
BAPI User Guide (CA-BFA)

H
E

L
P

.B
C

M
ID

A
P

II
N

T
R

O

Re lease 4 .6C

BAPI User Guide CA-BFA) SAP AG

2 April 2001

Copyright

© Copyright 2001 SAP AG. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose
without the express permission of SAP AG. The information contained herein may be changed
without prior notice.

Some software products marketed by SAP AG and its distributors contain proprietary software
components of other software vendors.

Microsoft®, WINDOWS®, NT®, EXCEL®, Word®, PowerPoint® and SQL Server® are registered
trademarks of
Microsoft Corporation.

IBM®, DB2®, OS/2®, DB2/6000®, Parallel Sysplex®, MVS/ESA®, RS/6000®, AIX®, S/390®,
AS/400®, OS/390®, and OS/400® are registered trademarks of IBM Corporation.

ORACLE® is a registered trademark of ORACLE Corporation.

INFORMIX®-OnLine for SAP and Informix® Dynamic Server
TM

 are registered trademarks of
Informix Software Incorporated.

UNIX®, X/Open®, OSF/1®, and Motif® are registered trademarks of the Open Group.

HTML, DHTML, XML, XHTML are trademarks or registered trademarks of W3C®, World Wide
Web Consortium,
Massachusetts Institute of Technology.

JAVA® is a registered trademark of Sun Microsystems, Inc.

JAVASCRIPT® is a registered trademark of Sun Microsystems, Inc., used under license for
technology invented and implemented by Netscape.

SAP, SAP Logo, R/2, RIVA, R/3, ABAP, SAP ArchiveLink, SAP Business Workflow, WebFlow,
SAP EarlyWatch, BAPI, SAPPHIRE, Management Cockpit, mySAP.com Logo and mySAP.com
are trademarks or registered trademarks of SAP AG in Germany and in several other countries
all over the world. All other products mentioned are trademarks or registered trademarks of their
respective companies.

 SAP AG BAPI User Guide CA-BFA)

April 2001 3

Icons

Icon Meaning

Caution

Example

Note

Recommendation

Syntax

Tip

BAPI User Guide CA-BFA) SAP AG

4 April 2001

Contents

BAPI User Guide CA-BFA) .. 5
BAPI User Guide...6
Further Documentation..8
Terminology..9
Introduction...10
Business Framework ...11
SAP Business Objects...13
Business Application Programming Interface (BAPI) ..17

Advantages of BAPIs ..19
Characteristics of BAPIs ...20

BAPIs of SAP Interface Types...22
Business Object Repository ...23
Programming with BAPIs ..24
Determining Details of BAPIs..26

BAPI Explorer..28
Working with Display Functions...29
Working with Tools and Projects ...31
Finding Information in the BAPI Explorer...32

Finding Information in the BAPI Browser ..33
Determining Details of BAPIs of Interface Types...34

Object-Oriented Access to BAPIs...35
Function-Oriented Access to BAPIs ..38
Programming Dialog Applications ...39
Programming Distributed Applications ...41
Standardized BAPIs ...43
Standardized Parameters ..46
Service BAPIs for Help Functions ..48
Transaction Model for Developing BAPIs..51

Example: Old BAPI Transaction Model (with Commit) ...53
Example: BAPI Transaction Model (Without Commit) ..55

SAP Enhancements to Released BAPIs ..57
Compatible Enhancements ...59
Incompatible Enhancements...61

Examples of BAPI Calls ...64
Calling BAPIs from Java ...65
Calling BAPIs from Visual Basic ...71
Calling BAPIs from ABAP ...76

Adapting BAPIs ..78

 SAP AG BAPI User Guide CA-BFA)

BAPI User Guide CA-BFA)

April 2001 5

BAPI User Guide CA-BFA)

BAPI User Guide CA-BFA) SAP AG

BAPI User Guide

6 April 2001

BAPI User Guide
Use
The Business Framework - the open, component-based architecture, which allows software
components from SAP and third parties to interact and integrate with each other, is becoming
more and more important.

SAP business objects are at the heart of the Business Framework, enabling the interoperability of
software components. They cover a wide spectrum of R/3 business data and processes.

SAP business objects are accessed through BAPIs (Business Application Programming
Interfaces), which are stable, standardized methods. SAP business objects and their BAPIs
provide an object-oriented view of R/3 business functions.

SAP provided the first BAPIs for customers and external providers in Release 3.1, enabling them
to integrate their software components in the R/3 System and the Business Framework. The
number of BAPIs is increasing with each R/3 Release and with this the extent of object-oriented
access to the R/3 System.

This User Guide is an introduction to the technical concepts behind BAPIs. It also shows you how
you can use BAPIs to achieve seamless integration between the R/3 System and external
applications, legacy systems and add-ons.

Prerequisites
The Use Guide is targeted at application developers wanting to create new integrated activities
using SAP Business Objects and their BAPIs. For example:

� Integration of external applications with the R/3 System

� Integration of existing business applications with the R/3 System

� Integration of new R/3 components, for example, Advanced Planner & Optimizer (APO)
and Business Information Warehouse (BW).

� Alternative front-end interfaces to R/3 Systems, so that, for example, occasional users
can access R/3.

 These front-ends can be implemented as Windows-based client applications, for
example, as macros in desktop applications (Microsoft Excel or Access), which are
usually written in Visual Basic for Applications or implemented as applications in Visual
Basic, Java or C++.

� Web-based access to the R/3 System through Internet or Intranet applications.

� Componentization of the R/3 System within the Business Framework

Required Knowledge
To use BAPIs to access SAP business objects you will need a good understanding of object-
oriented programming. You should also have a basic knowledge of the R/3 System.

BAPIs can be accessed from various programming environments, for example, Delphi/Connect
from Inprise (formerly Borland), Microsoft’s Visual Studio, C++ and Java platforms. You must be
familiar with the development environment used to access BAPIs.

 SAP AG BAPI User Guide CA-BFA)

BAPI User Guide

April 2001 7

BAPIs are available from development platforms external to R/3 that support the Remote
Function Call (RFC) protocol. If you are developing your application in a non-object oriented
programming language, you need to have RFC programming skills to call BAPIs via RFC. In
particular, you need to know how to perform RFC calls.

BAPI User Guide CA-BFA) SAP AG

Further Documentation

8 April 2001

Further Documentation
In the Open BAPI Network under SAP Business Technology/Business Framework in SAPNet,
application developers can view up-to-the-minute information on BAPI developments undertaken
by SAP and by partners.

Further documentation on topics relating to BAPIs can be found under CA-BFA in the SAP
Library and under SAP Business Technology/Business Framework in the BAPI Knowledge
Base in SAPNet.
See also:

� Customer Enhancements and Modifications for BAPIs [Ext.]

� SAP Enhancements to Released BAPIs [Page 57]

� BAPIs for Mass Data Transfer [Ext.]

� Use of ALE Services [Ext.]

 SAP AG BAPI User Guide CA-BFA)

Terminology

April 2001 9

Terminology
Definition
The table below contains definitions of the terms used in this document:

Term/Synonym Definition

Object type

Business object type

SAP business object type

Generic definition of business objects. Describes the general
characteristics and common attributes of instances of SAP
business object types.

Business object

Business object instance

SAP business object
instance

One instance of an SAP business object type

BOR

Business Object Repository

Central repository within the R/3 System containing all the SAP
business object types and SAP interface types together with their
definitions and methods.

BAPI

Business Application
Programming Interface

Standardized programming interface enabling external
applications to access business processes and data in the R/3
System.

BAPIs are defined in the BOR as methods of SAP business
object types that carry out specific business functions.

BAPIs are implemented as RFC-enabled function modules and
are created in the Function Builder of the ABAP Workbench.

Interface type

SAP interface type

Definitions of attributes, methods and events grouped together in
one context.
An object type can support one or more interface types. The
functional group of associated attributes, methods and events
defined for the interface type together with their interfaces are
used by the object type and are inherited by the respective
subtypes of the object.

BAPI User Guide CA-BFA) SAP AG

Introduction

10 April 2001

Introduction
Use

SAP has introduced object-oriented technology in the R/3 System by making R/3
processes and data available in the form of SAP business objects.

External applications can access SAP business objects through standardized, platform-
independent interfaces - Business Application Programming Interfaces (BAPIs). SAP
business objects and their BAPIs provide an object-oriented view of R/3 business
functionality.

This guide provides an overview of the Business Framework, SAP business objects and
SAP interface types and their BAPIs as well as the Business Object Repository where
business objects and BAPIs are defined and stored.

 SAP AG BAPI User Guide CA-BFA)

Business Framework

April 2001 11

Business Framework
Use
The SAP R/3 Business Framework provides a structure for R/3 functionality based on application
components (business components) and object models. The Business Framework enables
customers and partners to connect their own components to the R/3 System.
The use of object-oriented technology and object models reduces the complexity of the global
system.

Features
The architecture of the Business Framework provides the basis for developing SAP business
components. The basic components of the Business Framework are:

� Business components

SAP business components provide autonomous business functions and consist of
business objects. For example, the business objects, Employee and Applicant are
assigned to the business component Human Resources. Business processes are either
implemented within a business component or across several components (distributed
business processes).

� Business objects

The object-oriented structure of the R/3 System is based on business objects. They
encapsulate business data and functions and define the scope and the boundaries of a
business component.

� Business Application Programming Interfaces (BAPIs)

BAPIs are interfaces for business objects. Together with the business objects, BAPIs
define and document the business interface standard.

� The integration service, Application Link Enabling (ALE)

The ALE integration service enables business processes carried out in different R/3 and
non-SAP systems to be integrated. It involves distributing business objects across the
systems using the ALE distribution model.

The graphic below illustrates this architecture.

BAPI User Guide CA-BFA) SAP AG

Business Framework

12 April 2001

Distribution business
processesBusiness

Object

Application Link Enabling
(ALE)

Integration services
for business
processes and
distribution of
business objects

BAPI

BAPI

BAPI

SAP R/3

Application Component

� Communication services

These are the communication technologies, for example, Distributed Component Object
Model (DCOM) and Remote Function Call (RFC), which the Business Framework uses to
access BAPIs.

The graphic below illustrates this architecture.

Distribution business
processesBusiness

Object

Communication
services

BAPI

BAPI

BAPI

SAP R/3

Application Component

(D)COM
SAP Remote
Function Call

(RFC)
CORBA

 SAP AG BAPI User Guide CA-BFA)

SAP Business Objects

April 2001 13

SAP Business Objects
Definition
Business object technology and programming are based on the concept of business objects.
Real objects, such as an employee or a sales order can be represented as business objects in
business application systems, such as the R/3 System.

SAP business objects encapsulate R/3 data and business processes whilst hiding the structure
and implementation details of the underlying data.

Structure
To achieve this encapsulation, SAP business objects are created as entities with several layers.

� At the core of an SAP business object is the kernel, which represents the object's
inherent data.

� The second layer, the integrity layer, represents the business logic of the object. It
comprises the business rules for consistent embedding in the environment and the
constraints regarding the values and domains that apply to the business object.

� The third layer, the interface layer, describes the implementation and structure of the
SAP business object, and defines the object's interface to the outside world.

� The fourth and outermost layer of a business object is the access layer, which defines
the technologies that can be used for external access to the object’s data, for example,
COM/DCOM ((Component Object Model/Distributed Component Object Model). It
specifies the technologies that enable object data to be accessed from external
programs, for example, COM/DCOM (Component Object Model/Distributed Component
Object Model).

The graphic below illustrates the different layers of a business object.

BAPI User Guide CA-BFA) SAP AG

SAP Business Objects

14 April 2001

Representative"is part of"

"is a"

Kernel
Integrity

Interfa
ce

Access

Busi-
ness
Rules

Con-
straints

Method
(BAPI)

Method
(BAPI)

• COM/DCOM
• RFC
• JAVA
• CORBA

Legend:
COM/DCOM = Component Object Model/

Distributed Component Object Model
RFC = Remote Function Call
CORBA = Common Object Request Broker

Architecture

Integration
Accessing Business Objects
As the graphic shows, the interface layer separates a business object's data and the applications
and technologies that are used to access it. To the outside, SAP business objects reveal only
their interface, which consists of a set of clearly defined methods. Applications can only access
the business object data through the object's methods.

An application program wanting to access an SAP business object and its data, only needs the
information required to execute the methods. Therefore, application programmers can work with
SAP business objects and call their methods without having to know anything about the object's
underlying implementation details.

The set of methods associated with a business object represents the object's behavior. When a
method is executed on a business object, the method can change the object's internal state, that
is, the object's data.

For example, one method that you can use on the business object Employee is to "check for the
employee's existence".

In the R/3 System all SAP business object types and their methods are defined and described in
the Business Object Repository (BOR) [Page 23].

Object Types and Object Instances
Each individual business object belongs to a specific object class, depending on the nature and
general characteristics of the object. These object classes are called object types. For example,
the individual employees working in an organization are all part of the Employee object type.

The object types are descriptions of actual SAP business objects that can exist in R/3; that is,
each individual SAP business object is a representation, or instance, of its object type. For
example, the employee with the name Charlie Jones and the employee number 1234 is an
instance of the Employee object type.

KernKern Integritä
t

Integritä
t

Ge-
schäfts-
regeln

Schnitts
telle

Schnitts
telle

Zugriff
Zugriff

• COM / DCOM
• RFC
• Java
• CORBA

Methode
(BAPI)

Methode
(BAPI)“Con-

straints”
Erklärungen:
COM/DCOM = Component Object Model /
 Distributed Component Object

 Model
RFC = Remote Function Call
CORBA = Common Object Request Broker
 Architecture

 SAP AG BAPI User Guide CA-BFA)

SAP Business Objects

April 2001 15

When writing object-oriented application programs, developers identify the object types that are
to be used in their programs. At runtime, the application program accesses the specific instances
of the defined object types.

When an instance of a business object is used by an application program, the object instance
responds only to the set of characteristics and methods defined for its own object type. SAP
business object types are defined by the following:

� Object types
The object type describes the features common to all instances of that object type. This
includes information such as the unique name of the object type, its classification, and
the data model.

� Key fields
The key fields determine the structure of an identifying key, which allows an application
to access a specific instance of the object type. The object type Employee and the key
field Employee.Number are examples of an object type and a corresponding key field.

� Methods
A method is an activity that can be performed on a business object and that provides
access to the object data. A method is defined by a name and a set of parameters and
exceptions, which can or must be provided by the calling program in order to use the
method. BAPIs are examples of such methods.

� Attributes
An attribute describes a specific property of a business object. For example,
Employee.Name is an attribute of the Employee object type.

� Events
An event signals that the status of a business object has changed.

Inheritance and Polymorphism
One objective and the main benefit of object-oriented technology is software reusability.

The reuse of software code is achieved by deriving new object types from existing ones. When
an object type is generated from an existing object type, the new object type is called the subtype
and the existing object type is called the supertype. For example, the object type Employee is a
subtype which has been derived from the supertype Person. The synonyms subclass and
superclass are sometimes used for subtype and supertype.

A subtype inherits all the properties and methods defined for the supertype from which it
descends, but can also have additional properties and methods. A subtype may also implement a
different behavior for the methods inherited from the supertype. Polymorphism is the term used
to describe when the same method triggers different types of behavior in different business
object types.

For more information about creating business objects refer to the documentation on SAP
Business Workflow [Ext.].

BAPI User Guide CA-BFA) SAP AG

SAP Business Objects

16 April 2001

 SAP AG BAPI User Guide CA-BFA)

Business Application Programming Interface (BAPI)

April 2001 17

Business Application Programming Interface (BAPI)
Use
The SAP business objects held in the Business Object Repository (BOR) encapsulate their data
and processes. External access to the data and processes is only possible using specific
methods - namely BAPIs (Business Application Program Interfaces).

A BAPI is defined as a method of an SAP Business Object Type [Page 13] or of an SAP Interface
Type [Page 22].

The functionality implemented in the SAP business object type CostCenter includes
for example, listing all the available cost centers. The business object type
CostCenter provides the BAPI GetList() for this purpose.

The BAPIs in the R/3 System are currently implemented as function modules which are created
and managed in the Function Builder. Each function module underlying a BAPI:

� Supports the Remote Function Call (RFC) protocol

� Has been assigned as a method to an SAP business object type in the Business Object
Repository

� Is processed without returning any screen dialogs to the calling application

Integration
The graphic below shows the relationship between an SAP business object type, its associated
BAPIs and its function modules.

Business Object Type with BAPIs and Associated Function Modules

BAPI User Guide CA-BFA) SAP AG

Business Application Programming Interface (BAPI)

18 April 2001

R/3 Server

Function module
(RFC compatible)

Function Builder

Business Object
Sales order

BAPI

BAPI

BAPI

Business Object Repository

Function module
(RFC compatible)

Function module
(RFC compatible)

This architecture enables SAP to change the details of a BAPI's implementation without affecting
external applications that use the BAPI. For information on SAP policy for enhancing BAPIs see
SAP Enhancements to BAPIs [Page 57].

Prerequisites
To use a BAPI method to access data in SAP business objects, an application program only
needs to know how to call the method. The information required is:

� The name of the BAPI

� Details of the BAPI interface:

� Import parameters, which contain data to be transferred from the calling program to the BAPI

� Export parameters, which contain data to be transferred from the BAPI back to the calling
program

� Import/export (table) parameters for both importing and exporting data

Application programmers can work with SAP business objects and implement their BAPIs without
needing to know the underlying implementation and coding details.

 SAP AG BAPI User Guide CA-BFA)

Advantages of BAPIs

April 2001 19

Advantages of BAPIs
Use
The section below outlines some of the benefits of using BAPIs to access SAP business objects.

Business Standard
SAP business object types and their BAPIs are the standard for the business contents in the R/3
System. They enable business functions in the R/3 System to be integrated with business
functions in non-SAP software.

Conforming to Standards
The development of BAPIs is a part of a shared initiative between SAP, customers, partners and
leading standards organizations. BAPIs have become a communication standard between
business systems.

SAP business object types and their BAPIs can be accessed through object-oriented interface
technologies, such as Microsoft COM/DCOM (Component Object Model/Distributed Component
Object Model).

SAP business objects conform to the specifications laid down by the Open Applications Group
(OAG) and, in cooperation with ObjectBridge from VisualEdge, meet the CORBA guidelines
(Common Object Request Broker Architecture) established by the Object Management Group.

Stability and Downward Compatibility
Once a BAPI has been developed and released by SAP, its interface definition and parameters
remain stable in the long term. This ensures that an application program is not affected by
changes in the underlying R/3 software and data.

If BAPIs need to be enhanced, for example by adding optional parameters, SAP can do this
without affecting the stability of existing applications. At the same time new applications can
benefit from the enhanced functions.

For information on SAP release strategy for BAPIs, see SAP Enhancements to BAPIs [Page 57].

Object-Oriented Technology
As methods of SAP business objects BAPIs can offer access to R/3 data and processes. They
follow an object-oriented programming model. BAPIs can be called using object-oriented
interface technologies such as COM/DCOM. In this way they enable free interaction between
SAP and non-SAP software components.

Openness
Using BAPIs, you can access all development platforms which support the SAP Protocol Remote
Function Call (RFC).

BAPI User Guide CA-BFA) SAP AG

Characteristics of BAPIs

20 April 2001

Characteristics of BAPIs
Use
This section tells you what you should know about BAPIs before you start integrating BAPI calls
into your application programs.

Naming Conventions
BAPIs are identified by the name of the business object type followed by the name of the BAPI.
(BAPI names are in English and describe what the BAPI does to the business object). A period
separates the two parts of the name.

For example, the full name of the BAPI CheckAvailability() of the business object
Material is Material.CheckAvailability().

Standardized BAPIs and Parameters
There are some standardized BAPIs that can be implemented for most business object types.
These BAPIs have specific functions, for example, the BAPI GetList(), retrieves a list of the
instances of a business object type.

These BAPIs are implemented according to specified rules and have the same name for all
business objects. The BAPI GetList() can be used for many business objects, for example,
CompanyCode.GetList() and Material.GetList(). For information about these BAPIs see
Standardized BAPIs [Page 43].

As far as possible, the parameters of BAPIs are also standardized. Standardized Parameters
[Page 46] that can be implemented and defined for BAPIs are used in the BAPI interface.

Database Consistency
Each BAPI that creates an instance of an object or updates the data of an object is responsible
for database consistency. All database changes are carried out completely or not at all.

However, the COMMIT WORK command must not be executed by the BAPI itself; it must be
executed by the calling program. For further information see the Transaction Model for
Developing BAPIs [Page 51].

No Dialog Orientation
BAPIs do not return any screen dialogs from the R/3 server system to the calling application.

Authorization
To interact with the R/3 System users must have a certain set of authorizations. To execute a
BAPI as part of your application program, the users of your application must have the appropriate
authorizations set up in their R/3 master records. The documentation provided with the BAPI
contains information about the required authorizations.

Any attempts to execute a BAPI that fail as a result of insufficient authorizations are reported
back to the calling application.

 SAP AG BAPI User Guide CA-BFA)

Characteristics of BAPIs

April 2001 21

Data Types and Data Display
BAPIs are programming interfaces for business applications. Neutral (internal) data types and
data formats are therefore used almost exclusively in BAPI interfaces. There are some
exceptions, for example:

� Currency codes

� Internal keys

� Quantities

� Specific fields in address structures

For information about these exceptions see Internal and External Data Formats [Ext.] in the BAPI
Programming Guide.

Conversion BAPIs are provided for the appropriate conversions between internal and external
formats. For information see Service BAPIs for Help Functions [Page 48].

BAPI parameters can use most of the data types supported by SAP. The data types are
documented in the structure entries of each parameter in the ABAP Dictionary.

Processing Modes
When BAPIs are called directly, for example, via BAPI ActiveX Control, the R/3 DCOM
Component Connector or by directly calling the underlying function module, BAPIs are processed
in synchronous mode.

For information about calling BAPIs in a distributed environment (ALE) see Programming
Distributed Applications [Page 41].

Business Object Attributes
The attributes of business objects are accessed through the BAPI interface itself. An example of
a BAPI that retrieves such attributes is GetDetail() of the business object CompanyCode.

BAPI User Guide CA-BFA) SAP AG

BAPIs of SAP Interface Types

22 April 2001

BAPIs of SAP Interface Types
Use
As of Release 4.5A, BAPIs can also describe interfaces implemented outside the R/3 System,
which can be called in external systems by R/3 Systems. These BAPIs are known as BAPIs
used for outbound processing. The target system is determined for the BAPI call in the
distribution model of Application Link Enabling (ALE).

BAPIs used for outbound processing are defined in the Business Object Repository (BOR) as
API methods of SAP interface types. In contrast to BAPIs of SAP business object types, the
BAPIs in the R/3 System are not implemented as function modules.

Functions implemented outside the R/3 System can be standardized and made available as
BAPIs.

With the exception of the above mentioned points, the information in the BAPI User
Guide and the BAPI Programming Guide [Ext.] refers to the BAPIs of both SAP
interface types and SAP business object types. If this is not the case, the
documentation will explain what the differences are.

 SAP AG BAPI User Guide CA-BFA)

Business Object Repository

April 2001 23

Business Object Repository
Definition
All SAP business object types and SAP interface types and their methods are defined and
described in the R/3 Business Object Repository (BOR). The Business Object Repository was
introduced in R/3 Release 3.0, at the same as time as SAP business objects and SAP Business
Workflow. At first, the BOR was mainly used by SAP Business Workflow.

Use
With the introduction of BAPIs in R/3 Release 3.1, the BOR assumed an important new role - it is
now the central access point for external applications to access SAP business object types, SAP
interface types and their BAPIs.

In this context, the BOR serves two essential purposes:

� It defines and describes SAP business objects and SAP interface types and their BAPIs.

If you are developing an application program, you retrieve details of the SAP business
object types or SAP interface types, their key fields and their BAPI methods from the
BOR. The BOR contains all the information you need to include the appropriate object
type definitions and BAPI invocations in your application program.

� It creates instances of SAP business objects.

The runtime environment of the BOR receives requests to create runtime objects from
client applications and creates the appropriate object instances.

For further information about creating business object types refer to the documentation on SAP
Business Workflow [Ext.].

BAPI User Guide CA-BFA) SAP AG

Programming with BAPIs

24 April 2001

Programming with BAPIs
Use
Assume that the application you developed is to use the data held in business objects in the R/3
System and that this data is to be accessed by calling BAPIs. Your application can be as simple
or as complex as you like and can include more than one BAPI call.

Integration
BAPIs are defined in the Business Object Repository (BOR) as methods of SAP business object
types or SAP interface types and are implemented as function modules. As the BAPI definition is
separation from its actual implementation, you can access a BAPI in two ways:

� You can call the BAPI in the BOR using object-oriented method calls (see Object-oriented
Access to BAPIs [Page 35]).

� You can make RFC calls to the function module on which the BAPI is based (see Function-
oriented Access to BAPIs [Page 38]).

The two approaches are illustrated in the graphic below.

Ways of Accessing BAPIs

R/3-Server

Function module
(RFC compatible)

Function Builder

Business Object
Sales order

BAPI

BAPI

BAPI

Business Object Repository

Function module
(RFC compatible)

Function module
(RFC compatible)

Object Oriented Access RFC Access

 SAP AG BAPI User Guide CA-BFA)

Programming with BAPIs

April 2001 25

Features
Applications that access BAPIs can be broadly divided into two categories:

� Dialog applications

With dialog applications the caller usually waits until the method call has been
processed, for example, waits for the results of a GetList() BAPI.

For more information see Programming Dialog Applications [Page 39].

� Distributed applications

BAPIs can also be used in Application Link Enabling (ALE) to exchange and replicate
data between two distributed systems. For more information see Distributed Applications
Programming [Page 41].

Activities
Regardless of the approach you use, you need to complete the following tasks in order to invoke
BAPIs from your application program:

Task For Further Information:

1. Identify the SAP business object type or
the SAP interface type and the required
BAPI and determine the parameter
information for the BAPI interface.

Determining BAPI Details [Page 26]

2. Include the BAPI call or function call and
the parameter declarations in your
application program.

Programming Dialog Applications [Page 39]
or
Programming Distributed Applications [Page
41]

For examples of calling BAPIs from various
development platforms see Examples of
BAPI Calls [Page 64].

BAPI User Guide CA-BFA) SAP AG

Determining Details of BAPIs

26 April 2001

Determining Details of BAPIs
Purpose
To use a BAPI, you have to determine the information you have to forward to call the BAPI or
function in your application program.

Prerequisites
You can find this information in the BAPI Explorer or in the BAPI Browser.

The BAPI Explorer is available as of Release 4.6A and replaces the BAPI Browser used in
earlier releases. The BAPI Explorer uses up-to-date HTML control technology which requires
SAPgui version 4.6A.

If you are using a SAPgui from an earlier release, the BAPI Browser is displayed instead of the
BAPI Explorer.

Details of BAPIs of Business Object Types
The following information is required to use BAPIs of SAP business object types:

� The import, export and import/export parameters of the BAPI

Standardized parameters supply the same or equivalent data and can therefore be used
in different BAPIs. These parameters have the same name in all BAPIs and are
implemented using the same guidelines. For further information see Standardized
Parameters [Page 46].

� They key fields of the SAP business object type

The key fields of SAP business object types specify the identification structure with which
client programs can uniquely access a specific instance of the object type. The key fields
are required if the BAPI is using specific instances of an object type. BAPIs are divided
into these categories:

� Instance-dependent BAPIs

Instance-dependent BAPIs use specific instances of an object type which the client
application must specify in the key fields of the business object. An example of an
instance-dependent BAPI is CompanyCode.GetDetail() and when used the client
application must specify the company code ID, for example,
GetSAPObject("CompanyCode","0001").

� Instance-independent BAPIs

Instance-independent BAPIs do not use specific instances of an object type. They
usually return a list of object type instances in tables to the calling program. Instance-
independent BAPIs are also called class methods. The BAPI
CompanyCode.GetList(), which returns a list of company codes, is an example of an
instance-independent BAPI.

Some instance-independent BAPIs generate object instances and report back
information on the generated object instance to the calling application. An example of

 SAP AG BAPI User Guide CA-BFA)

Determining Details of BAPIs

April 2001 27

this type of BAPI is SalesOrder.CreateFromData(), which creates a customer order
and reports back information to the calling program.

� The documentation on the business object type, the key fields, the BAPI and its parameters.

� The name of the function module, if the RFC calls are sent to the function module underlying
the BAPI.

Once you have retrieved all the required information, you can use the BAPI in your application
program.

Details of BAPIs of Interface Types
The following information is required to use BAPIs of SAP business object types:

� The import, export and import/export parameters of the BAPI

� The name of the function module that is to implement the interface

� The documentation on the BAPI and its parameters.

Once you have retrieved all the necessary information, you can implement the interface and use
the BAPI in your application program.

Process Flow
From the initial R/3 screen, choose Tools � Business Framework � BAPI Explorer or enter the
transaction code BAPI in the SAPgui command field.

If you are using a SAPgui of Release 4.6A or later, the BAPI Explorer will be displayed. For more
information about using the BAPI Explorer see BAPI Explorer [Page 28].

If you are using a SAPgui in a release earlier than 4.6A, the BAPI Browser appears instead of the
BAPI Explorer. For further information see BAPI Browser [Page 33].

BAPI User Guide CA-BFA) SAP AG

BAPI Explorer

28 April 2001

BAPI Explorer
Definition
The BAPI Explorer is the R/3 System working environment for developing BAPIs themselves and
for developing with BAPIs.

Use
Prerequisites
The BAPI Explorer is available as of Release 4.6A and enhances or replaces the BAPI Browser
used in earlier releases. The BAPI Explorer uses the latest HTML control technology. For this
reason to work with the BAPI Explorer, you must be using a SAPgui of version 4.6A.

If you are using a SAPgui from an earlier release, the BAPI Browser (Transaction BAPI45) is
automatically called instead of the BAPI Explorer. For information about working in the BAPI
Browser see BAPI Browser [Page 33] in the BAPI User Guide.

Purpose
In the BAPI Explorer, application developers can get an overview of the status of BAPIs in the
BOR. The BAPIs can be determined either by the position of the associated obect or interface
type in the component hierarchy in the BOR, or from an alphabetical list. All information required
to use a particular BAPI is provided in the BAPI Explorer.

The BAPI Explorer is used internally in SAP to develop BAPIs, but can also be used by
customers and partners. The BAPI Explorer provides all the tools used to create BAPIs and the
required development objects in an integrated programming environment. The entire
development process of a BAPI takes place in the framework of form-controlled "projects" to
achieve maximum quality, stability and usability of the BAPI.

Structure
The BAPI Explorer is divided into two areas:

� Hierarchy display

Here all the business object types or interface types for which BAPIs have been defined
are displayed. For further information see Working with Display Functions [Page 29].

� Work area

Here the details and documentation of the development object selected in the hierarchy
display can be viewed.

The tools used to develop BAPIs are also available in the work area. For further
information see Working with Tools and Projects [Page 31].

Integration
To call the BAPI Explorer choose Tools � Business Framework � BAPI Explorer. To call it
directly use Transaction BAPI.

 SAP AG BAPI User Guide CA-BFA)

Working with Display Functions

April 2001 29

Working with Display Functions
Use
In the hierarchy display of the BAPI Explorer all the business object types or interface types for
which BAPIs have been defined are displayed.

Using the tabs Alphabetical and Hierarchical in the hierarchy display, you can select whether the
business object types or interface types are displayed alphabetically or as they are assigned in
the component hierarchy in the BOR.

By expanding the relevant nodes you can navigate up to the parameter level of individual BAPIs.

Features
The following display functions are also provided which enable you to directly access BAPIs and
their details in the BOR.

� Displaying details

Under the Detail view of the work area all the technical details of the development object
selected in the hierarchy are displayed.

In most cases you can double-click on a field in the Detail display to get to the
developent environmnt or to display further information. For example, in the detail display
for a particular method, by double clicking on the name of the function module, it will be
displayed in the Function Builder.

� Displaying and Printing Documentation

In the Documentation view of the work area the documentation for the development
object selected in the hierarchy is displayed.

The data element documentation for each parameter field is contained in the
documentation for structured BAPI parameters.

If you have installed Microsoft Internet Explorer Version 4.0 on the front-end computer,
you can print the documentation using the standard SAPgui print function.

� Changing the level of the hierarchy display

The component hierarchy may have many hierarchy levels. To make it easier to find a
business object type and its BAPIs, you can use the function Goto � Change hierarchy
level to limit the display to two hierarchy levels.

� Specifying the BAPIs to be displayed

The default is to display only released BAPIs of business object types. By choosing Goto
� BAPIs to display, you can display all the BAPIs contained in the BOR, that is BAPIs of
SAP interface types and BAPIs that have not yet been released.

Business object types and interface types are identified by different symbols. To display
these, choose Goto � Display legend.

� Searching for BAPIs

Using the standard functions Find and Find next you can search the displayed business
object types or interface types using specified criteria (placeholders such as ' * ' can be
used):

BAPI User Guide CA-BFA) SAP AG

Working with Display Functions

30 April 2001

� Object name, e.g. BusinessProcess

� Object type (technical object name) e.g. SAP0001

� Object description, e.g. Plan*

� Method name, e.g. GetList

� Method description, e.g. object list*

 SAP AG BAPI User Guide CA-BFA)

Working with Tools and Projects

April 2001 31

Working with Tools and Projects
Use
The views Tools and Projects in the work area are mainly used for developing BAPIs.

Features
Depending on the development object selected in the hierarchy display, in the Tools view, the
following tools and navigation options are provided:

� Direct access to the Business Object Builder, Function Builder and ABAP Dictionary.

� List generator to create lists of BAPIs using specified selection criteria.

In the Project view you can create projects to assist you with following and documenting the
development procedures below:

� Implementing new BAPIs (for internal SAP use, BAPI developments must be carried out and
documented using a project in the BAPI Explorer)

� Changing released BAPIs (only for SAP internal use)

� Requesting a new business object type (only for SAP internal use)

For each of these projects there is a project form that takes you step by step through the entire
development process and provides direct navigation options to the required development tools
and information.

Within the project management you can save and delete your projects and you can edit the
projects managed by other users by selecting Other users.

If you have installed Microsoft Internet Explorer Version 4.0 on the front-end computer, you can
print the project form using the standard SAPgui print function.

BAPI User Guide CA-BFA) SAP AG

Finding Information in the BAPI Explorer

32 April 2001

Finding Information in the BAPI Explorer
To display details of BAPIs in the BAPI Explorer [Page 28]:

1. Choose Tools � Business Framework � BAPI Explorer or enter the transaction code
BAPI in the SAPgui command field.

 If you are using a SAP GUI in a release earlier than 4.6A, the BAPI Browser [Page 33]
appears instead of the BAPI Explorer.

 By default only the released BAPIs of business objects are displayed in the BAPI
Explorer hierarchy. To display all the BAPIs contained in the BOR, that is, BAPIs of SAP
interface types and BAPIs that have not yet been released, choose Goto � BAPIs to
display.

 To display a list of the symbols used in the hierarchy choose Goto � Display Legend.

2. To display the required view of the object types or interface types select either
Alphabetical or Hierarchical.

 The component hierarchy may have many layers which can make it difficult to find a
particualr business object type and its BAPIs. You can restrict the hierarchy display to
two levels, by choosing Goto � Change hierarchy level.

3. Navigate to the required business object type or interface type or use the standard
search functions Find and Find next under the Edit menu path (you can use placeholders
such as “*”).

4. Expand the node of the business object type/interface type to display its key fields and
methods. Expand the node of the method to display its parameters.

5. From the hierarchy display select the development object you require details for.

6. To display the technical information select Detail in the right hand frame. To read the
documentation, select Documentation.

 SAP AG BAPI User Guide CA-BFA)

Finding Information in the BAPI Browser

April 2001 33

Finding Information in the BAPI Browser
If you are using a SAPgui from a release before 4.6A, the BAPI Browser is displayed instead of
the BAPI Explorer [Page 28].

To display a description of individual symbols in the BAPI Browser choose Utilities �
Legend.

BAPIs of SAP interface types cannot be displayed in the BAPI Browser. You have to
use the Business Object Browser, as described in Determining Details of BAPIs of
Interface Types [Page 34].

In the application hierarchy of the BAPI Browser you can display all the SAP business object
types for which BAPIs have been implemented:

1. Choose Tools � Business Framework � BAPI Browser or enter the transaction code
BAPI45 in the SAPgui command field. The BAPI Browser of the BOR appears and all
business object types with BAPIs are displayed in the R/3 application hierarchy.

2. Expand the nodes and the subordinate nodes of one of the application components until
you get to the level where the SAP business object types are assigned. Only those
business object types for which BAPIs have been implemented are displayed.

3. To open an object type, double-click on it.

 The nodes Key fields and Methods are displayed.

4. To display a list of the key fields of the object, expand the node Key fields. Select the
information icon to display descriptions of individual key fields.

5. To display a list of the BAPIs available for this SAP business object type, expand the
node Methods.

 To display details of individual BAPIs and the name of the function module that
implements the BAPI, select the information icon. The name of the function module is
given at the start of the documentation. The names of BAPI function modules always
begin with “BAPI”.

6. To display the parameters of a BAPI, expand the node for the BAPI and then the
Parameters node.

A list of all the BAPI’s parameters is displayed. Select the relevant icon in the BAPI
Browser to display further information about the individual parameters.

BAPI User Guide CA-BFA) SAP AG

Determining Details of BAPIs of Interface Types

34 April 2001

Determining Details of BAPIs of Interface Types
SAP interface types and their BAPIs are managed in the Business Object Repository (BOR) in a
structure based on the R/3 Application Component hierarchy. In the Business Object Builder
you can display all the SAP interface types in the component hierarchy .

1. Choose Tools � Business Framework � BAPI Development �� Business Object Builder
or enter the transaction code SWO1 in the SAPgui command field.

2. Select Business Object Repository.

3. In the next dialog box select the filter Other settings. In the field Type select the setting
Interface and deactivate the setting Object, in the field Type select the setting Others and
mark all the settings in the field Status.

 The Business Object Repository Browser is displayed in which all the SAP Interface
Types with BAPIs are displayed in the R/3 application hierarchy.

4. Expand the nodes and the subordinate nodes of one of the application components until
you get to the level where the SAP interface types are assigned.

5. To open an SAP interface type, double-click on it. The nodes Interfaces, Attributes,
Methods and Events are displayed.

6. Expand the node Methods to display a list of the methods available for the selected SAP
interface type. BAPIs are marked by a green circle next to the method name.

7. To display the parameters, select the BAPI and then the button Parameters.

8. To display the documentation, select the BAPI and then choose Goto ��Documentation.

 SAP AG BAPI User Guide CA-BFA)

Object-Oriented Access to BAPIs

April 2001 35

Object-Oriented Access to BAPIs
Purpose
Object-oriented access to BAPIs in the BOR is possible from a number of platforms.

Development Tool
/Middleware

Further Information

BAPI ActiveX Control
(Windows 95 and Windows
NT)

SAP’s BAPI ActiveX Control allows external client
applications to access SAP business objects in the BOR by
invoking BAPIs through OLE Automation. For more
information see BAPI ActiveX Control [Ext.].

BAPI C++ Class Library in
SAP Assistant

A BAPI C++ Class Library is available in the SAP Assistant
providing a C++ proxy class for each SAP business object
and its BAPIs.
For further information see The C++ BAPI Proxy Classes
[Ext.] in the SAP Assistant documentation.

BAPI Java Class Library in
SAP Assistant

A dynamic BAPI Java Class Library is available in SAP
Assistant enabling object-oriented access to BAPIs from
Java platforms. To call BAPIs, the standard data types and
classes in Java can be used instead of the SAP internal
data types and structures.
For further information see The Java BAPI Proxy Classes
[Ext.] in the SAP Assistant documentation.

R/3 DCOM Component
Connector
(Windows NT)

The R/3 DCOM Component Connector developed jointly by
SAP and Microsoft enables seamless integration of R/3
objects and COM objects. SAP business objects and their
BAPIs can be accessed transparently from COM-based
development tools. The other way round COM components
can be accessed from the SAP development environment.
The R/3 DCOM Component Connector Software
Development Kit (SDK) is shipped as part of RFC SDK for
Windows NT.
For more information see The DCOM Connector [Ext.].

ObjectBridge
from Visual Edge

Visual Edge’s middleware product “ObjectBridge” enables
automatic access to BAPIs from all CORBA 2.0-enabled
Object Request Brokers (ORBs) as well as from other
object-oriented protocols such as ActiveX/DCOM.
For further details see the ObjectBridge product information.

Programming Environment Further Information
Delphi/Connect for SAP
from Inprise

For further details see Delphi/Connect product information.

Access Builder for SAP R/3
from IBM

Access Builder for SAP R/3 is used to integrate BAPIs into
IBM’s development environment, Visual Age for Java.
Access Builder for SAP R/3 enables the development of
BAPI-enables Java applications, Java applets and
JavaBeans for the R/3 System.
For further details see the product information for Access
Builder for SAP R/3.

BAPI User Guide CA-BFA) SAP AG

Object-Oriented Access to BAPIs

36 April 2001

Visual Studio (Enterprise
Edition)
from Microsoft

From now on BAPIs implemented in R/3 Releases 3.1H and
4.0A will be available locally from Microsoft’s development
environment Visual Studio (Enterprise Edition).

Process Flow
Applications run differently on different development environments and the steps required to start
them are also different.

The example below shows the steps involved when the BAPI ActiveX Control is used to access
BAPIs. When the R/3 System is connected to, the client application accesses the SAP business
objects at runtime by forwarding the OLE automation requests to the BAPI ActiveX Control.

The steps are:

� Create a BAPI ActiveX Control object

Set oBAPICtrl = CreateObject("SAP.BAPI.1")

� Create a logon control object:

Set oLogonCtrl = CreateObject(“SAP.Logoncontrol.1")

� Create a connection object to the R/3 System:

Set oBAPICtrl.Connection = oLogonCtrl.NewConnection

� Log on to R/3 System by calling the logon method of the connection object:

If oBAPICtrl.Connection.Logon(frmStart.hwnd,FALSE) = FALSE then
 MsgBox"R/3 Connection failed"
 End
Endif

� Request the creation of a local instance of the SAP Business Object

Before your application can invoke a BAPI on an SAP Business Object, it must first
request the creation of an instance of the object.

The command below taken from a Visual Basic program uses the BAPI ActiveX Control
object and the GetSAPObject() method to request the creation of an instance of the
business object SalesOrder.

Set boOrder = oBAPICtrl.GetSAPObject("SalesOrder")

� Create the parameter objects

Set oOrderHeader = oBAPICtrl.DimAs(boOrder, _
 "CreateFromDat1", "OrderHeaderIn")
Set otabItems = oBAPICtrl.DimAs(boOrder, _
 "CreateFromDat1", "OrderItemsIn")
Set otabPartners = oBAPICtrl.DimAs(boOrder, _
 "CreateFromDat1", "OrderPartners")
Then the relevant data must be entered in the parameter objects.

� Call the BAPIs of the business objects

Once the object instance is created, the BAPIs can be invoked on it.

The Visual Basic command below calls a BAPI:

 SAP AG BAPI User Guide CA-BFA)

Object-Oriented Access to BAPIs

April 2001 37

boOrder.CreateFromDat1 OrderHeaderIn:=oOrderHeader, _
 OrderPartners:=otabPartners, _
 OrderItemsIn:=otabItems, _
 Return:=oReturn

� Release the SAP business object and the BAPI ActiveX Control object

The graphic below illustrates how SAP business objects and their BAPIs are accessed via BAPI
ActiveX Control.

Using BAPI ActiveX Control

OLE Automation clients
(Microsoft Excel, Visual Basic or
C++ programs, ...

BAPI ActiveX Control

Windows 32 Platform

IDispatchInterface
OLE
Automation

R/3 Server

SAP
Business
Objects

Business Object Repository

BAPI

Material

Remote Function Call (RFC)

BAPI User Guide CA-BFA) SAP AG

Function-Oriented Access to BAPIs

38 April 2001

Function-Oriented Access to BAPIs
Purpose
You can access BAPIs from platforms that do not provide direct object-oriented access to SAP
business objects by making Remote Function Calls (RFCs) to the function module underlying the
BAPI.

This approach can be used on all development platforms supporting the RFC protocol, for
example, ABAP or external platforms using C/C++ Class Library.

Process Flow
During runtime your application program uses the RFC Library or the C/C++ Class Library to
make an RFC call to the function module underlying the BAPI. The Library translates client calls
into communication steps in accordance with the RFC protocol and the client requests are
forwarded to the relevant function module in the R/3 server system.

This approach is illustrated in the graphic below.

Accessing a BAPI Function Module Through RFC Calls

Client
for example C++ program

RFC library

RFC-Capable System

Function
calls

R/3 Sever

SAP
Business
Objects

Business Object Repository

BAPI

Material

Remote Function Call (RFC)

RFC library

For further information about RFC calls to function modules see Remote Communications [Ext.].

 SAP AG BAPI User Guide CA-BFA)

Programming Dialog Applications

April 2001 39

Programming Dialog Applications
Use
SAP provides various help functions in the form of service BAPIs to support the programming of
dialog applications.

Features
In dialog applications you can use the following help functions: The service BAPIs can be found
in the BOR component hierarchy under Basis Components � Middleware.

Transaction Control
Each dialog transaction that uses BAPIs to change data in one or more objects must directly
execute the COMMIT WORK command to save the data. The BAPI
BapiService.TransactionCommit() is used for this and it writes the changes to the database.

If data is not to be written to the database, the BAPI BapiService.TransactionRollback() can reset
the changes, provided that the changes have not already been passed to the database with the
BAPI. This works provided that the BAPI BapiService.TransactionCommit has not already
passed the changes to the database.

Input Help (F4 Help)
To display the possible entries (F4 help) for an input field transferred when a BAPI is called, you
should include the service BAPI HelpValues.GetList() in your program. This BAPI supplies the
input values allowed for the field in a BAPI parameter.

The method HelpValues.GetList() method uses the help view for the check table, matchcodes or
domain fixed values linked to the field in the ABAP Dictionary. For information about check
tables, matchcodes and domain fixed values see the ABAP Dictionary [Ext.].

F1 Help (Field Help)
To provide F1 help (field help) for input fields in your application you can use the BAPI
BapiService.FieldHelpGetDocu(). This method reads the documentation (F1 help) on the fields in
a BAPI parameter.

Interpreting Return Messages
Each BAPI contains a parameter named Return. This parameter reports exception messages or
success messages back to the calling program.

Two service BAPIs can diagnose and process error messages from BAPI calls:

� BapiService.MessageGetDetail() displays the short and long texts of BAPI error
messages.

� BapiService.ApplicationLogGetDetail(), displays the entries in application logs.

Further Information
For further information refer to the documentation on the appropriate BAPI in the Business Object
Repository.

BAPI User Guide CA-BFA) SAP AG

Programming Dialog Applications

40 April 2001

A list of all the service BAPIs available can be found under Service BAPIs for Help Functions
[Page 48].

 SAP AG BAPI User Guide CA-BFA)

Programming Distributed Applications

April 2001 41

Programming Distributed Applications
Use
From R/3 Release 4.0 onwards, BAPIs can also be used in Application Link Enabling (ALE) to
exchange and replicate data between two distributed systems. When data is transferred between
distributed systems you decide between using synchronous and asynchronous BAPIs.

Features
Synchronous BAPIs
Synchronous BAPIs are generally used to read data from a remote logical system, for example to
display a customer list.

Before calling the BAPI, it is therefore necessary to determine the RFC destination of the remote
system or the BAPI server. The application developer has access to an API for determining the
RFC destination of the BAPI.

Asynchronous BAPIs
Asynchronous BAPIs are generally used for replicating data on one or more logical systems, for
example to distribute article master data.

To implement an asynchronous data transfer with a BAPI, an ALE IDoc interface must be
generated. This interface controls all of the data communication between logical systems using
IDoc technology. The application then calls the generated ALE IDoc interface locally instead of
the BAPIs.

As with synchronous BAPIs, the corresponding logical systems of the BAPI must be determined
before you call the ALE-IDoc interface. These are transferred to the ALE-IDoc interface as input
parameters.

Processing the Return Parameter
Each BAPI has the standardized Return parameter for returning messages to the calling
application. For more information about this parameter, see Return Parameters (Error Handling)
[Ext.] in the BAPI Programming Guide.

First the function module that converts the IDoc into the corresponding BAPI in the receiving
system is called. After this status records are written for the IDoc in which messages sent in the
Return parameter are logged.

If the field type contains A (abort) in at least one of the transferred return parameter entries, the
status 51 (error, application document has not been posted) is assigned to all the status records
of the IDoc and a ROLLBACK WORK is executed. If the field type contains E (error) in at least
one of the transferred Return parameter entries, the status 51 (error, application document has
not been posted) is assigned to all the status records of the IDoc and a COMMIT WORK is
executed anyway. Otherwise status 53 (application document posted) is written and a COMMIT
WORK is executed.

ALE Distribution Model
As with the message types, synchronous and asynchronous BAPIs are maintained in the ALE
context in the ALE distribution model. Based on the distribution model, the logical systems (for
asynchronous BAPIs) or RFC destinations (for synchronous BAPIs) are determined at runtime.

BAPI User Guide CA-BFA) SAP AG

Programming Distributed Applications

42 April 2001

For more detailed information about using BAPIs in an ALE context, see ALE
Programming [Ext.] and the document Using ALE Services [Ext.].

 SAP AG BAPI User Guide CA-BFA)

Standardized BAPIs

April 2001 43

Standardized BAPIs
Use
Some BAPIs and methods provide basic functions and can be used for most SAP business
object types. Such BAPIs are known as “standardized” BAPIs.

Features
With object methods and especially with BAPIs, you can differentiate between instance
methods and class methods. Instance methods refer to precisely one instance (one specific
occurrence) of an SAP Business Object type, for example, to one explicitly specified customer
order. Whereas class methods are instance-independent.

BAPIs for Reading Data
The following BAPIs provide you with read-only access to data in the associated business object
type:

GetList()
With the BAPI GetList() you can select a range of object key values, for example, company
codes and material numbers. The BAPIs GetList() is a class method.

For more information see Programming GetList() BAPIs [Ext.].

GetDetail()
The BAPI GetDetail() uses a key to retrieve details about an instance (one specific occurrence)
of a business object type and returns this data to the calling program. Then this information is
reported back to the calling program. The BAPI GetDetail() is an instance method.

For more information see Programming GetDetail() BAPIs [Ext.].

GetStatus()
The BAPI GetStatus() is used to query the status of an SAP business object instance, for
example, the processing status of a sales order. This BAPI is used only for displaying the status
of an object and does not retrieve full details like the BAPI GetDetail(). The BAPI GetStatus() is
an instance method.

For more information see Programming GetStatus() BAPIs [Ext.].

ExistenceCheck()
The BAPI ExistenceCheck() checks whether an entry exists for a business object instance, for
example, whether the customer master has been created. The ExistenceCheck() BAPI is an
instance method.

For more information see Programming ExistenceCheck() BAPIs [Ext.].

BAPIs for Creating or Changing Data
The following BAPIs can create, change or delete instances of a business object type:

BAPI User Guide CA-BFA) SAP AG

Standardized BAPIs

44 April 2001

Create() or CreateFromData()
The BAPI Create() or CreateFromData() creates an instance of an SAP business object type, for
example, a purchase order. These BAPIs are class methods.

For more information see Programming Create() BAPIs [Ext.].

Change()
The BAPI Change() changes an existing instance of a SAP business object type, for example, a
purchase order. The () BAPI is an instance method.

For more information see Programming Change() BAPIs [Ext.].

Delete() and Undelete()

The BAPI Delete() deletes an instance of an SAP business object type from the database, for
example, a purchase order.

The BAPI Undelete() removes a deletion flag.

These BAPIs are instance methods.

For more information see Programming Delete() BAPIs [Ext.].

Cancel()
Unlike the BAPI Delete () the BAPI Cancel() cancels an instance of a business object, that is the
instance to be cancelled remains in the database and an additional instance is created that is
canceled).

The Cancel() BAPI is an instance method.

For more information see Programming Cancel() BAPIs [Ext.].

Add<subobject> and Remove<sub-object>

The BAPI Add<sub-object> adds a sub-object to an existing object instance and the BAPI and
Remove<sub-object> removes a sub-object from an object instance. These BAPIs are instance
methods.

For further information see Programming Methods for Sub-Objects [Ext.].

If you are implementing BAPIs that create or change data you should consider using
buffering. For further information see Buffering for Write BAPIs [Ext.].

BAPIs for Mass Processing
The BAPIs listed in the above section, “BAPIs for Creating or Changing Data”, can also be used
for mass processing. Here, when a BAPI is called, several business object instances are
processed at the same time.

With BAPIs for mass processing, the suffix “Multiple” is added to the method name, for example,
ChangeMultiple(), CreateMultiple(), DeleteMultiple(). The BAPIs here are always class methods.

 SAP AG BAPI User Guide CA-BFA)

Standardized BAPIs

April 2001 45

We strongly recommend that you create instance-dependent BAPIs with buffering
instead of Multiple() BAPIs. For further information see Buffering with Write BAPIs
[Ext.].

BAPIs for Replicating Business Object Instances
The following BAPIs are used for replicating business object instances:

Replicate() and SaveReplica()

The BAPIs Replicate() and SaveReplica() are implemented as methods of replicable business
object types(). They enable specific instances of an object type to be copied to one or more
different systems. These BAPIs are used mainly to transfer data between distributed systems
within the context of Application Link Enabling (ALE). These BAPIs are class methods.

For more information see Programming Replicate()/SaveReplica() BAPIs [Ext.].

BAPI User Guide CA-BFA) SAP AG

Standardized Parameters

46 April 2001

Standardized Parameters
Use
There are some parameters that can be created for various BAPIs because they contain the
same or equivalent data in all BAPIs. Such parameters are known as “standardized” parameters.
They should be implemented the same in all BAPIs.

Features
Address parameters
Specific reference structures are defined for address parameters in BAPIs. You should copy
these structures to use in your BAPI, especially if the underlying object type uses the central
address management (CAM).

For more information see Address Parameters [Ext.].

Change Parameters
In BAPIs that cause database changes (for example, Change() and Create() BAPIs) you must be
able to distinguish between parameter fields that contain modified values and parameter fields
that have not been modified. This distinction is made through the use of standardized
parameters.

For more information see Change Parameters [Ext.].

Extension parameters
The parameters ExtensionIn and ExtensionOut provides customers with a mechanism that
enables BAPIs to be enhanced without modifications. For further information see Customer
Enhancement Concept for BAPIs [Ext.].

Return Parameters
Each BAPI must have an export Return parameter for returning messages to the calling
application. To provide application programmers with a consistent error handling process for
BAPI calls, all Return parameters must be implemented in the same, standardized way.

For further information see Return Parameters (Error Handling) [Ext.].

Selection Parameters
The parameters in BAPIs used to search for specific instances of a business object type, for
example, BAPI GetList(), have to enable the caller of the BAPIs to specify appropriate selection
criteria. Standardized selection parameters are used to do this.

For more information see Selection Parameters [Ext.].

Test Run Parameters
The parameter TestRun is used in the BAPIs that generate instances - Create() or
CreateFromData(), to check the entries for the object instance in the database before actually
creating the object instance. The creation of the object instance is only simulated and data is not
updated.

 SAP AG BAPI User Guide CA-BFA)

Standardized Parameters

April 2001 47

For further information see Test Run Parameters [Ext.].

Text Transfer Parameters
To transfer BAPI documentation texts, for example, documentation of a business object type, you
have to create standardized text transfer parameters.

For more information see Text Transfer Parameters [Ext.].

BAPI User Guide CA-BFA) SAP AG

Service BAPIs for Help Functions

48 April 2001

Service BAPIs for Help Functions
Use
A number of service BAPIs provide basic help functions. Service BAPIs provide information or
services for BAPIs from individual application components.

The service BAPIs can be found in the BOR component hierarchy under Basis � Middleware.

For details of individual service BAPIs refer to the BAPI documentation in the BOR.

Features
BAPIs for Accessing Interface Documentation
Using the BAPIs below, you can display the documentation and descriptions of BAPI interfaces:

� HelpValues.GetList()

This method determines the input values (F4 help) for a BAPI parameter field. The
method displays valid input values for a specific BAPI parameter field, enabling end-
users to enter a correct value in the input field.

� BapiService.FieldHelpGetDocu()

This method reads the documentation (F1 help) on the BAPI parameter fields. It allows
you to provide end-users with descriptions of BAPI parameter fields.

� BapiService.InterfaceGetDocu()

This method reads the entire interface documentation of a BAPI. You can access
documentation on the business object type, method, parameters and parameter fields.

� BapiService.HyperLinkGetText()

This method reads R/3 object documentation that has hyperlinks to a document which
was itself created with either the BapiService.InterfaceGetDocu() or the
BapiService.HyperLinkGetText() method.

BAPIs for Interpreting Error Messages
The BAPIs below help you to interpret BAPI error messages:

� BapiService.MessageGetDetail()

This method displays the short and long texts of BAPI error messages.

� BapiService.ApplicationLogGetDetail()

This method reads the entries in the application log.

BAPIs for Controlling COMMIT and ROLLBACK
The transaction model (see Transaction Model for Developing BAPIs [Page 51]) stipulates that
every BAPI which creates object instances or changes object data is responsible for database
consistency.

 SAP AG BAPI User Guide CA-BFA)

Service BAPIs for Help Functions

April 2001 49

The commands used to write changes to the database or to reset changes (COMMIT and
ROLLBACK), must not be executed by the BAPI itself, they have to be called directly from the
external application program.

External programs can use the following service BAPIs for these calls:

� BapiService.TransactionCommit()

This method executes a COMMIT WORK command. When you call BAPIs in your
program that change data in the R/3 System, you must then call this method to pass the
changes to the database.

� BapiService.TransactionRollback()

This method executes a ROLLBACK WORK command. When you call BAPIs in your
program that change data in the R/3 System, you have to then call this method to
forward the changes to the database. This works provided that the BAPI
BapiService.TransactionCommit() has not already forwarded the changes to the
database.

BAPIs for Converting Between Internal and External Data Formats (Domain
Conversion)
BAPIs are programming interfaces, not end-user interfaces. For this reason a neutral data format
(with some exceptions) must be used in BAPIs. Fields in BAPI parameters are displayed in the
BAPI interface in the internal format used in the database, not in a formatted form.

When you call a BAPI in your program, you need to use the external data format, to display data
on the screen, for example. You can use the following conversion BAPIs to display the data in
the required format:

� BapiService.DataConversionInt2Ext1()

This BAPI converts data from the internal format into the required external format.

� BapiService.DataConversionExt2Int1()

This BAPI converts data from the external format into the required internal format.

The data can only be converted provided that the conversion routines for the domains underlying
the data to be converted are maintained in the ABAP Dictionary. Otherwise, the data is returned
unconverted.

The graphic below shows where conversion BAPIs are used:

BAPI User Guide CA-BFA) SAP AG

Service BAPIs for Help Functions

50 April 2001

Conversion BAPIs

Application
program

Application
program

GUIGUI

BAPI

External data format, for
example, on the screen (GUI)

Internal data format

 SAP AG BAPI User Guide CA-BFA)

Transaction Model for Developing BAPIs

April 2001 51

Transaction Model for Developing BAPIs
The transaction model in which BAPIs are used determines how you have to program BAPIs.

Transaction and Logical Unit of Work (LUW)
Within the context of the transaction model used to develop BAPIs, a transaction represents one
processing step or one logical unit of work (LUW). An R/3 LUW is all the steps involved in a
transaction including updating the database.

The ACID principle applies to transaction models, meaning that transactions are:

� Atomic

When a transaction is called, database operations are either fully executed or not at all.
Either all relevant data has to be changed in the database or none at all.

� Consistent

If a transaction is called more than once, each call must have the same result. No data is
imported that may indirectly affect the result.

� Isolated

There must be no functional dependencies between two transactions, one transaction must
not affect another transaction.

� Durable

Changes cannot be reversed and transactions cannot be canceled.

Characteristics
Transactionality
A BAPI must be implemented so that it is transactional. In other words, it complies with the ACID
principle. The BAPI transaction model must also enable users to combine several BAPIs in one
LUW.
The BAPI transaction model, therefore, implies both that individual BAPIs must be transactional
and that several BAPIs combined in one LUW must comply with the ACID principle.

Transaction Control in Client
The BAPI transaction model must afford the user explicit transaction control. Therefore, if several
BAPIs are called together, the caller can decide him/herself when to execute a COMMIT WORK
(or, as the case may be, a ROLLBACK WORK). This means that BAPIs themselves cannot
(generally) execute a COMMIT WORK command.

The following restrictions apply to combining several BAPIs in one LUW:
� If an instance was created, modified or deleted by a write BAPI, a read BAPI can only access

the most recent data if a COMMIT WORK has taken place.
� It is not possible to make two write accesses on the same instance within one LUW. For

example, you cannot first create and then change the object within the same LUW.

You can, however, create several instances of the same object type within an LUW.

BAPI User Guide CA-BFA) SAP AG

Transaction Model for Developing BAPIs

52 April 2001

Transaction Handling via Service BAPIs
A transaction is completed either using a COMMIT WORK command or a ROLLBACK command.
A BAPI transaction must be ended by calling the BAPIs BapiService.Transaction Commit() or
BapiService.TransactionRollback().

The transaction-controlling BAPIs BAPIService.TransactionCommit and
BAPIService.TransactionRollback are only available as of Release 4.5. In Release
4.0, please use the function modules BAPI_TRANSACTION_COMMIT and
BAPI_TRANSACTION_ROLLBACK, in their place. The result of these function
modules is identical to calling the BAPIs.

Use of the Update Task
Operations that change the database must be carried out through the updating process.
Otherwise, there’s a risk that both unchecked and unwanted database COMMITs are executed
during the RFC call.

Additionally, the call of a BAPI must not trigger further LUWs that are independent of the BAPI.
For this reason BAPIs must not contain the following commands:

� CALL TRANSACTION

� SUBMIT REPORT

� SUBMIT REPORT AND RETURN

For an example, see BAPI Transaction Model Without Commit [Page 55]

Comment:
In Release 3.1, the BAPIs themselves executed the COMMIT WORK command, BAPIs had the
same purpose as an LUW or transaction. Besides the BAPIs from Release 3.1, there are few
further exceptions which, for technical reasons, contain a COMMIT WORK command.

If a BAPI executes a COMMIT WORK command, this must be mentioned in the BAPI
documentation. This is the only way users are able to know that the BAPI contains a
COMMIT WORK command.

These BAPIs must also be documented in the SAPNet - R/3 Frontend in Note
0131838, "Collective Note for BAPIs with the Commit Work Command".

For an example of the old transaction model, see Old Transaction Model for BAPIs
(with Commit) [Page 53].

 SAP AG BAPI User Guide CA-BFA)

Example: Old BAPI Transaction Model (with Commit)

April 2001 53

Example: Old BAPI Transaction Model (with Commit)
Use
There is one BAPI call for each transaction in the old transaction model (valid for Release 3.1).
BAPIs can only be called synchronously. A BAPI call is essentially the call of the underlying RFC
capable function module. The process flow of the program consists of the following steps below
(see graphic below):

Log on
 (Source code)
 Call BAPI to read and/or change data
 (Source code)
 Call BAPI to read and/or change data
 (Source code)
Log off

BAPI Transaction Model with Commit

R/3 (ABAP)
. . .

Visual Basic

BAPI call
(RFC call of function module)

Log on

. . .

Log off

. . .

Logical
Unit of Work

. . .

Logical
Unit of Work

RFC session

“Commit Work” call

Time

The (write) BAPIs developed in Release 3.1 along with a few further exceptions execute a
COMMIT WORK command themselves.

BAPI User Guide CA-BFA) SAP AG

Example: Old BAPI Transaction Model (with Commit)

54 April 2001

If a BAPI executes a COMMIT WORK command, this must be mentioned in the BAPI
documentation. This is the only way users are able to know that the BAPI contains a
COMMIT WORK command.

 SAP AG BAPI User Guide CA-BFA)

Example: BAPI Transaction Model (Without Commit)

April 2001 55

Example: BAPI Transaction Model (Without Commit)
Use
The example below of an external program calling a BAPI to change data in an R/3 System,
illustrates how the transaction model affects BAPI development. For example, this could involve
a transaction implemented with Visual Basic. Only data from the R/3 System is to be changed.

The RFC connection is live the whole time the external program is logged on to the R/3 System
to avoid having to connect and disconnect repeatedly. When the RFC connection is already
established, an RFC call does not essentially take up any more CPU time than a direct call to the
function module from within the R/3 System.

The process flow of the program consists of the following steps (see graphic below):

Log on
(Source code)
 Call BAPI
(Source code)
 Call BAPI
 (Source code)
Call BAPI BapiService.TransactionCommit()

 (Source code)
 Call BAPI
 (Source code)
 Call BAPI
 (Source code)
Call BAPI BapiService.TransactionCommit()
 (Source code)
Log off

BAPI User Guide CA-BFA) SAP AG

Example: BAPI Transaction Model (Without Commit)

56 April 2001

BAPI Transaction Model Without Commit

R/3 (ABAP)
. . .

Visual Basic
. . .

BAPI
call

. . .

BAPI
call

. . .

BAPIService.
TransactionCommit() call

. . .

Log on
Logical

Unit of Work

Commit Work

Log off

RFC session

Time

 SAP AG BAPI User Guide CA-BFA)

SAP Enhancements to Released BAPIs

April 2001 57

SAP Enhancements to Released BAPIs
Purpose
Application developers who use BAPIs in their programs must be able to rely on the BAPI
interface remaining the same. As a result of this, once a BAPI is released, it must fulfill certain
requirements regarding the stability of its interface.

Whenever SAP enhances a BAPI, downward compatibility of syntax and contents must be
guaranteed whenever possible. Downward compatibility means that applications that were
programmed with BAPIs from a specific R/3 Release will not be affected in later R/3 Releases if
the syntax or the content of this BAPI changes.

Examples of syntax changes are changes to parameter names, or changes to the type or length
of a domain. The ABAP Dictionary can automatically test whether syntax changes are
compatible.

Content changes are involved, for example, when existing coding of the BAPI function module is
changed or new coding is added. Only the developer can ensure that content changes are
downwardly compatible.

Accordingly, when you enhance a BAPI, you can differentiate between a compatible
enhancement [Page 59] and an incompatible enhancement [Page 61], depending on whether the
downward compatibility of the BAPI can be guaranteed.

To protect the stability of the interface, compatible enhancements are always preferred to
incompatible enhancements.

For SAP internal development, each enhancement to a BAPI must be created in a project in the
BAPI Explorer.

Integration
Tool Support for Enhancements
Tool support covers the following aspects:

� Changes and version management in the BOR
Changes made to a BAPI only take effect when the changes are defined in the Business
Object Repository (BOR), that is, they have been saved and generated.
Version management of BAPIs is also carried out in the BOR.

� Checking in the ABAP Dictionary
Changes to the syntax of BAPIs are automatically checked by the ABAP Dictionary, thereby
preventing the BAPI data structure being changed by mistake.

� The ABAP Dictionary rejects incompatible changes to data elements, domains or
structures that are being used by a BAPI that has been released.

� Compatible changes or changes to data elements, domains or structures of a BAPI that
has not been released are accepted by the ABAP Dictionary.

See also:
Compatible Enhancements [Page 59]

Incompatible Enhancements [Page 61]

BAPI User Guide CA-BFA) SAP AG

SAP Enhancements to Released BAPIs

58 April 2001

 SAP AG BAPI User Guide CA-BFA)

Compatible Enhancements

April 2001 59

Compatible Enhancements
Use
Compatible enhancements are interface enhancements that change the BAPI without effecting
the downward compatibility of the BAPI. Applications which access the BAPI are not affected by
compatible enhancements.

Integration
Compatible enhancements are:

� New optional parameters
A parameter is considered to be optional if it does not have to be included in a BAPI call.
A new optional parameter can be added in any place in the interface.

A new parameter is added to the BAPI SalesOrder.GetList(), which can be used as
an additional selection criteria for selecting purchase orders.

� New optional fields in structures
A field is considered to be optional if it can be left out completely in a BAPI call.
The fields must be added to the end of a structure. This is because the function module upon
which the BAPI is based is called via RFC. It does not matter how the fields are arranged in a
structure or table because the whole structure is always forwarded. It is not first broken up
into fields.

An additional input field for the applicant’s educational background is added to the
BAPI Applicant.CreateFromData().

The table below lists the compatible changes in the function module. We cannot guarantee that
this list is exhaustive.

Compatible Changes to Function
Modules

In interface New optional parameter as a field

New optional parameter as a structure

New optional parameter as a table

Adding new optional field to the structure

Adding new optional field to the table

Compatible changes to field types (in the ABAP
Dictionary)

Converting mandatory fields to optional fields

In program code New additional coding that does not involve changes to
the interpretation/processing logic

BAPI User Guide CA-BFA) SAP AG

Compatible Enhancements

60 April 2001

Changes to the existing code which do not involve
changing the interpretation or processing logic

Using customer exits

When making changes, be sure to follow the guidelines in the BAPI Programming Guide [Ext.].

 SAP AG BAPI User Guide CA-BFA)

Incompatible Enhancements

April 2001 61

Incompatible Enhancements
Purpose
Changes to the contents or functionality of a BAPI often result in the introduction of new
parameters without which the interface can no longer function. Often, these changes also cause
existing parameters to lose their original meaning. Such modifications are considered to be
incompatible enhancements, because they no longer enable the BAPI to be downward
compatible.

Syntactically incompatible enhancements are:

� Changes to the field length

� Changes to the field type

� Renaming parameters in the function module or in the method

� Inserting a field within a structure

� Deleting parameters and fields

� Inserting new mandatory parameters and fields
Parameters can be flagged as mandatory in the BOR. However, this is not the case with
fields. Fields can only be categorized as mandatory at a semantic level and not at a technical
level. This is why the documentation for each parameter must specify which fields can be
filled.

The table below lists the incompatible changes to function modules. We cannot guarantee that
this list is exhaustive.

Incompatible Changes to
Function Modules

In interface New mandatory parameter

Adding new fields between existing fields in the structure

Adding new fields between existing fields in the table

Adding new mandatory fields to the structure

Adding new mandatory fields to the table

Incompatible changes to field types (in the ABAP
Dictionary)

Changing optional fields to mandatory fields

Renaming parameters

In program code New additional source code that involves changes to the
interpretation/processing logic

Changes to the existing source code that involve
changing to the interpretation/processing logic

Adding or removing COMMIT WORK commands in the
program

BAPI User Guide CA-BFA) SAP AG

Incompatible Enhancements

62 April 2001

Process Flow
In cases of incompatible changes to a BAPI, you should work through the following three steps:
Create an additional BAPI, Support and label the expiring BAPI and Delete the replaced
BAPI.

Create an Additional BAPI
To ensure that the interface stability of an existing BAPI is not impaired, you must not make any
incompatible changes to the existing BAPI. Instead, create one or, if necessary, several
additional BAPIs to replace the existing one.

The new BAPI must retain the same name as the BAPI to be replaced. A numeric suffix is simply
added to it. This suffix changes if further incompatible changes are made.

A number of incompatible changes must be made to the BAPI FixedAsset.Create().
To implement these changes, a new BAPI, FixedAsset.Create1(), is created, in order
to maintain the interface integrity of the BAPI FixedAsset.Create().

If further incompatible modifications must be made to the BAPI at a later date, yet
another BAPI, FixedAsset.Create2(), must be created.

When creating the additional BAPIs, you must follow the guidelines in the BAPI Programming
Guide [Ext.].

Support and Label the Expiring BAPI
After the BAPI has been superseded by a new BAPI, you should not remove the replaced BAPI
from the Business Object Repository (BOR). Instead, you first label this BAPI as expired, and
continue its support in the release in which you have introduced the new BAPI as well as in the
next functional release. During this time the original BAPI must remain fully functional and
executable.

The following tasks are required when a BAPI has expired (become obsolete):

� Select the relevant SAP business object type in the Business Object Builder, and open the
node Methods. Position the cursor on the BAPI, and choose Edit � Change status to �
Obsolete.

� In the BOR, document which method(s) are to replace the expiring BAPI.

� Record the BAPIs that have been set to “obsolete” in a particular release in note number
0107644, “Collective Note for Obsolete BAPIs from Release 4.5A”, in SAPNet – R/3
Frontend.

� Inform your users about the relevant successor BAPIs in Release Notes.

The diagram below illustrates the expiry phase of BAPIs: In this example, the successor BAPI
was implemented in Release 4.0. The replaced BAPI will therefore be supported in Release 4.0
(that is, in the correction release in which the successor BAPI was implemented) and in the next
functional release, “F1”. In the following functional release “F2”, this BAPI will no longer be
available.

BAPI Expiry Phase

 SAP AG BAPI User Guide CA-BFA)

Incompatible Enhancements

April 2001 63

Delete the Replaced BAPI
If the expiry phase of a BAPI set to obsolete has come to an end, you can remove the BAPI from
the BOR. You should delete an obsolete BAPI as close to the beginning of a new release as
possible, so that developers have time to adjust to its successor.

To delete a BAPI, follow the steps below:

� Delete the method from the BOR
To do this, display the relevant SAP business object type in the Business Object Builder in
change mode. Expand the node Methods Place the cursor on the appropriate BAPI, and
delete it by choosing Edit � Delete.

� Delete the function module that implements the BAPI
In the Function Builder, enter the name of the function module in the Function module field,
and choose Function module � Other functions � Delete.

� Record the release in which the BAPI was deleted from the BOR in the note number
0107644, “Collective Note for Obsolete BAPIs from Release 4.5A”, in SAPNet – R/3
Frontend.

BAPI User Guide CA-BFA) SAP AG

Examples of BAPI Calls

64 April 2001

Examples of BAPI Calls
The following examples illustrate how BAPIs are called from different development platforms.

� Calling BAPIs from Java [Page 65]

� Calling BAPIs from Visual Basic [Page 71]

� Calling BAPIs from ABAP [Page 76]

 SAP AG BAPI User Guide CA-BFA)

Calling BAPIs from Java

April 2001 65

Calling BAPIs from Java
This is an example program for calling a BAPI from the IBM development platform, Access
Builder for SAP R/3.

Detailed program examples are shipped with the Access Builder for R/3.

Access Builder for SAP R/3
//Importing the required classes:

import com.sap.rfc.*;
import com.sap.rfc.exception.*;
import com.ibm.sap.bapi.*;
import com.ibm.sap.bapi.generated.*;

//Connecting to the R/3 System:

static private IRfcConnection establishConnection(MiddlewareInfo
aMiddlewareInfo)

throws JRfcRemoteException

{

IRfcConnection aConnection = null ;

ConnectInfo aConnectInfo = null ;

UserInfo aUserInfo = null ;

String orbServerName = aMiddlewareInfo.getOrbServerName() ;

// Please adjust the values written in UPPERCASE LETTERS
// in the lines below so that they fit to your needs!
// If you don't know the correct values ask your system
// administrator!
// After correcting these values you should change the
// <bAdjusted> variable in the following line
// from "false" to "true".
// Then you can re-compile ("javac SampleCompanyCode.java") and
// re-run ("java SampleCompanyCode -conn JNI") this sample...

boolean bAdjusted = true;

if (!bAdjusted) {

throw (new JRfcRfcConnectionException (

"Please adjust the Connection-Parameters to your
 needs! (See method \"establishConnection\")"));

}

 //Connection information:

aConnectInfo = new ConnectInfo (

3, // int aRfcMode 3=R/3 or 2=R/2

null, // String aDestination

BAPI User Guide CA-BFA) SAP AG

Calling BAPIs from Java

66 April 2001

"9.7.12.7", // String aHostName YOUR HOSTNAME (e.g. IP-
 //address)

0, // int aSystemNo YOUR SYSTEM-NUMBER

null, // String aGatewayHost

null, // String aGatewayService

null, // String aSystemName

null, // String aGroupName

null, // String aMsgServer

false, // Boolean isLoadBalancing

true); // Boolean isCheckAuthorization

 //User information:
aUserInfo = new UserInfo (

"MUSTER", // String aUserName, YOUR USERID

"IDES", // String aPassword, YOUR PASSWORD

"800", // String aClient, YOUR CLIENT NUMBER

"e", // String aLanguage, YOUR PREFERRED
 //LANGUAGE

1103); // int aCodePage YOUR REQUIRED CODEPAGE

 //Technical conversion for the selected middleware;
 // Open connection:

IRfcConnectionFactory aConnectionFactory =
FactoryManager.getSingleInstance().getRfcConnectionFactory() ;

aConnection =
aConnectionFactory.createRfcConnection(aConnectInfo, aUserInfo) ;

aConnection.open() ;

 //Returning the connection:

return aConnection ;

}

//Calling the main method:

public static void main (java.lang.String[] args)

 //Setting up the connection using the selected middleware:
{

MiddlewareInfo aMiddlewareInfo = new MiddlewareInfo(args) ;

FactoryManager aFactoryManager =
FactoryManager.getSingleInstance() ;

aFactoryManager.setMiddlewareInfo(aMiddlewareInfo) ;

 SAP AG BAPI User Guide CA-BFA)

Calling BAPIs from Java

April 2001 67

 //Initializing the connection object:
IRfcConnection aConnection = null ;

try

{

aConnection = establishConnection(aMiddlewareInfo) ;

}

catch (Exception ex)

{

System.out.println("ERROR : Could not create connection : "
+ ex) ;

System.exit(-1) ;

}

System.out.println("Connection established.");

 // --- TEST CODE (start) --------------------------------------

try

{

printList(aConnection) ;

//Calling the BAPI:

 //Declare an empty Object ID for the Business Object
 //CompanyCode:

objectId = CompanyCode.getEmptyObjectId() ;

//Entering a value in the object ID:

objectId.getKeyField("COMPANYCODEID").setString("1000") ;

//Instantiate the object CompanyCode with the object ID:

companyCode = new CompanyCode(objectId) ; // Create 2nd
 CompanyCode

System.out.println ("Successfully created new CompanyCode :
'" + companyCode + "'") ;

printDetails(companyCode, aConnection) ;

}

// --- TEST CODE (end) --

catch (Exception ex)

{

System.out.println ("Unexpected exception occurred:");

System.out.println (ex);

}

BAPI User Guide CA-BFA) SAP AG

Calling BAPIs from Java

68 April 2001

}

private static void printDetails(CompanyCode companyCode,
IRfcConnection connection)

{

try

{

 //Declare the parameters of the BAPI CompanyCode.GetDetail:
CompanyCodeGetdetailParams aCompanyCodeGetdetailParams =

new CompanyCodeGetdetailParams() ;

 //Aufruf des BAPIs CompanyCode.GetDetail auf die Objektinstanz:
companyCode.getdetail(connection,

aCompanyCodeGetdetailParams);

 //Splitting the parameter object into its separate components
 //(Struktur):

Bapi0002_2Structure struct =
aCompanyCodeGetdetailParams.getCompanycodeDetail() ;

System.out.println ("The details of the companycode are :
") ;

 //Splitting the structure into individual fields:
System.out.println ("CompCode : '" +

struct.getCompCode() + "'");

System.out.println ("CompName : '" +
struct.getCompName() + "'");

System.out.println ("City1 : '" +
struct.getCity() + "'");

System.out.println ("Country1 : '" +
struct.getCountry() + "'");

System.out.println ("Currency : '" +
struct.getCurrency() + "'");

System.out.println ("Langu1 : '" +
struct.getLangu() + "'");

System.out.println ("ChrtAccts : '" +
struct.getChrtAccts() + "'");

System.out.println ("FyVariant : '" +
struct.getFyVariant() + "'");

System.out.println ("VatRegNo : '" +
struct.getVatRegNo() + "'");

System.out.println ("Company : '" +
struct.getCompany() + "'");

 SAP AG BAPI User Guide CA-BFA)

Calling BAPIs from Java

April 2001 69

System.out.println ("AddrNo : '" +
struct.getAddrNo() + "'");

System.out.println() ;

}

catch (Exception ex)

{

System.out.println("Exception in printDetails() : " + ex) ;

}

return;

}

private static void printList(IRfcConnection connection)

{

try

{

 //Declaring the parameter object:
CompanyCodeGetlistParams aCompanyCodeGetlistParams =

new CompanyCodeGetlistParams() ;

 //Actual BAPI call:
CompanyCode.getlist(connection, aCompanyCodeGetlistParams);

 //Splitting the parameter objects into its separate components
 //(Table):

Bapi0002_1Table table =
aCompanyCodeGetlistParams.getCompanycodeList();

int rowCount = table.getRowCount() ;

System.out.println ("Returned table has " + rowCount + "
lines.");

 //Evaluating the table row by row:
for (int i = 0; i < rowCount; i++)

{

Bapi0002_1TableRow row = table.getRow(i) ;

System.out.println("\t" + row.getCompCode() + "\t" +
row.getCompName()) ;

}

System.out.println() ;

}

catch (Exception ex)

BAPI User Guide CA-BFA) SAP AG

Calling BAPIs from Java

70 April 2001

{

System.out.println("Exception in printList() : " + ex) ;

}

return;

}

}

 SAP AG BAPI User Guide CA-BFA)

Calling BAPIs from Visual Basic

April 2001 71

Calling BAPIs from Visual Basic
This example illustrates a BAPI call in Visual Basic using the BAPI ActiveX Control. This report
uses the service BAPI BapiService.MessageGetDetail(), to display the short text and the long
text of error messages.
'
' Visual BASIC 5.0
' Copyright SAP AG Walldorf Juli 1998
'

' read a message short and longtext using the BAPI
' BAPI_MESSAGE_GETDETAIL of the object BapiService

' constant for user identification

Const cstrMUsrClient As String = "000"

Const cstrMUsrUser As String = "MYUSER"

Const cstrMUsrPassword As String = "MYPASS"

Const cstrMUsrLanguage As String = "EN"

' constant for system identification

Const cstrMSysSystem As String = "P45"

Const cstrMSysMessageServer As String = "p45main.wdf.sap-ag.de"

Const cstrMSysGroupName As String = "PUBLIC"

'

' constant values for reading message texts

Const cstrMMsgId As String = "SX"

Const cstrMMsgNumber As String = "101"

Const cstrMMsgVariable1 As String = "var1"

Const cstrMMsgVariable2 As String = "var2"

Const cstrMMsgVariable3 As String = "var3"

Const cstrMMsgVariable4 As String = "var4"

Const cstrMMsgLanguage As String = "DE"

' other constant

Const cstrMPathfile As String = "D:\A\saptext.rtf"

' password for login in R/3

Dim strMUsrPassword As String

BAPI User Guide CA-BFA) SAP AG

Calling BAPIs from Visual Basic

72 April 2001

' react on button START

Private Sub cmdMsgStart_Click()

' define object for BAPI ActiveX control

 Dim oBAPICtrl As Object

' define object for R/3 logon control

 Dim oLogonCtrl As Object

' business object BapiService

 Dim boBapiSercice As Object

' for BAPI: BapiService.MessageGetDetail

 Dim oMsgReturn As Object

 Dim oMsgText As Object

 Dim intCounter As Integer

' to open the file you need a file channel

 Dim intChannel As Integer

' create BAPI ActiveX control object

 Set oBAPICtrl = CreateObject("SAP.BAPI.1")

' create R/3 logon control object

 Set oLogonCtrl = CreateObject("SAP.Logoncontrol.1")

' connection object is part of the BAPI ActiveX Control object

 Set oBAPICtrl.Connection = oLogonCtrl.NewConnection

' fill logon parameters for system to use

 oBAPICtrl.Connection.System = txtSysSystem

 oBAPICtrl.Connection.MessageServer = txtSysMessageServer

 oBAPICtrl.Connection.GroupName = txtSysGroupName

' fill logon parameter for user

 oBAPICtrl.Connection.Client = txtUsrClient

 oBAPICtrl.Connection.User = txtUsrUser

 oBAPICtrl.Connection.Password = strMUsrPassword

 oBAPICtrl.Connection.Language = txtUsrLanguage

 SAP AG BAPI User Guide CA-BFA)

Calling BAPIs from Visual Basic

April 2001 73

' user logon to R/3

 If oBAPICtrl.Connection.Logon(frmStart.hWnd, False) = False Then

 MsgBox "R/3 connection failed"

 End

 End If

' create BAPI service object

 Set boBapiService = oBAPICtrl.GetSAPObject("BapiService")

' call method of BapiService

 boBapiService.MessageGetDetail id:=txtMsgId, _

 Number:=txtMsgNumber, _

 Language:=txtMsgLanguage, _

 Textformat:=cboMsgTextformat.Text, _

 message:=strMsgShorttext, _

 Return:=oMsgReturn, _

 Text:=oMsgText

' fill field in form

' If txtMsgShorttext = "" Then

' MsgBox "No message read"

' End If

' user logoff from R/3

 oBAPICtrl.Connection.Logoff

' error handling check if RETURN parameter is not empty and react

 If oMsgReturn.Value("TYPE") <> "" Then

 lblReturn.Caption = oMsgReturn.Value("TYPE") + _

 ". " + _

 oMsgReturn.Value("ID") + _

 ". " + _

 oMsgReturn.Value("NUMBER") + _

 ". " + _

BAPI User Guide CA-BFA) SAP AG

Calling BAPIs from Visual Basic

74 April 2001

 oMsgReturn.Value("MESSAGE") + _

 ". " + _

 oMsgReturn.Value("MESSAGE_V1") + _

 ". " + _

 oMsgReturn.Value("MESSAGE_V2") + _

 ". " + _

 oMsgReturn.Value("MESSAGE_V3") + _

 ". " + _

 oMsgReturn.Value("MESSAGE_V4") + _

 ". " + _

 oMsgReturn.Value("LOG_NO") + _

 ". " + _

 oMsgReturn.Value("LOG_MSG_NO")

 Else

' fill form fields

 txtMsgShorttext = strMsgShorttext

 arrayText = oMsgText.Data

' handling of non RTF texts

 If cboMsgTextformat.Text <> "RTF" Then

 For intCounter = 1 To oMsgText.RowCount

 If intCounter = 1 Then

 rtfMsgLongtext.Text = arrayText(intCounter, 1)

 Else

 rtfMsgLongtext.Text = rtfMsgLongtext.Text + _

 Chr(13) + Chr(10) + _

 arrayText(intCounter, 1)

 End If

 Next intCounter

 End If

' handling of RTF texts

 If cboMsgTextformat.Text = "RTF" Then

 SAP AG BAPI User Guide CA-BFA)

Calling BAPIs from Visual Basic

April 2001 75

' save text as rtf file

 intChannel = FreeFile

 Open cstrMPathfile For Output As #intChannel

 For intCounter = 1 To oMsgText.RowCount

 Print #intChannel, arrayText(intCounter, 1)

 Next intCounter

 Close #intChannel

 rtfMsgLongtext.LoadFile cstrMPathfile, rtfRTF

 End If

 End If

End Sub

BAPI User Guide CA-BFA) SAP AG

Calling BAPIs from ABAP

76 April 2001

Calling BAPIs from ABAP
This report uses the service BAPI BapiService.MessageGetDetail(), to display the short text and
the long text of error messages.
*--
--*
* read a message short and long text using the BAPI
*
* BAPI_MESSAGE_GETDETAIL of the object BapiService.
*
*--
--*

* Data declaration
DATA : MY_ID LIKE BAPIRET2-ID,

 MY_NUMBER LIKE BAPIRET2-NUMBER,

 MY_TEXTFORMAT LIKE BAPITGA-TEXTFORMAT,

 MY_MESSAGE_V1 LIKE BAPIRET2-MESSAGE_V1,

 MY_MESSAGE LIKE BAPIRET2-MESSAGE,

 MY_RETURN TYPE BAPIRET2.

DATA BEGIN OF MY_TEXT OCCURS 1.

 INCLUDE STRUCTURE BAPITGB.

DATA END OF MY_TEXT.

* Enter values in object
MOVE 'FI' TO MY_ID. "message id of message to read

MOVE '024' TO MY_NUMBER. "message number of message to read

MOVE 'ASC' TO MY_TEXTFORMAT. "text format, here ASCII

MOVE '0001' TO MY_MESSAGE_V1. "text to fill into message

*BAPI call
CALL FUNCTION 'BAPI_MESSAGE_GETDETAIL'

 EXPORTING

 ID = MY_ID

 NUMBER = MY_NUMBER

* LANGUAGE = SY-LANGU

 TEXTFORMAT = MY_TEXTFORMAT

 MESSAGE_V1 = MY_MESSAGE_V1

 SAP AG BAPI User Guide CA-BFA)

Calling BAPIs from ABAP

April 2001 77

* MESSAGE_V2 =

* MESSAGE_V3 =

* MESSAGE_V4 =

 IMPORTING

 MESSAGE = MY_MESSAGE

 RETURN = MY_RETURN

 TABLES

 TEXT = MY_TEXT

 .

* Print results
WRITE : / 'Input' COLOR 5.

WRITE : / 'my_id...........:', MY_ID.

WRITE : / 'my_number.......:', MY_NUMBER.

WRITE : / 'my_textformat...:', MY_TEXTFORMAT.

WRITE : / 'my_message_v1...:', MY_MESSAGE_V1.

WRITE : / 'Output' COLOR 5.

WRITE : / 'my_message........:', MY_MESSAGE.

WRITE : / 'my_return.........:', MY_RETURN.

WRITE : / 'Text output' COLOR 5.

LOOP AT MY_TEXT.

 WRITE : / MY_TEXT.

ENDLOOP.

BAPI User Guide CA-BFA) SAP AG

Adapting BAPIs

78 April 2001

Adapting BAPIs
Use
You can change SAP Business Object types and their BAPIs, for example, if you want to add a
parameter to a BAPI or add a method to a business object type.

Features
BAPIs can be modified in various ways to suit customer needs:

Type of Adaptation Further Information

Extension parameters This refers to enhancements to BAPIs that do not involve
modifications.

For more information see Customer Enhancement Concept
[Ext.].

Modifications For more information see Modifying BAPIs [Ext.].

Customer enhancements For more information see Modifying BAPIs [Ext.].

For more detailed information about implementing and
programming BAPIs see BAPI Programming Guide [Ext.].

