm,n(rchnl, t).

Table 4: Structure of the file PARAM (continued).
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The general time stepping in HMGC is as follow: the MHD (normalized) time step is given

by the parameter DT. Each NSUBCY MHD time steps, the gyrokinetic module is called. This

loop is performed NCYCLE times. Thus a total umber of time steps of NTS=NCYCLE*NSUBCY

is performed for each time sequence. This time sequence is repeated NOUT times. Thus, the

total number of time steps of a simulation is Ntime−steps = NTS*NOUT = NCYCLE*NSUBCY*NOUT

and the total (normalized) time simulated is Ttotal = DT*NCYCLE*NSUBCY*NOUT. Schematically,

using a fortran-like schema, these nested loops are as follows:

. . .

time=0.
do i=1, NOUT
do j=1,NCYCLE
call GyroKinetic module
do k=1,NSUBCY
time=time+dt
call MHD module

enddo
enddo

enddo

. . .

The time is normalized to the inverse of the on-axis (r = 0) Alfvén frequency, that

is tcode = t(s)ωA0(s−1) with ωA0 ≡ vA0/R0 and vA0 the on-axis Alfvén velocity. If

FREZ00=.true. and FREZ10=.true. (no evolution of equilibrium components) and a sin-

gle perturbed n is included in the simulation, a linear MHD simulation will be performed:

this is the usual operation condition of the MHD module. The parameters epsil1, cgeps and

cweps are used to define a radial function fε(r) which modulates the toroidal corrections:

fε(r) = 1−
(

1− ε1/ε
2

)[
tanh

(
r − cgε
cwε

)
+ 1
]
,

fε(r) −→ 1 for r � cgε (8)

fε(r) −→ ε1/ε for r � cgε .
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3.3 Input file stop run

At the beginning, this file contains only one line, which can be used to overwrite the parameter

NOUT given in the file PARAM:

. . .

20 nout_new

. . .

At run time, the same file is written and read by HMGC and this allows to stop or extend

the run by editing it and changing the parameter nout:

. . .

25 nout
21 ncount
192.0000000 time

. . .

Here ncount is the actual number of time sequences performed by the code and time is

the corresponding normalized simulation time.
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3.4 Input file TMODE

This input file contains the list of the Fourier modes actually included in the simulation. The

first column is the mode index l, running from l = 1 to l = LM. In the second and third columns

are listed the corresponding poloidal (m = m(l)) and toroidal (n = n(l)) mode numbers. It is

assumed that the modes are ordered by increasing n, and for each n by increasing m.

. . .

1 0 0
2 1 0
3 1 2
4 2 2
5 3 2
6 4 2
7 5 2
8 6 2
9 7 2
10 8 2
11 9 2
12 10 2
13 11 2
14 12 2
15 13 2
16 14 2
17 15 2
18 16 2
19 17 2
20 18 2
21 19 2
22 20 2
23 21 2

. . .
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3.5 Input file TMODE PL

This input file is used by the plot post-processing program epe3ak31.u. It is exactly the

same than the input file TMODE, with the add of a fourth column, in which 0 means that

this component will not be considered by the plot program, whereas 1 means that it will be

considered.

. . .

1 0 0 0
2 1 0 0
3 1 2 1
4 2 2 1
5 3 2 1
6 4 2 1
7 5 2 1
8 6 2 1
9 7 2 1
10 8 2 1
11 9 2 1
12 10 2 1
13 11 2 1
14 12 2 1
15 13 2 1
16 14 2 1
17 15 2 1
18 16 2 1
19 17 2 1
20 18 2 1
21 19 2 1
22 20 2 1
23 21 2 1

. . .
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3.6 Include file grid inc

This lines of fortran are included in the MHD module (e3 complete.F) and in the gyrokinetic

module (trough the general common commr31 complete.F) of HMGC. It defines general particle

simulation parameters (see also Table (5)). Note that some of the following parameters refer

to toroidal and poloidal meshes, also if the code is run in the nogrid mode (see Ref. [6]).

Particles here are “simulation particles”. The file grid inc is constructed from the two files

nlr inc and altri grid inc 1 written in the execution script:

. . .

cat >${HOMEroot_sources}/${pwr}_version/nlr_inc <<’EOF’
PARAMETER(nlr=64)

EOF

. . .

. . .

cat >${HOMEroot_sources}/${pwr}_version/altri_grid_inc_1 <<’EOF’
PARAMETER(NTH=168,
& nintphi=2*(nmax-1),
& nph_su_nintphi=4,
& NPH=nph_su_nintphi*nintphi,
& ippc=2,
& nne=672,
& npart=nlr*nth*nph*ippc**3,
& NMODOM=27,
& NRZ=5)

EOF

. . .

Please note that NLR should be NLR ≤ NR (see Sect. (3.1) where NR is defined). NTH should

be chosen such that NTH > 2mmax (see Sect. (3)): in the following example, NTH = 8mmax =

8 ∗ 21 = 168 has been used. The factor 2 in the variable nintphi (nintphi=2*(nmax-1)) and

the value of 4 for the variable nph su nintphi are such that NPH is NPH = 8nmax = 8 ∗ 2 = 16.

Those values are the ones typically used in HMGC simulations.

The quantity nne should be such that npart = nne*nnalpha = nlr*nth*nph*ippc**3:

a simple program to compute the optimal values to distribute the particles in the (E,α) space

is provided (calcolo nne.f), for given nlr, nth, maximum n, nph su nintphi, ippc. The

program asks at the beginning which source you are referring to: enter “0” for data referring

to e3 complete.
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Quantities Comments

NLR number of radial cells for the gyrokinetic module (NLR+1 mesh

points)

NTH number of points in the θ (poloidal angle) direction

nintphi nintphi=2*(nmax-1). Parameter for ϕ (toroidal angle) mesh:

the energetic particle distribution function will be loaded on

nph su nintphi toroidal mesh points and then replicated on

nintphi-1 remaining sectors

nph su nintphi parameter for ϕ (toroidal angle) mesh

NPH NPH=nph su nintphi*nintphi: number of points in the ϕ (toroidal

angle) direction

ippc number of particles per cell in each direction of the physical space

(r, θ, ϕ)

nne number of particles in the energy space (nne*nnalpha =

npart/nintphi, nnalpha is the number of particles in the pitch

angle direction)

npart nlr*nth*nph*ippc**3: total number of particles

NMODOM number of Fourier components for the gyrokinetic module: they

must be the Fourier modes of the MHD module plus two poloidal

satellite modes for each toroidal mode considered in the simulation

NRZ the particles are evolved in a (NRZ,NRZ) grid in the (R,Z) plane

around the r = 0 point to avoid problems related to the singular

point r = 0 in polar coordinates.

Table 5: Structure of the file grid inc.

25



3.7 Input file KININP

This file is the main parameter input for the gyrokinetic module. Here is a sample for the

DIII-D simulation (see also Tables (6), (7)):

. . .
0.032863457d0 RHOSA idistr=1: sqrt(T_H0/m_H)/Omega_cH0/a;

idistr=2: sqrt(E_0/m_H)/Omega_cH0/a;
idistr=3: sqrt(T_perp_H0/m_H)/Omega_cH0/a

0.271063836d0 VTHSVA idistr=1: sqrt(T_H0/m_H)/v_A0;
idistr=2: sqrt(E_0/m_H)/v_A0);
idistr=3: sqrt(T_perp_H0/m_H)/v_A0

1.5d0 sigma_0 idistr=3: T_perp_H0/T_par_H0
2.3256d0 usdelta_input idistr=1,2: anisotropy parameter (1/width)
0.68128d0 cosalfa_0_input idistr=1,2: anisotropy parameter

(cosine of injection pitch angle)
4.153850158d0 e0sec0 idistr=2: on-axis E0/E_crit0
.2D00 ALF parameter controlling non uniform radial

particle loading
0 NPIC parameter controlling non uniform radial

particle loading
(if npic.ne.0, er0(i), del(i), i=1,npic must follow)

0.264848976d0 ENHSNI n_H0/n_i0 on axis ratio between energetic particle
and bulk ion densities

1.D00 EMHSMI m_H/m_i ratio between energetic particle and bulk
ion masses

999.99d9 timkin_anu energetic particle density ramps for t > timkin_anu
(set to a large value to avoid ramping)

120.d0 TIMKIN_RELAX time at which the distribution function is assumed
to be relaxed; used for ramping and diagnostics

1.166212d0 ANU_MAX energetic particle density ramping parameter
0.166212d-2 ANU_DOT_0 energetic particle density ramping parameter
0 i_write_deltaf 0: no output,

1: output of f(r,mu,u,t),
2: output of f(r,E,alpha,t)

0 i_write_power 0: no output,
1: output of wave-particle power exchange P(r,mu,u,t)

30 NWRITE energetic particle quantities written every
NWRITE time steps

2 IDISTR 1: Maxwellian, 2: Slowing-down, 3: bi-Maxwellian
1 IDELTF 0: full f, 1: delta-f
0 ILIN 0: fully non linear GK simulation,

1: linear GK simulation
0 IRLSR0 0: R_l with epsilon corrections, 1: R_l=R0
1 IMIRR 0: mirroring term off, 1: mirroring term on
1 IW00 0: grad-B drift contribution to the source term

neglected, 1: retained
1 ILANDA 0: Landau damping term off, 1: Landau damping term on
1 ICURV 0: curvature term off, 1: curvature term on
1 IOMST 0: omega-star term off, 1: omega-star term on
2 NPTEST number of test particles
0 ITEST 0: true test particle, 1: simulation particle
.5,0.,0.,.1,1. ER0T,TH0T,PH0T,AM0T,U0T for t=0: r,theta,phi,mu,u
1 ITEST 0: true test particle, 1: simulation particle
1352 LTEST simulation particle identification number
0. ER_PERT0: energetic particle pressure term PREK set to

zero for r<er_pert0
1 1 l, iprek(l) iprek(l)=0: l-th Fourier component of the PREK off,

iprek(l)=1: on
2 1 l, iprek(l)

. . .
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Quantities Comments

RHOSA ρH/a: particle Larmor radius normalized to minor radius com-

puted:

(1) at the on-axis energetic particle temperature TH0 (ρH/a =

(
√
TH0/mH/ΩcH0)/a if a Maxwellian distribution is considered,

IDISTR=1);

(2) at the birth energy E0 (ρH/a = (
√
E0/mH/ΩcH0)/a) if a slowing

down distribution function is assumed, IDISTR=2);

(3) at the on-axis perpendicular energetic particle temperature

T⊥,H0 (ρH/a = (
√
T⊥,H0/mH/ΩcH0)/a if a bi-Maxwellian distri-

bution is considered, IDISTR=3)

VTHSVA vth/vA0: ratio between energetic particle thermal velocity and on-

axis Alfvén velocity:

for IDISTR=1: vth/vA0 =
√
TH0/mH/vA0;

for IDISTR=2: vth/vA0 =
√
E0/mH/vA0;

for IDISTR=3: vth/vA0 =
√
T⊥,H0/mH/vA0

sigma 0 ratio between on-axis perpendicular and parallel energetic particle

temperatures (used only if IDISTR=3)

usdelta input parameter for anisotropic particle distribution function, it corre-

sponds to the inverse of the width ∆ (see Sects. (6.1), (6.2)) of

the distribution function around the injection pitch angle α0 for

Maxwellian or slowing down distribution functions (IDISTR=1 or

IDISTR=2)

cosalfa 0 input cosα0, cosine of the injection pitch angle α0 for Maxwellian or slow-

ing down distribution functions (IDISTR=1 or IDISTR=2)

e0sec0 E0/Ecrit,0, on-axis ratio between birth energy and critical energy

for slowing down distribution function (IDISTR=2)

ALF parameter for non uniform energetic particles radial loading: uni-

form fraction, 0<ALF<1

NPIC parameter for non uniform energetic particles radial loading: num-

ber of gaussians overimposed to the uniform distribution fraction

ALF.

ER0(I),DEL(I) If NPIC.ne.0 the corresponding values of the radial positions and

widths (ER0(I),DEL(I)) of the gaussians must be given

Table 6: Structure of the file KININP.
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Quantities Comments

ENHSNI nH0/ni0, on-axis ratio between the energetic particle and bulk ion

densities

EMHSMI mH/mi, ratio between the energetic particle and bulk ion mass

timkin anu parameter for ramping the energetic particle density: energetic par-

ticle density ramps for t > timkin anu. timkin anu should be

greater than TIMKIN RELAX but smaller than the time at which non

linear phase occurs. Set timkin anu greater than the total simula-

tion time to avoid ramping

TIMKIN RELAX time at which the energetic particle distribution function is assumed

to be relaxed (because of initialization of the distribution function

in terms of non conserved quantities)

ANU MAX parameter for ramping the energetic particles: multiplying factor

of the normalized energetic particle density

ANU DOT 0 parameter for ramping the energetic particles: time derivative of

the normalized energetic particle density

i write deltaf produces the output of the distribution function:

i write deltaf=0: no output is produced,

i write deltaf=1: f(r, µ, u, t),

i write deltaf=2: f(r, E, α, t)

(µ, u, E and α are the magnetic moment, parallel velocity, particle

energy and pitch angle, respectively)

i write power flag for writing the power exchange P (r, µ, u, t) between particles

and waves:

0: no output is produced,

1: output is produced

NWRITE energetic particle quantities are written on output files every

NWRITE*NSUBCY time steps

IDISTR 1: Maxwellian,

2: Slowing-down,

3: bi-Maxwellian

IDELTF 0: performs a full-f simulation,

1: performs a δf simulation (standard use of HMGC)

Table 7: Structure of the file KININP (continued).
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Quantities Comments

ILIN 0: performs a gyrokinetic non-linear simulation (standard use of

HMGC),

1: performs a gyrokinetic linear simulation

(note that ILIN=1 corresponds exactly to a linear simulation only

if the initial distribution function is a true equilibrium function)

IRLSR0 for the generic l simulation particle:

0: retains ε corrections Rl = R0(1+εl cos θl) (standard use of HMGC),

1: approximates Rl = R0

IMIRR 0: mirroring terms off,

1: mirroring terms on (standard use of HMGC)

IW00 IW00=0 causes to neglect the contribution of the grad-B drift to

the source term in the delta-f Vlasov equation

1: terms are retained (standard use of HMGC)

ILANDA 0: Landau damping off,

1: Landau damping on (standard use of HMGC)

ICURV 0: curvature term off,

1: curvature term on (standard use of HMGC)

IOMST 0: ω∗ term off,

1: ω∗ term on (standard use of HMGC)

NPTEST number of test particles

ITEST for each test particle enter:

0: to initialize a true test particle,

1: to follow a simulation particle

5 reals, if ITEST=0, the initial coordinates (t = 0) of the test particle must

or be given (rtest, θtest, ϕtest, µtest, utest),

LTEST if ITEST=1, particle identification number

ER PERT0 energetic particle pressure tensor term (PREK) set to zero for r ≤
ER PERT0 (standard use of HMGC: ER PERT0=0)

l, iprek(l) PREK(l)=0: lth Fourier component inactive,

PREK(l)=1: lth Fourier component of the energetic particle pressure

tensor term active (defaults is all Fourier components active)

Table 8: Structure of the file KININP (continued, 2).
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3.8 Input files: energetic particle density and temperature pro-

files

Normalized (to the on-axis value) energetic particle density profile and temperature (if

Maxwellian distribution function is loaded, idistr=1), Ecrit (if slowing down distribution

function is loaded, idistr=2) or perpendicular and parallel temperatures (if bi-Maxwellian

distribution function is loaded, idistr=3) profiles must be provided on an equally spaced

normalized poloidal flux function grid ψ. These profiles are usually provided by standard

transport codes (e.g., available in the ITER database). If experimental profiles are provided

(e.g., ρ, q(ρ), nH(ρ), Te(ρ), TH(ρ)), as functions of ρ ≡
√

Φ/Φlimiter, the usual radial-like co-

ordinate of transport codes (e.g., TRANSP) with Φ the toroidal magnetic flux function, a

simple program is provided (psi from rho q exp.f) which returns the poloidal flux function

ψ in terms of ρ, integrating the following expression:

2πdψ =
dΦ
q(ρ)

, (9)

to obtain ψ = ψ(ρ). The normalized coordinate proportional to the poloidal flux function

should be such that it is zero in the centre and unity at the edge.

Those profiles will be interpolated using splines on the desired equally spaced normal-

ized ψ mesh by the fortran program interp spline.f. “Experimental” files with ψnorm(ρ),

nH,norm(ρ) (and similar for the other quantities) must be provided (their names are, e.g.,

den exp DIII D 1, temp exp DIII D 1, temp exp par xxx, where temp exp DIII D 1 contains

the energetic particle isotropic temperature in the case idistr=1, the Ecrit normalized profile

in the case idistr=2, or the energetic particle perpendicular (temp exp DIII D 1) and parallel

(temp exp par xxx) temperature profiles in the case idistr=3). Then a corresponding output

on the equally spaced ψnorm mesh will be produced.
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4 Output files: produced by the MHD module

4.1 Output file CTTO

The CTTO file has exactly the same form of the INCOND file, but includes all the Fourier com-

ponents.

4.2 Output file ENERGY

The ENERGY file contains the four namelists params, diapos, equipa, paramk. Then it contains

a time sequence of some global fluid quantities, namely:

. . .

WRITE(CHENER,00003)
& TIMBUF(JTBUF),LM,EZBUF(JTBUF),Q0BUF(JTBUF),
& QABUF(JTBUF),2.*QABUF(JTBUF)**2*ENMODE(JTBUF,1,1),
& (ENBUF(JTBUF,I),I=1,4),
& (RM(L),RN(L),(ENMODE(JTBUF,K,L),K=1,IDIAGN+2),L=1,LM)

00003 FORMAT(F16.6,I6,E16.6,3F10.6,/,
& 4E24.15,/,(2F5.0,4E24.15,/,10X,4E24.15,/,
& 10X,4E24.15,/,10X,2E24.15))

. . .

where the meaning of the quantities are listed in Table (9). The MHD module produces

an output on the file ENERGY every NPRI time steps, thus the output time step is given by

∆toutput,MHD = DT*NPRI (in Alfvén time units).
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Quantities Comments

TIMBUF simulation time t

LM Fourier components considered in the simulation

EZBUF electric field (toroidal corrections neglected) at r=1 (significative

only for nonlinear MHD simulations )

Q0BUF q(r = 0)

QABUF q(r = 1)

2.*QABUF... internal inductance li (toroidal corrections neglected)

ENBUF(...,I) I=1: volume integrated total magnetic energy

I=2: volume integrated total kinetic energy

I=3: resistive dissipation (obsolete, not corrected for toroidal terms)

I=4: viscous dissipation (obsolete, not corrected for toroidal terms)

RM(L) m(l)

RN(L) n(l)

ENMODE(...,K,L) K=1: volume integrated magnetic energy of the lth Fourier compo-

nent,

K=2: volume integrated kinetic energy of the lth Fourier component,

K=3,IDIAGN+2: real and imaginary part of the φm(l),n(l) at

specific diagnostic radii, as given in namelist diapos (now

IDIAGN=12=2*NRCHNL, see Sect. (3.2).)

Table 9: Quantities in the file ENERGY.
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This file is read by the plotting program epe3ak31.u and give global time evolution of the

simulation from the point of view of the MHD module (see Fig. (4)). An example of the input

file xepe3ak31 datain for the program epe3ak31.u is listed hereafter:

. . .

ENERGY
0 CHANGE TSTART (IF 1 ADD IN THE NEXT LINE NEW TSTART)
0 CHANGE TEND (IF 1 ADD IN THE NEXT LINE NEW TEND)

1 MODECH (1-MODES , 2-ENERGY , 3-PARAMETERS 4-MAGNETIC SIGNALS)
1 IC (1-MAGNETIC , 2-KINETIC , 3-TOTAL)
0 CHANGE MODE LIST (IF 1 ENTER SEQUENCE OF MODE CHANGE)
1 CHANGE LIMITS (IF 1 NEW LIMITS ARE ENTERED BY TERMINAL)
1.e-30,1.e-4

1 MODECH (1-MODES , 2-ENERGY , 3-PARAMETERS 4-MAGNETIC SIGNALS)
2 IC (1-MAGNETIC , 2-KINETIC , 3-TOTAL)
0 CHANGE MODE LIST (IF 1 ENTER SEQUENCE OF MODE CHANGE)
1 CHANGE LIMITS (IF 1 NEW LIMITS ARE ENTERED BY TERMINAL)
1.e-30,1.e-4

1 MODECH (1-MODES , 2-ENERGY , 3-PARAMETERS 4-MAGNETIC SIGNALS)
3 IC (1-MAGNETIC , 2-KINETIC , 3-TOTAL)
0 CHANGE MODE LIST (IF 1 ENTER SEQUENCE OF MODE CHANGE)
1 CHANGE LIMITS (IF 1 NEW LIMITS ARE ENTERED BY TERMINAL)
1.e-30,1.e-4

0 exit

. . .

Note that in the above list only the sequence of input data suited for MODECH=1 have been

shown; different values of MODECH will provide plots of other quantities and will require different

input data.
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Figure 4: Radially integrated magnetic energy of the perturbed Fourier components

vs. time: the flag (fourth column) in the TMODE PL input file commands the Fourier

components to be plotted. Note that here the result of a simulation in which nout=100.

is shown.
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After running the program epe3ak31.u, an output file is written which can be used to

produce a time sequence of plots (movie) by the fortran plot energy.f. An example of the

input file xplot energy input for the program plot energy.f is listed hereafter:

. . .

ENERGY
TMODE_PL
0 ips 0: no PostScript file, 1: PS file, 2: EPS, name follows (30 char.)
pippo.eps
1, 321, 10 ifirst_step,itot,increm (output time steps)
3 1=magnetic energy, 2=kinetic energy, 3=magnetic + kinetic energy

0. time_max (if 0, take time_max from stop_run file)
1.e-32, 0. y_en_min, y_en_max
161 ipl0 first plot
161 ipl1 last plot
5

. . .

The above input data example contains: the name of the input data files (ENERGY,

TMODE PL). ips is a flag for producing a PostScript output, followed by the name of such

a file (pippo.eps). ifirst step,itot are the first and last output time steps which will

be read and available for plotting, respectively; frames will be produced every increm

steps. An output time step corresponds to NPRI simulation time steps, i.e. to a sim-

ulation time ∆toutput,MHD = DT*NPRI (in Alfvén time units). time max is the limit of

the abscissa (in Alfvén time units, if time max=0., the maximum of the abscissa will be

calculated automatically by the input parameters of the run). Note that for a simula-

tion with DT=0.02, NCYCLE=160, NSUBCY=3, NPRI=30, NOUT=20 we get a total number of

time steps equal to NCYCLE*NSUBCY*NOUT+1=9601 (t=0 is also counted) corresponding to

time max=DT*NCYCLE*NSUBCY*NOUT=192.0, and (NCYCLE*NSUBCY*NOUT/NPRI)+1=321 output

times. y en min, y en max are the limits of the ordinate (if y en min=0. and/or y en max=0.,

these limits are computed from the data). ipl0 and ipl1 are the first and last time steps at

which graphical frames will be produced (in the above example, only the frame number “161”

will be produced, corresponding to the normalized time tωA0 = (161 − 1)*DT*NPRI = 96.).

The parameter “5” is a parameter required by the plotting routines (HIGZ from CERN) which

identify the graphic window.

In Fig. (5) an example of this plot is shown:
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Figure 5: Example of integrated total energy Wtot−m,n vs. time. The labels on the right

of the plot, describing the (m,n) poloidal and toroidal mode numbers of the curves,

are written every two modes, because of space limitation (although in the plot all the

components are shown).
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4.3 Output file CTBO

The CTBO file contains radial profile data of MHD quantities, at the end of the simulation (or

each NCYCLE*NSUBCY times, if fortran is modified accordingly).

. . .

WRITE(CHCTBO,1900) ETA,VISC,DT,TIME,REAL(NR),REAL(LM),REAL(IRMODE)
WRITE(CHCTBO,1900) (RM(L),RN(L),L=1,LM)
WRITE(CHCTBO,1900) (R(I),I=1,NR)

1900 FORMAT(6(E20.13,’,’))
c...

WRITE(CHCTBO,1950) ((PSI(I,L),I=1,NP),L=1,LM)
WRITE(CHCTBO,1950) ((PHI(I,L),I=1,NR),L=1,LM)

CGV
WRITE(CHCTBO,1950) ((CUR(I,L),I=1,NR),L=1,LM)
WRITE(CHCTBO,1950) (( W(I,L),I=1,NR),L=1,LM)

CGVKIN..
WRITE(CHCTBO,1950) ((PREK(I,L),I=1,NR),L=1,LM)

CGVKIN..
CGV
1950 FORMAT(3(’(’,E20.13,’,’,E20.13,’),’))

. . .

The variable IRMODE is an obsolete parameter, included only for compatibility with old

outputs. This output file is read by the plotting program profilk.u and gives the radial profile

for each Fourier poloidal component of the various MHD variables (the poloidal magnetic flux

function PSI ≡ ψm,n(r), the scalar potential PHI ≡ φm,n(r), the toroidal component of the

current CUR ≡ jm,n(r) ≡ −(4∗ψ)m,n, the toroidal component of the vorticity W ≡ wm,n(r) ≡
(∇2
⊥φ)m,n, and term proportional to the divergence of the energetic particle stress tensor which

enters in the vorticity equation PREKm,n(r), computed at the time t=TIME, see Fig. (6)). An

example of the input file xprofilk datain for the program profilk.u is listed hereafter:

. . .

0
0
title
CTBO

1 1-PSI 2-W 3-PHI 4-J 5-Q 6-PREK 7-NEW TIME 8-BLANK PLOT
1 L (mode index) (if l<0, it plots from abs(l) to lm;

do not enter min,max)
0.,1.,,, X-MIN,X-MAX,Y-MIN,Y-MAX (if commas, it takes computed values)

1 1-PSI 2-W 3-PHI 4-J 5-Q 6-PREK 7-NEW TIME 8-BLANK PLOT
2 L(M,N) (if l<0, it plots from abs(l) to lm; do not enter min,max)
0.,1.,,, X-MIN,X-MAX,Y-MIN,Y-MAX (if commas, it takes computed values)

8 1-PSI 2-W 3-PHI 4-J 5-Q 6-PREK 7-NEW TIME 8-BLANK PLOT

1 1-PSI 2-W 3-PHI 4-J 5-Q 6-PREK 7-NEW TIME 8-BLANK PLOT
-3 L(M,N) (if l<0, it plots from abs(l) to lm; do not enter min,max)

8 1-PSI 2-W 3-PHI 4-J 5-Q 6-PREK 7-NEW TIME 8-BLANK PLOT
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3 1-PSI 2-W 3-PHI 4-J 5-Q 6-PREK 7-NEW TIME 8-BLANK PLOT
-3 L(M,N) (if l<0, it plots from abs(l) to lm; do not enter min,max)

8 1-PSI 2-W 3-PHI 4-J 5-Q 6-PREK 7-NEW TIME 8-BLANK PLOT

6 1-PSI 2-W 3-PHI 4-J 5-Q 6-PREK 7-NEW TIME 8-BLANK PLOT
-3 L(M,N) (if l<0, it plots from abs(l) to lm; do not enter min,max)

8 1-PSI 2-W 3-PHI 4-J 5-Q 6-PREK 7-NEW TIME 8-BLANK PLOT

2 1-PSI 2-W 3-PHI 4-J 5-Q 6-PREK 7-NEW TIME 8-BLANK PLOT
-1 L(M,N) (if l<0, it plots from abs(l) to lm; do not enter min,max)

8 1-PSI 2-W 3-PHI 4-J 5-Q 6-PREK 7-NEW TIME 8-BLANK PLOT

4 1-PSI 2-W 3-PHI 4-J 5-Q 6-PREK 7-NEW TIME 8-BLANK PLOT
-1 L(M,N) (if l<0, it plots from abs(l) to lm; do not enter min,max)

7 1-PSI 2-W 3-PHI 4-J 5-Q 6-PREK 7-NEW TIME 8-BLANK PLOT

. . .
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Figure 6: Radial profiles of the Fourier components from CTBO file as produced by the

previous script (only the first 8 frames are shown): solid black line: real part, dotted

red line: imaginary part.
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5 Output files: produced by the gyrokinetic module

5.1 Output file OUTDNT

This file contains the time series of the radial profiles of energetic particle density DNTOT (nor-

malized energetic particle density), perpendicular PPERP and parallel PPARA energetic particle

pressure. The gyrokinetic module produces an output on the file OUTDNT every NWRITE time

steps (in analogy with the MHD module, with NWRITE taking the place of NPRI), thus the

output time step is given by ∆toutput,GK = DT*NWRITE (in Alfvén time units).

. . .

WRITE(43,*)ISTEP0,TIMKIN,DENOUT
IF(ISTEP0.EQ.0)THEN
WRITE(43,*)ASPECT
WRITE(43,*)USPS00
write(43,*)’ 0’
WRITE(43,*)NERRE,LMEQ
DO IR=0,NERRE
WRITE(43,*)RLOW(IR)

ENDDO
c

DO IR=0,NERRE
DO LMODE=1,LMEQ
WRITE(43,*)PSIEQ(LMODE,IR)

ENDDO
ENDDO

c
DO LMODE=1,LMEQ

WRITE(43,*)MMODE(LMODE)
ENDDO

ENDIF
c...

DO 1 JJER=0,NLR
WRITE(43,*)DNTOT(JJER),ANTOT,PPERP(JJER),PPARA(JJER)

1 CONTINUE

. . .

ISTEP0 is the current time step index, TIMKIN is the (normalized) current time,

DENOUT=0.0, USPS00= (ψ0,0(r)|max)−1, ASPECT is the aspect ratio R0/a, NERRE=NR-1, RLOW

is the radial coordinate of the mesh used by the MHD module, PSIEQ are the radial profiles

of the LMEQ equilibrium Fourier components of ψ, MMODE(l) = m(l), ANTOT is an obsolete

quantity. This file is used to produce movies of density, βH and αH (local drive) energetic

particle profiles evolution (see Fig. (7)) using the plot program plot density.f. An example

of the input file xplot density input for the program plot density.f is listed hereafter:
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. . .

ENERGY
APWRITE
OUTDNT
0 ips 0: no PostScript file, 1: PS file, 2: EPS, name follows (30 char.)
pippo.eps
1, 321, 10 ifirst_step,itot,increm (output time steps)
0 1=plot n_H-density, 2= beta_H, 3= alpha_H, 0= all
161 ipl0 first plot
161 ipl1 last plot
0. 0. xldmin, xldmax (x axis, if 0.,0. use automatic values)
0. 1.20 aldmin, aldmax (density, if 0.,0. use automatic values)
0. 0.011 albmin, albmax (beta_H, if 0.,0. use automatic values)
-1.5 1.5 alamin, alamax (alpha_H, if 0.,0. use automatic values)
5

. . .

In the above example, which refers to a simulation with DT=0.02,

NCYCLE=160, NSUBCY=3, NWRITE=30, NOUT=20, we get a total number of time

steps equal to NCYCLE*NSUBCY*NOUT+1=9601 (t=0 is also counted) corresponding to

time max=DT*NCYCLE*NSUBCY*NOUT=192.0, and (NCYCLE*NSUBCY*NOUT/NWRITE)+1=321

output times. Only the plots corresponding to the output time step ipl0 = ipl1 = 161

will be produced, that is at the normalized time tωA0 = (161 − 1)*DT*NWRITE = 96. The

parameter “5” in the last line of the file xplot density input is a parameter required by the

plotting routines (HIGZ from CERN) which identifies the graphic window.

The plotted quantities are given in terms of the quantities written in the file OUTDNT by:

• nH(r)/nH0 = DNTOT(r)/(2π∆r) where ∆r = 1/NLR;

• βH(r) = 2× EMHSMI× VTHSVA2 × ENHSNI× [2× PPERP(r)/3 + PPARA(r)/3]/(2π∆r)

• αH = −R0/a× q2(r)dβH/dr.
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Figure 7: Example for density, βH (red dashed curve is β⊥,H , green dotted curve is β‖,H)

and αH radial profiles.
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5.2 Output file TESTWRIK

This file contains the time history of the test particles, and it is used to plot test particle

quantities (see Fig. (8)) using the plot program plot field.f. The quantities written are:

rtest, θtest, ϕtest, utest, wtest,∆test (see Sect. (9.4)). The following excerpt shows the write state-

ments in the file TESTWRIK:

. . .

IF(ISTEP0.EQ.0)THEN
C-----------------------------------------------------------------------

WRITE(29,*) ASPECT
WRITE(29,*) NPTEST
DO 335 I=1,NPTEST
WRITE(29,*) ITEST(I)
IF(ITEST(I).EQ.0)THEN
WRITE(29,*) ER0T(I),TH0T(I),PH0T(I),AM0T(I),U0T(I)
ELSE
WRITE(29,*) LTEST(I)
ENDIF

335 CONTINUE
C-----------------------------------------------------------------------

ENDIF
C-----------------------------------------------------------------------
C WRITE THE TIME STEP AND THE QUANTITY DENOUT INTO FILE 29
C-----------------------------------------------------------------------

WRITE(29,*)ISTEP0,TIMKIN,DENOUT
C-----------------------------------------------------------------------
C WRITE THE RELEVANT DATA INTO FILE 29
C-----------------------------------------------------------------------

DO 1 L=1,NPTEST
WRITE(29,*)ERTEST(L),THTEST(L),PHTEST(L),UTEST(L)
WRITE(29,*)WTEST(L),DTEST(L)

1 CONTINUE

. . .

Units and normalizations are:

• ERTEST ≡ rtest normalized to minor radius a;

• THTEST ≡ θtest in radiants;

• PHTEST ≡ ϕtest in radiants;

• UTEST ≡ utest = vpar/vH(ψ = 0), with vH(ψ = 0) =
√
TH(ψ = 0)/mH . TH(ψ = 0) is:

1. the temperature at ψ = 0 for Maxwellian distribution function (idistr=1);

2. the birth energy E0 for the slowing down distribution function (idistr=2);

3. the perpendicular temperature at ψ = 0 for the bi-Maxwellian distribution function

(idistr=3);

• AM0T ≡ µ ∗ ΩH(ψ = 0)/TH(ψ = 0), with µ being the magnetic moment and ΩH(ψ = 0)

the Larmor frequency of the energetic particle at ψ = 0;
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Note that here ψ = 0 defines the magnetic axis.
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5.3 Outputs file PHIWRITE and APWRITE

These files contain the time sequences of the radial profiles of the Fourier components of

φm,n(r) and ψm,n(r), respectively, on the radial grid of the gyrokinetic module and normalized

according to the normalizations used therein. The files are in unformatted format. The

following excerpts show the write statements in the file PHIWRITE (unit=63) and APWRITE

(unit=64):

. . .

WRITE(63)ISTEP0,TIMKIN
IF(ISTEP0.EQ.0)THEN
WRITE(63)NLR,NTH,NPH
WRITE(63)(ERG(JER),JER=0,NLR)
WRITE(63)LMPERT
write(63) (mmode(im),nmode(im),im=1,lmpert)

ENDIF
write(63) ((phmhdg(im,jer),im=1,lmpert),jer=0,nlr)
...

. . .

. . .

...
write(64) ((apmhdg(im,jer)+psieqg(im,jer),im=1,lmpert)
& ,jer=0,nlr)
...

. . .

Note that the file APWRITE contains the ψm,n(r) components (perturbation part apmhdg

plus equilibrium part psieqg) and the file PHIWRITE contains φm,n(r) (perturbation part

phmhdg, equilibrium part assumed to be zero). ERG is radial coordinate of the mesh used

by the the gyrokinetic module, LMPERT=LM. Those files are used to produce a sequence of

frames of a series of quantities (only the ones produced for φm,n(r) are shown in the following

Figs. (8), (10)), using the plotting program plot field.f. The plots are the following: con-

tour plot of φ(r, θ, ϕ = phiplot), φ(r, θ, ϕ = ϕi(t)) with superimposed the trajectory of the

ith test particle, trajectories of the ith test particle ri = ri(t), θi = θi(t), ϕi = ϕi(t), ui = ui(t)

(see Fig. (8)), trajectory of the ith test particle in the poloidal (R,Z) and equatorial (X,Y)

plane (see Fig. (9)), radial profiles of the φm,n Fourier components, contour plot of φm,n(r) in

the plane (r,m) with superimposed the curve m = nq(r), contour plot of the power spectrum

P (r, ω) in the plane (r, ω) with superimposed the lower and upper Alfvén continua for the

toroidal gap, ξr(r) (radial component of the displacement) and δTe(r) (electron temperature

fluctuation) assuming incompressible perturbations. The power spectrum P (r, ω) is defined

as:

P (r, ω) = Σm,nPm,n(r, ω) ∝ Σm,n

(
|φm,n(r, ω)|2 + |φm,n(r,−ω)|2

)
. (10)
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An example of the input file xplot field input for the program plot field.f is listed

hereafter:

. . .

ENERGY
PHIWRITE
APWRITE
TESTWRIK
Te_vs_erg_DIII_D_1_interp.txt
0 ips 0: no PostScript file, 1: PS file, 2: EPS, name follows (30 char.)
pippo.eps
1, 321, 10 ifirst_step,itot,increm (output time steps)
1 1: phi, 2: psi
0. phiplot: toroidal angle for (r,theta) plot only

1 ipl0 first plot
321 ipl1 last plot
0,0 l-min, l-max Fourier components used (0,0 all)

1 iflag_rtheta, 1 plot in (r,theta,phiplot) plane (ph/ap_xxxx.gif)
0 iflag_test, superimposes to (r,theta,phtest) plot the

i-th test particle (i=iflag_test)
0 iflag_trajectory, plot particle trajectory in

(rtest,thtest,phtest,utest) space
(trajec_[i]_xxxx.gif, trajRZ_[i]_xxxx.gif, trajXY_[i]_xxxx.gif)

0 iflag_fourier_comp: 1 plot fourier component profiles
0 iflag_contour: 1 2D plot of Fourier components (mn_ph/ap_xxxx.gif),

2 contour plot (mn_C_ph/ap_xxxx.gif),
0 do both

0 iflag_power_spectrum: 1 power power spectrum of field in the
plane (omega,r)

576. time window for Fourier transform
0. 0. r0, r1 (min, max in r, if 0. 0. use max available interval)
0. 0.25 w0, w1 (min, max in omega, if 0. 0. use max available interval)
1 ihann- Hanning function 0: off, 1: on
3 ibuffer (1: no buffer, n>1: zero buffer n-1 times)
0 0.001 ilog, fac_zmin (color scale, 0: linear, 1: log, min value plotted)
505 505 ndivx, ndivy for power spectrum plot axes
.true. logic_fill (false: only contour, true: fill)
0 call cerca_massimi for plotta_max (0: no, 1: yes)

0 iflag_deltate, synthetic diagnostic Delta_Te
-0.1 0.1 csi0, csi1 (min, max in csi,

if 0. 0. use max available interval)
-50. 50.0 deltate0, deltate1 (min, max in deltate,

if 0. 0. use max available interval)
5

. . .

Note that the previous input file will produce a sequence of plots starting from tωA0 = 0. to

tωA0 = 96.; only a single frame will be shown in the following Figures 8, 9, 10. iflag test can

vary from “0” (no test particle plots) to NPTEST (producing plots for the i-th test particle).

iflag trajectory=1 will produce, in addition, the trajectories of the selected test particle

(rtest(t), θtest(t), ϕtest(t), utest(t)).

The input file Te vs erg DIII D 1 interp.txt contains the vectors r, Te(r) on the NRL

mesh for synthetic diagnostics purposes (to be produced by the user).

Note that for producing the power spectrum in the plane (r, ω) one has to choose the time

window used in the FFT (twindow = TFFTωA0); the minimum frequency ωmin resolved is
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given by: ωmin/ωA0 = 2π/twindow, whereas the maximum frequency is given by ωmax/ωA0 =

π/∆t = π/(NWRITE*DT). To minimize the effect of having a finite time sequence, the data can

be multiplied by a Hanning function, which essentially is a function picked at the middle of the

time sequence and which goes to zero toward the edge. To increase the number of points in the

frequency direction (but not the content of information!) a buffer of zeros can be added to the

time sequence using the parameter ibuffer. Note also that the plotting routines interpolate

the resulting FFT function in order to draw the contour plot curves: care should be taken in

choosing the twindow parameter in order to resolve a specific mode (see Fig. 11 and Fig. 12

to compare the effect of different parameters on the produced spectra).

Figure 8: Frames number “161” (tωA0 = 96.) as produced by the program plot field.f

using the xplot field input data shown above. Left: φ(r, θ, ϕ = 0). Centre:

φ(r, θ, ϕ) and superimposed the position of the first test particle (produced by assign-

ing iflag test=1). Right: trajectories of the first test particle (rtest, θtest, ϕtest, utest)

(produced by assigning iflag test=1 and iflag trajectory=1).
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Figure 9: Test particle trajectory projected on the poloidal cross section (ϕ = 0., the

cross indicates r = 0) and on the equatorial plane (Z = 0, top view of the torus, dotted

line refers to r = 0, the cross indicates the axis of symmetry of the torus) (produced by

assigning iflag test=1 and iflag trajectory=1).

Figure 10: Left: φm,n(r) (produced by assigning iflag fourier comp=1 and

iflag contour=0). Centre: φm,n(r) (contour plot) and superimposed the curve m =

nq(r). Right: frequency spectra of φm,n in the plane (r, ω) (contour plot) with superim-

posed the upper and lower Alfvén continua of the toroidal gap for a particular toroidal

mode number (automatically chosen from the first perturbed mode, in this case n = 2)

(produced by assigning itot=961, ipl0=ipl1=481, iflag power spectrum=1 and other

data from file xplot field input).
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Figure 11: Frequency spectra during the linear growth phase (tωA0 = 144.) and dif-

ferent values for twindow (first row: twindow=48., ωmin/ωA0 ' 0.131, second row:

twindow=96., ωmin/ωA0 ' 0.0654, third row: twindow=144., ωmin/ωA0 ' 0.0436,

forth row: twindow=192., ωmin/ωA0 ' 0.0327), ihann and ibuffer (first column:

ihann=0, ibuffer=1, second column: ihann=1, ibuffer=1, third column: ihann=1,

ibuffer=3, i.e. ωmin,plot = ωmin/3).
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Figure 12: Frequency spectra during the saturated phase (tωA0 = 432.) and differ-

ent values for twindow (first row: twindow=72., ωmin/ωA0 ' 0.0873, second row:

twindow=144., ωmin/ωA0 ' 0.0436, third row: twindow=288., ωmin/ωA0 ' 0.0218),

ihann and ibuffer (first column: ihann=0, ibuffer=1, second column: ihann=1,

ibuffer=1, third column: ihann=1, ibuffer=3, i.e. ωmin,plot = ωmin/3).
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5.4 Output file deltaf.data (deltaf ealfa.data)

The file deltaf.data contains the time series of the energetic particle distribution function

fH(r, µ, u) (thus, integrated over θ, ϕ), and is read by the program plot deltaf.f (see

Sect. 6 for the details on the distribution function). The distribution function is stored on

a (r, µ, u) grid defined for plotting purposes. More precisely, the number of energetic particles

NH(ri, µj , uk) in the volume centered at (ri, µj , uk) is given by:

NH(ri, µj , uk) = nH(0)a3fH(ri, µj , uk)dridµjduk .

The file is in unformatted format. The file deltaf ealfa.data contains the same data but

on a (E,α) mesh instead of (µ, u). The data stored on the (µ, u) mesh can be transformed

and plotted on a (E,α) one; note that this is not equivalent to store directly the distribution

function in the (E,α) space (indeed, the single particle energy dependence on θ is lost). The

data can be also summed up between to radii to reduce particle noise (see Fig. (13)). The

plotting routines allow to subtract to the current fH(r, µ, u, t) the value of fH(r, µ, u, t = trelax),

where t = trelax is a specific time (thus, the δfH(r, µ, u) is plotted, see Fig. (14))). An example

of the input file xplot deltaf input for the program plot deltaf.f is listed hereafter:

. . .

deltaf.data
0 ips 0: no PostScript file, 1: PS file, 2: EPS, name follows (30 char.)
pippo.eps

1, 321, 1 ifirst_step,itot,increm (output time steps)
1 ipl0 - first plot

211 ipl1 - last plot
1 iflag - 1:plot deltaf, 2:plot deltaf_ealfa
0 iflag_df - 0: plot f, 1: f_t-f_t_relax
1 iflag_versus - 1: mu,u, 2: E,alpha (only if iflag=1)
0.00 0.00 am0 am1 - (min, max in mu (E) if 0. 0. use max available interval)
0.00 0.00 u0, u1 - (min, max in u (alpha) if 0. 0. use max available interval)
1 iflag_contrai - 1: sum from jer0_pl_min to jer0_pl_max
24 40 jer0_pl_min, jer0_pl_max - (if not summed, plot jer0_pl_min)
0 iflag_relax - 1: reset timkin_relax
120. timkin_relax_new
0 iflag_renorm - 1: renormalize f_t_relax to n_H(r,t_relax)

and f_t to n_H(r,t) (only if iflag_df=1)
1 iflag_filtro - 1: plot of sedentary and displaced particles df

(only if iflag_df=1)
5

. . .
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Figure 13: Left: fH(r, µ, u). Centre: fH(r, µ, u) transformed on the (E,α) mesh. Right:

fH(r, E, α). All figures are obtained summing from rjer0 pl min = 0.375 to rjer0 pl max =

0.625. Note that the input file xplot deltaf input shown in the text refers to the

left plot; the figure in the centre is obtained with iflag versus=2; the figure on the

right is obtained reading the file deltaf ealfa.data. All figures refer to the frame “1”

(tωA0 = 0.).

Figure 14: Left: δfH(r, µ, u). Centre: δfH(r, µ, u) transformed on the (E,α) mesh.

Right: δfH(r, E, α). All figures are obtained summing from rjer0 pl min = 0.375 to

rjer0 pl max = 0.625. The relaxed time is trelax = 120. With respect to the in-

put file xplot deltaf input shown in the text, the figures are obtained by assigning

iflag df=1. All figures refer to the frame “211” (tωA0 = 126.).
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5.5 Output file power.data

The file power.data contains the time series of the power exchanged between the energetic

particles and the waves PH(r, µ, u) (thus, integrated over θ, ϕ), and is read by the program

plot power.f. The power is stored on a (r, µ, u) grid defined for plotting purposes. The file is

in unformatted format. The data stored on the (µ, u) mesh can be transformed and plotted

on a (E,α) one; note that this is not equivalent to store directly the distribution function in

the (E,α) space (indeed, the single particle energy dependence on θ is lost). The data can be

also summed up between to radii to reduce particle noise (see Fig. (15)). An example of the

input file xplot power input for the program plot power.f is listed hereafter:

. . .

ENERGY
power.data
0 ips 0: no PostScript file, 1: PS file, 2: EPS, name follows (30 char.)
pippo.eps

1, 321, 10 ifirst_step,itot,increm (output time steps)
161 ipl0 - first plot
161 ipl1 - last plot
2 iflag_versus - 1: mu,u, 2: E,alpha
0.00 0.00 am0 am1 - (min, max in mu (E) if 0. 0. use max available interval)
0.00 0.00 u0, u1 - (min, max in u (alpha) if 0. 0. use max available interval)
1 iflag_contrai - 1: sum from jer0_pl_min to jer0_pl_max
24 40 jer0_pl_min, jer0_pl_max - (if not summed, plot jer0_pl_min)
5

. . .

Figure 15: Left: PH(r, µ, u). Also the curves representing the maximum energy loaded

in the initial distribution function (dotted lines) and the trapped-untrapped particle

boundaries for the lower (solid line) and upper (dashed line) radii considered are shown.

Right: PH(r, E, α). All figures are obtained summing from rjer0 pl min = 0.375 to

rjer0 pl max = 0.625.
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6 Energetic particle distribution functions

HMGC considers at present three different initial energetic particle equilibrium distribution func-

tions fEQ, namely anisotropic Maxwellian (idistr=1), anisotropic slowing down (idistr=2),

and bi-Maxwellian (idistr=3). Their expressions are listed hereafter.

6.1 Maxwellian distribution function (idistr=1)

The Maxwellian energetic particle equilibrium distribution function fEQ,Maxw is defined as

follows:

fEQ,Maxw =
nH0

T
3/2
H0

(mH

2π

)3/2
f̂EQ,Maxw , (11)

f̂EQ,Maxw =
n̂(ψ)
τ(ψ)3/2

Θ(α, α0,∆)e−E/TH(ψ) , (12)

E =
1
2
mHu

2 + µΩcH , (13)

Θ(α, α0,∆) ≡ 4
∆
√
π

exp
[
−
(

cosα−cosα0
∆

)2]
erf
(

1−cosα0
∆

)
+ erf

(
1+cosα0

∆

) , (14)

cosα ≡ u√
2E/mH

, (15)

sin2 α ≡ µΩcH

E
, (16)

nH(ψ) = nH0n̂(ψ) , (17)

TH(ψ) = TH0τ(ψ) , (18)

with E the energy, nH(ψ) the radial density profile, TH(ψ) the temperature, u the parallel

(to the equilibrium magnetic field) velocity, µ the conserved magnetic moment, α the pitch

angle of the energetic particles and Θ(α) represents the anisotropy of the distribution function.

nH0 = nH(r = 0), TH0 = TH(r = 0), ΩcH = eHB/(mHc) with eH , mH the charge and the

mass of the energetic particle, respectively, and B the (local) equilibrium magnetic field. The

parameters entering in the anisotropy term Θ have the following meaning: α0 is the injection

angle (e.g., in the case of beams) and ∆ is the width of the beam around cos(α0). In the code,

the parallel velocity is normalized to the on-axis energetic particle thermal velocity û ≡ u/vth0,

with vth0 =
√
TH0/mH , and the magnetic moment is normalized to µ̂ ≡ µΩcH0/TH0, with

ΩcH0 = eHB0/(mHc).

From the slowing down definition of the distribution function, it follows that:

∫ π

0
sinαdαΘ(α) = 2 , (19)
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Relevant limits are:

∆ −→∞ = Θ(α) = 1 (20)

∆ −→ 0 = Θ(α) = 2δ(cosα− cosα0) (21)

The definition of the pressure tensor is:

p‖ =
∫

d3v 2F E cos2 α , (22)

p⊥ =
∫

d3v F E sin2 α , (23)

p =
p‖ + 2p⊥

3
=

2
3

∫
d3v F E , (24)

where F is the distribution function. From the normalization condition (19) it follows:

p‖ =
3
2
pΛ‖ , (25)

p⊥ =
3
2
pΛ⊥ , (26)

Λ‖ =
∫ π

0
dα sinα cos2 αΘ(α) , (27)

Λ⊥ =
1
2

∫ π

0
dα sin3 αΘ(α) , (28)

Λ⊥ +
1
2

Λ‖ = 1 . (29)

Then

p⊥/p‖ =
1

Λ‖
− 1

2
. (30)

If the ratio p⊥/p‖ is provided experimentally, the corresponding value for ∆ can be obtained

implicitly from Eq. (30) (see Fig. (16)). The explicit expression for Λ‖ is:

Λ‖ =
∫ π

0
dα sinα cos2 αΘ(α) = (31)

= 2 cos2 α0 + ∆2 − 2∆2π−1/2

erf
(

1−cosα0
∆

)
+ erf

(
1+cosα0

∆

) ×{(
1 + cosα0

∆

)
exp

[
−
(

1− cosα0

∆

)2
]

+
(

1− cosα0

∆

)
exp

[
−
(

1 + cosα0

∆

)2
]}

.
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cosalfa_0=0.68128

Pperpsuppar[Delta]

Figure 16: pperp/ppar vs. ∆.

6.2 Slowing down distribution function (idistr=2)

The slowing down energetic particle equilibrium distribution function fEQ,sd is defined as

follows:

fEQ,sd =
nH0

E
3/2
crit,0

3
4π

(mH

2

)3/2
f̂EQ,sd , (32)

f̂EQ,sd =
n̂(ψ)
τ(ψ)3/2

Θ(α, α0,∆)[
(E/Ecrit)

3/2 + 1
]

ln
[
1 + (E0/Ecrit)

3/2
] , (33)

In this case the quantity τ is given by τ ≡ Ecrit(ψ)/Ecrit,0 with Ecrit being the critical

energy (see Stix [8]):

Ecrit(ψ)[MeV] = 14.8Te(ψ)[MeV]

(
A

3/2
H

ne(ψ)

∑
i

ni(ψ)Z2
i

Ai

)2/3

, (34)

with AH the mass number of the energetic ions, Ai and Zi the mass number and electric charge

of the bulk ions (plus impurity, eventually) and Te the electron temperature in MeV, ne and

ni the electron and bulk ion densities. E0 is the birth energy of the energetic particles and

Ecrit,0 = Ecrit(0). In the code, the parallel velocity is normalized, in this case, to the energetic

particle birth energy velocity û ≡ u/vth0, with vth0 =
√
E0/mH .

6.3 Bi-Maxwellian distribution function (idistr=3)

The Bi-Maxwellian energetic particle equilibrium distribution function fEQ,bi−Maxw is defined

as follows:

fEQ,bi−Maxw =
nH0

T
3/2
⊥H0

(mH

2π

)3/2
f̂EQ,bi−Maxw , (35)

f̂EQ,bi−Maxw =
n̂(ψ)

τ⊥(ψ)τ‖(ψ)1/2

(
T⊥H0

T‖H0

)1/2

exp
[
−
(

mHu
2

2T‖H0τ‖(ψ)
+

µΩcH

T⊥H0τ⊥(ψ)

)]
. (36)
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T⊥H(ψ) = T⊥H0τ⊥(ψ) , (37)

T‖H(ψ) = T‖H0τ‖(ψ) . (38)

In this case the normalized quantities are û ≡ u/vth0, with vth0 =
√
T⊥H0/mH and µ̂ ≡

µΩcH0/T⊥H0. The quantity σ0 is σ0 ≡ T⊥H0/T‖H0.
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7 How to setup an HMGC run

In this section we will give indications on how to set up a specific run of HMGC: we will refer to

a DIII-D discharge (#122117) analyzed in Ref. [7].

W.W. Heidbrink provide us a set of radial profiles for the following quantities (t = 0.414

s) of the DIII-D discharge (see Table (10) and Fig. (17)).

ne(r) Electron density (cm-3)

ni(r) (Thermal) deuterium density (cm-3)

nimp(r) Impurity density (carbon) (cm-3)

nH(r) Beam-ion density (cm-3) [Note that this transp value is reduced by

fast-ion transport]

Te(r) Electron temperature (eV)

βH(r) Beam beta toroidal (dimensionless) [Note that this transp value is

reduced by fast-ion transport]

ωϕ(r) Toroidal angular velocity (rad/s)

q(r) safety factor

Table 10: Experimental radial profiles provided by DIII-D team.

The quantity βH(r) will not be used as an input data, but only to compare with the

computed βH(r) from the code (this latter quantity will depend, indeed, on the model used

to load the initial distribution function). The quantity ωϕ(r) could be used to compare the

experimental frequency (νexp) spectra with the ones obtained by the code (νcode): νexp =

νcode + (n/2π)ωϕ, with n the toroidal mode number.

In Fig.(18) the geometry of the neutral beam is shown. The beam is essentially tangential,

wit injection angle α0 ≡ arccos(Rtan/R0) = arccos(1.15m/1.688m) = 47.055 deg. The average

birth energy is E0 = 0.077 MeV (= 2/3× 0.075 MeV + 1/3× 0.081 MeV).

From the data profiles provided and from global information a single toroidal mode number

n = 2 simulation can be set up performing the following steps.
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Figure 17: Experimental profiles for the DIII-D shot # 122117.

59



Rtan=115 cm

R0=168.8 cm

a=60.9 cm

beam

α0 α0

cosα0=Rtan/R0

Figure 18: Beam geometry.
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7.1 How to setup an HMGC run: preparing the equilibrium file

EQNEW

Using the experimental q(r) profile, a EQNEW file should be produced following Sect.(2).

7.2 How to setup an HMGC run: preparing the mode file (TMODE

and modi inc)

The Fourier components considered in the simulation can be chosen considering the range of

the q(r) profile, typically starting from mmin = 1 up to mmax ≈ nq(r = 1). For the specific

case, the modes (m,n) = (0, 0), (1, 0) have been included for the equilibrium, and the modes

(1, 2) up to (21, 2) for the perturbation. (mmax = 2× q(r = 1) = 2× 10.5385 ≈ 21; note that

4× (mmax − 1) = 80 is a valid number for the ESSL FFT routine).

7.3 How to setup an HMGC run: plasma parameters (file PARAM)

The bulk plasma density normalized profile should be assigned following one of the proposed

expressions (NPROFI flag, see Table (3)). For representing experimental data it is usually

convenient to choose NPROFI=1; the three parameters α, β, ρa can be obtained by fitting the

experimental profile. Normalized resistivity η and normalized viscosity ν should be chosen such

that numerical stability is assured: typical values used in the simulations are η = 1. × 10−5,

ν = 1. × 10−8. The initial amplitude perturbation AMP should be such to be well below the

saturation amplitude, in order to provide a sufficiently long “linear” phase of the simulation.

Actually, if is initialized only a single Fourier component (the one at the centre of the poloidal

spectrum). A time step DT must be chosen: usually the MHD module loop on a shorter time

step, whereas the gyrokinetic module is called every NSUBCY time steps. One should take care

that the fastest particles considered in the simulations do not cross more than one cell in the

θ and ϕ directions (or “equivalent” cell, if the nogrid version is used) to integrate correctly

their motion.

7.4 How to setup an HMGC run: energetic particle profiles files

den spli.data and temp spli.data

The integration of the r/q(r) profile will give a ψ(r) mesh (see eq. (9) in Sect. (3.8)).

The Ecrit(r)/Ecrit,0 normalized profile can be derived from the radial profiles of the above

listed plasma quantities (e.g., using a spreadsheet) and it will be used as temp exp DIII D 1

file (table of ψ(r),Ecrit(r)/Ecrit,0).
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Similarly, the energetic particle normalized density profile will be derived by the “Beam-ion

density profile” and used as den exp DIII D 1 file (table of ψ(r),nH(r)/nH0).

For each of the previous files, the program interp spline.f is called by the execution

script, producing the files den spli.data and temp spli.data.

7.5 How to setup an HMGC run: energetic particle dimensioning

(file grid inc)

The parameters which describe the energetic particle dimensioning have been chosen according

to Table (11).

NLR 64 low n, should be such to resolve the typical radial

width structure of the perturbed mode

NTH 168 usually take 8 poloidal mesh points times mmax

nintphi 2× (n− 1)

nph su nintphi 4

ippc 2 two particle per cell per each direction (r, θ, ϕ)

nne 672 as obtained by the program calcolo nne.f

NMODOM 27 see Table (5)

NRZ 5 it depends from the Shafranov shift of the equi-

librium (see output of the program eqe3aaab.f,

typically NRZ such to include the magnetic axis is

taken).

Table 11: Preparing the grid inc file.

7.6 How to setup an HMGC run: energetic particle parameters

(file KININP)

The energetic particle parameters can be calculated from the experimental data provided,

namely, energetic ion specie (D: AH = 2, ZH = 1), toroidal field BT0 = 2 T, R0 = 1.688 m,

a = 0.609 m, Carbon impurity, E0 = 0.077 MeV, volume averaged value of ppar/pperp ≈ 1.44

for the beam ions.
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RHOSA ρH0/a 0.032863457d0 1.02× 10−1A
1/2
H Z−1

H E
1/2
0,MeVB

−1
T0,Teslaa

−1
m

vth 9.79× 108E
1/2
0,MeVA

−1/2
H

vA0 2.18× 108BT0,Tesla×
(Aini,1020×m−3 + Aimpnimp,1020×m−3)−1/2

VTHSVA vth/vA0 0.271063836d0 4.491E
1/2
0,MeVm

−1/2
H B−1

T0,Tesla×
(Aini,1020×m−3 + Aimpnimp,1020×m−3)1/2

usdelta 0 input 1/∆ 2.3256d0 The corresponding value of ∆ has been

chosen in order to match the experi-

mental value of the ratio ppar/pperp ≈
1.44

cosalfa 0 input cosα0 0.68128d0 Rtan/R0 = 1.15m/1.688m

e0sec0 E0/Ecrit,0 4.153850158d0 Ecrit,0 from Eq. (34), evaluated at r = 0

ENHSNI nH0/ni0 0.264848976d0 nH0/(ni + nimp)

EMHSMI mH/mi 1.d0

IDISTR 2 slowing down distribution function

loaded

Table 12: Preparing the KININP file.
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8 HMGC directories structure

• ~/HMGC: main root directory:

1. ~/HMGC/script: directory containing compilation and execution scripts;

(a) xe3 HMGC: execution script of e3 complete.F;

(b) xequil HMGC: execution script of eqe3aaab.u;

(c) xplot HMGC: execution script for post-processing plot programs (e.g.,

epe3ak31, profilk, plot density, plot field, plot deltaf, plot power);

(d) xpsi from rho q exp: execution script of psi from rho q exp.f.

2. ~/HMGC/sources: directory containing HMGC sources;

(a) eqe3aaab.u: equilibrium module;

(b) e3 complete.F: MHD module;

(c) kin uncomplete.F: GK module;

(d) extr push complete.F: pushing routine of GK module;

(e) extr pressure complete.F: pressure routine of GK module;

(f) commons for HMGC: commr31 input, commr31 uncomplete.F, double;

(g) calcolo nne.f: program to initialize the particles in the (E,α) space;

(h) interp spline.f: spline program to interpolate experimental data on the

HMGC mesh;

(i) nlr interp spline: common for the spline program interp spline.f;

(j) psi from rho q exp.f: program to generate ψ(r) from r, q(r) experimental

data;

(k) upda.f: simple pre-processing program (to produce goofy.f programs from

goofy.u);

(l) upda.ksh: shell script to run upda;

(m) pwr5 version: temporary directory (architecture dependent) for producing

the executable;

(n) makefile: makefile;

3. ~/HMGC/graphics: directory containing graphics post-processor programs:

(a) epe3ak31.f;

(b) profilk.f;

(c) plot density.f;

(d) plot energy.f;
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(e) plot field.f;

(f) plot deltaf.f;

(g) plot power.f;

(h) plotta max1.f;

(i) plot equil.f: simple plotting program to compare a computed equilibrium

with experimental data;

(j) GVGRAPH0LIB: directory containing some graphical routines (library

libgvgraph0.a);

(k) GVGRAPH1LIB: directory containing some graphical routines (library

libgvgraph1.a).

• ~/HMGC INPUTS

1. ~/HMGC INPUTS/equilibrium: directory containing equilibrium files;

2. ~/HMGC INPUTS/profiles: directory containing energetic particle experimental

density and temperatures profiles;

• ~/HMGC RESULTS: directory containing output results:

1. ~/HMGC RESULTS/caso equil DIII D 1: directory containing a DIII-D equilibrium

test case;

2. ~/HMGC RESULTS/caso n2 DIII D 1 test 1: directory containing a DIII-D test

case;
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9 Generalities on HMGC

. . .

Beginning of excerpt form the Appendices of Ref. [9]. For the references to equations not

resolved please refer to the original paper.

. . .

9.1 MHD equations

We wish to start the discussion of the general properties of the Alfvén-wave spectrum using

simple-model equations, the so-called ideal magnetohydrodynamic (MHD) equations, which

in Gaussian units read [10]:

∂%

∂t
+∇ · (%v) = 0 , (39)

%
dv
dt

= −∇P +
1
c
J×B , (40)

d

dt

(
P

%Γ

)
= 0 , (41)

E +
1
c
v ×B = 0 , (42)

∇×E = −1
c

∂B
∂t

, (43)

∇×B =
4π
c

J , (44)

∇ ·B = 0 . (45)

In the above equations v is the fluid velocity, J is the plasma current, B is the magnetic field,

% is the mass density, P is the scalar pressure of the plasma, Γ is the ratio of the specific heats,

c is the speed of light, and
d

dt
=

∂

∂t
+ v · ∇ (46)

is the convective derivative.

The ideal MHD equations describe the plasma as a single fluid. In particular, eq. (39)

describes the time evolution of mass (conservation of the total number of particles). Equa-

tion (40) describes the time evolution of momentum, showing that the fluid is subject to

inertial, pressure-gradient and magnetic forces. Equation (41) is the equation of state and

generally describes the polytropic evolution of the plasma. It may be combined with the

continuity equation and written as

dP

dt
= −ΓP∇ · v . (47)

Equation (42), the so-called ideal Ohm’s law, describes the plasma as a perfectly conducting

fluid (from which the expression “ideal MHD” originates). Note that in the more general case
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in which plasma resistivity η is considered, eq. (42) is replaced by

E +
1
c
v ×B = ηJ . (48)

. . .

The elliptic operator ∆∗ is given by

∆∗ψ = R2∇ ·
(
∇ψ
R2

)
= R

∂

∂R

(
1
R

∂ψ

∂R

)
+
∂2ψ

∂Z2
. (49)

. . .

9.2 Order-ε3 reduced MHD

We introduce, here, a simplified version of the resistive MHD equations, which will be useful

later for the non-linear study of the Alfvén modes, greatly reducing the complexity of the

problem. We start from the resistive MHD equations (39-45), with the Ohm’s law generalized

by eq. (48).

Since tokamak plasmas are characterized by values of the safety factor q(r) ≈
(rBϕ)/(RBϑ) ≈ O(1) (Bϕ and Bϑ are, respectively, the toroidal and poloidal component of

the magnetic field) and inverse aspect ratio ε = a/R0 much lower than unity, MHD equations

can be simplified by expanding in powers of ε. This procedure has been widely used, since

the first paper of Strauss [11], both for analytical and numerical work. At the leading order

in ε, O(ε2), and considering the low-β approximation, β ≈ O(ε2), the reduced-MHD equations

describe the plasma in the cylindrical approximation. Toroidal corrections enter the equations

at the next order in the inverse aspect ratio expansion. The derivation of these equations has

been described in detail in ref. [12] and is only briefly reported here.

Following the low-β tokamak ordering, it is possible to write

v⊥
vA
≈ B⊥
Bϕ
≈ B/B · ∇

∇⊥
≈ O(ε) ,

vϕ
vA
≈ ∇ · v⊥

vA/a
≈ ∇(RBϕ)

Bϕ
≈ O(ε2) ,

∂

∂t
≈ vA

R
.

Here, a cylindrical-coordinate system (R,Z, ϕ) has been used, and the subscript ⊥ denotes

components perpendicular to ∇ϕ. The magnetic field can be written as

B =
(
F0 + F̃

)
∇ϕ+R0∇ψ ×∇ϕ+O(ε3Bϕ) , (50)

where ψ is the poloidal magnetic flux function, F0 = R0B0, B0 is the vacuum (toroidal)

magnetic field at R = R0, and F̃ ≈ O(ε2F0) is given, at the leading order, by equilibrium
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corrections. Substituting eq. (50) and Ohm’s law, eq. (48), into Faraday’s law, eq. (43), we

obtain

R0
∂ψ

∂t
∇ϕ+ c

(
ηJ− 1

c
v ×B

)
= −c∇φ+O(ε4vABϕ) , (51)

where φ is the scalar potential. Taking the cross product by ∇ϕ, eq. (51) can be solved with

respect to v⊥ :

v⊥ = − cR2

R0B0
∇φ×∇ϕ+O(ε3vA) . (52)

Equation (52) states that, at the lowest order, the perpendicular velocity is given by the E×B

drift. Then, taking the ∇ϕ component of eq. (51), the following equation for the evolution of

the poloidal magnetic flux function is obtained:

∂ψ

∂t
= − cR2

R0B0
∇ψ ×∇ϕ · ∇φ− c

R0

∂φ

∂ϕ
+ η

c2

4π
∆∗ψ +O(ε4vABϕ) , (53)

with the Grad-Shafranov operator ∆∗ defined by eq. (49).

Upon applying the operator ∇ϕ · ∇ × R2. . . to the momentum equation, eq. (40), the

following equation for the evolution of the scalar potential is obtained:

%̂

(
D

Dt
− 2c
R0B0

∂φ

∂Z

)
∇2
⊥φ+∇%̂ ·

(
D

Dt
− c

R0B0

∂φ

∂Z

)
∇φ =

− B0

4πc
B · ∇∆∗ψ − B0

cR0
∇ ·
(
R2∇P ×∇ϕ

)
+O(ε4%

v2
ABϕ
a2c

) , (54)

where

%̂ =
R2

R2
0

% ,
D

Dt
=

∂

∂t
+ v⊥ · ∇ ,

∇2
⊥ ≡

1
R

∂

∂R
R
∂

∂R
+

∂2

∂Z2
.

Note that, both in eq. (53) and eq. (54), vϕ and F̃ enter only at the fourth order in ε. In eq. (54)

the dependence on the density gradient has been retained explicitly. With the particular choice

of the mass density %R2 = %̂R2
0 = const, and using the definition of v⊥ given in eq. (52), the

continuity equation, eq. (39), is satisfied up to the third order. The pressure equation becomes

DP

Dt
= O(ε4

vAB
2
ϕ

a
) . (55)

. . .

9.3 Hybrid MHD-kinetic models
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In order to include in this model the effects on an energetic-ion population, we can take

advantage from the fact that the energetic particle density is typically much smaller than the

bulk plasma density. The following ordering can then be adopted:

nH
ni
≈ O(ε3) ,

TH
Ti
≈ O(ε−2) ,

where nH (ni) and TH (Ti) are the energetic particle (bulk ion) density and temperature

respectively. Thus, the following ordering for the ratio of the energetic to bulk ion beta

follows:
βH
βi
≈ O(ε) ,

It can be shown [13] that, making use of the above ordering, the MHD momentum equation

is modified by a term which represent the perpendicular component of the divergence of the

energetic-particle stress tensor ΠH (in ref. [13] an alternative, equivalent form in which the

electric current associated to the energetic ions appears, instead of the energetic-particle stress

tensor, is also derived). Thus, the O(ε3) equation for the evolution of the scalar potential is

modified as follows

%̂

(
D

Dt
− 2c
R0B0

∂φ

∂Z

)
∇2
⊥φ+∇%̂ ·

(
D

Dt
− c

R0B0

∂φ

∂Z

)
∇φ =

− B0

4πc
B · ∇∆∗ψ − B0

cR0
∇ ·
[
R2 (∇P +∇ ·ΠH)×∇ϕ

]
+O(ε4%

v2
ABϕ
a2c

) . (56)

In order to close the set of reduced MHD eqs. (53) and (56), the hot-particle stress-tensor

components can be evaluated by directly calculating the appropriate velocity moment of the

distribution function for the particle population moving in the perturbed fields ψ and φ (see

appendix sect. 9.4).

. . .

9.4 Hybrid MHD-kinetic code

In this section, we describe the code that solves the O(ε3) reduced MHD model, in the limit

of zero bulk-plasma pressure. In such limit, only eqs. (53) and (56) need to be solved. As

a boundary condition, we take a rigid conducting wall at the plasma edge. The numerical

tool [14, 15, 16] used to solve the O(ε3) model is based on a field solver originating from an

existing O(ε2) code [17]. Such field solver uses toroidal coordinates (r, ϑ, ϕ), finite differences

in the radial direction (r) and Fourier expansion in the poloidal (ϑ) and toroidal (ϕ) direc-

tions. The coupled equations for the Fourier components of the magnetic and velocity stream

functions ψ and φ are advanced in time using a semi-implicit algorithm, where all the linear

terms that couple with the cylindrical part of the equilibrium (i.e., the component having
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poloidal and toroidal mode numbers (m,n) = (0, 0)) are treated implicitly. The non-linear

terms, the terms which arise from the toroidal corrections to the cylindrical approximation

and the contributions of the energetic particles (the term containing ∇ ·ΠH in eq. (56)) are

treated explicitly. Moreover, only the Fourier components in a half plane of the (m,n) space

are evolved, the ones that fall in the other half plane being recovered from the reality condition

of the solution:

ψ̂−m,−n(r, t) = ψ̂∗m,n(r, t) , φ̂−m,−n(r, t) = φ̂∗m,n(r, t) . (57)

The equilibrium configuration used for numerical simulations can be exactly calculated to

the desired order in ε, starting from the expression for the equilibrium toroidal current

∆∗ψeq = −4π
c

R

R0
J0ϕ , (58)

and expanding ψeq in powers of ε,

ψeq(r, ϑ) = ψeq0 (r) + ψeq1 (r, ϑ) +O(ε2ψeq0 ) .

In the toroidal coordinate system (r, ϑ, ϕ) the Grad-Shafranov operator can be expressed as

∆∗ =
1
r

∂

∂r

(
r
∂

∂r

)
+

1
r2

∂2

∂ϑ2
− 1
R

(
cosϑ

∂

∂r
− sinϑ

r

∂

∂ϑ

)
,

with R = R0 + r cosϑ. To the leading order, that is in the cylindrical approximation, eq. (58)

is given by
1
r

d

dr

(
r
dψeq0
dr

)
= −4π

c
J0ϕ[ψeq0 (r)] , (59)

yielding
dψeq0
dr

= −B0

R0

r

q(r)
,

which can be integrated assigning ψeq0 (a) = 0 and q(r), the safety factor in the cylindrical

(O(ε2)) approximation (q(r) = rB0ϕ/(R0B0ϑ)). Equation (59) gives the symmetric (m =

0, n = 0) Fourier component of the poloidal magnetic flux function ψeq. To the next order in

ε, eq. (58) yields

1
r

∂

∂r

(
r
∂ψeq1
∂r

)
+

1
r2

∂2ψeq1
∂ϑ2

− 1
R0

cosϑ
dψeq0
dr

=

−4π
c
ψeq1

d

dψeq

(
R

R0
J0ϕ

)∣∣∣∣
ψeq=ψeq0

. (60)

Equation (60) admits solutions of the form

ψeq1 (r, ϑ) = ψeq1 (r) cosϑ = ∆(r) cosϑ
dψeq0
dr

, (61)

70



where we have introduced the so-called Shafranov shift ∆. Substituting eq. (61) into eq. (60)

and using the leading order solution of eq. (59), the following equation for the Shafranov shift

∆ is obtained:
1
r

d

dr

[
r

(
dψeq0
dr

)2
d∆
dr

]
− 1
R0

(
dψeq0
dr

)2

= 0 . (62)

Equation (62) can be integrated assigning the radial derivative of the Shafranov shift at the

center ∆′(0) = 0 (regularity condition) and ∆(a) = 0 (corresponding to ψeq = 0 on the rigid

conducting wall), to obtain ∆(r). The substitution of ∆(r) into eq. (61) allows us to obtain

the first-order (1, 0) Fourier component of the magnetic flux function ψeq, thus completing

the equilibrium solution at the desired order. Note that, once fixed r and ϑ, the quantity

∆(r) corresponds to the shift, with respect to the center of the poloidal cross section, of the

geometric center of the magnetic surface labelled by the value ψeq(r, ϑ). Such a shift causes

shear Alfvén waves, even when propagating along the magnetic field line, to cross the radial

grid, thus imposing restrictions on the time step of integration [12]. Further restrictions are

imposed by the strength of the explicitly solved terms (as, e.g., in the case of high inverse

aspect ratio equilibria and/or highly non-linear cases).

The term ΠH in eq. (56) is the pressure-tensor of the energetic (hot) ions; it can be

expressed in terms of the corresponding distribution function fH (ΠH ≡ mH

∫
d3vvvfH ,

with mH being the energetic-ion mass), to be determined by solving the Vlasov equation

(the collisionless limit of the Boltzmann equation). Since the time scale of the dynamics we

want to analyze is long compared to a cyclotron period, it is convenient [18, 19] to solve

the Vlasov equation in the gyrocenter-coordinate system Z ≡
(
R,M,U, θ

)
, where R is the

gyrocenter position, M is the magnetic moment, U is the parallel velocity (i.e., the velocity

along the magnetic-field line), and θ is the gyrophase. This corresponds to averaging the

single-particle equations of motion over many cyclotron orbits and allows one to retain the

relevant finite-Larmor-radius effects without resolving the details of the gyromotion. Such

a choice is particularly suited for numerical time integration of the particle motion, as the

numerical-stability constraint on the time-step size turns out to be much less severe than that

we would obtain without adopting the averaging procedure.

The hot-particle pressure tensor assumes the following form, in terms of the gyrocenter-

coordinate distribution function,

ΠH (t,x) =
1
m2
H

∫
d6ZDzc→ZFH

(
t,R,M,U

)
×[

ΩHM

mH
I + b̂b̂

(
U

2 − ΩHM

mH

)]
δ
(
x−R

)
, (63)

where I is the identity tensor (Iij ≡ δij), FH
(
t,R,M,U

)
is the energetic-particle distribution

function in gyrocenter coordinates, and Dzc→Z is the Jacobian of the transformation from
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canonical to gyrocenter coordinates.

The Vlasov equation can be written as

dFH
dt

= 0, (64)

with
d

dt
≡ ∂

∂t
+
dZ

i

dt

∂

∂Z
i
,

and dZ
i
/dt given by the following equations of motion [14, 20, 21, 22]

dR
dt

= U b̂ +
eH

mHΩH
b̂×∇φ− U

mHΩH
b̂×∇a‖ +[

M

mH
+

U

ΩH

(
U +

a‖

mH

)]
b̂×∇ lnB,

dM

dt
= 0, (65)

dU

dt
=

1
mH

b̂·
{[

eH
ΩH

(
U +

a‖

mH

)
∇φ+

M

mH
∇a‖

]
×∇ lnB +

eH
mHΩH

∇a‖×∇φ
}
− ΩHM

mH
b̂ · ∇ lnB.

Here, eH and ΩH ≡ eHB/(mHc) are, respectively, the energetic-ion charge and Larmor fre-

quency. The fluctuating potential a‖ is related to the poloidal magnetic flux function ψ through

the relationship

a‖ =
eH
c

R0

R
ψ. (66)

Note that the magnetic moment M is exactly conserved in this coordinate system and that,

correspondingly, neither FH nor the equations of motion contain any dependence on the gy-

rophase θ.

The particle-simulation approach to the solution of Vlasov equation, eq. (64), consists in

representing any phase-space function G(t, Z) by its discretized form,

G
(
t, Z
)
≡
∫
d6Z ′G

(
t, Z ′

)
δ
(
Z − Z ′

)
≈
∑
l

∆lG
(
t, Z l

)
δ
(
Z − Z l

)
, (67)

where ∆l is the volume element around the phase-space marker Z l, and in assuming that

each marker evolves in time according to the gyrocenter equations of motion, eqs. (65). Such

markers can then be interpreted as the phase-space coordinates of a set of Npart “particles”,

and G(t, Z) can be approximated by

G
(
t, Z
)
≈

Npart∑
l=1

∆l (t) G
(
t, Z l (t)

)
δ
(
Z − Z l (t)

)
. (68)
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The time-variation of the volume element ∆l (t) is then given by

d∆l

dt
= ∆l(t)

(
∂

∂Z
i

dZ
i

dt

)
t,Zl(t)

. (69)

For the purpose of calculating the pressure tensor components, eq.(63), it is convenient to

directly represent the quantity Dzc→ZFH according to its discretized form

Dzc→Z
(
t, Z
)
FH

(
t, Z
)
≈

Npart∑
l=1

wl (t) δ
(
Z − Z l (t)

)
, (70)

with the weight factor wl defined by

wl (t) ≡ ∆l FH
(
t, Z l (t)

)
, (71)

and

∆l ≡ ∆l (t) Dzc→Z
(
t, Z l (t)

)
. (72)

In fact, from eqs.(64), (69), and from the Liouville theorem,

∂

∂t
Dzc→Z +

∂

∂Z
i

(
Dzc→Z

dZ
i

dt

)
= 0 , (73)

it is immediate to show that
d∆l

dt
= 0, (74)

and
dwl
dt

= 0. (75)

At each time step, the fluctuating electromagnetic potentials are computed at the grid

points of a three-dimensional toroidal domain in terms of the Fourier components yielded

by the field solver. Phase-space coordinates are then evolved in the fluctuating fields, and

the pressure tensor components at the grid points are updated, in order to close the MHD

equations for the next time step.

Field values at each particle position are obtained by trilinear interpolation of the fields at

the vertices of the cell the particle belongs to. The corresponding trilinear weight function is

adopted, after pushing the particles, in order to distribute their contribution to the pressure

tensor components among the vertices of the cell. Phase-space coordinates and weights for

the simulation particles are initially determined in such a way to yield a prescribed (e.g.,

Maxwellian) distribution function. Particle pushing is performed by integrating eqs. (65) by

a second-order Runge-Kutta method, more accurate than the standard O(∆t) Euler method

(O(∆t2) is properly retained), although more time consuming. Particles that hit the wall

(r = a) are considered lost and are not re-injected in the plasma.
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It has been shown [14, 23, 24, 25, 26, 27] that, as far as regimes are considered where the

distribution function can be expected to slightly depart from the equilibrium one, it is worth

limiting the numerical investigation to the evolution of the perturbed part δFH , defined by

the relationship

FH
(
t,R,M,U

)
= FH0

(
t,R,M,U

)
+ δFH

(
t,R,M,U

)
, (76)

where FH0 is the lowest-order (“equilibrium”) distribution function.

In terms of δFH , eq.(64) can be written in the form

dδFH
dt

= S , (77)

with

S ≡ −dFH0

dt
.

Meanwhile, eq.(70) is replaced by the following one,

Dzc→Z
(
t, Z
)
δFH

(
t, Z
)
≈

Npart∑
l=1

wl (t) δ
(
Z − Z l (t)

)
, (78)

with

wl (t) ≡ ∆lδFH
(
t, Z l (t)

)
, (79)

and
dwl
dt

= ∆lS
(
t, Z l (t)

)
. (80)

Note that eq.(76) is by no means equivalent to a linearization of the Vlasov equation, since

all non-linear terms are correctly retained. The decomposition of eq.(76) is useful in reducing

numerical noise as long as |δFH | � |FH0|.
In the present paper, when adopting the δF approach, we take FH0 to be Maxwellian

FH0 ∝ nH
(
R
)

exp

(
−

ΩHM + 1
2mHU

2

TH

)
, (81)

where nH
(
R
)

and TH are, respectively, the energetic-particle equilibrium density and (uni-

form) temperature. The r.h.s. of eq.(77) is then given by

S
(
t,R,M,U

)
= −FH0

{
dR
dt
·∇ lnnH +

eH
TH

[
M

mH
+

U

ΩH

(
U +

a‖

mH

)]
b̂×∇ lnB·∇φ+

eHU

THΩHmH
b̂ · ∇φ×∇a‖

}
. (82)

We also assume the following model for the energetic-particle equilibrium density:

nH(r) = nH0 exp
[
−
(
r2

L2
n

)αn]
, (83)
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where nH0 is the on-axis density.

. . .

End of excerpt form the Appendices of Ref. [9].

. . .
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