
1

FE4D128x32

The Readout DATA SHEET and USER GUIDE

Alessandro Gabrielli
Filippo Maria Giorgi

Mauro Villa

INFN Bologna & Phys. Dept. University of Bologna

Last update Nov 3rd 2009

2

INDEX

INDEX .. 2

DATA SHEET ... 3

Introduction .. 3

The Test Chip Matrix .. 3

The Matrix Connection to Readout ... 5

Readout I/O .. 7

The Readout Blocks .. 8

The Slow Control Interface .. 10

The Output Stage .. 18

USER GUIDE .. 19

The Power-up ... 19

0-effort Start-up .. 19

Calibration Run ... 20

BIBLIOGRAPHY ... 21

APPENDIX A – the test cycle output sequence ... 22

APPENDIX B – evaluation of the hit coordinates ... 24

3

DATA SHEET

Introduction

The APSEL6D readout logic is an extension, with several innovations, of that introduced and
implemented on the chip APSEL4D [1]. At the base of the readout technique remains a pixel
data bus that is switched over the matrix columns in order to perform a sweep over the
sensors grid. The whole bus is read in a parallel way in one clock cycle by the sparsifiers.
Their role is to identify all the hits read out of the pixel data bus with a proper xy (+time) label
and store them into an asymmetric FIFO: the barrel. The concepts of sparsifier and barrel are
reintroduced with only few modifications, mainly due to the different organization of the
matrix. The concept of MacroPixel (MP) is also reintroduced as a group of pixel with shared
interconnections towards the readout logic. This technique allows a greater pixel density
since fewer connections have to be routed over the sensor area.
The developed readout logic has been tailored to cope with wide sensor matrices (in
particular to a 320x256 pixel matrix) but in this Test Chip, the sensor is only 128x32 pixels
wide (same as the 4D version). The way the readout is adapted to this lower size sensor will
be explained later.
In case of such large matrices, using a column scan strategy, the key point to reduce the
average dead time is strictly bound to the mean sweeping time of the matrix; in this direction
we decided to involve more than one readout instance, dividing the matrix into sub-matrices.
A final output stage retrieves data from all the readouts involved and compresses them into a
single data stream.
Several studies have been conducted to point out an optimal readout strategy, in order to
reduce the mean dead time of pixels. The results of these studies showed that the best way to
exploit the parallelism of the structure is to have a vertical subdivision of the whole matrix
and a vertical shape of the MPs. This explains some planning choices illustrated later.

The Test Chip Matrix

The Test Chip matrix sensor is 128x32 pixels wide. The sensor is made up of binary pixels,
giving a 0/1 kind of information. When a sufficient amount of charge is released within a pixel,
the hit information is stored in a digital MOS latch.
The pixels are grouped into MacroPixels (MPs), small sets of sensors with a common interface
towards and from the readout. The MPs have a vertical shape, 2x8 pixels wide; each sub-
matrix is thus made up of 128 MPs (32 columns of 4 MPs).
The time granularity is provided by a dedicated clock, called BCO, which increments the time
counter register. This clock determines the time window in which the hits are collected. The
readout is responsible for the association of a hit MP to a determined time window.
The MP is enabled when the acquisition is starts, which means all its latches can be triggered.
When a hit (particle or noise) activates at least one pixel of a MP, the MP is considered fired
and the fast OR signal, which is the logic OR of all the pixel latches, goes high. When the
current time window ends, with the arrival of a BCO rising edge, all the currently active and
fired MPs get frozen. Each MP has a Latch enable line that for this purpose which, if not active,
stops the collection of hits (the not-fired pixel can latch no more, even if the threshold is
crossed). In this way, the hit pattern of a MP is preserved till the readout phase; all the hits of
the pattern refer to single and precise time stamp. The freezing logic and the time counter are
implemented in the readout block and not into the MP itself, but they have been introduced
here for a clearer explanation of the matrix features.

4

The readout of the matrix takes place by columns; a column-wide pixel data bus[31:0] is
driven in turn by the columns of those MPs which contain at least one hit. The readout logic
will perform a sweep activating only the columns of the MPs previously frozen.
The three-state outputs of the 16 latches of a MP are controlled by three enable signals: the
output enable and 2 bits of column enable. The output enable is shared among all the MPs of a
row while the column enable is shared among a pixel column, the cross combination of column
enable and output enable individuates the pixels that are meant to drive the pixel data bus. To
avoid conflicts on the bus, it is allowed to enable only 1 column of pixels at a time, while the
full bus width can be exploited activating all the out enable lines.

Fig 1. MP enable policy. The pixel data bus is driven by those pixels with active column
enable and out enable.

5

A dedicated hardware reset signal for the latches of a MP is not foreseen; each MP is provided
with an auto-reset logic that activates after the column enable sequence "01" "10" when
out enable is high.
The matrix 128x32 is divided vertically into 2 independent sub-matrices 64x32. Each one has
its own and independent readout instance. This means that two identical sets of signals
connect the readout and the two parts of the matrix.

Sub-matrix 0 Sub-matrix 1
Latch enable_0[127:0] Latch enable_1[127:0]

Fast OR_0[127:0] Fast OR_1[127:0]
Column enable_0[63:0] Column enable_1[63:0]

Out enable_0[3:0] Out enable_1[3:0]
Pixel data bus_0[31:0] Pixel data bus_1[31:0]

Tab1. Matrix interconnection signals. These are the digital
signals which interconnects the matrix and the readout logic.

The Matrix Connection to Readout
As mentioned in the introduction, the readout project was meant to cope with wide matrices,
in particular the target was 320x256 pixels. This area is 20 times greater than the Test Chip
(128x32). Once it was established the target dimension, we elaborated a readout strategy
which is supposed to afford a 1 MHz/mm2 rate keeping the readout efficiency > 98,0%*. (This
efficiency refers to readout only, no internal pixel dead time is taken into account. It has been
evaluated with systematic simulation of the device models, using a 1us BC and a 60MHz of
readout clock. The high data throughput generated must be granted by a wide-band external
bus)
This led us to some choice, for example the implementation of several instances of readout
working in parallel. Since the efficiency drops with the mean sweeping time, it should be kept
as low as possible, one solution is to keep narrow the regions to sweep. That’s is why we
divided vertically the whole matrix into 4 sub-matrices 80x256 pixel wide.
All the parallel structures foreseen for the final application are excessive here but, in order to
test their simultaneous functionality, the readout logic is left a bit oversized respect to the
Test Chip needs.
The matrix available is a 128x32 array of pixels, which is much “narrower” than the final
matrix version (32 pxl vs 256 pxl), but it is only about one half in width. By means of this it
has been subdivided into two independent sub-matrices 64x32 (instead of four 80x256). In
this way the parallel working of multiple readout cores can be tested.
For what concern the number of rows, that is about a order of magnitude lower, some
redundancy in the readout components had to be left for less than a complete rework of the
project (that would make useless this production step). The sparsifiers are the elements that
read a portion of the pixel data bus in order to label the hits with a (x,y,t) coordinate set. The
point is that each sparsifier developed can in principle read as many as twice the rows of the
whole Test Chip matrix. Thus, always in order to test the parallel functionality of the
components, it couldn’t be realized a test chip with only one, half-used sparsifier. That’s why
4 reduced sparsifiers are present in the readout, and each one is connected to a single MP
following the connection scheme reported below:

6

Matrix side Readout side

 0  Spars_in_3[31:8]

Pix_data[31:24]  Spars_in_3[7:0]

 0  Spars_in_2[31:8]

Pix_data[23:16]  Spars_in_2[7:0]

 0  Spars_in_1[31:8]

Pix_data[15:8]  Spars_in_1[7:0]

 0  Spars_in_0[31:8]

Pix_data[7:0]  Spars_in_0[7:0]

Each spars has a 32-bit wide input bus, then it has 3 unconnected MPs (see the Fig below).

Fig 2. Submatrix scheme. Only 1 MP row is connected to each sparsifier. The other inputs can
still be stimulated with a test cycle. (see Slow control-registers-command register).

7

Readout I/O
Reset – Asynchronous reset, active high. When released (and clocks are running) an automatic

matrix cycle starts to reset all the MPs. This operation takes 64 RDclk cycles.
RdClk – This is the readout clock that feeds the matrix sweep and the first stages of readout

(sparsifiers, barrel2, concentrator). It serves also most of the service logic like the I2C
interface, the registers and all the slow control features (mask loading, test cycles...).

FastClk – It is used to transmit on a broad band external bus. It drives the final stages of
readout (barrel1, final concentrator).

BCclk – The timing clock, it increments the time counter register and determines the time
granularity of the acquisition.

Master_Latch_enable – This is a global enable signal that allows the MPs to work properly. If
set to 0 all the MPs get frozen until it is re-activated. When set to 1, the MP can be hit
and be frozen by the internal logic following the acquisition strategy.

Global_fast_OR – This signal export outside the chip the global OR of the Fast OR of all the MPs.
It intended for debug purpose, not directly useful to a standard acquisition process.

SDA – The I2C-like data line, it is a bidirectional pin which must be connected to a pulled-up
line where multiple chip can be connected together to the master.

SCL – The “clock” of the I2C-like transaction. Must be at least 4 times slower than the RDclk.
Chip_addr[2:0] – these are the pins that need to be hard-wired to assign a hardware address to

the chip. Address “111” is reserved as a broadcast address.
Data_out[13:0] – This is the data bus for the fast bus, running synchronous on the FastClk. The

hits on this bus are coded in the following way:

 If data_out[13] = 0;
 data_out[12:11] = sparsifier address;
 data_out[10] = zone Y address;

data_out[9:4] = zone X address (which correspond to the sub-matrix relative x address
of the fired pixel);

 data_out[3:0] = zone pattern;

 If data_out[13] = 1;
 data_out[12:10] = 000;
 data_out[9:8] = sub-matrix address (since only 2 sub-m. are present bit[9]=0);
 data_out[7:0] = time stamp field;

 All values are coded as unsigned.
Data_valid – this bit indicates if the data_out bus contains a valid data.

8

The Readout Blocks
In the following figure it is presented the block diagram of readout. This is the instance
replicated twice in the Test Chip, one for each sub-matrix.

The functional logic blocks that characterize one instance of Readout are the following:

The Sweeper

This block is responsible for three main tasks:
1. Freezing logic.
2. Time tagging of hits.
3. Sweeping logic.
The freezing logic states if a MP must be frozen or not. Only at the end of each time
window the freeze signals array is re-evaluated. There is 1 bit for each MP, it is an
enabling signal thus it freezes if active low. All the active MPs which were hit during the
last time window get frozen until the relative readout sweep re-enables their latches.
The sweeping logic enables the proper MPs to talk on the pixel data bus following a
precise scheme activating one pixel column at a time and activating only the rows of the
desired MPs. The sweep of the active column over the sensor matrix is time dependent,
which means that one sweep is dedicated to each time stamp. If no MPs are frozen
during a time window, then no dedicated sweep is necessary. If two MPs, laying on the

9

same columns, are hit in different time stamp, then two sweeps are required over those
columns, each time enabling only the row of the MP interested for that scan.
The map of the MPs hit during the last time window is stored in a dedicated FIFO
together with the relative time stamp. This FIFO is called Scan Buffer. Until the Scan
Buffer is not empty, a sequence of matrix scans succeed one after the other, one for each
time stamp. When an active column scan ends, if the not empty flag of the Scan Buffer is
active, the Finite State Machine of the sweeping logic pulls out of the buffer the new
pattern of MPs that need to be scanned. The sweeper also informs the sparsifiers that a
new scan, referring to time stamp X, is about to start.

The Scan Buffer
When no space is available in the Scan Buffer, if there are MPs that need to be frozen
they are left active for the next BC periods until an empty memory location is available.
If the readout “loose” one BC, the event tagged with the successive time stamp will
include also the hits belonging to the previous time window. In this case no hit
information is lost, the only inconvenient is the worse time resolution.
It is important to explain what happens in not ordinary condition when this buffer go
full. The FIFO has a depth of 8 maps, which grant a reasonable buffer in case of hit rate
bursts. The nominal condition foresee a time window of about 500 ns / 1 us. If the Rate
On Area (ROA) / RDclk ratio leads to a Mean Sweeping Time (MST) greater than the time
window (BCO period), this FIFO fills up. The expected environmental conditions (ROA: 1
MHz/mm2) and the expected performance of the device (RDclk>60 MHz) should ensure
this condition is far enough.
By the way, if the BCO period is shrunk too much, we can encounter a Scan Buffer
Overflow. In this case no hit is lost, since the Scan Buffer simply stores the timing
information. If no place is available to store the map of the fired MPs, they will not be
frozen, waiting that some space will be freed during the incoming time window. As soon
as the buffer starts to empty out, the new cumulative MP map is stored (always at the
end of a BCO period) and the MPs involved are frozen. In this case the MP map is
complete, and the hits will be all read out. The loss is in time resolution since those hits
refer to a larger time window.
The user is informed with a dedicated register of how many times the readout instances
undergo a Scan Buffer Overflow. No information is stored about which is the event with
larger time uncertainty. Anyway the corrupted event can be pointed out since this
situation take place at high hit-rates when we typically observe 1 scan for EACH time
stamp. An overflow of the Scan Buffer would produce a sporadic couple of events
separated by two or more time windows, making it easily detectable.

The Time Counter

The Time Counter is a counter synchronous on RDclk which counts the BC positive
edges. The value of this counter is read by the Scan Buffer

The Sparsifier
The active column drives the Pixel Data Bus which is analyzed by the sparsifiers. Their
task is to encode the space coordinates of the fired pixels into hit-words. Sparsified
data is then stored in a formatted asymmetric FIFO called Barrel.
The sparsifiers encode also the information about the beginning of a matrix scan. When
a new scan starts, each sparsifier stores a special word containing the associated time
stamp in its adjacent Barrel. These words are called SOS (Start Of Scan) and they divide
into bunches the hit-words cropped during different scans.

10

In the considered sub-matrix, we have 256 rows of pixels and thus a 256-bit wide Pixel
Data bus. The developed sparsifier has a 64-bit wide input bus, and it is able to process
the whole of it in one clock cycle. In the proposed architecture 4 sparsifiers working in
parallel are implemented to cover the full Pixel Data Bus. Refer to “Matrix Connection
to Readout” for details about the connections to the actual matrix implemented in this
test chip.
To profit from possible clustering of hits, the sparsification is not done at the pixel
level. The 32-bit sparsifier input bus is divided into 4-bit segments called zones. A fired
pixel in a certain zone generates a hit-word containing information of the entire zone.
A hit-word consists of the XY zone addresses plus the zone hit pattern.
In principle, all the 8 zones connected to a sparsifier can present fired pixels, thus it
was made possible to encode all of them in the same clock cycle. This technique has
been implemented foreseeing the presence of clustered patterns, allowing to reduce
the total number of transmitted hits.

The Barrel B2
The Concentrator
The Barrel B1

The barrels directly connected to the sparsifiers are called Level 2 Barrels (B2s) while
those collecting data from a whole sub-matrix are called Level 1 Barrels (B1s).
The Barrel is basically an asymmetric FIFO buffer that can store up to 8 hit-words per
clock cycle. Each hit-word refers to a 4-bit zone, then each B2 can store up to 32 fired
pixels per clock cycle. Since the complexity of synthesized logic increases fast with the
number of hits that can be stored simultaneously, the introduction of the zone
technique extends the range of inspected rows of the sparsifiers and barrels with a
consequent reduction of the total required components at a fixed fifo depth.
A tree of barrels has been realized, it is composed of 4 B2, driven by their respective
sparsifiers, and 1 B1 collecting data from the whole sub-matrix. In between, a smart
data concentrator controls the flux of data preserving the time sorting of the hits. In B1
the set of scanned hit is stored after a single leading SOS word containing the common
Time Stamp. In addition 2 bits are added to every hit in order to encode the respective
B2 source address. The B2s have a depth of 8 hit-words, while the B1 can buffer up to
128 hit-words. The asymmetry is not only due to the 4 to 1 correspondence but also for
the different emptying methods. B2s are data-through FIFOs, no hold condition on the
output is foreseen. B1 outputs instead, for the adopted Round Robin algorithm, are
kept in hold for one average emptying time, requiring more space for buffering. These
depth values have been investigated in several simulations in order to find the optimal
parameters.

The Slow Control Interface
The I2C interface
The Register File

The Slow Control Interface is based on an I2C-like environment with a fixed and predefined
master-slave hierarchy. The I2C bus is used for read/write operations over a set of registers.
All the instructions and the settings are passed to the chip by writing on these registers. Some
of these registers are connected to inner flags of the chip and therefore are accessible in read
mode only.

11

The I2C-like interface
The I2C bus is made up of a single-bit bidirectional data line (SDA) and by a “clock” line (SCL).
Since it is an asynchronous protocol, SCL can’t be defined as a real clock; it should be intended
instead, as a control signal operated by the master unit. Since in our system there is no need
to have a multi master compliant unit, we omitted all the logic for the initial negotiation; by
means of this, the front-end chips are always operated in a slave configuration.
Like in the real I2C, each node on the bus must be individuated by unique hardware-defined
address. In our case the chip_addr[2:0] pins are intended to be bonded properly for this
purpose. One address must be reserved as a broadcast address. In our case it is fundamental
that all the chips of a module (installed on the same I2C bus) perform some actions altogether.
The communication is serial and asynchronous, only the master can start a communication
and the slaves can only reply. The SDA line is bidirectional, it is externally pulled-up by a
proper resistor, and all the drivers on this line are open drain/collector three-state buffers
that can be tied to GND or kept in high-impedance. In the first case we obtain a logic 0 on the
line (positive logic), otherwise the line carries a logic 1 due to the pull-up.

In normal condition (no transmission) both the lines are kept high (logic ‘1’s, no one is
driving) while, during a transmission, changes of data on SDA are allowed only with SCL low.
Communication is initialized with a special condition on the SDA line, while SCL is still high:
the master put SDA to 0. A 1 to 0 transition on SDA, while SCL is high, is interpreted by the
slaves as a Start Condition. After a start condition the SCL line starts to oscillate with the
frequency of the desired data-rate on SDA.

12

At the end of communication the slave counterpart waits for a stop condition which must be
generated by the master unit. Like the start condition, the stop condition is encoded with an
SDA transition while SCL is high, this time it is a low to high transition.
The communication in between is divided into 3 parts; each part must be acknowledged by
the receiving counterpart pulling down the SDA line to 0 for at least one SCL cycle. The
transmitting unit must leave SDA in high impedance waiting to sense a logical 0 on it.

1. The first part is the directive, it is 9-bit long and it is always directed from master to
slave (it follows that it is always a slave that must acknowledge the directive). It
contains the information about the requested operation (read/write) and the
addressed chip and register (chip number X, register number Y). Data is transferred
msb (most significant bit) first.

Directive Structure:

Directive Field name Bit length Comment
Directive[8:6] Chip address 3 bit (msb first) Address of chip

“111” : broadcast
Directive[5] RW_RO 1 bit ‘1’: Read/Write Reg. set

‘0’: Read Only Reg. set
Directive[4:1] Reg. Address 4 bit (msb first) Address of the Register
Directive[0] RW 1 bit ‘1’: Read operation

‘0’: Write operation

2. The 2 other parts are byte exchanges, 1-byte long each. They can be directed master to
slave (in case of a write operation), or slave to master (in case of a read operation). In
the first case the slave must acknowledge the bytes and in the last case the master is
intended to send the ACKs. Data is transferred msb and MSB (most significant Byte)
first.

The sequence for a correct Slow Control transaction on the I2C bus would be:

(write operation):
MASTER: StartCondition + Directive + Z + byte1 + byte0 + Z + StopCondition
SLAVE: Z + Z + ACK + Z + Z + ACK + Z

(read operation)
MASTER: StartCondition + Directive + Z + Z + Z + ACK + StopCondition

13

SLAVE: Z + Z + ACK + byte1 + byte0 + Z + Z

The ACK low pulse of master can be sent with an arbitrary delay (multiple of the SCL period)
since the slave chip will wait forever if no ack is sent.

WARNING: The SCL frequency must be at least 4 times slower than the RDclk.

Fig N. A Slow control write operation in RW register(4).

The Registers
The chip is provided with 2 sets of 16-bit registers, one set is read/write and the other is read-
only. Each set contains 16 registers for a total amount of 16x2x16 = 512 bits of memory. Each
register has a name and a specific purpose, when a register is composed by different fields of
different meaning, it has a generic name, and the delimitations of the fields are illustrated
here.

The RW registers
Here is presented the list of all the implemented RW registers. The hexadecimal values
between the parentheses are the default values loaded after a hardware reset.

RW0 – address 0x0 – Command register* (0x0000)
The first of the RW registers is the command register. This register has a particular
meaning and behaviour(*). For each word written in this location a FSM starts
decoding the instruction and executes it. All the other registers simply store the data
sent over the I2C bus. In the Test Chip there are 3 commands implemented:
x"0002" – Load Mask: This command push the mask shift register with the data

contained in the operand register. The mask pattern is not stored into an
accessible set of register, but it is loaded into a private shift register. Each sub-
matrix has a dedicated shift register, 512-bit long (one for each MP –
remember that the readout is tailored for 2 sub-matrix 64x128, see The Matrix
Connection to Readout section and FIG 2). For each Load Mask operation,
Operand[15:8] is pushed into the shift register of sub-matrix 1 and
Operand[7:0] is pushed into the shift register of sub-matrix 0. The shift
operation is performed lsb first from bit 511 to bit 0 of the shift register. Each
Load Mask operation masks a semi-column of MPs. This means that to mask
MP0 it is necessary to perform 32MPcol*2=64 load mask operations. The bits
loaded that do not correspond to a MP actually connected are meaningless.
The only bits to take care of, are those whose index i satisfies: i mod 4 = 0
(i=0,4,8,12...). The shift operation is performed all in one RDclk cycle.

x"0003" - Reset Time Counter: This command must be imparted in broadcast
mode as it deals with the synchronization of the chips residing on the same

14

slow control bus. It is performed right after the command sequence is
completed over the I2Clike bus.

x"0004" – Cycle Test Scan: With this command the readout chain is tested by
stimuling the sparsifier inputs. A single hit is activated on each sparsifier input
for each RDclk cycle. The scan is interleaved with a SOS at the beginning of
each new sparsifier. Remember that the readout infrastructure of the Test
Chip is tailored over a bigger matrix, and that the data output bus has been
consequently downscaled. This implies a x4 repetition of the same pattern on
the output. The duration of the operation depends on many variables, the
RDclk and FastClk frequencies, the Flush Timout register value and it is not
easy to evaluate. Let’s say that for a 25 ns RDclk and 12.5ns FastClk, and a
timeout value of 256 FastClk periods, the whole operation, including the data
transmission over the output data bus, takes about 7 us (excluded the
command register loading).

 The expected sequence on the reduced output bus is reported in APPENDIX A.

RW1 – address 0x1 – Operand (0x0000)
The Operand register contains the 16 bit operand required by some commands. (e.g.
the mask pattern for the loadMask command). The operands must always be set before
loading the relative instruction in the command register.

RW2 – address 0x2 – Config0 (0x00C0)
This register contains some flags and settings of the chip.
Config0 is divided in many fields:

Config0 word Field name Default
Config0[15:14] --Unused-- “00”
Config0[13:12] Phase select RO_1 “00”
Config0[11:10] Phase select RO_0 “00”
Config0[9:6] Rate Monitor range “0011”
Config0[5:4] Funnel operating mode “00”
Config0[3:2] Clock Multiplier “00”
Config0[1] Calibration Mode “0”
Config0[0] Activate MP “0”

The phase select field set the acquisition phase in the boundary region between the

RDclk and the FastClk. We can set the phase with which the FastClk logic
samples the output of the RDClk logic. Since the FastClk can be at most 4 times
faster than the RDClk, the selectable phases are 4:

 when "00" => 1 fast_clk delay
 when "01" => 2 fast_clk delay

when "10" => 3 fast_clk delay
when "11" => 4 fast_clk delay

If the 2 clocks have the same frequency, the setting of this register is
meaningless.
The phase of the 2 readout instances (1 for each sub-matrix) can be set
separately, but it is recommended to set them to the same value.

The Rate Monitor Range field: The rate monitor is a 32 bit counter, this field selects

which is the range we want to observe on the dedicated read only register.
when "0000" => global_rate(15 downto 0);

15

when "0001" => global_rate(17 downto 2);

when "0010" => global_rate(19 downto 4);
when "0011" => global_rate(21 downto 6);
when "0100" => global_rate(23 downto 8);
 when "0101" => global_rate(25 downto 10);
 when "0110" => global_rate(27 downto 12);
 when "0111" => global_rate(29 downto 14);
 when "1000" => global_rate(31 downto 16);
 when others => global_rate(31 downto 16);

The Funnel Operating Mode field: The Concentrator that takes data from the B2

was thought to be operated in different modes. This Test Chip can be only
operated in mode "00". Other settings on this field may cause a corrupted
data stream on the main output.

The Clock Multiplier field: The readout logic needs to know which is the ratio

between the FastClk and the RDclk frequencies in order to work properly. For
this reason we must set this parameter before any operation that implies the
use of the data output bus (activating the MPs or performing a test scan).

when "00" => ratio=1
when "01" => ratio=2
when "10" => ratio=3
when "11" => ratio=4

The Calibration Mode bit: this bit is typically set to 0, which indicates a normal

working mode for the chip, suitable for any physics run. If turned to 1, it swaps
the chip readout into a special working mode, purpose-made for calibration
runs. In case of a calibration run there are other mandatory settings. For
details refer to User Guide section.

The Activate MP field: This bit states if the MPs are enabled to work or not. It is a
register based signal with the same purpose of the external Master Latch
Enable pin. At start-up they (external and reg.) must be kept both to 0,
corresponding to all MPs frozen. The MPs get enabled if at least one of them
rises to 1. To stop the acquisition, both must be set again to 0. This is a soft
stop since it disables the MPs, but the readout can finish the scan of the
previously latched hits.

FIG. 3 – The activate_MP signal goes low, but the scan keep going until the end of

scan. If there is a queue of scans to be performed, all of them are allowed to
end.

16

RW3 – address 0x3 – Config1 (0x0000)
The Config1 register remains unused in the Test Chip.

RW4 – address 0x4 – Flush Timout (0x0100)
This register contains a 16-bit unsigned value used by the final stage of the readout,
therefore it is represented in units of FastClk period. The default value (256) should be
good enough in first approximation for a typical run in the nominal condition of rate on
area (1MHz/mm2) and BCclk period (1us). In any case it must be set to a value greater
than the BCclk period.
Remember that in even in case of a calibration run, the flush timeout must be longer
than a BC period which in turns must be last longer than a calibration sweep. I.e. with a
25 ns RDclk (and at least a 12.5 ns FastClk), BCclk must be at least 50 us and the flush
timeout at least 50us/12.5ns + security margin=~ 5000 FastClk. For more details on
the calibration run refer to the User Guide section.

RW5 – address 0x5 – Unused (0x0000)
This register unused in Test Chip.

RW6 – address 0x6 – Unused (0x0000)
This register unused in Test Chip.

RW7 – address 0x7 – Unused (0x0000)
This register unused in Test Chip.

RW8 – address 0x8 – Unused (0x0000)
This register unused in Test Chip.

RW9 – address 0x9 – Unused (0x0000)
This register unused in Test Chip.

RW10 – address 0xA – Unused (0x0000)
This register unused in Test Chip.

RW11 – address 0xB – Unused (0x0000)
This register unused in Test Chip.

RW12 – address 0xC – Unused (0x0000)
This register unused in Test Chip.

RW13 – address 0xD – Unused (0x0000)
This register unused in Test Chip.

RW14 – address 0xE – Unused (0x0000)
This register unused in Test Chip.

RW15 – address 0xF – Unused (0x0000)
This register unused in Test Chip.

17

The RO registers
The R0 registers let the internal flags be accessible for monitoring and debug purposes.

RO0 – address 0x0 – Mask Counter 0
Unsigned. The Mask Counter[15:8] field increments on each load mask operation
performed on sub-matrix instance 1.
Unsigned. The Mask Counter[7:0] field increments on each load mask operation
performed on sub-matrix instance 0.
These two unsigned values increments together since each load operation acts on both
matrix instances.

RO1 – address 0x1 – Mask Counter 1
Unused in Test Chip.

RO2 – address 0x2 – Error Flags
Error Flag[1:0] : Unused
Error Flag[2] : B1 readout 0 overflow flag
Error Flag[3] : B1 readout 1 overflow flag
Error Flag[5:4] : Unused
Error Flag[6] : Concentrator Error Readout 0 (if any but ”00” then wrong time

stamp in SOS word at B2).
Error Flag[7] : Concentrator Error Readout 1 (if any but ”00” then wrong time

stamp in SOS word at B2).
Error Flag[15:8] : Unused

RO3 – address 0x3 – Rate Counter
Unsigned. The number of hits found on both pixel data buses are accumulated at each
RDclk into a dedicated counter. After 51200 RDclk periods the rate counter register is
updated with the accumulated value, then the count starts over. data are accumulated
from both the sub-matrices, so the rate refers to the whole sensor area.
Actually, the real rate counter register is 32-bit long so, in order to fit it into a standard
RO register, only a 16-bit window of it is visible. It is possible to slide this window over
the whole register by setting conveniently the Rate Monitor Range field of Config 0
register.
The unsigned value U can be expressed in MHz with the following conversion formula :

(TRDclk expressed in us, and n = window shift expressed in bits)

RO4 – address 0x4 – BC lost Counter 0
Unsigned. Error flag counter that should be 0 at the end of a run.
It concerns the Scan Buffer overflow situations: the counter increments each time a BC
edge arrives when the Scan Buffer is full and there are new fired MPs. Refer to BC lost
condition in Scan Buffer block description.
Readout instance 0.

RO5 – address 0x5 – BC lost Counter 1
Unsigned. Error flag counter that should be 0 at the end of a run.

18

It concerns the Scan Buffer overflow situations: the counter increments each time a BC
edge arrives when the Scan Buffer is full and there are new fired MPs. Refer to BC lost
condition in Scan Buffer block description.
Readout instance 1.

RO6 – address 0x6 – BC lost Counter 2
Unused in Test Chip.

RO7– address 0x7 – BC lost Counter 3
Unused in Test Chip

RO8 – address 0x8 – B1 Filling Level 0
Unsigned. Filling level of the B1 memory (0-64). Readout instance 0.

RO9 – address 0x9 – B1 Filling Level 1
Unsigned. Filling level of the B1 memory (0-64). Readout instance 1.

RO10 – address 0xA – B1 Filling Level 2
Unused in Test Chip.

RO11 – address 0xB – B1 Filling Level 3
Unused in Test Chip.

RO12 – address 0xC – B1 Mean Filling Level 0
Unsigned. Mean Filling level of the B1 memory (0-64). Readout instance 0.

RO13 – address 0xD – B1 Mean Filling Level 1
Unsigned. Mean Filling level of the B1 memory (0-64). Readout instance 1.

RO14 – address 0xE – B1 Mean Filling Level 2
Unused in Test Chip.

RO15 – address 0xF – B1 Mean Filling Level 3
Unused in Test Chip.

The Output Stage
The Final Concentrator
Each sub-matrix is provided with an independent and parallel readout instance The Final

Concentrator is the element that collects data from the 4 B1 instances in order to drive the output

data bus with a proper data protocol. The B1s are emptied with a Round Robin algorithm and a

special Header Word is sent before switching to a new B1. In the Header Word are specified the

Time Stamp of the following hits and their B1 source address. Following hits preserve the same B1

data formatting. Refer to the Readout I/O section for detail about the data format.

19

USER GUIDE
This appendix is intended to provide the user with some step-by-step instructions in order to
easily initialize and start the device; it shows and explains the more common initializing
routines and it is intended to describe the device with a practical approach.

The Power-up

When the chip is turned on, the whole logic needs a hardware reset to correctly initialize the
values of the registers and the matrix latches. The hardware reset is asynchronous and active
high. By the way it is recommended to run the FastClk and the RDclk for at least 1 period
while the reset is still high.
After the reset release, the FSM that perform the clean-up sweep over the matrix starts to run.
This procedure ensures that all the MP latches are correctly reset after start-up. This
operation takes at least 1 RDclk cycle for each column of the matrix, the RDclk is mandatory
during this phase. All the eventual hits found during this sweep are neither sparsified nor
stored since they have no physical meaning. From power-up, to the end of this procedure,
MasteLatchEnable pin must be kept at GND to prevent the latching of new noise hits (MP kept
frozen).
Before performing another operation (slow control transactions ecc...), it is recommended to
wait the latency of this command. (ex. For a 40 MHz Rdclk (period 25 ns), the time to wait will
be 64x25=1,6 us. Better to round up to 2 us).

0-effort Start-up

After the reset release, the main configuration registers are preset with default settings.
Remember that these values are restored after each reset. The preloaded values, (as reported
in the data sheet section) are:

FastClk freq/RDclk freq = 0

Flush timeout = 256

Enable MP = 0

Rate monitor range = 3

Calib mode = 0 (physic mode)

These default values have been set foreseeing a run with same RDclk and FastClk ~ 40/60
MHz and a BCclk period of ~ 1 us.
After the reset sweep latency the chip is ready to start an acquisition.
Now the matrix is empty and completely frozen, the user can enable the MPs activating the
MasteLatchEnable pin on the chip. The MPs can be activated also through the Slow Control
Interface by setting the appropriate register.

ML ena pin activate MP (config0 reg.)
0 0  MPs frozen
1 0  MPs activated
0 1  MPs activated
1 1  MPs activated

This start-up requires no I2C transaction.

20

Calibration Run

To start a calibration run, we are supposed to work a bit with the I2C-like bus in order to load
the required settings:

Calib mode bit = 1 (config reg)

Activate MP = 1 (config reg)

Mask 1 sub-matrix

Flush timeout > BCclk period > Max Matrix Sweep Time

In the calibration mode the matrix sweep is much slower than in normal mode. This is due to
high data throughput that is produced during a calibration step (1 BCclk edge). By means of
this, the scan over the matrix is interleaved by fixed delays, in this way all the hits have time to
be read out of the data bus when the threshold scan pass through the high occupancy band.
For the same reason it is required to calibrate 1 sub-matrix a time masking completely the
other.
The formula to evaluate the Max Matrix Sweep Time is

64*TRDclk + 1600*TRDclk

i.e. for a 40 MHz RDclk, the Max Matrix Sweep Time is 41.6 us. In this case we adopted for
simulation a 50 us BCclk period and a flush timeout register value of 5000 which correspond
to 5000*12.5ns of FastClk period. Hence 62.5 us > 50 us > 41.6 us which is OK.

21

BIBLIOGRAPHY

[1] APSEL4D User Guide – Gabrielli Alessandro

http://www.bo.infn.it/slim5/Apsel4D/Readout128x32-Users-Guide.pdf

http://www.bo.infn.it/slim5/Apsel4D/Readout128x32-Users-Guide.pdf

22

APPENDIX A – the test cycle output sequence
On the first column there is an incremental index enumerating the hits, the X coordinate is on

the third column and the Y coordinate on the last column.
When the idx is -1 it means it is a header word (idx not incremented). In this case the third

column (X) points out the instance of Readout to which the following data are referred.

Idx X Y
-1 0 0 00
0 0 0 0
1 0 0 1
2 0 0 2
3 0 0 3
4 0 0 4
5 0 0 5

6 0 0 6
7 0 0 7
8 0 0 0
9 0 0 1
10 0 0 2
11 0 0 3
12 0 0 4
13 0 0 5
14 0 0 6
15 0 0 7
16 0 0 0
17 0 0 1
18 0 0 2
19 0 0 3
20 0 0 4

21 0 0 5
22 0 0 6
23 0 0 7
24 0 0 0
25 0 0 1
26 0 0 2
27 0 0 3
28 0 0 4
29 0 0 5
30 0 0 6
31 0 0 7
-1 0 1 00
32 0 0 0
33 0 0 1
34 0 0 2

35 0 0 3
36 0 0 4
37 0 0 5
38 0 0 6
39 0 0 7
40 0 0 0
41 0 0 1
42 0 0 2
43 0 0 3
44 0 0 4
45 0 0 5
46 0 0 6

47 0 0 7
48 0 0 0
49 0 0 1
50 0 0 2
51 0 0 3
52 0 0 4
53 0 0 5
54 0 0 6

55 0 0 7
56 0 0 0
57 0 0 1
58 0 0 2
59 0 0 3
60 0 0 4
61 0 0 5
62 0 0 6
63 0 0 7
-1 0 0 00
64 1 0 8
65 1 0 9
66 1 0 10
67 1 0 11
68 1 0 12

69 1 0 13
70 1 0 14
71 1 0 15
72 1 0 8
73 1 0 9
74 1 0 10
75 1 0 11
76 1 0 12
77 1 0 13
78 1 0 14
79 1 0 15
80 1 0 8
81 1 0 9
82 1 0 10
83 1 0 11

84 1 0 12
85 1 0 13
86 1 0 14
87 1 0 15
88 1 0 8
89 1 0 9
90 1 0 10
91 1 0 11
92 1 0 12
93 1 0 13
94 1 0 14
95 1 0 15

-1 0 1 00
96 1 0 8
97 1 0 9
98 1 0 10
99 1 0 11
100 1 0 12
101 1 0 13
102 1 0 14

103 1 0 15
104 1 0 8
105 1 0 9
106 1 0 10
107 1 0 11
108 1 0 12
109 1 0 13
110 1 0 14
111 1 0 15
112 1 0 8
113 1 0 9
114 1 0 10
115 1 0 11
116 1 0 12
117 1 0 13

118 1 0 14
119 1 0 15
120 1 0 8
121 1 0 9
122 1 0 10
123 1 0 11
124 1 0 12
125 1 0 13
126 1 0 14
127 1 0 15
-1 0 0 00
128 2 0 16
129 2 0 17
130 2 0 18
131 2 0 19

132 2 0 20
133 2 0 21
134 2 0 22
135 2 0 23
136 2 0 16
137 2 0 17
138 2 0 18
139 2 0 19
140 2 0 20
141 2 0 21
142 2 0 22
143 2 0 23

23

144 2 0 16

145 2 0 17
146 2 0 18
147 2 0 19
148 2 0 20
149 2 0 21
150 2 0 22
151 2 0 23
152 2 0 16
153 2 0 17
154 2 0 18
155 2 0 19
156 2 0 20
157 2 0 21
158 2 0 22
159 2 0 23
-1 0 1 00

160 2 0 16
161 2 0 17
162 2 0 18
163 2 0 19
164 2 0 20
165 2 0 21
166 2 0 22
167 2 0 23
168 2 0 16
169 2 0 17
170 2 0 18
171 2 0 19
172 2 0 20
173 2 0 21
174 2 0 22

175 2 0 23
176 2 0 16
177 2 0 17
178 2 0 18
179 2 0 19
180 2 0 20
181 2 0 21
182 2 0 22
183 2 0 23
184 2 0 16
185 2 0 17
186 2 0 18
187 2 0 19
188 2 0 20
189 2 0 21

190 2 0 22
191 2 0 23
-1 0 0 00
192 3 0 24
193 3 0 25
194 3 0 26
195 3 0 27
196 3 0 28
197 3 0 29
198 3 0 30
199 3 0 31
200 3 0 24

201 3 0 25

202 3 0 26
203 3 0 27
204 3 0 28
205 3 0 29
206 3 0 30
207 3 0 31
208 3 0 24
209 3 0 25
210 3 0 26
211 3 0 27
212 3 0 28
213 3 0 29
214 3 0 30
215 3 0 31
216 3 0 24
217 3 0 25

218 3 0 26
219 3 0 27
220 3 0 28
221 3 0 29
222 3 0 30
223 3 0 31
-1 0 1 00
224 3 0 24
225 3 0 25
226 3 0 26
227 3 0 27
228 3 0 28
229 3 0 29
230 3 0 30
231 3 0 31

232 3 0 24
233 3 0 25
234 3 0 26
235 3 0 27
236 3 0 28
237 3 0 29
238 3 0 30
239 3 0 31
240 3 0 24
241 3 0 25
242 3 0 26
243 3 0 27
244 3 0 28
245 3 0 29
246 3 0 30

247 3 0 31
248 3 0 24
249 3 0 25
250 3 0 26
251 3 0 27
252 3 0 28
253 3 0 29
254 3 0 30
255 3 0 31

24

APPENDIX B – evaluation of the hit coordinates

The computation of the X coordinate is quite easy, the 5-bit X field of the data output bus,

encodes the x coordinate as an unsigned:

 x := unsigned(data_out[9:4])

The Y coordinate is a bit more tricky due to the zone sparsification. In one data word, there

could be, in principle, many hits; in that case a different Y coordinate must be evaluated
for each hit.

y := unsigned(data_out[12:11])*N_SPARS_YZONE*YZONE_SIZE +

unsigned(data_out[10])*YZONE_SIZE + pattern_relative_y

where :
N_SPARS_YZONE := 2; -- number of zones connected to a sparsifier
Y_ZONE_SIZE := 4; -- dimension of a zone in pixels.
pattern_relative_y := 0->3 -- depends on the pattern of the zone.

i.e. the data word x"1409" or "0 10 1 000000 1001" has a multiple hit in the
pattern data_out[3:0] = "1001". The X coordinate is common and it is 0.

Applying the formula above to the hits "1000"and "0001" leads to

X1 = 0
Y1 = 2*N_SPARS_YZONE*YZONE_SIZE + 1*YZONE_SIZE + 3 = 23

X2 = 0
Y2 = 2*N_SPARS_YZONE*YZONE_SIZE + 1*YZONE_SIZE + 0 = 20

The coordinates of the pixels are labeled by convention 0:127 for the X and 0:31 for the Y.

