
WORLDWIDE LHC COMPUTING GRID

GLITE 3.1 USER GUIDE

MANUALS SERIES

Document identifier: CERN-LCG-GDEIS-722398

EDMS id: 722398

Version: 1.2

Date: April 28, 2009

Section: Experiment Integration and Distributed
Analysis

Document status: DRAFT

Author(s): Stephen Burke, Simone Campana, Elisa
Lanciotti, Patricia Méndez Lorenzo, Vin-
cenzo Miccio, Christopher Nater, Roberto
Santinelli, Andrea Sciabà

Editor: Andrea Sciabà

File: gLite-3-UserGuide

Abstract: This guide is an introduction to the WLCG/EGEE Grid and to the gLite 3.1 middleware
from a user’s point of view.

COPYRIGHT NOTICE

Copyright c©Members of the EGEE-II Collaboration, 2006.
See www.eu-egee.org for details on the copyright holders.
EGEE-II (Enabling Grids for E-sciencE-II) is a project co-funded by the European Commission as an
Integrated Infrastructure Initiative within the 6th Framework Programme. EGEE-II began in April 2006
and will run for 2 years.
For more information on EGEE-II, its partners and contributors please see www.eu-egee.org. You are
permitted to copy and distribute, for non-profit purposes, verbatim copies of this document containing
this copyright notice. This includes the right to copy this document in whole or in part, but without mod-
ification, into other documents if you attach the following reference to the copied elements: ”Copyright
c©Members of the EGEE-II Collaboration 2006. See www.eu-egee.org for details”.
Using this document in a way and/or for purposes not foreseen in the paragraph above, requires the prior
written permission of the copyright holders.
The information contained in this document represents the views of the copyright holders as of the date
such views are published.
THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED BY THE COPYRIGHT
HOLDERS ”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MEMBERS OF THE
EGEE-II COLLABORATION, INCLUDING THE COPYRIGHT HOLDERS, OR THE EUROPEAN
COMMISSIONBE LIABLE FORANYDIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS IN-
TERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDINGNEGLIGENCEOROTHERWISE) ARIS-
ING IN ANY WAY OUT OF THE USE OF THE INFORMATION CONTAINED IN THIS DOCU-
MENT, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Trademarks: EGEE and gLite are registered trademarks held by CERN on behalf of the EGEE collabo-
ration. All rights reserved.

CERN-LCG-GDEIS-722398 Manuals Series Page 2

file://localhost/Users/maggi/Downloads/www.eu-egee.org
file://localhost/Users/maggi/Downloads/www.eu-egee.org

Document Change Record

Issue Item Reason for Change
15/01/08 V1.2 First version for gLite 3.1
17/01/07 v1.1 Revised version
20/04/06 v1.0 First draft

Files

Software Products User files
PDF https://edms.cern.ch/file/722398/1.2/gLite-3-UserGuide.pdf
PS https://edms.cern.ch/file/722398/1.2/gLite-3-UserGuide.ps
HTML https://edms.cern.ch/file/722398/1.2/gLite-3-UserGuide.html

CERN-LCG-GDEIS-722398 Manuals Series Page 3

https://edms.cern.ch/file/722398/1.2/gLite-3-UserGuide.html
https://edms.cern.ch/file/722398/1.2/gLite-3-UserGuide.pdf
https://edms.cern.ch/file/722398/1.2/gLite-3-UserGuide.ps

CONTENTS

1 INTRODUCTION . 10

1.1 ACKNOWLEDGMENTS . 10

1.2 OBJECTIVES OF THIS DOCUMENT . 10

1.3 APPLICATION AREA. 10

1.4 DOCUMENT EVOLUTION PROCEDURE . 10

1.5 REFERENCE AND APPLICABLE DOCUMENTS . 10

1.6 TERMINOLOGY . 14

1.6.1 Glossary . 15

2 EXECUTIVE SUMMARY. 18

3 OVERVIEW . 19

3.1 PRELIMINARY MATTERS. 20

3.1.1 Code Development . 20

3.1.2 Troubleshooting . 20

3.1.3 User and VO utilities . 20

3.2 THE WLCG/EGEE INFRASTRUCTURE. 21

3.3 THE WLCG/EGEE ARCHITECTURE. 21

3.3.1 Security. 21

3.3.2 User Interface . 22

3.3.3 Computing Element . 22

3.3.4 Storage Element . 23

3.3.5 Information Service . 24

3.3.6 Data Management. 28

3.3.7 Workload Management . 29

CERN-LCG-GDEIS-722398 Manuals Series Page 4

3.4 JOB FLOW . 30

3.4.1 Job Submission . 30

3.4.2 Other Operations. 31

4 GRID SECURITY AND GETTING STARTED . 33

4.1 BASIC SECURITY CONCEPTS. 33

4.1.1 Private and Public Keys. 33

4.1.2 Encryption . 33

4.1.3 Signing . 33

4.1.4 Certificates . 34

4.1.5 Certification Authorities . 34

4.1.6 Proxies . 34

4.1.7 VOMS Proxies . 35

4.2 FIRST STEPS . 35

4.3 OBTAINING A CERTIFICATE . 36

4.3.1 X.509 Certificates . 36

4.3.2 Requesting the Certificate . 36

4.3.3 Getting the Certificate . 37

4.3.4 Renewing the Certificate . 38

4.3.5 Taking Care of Private Keys . 38

4.4 REGISTERING WITH WLCG/EGEE. 39

4.4.1 The Registration Service . 39

4.4.2 Virtual Organisations . 40

4.5 SETTING UP THE USER ACCOUNT. 40

4.5.1 The User Interface . 40

4.5.2 Checking a Certificate . 40

CERN-LCG-GDEIS-722398 Manuals Series Page 5

4.6 PROXIES. 43

4.6.1 Standard Proxies . 43

4.6.2 VOMS Proxies . 45

4.6.3 Proxy Renewal . 47

5 INFORMATION SERVICE . 50

5.1 THE MDS . 50

5.1.1 lcg-infosites . 50

5.1.2 lcg-info . 53

5.1.3 The Local GRIS . 56

5.1.4 Using the ldapsearch command to read the MDS. 56

5.1.5 The Site BDII . 58

5.1.6 The top-level BDII . 60

5.2 R-GMA . 63

5.2.1 R-GMA concepts . 64

5.2.2 The R-GMA Browser . 64

5.2.3 The R-GMA CLI . 65

5.2.4 R-GMA APIs. 68

5.3 SERVICEDISCOVERY . 68

5.3.1 Running a Service Discovery query . 69

5.4 MONITORING . 69

5.4.1 GridICE . 70

6 WORKLOAD MANAGEMENT . 72

6.1 INTRODUCTION . 72

6.2 THE JOB DESCRIPTION LANGUAGE . 72

CERN-LCG-GDEIS-722398 Manuals Series Page 6

6.3 THE COMMAND LINE INTERFACE . 79

6.3.1 Single Job Submission. 80

6.3.2 Job Operations. 85

6.3.3 Advanced Sandbox Management. 90

6.3.4 Real Time Output Retrieval . 91

6.3.5 The BrokerInfo . 93

6.3.6 Direct Submission to CREAM CE . 94

6.4 ADVANCED JOB TYPES . 96

6.4.1 Job Collections . 96

6.4.2 DAG jobs . 99

6.4.3 Parametric jobs . 99

6.4.4 Interactive Jobs . 99

6.4.5 MPI Jobs .101

6.5 COMMAND LINE INTERFACE CONFIGURATION .101

6.5.1 WMProxy Configuration. .101

6.5.2 LCG-2 Network Server Configuration .102

7 DATA MANAGEMENT . 106

7.1 INTRODUCTION .106

7.2 STORAGE ELEMENTS .106

7.2.1 Data Channel Protocols .106

7.2.2 Types of Storage Elements .106

7.2.3 The Storage Resource Manager interface. .107

7.3 FILE NAMES IN GLITE 3.1 .107

7.4 FILE CATALOGUE IN GLITE 3.1 .108

7.4.1 LFC Commands .109

CERN-LCG-GDEIS-722398 Manuals Series Page 7

7.4.2 Access Control Lists .112

7.5 FILE AND REPLICA MANAGEMENT CLIENT TOOLS .114

7.5.1 LCG Data Management Client Tools .114

7.6 FILE TRANSFER SERVICE .121

7.6.1 Basic Concepts .121

7.6.2 Transfer job states. .122

7.6.3 Individual file states .122

7.6.4 FTS Commands .123

7.7 LOW LEVEL DATA MANAGEMENT TOOLS. .126

7.7.1 GSIFTP. .126

7.7.2 CASTOR and RFIO .127

7.7.3 dCache and DCAP .128

7.8 JOB SERVICES AND DATA MANAGEMENT .128

7.9 THE AMGA METADATA CATALOG. .131

7.9.1 Introduction .131

7.9.2 Configuration of the client .131

7.9.3 Metadata access from the shell. .132

7.9.4 Some commands to manipulate entries and attributes of a table133

7.9.5 Using the API’s .135

A THE GRID MIDDLEWARE. 137

B ENVIRONMENT VARIABLES AND CONFIGURATION FILES . 138

C JOB STATUS DEFINITION . 140

D USER TOOLS . 142

D.1 INTRODUCTION .142

CERN-LCG-GDEIS-722398 Manuals Series Page 8

D.2 JOB MANAGEMENT FRAMEWORK .142

D.3 JOB MONITORING. .142

D.4 JOB STATUS MONITORING .142

D.5 TIME LEFT UTILITY. .143

E VO-WIDE UTILITIES . 144

E.1 INTRODUCTION .144

E.2 FREEDOM OF CHOICE FOR RESOURCES .144

E.3 SERVICE AVAILABILITY MONITORING .144

E.4 THE VO BOX .144

E.5 VO SOFTWARE INSTALLATION .145

E.6 USING LCG-TAGS .145

E.7 USING LCG-MANAGEVOTAG .146

F DATA MANAGEMENT AND FILE ACCESS THROUGH AN APPLICATION PRO-
GRAMMING INTERFACE . 147

G THE GLUE SCHEMA. 159

G.1 BASIC CONCEPTS .159

G.2 MAPPINGS. .159

G.3 INFORMATION PROVIDERS .160

G.4 GLUE ATTRIBUTES .160

G.4.1 Site information .161

G.4.2 Service information .161

G.4.3 Attributes for the Computing Element .162

G.4.4 Attributes for the Storage Element .165

G.4.5 Attributes for the CE-SE Binding .168

CERN-LCG-GDEIS-722398 Manuals Series Page 9

1. INTRODUCTION

1.1. ACKNOWLEDGMENTS

This work received support from the following institutions:

• Istituto Nazionale di Fisica Nucleare, Roma, Italy.

• Ministerio de Educación y Ciencia, Madrid, Spain.

• Particle Physics and Astronomy Research Council, UK.

1.2. OBJECTIVES OF THIS DOCUMENT

This document gives an overview of the gLite 3.1 middleware. It helps users to understand the building
blocks of the Grid and the available interfaces to the Grid services in order to run jobs and manage data.

This document is neither an administration nor a developer guide.

1.3. APPLICATION AREA

This guide is addressed to WLCG/EGEE users and site administrators who would like to work with the
gLite 3.1 middleware.

1.4. DOCUMENT EVOLUTION PROCEDURE

The guide reflects the current status of the gLite middleware, and will be modified as new gLite releases
are produced. In some parts of the document, references to the foreseeable future of the gLite software
are made.

1.5. REFERENCE AND APPLICABLE DOCUMENTS

REFERENCES

[1] Glossaries of Grid terms
http://www.gridpp.ac.uk/gas/
http://egee-jra2.web.cern.ch/EGEE-JRA2/Glossary/Glossary.html
http://grid-it.cnaf.infn.it/fileadmin/users/dictionary/dictionary.html

CERN-LCG-GDEIS-722398 Manuals Series Page 10

http://grid-it.cnaf.infn.it/fileadmin/users/dictionary/dictionary.html
http://www.gridpp.ac.uk/gas/
http://egee-jra2.web.cern.ch/EGEE-JRA2/Glossary/Glossary.html

[2] EGEE – Enabling Grids for E-sciencE
http://eu-egee.org/

[3] gLite – Lightweight Middleware for Grid Computing
http://cern.ch/glite/

[4] Worldwide LHC Computing Grid
http://cern.ch/LCG/

[5] The DataGrid Project
http://www.edg.org/

[6] DataTAG – Research & technological development for a Data TransAtlantic Grid
http://cern.ch/datatag/

[7] The Globus Alliance
http://www.globus.org/

[8] GriPhyN – Grid Physics Network
http://www.griphyn.org/

[9] iVDgL – International Virtual Data Grid Laboratory
http://www.ivdgl.org/

[10] Open Science Grid
http://www.opensciencegrid.org/

[11] The Virtual Data Toolkit
http://vdt.cs.wisc.edu/

[12] NorduGrid
http://www.nordugrid.org/

[13] Ian Foster, Carl Kesselman, Steven Tuecke,
The Anatomy of the Grid: Enabling Scalable Virtual Organizations
http://www.globus.org/alliance/publications/papers/anatomy.pdf

[14] M. Dimou,
LCG User Registration and VO Management
https://edms.cern.ch/document/428034/

[15] EGEE CIC Operations Portal
http://cic.in2p3.fr/

[16] Global Grid User Support
http://www.ggus.org/

[17] GOC Database 3.0
https://goc.gridops.org/

CERN-LCG-GDEIS-722398 Manuals Series Page 11

https://goc.gridops.org/
http://eu-egee.org/
http://cern.ch/glite/
http://cern.ch/LCG/
http://www.edg.org/
http://cern.ch/datatag/
http://www.globus.org/
http://www.griphyn.org/
http://www.ivdgl.org/
http://www.opensciencegrid.org/
http://vdt.cs.wisc.edu/
http://www.nordugrid.org/
http://www.globus.org/alliance/publications/papers/anatomy.pdf
https://edms.cern.ch/document/428034/
http://cic.in2p3.fr/
http://www.ggus.org/

[18] GOC Monitoring links
http://goc.grid-support.ac.uk/gridsite/monitoring/
Google map
http://goc02.grid-support.ac.uk/googlemaps/sam.html

[19] Overview of the Grid Security Infrastructure
http://www-unix.globus.org/security/overview.html

[20] The Storage Resource Manager
http://sdm.lbl.gov/srm-wg/

[21] The GLUE schema
http://glueschema.forge.cnaf.infn.it/

[22] The GLUE LDAP schema
http://forge.cnaf.infn.it/plugins/scmsvn/viewcvs.php/v 1 2/mapping/ldap/schema/openldap-2-
1/?root=glueschema

[23] MDS 2.2 Features in the Globus Toolkit 2.2 Release
http://www.globus.org/toolkit/mds/#mds gt2

[24] R-GMA: Relational Grid Monitoring Architecture
http://www.r-gma.org/index.html

[25] B. Tierney et al.,
A Grid Monitoring Architecture,
GGF, 2001 (revised 2002)
http://www-didc.lbl.gov/GGF-PERF/GMA-WG/papers/GWD-GP-16-2.pdf

[26] S. Campana, M. Litmaath, A. Sciabà,
LCG-2 Middleware overview
https://edms.cern.ch/document/498079/

[27] F. Pacini,
EGEE User’s Guide – WMS Service
https://edms.cern.ch/document/572489/

[28] F. Pacini,
EGEE User’s Guide – WMProxy service
https://edms.cern.ch/document/674643/

[29] WP1 Workload Management Software – Administrator and User Guide
http://www.infn.it/workload-grid/docs/DataGrid-01-TEN-0118-1 2.pdf

[30] CESNET,
EGEE User’s Guide – Service Logging and Bookkeeping (L&B)
https://edms.cern.ch/document/571273/

[31] Using lxplus as an LCG-2 User Interface
http://grid-deployment.web.cern.ch/grid-deployment/documentation/UI-lxplus/

CERN-LCG-GDEIS-722398 Manuals Series Page 12

http://grid-deployment.web.cern.ch/grid-deployment/documentation/UI-lxplus/
http://goc.grid-support.ac.uk/gridsite/monitoring/
http://goc02.grid-support.ac.uk/googlemaps/sam.html
http://www-unix.globus.org/security/overview.html
http://sdm.lbl.gov/srm-wg/
http://glueschema.forge.cnaf.infn.it/
http://forge.cnaf.infn.it/plugins/scmsvn/viewcvs.php/v_1_2/mapping/ldap/schema/openldap-2-1/?root=glueschema
http://forge.cnaf.infn.it/plugins/scmsvn/viewcvs.php/v_1_2/mapping/ldap/schema/openldap-2-1/?root=glueschema
http://www.globus.org/toolkit/mds/#mds_gt2
http://www.r-gma.org/index.html
http://www-didc.lbl.gov/GGF-PERF/GMA-WG/papers/GWD-GP-16-2.pdf
https://edms.cern.ch/document/498079/
https://edms.cern.ch/document/572489/
https://edms.cern.ch/document/674643/
http://www.infn.it/workload-grid/docs/DataGrid-01-TEN-0118-1_2.pdf
https://edms.cern.ch/document/571273/

[32] GridICE: a monitoring service for the Grid
http://gridice.forge.cnaf.infn.it/

[33] Condor Classified Advertisements
http://www.cs.wisc.edu/condor/classad

[34] The Condor Project
http://www.cs.wisc.edu/condor/

[35] F. Pacini,
Job Description Language HowTo
http://www.infn.it/workload-grid/docs/DataGrid-01-TEN-0102-0 2-Document.pdf

[36] F. Pacini,
JDL Attributes
http://www.infn.it/workload-grid/docs/DataGrid-01-TEN-0142-0 2.pdf

[37] F. Pacini,
Job Description Language Attributes Specification for the gLite middleware (submission through
Network Server)
https://edms.cern.ch/document/555796/1/

[38] F. Pacini,
Job Description Language Attributes Specification for the gLite middleware (submission through
WMProxy service)
https://edms.cern.ch/document/590869/1/

[39] The EDG-Brokerinfo User Guide
http://www.infn.it/workload-grid/docs/edg-brokerinfo-user-guide-v2 2.pdf

[40] MPI Wiki page
http://grid.ie/mpi/wiki/

[41] GSIFTP Tools for the Data Grid
http://www.globus.org/toolkit/docs/2.4/datagrid/deliverables/gsiftp-tools.html

[42] RFIO: Remote File Input/Output
http://doc.in2p3.fr/doc/public/products/rfio/rfio.html

[43] CASTOR
http://cern.ch/castor/

[44] dCache
http://www.dCache.org/

[45] Scientific Linux
http://www.scientificlinux.org/

[46] User level tools documentation Wiki
http://goc.grid.sinica.edu.tw/gocwiki/User tools

CERN-LCG-GDEIS-722398 Manuals Series Page 13

http://goc.grid.sinica.edu.tw/gocwiki/User_tools
http://gridice.forge.cnaf.infn.it/
http://www.cs.wisc.edu/condor/classad
http://www.cs.wisc.edu/condor/
http://www.infn.it/workload-grid/docs/DataGrid-01-TEN-0102-0_2-Document.pdf
http://www.infn.it/workload-grid/docs/DataGrid-01-TEN-0142-0_2.pdf
https://edms.cern.ch/document/555796/1/
https://edms.cern.ch/document/590869/1/
http://www.infn.it/workload-grid/docs/edg-brokerinfo-user-guide-v2_2.pdf
http://grid.ie/mpi/wiki/
http://www.globus.org/toolkit/docs/2.4/datagrid/deliverables/gsiftp-tools.html
http://doc.in2p3.fr/doc/public/products/rfio/rfio.html
http://cern.ch/castor/
http://www.dCache.org/
http://www.scientificlinux.org/

[47] R. Santinelli, F. Donno,
Experiment Software Installation
https://edms.cern.ch/document/498080/
http://grid-deployment.web.cern.ch/grid-deployment/eis/docs/internal/chep04/SW Installation.pdf

[48] GOC Wiki
http://goc.grid.sinica.edu.tw/gocwiki/FrontPage

[49] Freedom of Choice for Resources
https://lcg-fcr.cern.ch:8443/fcr/fcr.cgi

[50] Service Availability Monitoring
http://goc.grid.sinica.edu.tw/gocwiki/Service Availability Monitoring

[51] Service Availability Monitoring Web Interface
https://lcg-sam.cern.ch:8443/sam/sam.py

[52] VO box How-to
http://goc.grid.sinica.edu.tw/gocwiki/VO-box HowTo

[53] EGEE User’s Guide – Service Discovery
http://hepunx.rl.ac.uk/egee/jra1-uk/sd/service-discovery.pdf

[54] Storage Classes in WLCG
http://glueschema.forge.cnaf.infn.it/uploads/Spec/V13/SE-Model-3.5.pdf

[55] LCG-2 User Guide
https://edms.cern.ch/document/454439/

[56] CREAM Home page
http://grid.pd.infn.it/cream

[57] CREAM User’s Guide
https://edms.cern.ch/document/595770

[58] Specification of the JDL attributes supported by the CREAM CE service
https://edms.cern.ch/document/592336

[59] AMGA Manual
http://amga.web.cern.ch/amga/downloads/amga-manual 1 30.pdf

1.6. TERMINOLOGY

The Grid world has a lot of specialised jargon. Acronyms used in this document are explained below; for
more acronyms and definitions see [1].

CERN-LCG-GDEIS-722398 Manuals Series Page 14

https://edms.cern.ch/document/498080/
http://grid-deployment.web.cern.ch/grid-deployment/eis/docs/internal/chep04/SW_Installation.pdf
http://goc.grid.sinica.edu.tw/gocwiki/FrontPage
https://lcg-fcr.cern.ch:8443/fcr/fcr.cgi
http://goc.grid.sinica.edu.tw/gocwiki/Service_Availability_Monitoring
https://lcg-sam.cern.ch:8443/sam/sam.py
http://goc.grid.sinica.edu.tw/gocwiki/VO-box_HowTo
http://hepunx.rl.ac.uk/egee/jra1-uk/sd/service-discovery.pdf
http://glueschema.forge.cnaf.infn.it/uploads/Spec/V13/SE-Model-3.5.pdf
https://edms.cern.ch/document/454439/
http://grid.pd.infn.it/cream
https://edms.cern.ch/document/595770
https://edms.cern.ch/document/592336
http://amga.web.cern.ch/amga/downloads/amga-manual_1_3

1.6.1. Glossary

AFS: Andrew File System
API: Application Programming Interface
BDII: Berkeley Database Information Index
CASTOR CERN Advanced STORage manager
CE: Computing Element
CERN: European Laboratory for Particle Physics
ClassAd: Classified advertisement (Condor)
CLI: Command Line Interface
CNAF: INFN’s National Center for Telematics and Informatics
dcap: dCache Access Protocol
DIT: Directory Information Tree (LDAP)
DLI: Data Location Interface
DN: Distinguished Name
EDG: European DataGrid
EDT: European DataTAG
EGEE: Enabling Grids for E-sciencE
ESM: Experiment Software Manager
FCR: Freedom of Choice for Resources
FNAL: Fermi National Accelerator Laboratory
FTS: File Transfer Service
GFAL: Grid File Access Library
GG: Grid Gate (aka gatekeeper)
GGF: Global Grid Forum (now called OGF)
GGUS: Global Grid User Support
GIIS: Grid Index Information Server
GLUE: Grid Laboratory for a Uniform Environment
GMA: Grid Monitoring Archictecture
GOC: Grid Operations Centre
GRAM: Grid Resource Allocation Manager
GRIS: Grid Resource Information Service
GSI: Grid Security Infrastructure
gsidcap: GSI-enabled version of the dCache Access Protocol
gsirfio: GSI-enabled version of the Remote File Input/Output protocol
GUI: Graphical User Interface
GUID: Grid Unique ID
HSM: Hierarchical Storage Manager
ID: Identifier
INFN: Istituto Nazionale di Fisica Nucleare
IS: Information Service
JDL: Job Description Language
kdcap: Kerberos-enabled version of the dCache Access Protocol
LAN: Local Area Network
LB: Logging and Bookkeeping Service

CERN-LCG-GDEIS-722398 Manuals Series Page 15

LDAP: Lightweight Directory Access Protocol
LFC: LCG File Catalogue
LFN: Logical File Name
LHC: Large Hadron Collider
LCG: LHC Computing Grid
LRC: Local Replica Catalogue
LRMS: Local Resource Management System
LSF: Load Sharing Facility
MDS: Monitoring and Discovery Service
MPI: Message Passing Interface
MSS: Mass Storage System
NS: Network Server
OGF: Open Grid Forum (formerly called GGF)
OS: Operating System
PBS: Portable Batch System
PFN: Physical File name
PID: Process IDentifier
POOL: Pool of Persistent Objects for LHC
PPS: Pre-Production Service
RAL: Rutherford Appleton Laboratory
RB: Resource Broker
RFIO: Remote File Input/Output
R-GMA: Relational Grid Monitoring Archictecture
RLI: Replica Location Index
RLS: Replica Location Service
RM: Replica Manager
RMC: Replica Metadata Catalogue
RMS: Replica Management System
ROC: Regional Operations Centre
ROS: Replica Optimization Service
SAM: Service Availability Monitoring
SASL: Simple Authorization & Security Layer (LDAP)
SE: Storage Element
SFN: Site File Name
SMP: Symmetric Multi Processor
SN: Subject Name
SRM: Storage Resource Manager
SURL: Storage URL
TURL: Transport URL
UI: User Interface
URI: Uniform Resource Identifier
URL: Uniform Resource Locator
UUID: Universal Unique ID
VDT: Virtual Data Toolkit
VO: Virtual Organization
WLCG: Worldwide LHC Computing Grid

CERN-LCG-GDEIS-722398 Manuals Series Page 16

WMS: Workload Management System
WN: Worker Node
WPn: Work Package #n

CERN-LCG-GDEIS-722398 Manuals Series Page 17

2. EXECUTIVE SUMMARY

This user guide is intended for users of the gLite 3.1 middleware. In these pages, the user will find an
introduction to the services provided by the WLCG/EGEE Grid and a description of how to use them.
Examples are given of the management of jobs and data, the retrieval of information about resources, and
other functionality.

An introduction to the gLite 3.1 middleware is presented in Chapter 3. This chapter describes all the
middleware components and provides most of the necessary terminology. It also presents the WLCG and
the EGEE projects, which developed the gLite 3.1 middleware.

In Chapter 4, the preliminary procedures to follow before starting to use the Grid are described: how
to get a certificate, join a Virtual Organisation and manage proxy certificates.

Details on how to get information about the status of Grid resources are given in Chapter 5, where
the different information services and monitoring systems are discussed.

An overview of the Workload Management service is given in Chapter 6. This chapter explains the
basic commands for job submission and management, as well as those for retrieving information on
running and finished jobs.

Data Management services are described in Chapter 7. Not only the high-level interfaces are de-
scribed, but also commands that can be useful in case of problems or for debugging purposes.

Finally, the appendices give information about the gLite 3.1 middleware components (Appendix A),
the configuration files and enviroment variables for users (Appendix B), the possible states of a job
during submission and execution (Appendix C), user tools for the Grid (Appendix D), VO-wide utilities
(Appendix E), APIs for data management and file access (Appendix F), and the GLUE Schema used to
describe Grid resources (Appendix G).

CERN-LCG-GDEIS-722398 Manuals Series Page 18

3. OVERVIEW

The EGEE project [2] has a main goal of providing researchers with access to a geographically dis-
tributed computing Grid infrastructure, available 24 hours a day. It focuses on maintaining and develop-
ing the gLite middleware [3] and on operating a large computing infrastructure for the benefit of a vast
and diverse research community.

The Worldwide LHC Computing Grid Project (WLCG) [4] was created to prepare the computing
infrastructure for the simulation, processing and analysis of the data of the Large Hadron Collider (LHC)
experiments. The LHC, which is being constructed at the European Laboratory for Particle Physics
(CERN), will be the world’s largest and most powerful particle accelerator.

The WLCG and the EGEE projects share a large part of their infrastructure and operate it in conjunc-
tion. For this reason, we will refer to it as theWLCG/EGEE infrastructure.

The gLite 3.1 middleware comes from a number of Grid projects, like DataGrid [5], DataTag [6],
Globus [7], GriPhyN [8], iVDGL [9], EGEE and LCG. This middleware is currently installed in sites
participating in WLCG/EGEE.

In WLCG other Grid infrastructures exist, namely the Open Science Grid (OSG) [10], which uses
the middleware distributed by VDT [11], and NorduGrid [12], which uses the ARC middleware. These
are not covered by this guide.

The case of the LHC experiments illustrates well the motivation behind Grid technology. The LHC
accelerator will start operation in 2007, and the experiments that will use it (ALICE, ATLAS, CMS
and LHCb) will generate enormous amounts of data. The processing of this data will require huge
computational and storage resources, and the associated human resources for operation and support. It
was not considered feasible to concentrate all the resources at one site, and therefore it was agreed that
the LCG computing service would be implemented as a geographically distributed Computational Data
Grid. This means that the service will use computing and storage resources installed at a large number
of computing sites in many different countries, interconnected by fast networks. The gLite middleware
hides much of the complexity of this environment from the user, giving the impression that all of these
resources are available in a coherent virtual computer centre.

The users of a Grid infrastructure are divided into Virtual Organisations (VOs) [13], abstract entities
grouping users, institutions and resources in the same administrative domain [14].

The WLCG/EGEE VOs correspond to real organisations or projects, such as the four LHC experi-
ments, the community of biomedical researchers, etc. An updated list of all the EGEE VOs can be found
at the CIC portal [15].

CERN-LCG-GDEIS-722398 Manuals Series Page 19

3.1. PRELIMINARY MATTERS

3.1.1. Code Development

Many of the services offered byWLCG/EGEE can be accessed both by the user interfaces provided (CLIs
or GUIs), or from applications by making use of various APIs. References to APIs used for particular
services will be given later in the sections describing such services.

A totally different matter is the development of software that forms part of the gLite middleware
itself. This falls outside the scope of this guide.

3.1.2. Troubleshooting

This document will also explain the meaning of the most common error messages and give some advice
on how to avoid some common errors. This guide cannot, however, include all the possible failures
a user may encounter while using gLite 3.1. These errors may be produced due to user mistakes, to
misconfiguration of the Grid components, to hardware or network failures, or even to bugs in the gLite
middleware.

Subsequent sections of this guide provide references to documents which go into greater detail about
the gLite 3.1 components.

The Global Grid User Support (GGUS) [16] service provides centralised support for WLCG/EGEE
users, by answering questions, tracking known problems, maintaining lists of frequently asked questions,
providing links to documentation, etc. The GGUS portal is the key entry point for Grid users looking for
help.

Finally, a user who thinks that there is a security risk in the Grid may directly contact the relevant
site administrator if the situation is urgent, as this may be faster than going through GGUS. Information
on the local site contacts can be obtained from the Information Service or from the GOC database [17],
which is described in Chapter 4.

3.1.3. User and VO utilities

This guide mainly covers information useful for the average user. Thus, only core gLite 3.1 middleware
is described. Nevertheless, there are several tools which are not part of the middleware, but may be very
useful to users. Some of these tools are summarised in Appendix D.

Likewise, there are utilities that are only available to certain (authorised) users of the Grid. An
example is the administration of the resources viewed by a VO or the installation of VO software
on WLCG/EGEE nodes. Only authorised users can install software on the computing resources of
WLCG/EGEE: the installed software is also published in the Information Service, so that users can
select sites where the software they need is installed. Information on such topics is given in Appendix E.

CERN-LCG-GDEIS-722398 Manuals Series Page 20

3.2. THE WLCG/EGEE INFRASTRUCTURE

WLCG/EGEE operates a production Grid distributed over more than 200 sites around the world, with
more than 30,000 CPUs and 20 PB of data storage. The status of the Grid can be seen from the various
monitoring pages linked from the Grid Operations Centre (GOC) monitoring page [18]; in particular look
at the Google map for a quick overview. Sites can choose which VOs to support and at what level, so
users will generally not have access to every site; later chapters describe how to find out which resources
are available to a specific user.

Sites vary widely in the size of their computing and storage resources; for WLCG the largest sites
are designated as Tier 1 and play a key role in storing and processing data. Sites are organised into
geographical regions, co-ordinated by a Regional Operations Centre (ROC).

WLCG/EGEE also runs a smaller Pre-Production Service (PPS), a separate Grid where new versions
of the middleware can be tested by both sites and users before being deployed on the main production
Grid.

3.3. THE WLCG/EGEE ARCHITECTURE

This section provides a quick overview of the WLCG/EGEE architecture and services.

3.3.1. Security

As explained earlier, the WLCG/EGEE user community is grouped into Virtual Organisations. Before
WLCG/EGEE resources can be used, a user must read and agree to theWLCG/EGEE usage rules and any
further rules for the VO he wishes to join, and register some personal data with a Registration Service.

Once the user registration is complete, he can access WLCG/EGEE. The Grid Security Infrastruc-
ture (GSI) in WLCG/EGEE enables secure authentication and communication over an open network
[19]. GSI is based on public key encryption, X.509 certificates, and the Secure Sockets Layer (SSL)
communication protocol, with extensions for single sign-on and delegation.

In order to authenticate himself to Grid resources, a user needs to have a digital X.509 certificate
issued by a Certification Authority (CA) trusted by WLCG/EGEE; Grid resources are generally also
issued with certificates to allow them to authenticate themselves to users and other services.

The user certificate, whose private key is protected by a password, is used to generate and sign a
temporary certificate, called a proxy certificate (or simply a proxy), which is used for the actual authen-
tication to Grid services and does not need a password. As possession of a proxy certificate is a proof
of identity, the file containing it must be readable only by the user, and a proxy has, by default, a short
lifetime (typically 12 hours) to reduce security risks if it should be stolen.

The authorisation of a user on a specific Grid resource can be done in two different ways. The
first is simpler, and relies on the grid-mapfile mechanism. The Grid resource has a local grid-mapfile

CERN-LCG-GDEIS-722398 Manuals Series Page 21

which maps user certificates to local accounts. When a user’s request for a service reaches a host, the
Subject Name of the user (contained in the proxy) is checked against what is in the local grid-mapfile to
find out to which local account (if any) the user certificate is mapped, and this account is then used to
perform the requested operation [19]. The second way relies on the Virtual Organisation Membership
Service (VOMS) and the LCAS/LCMAPSmechanism, which allow for a more detailed definition of user
privileges, and will be explained in more detail later.

A user needs a valid proxy to submit jobs; those jobs carry their own copies of the proxy to be able to
authenticate with Grid services as they run. For long-running jobs, the job proxy may expire before the
job has finished, causing the job to fail. To avoid this, there is a proxy renewal mechanism to keep the job
proxy valid for as long as needed. TheMyProxy server is the component that provides this functionality.

3.3.2. User Interface

The access point to the WLCG/EGEE Grid is the User Interface (UI). This can be any machine where
users have a personal account and where their user certificate is installed. From a UI, a user can be au-
thenticated and authorized to use the WLCG/EGEE resources, and can access the functionalities offered
by the Information, Workload and Data management systems. It provides CLI tools to perform some
basic Grid operations:

• list all the resources suitable to execute a given job;

• submit jobs for execution;

• cancel jobs;

• retrieve the output of finished jobs;

• show the status of submitted jobs;

• retrieve the logging and bookkeeping information of jobs;

• copy, replicate and delete files from the Grid;

• retrieve the status of different resources from the Information System.

In addition, the WLCG/EGEE APIs are also available on the UI to allow development of Grid-
enabled applications.

3.3.3. Computing Element

A Computing Element (CE), in Grid terminology, is some set of computing resources localized at a site
(i.e. a cluster, a computing farm). A CE includes a Grid Gate (GG)1, which acts as a generic interface to

1For Globus-based CEs, it is called Gatekeeper.

CERN-LCG-GDEIS-722398 Manuals Series Page 22

the cluster; a Local Resource Management System (LRMS) (sometimes called batch system), and the
cluster itself, a collection ofWorker Nodes (WNs), the nodes where the jobs are run.

There are two GG implementations in gLite 3.1: the LCG CE, developed by EDG and used in
LCG-22, and the gLite CE, developed by EGEE. Sites can choose what to install, and some of them
provide both types. The GG is responsible for accepting jobs and dispatching them for execution on the
WNs via the LRMS.

In gLite 3.1 the supported LRMS types are OpenPBS/PBSPro, LSF, Maui/Torque, BQS and Condor,
with work underway to support Sun GridEngine.

The WNs generally have the same commands and libraries installed as the UI, apart from the job
management commands. VO-specific application software may be preinstalled at the sites in a dedicated
area, typically on a shared file system accessible from all WNs.

It is worth stressing that, strictly speaking, a CE corresponds to a single queue in the LRMS, follow-
ing this naming syntax:

CEId = <gg_hostname>:<port>/<gg_type>-<LRMS_type>-<batch_queue_name>

According to this definition, different queues defined in the same cluster are considered different
CEs. This is currently used to define different queues for jobs of different lengths or other properties
(e.g. RAM size), or for different VOs. Examples of CE names are:

ce101.cern.ch:2119/jobmanager-lcglsf-grid_alice
t2-ce-01.mi.infn.it:2119/jobmanager-lcgpbs-short
lcg02.sinp.msu.ru:2119/blah-pbs-atlas
cmssrv25.fnal.gov:2119/condor-condor-cms
gridgate.cs.tcd.ie:2119/jobmanager-lcgcondor-condor
mars-ce2.mars.lesc.doc.ic.ac.uk:2119/jobmanager-sge-12hr

3.3.4. Storage Element

A Storage Element (SE) provides uniform access to data storage resources. The Storage Element may control sim-
ple disk servers, large disk arrays or tape-based Mass Storage Systems (MSS). Most WLCG/EGEE sites provide
at least one SE.

Storage Elements can support different data access protocols and interfaces, described in detail in Section 7.2.
Simply speaking, GSIFTP (a GSI-secure FTP) is the protocol for whole-file transfers, while local and remote file
access is performed using RFIO or gsidcap.

Most storage resources are managed by a Storage Resource Manager (SRM) [20], a middleware service
providing capabilities like transparent file migration from disk to tape, file pinning, space reservation, etc. However,
different SEs may support different versions of the SRM protocol and the capabilities can vary.

2LCG-2 is the former middleware stack used by WLCG/EGEE.

CERN-LCG-GDEIS-722398 Manuals Series Page 23

There is a number of SRM implementations in use, with varying capabilities. The Disk Pool Manager (DPM)
is used for for fairly small SEs with disk-based storage only, while CASTOR is designed to manage large-scale
MSS, with front-end disks and back-end tape storage. dCache is targeted at both MSS and large-scale disk array
storage systems. Other SRM implementations are in development, and the SRM protocol specification itself is also
evolving.

Classic SEs, which do not have an SRM interface, provide a simple disk-based storage model. They are in the
process of being phased out.

The most common types of SEs currently present in WLCG/EGEE are summarized in the following table:

Type Resources File transfer File I/O SRM
Classic SE Disk server GSIFTP insecure RFIO No
DPM Disk pool GSIFTP secure RFIO Yes
dCache Disk pool/MSS GSIFTP gsidcap Yes
CASTOR MSS GSIFTP insecure RFIO Yes

3.3.5. Information Service

The Information Service (IS) provides information about the WLCG/EGEE Grid resources and their status. This
information is essential for the operation of the whole Grid, as it is via the IS that resources are discovered. The
published information is also used for monitoring and accounting purposes.

Much of the data published to the IS conforms to theGLUE Schema [21], which defines a common conceptual
data model to be used for Grid resource monitoring and discovery. More details about the GLUE schema can be
found in Appendix G.

Two IS systems are used in gLite 3.1: the Globus Monitoring and Discovery Service (MDS) [23], used
for resource discovery and to publish the resource status, and the Relational Grid Monitoring Architecture (R-
GMA) [24], used for accounting, monitoring and publication of user-level information.

MDS

The MDS implements the GLUE Schema using OpenLDAP, an open source implementation of the Lightweight
Directory Access Protocol (LDAP), a specialised database optimised for reading, browsing and searching infor-
mation. Access to MDS data is insecure, both for reading (clients and users) and for writing (services publishing
information), i.e. no Grid credentials are required.

The LDAP information model is based on entries (objects like a person, a computer, a server, etc.), each with
one or more attributes. Each entry has a Distinguished Name (DN) that uniquely identifies it, and each attribute
has a type and one or more values.

A DN is formed from a sequence of attribute/value pairs, and based on their DNs entries can be arranged into
a hierarchical tree-like structure, called a Directory Information Tree (DIT).

Figure 1 schematically depicts the Directory Information Tree (DIT) of a site: the root entry identifies the site,
and entries for site information, CEs and SEs and other services appear at lower levels. Appendix G describes the
GLUE schema entries in more detail.

The LDAP schema describes the information that can be stored in each entry of the DIT and defines object

CERN-LCG-GDEIS-722398 Manuals Series Page 24

Figure 1: The Directory Information Tree (DIT)

classes, which are collections of mandatory and optional attribute names and value types. While a directory entry
describes some object, an object class can be seen as a general description of an object, as opposed to the description
of a particular instance.

Figure 2 shows the architecture of the information system in WLCG/EGEE. Computing and storage resources
at a site run a piece of software called an Information Provider, which generates the relevant information about the
resource (both static, like the type of SE, and dynamic, like the used space in an SE). This information is published
via a server called a resource-level BDII, which normally runs on the resource itself. The site-level BDII is used
to store and publish data from all the resource-level BDIIs at a site.

Finally, a top-level BDII is used as the top of the hierarchy. BDIIs at this level are configured to read from a
specific set of sites, which effectively defines a view of the overall Grid resources. These BDIIs act as a cache by
storing information about the Grid status in their database. The BDIIs therefore contain all the available information
about the Grid sites they look at. Nevertheless, it is always possible to get information about specific resources by
directly contacting the site- or resource-level BDIIs..

The top-level BDIIs obtain information about the sites in the Grid from the Grid Operations Centre (GOC)
database [17], where site managers can insert the contact address of their BDII as well as other useful information
about the site.

R-GMA

R-GMA is an implementation of the Grid Monitoring Architecture (GMA) proposed by the Global Grid Forum
(GGF) [25]. In R-GMA, information is in many ways presented as though it were in a global distributed rela-
tional database, although there are some differences (for example, a table may have multiple rows with the same
primary key). This model is more powerful than the LDAP-based one, since relational databases support more
advanced query operations. It is also much easier to modify the schema in R-GMA, making it more suitable for
user information.

CERN-LCG-GDEIS-722398 Manuals Series Page 25

Figure 2: The Information Service in WLCG/EGEE.

The architecture consists of three major components (Figure 3):

• The Producers, which provide the information, register themselves with the Registry and describe the type
and structure of the information they provide.

• The Consumers, which request the information, can query the Registry to find out what type of informa-
tion is available and locate Producers that provide such information. Once this information is known, the
Consumer can contact the Producer directly to obtain the relevant data.

• The Registry, which mediates the communication between the Producers and the Consumers.

The Producers and Consumers are processes (servlets) running in a server machine at each site (sometimes known
as a MON box). Users interact with these servlets using CLI tools or APIs on the WNs and UIs, and they in turn
interact with the Registry, and with Consumers and Producers at other sites, on the user’s behalf.

From the user’s point of view the information and monitoring system appears like a large relational database
and it can be queried as such. Hence, R-GMA uses a subset of SQL as a query language. The user publishes tuples

CERN-LCG-GDEIS-722398 Manuals Series Page 26

(database rows) to a Producer with an SQL insert statement, and queries the Consumers using SQL select
statements.

Figure 3: The R-GMA architecture.

R-GMA presents information as a single virtual database containing a set of virtual tables. The Schema
contains the name and structure (column names, types and settings) of each virtual table in the system (Figure 4),
and is normally co-located with the Registry. The Registry contains a list of Producers which publish information
for each table. Producers may also register a predicate, i.e. a restriction on the tuples they produce, which enables
more efficient selection of Producers which may be able to satisfy a query. A Consumer runs an SQL query on
a table and the Registry selects the best Producers to answer the query through a process called mediation. The
Consumer then contacts each Producer directly, combines the information and returns a set of tuples. The details
of this process are hidden from the user, who just receives the tuples in response to a query.

An R-GMA system is defined by the Registry and the Schema: what information will be seen by a Consumer
depends on what Producers are registered with the Registry. There is only one Registry and one Schema in the
WLCG/EGEE production Grid (separate instances exist for the Pre-Production System).

Figure 4: The virtual database of R-GMA

There are two types of Producers: Primary Producers, which publish information coming from a user or an In-

CERN-LCG-GDEIS-722398 Manuals Series Page 27

formation Provider, and Secondary Producers, which consume and republish information from Primary Producers
and normally store it in a real database.

Producers can also be classified depending on the type of queries accepted:

• Continuous (formerly known as stream): information is sent directly to Consumers as it is produced;

• Latest: only the latest information (the tuple with the most recent timestamp for a given value of the primary
key) is sent to the Consumer;

• History: all tuples within a configurable retention period are stored to allow subsequent retrieval by Con-
sumers.

Latest queries correspond most directly to a standard query on a real database. Primary Producers are usually
of type Continuous. Secondary Producers (which often use a real database to store the data) must be set up in
advance to archive information and be able to reply to Latest and/or History queries. Secondary Producers are also
required for joins to be supported in the Consumer queries.

R-GMA is currently used for accounting and both system- and user-level monitoring. It also holds the same
GLUE schema information as the MDS; this is not currently used to locate resources for job submission, though.

3.3.6. Data Management

The primary unit for Grid data management, as in traditional computing, is the file. In a Grid environment, files
can have replicas at many different sites. Because all replicas must be consistent, Grid files cannot be modified
after creation, only read and deleted. Ideally, users do not need to know where a file is located, as they use logical
names for the files that the Data Management services use to locate and access them.

Files in the Grid can be referred to by different names: Grid Unique IDentifier (GUID), Logical File Name
(LFN), Storage URL (SURL) and Transport URL (TURL). While the GUIDs and LFNs identify a file irrespective
of its location, the SURLs and TURLs contain information about where a physical replica is located, and how it
can be accessed.

Figure 5: Different filenames in gLite 3.0.

CERN-LCG-GDEIS-722398 Manuals Series Page 28

A file can be unambigously identified by its GUID; this is assigned the first time the file is registered in the
Grid, and is based on the UUID standard to guarantee its uniqueness (UUIDs use a combination of a MAC address
and a timestamp to ensure that all UUIDs are distinct). A GUID is of the form: guid:<unique string> (e.g.
guid:93bd772a-b282-4332-a0c5-c79e99fc2e9c).

In order to locate a file in the Grid, a user will normally use an LFN. LFNs are usually more intuitive,
human-readable strings, since they are allocated by the user. Their form is: lfn:<any string>, but the cur-
rent WLCG/EGEE file catalogue uses strings which have the standard Unix hierarchical format, with elements
separates by / characters. A Grid file can have many LFNs, in the same way that a file in a Unix file system can
have many links.

The SURL provides information about the physical location of a file replica. Currently, SURLs have the
following formats:

sfn:<SE hostname>/<path>
or
srm:<SE hostname>/<path>

for files residing on a classic SE and on an SRM-enabled SE, respectively.

Finally, a TURL gives the necessary information to write or retrieve a physical replica, including hostname,
path, protocol and port (as for any conventional URL), so that the application can open or copy it. The format is
<protocol>://<SE hostname>:<port>/<path>. There is no guarantee that the path, or even the hostname, in
the SURL is the same as in the TURL for the same file. For a given file there may be as many TURLs as there are
data access protocols supported by the SE - indeed there may be more, as SEs may hold multiple copies of a file
for load-balancing. Figure 5 shows the relationship between the different names of a file.

The mappings between LFNs, GUIDs and SURLs are kept in a service called a File Catalogue, while the files
themselves are stored in Storage Elements. Currently, the only file catalogue officially supported in WLCG/EGEE
is the LCG File Catalogue (LFC), although other catalogues exist.

The Data Management client tools are described in detail in Chapter 7. They allow a user to move data in and
out of the Grid, replicate files between Storage Elements, interact with the File Catalogue and more. The high level
data management tools shield the user from the complexities of Storage Element and catalogue implementations
as well as transport and access protocols. Low level tools are also available, but should be needed only by expert
users.

3.3.7. Workload Management

The purpose of the Workload Management System (WMS) is to accept user jobs, to assign them to the most
appropriate Computing Element, to record their status and retrieve their output. The Resource Broker (RB) is the
machine where the WMS services run [26] [27].

Jobs to be submitted are described using the Job Description Language (JDL), which specifies, for example,
which executable to run and its parameters, files to be moved to and from the Worker Node on which the job is run,
input Grid files needed, and any requirements on the CE and the Worker Node.

The choice of CE to which the job is sent is made in a process calledmatch-making, which first selects, among
all available CEs, those which fulfill the requirements expressed by the user and which are close to specified input
Grid files. It then chooses the CE with the highest rank, a quantity derived from the CE status information which
expresses the “goodness” of a CE (typically a function of the numbers of running and queued jobs).

CERN-LCG-GDEIS-722398 Manuals Series Page 29

The RB locates the Grid input files specified in the job description using a service called the Data Location
Interface (DLI), which provides a generic interface to a file catalogue. In this way, the Resource Broker can talk
to file catalogues other than LFC (provided that they have a DLI interface).

The most recent implementation of the WMS from EGEE allows not only the submission of single jobs, but
also collections of jobs (possibly with dependencies between them) in a much more efficient way then the old
LCG-2 WMS [29], and has many other new options.

Finally, the Logging and Bookkeeping service (LB) [30] tracks jobs managed by the WMS. It collects events
from many WMS components and records the status and history of the job.

3.4. JOB FLOW

This section briefly describes what happens when a user submits a job to the WLCG/EGEE Grid to process some
data, and explains how the different components interact.

3.4.1. Job Submission

Figure 6 illustrates the process that takes place when a job is submitted to the Grid. It refers to the LCG-2 WMS,
but the gLite WMS is similar. The individual steps are as follows:

a. After obtaining a digital certificate from a trusted Certification Authority, registering in a VO and obtaining
an account on a User Interface, the user is ready to use the WLCG/EGEE Grid. He logs in to the UI and
creates a proxy certificate to authenticate himself in subsequent secure interactions.

b. The user submits a job from the UI to the gLite WMS. In the job description one or more files to be copied
from the UI to the WN can be specified, and these are initially copied to the gLite WMS. This set of files is
called the Input Sandbox. An event is logged in the LB and the status of the job is SUBMITTED.

c. The WMS looks for the best available CE to execute the job. To do so, it interrogates the Information
Supermarket (ISM), an internal cache of information which in the current system is read from the BDII, to
determine the status of computational and storage resources, and the File Catalogue to find the location of
any required input files. Another event is logged in the LB and the status of the job is WAITING.

d. The gLite WMS prepares the job for submission, creating a wrapper script that will be passed, together with
other parameters, to the selected CE. An event is logged in the LB and the status of the job is READY.

e. The CE receives the request and sends the job for execution to the local LRMS. An event is logged in the
LB and the status of the job is SCHEDULED.

f. The LRMS handles the execution of jobs on the local Worker Nodes. The Input Sandbox files are copied
from the gLite WMS to an available WN where the job is executed. An event is logged in the LB and the
status of the job is RUNNING.

g. While the job runs, Grid files can be directly accessed from an SE using either the RFIO or gsidcap protocols,
or after copying them to the local filesystem on the WN with the Data Management tools.

h. The job can produce new output files which can be uploaded to the Grid and made available for other Grid
users to use. This can be achieved using the Data Management tools described later. Uploading a file to the
Grid means copying it to a Storage Element and registering it in a file catalogue.

CERN-LCG-GDEIS-722398 Manuals Series Page 30

Figure 6: Job flow in the WLCG/EGEE Grid.

i. If the job ends without errors, the output (not large data files, but just small output files specified by the user
in the so called Output Sandbox) is transferred back to the gLite WMS node. An event is logged in the LB
and the status of the job is DONE.

j. At this point, the user can retrieve the output of his job to the UI. An event is logged in the LB and the status
of the job is CLEARED.

k. Queries for the job status can be addressed to the LB from the UI. Also, from the UI it is possible to query
the BDII for the status of the resources.

l. If the site to which the job is sent is unable to accept or run it, the job may be automatically resubmitted
to another CE that satisfies the user requirements. After a maximum allowed number of resubmissions is
reached, the job will be marked as aborted. Users can get information about the history of a job by querying
the LB service.

3.4.2. Other Operations

While the Input and Output Sandboxes are a mechanism for transferring small data files needed to start a job or
to check its results, large data files should be read and written from/to SEs and registered in a File Catalogue, and
possibly replicated to other SEs. The LCG Data Management client tools are available for performing these tasks.
In general, the user should not directly interact with the File Catalogue; instead, he should use the LCG tools.

CERN-LCG-GDEIS-722398 Manuals Series Page 31

The File Transfer Service (FTS) provides a managed way to move large numbers of files between SEs.

Users can interrogate the information system to retrieve static or dynamic information about the status of
WLCG/EGEE resources and services. Although site GIISes/BDIIs, or even GRISes, can be directly queried, it is
recommended to query only a central BDII (or R-GMA). Details and examples on how to interrogate GRIS, GIIS,
BDII and R-GMA are given in Chapter 5.

CERN-LCG-GDEIS-722398 Manuals Series Page 32

4. GRID SECURITY AND GETTING STARTED

This section gives an overview of the security aspects of the WLCG/EGEE Grid, and describes the preliminary
steps to gain access to the Grid.

4.1. BASIC SECURITY CONCEPTS

Grid security is a very complex area, but it is useful for users to understand at least the basics of how the system
works. The following sections give a brief explanation of the most important concepts.

4.1.1. Private and Public Keys

Grid security is based on the concept of public key encryption. Each user (or other entity like a server) has a private
key, generated randomly. This is a number which can be used as a secret password to prove identity. The private
key must therefore be kept totally secure; if someone can steal it they can impersonate the owner completely.

Each private key is mathematically related to another number called the public key. As the name suggests this
can be known to everyone. Formally it’s possible to calculate the private key from the public key, but in practice
such a calculation is expected to take an unfeasibly long time (the time grows exponentially with the size of the
keys). Conversely, calculating the public key from the private key is easy, hence these are sometimes referred to as
asymmetric keys.

4.1.2. Encryption

The keys are used with an encryption algorithm, i.e. a mathematical function which can be applied to any data to
produce a coded version of the data. The algorithm has the property that data encrypted using the private key can
be decrypted with the public key, and vice versa.

Among other things this can be used to prove identity. Imagine that Ada knows Ben’s public key. Ada chooses
a random piece of data, encrypts it with the public key and sends it to Ben. Ben decrypts it with the private key and
sends it back to Ada. If it matches the number Ada first thought of it proves that Ben does indeed have the right
private key.

4.1.3. Signing

Private keys can also be used to sign a piece of data. This involves another mathematical function called a hash
function. This is something which can be applied to data of any length, and produces a fixed-length number which
is characteristic of the input data, like a digital fingerprint – in particular even a tiny change to the input would
produce a completely different hash. It should also be difficult (i.e. take a very large amount of computer power)
to find any data at all which would produce a given hash.

To sign a piece of data a hash is calculated from it, and the hash is then encrypted with the private key and the
result attached to the data. Anyone else can then decrypt the hash with the public key, and compare it with one they

CERN-LCG-GDEIS-722398 Manuals Series Page 33

calculate themselves. If the two hashes match they know two things: that the data was signed by someone who had
the private key corresponding to that public key, and that the data has not been modified since it was signed.

4.1.4. Certificates

To be useful, the public key has to be connected to some information about who the user (or server) is. This is
stored in a specific format known as an X.509 certificate (X.509 being the name of the standard which specifies
the format).

The most important thing in the certificate is the Subject Name (SN), which is something which looks like:

/C=UK/O=eScience/OU=CLRC/L=RAL/CN=john smith

This is an example of a more general format called a Distinguished Name (DN), which appears quite a lot in
the Grid world. The idea is that a DN should uniquely identify the thing it names. The details of how to construct
a DN have never been established as an international standard, but at least within the Grid it can be assumed that a
DN is a unique name, and the SN in a certificate is the owner’s name as far as the Grid is concerned.

A certificate also contains some other information, in particular an expiry date after which the certificate is
no longer valid. User certificates are normally issued with an expiry date one year ahead, and have to be renewed
before they expire. A renewed certificate will normally have new public and private keys, but will usually keep
the same SN. In some circumstances, e.g. if the private key is stolen, a certificate may be revoked, i.e. added to a
known list of certificates which should be considered invalid.

4.1.5. Certification Authorities

Certificates are issued by a Certification Authority (CA). There are many commercial CAs, e.g. Verisign and
Thawte, but for Grid use there are special CAs run by academic organisations, generally serving users in a particular
geographic region. The CA follows some defined procedures to make sure that it knows who users are and that
they are entitled to have a certificate.

To allow people to verify the information in the certificate, the CA signs it with its own private key. Anyone
who wants to check the validity of a certificate needs to know the public key of the CA, and the CA therefore has
a certificate of its own. Potentially this could create an infinite regression, but this is prevented by the fact that CA
certificates, known as root certificates, are self-signed, i.e. the CA signs its own certificate. These root certificates
are then distributed in some secure way, which in the Grid is typically as Linux RPMs from a trusted repository.
(The root certificates of many commercial CAs are often pre-installed in web browsers.)

4.1.6. Proxies

To interact directly with a remote service a certificate can be used to prove identity. However, in the Grid world it
is often necessary for a remote service to act on a user’s behalf, e.g. a job running on a remote site needs to be able
to talk to other servers to transfer files, and it therefore needs to prove that it is entitled to use the user’s identity
(this is known as delegation). On the other hand, since the private key is so vital it should not be sent to remote
machines which might be insecure.

CERN-LCG-GDEIS-722398 Manuals Series Page 34

The solution is the use of something called a proxy. Strictly speaking a proxy is also a certificate, but usually
the unqualified term “certificate” is reserved for something issued by a CA. To make a proxy a new public/private
key pair is created, a new certificate is built containing the public key with an SN like:

/C=UK/O=eScience/OU=CLRC/L=RAL/CN=john smith/CN=proxy

and it is signed with the long-term private key. Proxies normally have a rather short lifetime, typically 12
hours. Note that proxy creation is a purely local process, there is no contact with any remote service.

When a job is submitted, the proxy certificate, the private key for the proxy and the normal certificate (but not
the long-term private key) are sent with it. When the job wants to prove its delegated identity to another service
it sends it the proxy certificate and the standard certificate, but (usually) not the proxy private key. It can then use
the chain of certificates to prove that it is entitled to use the delegated SN. In some circumstances a job may even
create a new proxy itself, so the chain can potentially be longer.

In security terms a proxy is a compromise. Since the private key is sent with it anyone who steals it can
impersonate the owner, so proxies need to be treated carefully. Also there is no mechanism for revoking proxies,
so in general even if someone knows that one has been stolen there is little they can do to stop it being used. On
the other hand, proxies usually have a lifetime of only a few hours so the potential damage is fairly limited.

4.1.7. VOMS Proxies

A system called VOMS (VOManagement Service) is used in WLCG/EGEE to manage information about the roles
and privileges of users within a VO. This information is presented to services via an extension to the proxy. At the
time the proxy is created one or more VOMS servers are contacted, and they return a mini certificate known as an
Attribute Certificate (AC) which is signed by the VO and contains information about group membership and any
associated roles within the VO.

To create a VOMS proxy the ACs are embedded in a standard proxy, and the whole thing is signed with the
private key of the parent certificate. Services can then decode the VOMS information and use it as required, e.g. a
user may only be allowed to do something if he has a particular role from a specific VO. One consequence of this
method is that VOMS attributes can only be used with a proxy, they cannot be attached to a CA-issued certificate.

One other thing to be aware of is that each AC has its own lifetime. This is typically 12 hours as for the proxy,
but it is possible for ACs to expire at different times to each other and to the proxy as a whole.

4.2. FIRST STEPS

Before using the WLCG/EGEE Grid, the user must do the following:

a. Obtain an X.509 certificate from a (CA) recognized by WLCG/EGEE;

b. Get registered with WLCG/EGEE by joining one or more Virtual Organisations;

c. Obtain an account on a machine which has the WLCG/EGEE User Interface software installed, and copy
the certificate to it;

d. Create a proxy on the UI.

CERN-LCG-GDEIS-722398 Manuals Series Page 35

Steps a. to c. need to be executed only once to have access to the Grid, although the certificate will usually
need to be renewed once a year, and VO membership may also need to be re-confirmed periodically.

Step d. needs to be executed each day the first time a request to the Grid is submitted, as it generates a proxy
valid for a limited period of time (usually 12 hours). After the proxy expires a new proxy must be created before
Grid services can be used again.

The following sections provide details on these prerequisites.

4.3. OBTAINING A CERTIFICATE

4.3.1. X.509 Certificates

The first requirement the user must fulfill is to be in possession of a valid X.509 certificate issued by a recognized
Certification Authority (CA). The role of a CA is to guarantee that a user is who he claims to be and is entitled
to own his certificate. It is up to the user to discover which CA he should contact. In general CAs are organised
geographically and by research institute. Each CA has its own procedure to release certificates.

The following URL maintains an updated list of recognised CAs, as well as detailed information on how to
request certificates from a particular CA:

http://lcg.web.cern.ch/LCG/users/registration/certificate.html

For many purposes it may be useful to install the root certificates of Grid CAs in a web browser and/or email
client, as this will enable the validation of Grid certificates used in web servers and to sign email. (The way to
do this is specific to each piece of software and hence cannot be covered here.) In particular users should usually
install the root certificate for their own CA. The root certificates can be obtained from this URL:

https://www.tacar.org/certs.html

4.3.2. Requesting the Certificate

In order to obtain a certificate, a user must create a request to a CA. The request is normally generated using either
a web-based interface or console commands. Details of which type of request a particular CA accepts can be found
on each CA’s website.

For a web-based certificate request, a form must usually be filled in with information such as the name of the
user, home institute, etc. After submission, a pair of private and public keys are generated, together with a request
for the certificate containing the public key and the user data. The request is then sent to the CA, while the private
key stays in the browser, hence the same browser must be used to retrieve the certificate once it is issued.

Note: The user must usually install the CA root certificate in his browser first. This is because the CA has to
sign the user certificate using its private key, and the user’s browser must be able to validate the signature.

For some CAs the certificate requests are generated using a command line interface. The following discussion
describes a common scenario for command-line certificate application using a hypothetical grid-cert-request
command. Again, details of the exact command and the requirements of each CA will vary and can be found on
the CA’s website.

CERN-LCG-GDEIS-722398 Manuals Series Page 36

https://www.tacar.org/certs.html
http://lcg.web.cern.ch/LCG/users/registration/certificate.html

The grid-cert-request command would create, for example, the following 3 files:

userkey.pem contains the private key associated with the certificate (This should be set
with permissions so that only the owner can read it, i.e. chmod 400
userkey.pem);

userreq.pem contains the request for the user certificate (essentially the public key);
usercert.pem a placeholder, to be replaced by the actual certificate when received from the

CA (this can be readable by anyone).

Then the userreq.pem file has to be sent (usually by e-mail) to the desired CA.

4.3.3. Getting the Certificate

After a request is generated and sent to a CA, the CA will have to confirm that the user asking for a certificate
is who he claims he is. This usually involves a physical meeting, or sometimes a phone call, with a Registration
Authority (RA), somebody delegated by the CA to verify the legitimacy of a request, and approve it if so. The RA
is usually someone at the user’s home institute, and will generally need some kind of ID card to prove the user’s
identity.

After approval, the certificate is generated and delivered to the user. This can be done via e-mail, or by giving
instructions to the user to download it from a web page. If the certificate was directly installed in the user’s browser
then it must be exported (saved) to disk for Grid use. Details of how to do this will depend on the browser, and are
usually described on the CA web site.

The received certificate will usually be in one of two formats: PEM (extension .pem) or PKCS12 (extension
.p12 or .pfx). The latter is the most common for certificates exported from a browser, but the PEM format is
currently needed on a WLCG/EGEE UI. The certificates can be converted from one format to the other using the
openssl command.

If the certificate is in PKCS12 format, then it can be converted to PEM using:

$ openssl pkcs12 -nocerts -in my_cert.p12 -out userkey.pem
$ openssl pkcs12 -clcerts -nokeys -in my_cert.p12 -out usercert.pem

where:

my cert.p12 is the input PKCS12 format file;
userkey.pem is the output private key file;
usercert.pem is the output PEM certificate file.

The first command creates only the private key (due to the -nocerts option), and the second one creates the
user certificate (-clcerts -nokeys option).

The grid-change-pass-phrase -file <private key file> command changes the pass phrase that pro-
tects the private key. This command will work even if the original key is not password protected. It is important to
know that if the user loses the pass phrase, the certificate will become unusable and a new certificate will have to
be requested.

Once in PEM format, the two files, userkey.pem and usercert.pem, should be copied to a User Interface.
This is described later.

CERN-LCG-GDEIS-722398 Manuals Series Page 37

4.3.4. Renewing the Certificate

CAs issue certificates with a limited duration (usually one year); this implies the need to renew them periodically.
The renewal procedure usually requires that the certificate holder sends a request for renewal signed with the old
certificate and/or that the request is confirmed by a phone call; the details depend on the policy of the CA. The
certificate usually needs to be renewed before the old certificate expires; CAs may send an email to remind users
that renewal is necessary, but users should try to be aware of the renewal date, and avoid times when they may be
away for extended periods.

Renewed certificates have the same SN as the old ones; failing to renew the certificate usually implies the loss
of the SN and the necessity to request a completely new certificate with a different SN, which is effectively a new
Grid identity.

4.3.5. Taking Care of Private Keys

A private key is the essence of a Grid identity. Anyone who steals it can impersonate the owner, and if it is lost it
is no longer possible to do anything in the Grid, so taking care of it is vital. Certificates are issued personally to
individuals, and must never be shared with other users. To use the Grid a user must agree to an Acceptable Use
Policy, which among other things requires him to keep him private key secure.

Proxies also contain private keys, and although these are less valuable, as the lifetime of a proxy is short, it is
still important to look after them.

On a UNIX UI the certificate and private key are stored in two files. Typically they are in a directory called
$HOME/.globus and are named usercert.pem and userkey.pem, although these can be changed. The certificate
is public and can be world-readable, although there is usually no need for it, but the key must only be readable by
the owner (Grid commands will check this and refuse to work if the permissions are wrong). Ideally the key should
be stored on a disk local to the UI rather than e.g. an NFS-mounted disk, although this is not always possible. If
a certificate has been exported from a browser there may also be a PKCS12-format file (.p12 or .pfx) which also
contains the private key, and hence this must also be protected.

If a private key is stored under AFS, e.g. on LXPLUS at CERN, be aware that access is controlled by the AFS
ACLs rather than the normal file permissions, so users must ensure that the key is not in a publically-readable area.

Web browsers also store private keys internally, and these also need to be protected. The details vary depending
on the browser, but password protection should be used if available – this may not be the default (it is not with
Internet Explorer). The most secure mode is one in which every use of the private key needs the password to
be entered, but this can cause problems as some web sites ask for the certificate many times. If the key is not
password-protected it is especially important to take care that no-one else can get access to a browser session.

It is important not to lose a private key, as this implies loss of all access to the Grid, and registration will have
to be started again from scratch. This generally implies having several copies in different places – this is often
useful anyway, e.g. to use the certificate from a web browser and several UI machines. However, all copies must
be stored securely.

A private key stored on a UI must be encrypted, meaning that a passphrase must be typed whenever it is used.
A key must never be stored without a passphrase. The passphrase should follow similar rules to any computer
passwords, but in general should if anything be longer and harder to guess as it gives access to a much larger set of
resources than a typical computer system. Usually it is only necessary to type the passphrase once or twice a day
to create a proxy, so having a long passphrase is not a major overhead. Users should be aware of the usual risks,

CERN-LCG-GDEIS-722398 Manuals Series Page 38

like people watching them type or transmitting the passphrase over an insecure link.

A proxy, which includes its own private key, can be stored anywhere, but is typically under /tmp (note that this
is usually a local area, so when using systems like LXPLUS with many front-end machines, sessions in different
windows may not all see the same /tmp). The file name is usually x509up u1234 where 1234 is the uid, but again
this can vary. In any event, like the certificate key a proxy must only be readable by the owner. However, there is
no passphrase protection.

4.4. REGISTERING WITH WLCG/EGEE

4.4.1. The Registration Service

Before a user can use the WLCG/EGEE infrastructure, registration of some personal data and acceptance of some
usage rules are necessary. In the process, the user must also choose a Virtual Organisation (VO). The VO must
ensure that all its members have provided the necessary information, which will be stored in a database maintained
by the VO, and have accepted the usage rules. The procedure through which this is accomplished may vary from
VO to VO: pointers to all the VOs in WLCG/EGEE can be found at the Grid operations web site:

http://cic.gridops.org/

Note that some VOs are local and are not registered with WLCG/EGEE as a whole; in this case users should
consult local documentation for information about registration procedures.

With your personal certificate loaded on your browser, open:

https://cic.gridops.org/index.php?section=vo&page=download vodata

select your VO and find the VOMS server via which you can register.

The registration procedure normally requires the use of a web browser with the user certificate loaded, to enable
the request to be properly authenticated. Browsers normally use the PKCS12 certificate format: if the certificate
was issued to a user in the PEM format it has to be converted to PKCS12. The following command can be used to
perform that conversion:

openssl pkcs12 -export -inkey userkey.pem -in usercert.pem \
-out my_cert.p12 -name "My certificate"

where:

userkey.pem is the path to the private key file;
usercert.pem is the path to the PEM certificate file;
my cert.p12 is the path for the output PKCS12-format file to be created;
"My certificate" is an optional name which can be used to select this certificate in the browser

after the user has uploaded it if the user has more than one certificate available.

Once in PKCS12 format the certificate can be loaded into the browser. Instructions about how to do this for
some popular browsers are available at:

http://lcg.web.cern.ch/LCG/users/registration/load-cert.html

CERN-LCG-GDEIS-722398 Manuals Series Page 39

http://lcg.web.cern.ch/LCG/users/registration/load-cert.html
http://cic.gridops.org/
https://cic.gridops.org/index.php?section=vo&page=download_vodata

4.4.2. Virtual Organisations

A VO is an entity which typically corresponds to a particular organisation or group of people in the real world.
Membership of a VO grants specific privileges to a user. For example, a user belonging to the atlas VO will be
able to read ATLAS files or to exploit resources reserved for the ATLAS collaboration.

At present, VO names are generally short strings like cms or biomed. However, it is likely that future VOs will
have names in the style of DNS names, e.g. newvo.cern.ch, to ensure that different VOs will always have distinct
names.

Becoming a member of a VO usually requires membership of the corresponding experiment; in any case a user
must comply with the rules of the VO to gain membership. A user may be expelled from a VO if he fails to comply
with these rules.

It is possible to belong to more than one VO, although this is an unusual case. However, using a single
certificate with more than one VO requires the recognition of VOMS proxies which is not yet the case for all
WLCG/EGEE middleware and services, hence it is currently necessary to have a separate certificate for each VO.

4.5. SETTING UP THE USER ACCOUNT

4.5.1. The User Interface

Apart from registering with WLCG/EGEE, a user must also have an account on a WLCG/EGEE User Interface in
order to access the Grid. To obtain such an account, a local system administrator must be contacted, either at the
user’s own site or at a central site like CERN.

As an example, the CERN LXPLUS service can be used as a UI as described in [31]. This use could be
extended to other (non LXPLUS) machines mounting AFS.

It is also possible for a user to install the UI software on his own machine, but this is outside the scope of this
document.

Once the account has been created, the user certificate must be installed. The usual procedure is to create a
directory named .globus under the user home directory and put the user certificate and key files there, naming
them usercert.pem and userkey.pem respectively, with permissions 444 for the former, and 400 for the latter.
A directory listing should give a result similar to this:

ls -l $HOME/.globus
total 13
-r--r--r-- 1 doe xy 4541 Aug 23 2006 usercert.pem
-r-------- 1 doe xy 963 Aug 23 2006 userkey.pem

4.5.2. Checking a Certificate

To verify that a certificate is not corrupted and print information about it, the command grid-cert-info can be
used from the UI. The openssl command can also be used to verify the validity of a certificate with respect to the

CERN-LCG-GDEIS-722398 Manuals Series Page 40

certificate of the certification authority that issued it. The command grid-proxy-init can be used to check if
there is a mismatch between the private key and the certificate.

Example 4.5.2.1 (Retrieving information on a user certificate)

With the certificate properly installed in the $HOME/.globus directory of the user’s UI account, issue the
command:

$ grid-cert-info

If the certificate is properly formed, the output will be something like:

Certificate:
Data:

Version: 3 (0x2)
Serial Number: 5 (0x5)
Signature Algorithm: md5WithRSAEncryption
Issuer: C=CH, O=CERN, OU=cern.ch, CN=CERN CA
Validity

Not Before: Sep 11 11:37:57 2002 GMT
Not After : Nov 30 12:00:00 2003 GMT

Subject: O=Grid, O=CERN, OU=cern.ch, CN=John Doe
Subject Public Key Info:

Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)

Modulus (1024 bit):
00:ab:8d:77:0f:56:d1:00:09:b1:c7:95:3e:ee:5d:
c0:af:8d:db:68:ed:5a:c0:17:ea:ef:b8:2f:e7:60:
2d:a3:55:e4:87:38:95:b3:4b:36:99:77:06:5d:b5:
4e:8a:ff:cd:da:e7:34:cd:7a:dd:2a:f2:39:5f:4a:
0a:7f:f4:44:b6:a3:ef:2c:09:ed:bd:65:56:70:e2:
a7:0b:c2:88:a3:6d:ba:b3:ce:42:3e:a2:2d:25:08:
92:b9:5b:b2:df:55:f4:c3:f5:10:af:62:7d:82:f4:
0c:63:0b:d6:bb:16:42:9b:46:9d:e2:fa:56:c4:f9:
56:c8:0b:2d:98:f6:c8:0c:db

Exponent: 65537 (0x10001)
X509v3 extensions:

Netscape Base Url:
http://home.cern.ch/globus/ca

Netscape Cert Type:
SSL Client, S/MIME, Object Signing

Netscape Comment:
For DataGrid use only

Netscape Revocation Url:
http://home.cern.ch/globus/ca/bc870044.r0

Netscape CA Policy Url:
http://home.cern.ch/globus/ca/CPS.pdf

Signature Algorithm: md5WithRSAEncryption
30:a9:d7:82:ad:65:15:bc:36:52:12:66:33:95:b8:77:6f:a6:

CERN-LCG-GDEIS-722398 Manuals Series Page 41

52:87:51:03:15:6a:2b:78:7e:f2:13:a8:66:b4:7f:ea:f6:31:
aa:2e:6f:90:31:9a:e0:02:ab:a8:93:0e:0a:9d:db:3a:89:ff:
d3:e6:be:41:2e:c8:bf:73:a3:ee:48:35:90:1f:be:9a:3a:b5:
45:9d:58:f2:45:52:ed:69:59:84:66:0a:8f:22:26:79:c4:ad:
ad:72:69:7f:57:dd:dd:de:84:ff:8b:75:25:ba:82:f1:6c:62:
d9:d8:49:33:7b:a9:fb:9c:1e:67:d9:3c:51:53:fb:83:9b:21:
c6:c5

The grid-cert-info command takes many options. Use the -help option for a full list. For example, the
-subject option returns the Subject Name:

$ grid-cert-info -subject
/O=Grid/O=CERN/OU=cern.ch/CN=John Doe

or to check the certificate expiration date:

$ grid-cert-info -enddate
Oct 15 05:37:09 2006 GMT

or to know which CA issued the certificate:

$ grid-cert-info -issuer
/C=CH/O=CERN/OU=GRID/CN=CERN CA

Example 4.5.2.2 (Verifying a user certificate)

To verify a user certificate, issue the following command from the UI:

$ openssl verify -CApath /etc/grid-security/certificates ˜/.globus/usercert.pem

and if the certificate is valid and properly signed, the output will be:

/home/doe/.globus/usercert.pem: OK

If the certificate of the CA that issued the user certificate is not found in -CApath, an error message like this will
appear:

usercert.pem: /O=Grid/O=CERN/OU=cern.ch/CN=John Doe
error 20 at 0 depth lookup:unable to get local issuer certificate

If the environment variable X509 CERT DIR is defined, use its value in place of /etc/grid-security/certificates.

CERN-LCG-GDEIS-722398 Manuals Series Page 42

Example 4.5.2.3 (Verifying the consistency between private key and certificate)

If for some reason the user is using a certificate (usercert.pem) which does not correspond to the private key
(userkey.pem), strange errors may occur. To test if this is the case, run the command:

grid-proxy-init -verify

In case of mismatch, the output will be:

Your identity: /C=CH/O=CERN/OU=GRID/CN=John Doe
Enter GRID pass phrase for this identity:
Creating proxy Done

ERROR: Couldn’t verify the authenticity of the user’s credential to
generate a proxy from.
Use -debug for further information.

4.6. PROXIES

4.6.1. Standard Proxies

At this point, the user is able to generate a proxy using the command grid-proxy-init, which prompts for the
user passphrase, as in the next example.

Note: with the introduction of VOMS, the grid-proxy-init command can be replaced by voms-proxy-init,
as this is fully backward-compatible.

Example 4.6.1.1 (Creating a proxy)

To create a proxy, issue the command:

$ grid-proxy-init

If the command is successful, the output will be like

Your identity: /O=Grid/O=CERN/OU=cern.ch/CN=John Doe
Enter GRID pass phrase for this identity:
Creating proxy ... Done
Your proxy is valid until: Tue Jun 24 23:48:44 2003

and the proxy will be written in /tmp/x509up u<uid>, where <uid> is the Unix UID of the user, unless the
environment variable X509 USER PROXY is defined, in which case its value is taken as the proxy file path.

If the user gives a wrong pass phrase, the output will be

CERN-LCG-GDEIS-722398 Manuals Series Page 43

ERROR: Couldn’t read user key. This is likely caused by
either giving the wrong pass phrase or bad file permissions
key file location: /home/doe/.globus/userkey.pem
Use -debug for further information.

If the proxy file cannot be created, the output will be

ERROR: The proxy credential could not be written to the output file.
Use -debug for further information.

If the user certificate files are missing, or the permissions of userkey.pem are not correct, the output is:

ERROR: Couldn’t find valid credentials to generate a proxy.
Use -debug for further information.

By default, the proxy has a lifetime of 12 hours. To specify a different lifetime, the -valid H:M option can
be used (the proxy is valid for H hours and M minutes –default is 12:00). When a proxy has expired, it becomes
useless and a new one has to be created with grid-proxy-init. However, longer lifetimes imply bigger security
risks, and the Grid Acceptable Use Policy generally limits proxy lifetimes to 24 hours — some services may reject
proxies with lifetimes which are too long.

Use the option -help for a full listing of options.

It is also possible to print information about an existing proxy, or to destroy it before its expiration, as in the
following examples.

Example 4.6.1.2 (Printing information on a proxy)

To print information about a proxy, for example the Subject Name or the time left before expiration, give the
command:

$ grid-proxy-info

The output, if a valid proxy exists, will be similar to

subject : /O=Grid/O=CERN/OU=cern.ch/CN=John Doe/CN=proxy
issuer : /O=Grid/O=CERN/OU=cern.ch/CN=John Doe
type : full
strength : 512 bits
path : /tmp/x509up_u7026
timeleft : 11:59:56

If a proxy does not exist, the output is:

ERROR: Couldn’t find a valid proxy.
Use -debug for further information.

CERN-LCG-GDEIS-722398 Manuals Series Page 44

Example 4.6.1.3 (Destroying a proxy)

To destroy an existing proxy before its expiration, it is enough to do:

$ grid-proxy-destroy

If no proxy exists, the result will be:

ERROR: Proxy file doesn’t exist or has bad permissions
Use -debug for further information.

4.6.2. VOMS Proxies

The Virtual Organisation Membership Service (VOMS) is a system which allows a proxy to have extensions
containing information about the VO, the groups the user belongs to in the VO, and any roles the user is entitled to
have.

In VOMS terminology, a group is a subset of the VO containing members who share some responsibilites or
privileges in the project. Groups are organised hierarchically like a directory tree, starting from a VO-wide root
group. A user can be a member of any number of groups, and a VOMS proxy contains the list of all groups the
user belongs to, but when the VOMS proxy is created the user can choose one of these groups as the “primary”
group.

A role is an attribute which typically allows a user to acquire special privileges to perform specific tasks. In
principle, groups are associated to privileges that the user always has, while roles are associated to privileges that a
user needs to have only from time to time. Note that roles are attached to groups, i.e. roles in different groups with
the same role name are distinct.

The groups and roles are defined by each VO; they may be assigned to a user at the initial registration, or added
subsequently.

To map groups and roles to specific privileges, what counts is the group/role combination, which is sometimes
referred to as an FQAN (short form for Fully Qualified Attribute Name). The format is:

FQAN = <group name>[/Role=<role name>]

for example, /cms/HeavyIons/Role=production.

Example 4.6.2.1 (Creating a VOMS proxy)

The voms-proxy-init command generates a Grid proxy, contacts one or more VOMS servers, retrieves the
user attributes and includes them in the proxy. If used without arguments, it works exactly as grid-proxy-init.

To create a basic VOMS proxy, without requiring any special role or primary group, use:

$ voms-proxy-init -voms <vo>

CERN-LCG-GDEIS-722398 Manuals Series Page 45

where <vo> is the VO name. The output is similar to:

Your identity: /C=CH/O=CERN/OU=GRID/CN=John Doe
Enter GRID pass phrase:
Creating temporary proxy .. Done
Contacting lcg-voms.cern.ch:15002 [/C=CH/O=CERN/OU=GRID/CN=host/lcg-voms.cern.ch]
"cms" Done
Creating proxy .. Done
Your proxy is valid until Thu Mar 30 06:17:27 2006

Note that there are two steps: a standard Grid proxy is created first and used to authenticate to the VOMS server,
and the full VOMS proxy is then created using information returned by it. If a valid proxy already exists the
-noregen option can be used to avoid the first step, including typing the passphrase.

One clear advantage of VOMS proxies over standard proxies is that the middleware can find out to which VO
the user belongs from the proxy, while using a normal proxy the VO has to be explicitly specified by other means.

To create a proxy with a given role (e.g. production) and primary group (e.g. /cms/HeavyIons), the syntax
is:

$ voms-proxy-init -voms <alias>:<group name>[Role=<role name>]

where alias specifies the server to be contacted (see below), and usually is the name of the VO. For example:

$ voms-proxy-init -voms cms:/cms/HeavyIons/Role=production

voms-proxy-init uses a configuration file, whose path can be specified in several ways; if the path is a
directory, the files inside it are concatenated and taken as the actual configuration file. A user-level configuration
file, which must be owned by the user, is looked for in these locations:

• the argument of the -userconf option;

• the file $HOME/.glite/vomses.

If it is not found, a system-wide configuration file, which must be owned by root, is looked for in these locations:

• the argument of the -confile option;

• the file $GLITE LOCATION/etc/vomses;

• the file /opt/glite/etc/vomses.

The configuration file must contain lines with the following syntax:

alias host port subject vo

where the items are respectively an alias (usually the name of the VO), the host name of the VOMS server, the port
number to contact for a given VO, the DN of the server host certificate, and the name of the VO. For example:

CERN-LCG-GDEIS-722398 Manuals Series Page 46

"dteam" "lcg-voms.cern.ch" "15004"
"/C=CH/O=CERN/OU=GRID/CN=host/lcg-voms.cern.ch" "dteam"

Example 4.6.2.2 (Printing information on a VOMS proxy)

The voms-proxy-info command is used to print information about an existing VOMS proxy. Two useful
options are -all, which prints everything, and -fqan, which prints the groups and roles in FQAN format. For
example:

$ voms-proxy-info -all
subject : /C=CH/O=CERN/OU=GRID/CN=John Doe/CN=proxy
issuer : /C=CH/O=CERN/OU=GRID/CN=John Doe
identity : /C=CH/O=CERN/OU=GRID/CN=John Doe
type : proxy
strength : 512 bits
path : /tmp/x509up_u10585
timeleft : 11:59:58
=== VO cms extension information ===
VO : cms
subject : /C=CH/O=CERN/OU=GRID/CN=John Doe
issuer : /C=CH/O=CERN/OU=GRID/CN=host/lcg-voms.cern.ch
attribute : /cms/Role=NULL/Capability=NULL
timeleft : 11:59:58

Note that there are separate times to expiry for the proxy as a whole and the VOMS extension, which can potentially
be different.

4.6.3. Proxy Renewal

Proxies created as described in the previous section pose a problem: if a job does not finish before the expiration
time of the proxy used to submit it, is aborted. This can easily happen, for example, if the job takes a very long
time to execute, or if it stays in a queue for a long time. The easiest solution to the problem would be to use very
long-lived proxies, but at the expense of an increased security risk. Moreover, the duration of a VOMS proxy is
limited by the VOMS server and cannot be made arbitrarily long.

To overcome this limitation, a proxy credential repository system is used, which allows the user to create and
store a long-term proxy in a dedicated server (aMyProxy server). The WMS will then be able to use this long-term
proxy to periodically renew the proxy for a submitted job before it expires and until the job ends (or the long-term
proxy expires).

To see if a WLCG/EGEE site has a MyProxy Server, the GOC database [17] may be consulted; MyProxy
servers have a node type of PROX. A UI may have a default server defined in the MYPROXY SERVER environment
variable.

As the renewal process starts 30 minutes before the old proxy expires, it is necessary to generate an initial
proxy long enough, or the renewal may be triggered too late, after the job has failed with the following error:

CERN-LCG-GDEIS-722398 Manuals Series Page 47

Status Reason: Got a job held event, reason: Globus error 131:
the user proxy expired (job is still running)

The minimum recommended time for the initial proxy is 30 minutes, and in most circumstances it should be
substantially longer. Job submission is forbidden for proxies with a remaining lifetime less than 20 minutes: an
error message like the following will be produced:

**** Error: UI_PROXY_DURATION ****
Proxy certificate will expire within less then 00:20 hours.

Management of the proxy renewal functionality is available via the myproxy commands. The user must either
specify the host name of a MyProxy server, or define it as the value of the MYPROXY SERVER environment variable.

For the WMS to know which MyProxy server to use in the proxy renewal process, the name of the server must
be included in an attribute of the job’s JDL file (see Chapter 6). If the user does not add it manually, the name of the
default MyProxy server is added automatically when the job is submitted. This default is defined in a VO-specific
configuration file.

Note: the machine where the WMS runs must be trusted by the MyProxy server for renewal to be allowed.

Example 4.6.3.1 (Creating a long-term proxy and storing it in a MyProxy Server)

To create and store a long-term proxy, the user must do, for example:

$ myproxy-init -s <myproxy_server> -d -n

where -s <myproxy server> specifies the hostname of the machine where a MyProxy Server runs, the -d option
instructs the server to associate the user DN to the proxy, and the -n option avoids the use of a passphrase to access
the long-term proxy, so that the WMS can perform the renewal automatically.

The output will be similar to:

Your identity: /O=Grid/O=CERN/OU=cern.ch/CN=John Doe
Enter GRID pass phrase for this identity:
Creating proxy ... Done
Your proxy is valid until: Thu Jul 17 18:57:04 2003
A proxy valid for 168 hours (7.0 days) for user /O=Grid/O=CERN/OU=cern.ch/CN=John Doe
now exists on myproxy.cern.ch.

By default, the long-term proxy lasts for one week and the proxies created from it last 12 hours. These lifetimes
can be changed using the -c and the -t option respectively, but cannot be longer than the lifetime of the user
certificate.

If the -s <myproxy server> option is missing, the command will try to use the MYPROXY SERVER environment
variable to determine the MyProxy Server.

Note: If the hostname of the MyProxy Server is wrong, or the service is unavailable, the output will be similar
to:

CERN-LCG-GDEIS-722398 Manuals Series Page 48

Your identity: /O=Grid/O=CERN/OU=cern.ch/CN=John Doe
Enter GRID pass phrase for this identity:
Creating proxy Done
Your proxy is valid until: Wed Sep 17 12:10:22 2003
Unable to connect to adc0014.cern.ch:7512

where only the last line reveals that an error occurred.

Example 4.6.3.2 (Retrieving information about a long-term proxy)

To get information about a long-term proxy stored in a Proxy Server, the following command may be used:

$ myproxy-info -s <myproxy_server> -d

where the -s and -d options have the same meaning as in the previous example. The output is similar to:

username: /O=Grid/O=CERN/OU=cern.ch/CN=John Doe
owner: /O=Grid/O=CERN/OU=cern.ch/CN=John Doe
timeleft: 167:59:48 (7.0 days)

Note that there must be a valid proxy on the UI, created with grid-proxy-init or voms-proxy-init, to
successfully interact with the long-term proxy on the MyProxy server.

Example 4.6.3.3 (Deleting a long-term proxy)

Deleting a stored long-term proxy is achieved by doing:

$ myproxy-destroy -s <myproxy_server> -d

and the output is:

Default MyProxy credential for user /O=Grid/O=CERN/OU=cern.ch/CN=John Doe
was successfully removed.

Again, a valid proxy must exist on the UI.

CERN-LCG-GDEIS-722398 Manuals Series Page 49

5. INFORMATION SERVICE

The architecture of the gLite 3.1 Information Services, both MDS and R-GMA, was described in Chapter 3. In
this chapter, we have a closer look at the structure of the information published by those services, and we examine
some tools that can be used to get information from them.

Most middleware components (for Data andWorkload Management) currently rely on information fromMDS.
However, R-GMA is also in use and many applications, especially for accounting and monitoring purposes, depend
on it.

Some information about tools used for Grid monitoring in gLite 3.1 is also provided here.

5.1. THE MDS

In the following sections examples are given on how to interrogate the MDS Information Service in gLite 3.1.
In particular, the different servers from which the information can be obtained are discussed. These are the local
GRISes, the site BDIIs and the global (or top-level) BDIIs. Of these, the top-level BDII is usually the one queried,
since it contains all the interesting information for a VO in a single place.

Before the procedure to directly query the MDS is described, two higher level tools, lcg-infosites and
lcg-info, are presented. These tools should be enough for most common user needs and will usually avoid the
necessity of raw LDAP queries (although these are very useful for more complex or subtle requirements).

As explained in Chapter 3, the data in the MDS in WLCG/EGEE conforms to the LDAP implementation of
the GLUE Schema, although for historical reasons some extra attributes are also currently published and may be
queried and used by clients of the IS. The current implementation relates to version 1.2 of the GLUE schema, but
version 1.3, which adds some new information in a backward-compatible way, will be deployed during early 2007.
For a list of the defined object classes and their attributes, as well as for a reference on the Directory Information
Tree used to publish those attributes, please check Appendix G.

As usual, the tools to query the IS shown in this section are command-line based. There exist, however,
graphical tools that can be used to browse LDAP servers. As an example, the program gq is open source and can
be found in some Linux distributions by default. Some comments on this tool are given in Section 5.1.6.

5.1.1. lcg-infosites

The lcg-infosites command can be used to obtain VO-specific information on existing Grid resources. The
syntax is the following:

lcg-infosites --vo <vo> <option> -v <verbosity> -f <site> --is <bdii>

This is the definition of the command options and arguments:

• --vo <vo>: the name of the VO to which the information to print is related (mandatory);

• <option>: specifies what information has to be printed. It can take the following values:

CERN-LCG-GDEIS-722398 Manuals Series Page 50

– ce: the number of CPUs, running jobs, waiting jobs and CE names (global, no VO-specific informa-
tion);
-v 1: only the CE names;
-v 2: the cluster names, the amount of RAM, the operating system name and version and the proces-
sor model;

– se: the names of the SEs supporting the VO, the type of storage system and the used and available
space;
-v 1: only the SE names;

– all: the information given by ce and se; together;
– closeSE: the names of the CEs supporting the VO and their close SEs;
– tag: the software tags published by each CE supporting the VO;
– lfc: the hostname of the LFC catalogues available to the VO;
– lfcLocal: the hostname of the local LFC catalogues available to the VO;
– rb: the hostname and port of the RBs available to the VO;
– dli: the Data Location Index servers available to the VO;
– dliLocal: the local Data Location Index servers available to the VO;
– vobox: the VO boxes available to the VO;
– fts: the endpoints of the FTS servers available to the VO;
– sitenames: the names of all WLCG/EGEE sites;

• --is <bdii>: the BDII to query. If not specified, the BDII defined in the environment variable
LCG GFAL INFOSYS will be queried.

• -f <site>: restricts the information printed to the specified site (it applies only to options rb, dli, vobox
and fts).

Example 5.1.1.1 (Obtaining information about computing resources)

The way to get information relating to the computing resources for the alice VO is:

$ lcg-infosites --vo alice ce

A typical output is as follows:

#CPU Free Total Jobs Running Waiting ComputingElement
--

15 4 0 0 0 ce002.ipp.acad.bg:2119/jobmanager-lcgpbs-alice
15 4 0 0 0 ce001.ipp.acad.bg:2119/blah-pbs-alice
80 8 0 0 0 ce02.grid.acad.bg:2119/jobmanager-pbs-alice
10 10 0 0 0 ce.hpc.iit.bme.hu:2119/blah-pbs-alice
96 94 0 0 0 grid109.kfki.hu:2119/jobmanager-lcgpbs-alice

3409 6 493 493 0 ce101.cern.ch:2119/jobmanager-lcglsf-grid_alice
3409 6 493 493 0 ce102.cern.ch:2119/jobmanager-lcglsf-grid_alice
3409 6 493 493 0 ce105.cern.ch:2119/jobmanager-lcglsf-grid_alice
[...]

CERN-LCG-GDEIS-722398 Manuals Series Page 51

Example 5.1.1.2 (Obtaining information about storage resources)

To get the status of the storage resources:

$ lcg-infosites --vo atlas se

Avail Space(Kb) Used Space(Kb) Type SEs
--
39657488 106362948 n.a se.phy.bg.ac.yu
31400000 18580000 n.a se1.egee.man.poznan.pl
569586792 47148288 n.a clrauvergridse01.in2p3.fr
1200000000 410000000 n.a koala.unimelb.edu.au
22903032 42994124 n.a se-lcg.sdg.ac.cn
457865076 663121389 n.a atlasse01.ihep.ac.cn
29593756 80561288 n.a se001.grid.bas.bg
931135488 41943040 n.a se001.ipp.acad.bg
[...]

Example 5.1.1.3 (Listing the close Storage Elements)

The option closeSE will give an output as follows:

$ lcg-infosites --vo dteam closeSE

Name of the CE: g02.phy.bg.ac.yu:2119/blah-pbs-dteam
se.phy.bg.ac.yu

Name of the CE: ce.phy.bg.ac.yu:2119/jobmanager-pbs-dteam
se.phy.bg.ac.yu

Name of the CE: fangorn.man.poznan.pl:2119/jobmanager-lcgpbs-dteam
se1.egee.man.poznan.pl
se1.egee.man.poznan.pl

Name of the CE: obsauvergridce01.univ-bpclermont.fr:2119/jobmanager-lcgpbs-dteam
clrauvergridse01.in2p3.fr

[...]

Example 5.1.1.4 (Listing local LFC servers)

In order to retrieve the hostnames of the local LFC servers for a certain VO, use the command as follows:

$ lcg-infosites --vo atlas lfcLocal

CERN-LCG-GDEIS-722398 Manuals Series Page 52

lxb2038.cern.ch
pps-lfc.cnaf.infn.it
cclcglfcli03.in2p3.fr
[...]

5.1.2. lcg-info

The lcg-info command can be used to list either CEs or SEs satisfying a given set of conditions on their attributes,
and to print, for each of them, the values of a given set of attributes. The information is taken from the BDII
specified by the LCG GFAL INFOSYS environment variable or in the command line.

The general format of the command for listing CE or SE information is:

$ lcg-info [--list-ce | --list-se | --list-service | --list-site]
[--query <query>] [--attrs <attrs>]

where one and only one of the options --list-ce, --list-se, --list-service and --list-sitemust be used
to indicate if CEs, SEs, services or sites should be listed. The --query option introduces a filter (conditions to be
fulfilled) to the elements of the list, and the --attrs option may be used to specify which attributes to print. For
example, if --list-ce is specified then only CE attributes are considered (others are just ignored).

The attributes supported (which may be included with --attrs or within the --query expression) are only a
subset of the attributes present in the GLUE schema, those that are most relevant for a user.

The --vo option can be used to restrict the query to CEs and SEs which support the given VO; it is mandatory
when querying for attributes which are inherently related to a VO, like AvailableSpace and UsedSpace.

Apart from the listing options, the --help option can be specified (alone) to obtain a detailed description of
the command, and the --list-attrs option can be used to get a list of the supported attributes.

Example 5.1.2.1 (Get the list of supported attributes)

To have a list of the supported attributes, use:

$ lcg-info --list-attrs

The output is similar to:

Attribute name Glue object class Glue attribute name

EstRespTime GlueCE GlueCEStateEstimatedResponseTime
WorstRespTime GlueCE GlueCEStateWorstResponseTime
TotalJobs GlueCE GlueCEStateTotalJobs
TotalCPUs GlueCE GlueCEInfoTotalCPUs
[...]

CERN-LCG-GDEIS-722398 Manuals Series Page 53

For each attribute, the simplified attribute name used by lcg-info, the corresponding object class and the
attribute name in the GLUE schema are given.

Example 5.1.2.2 (List all the CEs satisfying given conditions and print the desired attributes)

Suppose one wants to know how many jobs are running and how many free CPUs there are on CEs that have
an Athlon CPU and have Scientific Linux:

$ lcg-info --vo cms --list-ce --query ’Processor=*thlon*,OS=*Scientific*’ \
--attrs ’RunningJobs,FreeCPUs’

Note that the --vo option must be specified, as RunningJobs and FreeCPUs depend on the VO.

The output could be:

- CE: alice003.nipne.ro:2119/jobmanager-lcgpbs-alice
- RunningJobs 0
- FreeCPUs 2

- CE: alice003.nipne.ro:2119/jobmanager-lcgpbs-dteam
- RunningJobs 0
- FreeCPUs 2

[...]

It must be stressed that lcg-info only supports a logical AND of logical expressions, separated by commas,
and the only allowed operator is =. In equality comparisons of strings the * wildcard matches any number of
characters.

Another useful query is one to know which CEs have installed a particular version of an experiment’s software.
That would be something like:

$ lcg-info --vo cms --list-ce --attrs Tag --query ’Tag=*ORCA_8_7_1*’

Note that this lists all tags for all VOs for the matching CEs.

Example 5.1.2.3 (List the close CEs for all the SEs)

Similarly, suppose that you want to know which CEs are close to each SE:

$ lcg-info --list-se --vo cms --attrs CloseCE

the output will be like:

CERN-LCG-GDEIS-722398 Manuals Series Page 54

- SE: SE.pakgrid.org.pk
- CloseCE CE.pakgrid.org.pk:2119/jobmanager-lcgpbs-ops

CE.pakgrid.org.pk:2119/jobmanager-lcgpbs-cms
CE.pakgrid.org.pk:2119/jobmanager-lcgpbs-dteam

- SE: aliserv1.ct.infn.it
- CloseCE _UNDEF_

- SE: arxiloxos2.inp.demokritos.gr
- CloseCE arxiloxos1.inp.demokritos.gr:2119/jobmanager-lcgpbs-dteam

arxiloxos1.inp.demokritos.gr:2119/jobmanager-lcgpbs-cms
arxiloxos1.inp.demokritos.gr:2119/jobmanager-lcgpbs-ops

[...]

A value UNDEF means that the attribute is not defined for that SE or CE.

Example 5.1.2.4 (List all the WMSes which support a VO)

In this case one can execute a command like

$ lcg-info --list-service --vo cms --query ServiceType=org.glite.wms.WMProxy
- Service: grid07.lal.in2p3.fr_org.glite.wms.WMProxy

- Service: grid25.lal.in2p3.fr_org.glite.wms.WMProxy

- Service: https://cms-wms.desy.de:7443/glite_wms_wmproxy_server

- Service: https://eu-india-02.pd.infn.it:7443/glite_wms_wmproxy_server
...

Example 5.1.2.5 (List all the sites in the information system)

This is easily done by issuing the command

$ lcg-info --list-site
- Site: AEGIS01-PHY-SCL

- Site: AEGIS07-PHY-ATLAS

- Site: AGLT2

- Site: ALBERTA-LCG2
...

Unfortunately for the moment the command does not allow to list the services run at a particular site.

CERN-LCG-GDEIS-722398 Manuals Series Page 55

The --bdii option can be used to specify a particular BDII (e.g. --bdii exp-bdii.cern.ch:2170), and the
--sed option can be used to output the results of the query in a format easy to parse in a script, in which values for
different attributes are separated by % and values of list attributes are separated by &.

5.1.3. The Local GRIS

The first level of MDS information publication is the GRIS, which provides specific information for a particular
service. The GRIS normally runs on the same node as the CE, SE or other service for which it publishes, although
it may be on a different node. There is usually no need to query a GRIS directly except for detailed debugging, and
in some cases site firewalls may prevent access from external sites.

In order to interrogate the GRIS on a specific node, the hostname and the TCP port where the GRIS run must
be specified. The port is normally either 2135 or 2170. The following command can be used:

$ ldapsearch -x -h <hostname> -p 2135 -b "mds-vo-name=local, o=grid"

where the -x option indicates that simple authentication (instead of LDAP’s SASL) should be used; the -h and -p
options precede the hostname and port respectively; and the -b option is used to specify the initial entry for the
search in the LDAP tree. If the port is 2170, the -b option should be mds-vo-name=resource,o=grid (for port
2170).

5.1.4. Using the ldapsearch command to read the MDS

For the LDAP implementation of the GLUE schema, the root of the DIT is always o=grid. At the GRIS level the
next entry is (for historical reasons) either mds-vo-name=local or mds-vo-name=resource, but at the site level
this is replaced with mds-vo-name=<sitename>, and a top-level BDII has site entries under
mds-vo-name=<sitename>, mds-vo-name=local,o=grid. The GLUE entries themselves are at lower levels
and always have the same DN structure. For details, please refer to Appendix G.

The same effect as the command above can be obtained with:

$ ldapsearch -x -H <ldap_uri> -b "mds-vo-name=local, o=grid"

where the hostname and port are included in the -H <ldap uri> option, avoiding the use of -h and -p.

Example 5.1.4.1 (Interrogating the GRIS on a Computing Element)

The command used to interrogate the GRIS located on host lxb2006.cern.ch is:

$ ldapsearch -x -h lxb2006.cern.ch -p 2135 -b "mds-vo-name=local, o=grid"

or:

CERN-LCG-GDEIS-722398 Manuals Series Page 56

$ ldapsearch -x -H ldap://lxb2006.cern.ch:2135 -b "mds-vo-name=local, o=grid"

In order to restrict the search, a filter of the form attribute operator value can be used. The operator is
one of those defined in the following table (note that < and > are not included):

Operator Description
= Entries whose attribute is equal to the value
>= Entries whose attribute is greater than or equal to the value
<= Entries whose attribute is less than or equal to the value
=* Entries that have any value set for that attribute
˜= Entries whose attribute value approximately matches the specified value

Furthermore, complex search filters can be formed by using boolean operators to combine constraints. The boolean
operators that can be used are “AND” (&), “OR” (|) and “NOT” (!). The syntax for such expressions is the
following:

("&" or "|" or "!" (filter1) [(filter2) ...])

Example of search filters are:

(& (Name=Smith) (Age>=32))
(! (GlueHostMainMemoryRAMSize<=1000))

It is possible to construct complex queries, but the syntax is not very intuitive so some experimentation may be
needed. Be aware that filters may need to be escaped to prevent special characters being interpreted by the shell.

In LDAP, a special attribute objectClass is defined for each directory entry. It indicates which object classes
are defined for that entry in the LDAP schema. This makes it possible to filter entries that contain a certain object
class. The filter for this case would be:

’objectclass=<name>’

Apart from filtering the search, a list of attribute names can be specified, in order to limit the values returned.
As shown in the next example, only the value of the specified attributes will be returned. Alternatively, grep or
other Unix tools can be used to postprocess the output.

A description of all objectclasses and their attributes usable with the ldapsearch command can be found in
Appendix G.

Example 5.1.4.2 (Getting information about the site name from the GRIS on a CE)

$ ldapsearch -x -h lcgbdii02.gridpp.rl.ac.uk -p 2170 -b o=grid \
’(&(objectclass=GlueSite)(GlueSiteName=ral*))’ GlueSiteWeb \
GlueSiteLatitude GlueSiteLongitude

version: 2

CERN-LCG-GDEIS-722398 Manuals Series Page 57

#
filter: (&(objectclass=GlueSite)(GlueSiteName=ral*))
requesting: GlueSiteWeb GlueSiteLatitude GlueSiteLongitude
#

RAL-LCG2, RAL-LCG2, local, grid
dn: GlueSiteUniqueID=RAL-LCG2,mds-vo-name=RAL-LCG2,mds-vo-name=local,o=grid
GlueSiteLatitude: 51.57
GlueSiteLongitude: -1.32
GlueSiteWeb: http://www.gridpp.ac.uk/tier1a/

search result
search: 2
result: 0 Success

numResponses: 2
numEntries: 1

By adding the -LLL option, it is possible to avoid the comments and the version information in the reply:

$ ldapsearch -LLL -x -h lcgbdii02.gridpp.rl.ac.uk -p 2170 -b o=grid \
’(&(objectclass=GlueSite)(GlueSiteName=ral*))’ GlueSiteWeb \
GlueSiteLatitude GlueSiteLongitude

dn: GlueSiteUniqueID=RAL-LCG2,mds-vo-name=RAL-LCG2,mds-vo-name=local,o=grid
GlueSiteLatitude: 51.57
GlueSiteLongitude: -1.32
GlueSiteWeb: http://www.gridpp.ac.uk/tier1a/

5.1.5. The Site BDII

At each site, a site BDII collects information about all resources present at a site (i.e. data from all GRISes at the
site). Site BDIIs replaced site GIISes and are the default in gLite 3.1 releases. In this section we explain how to
query a site BDII.

Often the site BDII runs on a Computing Element, although it may be on a separate node. The port used to
interrogate a site BDII is usually 2170. The DIT base name is based on the site name. However, it is sufficient to
use a base of o=grid in ldap queries.

For a list of all sites and all resources present, refer to the GOC database [17].

This is the site information for the CNAF site (at Bologna in Italy), as shown in Figure 7. The BDII URL is:

ldap://gridit-ce-001.cnaf.infn.it:2170/mds-vo-name=infn-cnaf,o=grid

In order to interrogate it, use the ldapsearch command as follows.

Example 5.1.5.1 (Interrogating a site BDII)

CERN-LCG-GDEIS-722398 Manuals Series Page 58

ldap://gridit-ce-001.cnaf.infn.it:2170/mds-vo-name=infn-cnaf,o=grid

Figure 7: The GOCDB information page for the INFN-CNAF site

$ ldapsearch -x -h gridit-ce-001.cnaf.infn.it -p 2170 \
-b mds-vo-name=infn-cnaf,o=grid

version: 2

#
filter: (objectclass=*)
requesting: ALL
#

INFN-CNAF, grid
dn: mds-vo-name=INFN-CNAF,o=grid
objectClass: GlueTop

gridit-ce-001.cnaf.infn.it:2119/jobmanager-lcgpbs-lcg, INFN-CNAF, grid
dn: GlueCEUniqueID=gridit-ce-001.cnaf.infn.it:2119/jobmanager-lcgpbs-lcg,mds-v
o-name=INFN-CNAF,o=grid

objectClass: GlueCETop
objectClass: GlueCE
objectClass: GlueSchemaVersion
objectClass: GlueCEAccessControlBase

CERN-LCG-GDEIS-722398 Manuals Series Page 59

objectClass: GlueCEInfo
objectClass: GlueCEPolicy
objectClass: GlueCEState
objectClass: GlueInformationService
objectClass: GlueKey
GlueCEHostingCluster: gridit-ce-001.cnaf.infn.it
GlueCEName: lcg
GlueCEUniqueID: gridit-ce-001.cnaf.infn.it:2119/jobmanager-lcgpbs-lcg
GlueCEInfoGatekeeperPort: 2119
GlueCEInfoHostName: gridit-ce-001.cnaf.infn.it
GlueCEInfoLRMSType: pbs
GlueCEInfoLRMSVersion: torque_1.0.1p5
GlueCEInfoTotalCPUs: 10
GlueCEInfoJobManager: lcgpbs
GlueCEInfoContactString: gridit-ce-001.cnaf.infn.it:2119/jobmanager-lcgpbs-lcg
GlueCEInfoApplicationDir: /opt/exp_soft
GlueCEInfoDataDir: unset
GlueCEInfoDefaultSE: grid007g.cnaf.infn.it
GlueCEStateEstimatedResponseTime: 0
GlueCEStateFreeCPUs: 8
GlueCEStateRunningJobs: 0
GlueCEStateStatus: Draining
GlueCEStateTotalJobs: 0
GlueCEStateWaitingJobs: 0
GlueCEStateWorstResponseTime: 0
GlueCEStateFreeJobSlots: 0
GlueCEPolicyMaxCPUTime: 2880
GlueCEPolicyMaxRunningJobs: 0
GlueCEPolicyMaxTotalJobs: 0
GlueCEPolicyMaxWallClockTime: 4320
GlueCEPolicyPriority: 1
GlueCEPolicyAssignedJobSlots: 0
GlueCEAccessControlBaseRule: VO:atlas
GlueCEAccessControlBaseRule: VO:alice
GlueCEAccessControlBaseRule: VO:lhcb
GlueCEAccessControlBaseRule: VO:cms
GlueForeignKey: GlueClusterUniqueID=gridit-ce-001.cnaf.infn.it
GlueInformationServiceURL: ldap://gridit-ce-001.cnaf.infn.it:2135/mds-vo-name=
local,o=grid

GlueSchemaVersionMajor: 1
GlueSchemaVersionMinor: 2

[...]

5.1.6. The top-level BDII

A top-level BDII collects all information coming from site BDIIs and stores them in a cache. The top-level BDII
can be configured to collect published information from resources in all sites in a Grid (usually derived from the
GOC DB), or just from a subset of them. The site list is normally filtered to include only sites which are currently
operational, and VOs can also apply their own filters to exclude sites which are currently failing certain critical

CERN-LCG-GDEIS-722398 Manuals Series Page 60

tests, so the sites visible in a BDII may fluctuate.

In order to find the location of a top-level BDII at a site (if any), consult the GOCDB page for the site. The BDII
will be listed with the rest of the nodes of the site (refer to Figure 7, node type BDII), and the entry may also include
comments about the purpose and content of the BDII. One general-purpose top-level BDII is lcg-bdii.cern.ch.

Figure 8: The LDAP directory of a gLite 3.1 BDII

A BDII can be interrogated using the base name mds-vo-name=local,o=grid (although it suffices to use
o=grid) and port 2170. The sub-tree corresponding to a particular site appears under an entry with a DN like:

Mds-Vo-name=<sitename>,mds-vo-name=local,o=grid

In Figure 8, a view of the DIT of a BDII in gLite 3.1 is shown. In the figure, only the sub-tree that corresponds
to the CERN site is expanded. The DN for every entry in the DIT is shown. Entries for storage and computing
resources, as well as for the bindings between CEs and SEs and for various services, can be seen in the figure.

Each entry can contain attributes from different object classes. This can be seen in the entry with DN
GlueClusterUniqueID=lxn1184.cern.ch,Mds-Vo-name=cernlcg2,mds-vo-name=local,o=grid, which is
highlighted in the figure. This entry contains several attributes from the object classes GlueClusterTop,
GlueCluster, GlueSchemaVersion, GlueInformationService and GlueKey. However, one of the object classes
is the primary one for the object, in this case GlueCluster, and an attribute from it is used to form the DN. Since
every object in the tree must have a unique DN the attribute used must be unique at least within its branch of the
tree.

In the right-hand side of the window, the DN of the selected entry and the names and values (in the cases

CERN-LCG-GDEIS-722398 Manuals Series Page 61

where they exist) of the attributes for this entry are shown. Notice how the special objectclass attribute gives
information about all the object classes that are applied to this entry.

As can be seen, a graphical tool can be quite useful to examine the structure (and indeed the details) of an
MDS directory. In addition, the schema (object classes and attributes) can be also examined.

Example 5.1.6.1 (Interrogating a BDII)

In this example, a query is sent to a BDII in order to retrieve two attributes from the GlueCESEBind object
class for all sites:

$ ldapsearch -x -LLL -H ldap://lxn1187.cern.ch:2170 -b "o=grid" \
’objectclass=GlueCESEBind’ GlueCESEBindCEUniqueID GlueCESEBindSEUniqueID

dn: GlueCESEBindSEUniqueID=castor.grid.sinica.edu.tw,GlueCESEBindGroupCEUnique
ID=tb009.grid.sinica.edu.tw:2119/jobmanager-lcgpbs-atlas,mds-vo-name=resource
,mds-vo-name=Taiwan-PPS,mds-vo-name=local,o=grid

GlueCESEBindSEUniqueID: castor.grid.sinica.edu.tw
GlueCESEBindCEUniqueID: tb009.grid.sinica.edu.tw:2119/jobmanager-lcgpbs-atlas

dn: GlueCESEBindSEUniqueID=castor.grid.sinica.edu.tw,GlueCESEBindGroupCEUnique
ID=tb009.grid.sinica.edu.tw:2119/jobmanager-lcgpbs-dteam,mds-vo-name=resource
,mds-vo-name=Taiwan-PPS,mds-vo-name=local,o=grid

GlueCESEBindSEUniqueID: castor.grid.sinica.edu.tw
GlueCESEBindCEUniqueID: tb009.grid.sinica.edu.tw:2119/jobmanager-lcgpbs-dteam

dn: GlueCESEBindSEUniqueID=dpm01.grid.sinica.edu.tw,GlueCESEBindGroupCEUniqueI
D=tb009.grid.sinica.edu.tw:2119/jobmanager-lcgpbs-biomed,mds-vo-name=resource
,mds-vo-name=Taiwan-PPS,mds-vo-name=local,o=grid

GlueCESEBindSEUniqueID: dpm01.grid.sinica.edu.tw
GlueCESEBindCEUniqueID: tb009.grid.sinica.edu.tw:2119/jobmanager-lcgpbs-biomed

dn: GlueCESEBindSEUniqueID=castor.grid.sinica.edu.tw,GlueCESEBindGroupCEUnique
ID=tb009.grid.sinica.edu.tw:2119/jobmanager-lcgpbs-biomed,mds-vo-name=resourc
e,mds-vo-name=Taiwan-PPS,mds-vo-name=local,o=grid

GlueCESEBindSEUniqueID: castor.grid.sinica.edu.tw
GlueCESEBindCEUniqueID: tb009.grid.sinica.edu.tw:2119/jobmanager-lcgpbs-biomed

[...]

Example 5.1.6.2 (Listing all the CEs which publish a given tag)

The attribute GlueHostApplicationSoftwareRunTimeEnvironment can be used to publish experiment-specific
information (tags) for a CE, for example to indicate that a given set of experiment software is installed. To list
all the CEs which publish a given tag, a query to a BDII can be performed. In this example, the information is
retrieved for all subclusters:

CERN-LCG-GDEIS-722398 Manuals Series Page 62

$ ldapsearch -h lxn1187.cern.ch -p 2170 -b "o=grid" -x ’objectclass=GlueSubCluster’ \
GlueChunkKey GlueHostApplicationSoftwareRunTimeEnvironment

Example 5.1.6.3 (Listing all the SEs which support a given VO)

A Storage Element supports a VO if users of that VO are allowed to store files on that SE. It is possible to find
out which SEs support a VO with a query to the BDII. For example, to have the list of all SEs supporting the alice
VO, together with the storage space available in each of them, a query similar to this can be used:

$ ldapsearch -LLL -h lxn1187.cern.ch -p 2170 -b \
"mds-vo-name=local,o=grid" -x "GlueSAAccessControlBaseRule=alice" \
GlueChunkKey GlueSAStateAvailableSpace GlueSAStateUsedSpace

where the GlueSAAccessControlBaseRule attribute contains the name of the supported VO. The obtained result
will be something like the following:

dn: GlueSALocalID=alice,GlueSEUniqueID=gw38.hep.ph.ic.ac.uk,mds-vo-name=UKI-LT
2-IC-HEP-PPS,mds-vo-name=local,o=grid

GlueSAStateAvailableSpace: 275474688
GlueSAStateUsedSpace: 35469432
GlueChunkKey: GlueSEUniqueID=gw38.hep.ph.ic.ac.uk

dn: GlueSALocalID=alice,GlueSEUniqueID=grid08.ph.gla.ac.uk,mds-vo-name=UKI-Sco
tGrid-Gla-PPS,mds-vo-name=local,o=grid

GlueSAStateAvailableSpace: 3840000000
GlueSAStateUsedSpace: 1360000000
GlueChunkKey: GlueSEUniqueID=grid08.ph.gla.ac.uk

dn: GlueSALocalID=alice,GlueSEUniqueID=grid13.csl.ee.upatras.gr,mds-vo-name=Pr
eGR-02-UPATRAS,mds-vo-name=local,o=grid

GlueSAStateAvailableSpace: 186770000
GlueSAStateUsedSpace: 10090000
GlueChunkKey: GlueSEUniqueID=grid13.csl.ee.upatras.gr
[...]

5.2. R-GMA

As explained in section 3.3.5, R-GMA is an alternative information system to MDS. The standard GLUE infor-
mation is published in R-GMA, together with various monitoring data, and the system is also available for users
to publish their own data. The system can be used via a command-line interface or APIs for C, C++, Python and
Java, and for queries there is also a web browser interface. Several applications already use R-GMA, especially for
accounting and monitoring purposes.

This section gives a brief overview of R-GMA, but for more information see [24].

CERN-LCG-GDEIS-722398 Manuals Series Page 63

5.2.1. R-GMA concepts

From a user point of view, R-GMA is very similar to a standard relational database. Data are organised in relational
tables, and inserted and queried with SQL-style INSERT and SELECT statements (the allowed syntax is a subset of
SQL, but reasonably complete for most purposes). However, there are some differences to bear in mind. The
most basic is that a standard relational database can only have one row (tuple) with a given primary key value, but
R-GMA usually has more than one. Related to this is the fact that R-GMA supports three different query types.
Each tuple has a timestamp, and for a given primary key value you can query the most recent tuple (Latest query),
a history of all tuples within some defined retention period (History query), or ask for tuples to be streamed to
you as they are published (Continuous query). Continuous queries can also return a limited amount of historical
(“old”) data.

There are also some differences depending on how and where the data are stored. Each site has an R-GMA
server which deals with all R-GMA interaction from clients at that site. The servers store data published from
local clients (known as primary producers), and may also collect data from other sites and re-publish it (secondary
producers). Generally speaking, primary producers answer Continuous queries and secondary producers answer
Latest and History queries; the latter query types are only supported if someone has created a secondary producer
for the table(s) concerned (this is normally the case for standard tables, e.g. GLUE). The data may be stored either
in memory or in a real database, and some queries, notably joins, are only possible if all the required data can be
found in a single real database. Such producers are known as archivers.

The local R-GMA servers store all the data and deal with all the client interactions, so in this sense R-GMA
is a distributed system. However, there is also a central server known as the Registry, which holds the schema
(the definitions of all the tables), and has lists of all consumers and producers to allow them to find each other. At
present the Registry is a unique service in the Grid.

Users are free to create and use their own tables. However, at present there is only a single namespace for
tables, so users should try to choose distinctive table names, e.g. prefixed with the VO or application name. There
is a standard table called userTable which can be used for simple tests.

R-GMA is a secure service to the extent that you need a valid proxy to use it (or a valid certificate in your web
browser). However, there is currently no authorisation control, so anyone can read and publish to any table. This
is expected to be added in future releases.

5.2.2. The R-GMA Browser

The R-GMA browser is usually installed on each R-GMA server. It allows the user to easily navigate the schema
(to see what tables are available and how they are defined), see all available producers for a table and query the
(selected) producers. All this can be achieved using a web interface.

Figure 9 shows this R-GMA browser web interface. It is accessible via the following URL:

https://lcgmon01.gridpp.rl.ac.uk:8443/R-GMA/index.html

You can replace the hostname with the name of your local server to get a better response. In the left-hand bar
you have a list of predefined tables to query; selecting one of them will give a drop-down list of matching items
you can select, or you can just hit the Query button to see everything.

Alternatively, selecting the “Table Sets” link gives a complete list of all tables in the schema. Clicking on a

CERN-LCG-GDEIS-722398 Manuals Series Page 64

table name gives a page where you can query the table definition, enter an SQL query, select the query type, and
see and select from a list of all producers for that table. If you simply hit the Query button you get a Latest query
for all data in the table, which corresponds to the intuitive idea of the current content of the table.

The best way to get some understanding of R-GMA is to play with the query interface for one of the standard
tables, e.g. GlueSite, as the interface is reasonably intuitive. The browser is read-only so you can’t do any damage.

Figure 9: The R-GMAWeb Interface

5.2.3. The R-GMA CLI

An R-GMA CLI is available on every UI and WN. This interface allows the user to perform queries and also to
publish new information. It includes a consumer and can initiate both primary and secondary producers, although
it does not provide all the detailed options available in the APIs.

The user can interact with the CLI directly from the command line by using the -c option:

rgma -c ‘‘select Web from GlueSite where UniqueId=‘lcgmon01.gridpp.rl.ac.uk’’’

+---------------------------------+
| Web |
+---------------------------------+

CERN-LCG-GDEIS-722398 Manuals Series Page 65

| http://www.gridpp.ac.uk/tier1a/ |
+---------------------------------+
1 rows

If you simply type rgma an interactive shell is started:

Welcome to the R-GMA virtual database for Virtual Organisations.
==

Your local R-GMA server is:

https://lcgmon01.gridpp.rl.ac.uk:8443/R-GMA

You are connected to the following R-GMA Registry services:

https://lcgic01.gridpp.rl.ac.uk:8443/R-GMA/RegistryServlet

You are connected to the following R-GMA Schema service:

https://lcgic01.gridpp.rl.ac.uk:8443/R-GMA/SchemaServlet

Type ‘‘help’’ for a list of commands.

rgma> select Web from GlueSite where UniqueId=’lcgmon01.gridpp.rl.ac.uk’

+---------------------------------+
| Web |
+---------------------------------+
| http://www.gridpp.ac.uk/tier1a/ |
+---------------------------------+
1 rows
rgma>

As shown, the CLI reports the location of the registry, which holds pointers to all the R-GMA producers for
all sites and VOs. Queries will collect information from the appropiate producers wherever they are located.

The syntax of all the commands available in the R-GMA interface can be obtained using the help command
to get a list of the supported commands, and typing help <command> to get information on a particular command.
A list of the most important commands is as follows:

CERN-LCG-GDEIS-722398 Manuals Series Page 66

Command Description

help [<command>] Display information (general or about a specific
command)

exit / quit / CTRL-D Exit the R-GMA command line shell

show [tables | producers of <table>] Show the tables in the schema, or the current pro-
ducers for a given table

describe <table> Show the column names and types for the specified
table

select Query R-GMA (SQL syntax)

set query latest | continuous |
history

Set the type of subsequent queries

insert Insert a tuple into a primary producer (SQL syntax)

secondaryproducer <table> Declare a table to be consumed and republished by
a secondary producer

set [secondary]producer latest |
continuous | history

Set the supported query type for the primary or sec-
ondary producer

set [timeout | maxage] <timeout>
[<units>]

Set the timeout for queries or the maximum age of
tuples to return

A simple example of how to query the R-GMA virtual database follows.

Example 5.2.3.1 (Querying the R-GMA Information System)

Inside the interface you can easily perform any query using SQL syntax:

rgma> set query continuous
Set query type to continuous
rgma> set timeout 120 seconds
Set timeout to 120 seconds
rgma> select UniqueID, TotalCPUs from GlueCE

+--+-----------+
| UniqueID | TotalCPUs |
+--+-----------+
hepgrid2.ph.liv.ac.uk:2119/jobmanager-lcgpbs-atlas	498
hepgrid2.ph.liv.ac.uk:2119/jobmanager-lcgpbs-dteam	498
hepgrid2.ph.liv.ac.uk:2119/jobmanager-lcgpbs-lhcb	498
hepgrid2.ph.liv.ac.uk:2119/jobmanager-lcgpbs-babar	498
grid001.fi.infn.it:2119/jobmanager-lcgpbs-lhcb	68
grid001.fi.infn.it:2119/jobmanager-lcgpbs-cms	68
grid001.fi.infn.it:2119/jobmanager-lcgpbs-atlas	68
grid001.fi.infn.it:2119/jobmanager-lcgpbs-lhcb	68

CERN-LCG-GDEIS-722398 Manuals Series Page 67

grid001.fi.infn.it:2119/jobmanager-lcgpbs-cms	68
grid001.fi.infn.it:2119/jobmanager-lcgpbs-atlas	68
grid012.ct.infn.it:2119/jobmanager-lcglsf-alice	174
grid001.fi.infn.it:2119/jobmanager-lcgpbs-lhcb	68
grid001.fi.infn.it:2119/jobmanager-lcgpbs-cms	68
grid001.fi.infn.it:2119/jobmanager-lcgpbs-atlas	68
grid012.ct.infn.it:2119/jobmanager-lcglsf-infinite	174
hepgrid2.ph.liv.ac.uk:2119/jobmanager-lcgpbs-atlas	498
hepgrid2.ph.liv.ac.uk:2119/jobmanager-lcgpbs-dteam	498
hepgrid2.ph.liv.ac.uk:2119/jobmanager-lcgpbs-lhcb	498
hepgrid2.ph.liv.ac.uk:2119/jobmanager-lcgpbs-babar	498
+--+-----------+
19 rows

In this example, we first set the type of query to continuous. That is, new tuples are received as they are
published, and the query will not terminate unless the user aborts or a maximum time for the query is reached.
This timeout is then defined as 120 seconds. Finally, we query for the ID and the number of CPUs of all CEs
publishing information into R-GMA in the two minutes following the query.

5.2.4. R-GMA APIs

There exist R-GMA APIs in Java, C, C++ and Python. They include methods for creating consumers, as well as
primary and secondary producers; setting the types of queries and of producers, retention periods and time outs;
retrieving tuples, and inserting data. The APIs are beyond the scope of this introduction, but detailed documentation
exists for all APIs, including example code [24].

5.3. SERVICEDISCOVERY

The gLite 3.1 Service Discovery (SD) API makes it possible to access service details published to the Information
Systems. The main purpose is to answer questions like: I am at CERN, in the ops VO. Where is a MyProxy server?
It therefore represents a simplified view of the Grid Information System to locate resources/services and query
their properties. The SD interface supports several information systems, currently MDS, R-GMA, Globus MDS4,
and a local service.xml file. The client access mode to the underlying infrastructure that holds the information
is set by environment variables.

• R-GMA: the R-GMA client software must be installed. R-GMA will look in GLITE LOCATION for its
configuration files. For connection to a secure server, either X509 USER PROXY or TRUSTFILE must also be
defined;

• BDII: the environment variable LCG GFAL INFOSYSmust contain the hostname and port number of the BDII
service to query;

• FILE: the default configuration file is in $GLITE LOCATION/etc/services.xml and can be overidden by
$HOME/.glite/etc/services.xml.

The gLite 3.1 Service Discovery API provides interfaces for the Java and C/C++ programming languages,
and a command line interface (glite-sd-query). The gLite 3.1 Service Discovery User Guide [53] offers a

CERN-LCG-GDEIS-722398 Manuals Series Page 68

comprehensive documentation of the SD APIs.

5.3.1. Running a Service Discovery query

In order to use Service Discovery, the user has to set the GLITE SD PLUGIN variable to specify the Information
System(s) to be queried. To use all of the R-GMA, BDII and XML file-based information systems set:

GLITE_SD_PLUGIN="rgma,bdii,file"

The API will then try each in turn until one of them returns something.

The glite-sd-query command allows the listing of basic information about known services. To list detailed
information about all services at a site, use the -s option instead:

glite-sd-query -x -s "cern.ch"

If a user wants to know more details about a specific service of type myproxy located at CERN, the same
command is used with the following options:

> glite-sd-query -t myproxy -s CERN-PROD

Name: myproxy-fts.cern.ch:7512
Type: MyProxy
Endpoint: myproxy-fts.cern.ch:7512
Version: 1.1.0

Name: prod-px.cern.ch:7512
Type: MyProxy
Endpoint: prod-px.cern.ch:7512
Version: 1.1.0

Note: as an alternative to the -s option, the environment variable GLITE SD SITE can be used to restrict the
search to a given site. The value of the variable can be either the name of the site in the GOC DB or the DNS
domain of the site.

Note: the type of service is specified as part of the GLUE schema, and may have a more complex format: for
example, the FTS service has a type of org.glite.FileTransfer.

5.4. MONITORING

The ability to monitor resource related parameters is currently considered a necessary functionality in any network.
In such a heterogeneous and complex system as the Grid, this necessity becomes fundamental. A monitoring
system implies the existence of a central repository of operational information (in WLCG/EGEE, the GOCDB).

CERN-LCG-GDEIS-722398 Manuals Series Page 69

The monitoring system should be able to collect data from the resources in the system, in order to analyze the
usage, behavior and performance of the Grid, detect and notify fault conditions, contract violations and user-
defined events.

The GOC web page contains a whole section concerning monitoring information for WLCG/EGEE. Apart
from R-GMA, several different monitoring tools are in use, including general-purpose monitoring tools and Grid
specific systems like GridICE [32].

Also important are the web pages publishing the results of functional tests applied periodically to the all the
sites registered within WLCG/EGEE. The results of these tests show if a site is responding correctly to standard
Grid operations; otherwise, an investigation on the cause of the unexpected results is undertaken. Some VOs may
even decide to automatically exclude from their BDII the sites that are not passing the functional tests successfully,
so that they do not appear in the IS and are not considered for possible use by their applications.

Note: please do not report problems occurring with a site if this site is marked as having failures in the standard
test reports. If that is the case, the site will already have been notified of the problems by the grid operations staff.
Also, the site details in the GOCDB will show if the site is currently in scheduled downtime. The results of some
sets of functional sites can be checked in the following URLs:

http://goc.grid.sinica.edu.tw/gstat/

https://lcg-sam.cern.ch:8443/sam/sam.py

or for the PPS:

https://lcg-sam.cern.ch:8443/sam-pps/sam.py

In the following section, as an example of a monitoring system, the GridICE service is described.

5.4.1. GridICE

The GridICE monitoring service is structured in a five layer architecture. The resource information is obtained
from the gLite 3.1 Information Service, namely MDS. The information model for the retrieved data is an extended
GLUE Schema, where some new objects and attributes have been added to the original model. Please refer to the
documentation presented in [32] for details on this.

GridICE not only periodically retrieves the last information published in MDS, but also collects historical
monitoring data in a persistent storage. This allows the observation of the evolution in time of the published data.
In addition, GridICE will provide performance analysis, usage level and general reports and statistics, as well as
the possibility to configure event detection and notification actions, although these two functionalities are still at
an early development stage.

Note: All the information retrievable using GridICE (including the extensions of the GLUE schema) is also
obtainable through R-GMA, by defining the proper archivers. This represents an alternative way to obtain the
information.

The GridICE web page that shows the monitoring information for WLCG/EGEE is accessible at the following
URL (also linked from the GOC web site):

http://gridice2.cnaf.infn.it:50080/gridice/site/site.php

CERN-LCG-GDEIS-722398 Manuals Series Page 70

http://gridice2.cnaf.infn.it:50080/gridice/site/site.php
http://goc.grid.sinica.edu.tw/gstat/
https://lcg-sam.cern.ch:8443/sam/sam.py
https://lcg-sam.cern.ch:8443/sam-pps/sam.py

In the initial page (site view) a summary of the current status of the computing and storage resources per site
is presented. This includes the load of the site network, the number of jobs being run or waiting to be run, and
the amount of total and available storage space at the site. If a particular site is selected, then several pieces of
information regarding each one of the services present on each of the nodes of the site are shown. The nodes are
classified as Resource Brokers, CE access nodes or SE access nodes.

There are also other types of views: Geo, Gris and VO views. The Geo view presents a geographical repre-
sentation of the Grid. The Gris view shows current and historical information about the status (on or off) of every
node. Finally, the VO view holds the same information as the site view, but here nodes are classified on a per VO
basis. The user can specify a VO name, and get the data about all the nodes that support it.

Finally, the job monitoring section of GridICE provides figures about the number of jobs for each VO that are
running or are queued at each Grid site.

CERN-LCG-GDEIS-722398 Manuals Series Page 71

6. WORKLOAD MANAGEMENT

6.1. INTRODUCTION

The Workload Management System (WMS) is the gLite 3.1 component that allows users to submit jobs, and
performs all tasks required to execute them, without exposing the user to the complexity of the Grid. It is the
responsibility of the user to describe his jobs and their requirements, and to retrieve the output when the jobs are
finished.

In the WLCG/EGEE Grid, two different workload management systems are deployed: the legacy LCG-2
system, developed in the EDG project, and the new system from the EGEE project, which is an evolution of the
former and therefore has more functionalities.

In the following sections, we will describe the basic concepts of the language used to describe a job, the basic
command line interface to submit and manage simple jobs, a description of more advanced job types, details on
how to configure the command line interface, and some user tools related to job management.

6.2. THE JOB DESCRIPTION LANGUAGE

The Job Description Language (JDL) is a high-level language based on the Classified Advertisement (ClassAd)
language [33], used to describe jobs and aggregates of jobs with arbitrary dependency relations. The JDL is used
in WLCG/EGEE to specify the desired job characteristics and constraints, which are taken into account by the
WMS to select the best resource to execute the job.

The fundamentals of the JDL are given in this section. A complete description of the JDL syntax is out of the
scope of this guide, and can be found in [35]. The description of the JDL attributes for the LCG-2 WMS is in [36],
and for the gLite WMS is in [36][38].

A job description is a file (called JDL file) consisting of lines having the format:

attribute = expression;

Expressions can span several lines, but only the last one must be terminated by a semicolon. Literal strings are
enclosed in double quotes. If a string itself contains double quotes, they must be escaped with a backslash (e.g.:
Arguments = "\"hello\" 10"). The character “ ‘ ” cannot be used in the JDL.

Comments must be preceded by a sharp character (#) or a double slash (//) at the beginning if each line.
Multi-line comments must be enclosed between “/*” and “*/” .

Attention! The JDL is sensitive to blank characters and tabs. No blank characters or tabs should follow the
semicolon at the end of a line.

CERN-LCG-GDEIS-722398 Manuals Series Page 72

Example 6.2.1 (Define a simple job)

To define a job which runs the hostname command on the WN, write a JDL like this:

Executable = "/bin/hostname";
StdOutput = "std.out";
StdError = "std.err";

The Executable attribute specifies the command to be run by the job. If the command is already present on
the WN, it must be expressed as an absolute path; if it has to be copied from the UI, only the file name must be
specified, and the path of the command on the UI should be given in the InputSandbox attribute. For example:

Executable = "test.sh";
InputSandbox = {"/home/doe/test.sh"};
StdOutput = "std.out";
StdError = "std.err";

The Arguments attribute can contain a string value, which is taken as argument list for the executable:

Arguments = "fileA 10";

In the Executable and in the Arguments attributes it may be necessary to use special characters, such as &, \,
|, >, <. If these characters should be escaped in the shell (for example, if they are part of a file name), they should
be preceded by triple \ in the JDL, or specified inside quoted strings.

The attributes StdOutput and StdError define the name of the files containing the standard output and stan-
dard error of the executable, once the job output is retrieved. For the standard input, an input file can be similarly
specified:

StdInput = "std.in";

but this attribute is rarely used.

If files have to be copied from the UI to the execution node, they must be listed in the InputSandbox attribute:

InputSandbox = {"test.sh", "fileA", "fileB", ...};

Only the file specified as Executable will have automatically the execution flag: if other files in the input
sandbox have such flag on the UI, they will lose it when copied to the WN.

Finally, the files to be transferred back to the UI after the job is finished can be specified using the OutputSandbox
attribute:

OutputSandbox = {"std.out", "std.err"};

CERN-LCG-GDEIS-722398 Manuals Series Page 73

where the file names are paths relative to the work directory of the job (the current directory when the executable
starts).

Wildcards are allowed only in the InputSandbox attribute. The list of files in the input sandbox is rela-
tive to the current directory in the UI. Absolute paths cannot be specified in the OutputSandbox attribute. The
InputSandbox cannot contain two files with the same name, even if they have a different absolute path, as when
transferred they would overwrite each other.

The shell environment of the job can be modified using the Environment attribute. For example:

Environment = {"CMS_PATH=$HOME/cms", "CMS_DB=$CMS_PATH/cmdb"};

The VirtualOrganisation attribute can be used to explicitly specify the VO of the user:

VirtualOrganisation = "cms";

but is superseded by the VO contained in the user proxy, if a VOMS proxy is used. For normal proxies, the VO
can either be specified in the JDL, in the UI configuration files or as argument to the job submission command (see
section 6.3.1).

Note: a common error is to write VirtualOrganization: it will not work.

To summarise, a typical JDL for a simple Grid job would look like:

Executable = "test.sh";
Arguments = "fileA fileB";
StdOutput = "std.out";
StdError = "std.err";
InputSandbox = {"test.sh", "fileA", "fileB"};
OutputSandbox = {"std.out", "std.err"};

where test.sh could be, for example:

#!/bin/sh
echo "First file:"
cat $1
echo "Second file:"
cat $2

In section 6.3.1 it is explained how to submit such job.

CERN-LCG-GDEIS-722398 Manuals Series Page 74

Example 6.2.2 (Specifying requirements on the CE)

The Requirements attribute can be used to express constraints on the resources where the job should run. Its
value is a Boolean expression that must evaluate to true for a job to run on that specific CE. For that purpose all
the GLUE attributes of the Information System can be used, by prepending the other. string to the attribute name.
For a list of GLUE attributes, see Appendix G.

Note: Only one Requirements attribute can be specified (if there are more than one, only the last one is con-
sidered). If several conditions must be applied to the job, then they all must be combined in a single Requirements
attribute.

For example, let us suppose that the user wants to run on a CE using PBS as batch system, and whose WNs
have at least two CPUs. He will write then in the job description file:

Requirements = other.GlueCEInfoLRMSType == "PBS" && other.GlueCEInfoTotalCPUs > 1;

The WMS can be also asked to send a job to a particular queue in a CE with the following expression:

Requirements = other.GlueCEUniqueID == "lxshare0286.cern.ch:2119/jobmanager-pbs-short";

or to any queue in a CE:

Requirements = other.GlueCEInfoHostName == "lxshare0286.cern.ch";

Note: as explained in 6.5, normally the condition that a CE is in production state is automatically added
to the Requirements attribute. Thus, CEs that do not correctly publish this will not match. This condition is,
nevertheless, configurable.

If the job duration is significant, it is strongly advised to put a requirement on the maximum CPU time, or the
wallclock time (expressed in minutes), needed for the job to complete. For example, to express the fact that the job
could need up to eight CPU hours and 12 wallclock hours, this expression should be used:

Requirements = other.GlueCEPolicyMaxCPUTime > 480 &&
other.GlueCEPolicyMaxWallClockTime > 720;

Note: if a job exceeds the time limits of the queue where it is running, it will be killed by the batch system.
Currently, the WMS does not always report correctly to the user that the job failed due to exceeded time limits, if
it cannot distinguish this case from an abrupt death of the job due to other causes: this can happen only if the batch
system properly signals the job wrapper that the job is about to be killed.

Note: the CPU time needed by a job is inversely proportional to the “speed” of the CPU, which is expressed
by the GlueHostBenchmarkSI00 attribute. To take into account the differences in speed of the CPUs in different
CEs, the CPU time should be rescaled to the speed. If, for example, the job needs 720 minutes on a CPU with a
speed of 1000, the correct requirement should be

Requirements = other.GlueCEPolicyMaxCPUTime >
(720 * 1000 / other.GlueHostBenchmarkSI00);

CERN-LCG-GDEIS-722398 Manuals Series Page 75

If the job must run on a CE where a particular experiment software is installed and this information is published
by the CE, something like the following must be written:

Requirements = Member("VO-cms-CMSSW_2_0_0",
other.GlueHostApplicationSoftwareRunTimeEnvironment);

Note: the Member operator is used to test if its first argument (a scalar value) is a member of its second
argument (a list). In fact, the GlueHostApplicationSoftwareRunTimeEnvironment attribute is a list of strings
and is used to publish any VO-specific information relative to the CE (typically, information on the VO software
available on that CE).

Example 6.2.3 (Specifying requirements using wildcards)

It is also possible to use regular expressions when expressing a requirement. Let us suppose for example that
the user wants all his jobs to run on any CE in the domain cern.ch. This can be achieved putting in the JDL file
the following expression:

Requirements = RegExp("cern.ch", other.GlueCEUniqueID);

The opposite can be required by using:

Requirements = (!RegExp("cern.ch", other.GlueCEUniqueID));

Example 6.2.4 (Specifying OS and architecture of the CE)

The user might need to be able to specify which types of CE are to be used to process the job. Here are a couple
of examples that provide JDL setups to allow this for many popular operating systems and machine architectures.

Red Hat Enterprise Linux 3, binary release

Requirements = ((other.GlueHostOperatingSystemName == "CentOS" ||
other.GlueHostOperatingSystemName == "RedHatEnterpriseAS"

) &&
(other.GlueHostOperatingSystemRelease >= 3.0 &&

other.GlueHostOperatingSystemRelease < 4.0
)

) ||
((other.GlueHostOperatingSystemName == "Scientific Linux" ||

other.GlueHostOperatingSystemName == "Scientific Linux CERN"
) &&

(RegExp("3\.[0-9]\.[0-9]",other.GlueHostOperatingSystemRelease)
)

) ;

CERN-LCG-GDEIS-722398 Manuals Series Page 76

The wildcard at the end makes less assumptions about specific OS builds, so it is recommended to include it
for compatibility and reliability reasons.

Red Hat Enterprise Linux 4, binary release

Requirements = (other.GlueHostOperatingSystemName == "CentOS" ||
other.GlueHostOperatingSystemName == "RedHatEnterpriseAS" ||
other.GlueHostOperatingSystemName == "ScientificSL" ||
other.GlueHostOperatingSystemName == "ScientificCERNSLC"

) &&
(other.GlueHostOperatingSystemRelease >= 4.0 &&

other.GlueHostOperatingSystemRelease < 5.0
) ;

or use

SN = other.GlueHostOperatingSystemName ;
SR = other.GlueHostOperatingSystemRelease ;

RHEL4 = (SN == "CentOS" || SN == "RedHatEnterpriseAS" ||
SN == "ScientificSL" || SN == "ScientificCERNSLC"

) &&
(SR >= 4.0 && SR < 5.0
) ;

Requirements = RHEL4 ;

to make the requirements less contrived, as above.

The following examples lists some requirements to use in the user’s JDL file for matching specific CE archi-
tectures:

Intel i386-i686

Requirements = other.GlueHostArchitecturePlatformType is UNDEFINED ||
RegExp("i[3456]86",other.GlueHostArchitecturePlatformType) ;

This requirement also allows sites where this value is not defined.

64-bit Xeon and Opteron

Requirements = (other.GlueHostArchitecturePlatformType == "x86_64") ;

64-bit Itanium

Requirements = (other.GlueHostArchitecturePlatformType == "ia64") ;

CERN-LCG-GDEIS-722398 Manuals Series Page 77

Example 6.2.5 (Specifying requirements on a close SE)

In order to specify requirements on the SE “close” to the CE where the job should run, the WMS uses a special
match-making mechanism, called gang-matching[37]. For example, to ensure that the job runs on a CE with at
least 200 MB of free disk space on a close SE, the following JDL expression can be used:

Requirements = anyMatch(other.storage.CloseSEs,target.GlueSAStateAvailableSpace > 204800);

Attention! At the time of writing, the gang-matching must not be used to submit jobs to the gLite WMS: due
to a bug, this would block the WMS for several hours. However, it is still possible to require, for example, to run
on a CE close to a given SE by using an expression like:

Member("castorsrm.pic.es", other.GlueCESEBindGroupSEUniqueID);

It is not possible, though, to write down requirements on SE properties other than their name. As a last note,
the above requirement will not work with the LCG-2 WMS.

Example 6.2.6 (A complex requirement used in gLite 3.1)

The following example has been actually used by the alice VO in order to find a CE that has some software
packages installed (VO-alice-AliEn and VO-alice-ALICE-v4-01-Rev-01), and that allows the job to run for up
to one day (i.e., so that the job is not aborted before it has time to finish).

Requirements = other.GlueHostNetworkAdapterOutboundIP==true &&
Member("VO-alice-AliEn", other.GlueHostApplicationSoftwareRunTimeEnvironment) &&
Member("VO-alice-ALICE-v4-01", other.GlueHostApplicationSoftwareRunTimeEnvironment) &&
(other.GlueCEPolicyMaxWallClockTime > 1440);

Example 6.2.7 (Using the automatic resubmission)

It is possible to have the WMS automatically resubmitting jobs which, for some reason, are aborted by the
Grid. Two kinds of resubmission are available for the gLite 3.1 WMS: the deep resubmission and the shallow
resubmission (only the former is available in the LCG-2 WMS). The resubmission is deep when the job fails after
it has started running on the WN, and shallow otherwise.

The user can limit the number of times theWMS should resubmit a job by using the JDL attributes RetryCount
and ShallowRetryCount for the deep and shallow resubmission respectively. For example, to disable the deep
resubmission and limit the attempts of shallow resubmission to 3:

RetryCount = 0;
ShallowRetryCount = 3;

It is advisable to disable the deep resubmission, as it may happen that a job fails after it has already done
something (for example, creating a Grid file), or the WMS thinks that a still running job has failed; depending

CERN-LCG-GDEIS-722398 Manuals Series Page 78

on the job, the resubmission of an identical job might generate inconsistencies. On the other hand, the shallow
resubmission is extremely useful to improve the chances of a job being correctly executed, and it is strongly
recommended to use it.

The values of the MaxRetryCount and MaxShallowRetryCount parameters in the WMS configuration file
represent both the default and the maximum limits for the number of resubmissions.

Example 6.2.8 (Using the automatic proxy renewal)

The proxy renewal feature of the WMS is automatically enabled, as long as the user has stored a long-
term proxy in the default MyProxy server (usually defined in the MYPROXY SERVER environment variable for the
MyProxy client commands, and in the UI configuration for theWMS commands). However it is possible to indicate
to the WMS a different MyProxy server in the JDL file:

MyProxyServer = "myproxy.cern.ch";

The proxy renewal can be disabled altogether by adding to the JDL:

MyProxyServer = "";

Example 6.2.9 (Defining the “goodness” of a CE)

The choice of the CE where to execute the job, among all the ones satisfying the requirements, is based on the
rank of the CE, a quantity expressed as a floating-point number. The CE with the highest rank is the one selected.

By default, the rank is equal to -other.GlueCEStateEstimatedResponseTime, where the estimated re-
sponse time is an estimation of the time interval between the job submission and the beginning of the job execution.
However, the user can redefine the rank with the Rank attribute as a function of the CE attributes. For example:

Rank = other.GlueCEStateFreeCPUs;

which will rank best the CE with the most free CPUs. The next one is a more complex expression:

Rank = (other.GlueCEStateWaitingJobs == 0 ? other.GlueCEStateFreeCPUs :
-other.GlueCEStateWaitingJobs);

In this case, the selected CE will be the one with the least waiting jobs, or, if there are no waiting jobs, the one
with the most free CPUs.

6.3. THE COMMAND LINE INTERFACE

In this section, all commands available for the user to manage jobs are described. For completeness, both the gLite
CLI [28][27] and the LCG-2 CLI [29] are described.

CERN-LCG-GDEIS-722398 Manuals Series Page 79

The gLite WMS implements a new service to manage jobs: theWMProxy. In previous gLite versions, it also
supported the Network Server, which is the same service used in the LCG-2 WMS and offered basically the same
functionalities in both systems. The WMProxy, on the contrary, implements several new functionalities, among
which:

• submission of job collections;

• faster authentication;

• faster match-making;

• faster response time for users;

• higher job throughput.

The two job management systems (the LCG-2WMS and the gLiteWMS offer each one a different set of commands
with very similar functionalities and syntax. The following table summarizes these commands with their most
commonly used options, and the use of these commands will be described in the following sections.

Function LCG-2 WMS gLite WMS
Submit a job edg-job-submit [-o joblist]

jdlfile
glite-wms-job-submit [-d
delegID] [-a] [-o joblist]
jdlfile

See job status edg-job-status [-v
verbosity] [-i joblist]
jobIDs

glite-wms-job-status [-v
verbosity] [-i joblist]
jobIDs

See job logging
information

edg-job-get-logging-info
[-v verbosity] [-i joblist]
jobIDs

glite-wms-job-logging-info
[-v verbosity] [-i joblist]
jobIDs

Retrieve job out-
put

edg-job-get-output [-dir
outdir] [-i joblist] jobIDs

glite-wms-job-output [-dir
outdir] [-i joblist] jobIDs

Cancel a job edg-job-cancel [-i joblist]
jobID

glite-wms-job-cancel [-i
joblist] jobID

List available re-
sources

edg-job-list-match jdlfile glite-wms-job-list-match
[-d delegID] [-a] jdlfile

Delegate proxy glite-wms-job-delegate-proxy
-d delegID

Attention! The commands glite-job-* were used in the past to manage jobs in the gLite WMS submitted
via Network Server. These commands are obsolete and are not part of the User Interface any longer.

6.3.1. Single Job Submission

To submit a job to theWLCG/EGEE Grid, the user must have a valid proxy certificate in the User Interface machine
(as described in Chapter 4) and use one of the following commands:

glite-wms-job-submit -a jdlfile (gLite WMS)
edg-job-submit jdlfile (LCG-2 WMS)

where jdlfile is a file containing the job description, usually with extension .jdl. The -a option for the gLite
command is necessary to automatically delegate a user proxy to the WMProxy server (see later).

CERN-LCG-GDEIS-722398 Manuals Series Page 80

Example 6.3.1.1 (Submitting a simple job)

Create a file test.jdl with this content:

Executable = "/bin/hostname";
StdOutput = "std.out";
StdError = "std.err";
OutputSandbox = {"std.out","std.err"};

It describes a simple job that will execute /bin/hostname. Standard output and standard error are redirected
to the files std.out and std.err respectively; the OutputSandbox attribute ensures that they are transferred back
to the User Interface after the job is finished.

Now, submit the job via gLite WMS by doing:

$ glite-wms-job-submit -a test.jdl

If the submission is successful, the output is similar to:

Connecting to the service https://wms104.cern.ch:7443/glite_wms_wmproxy_server

====================== glite-wms-job-submit Success ======================

The job has been successfully submitted to the WMProxy
Your job identifier is:

https://lb102.cern.ch:9000/vZKKk3gdBla6RySximq_vQ

==

In case of failure, an error message will be displayed and an exit status different from zero will be returned.

The command returns to the user the job identifier (jobID), which uniquely defines the job and can be used to
perform further operations on the job, like interrogating the system about its status, or canceling it. The format of
the jobID is:

https://<LB_hostname>[:<port>]/<unique_string>

where <unique string> is guaranteed to be unique and <LB hostname> is the host name of the Logging &
Bookkeeping (LB) server for the job, which may sit on the WMS used to submit the job, or on a separate machine
(to improve the scalability of the WMS).

Note: the jobID is not a web URL.

Note: to submit jobs via gLite WMS, it is required to have a VOMS proxy, as with a standard proxy the
submission will fail with an error like:

CERN-LCG-GDEIS-722398 Manuals Series Page 81

Error - Operation failed
Unable to delegate the credential to the endpoint:
https://wms104.cern.ch:7443/glite_wms_wmproxy_server
User not authorized:
unable to check credential permission (/opt/glite/etc/glite_wms_wmproxy.gacl)
(credential entry not found)
credential type: person
input dn: /C=CH/O=CERN/OU=GRID/CN=John Doe

If the command returns the following error:

Error - WMProxy Server Error
LCMAPS failed to map user credential

Method: getFreeQuota
Error code: 1208

it means that there are authentication problems between the UI and the WMProxy server (you might not be autho-
rized to use that WMProxy server).

If the job is submitted to an LCG-2 WMS, an authentication problem will produce instead the following
message:

**** Warning: API_NATIVE_ERROR ****
Error while calling the "NSClient::multi" native api
AuthenticationException: Failed to establish security context...

**** Error: UI_NO_NS_CONTACT ****
Unable to contact any Network Server

Many options are available to the job submission commands.

If the user proxy does not have VOMS extensions (allowed only for submission via LCG-2WMS), the user can
specify his VO with the --vo <vo name> option; otherwise the default VO is taken from the standard configuration
files (see 6.5). If a VO name is not specified anywhere, at submission time this error will be returned:

**** Error: UI_NO_VOMS ****
Unable to determine a valid user’s VO

The -o <file path> option allows users to specify a file to which the jobID of the submitted job will be
appended. This file can be given to other job management commands to perform operations on more than one job
with a single command, and it is a convenient way to keep trace of one’s jobs.

The -r <CEId> option is used to directly send a job to a particular CE. If used, the match making will not
be carried out (see Section 6.3.5). The drawback is that the BrokerInfo file, which provides information about the
evolution of the job, will not be created, and therefore the use of this option is discouraged.

A CE is identified by <CEId>, which is a string with the following format:

CERN-LCG-GDEIS-722398 Manuals Series Page 82

<CE hostname>:<port>/jobmanager-<service>-<queue> (for a LCG CE)

where <CE hostname> and <port> are the host name of the machine and the port where the Grid Gate is running
(the Globus Gatekeeper for the LCG CE), <queue> is the name of one of the corresponding LRMS queue, and
<service> is the LRMS type, such as lsf, pbs, condor. An example of CEId is:

adc0015.cern.ch:2119/jobmanager-lcgpbs-infinite (LCG CE)

Example 6.3.1.2 (Listing Computing Elements that match a job description)

It is possible to see which CEs are eligible to run a job described by a given JDL using:

glite-wms-job-list-match -a <jdl file> (gLite WMS)
edg-job-list-match <jdl file> (LCG-2 WMS)

The --rank option can be used to display the ranking value of each matching resource.

$ glite-wms-job-list-match -a --rank test.jdl

Connecting to the service https://wms104.cern.ch:7443/glite_wms_wmproxy_server

==

COMPUTING ELEMENT IDs LIST
The following CE(s) matching your job requirements have been found:

CEId *Rank*

- CE.pakgrid.org.pk:2119/jobmanager-lcgpbs-cms 0
- grid-ce0.desy.de:2119/jobmanager-lcgpbs-cms -10
- gw-2.ccc.ucl.ac.uk:2119/jobmanager-sge-default -56
- grid-ce2.desy.de:2119/jobmanager-lcgpbs-cms -107

==

The -o <file path> option can be used to store the CE list on a file.

Example 6.3.1.3 (Delegating a proxy to WMProxy)

Each job submitted to the gLite WMS must be associated to a proxy credential previously delegated by the
owner of the job to the WMProxy server. This proxy is then used any time WMProxy needs to interact with other
services for job related operations.

There are two ways to delegate one’s credentials to WMProxy: either by having the delegation performed
automatically each time a job is submitted, or by explicitly creating a named delegated credential on the WMProxy
server, and subsequently referring to it each time a job is submitted. The advantage if the former method is
simplicity, while that of the latter is better performance (as delegation may require a non-negligible amount of
time).

CERN-LCG-GDEIS-722398 Manuals Series Page 83

We have already used the automatic delegation in the previous examples, where the -a was used with
glite-wms-job-submit and glite-wms-job-list-match. To explicitly delegate a user proxy to WMProxy,
the command to use is:

glite-wms-job-delegate-proxy -d <delegID>

where <delegID> is a string chosen by the user. Subsequent invocations of glite-wms-job-submit and
glite-wms-job-list-match can bypass the delegation of a new proxy if the same <delegID> is given to the
-d option. For example, to delegate a proxy:

$ glite-wms-job-delegate-proxy -d mydelegID

Connecting to the service https://wms104.cern.ch:7443/glite_wms_wmproxy_server

================== glite-wms-job-delegate-proxy Success ==================

Your proxy has been successfully delegated to the WMProxy:
https://wms104.cern.ch:7443/glite_wms_wmproxy_server

with the delegation identifier: mydelegID

==

Alternatively, we can have the system to generate a random <delegID> by doing instead:

$ glite-wms-job-delegate-proxy -a

Connecting to the service https://wms104.cern.ch:7443/glite_wms_wmproxy_server

================== glite-wms-job-delegate-proxy Success ==================

Your proxy has been successfully delegated to the WMProxy:
https://wms104.cern.ch:7443/glite_wms_wmproxy_server

with the delegation identifier: 2cBscHOtaSqCYcH8fNYncw

==

Then, to submit a job:

$ glite-wms-job-submit -d mydelegID test.jdl

Note: due to a current bug, if many WMProxy servers are indicated in the UI configuration,
glite-wms-job-delegate-proxy will delegate a proxy to one of them chosen at random, not to all of them.
This limits the usability of the explicit delegation.

CERN-LCG-GDEIS-722398 Manuals Series Page 84

6.3.2. Job Operations

After a job is submitted, it is possible to see its current status, to retrieve a complete log of the job history, to
recover its output when it is finished, and if needed to cancel it if it has not yet finished. The following examples
explain how.

Example 6.3.2.1 (Retrieving the status of a job)

Given a submitted job whose job identifier is <jobID>, the command is:

glite-wms-job-status <jobID> (gLite WMS)
edg-job-status <jobID> (LCG-2 WMS)

and an example of a possible output from the gLite LB is:

$ glite-wms-job-status https://wms104.cern.ch:9000/fNdD4FW_Xxkt2s2aZJeoeg

BOOKKEEPING INFORMATION:

Status info for the Job : https://wms104.cern.ch:9000/fNdD4FW_Xxkt2s2aZJeoeg
Current Status: Done (Success)
Exit code: 0
Status Reason: Job terminated successfully
Destination: ce1.inrne.bas.bg:2119/jobmanager-lcgpbs-cms
Submitted: Mon Dec 4 15:05:43 2007 CET

which contains the time when the job was submitted, the current status of the job, and the reason for being in that
status (which may be especially helpful for the ABORTED status). The possible states in which a job can be found
were introduced in Section 3.4.1, and are summarized in Appendix C. Finally, the Destination field contains the
CEId of the CE where the job has been submitted and the job exit code, if the job is finished.

The verbosity level controls the amount of information provided. The value of the -v option ranges from 0 to
3 (the default is configurable in the UI). See [29] for detailed information on each of the fields returned.

The commands to get the job status can have several jobIDs as arguments, i.e.:

glite-wms-job-status <jobID1> ... <jobIDN>

or, more conveniently, the -i <file path> option can be used to specify a file with a list of jobIDs (possibly
created by the -o option of a job submission command). In this case, the command asks the user interactively
the status of which job(s) should be printed. The --noint option suppresses the interactivity and all the jobs are
considered.

If the --all option is used instead, the status of all the jobs owned by the user submitting the command is
retrieved. As the number of jobs owned by a single user may be large, there are some options that limit that job

CERN-LCG-GDEIS-722398 Manuals Series Page 85

selection. The --from / --to [MM:DD:]hh:mm[:[CC]YY] options make the command query LB for jobs that were
submitted after/before the specified date and time. The --status <status> option makes the command retrieve
only the jobs that are in the specified status, and the --exclude <status> option makes it retrieve jobs that are
not in the specified status. This two lasts options are mutually exclusive, although they can be used with --from
and --to.

In the following examples, the first command retrieves all jobs of the user that are in the status DONE or
RUNNING, and the second retrieves all jobs that were submitted before the 17:35 of the current day, and that were
not in the CLEARED status.

$ glite-wms-job-status --all -s DONE -s RUNNING
$ glite-wms-job-status --all -e CLEARED --to 17:35

Note: for the --all option to work, it is necessary that an index by owner is created in the LB server;
otherwise, the command will fail, since it will not be possible for the LB server to identify the user’s jobs. Such
index can only be created by the LB server administrator, as explained in [29].

Finally, with the option -o <file path> the command output can be written to a file.

Example 6.3.2.2 (Canceling a job)

A job can be canceled before it ends using the commands

glite-wms-job-cancel <jobID> (gLite WMS)
edg-job-cancel <jobID> (LCG-2 WMS)

A job must be canceled using the command corresponding to the WMS flavour used to submit the job.

These commands require as arguments one or more JobIDs. For example:

$ glite-wms-job-cancel https://wms104.cern.ch:9000/P1c60RFsrIZ9mnBALa7yZA

Are you sure you want to remove specified job(s) [y/n]y : y

Connecting to the service https://128.142.160.93:7443/glite_wms_wmproxy_server

============================= glite-wms-job-cancel Success =============================

The cancellation request has been successfully submitted for the following job(s):

- https://wms104.cern.ch:9000/P1c60RFsrIZ9mnBALa7yZA

==

If the cancellation is successful, the job will terminate in status CANCELLED.

Example 6.3.2.3 (Retrieving the output of a job)

CERN-LCG-GDEIS-722398 Manuals Series Page 86

If the job has successfully finished (it has reached the DONE status), its output can be copied to the UI with the
commands

glite-wms-job-output <jobID> (gLite WMS)
edg-job-get-output <jobID> (LCG-2 WMS)

The job output must be retrieved using the command corresponding to the WMS flavour used to submit the
job.

For example:

$ glite-wms-job-output https://wms104.cern.ch:9000/yabp72aERhofLA6W2-LrJw

Connecting to the service https://128.142.160.93:7443/glite_wms_wmproxy_server

==

JOB GET OUTPUT OUTCOME

Output sandbox files for the job:
https://wms104.cern.ch:9000/yabp72aERhofLA6W2-LrJw
have been successfully retrieved and stored in the directory:
/tmp/doe_yabp72aERhofLA6W2-LrJw

==

The default location for storing the outputs (normally /tmp) is defined in the UI configuration, but it is possible
to specify in which directory to save the output using the --dir <path name> option.

Note: the output of a job will be removed from the WMS machine after a certain period of time. How long
this period is may vary depending on the administrator of the WMS, but the currently suggested time is 10 days,
so users should try always to retrieve their jobs within one week after job completion (to have a safe margin).

Example 6.3.2.4 (Retrieving logging information about submitted jobs)

A complete history of a job is permanently stored in the Logging & Bookkeeping service and can be retrieved
using the commands:

glite-wms-job-logging-info <jobID> (gLite WMS)
edg-job-get-logging-info <jobID> (LCG-2 WMS)

This functionality is especially useful in the analysis of job failures, although the information provided is
sometimes difficult to interpret.

The argument of this command is a list of one or more job identifiers. The -i and -o options work as in the
previous commands.

The following is the typical sequence of events for a successful job:

CERN-LCG-GDEIS-722398 Manuals Series Page 87

$ glite-wms-job-logging-info https://wms104.cern.ch:9000/hk0VSbNhe59j0Buo24G_qw

**
LOGGING INFORMATION:

Printing info for the Job : https://wms104.cern.ch:9000/hk0VSbNhe59j0Buo24G_qw

Event: RegJob
- source = NetworkServer
- timestamp = Thu Dec 14 14:35:03 2007 CET

Event: RegJob
- source = NetworkServer
- timestamp = Thu Dec 14 14:35:04 2007 CET

Event: UserTag
- source = NetworkServer
- timestamp = Thu Dec 14 14:35:04 2007 CET

Event: UserTag
- source = NetworkServer
- timestamp = Thu Dec 14 14:35:04 2007 CET

Event: UserTag
- source = NetworkServer
- timestamp = Thu Dec 14 14:35:04 2007 CET

Event: Accepted
- source = NetworkServer
- timestamp = Thu Dec 14 14:35:08 2007 CET

Event: EnQueued
- result = START
- source = NetworkServer
- timestamp = Thu Dec 14 14:35:08 2007 CET

Event: EnQueued
- result = OK
- source = NetworkServer
- timestamp = Thu Dec 14 14:35:08 2007 CET

Event: DeQueued
- source = WorkloadManager
- timestamp = Thu Dec 14 14:35:09 2007 CET

Event: Match
- dest_id = fangorn.man.poznan.pl:2119/jobmanager-lcgpbs-cms
- source = WorkloadManager
- timestamp = Thu Dec 14 14:35:18 2007 CET

Event: EnQueued

CERN-LCG-GDEIS-722398 Manuals Series Page 88

- result = START
- source = WorkloadManager
- timestamp = Thu Dec 14 14:35:18 2007 CET

Event: EnQueued
- result = OK
- source = WorkloadManager
- timestamp = Thu Dec 14 14:35:18 2007 CET

Event: DeQueued
- source = JobController
- timestamp = Thu Dec 14 14:35:18 2007 CET

Event: Transfer
- destination = LogMonitor
- result = START
- source = JobController
- timestamp = Thu Dec 14 14:35:18 2007 CET

Event: Transfer
- destination = LogMonitor
- result = OK
- source = JobController
- timestamp = Thu Dec 14 14:35:19 2007 CET

Event: Accepted
- source = LogMonitor
- timestamp = Thu Dec 14 14:35:29 2007 CET

Event: Transfer
- destination = LRMS
- result = OK
- source = LogMonitor
- timestamp = Thu Dec 14 14:35:50 2007 CET

Event: Running
- source = LogMonitor
- timestamp = Thu Dec 14 14:38:09 2007 CET

Event: ReallyRunning
- source = LogMonitor
- timestamp = Thu Dec 14 14:41:26 2007 CET

Event: Done
- source = LogMonitor
- timestamp = Thu Dec 14 14:41:26 2007 CET

**

Note: in order to make easier to debug problems with the WMS, when asking for help for problems related to
job submission and management, it is highly advisable to send the output of

CERN-LCG-GDEIS-722398 Manuals Series Page 89

glite-wms-job-logging-info -v 3 <jobID>

that is, using the highest level of verbosity.

6.3.3. Advanced Sandbox Management

A new feature introduced by the gLite WMS is the possibility to indicate input sandbox files stored not on the UI,
but on a GridFTP server, and, similarly, to specify that output files should be transferred to a GridFTP server when
the job finishes. This has several advantages:

• the input files do not have to be on the host from which the job is submitted;

• the output files are immediately available when the job ends, without having to issue a command to retrieve
them;

• the sandbox files do not have to go through the WMS host, which otherwise can easily become a bottleneck.

The following examples show how to use this feature.

Example 6.3.3.1 (Using input files on a GridFTP server)

If the job input files are stored on a GridFTP server, it is possible to specify those files as GridFTP URI in the
InputSandbox attribute:

InputSandbox = {"gsiftp://lxb0707.cern.ch/cms/doe/data/fileA",
"fileB"};

where fileA is located on the GridFTP server and fileB in the current directory on the UI.

It is also possible to specify a base GridFTP URI with the attribute InputSandboxBaseURI: in this case, files
expressed as simple file names or as relative paths will be looked for under that base URI. Local files can still be
defined using the file://<path> URI format. For example:

InputSandbox = {"fileA", "data/fileB", "file:///home/doe/fileC"};
InputSandboxBaseURI = "gsiftp://lxb0707.cern.ch/cms/doe";

is equivalent to

InputSandbox = {"gsiftp://lxb0707.cern.ch/cms/doe/fileA",
"gsiftp://lxb0707.cern.ch/cms/doe/data/fileB",
"/home/doe/fileC"};

Example 6.3.3.2 (Storing output files in a GridFTP server)

CERN-LCG-GDEIS-722398 Manuals Series Page 90

In order to store the output sandbox files to a GridFTP server, the OutputSandboxDestURI attribute must be
used together with the usual OutputSandbox attribute. The latter is used to list the output files created by the job
in the WN to be transferred, and the former is used to express where the output files are to be transferred. For
example:

OutputSandbox = {"fileA", "data/fileB", "fileC"};
OutputSandboxDestURI = {"gsiftp://lxb0707.cern.ch/cms/doe/fileA",

"gsiftp://lxb0707.cern.ch/cms/doe/fileB",
"fileC"};

where the first two files have to be copied to a GridFTP server, while the third file will be copied back to the WMS
with the usual mechanism. Clearly, glite-wms-job-output will retrieve only the third file.

Another possibility is to use the OutputSandboxBaseDestURI attribute to specify a base URI on a GridFTP
server where the files listed in OutputSandbox will be copied. For example:

OutputSandbox = {"fileA", "fileB"};
OutputSandboxBaseDestURI = "gsiftp://lxb0707.cern.ch/cms/doe/";

will copy both files under the specified GridFTP URI.

Note: the directory on the GridFTP where the files have to be copied must already exist.

6.3.4. Real Time Output Retrieval

It is possible to see the files produced by a job while it is still running by using the Job Perusal functionality, only
available via gLite WMS.

Example 6.3.4.1 (Inspecting the job output in real time with the gLite WMS)

The user can enable the job perusal by setting the attribute PerusalFileEnable to true in the job JDL.
This makes the WN to upload, at regular time intervals (defined by the PerusalTimeInterval attribute and
expressed in seconds), a copy of the output files specified using the glite-wms-job-perusal command to the
WMS machine (by default), or to a GridFTP server specified by the attribute PerusalFilesDestURI.

The following example shows how to use the job perusal. The JDL file should look like this:

Executable = "job.sh";
StdOutput = "stdout.log";
StdError = "stderr.log";
InputSandbox = {"job.sh"};
OutputSandbox = {"stdout.log", "stderr.log", "testfile.txt"};
PerusalFileEnable = true;
PerusalTimeInterval = 30;
RetryCount = 0;

CERN-LCG-GDEIS-722398 Manuals Series Page 91

After the job has been submitted with glite-wms-job-submit, the user can choose which output files should
be inspected:

$ glite-wms-job-perusal --set -f stdout.log -f stderr.log -f testfile.txt \
https://wms104.cern.ch:9000/B02xR3EQg9ZHHoRc-1nJkQ

Connecting to the service https://128.142.160.93:7443/glite_wms_wmproxy_server

Connecting to the service https://128.142.160.93:7443/glite_wms_wmproxy_server

====================== glite-wms-job-perusal Success ======================

Files perusal has been successfully enabled for the job:
https://wms104.cern.ch:9000/B02xR3EQg9ZHHoRc-1nJkQ

==

and, when the job starts, the user can see one output file:

$ glite-wms-job-perusal --get -f testfile.txt \
https://wms104.cern.ch:9000/B02xR3EQg9ZHHoRc-1nJkQ

Connecting to the service https://137.138.45.79:7443/glite_wms_wmproxy_server

Connecting to the service https://137.138.45.79:7443/glite_wms_wmproxy_server

====================== glite-wms-job-perusal Success ======================

The retrieved files have been successfully stored in:
/tmp/doe_OoDVmWCAnhx_HiSPvASGsg

==

--
file 1/1: testfile.txt-20071220115405_1-20071220115405_1
--

This is a test file
Data : Wed Dec 20 11:53:37 CET 2007
Host : c01-017-103

Subsequent invocations of glite-wms-job-perusal --get will retrieve only the part of the file that was
written after the previous invocation. To have the complete file, the --all option can be used. Only one file can
be retrieved at a time. Finally, the job perusal can be disabled for all jobs using the --unset option.

CERN-LCG-GDEIS-722398 Manuals Series Page 92

6.3.5. The BrokerInfo

The BrokerInfo file is a mechanism to access, at job execution time, certain information concerning the job, for
example the name of the CE, the files specified in the InputData attribute, the SEs where they can be found, etc.

The BrokerInfo file is created in the job working directory (that is, the current directory on the WN for the
executable) and is named .BrokerInfo. Its syntax is based on Condor ClassAds and the information contained is
not easy to read; however, it is possible to get it by means of a CLI, whose description follows.

Note: remember that using the -r <CEId> option of the job submission commands prevents the creation of
the BrokerInfo file.

The command to print the information in the BrokerInfo file is glite-brokerinfo.

A detailed description of this command and of the corresponding API can be found in [39].

The glite-brokerinfo command has the following syntax:

glite-brokerinfo [-v] [-f filename] function [parameter] [parameter] ...

where function is one of the following:

• getCE: returns the name of the CE where the job is running;

• getDataAccessProtocol: returns the protocol list specified in the DataAccessProtocol JDL attribute;

• getInputData: returns the file list specified in the InputData JDL attribute;

• getSEs: returns the list of the SEs with contain a copy of at least one file among those specified in
InputData;

• getCloseSEs: returns a list of the SEs close to the CE where the job is running;

• getSEMountPoint <SE>: returns the access point for the specified close SE;

• getSEFreeSpace <SE>: returns the free space on the SE;

• getLFN2SFN <LFN>: returns the SURL of the specified LFN, listed in the InputData attribute;

• getSEProtocols <SE>: returns the list of the protocols available to transfer data in the specified SE;

• getSEPort <SE> <Protocol>: returns the port number used by the SE for the specified data transfer
protocol;

• getVirtualOrganization: returns the name of the VO specified in the JDL.

The -v option produced a more verbose output, and the -f <filename> option tells the command to parse
the BrokerInfo file specified by <filename>. If the -f option is not used, the command tries to parse the file
$GLITE WMS RB BROKERINFO, the file $EDG WL RB BROKERINFO or the file ./.BrokerInfo.

CERN-LCG-GDEIS-722398 Manuals Series Page 93

6.3.6. Direct Submission to CREAM CE

The CREAM [56] (Computing Resource Execution And Management) Service is a simple, lightweight service for
job management operations at the Computing Element level. CREAM accepts job submission requests and other
job management requests both through the Workload Management System, via the ICE (Interface to Cream Envi-
ronment) component, and through a generic client for directly submitting jobs to a CREAM CE. The submission
to a CREAM based CE through the WMS is completely transparent to the user. In this subsection we give a brief
review of the most relevant commands of the CLI for direct submission to CREAM.

Man pages are available for all the CREAM client commands. You can also access information about the usage
of each command through the --help option. For a more comprehensive discussion, please refer to the CREAM
User’s Guide [57]. The most relevant commands to interact with CREAM based CEs are very similar to their LCG
analogous.

Job Submission Being the analogous of glite-wms-job-submit, the following command

glite-ce-job-submit -r CEId [options] <jdl file>

submits a job to a CREAM based CE. It requires a JDL file and the CEId as input and returns a CREAM job
identifier. Any gLite WMS JDL file is accepted (a complete reference for the specification of the JDL attributes
supported by the CREAM CE service can be found in [58]). The --resource (-r) directive must be used to target
the job submission to a specific CREAM CE, identified by its identifier CEId. The standard format for a CREAM
CEId is:

<full-hostname>:<port-number>/cream-<service>-<queue-name>

where <service> identifies the underlying resource management system (e.g. lsf, pbs, etc.). An example of
CREAM CEId is:

prod-ce-02.pd.infn.it:8443/cream-lsf-creamusr2

Upon successful submission, the command returns to the user the submitted CREAM job identifier (jobId)
which is the analogous of the gLite WMS job identifier (see Section 6.3.1). Also the format of the CREAM jobId
is similar and it is as follows:

https://<CREAM full hostname>:<port>/CREAM<unique string>

Just like for the gLite WMS submission, it is possible to redirect the returned jobId to an output file using the
--output (-o) option. Just like for the gLite WMS submission, it accepts the -a option for automatic delegation,
or the -d <DelegID> option for named explicitly delegated credential (see next command right below).

Delegation Being the analogous of glite-wms-job-delegate-proxy, the following command

glite-ce-delegate-proxy --endpoint <host>[:<port>] <DelegationId>

allows the user to delegate her proxy credential to the CREAM service. This delegated credential can then
be used for job submissions. Mandatory inputs are the endpoint and the delegation ID string. The endpoint
must be specified using the --endpoint or -e option followed by the full hostname and the port number of the
considered CREAM CE service (not the full CREAM CEId). The delegation ID string, chosen by the end user,
will then have to be specified in the following submission operations (with the option --delegationId or -d of

CERN-LCG-GDEIS-722398 Manuals Series Page 94

the glite-ce-job-submit command). An example of proxy delegation is:

glite-ce-delegate-proxy -e prod-ce-02.pd.infn.it:8443 myproxyid1

Job Status Being the analogous of glite-wms-job-status, the following command

glite-ce-job-status [options] <CREAMjobId1> <CREAMjobId2> ... <CREAMjobIdN>

displays information (in particular the states) of jobs previously submitted to CREAM based CEs. The ver-
bosity level is selected through the --level <verb level> (-L <verb level>); possible values for verb level
are 0, 1 and 2. The --endpoint host[:port] (or -e host[:port]) selects the endpoint of the CREAM CE to
send the status request to. If this option is not specified, the endpoint will be extracted from the CREAMjobId
strings. The endpoint must have the format <host>:<port> or <host>. The --all (-a) option displays informa-
tion about all known jobs owned by the user issuing the command which are present in the specified CREAM CE.
The CREAM CE must be specified through the --endpoint host[:port] (or -e host[:port]) option, which
is mandatory in this case. Examples of job status query are the following:

glite-ce-job-status -L 1 https://cream-02.pd.infn.it:8443/CREAM955790315

glite-ce-job-status --endpoint grid005.pd.infn.it:8443 --all

Some other options of this command are just the same of the gLite WMS analogous, like the --input (-i) or
the --status (-s) options.

Job Cancel Being the analogous of glite-wms-job-cancel, the following command

glite-ce-job-cancel [options] <CREAMjobId1> <CREAMjobId2> ... <CREAMjobIdN>

cancels one or more jobs previously submitted to CREAM based CEs. The --all, --endpoint, --input
options have just the same behavior they have for the glite-ce-job-status command. Examples of job cancel
query are the following:

glite-ce-job-cancel --input joblist.txt

glite-ce-job-cancel --endpoint grid005.pd.infn.it:8443 --all

Job List The following command

glite-ce-job-list [options] <host>[:<port>]

lists the identifiers of jobs submitted by the user issuing the command which have been submitted to the
CREAM based CE whose host and eventually port number are specified as input of the command. These returned
CREAM job identifiers can be later used as a handle to perform monitor and control operations on the jobs (e.g.
see glite-ce-job-status, described above). It is possible to redirect the returned CREAM jobIds into an output
file using the --output (-o) option.

CERN-LCG-GDEIS-722398 Manuals Series Page 95

6.4. ADVANCED JOB TYPES

This section describes how to use more advanced job types.

6.4.1. Job Collections

One of the most useful functionalities of WMProxy is the ability to submit job collections, defined as sets of
independent of jobs. This greatly speeds up the job submission time, compared to the submission of individual
jobs, and together with the proxy delegation mechanisms, it saves a lot of processing time by reusing the same
authentication for all the jobs in the collection.

Example 6.4.1.1 (Submitting a job collection)

The simplest way to submit a collection is to put the JDL files of all the jobs in the collection in a single
directory, and use the --collection <dirname>, where <dirname> is the name of that directory. For example,
suppose that there are two JDL files in the jdl directory

$ ls -l jdl/
job1.jdl job2.jdl

We can submit both jobs at the same time by doing:

$ glite-wms-job-submit -a --collection jdl

Connecting to the service https://wms104.cern.ch:7443/glite_wms_wmproxy_server

====================== glite-wms-job-submit Success ======================

The job has been successfully submitted to the WMProxy
Your job identifier is:

https://wms104.cern.ch:9000/n1JoZ8WbyJBrW3-pTU3f4A

==

The jobID returned refers to the collection itself. To know the status of the collection and of all the jobs
belonging to it, it is enough to use glite-wms-job-status as for any other kind of job:

$ glite-wms-job-status https://wms104.cern.ch:9000/n1JoZ8WbyJBrW3-pTU3f4A

BOOKKEEPING INFORMATION:

CERN-LCG-GDEIS-722398 Manuals Series Page 96

Status info for the Job : https://wms104.cern.ch:9000/n1JoZ8WbyJBrW3-pTU3f4A
Current Status: Done (Exit Code !=0)
Exit code: 1
Status Reason: Warning: job exit code != 0
Destination: dagman
Submitted: Thu Dec 14 18:26:42 2007 CET

- Nodes information:
Status info for the Job : https://wms104.cern.ch:9000/1SUgblV08Ge3OnIW07FAYw
Node Name: job1_jdl
Current Status: Done (Success)
Exit code: 0
Status Reason: Job terminated successfully
Destination: arxiloxos1.inp.demokritos.gr:2119/jobmanager-lcgpbs-cms
Submitted: Thu Dec 14 18:26:42 2007 CET

Status info for the Job : https://wms104.cern.ch:9000/_3SvxrOLsg5L5QVZMmzTrg
Node Name: job2_jdl
Current Status: Aborted
Status Reason: hit job shallow retry count (0)
Destination: ce-lcg.sdg.ac.cn:2119/jobmanager-lcgpbs-cms
Submitted: Thu Dec 14 18:26:42 2007 CET

In this example, one job succeeded and one failed, which explains why the status of the collection itself reports
and exit code different from zero.

Note: executing glite-wms-job-status for the collection is the only way to know the jobIDs of the jobs in
the collection.

The behaviour of the other job management commands is as follows:

• glite-wms-job-output <collID> retrieves the output of all the jobs in the collection <collID> which
finished correctly;

• glite-wms-job-cancel <collID> cancels all the jobs in the collection;

• glite-wms-job-logging-info <collID> returns the logging information for the collection, but not for
the jobs which compose it.

Once the jobIDs of the single jobs are known, the job management commands can be used with them exactly as
for any other job.

Example 6.4.1.2 (Advanced collections)

A more flexible way to define a job collection is illustrated in the following JDL file. Its structure includes
a global set of attributes, which are inherited by all the sub-jobs, and a set of attributes for each sub-job, which
supersede the global ones.

CERN-LCG-GDEIS-722398 Manuals Series Page 97

[
Type = "Collection";
VirtualOrganisation = "cms";
MyProxyServer = "myproxy.cern.ch";
InputSandbox = {"myjob.exe", "fileA"};
OutputSandboxBaseDestURI = "gsiftp://lxb0707.cern.ch/data/doe";
DefaultNodeShallowRetryCount = 5;
Requirements = Member("VO-cms-CMSSW_2_0_0",

other.GlueHostApplicationSoftwareRunTimeEnvironment"};
Nodes = {

[
Executable = "myjob.exe";
InputSandbox = {root.InputSandbox,

"fileB"};
OutputSandbox = {"myoutput1.txt"};
Requirements = other.GlueCEPolicyMaxWallClockTime > 1440;

],
[
NodeName = "mysubjob";
Executable = "myjob.exe";
OutputSandbox = {"myoutput2.txt"};
ShallowRetryCount = 3;

],
[
File = "/home/doe/test.jdl";

]
}

]

The interpretation of this JDL file is as follows:

• it describes a collection (Type = "Collection";);

• the jobs belong to the cms VO;

• the Myproxy server to use for proxy renewal is myproxy.cern.ch;

• all the jobs in the collection have by default the executable myjob.exe and the file fileA in their sandbox
(shared input sandbox);

• all the output files must be copied to a GridFTP server;

• the default maximum number of shallow resubmissions is 5;

• all the jobs must run on CEs with a given version of a software (CMSSW 2 0 0);

• the input sandbox of the first job (or node) has all the default files (root.InputSandbox), plus an additional
file, fileB, while the second job has only the default files;

• the first job must run on a CE allowing at least one day of wallclock time;

• the second job has a limit of 3 for the number of shallow resubmissions;

• the third job is described by another JDL file, /home/doe/test.jdl;

• the three jobs have names node0, mysubjob and node2.

CERN-LCG-GDEIS-722398 Manuals Series Page 98

The biggest advantage of this way to build a collection is the possibility to specify a shared input sandbox when
the jobs have one or more in the input sandbox which are the same for each job.

A full description of the JDL syntax for collections is available at [38].

6.4.2. DAG jobs

The gLite WMS provides an implementation of for direct acyclic graphs (DAG), which are sets of jobs linked
by relative dependencies. A job A is said to depend on job B if A is not allowed to run before the job B is
successfully completed. A complete description of the JDL syntax for DAGs will not be given here, but it is
available elsewhere [38].

6.4.3. Parametric jobs

A parametric job is a job collection where the jobs are identical but for the value of a running parameter. it is
described by a single JDL, where attribute values may contain the current value of the running parameter. An
example of a JDL for a parametric job follows:

[
JobType = "Parametric";
Executable = "myjob.exe";
StdInput = "input_PARAM_.txt";
StdOutput = "output_PARAM_.txt";
StdError = "error_PARAM_.txt";
Parameters = 100;
ParameterStart = 1;
ParameterStep = 1;
InputSandbox = {"myjob.exe", "input_PARAM_.txt";
OutputSandbox = {"output_PARAM_.txt", "error_PARAM_.txt"};

]

The attribute Parameters can be either a number, or a list of items (typically strings, but not enclosed within
double quotes): in the first case, the value represent the maximum value of the running parameter PARAM ; in the
second case, it is the list of the values the parameter must take.

The attribute ParameterStart is the initial number of the running paramenter, and the attribute ParameterStep
is the increment of the running parameter between consecutive jobs. Both attributes can be set only if Parameters
is a number.

6.4.4. Interactive Jobs

Both the gLite and the LCG-2 WMS support the possibility to send interactive jobs, that is jobs that open a real
time connection with a remote host (usually the UI from which the job was submitted) and the job standard streams
(stdin, stdout, stderr) are redirected from/to the remote host. Simply said, the user can communicate in real time
with these jobs.

CERN-LCG-GDEIS-722398 Manuals Series Page 99

When an interactive job is submitted, the glite-wms-job-submit command forks a Grid console shadow, or
listener process, which listens on a port for the job standard streams. A graphical window is opened, where the job
streams are forwarded. The port on which the shadow process listens is assigned by the operating system, unless it
is explicitly specified using the ListenerPort attribute in the JDL.

As the command in this case opens an X window, the user should make sure the DISPLAY environment variable
is correctly set, an X server is running on the local machine and, if he is connected to the UI node from a remote
machine (e.g. with ssh), secure X11 tunneling is enabled. If this is not possible, the user can specify the --nogui
option, which makes the command provide a simple standard non-graphical interaction with the running job.

Example 6.4.4.1 (A simple interactive job)

The following interactive.jdl file contains the description of a very simple interactive job.

The OutputSandbox is not necessary, since the output will be sent to the interactive window.

[
JobType = "Interactive" ;
Executable = "interactive.sh" ;
InputSandbox = {"interactive.sh"} ;

]

The executable specified in this JDL is the interactive.sh script, which follows:

#!/bin/sh
echo "Welcome!"
echo "Please tell me your name: "
read name
echo "That is all, $name."
echo "Bye bye."
exit 0

The interactive.sh script prints a message and then asks for an input. After the user has entered a name,
this is shown back just to check that the input was received correctly (see Figure 10).

If an interactive job is submitted using the --nolisten option, the job standard streams coming from the WN
are connected to named pipes on the UI, and their names are returned to the user together with the process ID of
the listener. This allows the user to interact with the job using his own tools. It is important to note that when this
option is specified, the UI has no more control over the listener process that has hence to be killed by the user when
the job is finished.

If, for some reason, the listener process for an interactive job dies, it can be restarted using the command
glite-wms-job-attach.

More information on interactive jobs is available elsewhere [27] [29].

CERN-LCG-GDEIS-722398 Manuals Series Page 100

Figure 10: X window for an interactive job

6.4.5. MPI Jobs

The Message Passing Interface (MPI) is a commonly used standard library for parallel programming. The gLite
WMS natively supports the submission of MPI jobs, which are jobs composed of a number of processes running
on different WNs in the same CE. However, this support is still experimental and this functionality will not be
described in this User Guide. The most complete source of information regarding MPI jobs on the Grid is currently
the MPI Wiki page [40].

6.5. COMMAND LINE INTERFACE CONFIGURATION

The command line interface of the WMS can be configured using appropriate configuration files. In this section it
is explained how to use and customize these configuration files.

6.5.1. WMProxy Configuration

The WMProxy commands (glite-wms-*) look for configuration files in these locations, in order of precedence:

a. the file specified by the --config option;

b. the file pointed by the $GLITE WMS CLIENT CONFIG environment variable;

c. the file $HOME/.glite/<vo>/glite wms.conf, where <vo> is the user’s VO name in lowercase;

d. the file $GLITE LOCATION/etc/<vo>/glite wms.conf;

e. the file $GLITE LOCATION/etc/glite wms.conf.

CERN-LCG-GDEIS-722398 Manuals Series Page 101

The settings in files with higher precedence supersede settings in files with lower precedence.

A typical configuration file looks as follows:

[
VirtualOrganisation = "cms";
Requirements = other.GlueCEStateStatus == "Production";
Rank = - other.GlueCEStateEstimatedResponseTime;
MyProxyServer = "myproxy.cern.ch";
WMProxyEndpoints = {

"https://wms104.cern.ch:7443/glite_wms_wmproxy_server"};
OutputStorage = "/tmp";
ErrorStorage = "/tmp";
ListenerStorage = "/tmp";
AllowZippedISB = true;
PerusalFileEnable = false;
RetryCount = 0;
ShallowRetryCount = 3;

]

In this example file, the following properties are configured:

• the default VO;

• the default requirements;

• the default rank;

• the default MyProxy server;

• the endpoints of the WMProxy servers to be used to submit jobs;

• the path where to store the job output files;

• the path where to write log files;

• the path where to create listener input/output pipes for interactive jobs;

• whether the input sandbox should be zipped by default before being uploaded to the WMProxy server;

• whether the job file perusal support should be enabled by default;

• the default maximum number of deep resubmissions;

• the default maximum number of shallow resubmissions.

6.5.2. LCG-2 Network Server Configuration

The LCG-2 WMS commands (edg-*) have two separate configuration files, a generic configuration and a VO-
specific configuration.

The generic configuration file is looked for in these locations, in order of precedence:

a. the file specified by the -config option;

CERN-LCG-GDEIS-722398 Manuals Series Page 102

b. the file pointed by the $EDG WL UI CONFIG VAR environment variable;

c. the file $EDG LOCATION/etc/edg wl ui cmd var.conf.

The settings in files with higher precedence supersede settings in files with lower precedence.

A typical generic configuration file looks as follows:

[
Requirements = other.GlueCEStateStatus == "Production";
Rank = - other.GlueCEStateEstimatedResponseTime;
RetryCount = 0;
OutputStorage = "/tmp";
ErrorStorage = "/tmp";
ListenerStorage = "/tmp";
ListenerPort = 44000;
LoggingTimeout = 30;
LoggingSyncTimeout = 30;
NSLoggerLevel = 0;
DefaultStatusLevel = 0;
DefaultLogInfoLevel = 0;
DefaultVo = "dteam";

]

This configures these properties (excluding those whose meaning is the same as for the WMProxy configura-
tion):

• the timeout for the asynchronous logging function called by the UI when logging events to the LB server;

• the timeout for the synchronous logging function called by the UI when logging events to the LB server;

• the default quantity of information logged by the NS client;

• the default verbosity level for glite-job-status;

• the default verbosity level for glite-job-logging-info.

The VO-specific configuration is looked for in these locations, in order of precedence:

a. the file specified by the -config-vo option;

b. the file pointed by the $EDG WL UI CONFIG VO environment variable;

c. the file $EDG LOCATION/etc/<vo>/edg wl ui.conf, where <vo> is the user’s VO name in lowercase.

The settings in files with higher precedence supersede settings in files with lower precedence.

A typical generic configuration file looks as follows:

[
VirtualOrganisation = "dteam";
NSAddresses = {"rb102.cern.ch"};

CERN-LCG-GDEIS-722398 Manuals Series Page 103

LBAddresses = {{"rb130.cern.ch"}};
MyProxyServer = "myproxy.cern.ch"

]

The configured settings (excluding the known ones) are:

• the list of WMS instances to be used;
• the list of the LB servers to be used for each WMS instance (a list of lists).

Example 6.5.2.1 (Using several WMS)

It is possible to configure the WMS CLI to use several WMS instances for improved redundance. A job
submission command will pick a WMS at random from a list and, if it is unavailable, it will pick another until it
succeeds submitting a job or exhausts the list of WMS.

A list of WMS can be specified as follows:

• gLite WMS: in a configuration file, define a list as value for WMProxyEndpoints:

WMProxyEndpoints = {
"https://wms104.cern.ch:7443/glite_wms_wmproxy_server",
"https://wms105.cern.ch:7443/glite_wms_wmproxy_server",
"https://wms106.cern.ch:7443/glite_wms_wmproxy_server"

};

• LCG-2 WMS: in the VO-specific configuration file, define a list as value for NSAddresses and a corre-
sponding list of lists for LBAddresses, where each element is the list of LB servers to be used for each
NS:

NSAddresses = {
"rb109.cern.ch",
"rb110.cern.ch"

};
LBAddresses = {

{"rb109.cern.ch"},
{"rb110.cern.ch"}

};

Example 6.5.2.2 (Using a separate LB server with the gLite WMS)

Normally, an LB server is installed on the same host as the WMS, and this configuration is appropriate for a
light use of the WMS. However, when the WMS is very busy with managing a large number of jobs, the WMS
services and the LB server might experience a performance degradation. In this case, it is advisable to configure
the CLI in order to use an LB server on a separate machine. This is done using in the JDL the LBAddress attribute,
whose value is a string representing the address (<host>[:<port]) of the LB server.

If the user is submitting a job collection, the LBAddress attribute must be put in the common part of the
collection JDL, because it must be the same for all the jobs in the collection. For example:

CERN-LCG-GDEIS-722398 Manuals Series Page 104

[
Type = "Collection";
LBAddress = "lxb7026.cern.ch:9000";
...
Nodes = {

...
}

]

CERN-LCG-GDEIS-722398 Manuals Series Page 105

7. DATA MANAGEMENT

7.1. INTRODUCTION

This chapter describes Data Management clients and services available in gLite 3.1. An overview of the available
Data Management APIs is also given in Appendix F.

7.2. STORAGE ELEMENTS

The Storage Element is the service which allows a user or an application to store data for future retrieval. All data
in a SE must be considered read-only and therefore can not be changed unless physically removed and replaced.
Different VOs might enforce different policies for space quota management. Contact your VO Data Management
Administrator for details.

7.2.1. Data Channel Protocols

The data transfer and access protocols supported in gLite 3.1 are summarized in the next table:

Protocol Type GSI secure Description Optional
GSIFTP File Transfer Yes FTP-like No
gsidcap File I/O Yes Remote file access Yes
insecure RFIO File I/O No Remote file access Yes
secure RFIO (gsirfio) File I/O Yes Remote file access Yes

The GSIFTP[41]3 protocol offers the functionalities of FTP, but with support for GSI. It is responsible for
secure, fast and efficient file transfers to/from Storage Elements. It provides third party control of data transfer as
well as parallel stream data transfer. Every WLCG/EGEE SE runs at least one GridFTP server. For direct remote
access of files stored in the SEs, the protocols currently supported by gLite 3.1 are the Remote File Input/Output
protocol (RFIO) [42] and the GSI dCache Access Protocol (gsidcap). RFIO was developed to access tape archiv-
ing systems, such as CASTOR (CERN Advanced STORage manager)[43] and it comes in a secure and an insecure
version. More information about RFIO can be found in Appendix F. The gsidcap protocol is the GSI enabled
version of the dCache[44] native access protocol, dcap. The file protocol was used in the past for local file access
to network filesystems. Currently this option is not supported anymore and the file protocol is only used to specify
a file on the local machine (i.e. in a UI or a WN), but not stored in a Grid SE.

7.2.2. Types of Storage Elements

In WLCG/EGEE, different types of Storage Elements are available:

• Classic SE: it consists of a GridFTP server and an insecure RFIO daemon in front of a physical single disk
or disk array. Very soon, the Classic SE will not be supported anymore;

3In the literature, the terms GridFTP and GSIFTP are sometimes used interchangeably. Strictly speaking, GSIFTP is a
subset of GridFTP.

CERN-LCG-GDEIS-722398 Manuals Series Page 106

• CASTOR: it consists in a disk buffer frontend to a tape mass storage system. A virtual filesystem (names-
pace) shields the user from the complexities of the disk and tape underlying setup. File migration between
disk and tape is managed by a process called “stager”. The native storage protocol, the insecure RFIO,
allows access of files in the SE. Since the protocol is not GSI-enabled, only RFIO access from a location in
the same LAN of the SE is allowed. With the proper modifications, the CASTOR disk buffer can be used
also as disk-only storage system;

• dCache: it consists of a server and one or more pool nodes. The server represents the single point of access
to the SE and presents files in the pool disks under a single virtual filesystem tree. Nodes can be dynamically
added to the pool. The native gsidcap protocol allows POSIX-like data access. dCache is widely employed
as disk buffer frontend to many mass storage systems, like HPSS and Enstore, as well as a disk-only storage
system.

• LCG Disk pool manager: is a lightweight disk pool manager, suitable for relatively small sites (max 10 TB
of total space). Disks can be added dynamically to the pool at any time. Like in dCache and CASTOR, a
virtual filesystem hides the complexity of the disk pool architecture. The secure RFIO protocol allows file
access from the WAN.

7.2.3. The Storage Resource Manager interface

The Storage Resource Manager (SRM) has been designed to be the single interface (through the correspond-
ing SRM protocol) for the management of disk and tape storage resources. Any type of Storage Element in
WLCG/EGEE offers an SRM interface except for the Classic SE, which is being phased out. SRM hides the
complexity of the resources setup behind it and allows the user to request files, keep them on a disk buffer for a
specified lifetime (SRM 2.2 only), reserve space for new entries, and so on. SRM offers also a third party transfer
protocol between different endpoints, not supported however by all SE implementations. It is important to notice
that the SRM protocol is a storage management protocol and not a file access one.

7.3. FILE NAMES IN GLITE 3.1

As an extension of what was introduced in Chapter 3, the different types of file names that can be used within the
gLite 3.1 file catalogue are summarized below:

• the Grid Unique IDentifier (GUID), which identifies a file uniquely, is of the form:

guid:<36_bytes_unique_string>
guid:38ed3f60-c402-11d7-a6b0-f53ee5a37e1d

• the Logical File Name (LFN) or User Alias, which can be used to refer to a file in the place of the GUID
(and which should be the normal way for a user to refer to a file), has this format:

lfn:<any_string>
lfn:importantResults/Test1240.dat

In the case of the LCG File Catalogue (see Section 7.4), the LFNs are organized in a hierarchical directory-
like structure, and they will have the following format:

lfn:/grid/<MyVO>/<MyDirs>/<MyFile>

• the Storage URL (SURL), also known as Physical File Name (PFN), which identifies a replica in a SE, is
of the general form:

CERN-LCG-GDEIS-722398 Manuals Series Page 107

<sfn|srm>://<SE_hostname>/<some_string>

where the prefix is sfn for files located in SEs without a SRM interface and srm for SRM-managed SEs.
In the case of the sfn prefix, the string after the host name is the path to the location of the file and can be
decomposed in the SE’s access-point (path to the storage area of the SE), the relative path to the VO of the
file’s owner and the relative path to the file.

sfn://<SE_hostname><SE_Accesspoint><VO_path><filename>
sfn://tbed0101.cern.ch/data/dteam/doe/file1

In the case of SRM-managed SEs, one cannot assume that the SURL will have any particular format, other
than the srm prefix and the host name. In general, SRM-managed SEs can use virtual file systems and the
name a file receives may have nothing to do with its physical location (which may also vary with time). An
example of this kind of SURL follows:

srm://srm.cern.ch/castor/cern.ch/grid/dteam/doe/file1

• the Transport URL (TURL), which is a valid URI with the necessary information to access a file in a SE,
has the following form:

<protocol>://<some_string>
gsiftp://tbed0101.cern.ch/data/dteam/doe/file1

where <protocol>must be a valid protocol (supported by the SE) to access the contents of the file (GSIFTP,
RFIO, gsidcap), and the string after the double slash may have any format that can be understood by the
SE serving the file. While SURLs are in principle invariable (they are entries in the file catalogue, see
Section 7.4), TURLs are obtained dynamically from the SURL through the Information System or the SRM
interface (for SRM managed SEs). The TURL therefore can change with time and should be considered
only valid for a relatively small period of time after it has been obtained.

7.4. FILE CATALOGUE IN GLITE 3.1

Users and applications need to locate files (or replicas) on the Grid. The File Catalogue is the service which
maintains mappings between LFN(s), GUID and SURL(s). The LCG File Catalogue (LFC) is the File Catalogue
adopted by gLite 3.1.

The catalogue publishes its endpoint (service URL) in the Information Service so that it can be discovered
by Data Management tools and other services (the WMS for example). LFC could either be used as a Local File
Catalogue, holding only replicas stored at a given group of site, or a Global File Catalogue, containing information
about all files in the Grid. This last one can have multiple read-only instances de-localized at main computing
centres all holding the same information.

LFC was developed to overcome serious performance and security issues of the old EDG-RLS catalogues [55];
it also adds some new functionalities such as transactions, sessions, bulk queries and a hierarchical namespace for
LFNs. It consists of a unique catalogue, where the LFN is the main key (Figure 11). Further LFNs can be added
as symlinks to the main LFN. System metadata are supported, while for user metadata only a single string entry is
available (rather a description field than real metadata).

Note: a file is considered to be a Grid file if it is both physically present in a SE and registered in the file
catalogue. In this chapter several tools will be described. In general high level tools like lcg util (see Sec. 7.5.1)
will ensure consistency between files in the SEs and entries in the file catalogue. However, usage of low level
Data Management tools could create inconsistencies between SEs physical files and catalogue entries resulting in
corruption of GRID files. This is why the usage of low level tools is strongly discouraged unless really necessary.

CERN-LCG-GDEIS-722398 Manuals Series Page 108

Figure 11: Architecture of the LFC

7.4.1. LFC Commands

In general the user should interact with the file catalogue through high level utilities (lcg util, see Section 7.5.1).
The CLIs and APIs that are available for catalogue interaction provide further functionality and more fine-grained
control for catalogue operations; in some situations, they represent the only possible way to achieve the desired
result.

In gLite 3.1 the environment variable LFC HOST can be set to hold the host name of the LFC server. This
is mandatory for the LFC CLIs and APIs; for GFAL and lcg util (see later) such variable, if set, supersedes the
endpoint definition published in the Information System.

The directory structure of the LFC namespace has the form:

/grid/<VO>/<subpaths>

Users of a given VO will have read and write permissions only under the corresponding <VO> subdirectory.
More restrictive access patterns on deeper subpaths of the directory tree can be enforced by the VO.

Once the correct environment has been set, the following commands can be used:

CERN-LCG-GDEIS-722398 Manuals Series Page 109

lfc-chmod Change access mode of a LFC file/directory
lfc-chown Change owner and group of a LFC file/directory
lfc-delcomment Delete the comment associated with a file/directory
lfc-getacl Get file/directory access control lists
lfc-ln Make a symbolic link to a file/directory
lfc-ls List file/directory entries in a directory
lfc-mkdir Create directory
lfc-rename Rename a file/directory
lfc-rm Remove a file/directory
lfc-setacl Set file/directory access control lists
lfc-setcomment Add/replace a comment
lfc-entergrpmap Defines a new group entry in the Virtual ID table
lfc-enterusrmap Defines a new user entry in Virtual ID table
lfc-modifygrpmap Modifies a group entry corresponding to a given virtual gid
lfc-modifyusrmap Modifies a user entry corresponding to a given virtual uid
lfc-rmgrpmap Suppresses group entry corresponding to a given virtual gid or group name
lfc-rmusrmap Suppresses user entry corresponding to a given virtual uid or user name.

Man pages are available for all the commands. Most of them work in a very similar way to their Unix equiv-
alents, but operating on directories and files of the catalogue namespace. Where the path of a file/directory is
required, an absolute path can be specified (starting by /) or, otherwise, the path is prefixed by the contents of the
LFC HOME environment variable.

Users should use these commands carefully, keeping in mind that the operations they are performing affect the
catalogue, but not the physical files that the entries represent.

Example 7.4.1.1 (Listing the entries of a LFC directory)

The lfc-ls command lists the LFNs in a given directory.

Attention! The -R option, for recursive listing, is available for the command, but it should not be used
extensively. It is a very expensive operation on the catalogue and should be avoided as much as possible.

In the following example content of the directory /grid/dteam/MyExample is listed:

$ lfc-ls /grid/dteam/MyExample

/grid/dteam/MyExample:
day1
day2
day3
day4

Example 7.4.1.2 (Creating directories in the LFC)

The lfc-mkdir creates a directory in the LFN namespace:

$ lfc-mkdir /grid/lhcb/test_doe/MyTest

CERN-LCG-GDEIS-722398 Manuals Series Page 110

$ lfc-ls -l /grid/lhcb/test_doe
drwxrwxr-x 0 doe z5 0 Feb 21 16:50 MyTest

Example 7.4.1.3 (Creation of symbolic links)

The lfc-ln command can be used to create a symbolic link to a file. In this way two different LFNs will point
to the same file.

In the following example, we create a symbolic link /grid/lhcb/test doe/MyTest/newname to the original
file /grid/lhcb/test doe/testfile:

$ lfc-ln -s /grid/lhcb/test_doe/testfile /grid/lhcb/test_doe/MyTest/newname

And check that the new alias exists:

$ lfc-ls -l /grid/lhcb/test_doe/MyTest/newname
lrwxrwxrwx 1 doe z5 0 Feb 21 16:54 /grid/lhcb/test_doe/MyTest/newname

-> /grid/lhcb/test_doe/testfile

Remember that links created with lfc-ln are soft. If the LFN they are pointing to is removed, the links
themselves are not deleted, but will still exist as broken links.

Example 7.4.1.4 (Adding metadata information to LFC entries)

The lfc-setcomment and lfc-delcomment commands allow the user to associate a comment with a cata-
logue entry and delete such comment. This is the only user-defined metadata that can be associated with catalogue
entries. The comments for the files may be listed using the --comment option of the lfc-ls command. This is
shown in the following example:

$ lfc-setcomment /grid/cms/MyFiles/file1 "Most promising measure"

$ lfc-ls --comment /grid/cms/MyFiles/file1
/grid/dteam/MyFiles/file1 Most promising measure

Example 7.4.1.5 (Removing LFNs from the LFC)

The lfc-rm command can be used to remove files and directories from the LFN namespace, but with two
basic limitations:

• a file can be removed only if there are no SURLs associated to it. If SURLs exist, the lcg util commands
should be used instead (Section 7.5.1);

• a directory can be removed (-r option) only if it is empty.

CERN-LCG-GDEIS-722398 Manuals Series Page 111

In the next example, the directory trash is removed:

$ lfc-ls -l -d /grid/dteam/MyExample/trash
drwxr-xrwx 0 dteam004 cg 0 Jul 06 11:13 /grid/dteam/MyExample/trash

$ lfc-rm -r /grid/dteam/MyExample/trash

$ lfc-ls -l -d /grid/dteam/MyExample/trash
> /grid/dteam/MyExample/trash: No such file or directory

7.4.2. Access Control Lists

LFC allows to attach to a file or directory an access control list (ACL), a list of permissions which specify who is
allowed to access or modify it. The permissions are very much like those of a UNIX file system: read (r), write
(w) and execute (x). A combination of these permissions can be associated to these entities:

• a user (user);

• a group of users (group);

• any other user (other);

• the maximum permissions granted to specific users or groups (mask).

Permissions for multiple users and groups can be defined. If this is the case, a mask must be defined and the
“effective” permissions are the logical AND of the user or group permissions and the mask.

In LFC, users and groups are internally identified as numerical virtual uids and virtual gids, which are virtual
in the sense that they exist only in the LFC namespace.

A user can be specified as a name, as a virtual uid or as a Distinguished Name. A group can be specified as a
name, as a virtual gid or as a VOMS FQAN.

In addition, a directory in LFC has also a default ACL, which is the ACL associated to any file or directory
being created under that directory. After creation, the ACLs can be freely changed. When creating a sub-directory,
its default ACL is inherited from the parent directory’s default ACL. A user can be in more than one group. For
example, it might be possible for a user to be allowed to delete an LFC file when his VOMS proxy has a FQAN
/atlas and also when he has a FQAN/atlas/Role=production, as expected.

Example 7.4.2.1 (Print the ACL of a directory)

In the following example, the ACL for a given directory is displayed:

$ lfc-getacl /grid/atlas/UserGuide

file: /grid/atlas/UserGuide
owner: /C=CH/O=CERN/OU=GRID/CN=John Doe
group: atlas

CERN-LCG-GDEIS-722398 Manuals Series Page 112

user::rwx
group::rwx #effective:rwx
other::r-x
default:user::rwx
default:group::rwx
default:other::r-x

The output prints the DN and the group of the owner of the directory, followed by the ACL and the default
ACL. In this example, the owner and all users in the atlas group have full privileges to the directory, while other
users cannot write into it.

Example 7.4.2.2 (Modify the ACL of a directory)

Suppose that we want to associate a set of permissions to a given FQAN for the LFC directory from the
previous example. This could be done by doing:

$ lfc-setacl -m g:/atlas/Role=production:rwx,m:rwx,d:g:/atlas/Role=production:rwx,d:m:rwx \
/grid/atlas/UserGuide

The -m option means that we are modifying the existing ACL.

The added ACL is specified as a comma-separated list of entries, where each entry is a colon-separated list of
fields: an ACL type (user, group, other, mask, or these preceded by default), a user or group, and a permission
set. Notice that ACL types can be abbreviated using their first letter.

In this example, we have set a permission set for a group (the /atlas/Role=production FQAN), the mask
and the same for the default ACL.

If now we print again the ACL for the directory:

$ lfc-getacl /grid/atlas/UserGuide

file: /grid/atlas/UserGuide
owner: /C=CH/O=CERN/OU=GRID/CN=John Doe
group: atlas
user::rwx
group::rwx #effective:rwx
group:/atlas/Role=production:rwx #effective:rwx
mask::rwx
other::r-x
default:user::rwx
default:group::rwx
default:group:/atlas/Role=production:rwx
default:mask::rwx
default:other::r-x

we see now permissions for both the owner’s group (atlas) and the /atlas/Role=production FQAN, and the
same for the default ACL. The effective permissions for the owner’s group and the VOMS FQAN take into account
the mask.

CERN-LCG-GDEIS-722398 Manuals Series Page 113

Other options of lfc-setacl are -d to remove ACL entries, and -s to replace the complete set of ACL entries.

7.5. FILE AND REPLICA MANAGEMENT CLIENT TOOLS

The gLite 3.1 middleware offers a variety of data management client tools to upload/download files to/from the
Grid, replicate data and interact with the file catalogues. Every user should deal with data management through
the LCG Data Management tools (usually referred to as lcg util or lcg-* commands). They provide a high level
interface (both command line and APIs) to the basic DM functionality, hiding the complexities of catalogue and
SEs interaction. Furthermore, such high level tools minimize the risk of grid files corruption.

Some lower level tools (like edg-gridftp-* commands, globus-url-copy and srm-* dedicated commands)
are also available. These low level tools are quite helpful in some particular cases (see examples for more details).
Their usage, however, is strongly discouraged for non expert users, since such tools do not ensure consistency
between physical files in the SE and entries in the file catalogue and their usage might be dangerous.

7.5.1. LCG Data Management Client Tools

The LCG Data Management tools (lcg util) allow users to copy files between UI, CE, WN and a SE, to register
entries in the file catalogue and replicate files between SEs. The name and functionality overview of the available
commands is shown in the following table.

Replica Management

lcg-cp Copies a file to/from a SE
lcg-cr Copies a file to a SE and registers the file in the catalogue
lcg-del Deletes one file (either one replica or all replicas)
lcg-rep Copies a file from one SE to another SE and registers it in the catalogue (replicate)
lcg-gt Gets the TURL for a given SURL and transfer protocol
lcg-sd Sets file status to ”Done” for a given SURL in an SRM’s request

File Catalogue Interaction

lcg-aa Adds an alias in the catalogue for a given GUID
lcg-ra Removes an alias in the catalogue for a given GUID
lcg-rf Registers in the catalogue a file residing on an SE
lcg-uf Unregisters in the the catalogue a file residing on an SE
lcg-la Lists the aliases for a given LFN, GUID or SURL
lcg-lg Gets the GUID for a given LFN or SURL
lcg-lr Lists the replicas for a given LFN, GUID or SURL
lcg-ls Lists file information for given SURLs or LFNs

The --vo <vo name> option, to specify the virtual organisation of the user, is present in all commands, except
for lcg-gt and lcg-sd. Its usage is mandatory unless the variable LCG GFAL VO is set, see below. The --config
<file> option (to specify a configuration file) and the -i option (to connect insecurely to the file catalogue) are
currently ignored.

Timeouts

The commands lcg-cr, lcg-del, lcg-gt, lcg-rf, lcg-sd and lcg-rep all have timeouts implemented. By

CERN-LCG-GDEIS-722398 Manuals Series Page 114

using the option -t, the user can specify a number of seconds for the tool to time out. The default is 0 seconds, that
is no timeout. If a tool times out in the middle of an operation, all actions performed till that moment are rolled
back, so no broken files are left on a SE and no existing files are not registered in the catalogues.

Environment variables

• For all lcg-* commands to work, the environment variable LCG GFAL INFOSYSmust be set to point to a top
BDII in the format <hostname>:<port>, or to a comma-separated list of top BDIIs in such format, so that
the commands can retrieve the necessary information. Remember that the default BDII read port is 2170;

• the endpoint(s) for the catalogues can also be specified (taking precedence over that published in the IS)
through the environment variable LFC HOST. If no endpoints are specified, the ones published in the Infor-
mation System are taken;

• if the variable LCG GFAL VO is set to indicate the user VO, the --vo option is not required. However, if the
VO name is specified in the command option, the LCG GFAL VO variable is ignored;

• The VO <VO> DEFAULT SE variable specifies the default SE for the VO <VO>.

The user must hold a valid proxy and be authorized on the SE in order to use lcg-cr, lcg-cp, lcg-rep and
lcg-del. While access to resources (SEs and LFCs) in authenticated, the data channel is not crypted.

Note: The user will often need to gather information on the existing Grid resources in order to perform DM
operations. For instance, in order to specify the destination SE for the upload of a file, the information about the
available SEs must be retrieved in advance. There are several ways to retrieve information about the resources on
the Grid, which are described in Chapter 5.

In what follows, some examples are given. Most commands can run in verbose mode (-v or --verbose
option). For details on the options of each command, refer to the man pages of the commands.

Example 7.5.1.1 (Uploading a file to the Grid)

In order to upload a file to the Grid, that is to transfer it from the local machine to a Storage Element and
register it in the catalogue, the lcg-cr command (which stands for copy®ister) can be used:

$ lcg-cr --vo dteam -d lxb0710.cern.ch file:/home/doe/file1
guid:6ac491ea-684c-11d8-8f12-9c97cebf582a

where the only argument is the local file to be uploaded (a fully qualified URI) and the -d <destination> option
indicates the SE used as the destination for the file. The command returns the file GUID. If no destination is given,
the SE specified by the VO <VO> DEFAULT SE environmental variable is taken. Such variable is set in all WNs and
UIs.

The -P option allows the user to specify a relative path name for the file in the SE. The absolute path is built
appending the relative path to a root directory which is VO- and SE-specific and is published in the Information
System. If no -P option is given, the relative path is automatically generated.

It is also possible to specify the destination as a complete SURL, including SE hostname, the path, and a
chosen filename. The action will only be allowed if the specified path falls under the user’s VO directory.

The following are examples of the different ways to specify a destination:

CERN-LCG-GDEIS-722398 Manuals Series Page 115

-d lxb0710.cern.ch
-d sfn://lxb0710.cern.ch/data/dteam/my_file
-d lxb0710.cern.ch -P my_dir/my_file

The option -l <lfn> can be used to specify a LFN:

$ lcg-cr --vo dteam -d lxb0710.cern.ch -l lfn:my_alias1 file:/home/doe/file1

guid:db7ddbc5-613e-423f-9501-3c0c00a0ae24

Note: LFNs in LFC are organized in a hierarchical namespace (like UNIX directory trees). So the LFN will
take the form lfn:/grid/<vo>/<dir1>/.... Subdirectories in the namespace are not created automatically by
lcg-cr and the user should manage himself their creation through the lfc-mkdir and lfc-rmdir command line
tools described in the previous section.

The -g option allows to specify a GUID (otherwise automatically created):

$ lcg-cr --vo dteam -d lxb0710.cern.ch \
-g guid:baddb707-0cb5-4d9a-8141-a046659d243b file:‘pwd‘/file2

guid:baddb707-0cb5-4d9a-8141-a046659d243b

Attention! This option should not be used except for expert users and in very particular cases. Because the
specification of an existing GUID is also allowed, a misuse of the tool may end up in a corrupted GRID file in
which replicas of the same file are in fact different from each other.

Finally, in this and other commands, the -n <#streams> options can be used to specify the number of parallel
streams to be used in the transfer (default is one).

Attention! When multiple streams are requested, the GridFTP protocol establishes that the GridFTP server
must open a new connection back to the client (the original connection, and only one in the case of one stream, is
opened from the client to the server). This may become a problem when a file is requested from aWN and this WN
is firewalled to disable inbound connections (which is usually the case). The connection will in this case fail and
the error message returned (in the logging information of the job performing the data access) will be "425 can’t
open data connection".

Example 7.5.1.2 (Replicating a file)

Once a file is stored on an SE and registered in the catalogue, the file can be replicated using the lcg-rep
command, as in:

$ lcg-rep -v --vo dteam -d lxb0707.cern.ch guid:db7ddbc5-613e-423f-9501-3c0c00a0ae24

Source URL: sfn://lxb0710.cern.ch/data/dteam/doe/file1
File size: 30
Destination specified: lxb0707.cern.ch

CERN-LCG-GDEIS-722398 Manuals Series Page 116

Source URL for copy: gsiftp://lxb0710.cern.ch/data/dteam/doe/file1
Destination URL for copy: gsiftp://lxb0707.cern.ch/data/dteam/generated/2004-07-09/
file50c0752c-f61f-4bc3-b48e-af3f22924b57
streams: 1
Transfer took 2040 ms
Destination URL registered in LRC: sfn://lxb0707.cern.ch/data/dteam/generated/2004-07-09/
file50c0752c-f61f-4bc3-b48e-af3f22924b57

where the file to be replicated can be specified using a LFN, GUID or even a SURL, and the -d option is used to
specify the SE where the new replica will be stored. This destination can be either an SE hostname or a complete
SURL, and it is expressed in the same format as with lcg-cr. The command also admits the -P option to add a
relative path to the destination (as with lcg-cr).

For one GUID, there can be only one replica per SE. If the user tries to use the lcg-rep command with a
destination SE that already holds a replica, the command will exit successfully, but no new replica will be created.

Example 7.5.1.3 (Listing replicas, GUIDs and aliases)

The lcg-lr (list replicas) command allows users to list all the replicas of a file registered in the file catalogue:

$ lcg-lr --vo dteam lfn:/grid/dteam/doe/my_alias1

sfn://lxb0707.cern.ch/data/dteam/generated/2004-07-09/file79aee616-6cd7-4b75-8848-f091
sfn://lxb0710.cern.ch/data/dteam/generated/2004-07-08/file0dcabb46-2214-4db8-9ee8-2930

Again, a LFN, the GUID or a SURL can be used to specify the file. The SURLs of all the replicas are returned.

The lcg-lg command (list GUID) returns the GUID associated with a specified LFN or SURL:

$ lcg-lg --vo dteam sfn://lxb0707.cern.ch/data/dteam/doe/file1

guid:db7ddbc5-613e-423f-9501-3c0c00a0ae24

The lcg-la command (list aliases) can be used to list the LFNs associated with a particular file, which can be
identified by its GUID, any of its LFNs, or the SURL of one of its replicas:

$ lcg-la --vo dteam guid:baddb707-0cb5-4d9a-8141-a046659d243b

lfn:my_alias1

Example 7.5.1.4 (Listing files and directories)

The lcg-ls command allows to list a file or a directory and its contents in the LFC namespace (if the argument
is a LFN), or in the local storage namespace (if the argument is a SURL), very much like the ls command in UNIX.

For example, if the argument is a LFN:

CERN-LCG-GDEIS-722398 Manuals Series Page 117

$ lcg-ls -l lfn:/grid/dteam/doe/myfile
-rw-rw-r-- 1 19692 1399 192 lfn:/grid/dteam/doe/myfile

Another example involving the same file, but by SURL:

$ lcg-ls -l srm://cmsdcache.pi.infn.it/pnfs/pi.infn.it/data/cms/generated/2009-01-07/
fileacf27b40-ec72-424a-9ddc-4dcf757efb47
-rw-r--r-- 1 2 2 192 ONLINE /pnfs/pi.infn.it/data/cms/generated/
2009-01-07/fileacf27b40-ec72-424a-9ddc-4dcf757efb47

The options -l and -d work like for ls.

The type of SE is taken from the BDII by default, but the option -b can be used to avoid a call to the BDII; in
this case, the SE type (se for the classic SE, srmv1 or srmv2) must be specified using the -T setype option.

Example 7.5.1.5 (Copying files out of the Grid)

The lcg-cp command can be used to copy a Grid file to a local destination, or a local file to a SE without
registering it in a file catalogue. The first argument is the source file and can be a LFN, GUID, SURL, a GSIFTP
URL or a local file, and the second argument (destination file) must be a SURL, a GSIFTP URL or a local file. In
the following example, the verbose mode is used and a timeout of 100 seconds is specified:

$ lcg-cp --vo dteam -t 100 -v lfn:/grid/dteam/doe/myfile file:/tmp/myfile

Source URL: lfn:/grid/dteam/doe/myfile
File size: 104857600
Source URL for copy:
gsiftp://lxb2036.cern.ch/storage/dteam/generated/2005-07-17/fileea15c9c9-abcd-4e9b-8724-1
ad60c5afe5b
Destination URL: file:///tmp/myfile
streams: 1
set timeout to 100 (seconds)

85983232 bytes 8396.77 KB/sec avg 9216.11
Transfer took 12040 ms

Although lcg-cp is primarily intended to copy files from the Grid, it can be used as well to copy files to a SE,
when registration in a file catalogue is not necessary.

Be aware that in the case of a MSS, the file may be not present on disk but only stored on tape. For this reason,
lcg-cp on such a file could time out, waiting for the file stage-in on a disk buffer.

Example 7.5.1.6 (Obtaining a TURL for a replica)

The lcg-gt allows to get a TURL from a SURL and a supported protocol. The command behaves very
differently if the Storage Element exposes an SRM interface or not. The command always returns three lines of
output: the first is always the TURL of the file, the last two are meaningful only in case of SRM interface.

CERN-LCG-GDEIS-722398 Manuals Series Page 118

• For a classic SE (no SRM interface), the command obtains the TURL by simple string manipulation of the
SURL and the protocol (checking in the Information System if it is supported by the Storage Element). No
direct interaction with the SE is involved. The last two lines of output are always zeroes:

$ lcg-gt sfn://lxb0710.cern.ch/data/dteam/generated/2004-07-08/file0dcabb4
6-2214-4db8-9ee8-2930de1a6bef gsiftp

gsiftp://lxb0710.cern.ch/data/dteam/generated/2004-07-08/file0dcabb46-22
14-4db8-9ee8-2930de1a6bef
0
0

• In the case of a SRM interface, the TURL is returned to lcg-gt by the SRM itself. For a MSS, the file will
be staged on disk (if not present already) before a valid TURL is returned. It could take lcg-gt quite a long
time to return the TURL (depending on the conditions of the stager) but a successive lcg-cp of such TURL
will start copying the file immediately. This is one of the reasons for which a SRM interface is desirable for
all MSS.
The second and third lines of output represent the requestID and fileID for the srm put request (hidden to
the user) which will remain open unless explicitly closed (at least with SRM 1). It is important to know
that some SRM SEs are limited in the maximum number of open requests. Further requests will fail, once
this limit has been reached. It is therefore good practice to close the request once the TURL is not needed
anymore. This can be done with the lcg-sd command which needs as arguments the TURL of the file, the
requestID and fileID.

$ lcg-gt srm://srm.cern.ch/castor/cern.ch/grid/dteam/generated/2005-04-12/file
fad1e7fb-9d83-4050-af51-4c9af7bb095c gsiftp

gsiftp://srm.cern.ch:2811//shift/lxfsrk4705/data02/cg/stage/filefad1e7fb-9d
83-4050-af51-4c9af7bb095c.43309
-337722383
0

[... do something with the TURL ...]

$ lcg-sd gsiftp://srm.cern.ch:2811//shift/lxfsrk4705/data02/cg/stage/filefad1
e7fb-9d83-4050-af51-4c9af7bb095c.43309 -337722383 0

Example 7.5.1.7 (Deleting replicas)

A file stored on a SE and registered in LFC can be deleted using the lcg-del command. If a SURL is
provided as argument, then that particular replica will be deleted. If a LFN or GUID is given instead, then the -s
<SE> option must be used to indicate which one of the replicas must be erased, unless the -a option is used, in
which case all replicas of the file will be deleted and unregistered (on a best-effort basis). If all the replicas of a file
are removed, the corresponding GUID-LFN mappings are removed as well.

$ lcg-lr --vo dteam guid:91b89dfe-ff95-4614-bad2-c538bfa28fac

sfn://lxb0707.cern.ch/data/dteam/generated/2004-07-12/file78ef5a13-166f-4701-
8059-e70e397dd2ca
sfn://lxb0710.cern.ch/data/dteam/generated/2004-07-12/file21658bfb-6eac-409b-

CERN-LCG-GDEIS-722398 Manuals Series Page 119

9177-88c07bb1a57c

$ lcg-del --vo dteam -s lxb0707.cern.ch guid:91b89dfe-ff95-4614-bad2-c538bfa28fac
$ lcg-lr --vo dteam guid:91b89dfe-ff95-4614-bad2-c538bfa28fac

sfn://lxb0710.cern.ch/data/dteam/generated/2004-07-12/file21658bfb-6eac-409b-
9177-88c07bb1a57c

$ lcg-del --vo dteam -a guid:91b89dfe-ff95-4614-bad2-c538bfa28fac

$ lcg-lr --vo dteam guid:91b89dfe-ff95-4614-bad2-c538bfa28fac

lcg_lr: No such file or directory

The last error indicates that the GUID is no longer registered within the catalogue, as the last replica was
deleted.

Example 7.5.1.8 (Registering and unregistering Grid files)

The lcg-rf (register file) command allows to register a file physically present in a SE, creating a GUID-SURL
mapping in the catalogue. The -g <GUID> allows to specify a GUID (otherwise automatically created).

$ lcg-rf -v --vo dteam -g guid:baddb707-0cb5-4d9a-8141-a046659d243b \
sfn://lxb0710.cern.ch/data/dteam/generated/2004-07-08/file0dcabb46-2214-4db8-9ee8-2930de1
guid:baddb707-0cb5-4d9a-8141-a046659d243b

Likewise, lcg-uf (unregister file) allows to delete a GUID-SURL mapping (respectively the first and second
argument of the command) from the catalogue:

$ lcg-uf --vo dteam guid:baddb707-0cb5-4d9a-8141-a046659d243b \
sfn://lxb0710.cern.ch/data/dteam/generated/2004-07-08/file0dcabb46-2214-4db8-9ee8-2930de1

If the last replica of a file is unregistered, the corresponding GUID-LFN mapping is also removed.

Attention! lcg-uf just removes entries from the catalogue, it does not remove any physical replica from the
SE. Watch out for consistency.

Example 7.5.1.9 (Managing aliases)

The lcg-aa (add alias) command allows the user to add a new LFN to an existing GUID:

$ lcg-la --vo dteam guid:baddb707-0cb5-4d9a-8141-a046659d243b

lfn:/grid/dteam/doe/my_alias1

CERN-LCG-GDEIS-722398 Manuals Series Page 120

$ lcg-aa --vo dteam guid:baddb707-0cb5-4d9a-8141-a046659d243b lfn:/grid/dteam/doe/new_alias

$ lcg-la --vo dteam guid:baddb707-0cb5-4d9a-8141-a046659d243b

lfn:/grid/dteam/doe/my_alias1
lfn:/grid/dteam/doe/new_alias

Correspondingly, the lcg-ra command (remove alias) allows a user to remove an LFN from an existing GUID:

$ lcg-ra --vo dteam guid:baddb707-0cb5-4d9a-8141-a046659d243b lfn:/grid/dteam/doe/my_alias1

$ lcg-la --vo dteam guid:baddb707-0cb5-4d9a-8141-a046659d243b

lfn:/grid/dteam/doe/new_alias

7.6. FILE TRANSFER SERVICE

The File Transfer Service (FTS) is the gLite 3.1 low level data movement service. The user can schedule asyn-
chronous and reliable file replication from source to destination (point-to-point, i.e. no file routing via intermediate
storage) while participant sites can control the network usage. The FTS handles internally the SRM negotiation
between the source and destination SEs and the management of the underlying GridFTP transfers.

7.6.1. Basic Concepts

• Transfer Job: a set of files to be transferred in a source/destination pair format. A job may contain optional
parameters for the underlying transport layer (GridFTP). Finally, the job carries along a cyphered pass
phrase to decrypt user credentials from the MyProxy server;

• File: a source/destination SURL pair to be transferred;

• Job State: a function of the individual file states constituting the Job;

• File State: the state of an individual file transfer;

• Channel: a specific network pipe used for file transfers. Production channels are high bandwidth, dedicated
network pipe between Tier-0, Tier-1’s and other major Tier-2’s centers. Non-production channels are
assigned typically to open networks and do not guarantee a minimum throughput as production channels
do.

The transfer jobs are processed asynchronously (batch mode). Upon submission, a job identifier is returned to
the user. This identifier can be used to query the status of the job as it progresses through the system or cancel the
job. Once a job has been submitted to the system it is assigned to a transfer channel based on the SEs containing
the source and the destination. Finally, FTS accepts only SURLs as source and destination. Logical entries like
LFNs or GUIDs are at the moment not supported.

CERN-LCG-GDEIS-722398 Manuals Series Page 121

7.6.2. Transfer job states

The possible states a job can assume are:

• Submitted: the job has been submitted to FTS but not yet assigned to a channel
• Pending: the job has been assigned to a channel and files are waiting for being transferred
• Active: the transfer for some of the job’s files is ongoing
• Canceling: the job is being canceled
• Done: all files in a job were successfully transferred
• Failed: some file transfers in a job have failed
• Canceled: the job has been canceled
• Hold: the job has aborted and requires manual interventions (moving it to Pending or Failed)

The final states for jobs are Done, Canceled and Failed. The possible job status transitions are depicted in Fig-
ure 12.

Figure 12: FTS transfer job states.

7.6.3. Individual file states

The possible states for individual files are the following:

CERN-LCG-GDEIS-722398 Manuals Series Page 122

• Submitted: the status of all files in a job which is in Submitted status

• Pending: the status of all files in a job which is in Pending status

• Active: the transfer of the file is ongoing

• Canceling: the transfer of the file is being canceled

• Waiting: the transfer of the filehas failed; depending on the VO policies, it will then go to Pending, Failed
or Hold status

• Done: the transfer of the file has finished correctly

• Failed: the transfer of the file has failed

• Canceled: the transfer of the file has been canceled

• Hold: the transfer of the file has failed and requires manual interventions (moving it to Pending or Failed)

The final states for files are Done, Canceled and Failed. The possible file status transitions are depicted in Fig-
ure 13.

Figure 13: FTS individual file states.

7.6.4. FTS Commands

Before submitting a job, the user is expected to upload an appropriate password-protected long-term proxy to the
MyProxy server used by FTS.

CERN-LCG-GDEIS-722398 Manuals Series Page 123

$ myproxy-init -s myproxy-fts.cern.ch -d

Attention! This is a different usage of MyProxy with respect to the WMS Proxy Renewal. In the latest case
the -n option must be used while here it must be omitted. In addition, the same MyProxy server can not be simul-
taneously used for WMS Proxy Renewal and FTS authentication, because they require a different configuration of
the MyProxy server.

The same password is passed to FTS at job submission time. The following user-level commands for submit-
ting, querying and canceling jobs are described here:

glite-transfer-submit Submits a transfer job
glite-transfer-status Displays the status of an ongoing transfer job
glite-transfer-list Lists all submitted transfer jobs owned by the user
glite-transfer-cancel Cancels a transfer job

For completeness the following administrative commands are also briefly described. Only FTS service admin-
istrators are allowed to use them.

glite-transfer-channel-add Creates a new channel with defined parameters on FTS
glite-transfer-channel-list Displays details of a given channel defined on FTS
glite-transfer-channel-set Allows administrators to set a channel Active or Inactive
glite-transfer-channel-signal Changes status of all transfers in a given job or channel

Furthermore, here are the commands that have been added with FTS 2.0:

glite-transfer-channel-audit Shows the audit log of changes made to a channel
glite-transfer-channel-list -x Shows extra information about the channel
glite-transfer-channel-set -m "Reason" Specify why a relevant channel change has been made
glite-transfer-channel-setvolimit Allows setting of transfer caps for each VO
glite-transfer-getroles -u Allows explicit asking for the privileges given to a specified user

Example 7.6.4.1 (Submitting a job to FTS)

Once a user has successfully registered a long-term proxy to a MyProxy server, he can submit a transfer job.
He can do it either by specifying the source-destination pair in the command line:

$ glite-transfer-submit -m myproxy-fts.cern.ch \
-s https://fts.cnaf.infn.it:8443/sc3/glite-data-transfer-fts/services/FileTransfer \
srm://srm.sara.nl/pnfs/srm.sara.nl/data/lhcb/doe/zz_zz.f \
srm://srm.cnaf.infn.it/castor/cnaf.infn.it/grid/lcg/lhcb/test/SARA_1.25354

Enter MyProxy password:

Enter MyProxy password again:

c2e2cdb1-a145-11da-954d-944f2354a08b

or by specifying all source-destination pairs in an input file (bulk submission). The -m option specifies the MyProxy
server to use; the -s option specifies the FTS service endpoint to be contacted. If the service starts with http://,

CERN-LCG-GDEIS-722398 Manuals Series Page 124

https:// or httpg:// it is taken as a direct service endpoint URL; otherwise is taken as a service instance name and
Service Discovery is invoked to look up the endpoints. If not specified the first available transfer service from the
Service Discovery will be used. This is true for all subsequent examples.

$ glite-transfer-submit -m "myproxy-fts.cern.ch" \
-s https://fts.cr.cnaf.infn.it:8443/sc3/glite-data-transfer-fts/services/FileTransfer \
SARA-CNAF.in -p $passwd

where the input file SARA-CNAF.in looks like:

$ cat SARA-CNAF.in

srm://srm.grid.sara.nl/pnfs/grid.sara.nl/data/lhcb/test/doe/zz_zz.f \
srm://sc.cr.cnaf.infn.it/castor/cnaf.infn.it/grid/lcg/lhcb/test/doe/SARA_1.25354
srm://srm.grid.sara.nl/pnfs/grid.sara.nl/data/lhcb/test/doe/zz_zz.f \
srm://sc.cr.cnaf.infn.it/castor/cnaf.infn.it/grid/lcg/lhcb/test/doe/SARA_2.25354
srm://srm.grid.sara.nl/pnfs/grid.sara.nl/data/lhcb/test/doe/zz_zz.f \
srm://sc.cr.cnaf.infn.it/castor/cnaf.infn.it/grid/lcg/lhcb/test/doe/SARA_3.25354
.....

The $passwd in the example is an environment variable set to the value of the password to be passed to FTS.

Attention! The transfers handled by FTS within a single job bulk submission must be all assigned to the same
channel, otherwise FTS will not process such transfers and will return the message: Inconsistent channel.

Example 7.6.4.2 (Querying the status of a job)

The following example shows a query to FTS to infer information about the state of a transfer job:

$ glite-transfer-status \
-s https://fts.cnaf.infn.it:8443/sc3/glite-data-transfer-fts/services/FileTransfer \
-l c2e2cdb1-a145-11da-954d-944f2354a08b

Pending
Source: srm://srm.grid.sara.nl/pnfs/grid.sara.nl/data/lhcb/test/doe/zz_zz.f
Destination: srm://sc.cr.cnaf.infn.it/castor/cnaf.infn.it/grid/lcg/lhcb/test/doe/

SARA_1.25354
State: Pending
Retries: 0
Reason: (null)
Duration: 0

Attention! The verbosity level of the status of a given job is set with the -v option; the status of individual
files is however available through the option -l.

CERN-LCG-GDEIS-722398 Manuals Series Page 125

Example 7.6.4.3 (Listing ongoing data transfers)

The following example allows to query all ongoing data transfers in the specified (intermediate) state in a
defined FTS service. In order to list only the transfer jobs relative to a channel, this must be specified with the -c
option.

$ glite-transfer-list \
-s https://fts.cnaf.infn.it:8443/sc3/glite-data-transfer-fts/services/FileTransfer Pending

...
c2e2cdb1-a145-11da-954d-944f2354a08b Pending
...

Example 7.6.4.4 (Canceling a job)

An example of cancellation of a previously submitted data transfer job is shown here:

$ glite-transfer-cancel \
-s https://fts.cnaf.infn.it:8443/sc3/glite-data-transfer-fts/services/FileTransfer \
c2e2cdb1-a145-11da-954d-944f2354a08b

7.7. LOW LEVEL DATA MANAGEMENT TOOLS

In this section some details on lower level data management tools are given.

7.7.1. GSIFTP

The following low level tools can be used to interact with GSIFTP servers on SEs:

edg-gridftp-exists TURL Checks the existence of a file or directory on a SE
edg-gridftp-ls TURL Lists a directory on a SE
edg-gridftp-mkdir TURL Creates a directory on a SE
edg-gridftp-rename sourceTURL destTURL Renames a file on a SE
edg-gridftp-rm TURL Removes a file from a SE
edg-gridftp-rmdir TURL Removes a directory on a SE
globus-url-copy sourceTURL destTURL Copies files between SEs

Attention! The commands edg-gridftp-rename, edg-gridftp-rm, and edg-gridftp-rmdir should be
used with extreme care. In fact, these commands do not interact with any of the catalogues and therefore they can
compromise the consistency/coherence of the information contained in the Grid.

All the edg-gridftp-* commands accept gsiftp as the only valid protocol for the TURL.

Some examples are shown. To obtain help on these commands use the option --usage or --help. More
information on the GSIFTP protocol is available in [41].

CERN-LCG-GDEIS-722398 Manuals Series Page 126

Example 7.7.1.1 (Listing and checking the existence of Grid files)

The edg-gridftp-exists and edg-gridftp-ls commands can be useful in order to check if a file is physi-
cally in a SE, regardless of its presence in the Grid catalogues.

$ lcg-lr --vo dteam guid:27523374-6f60-44af-b311-baa3d29f841a

sfn://lxb0710.cern.ch/data/dteam/generated/2004-07-13/file42ff7086-8063-414d-9000-
75c459b71296

$ edg-gridftp-exists \
gsiftp://lxb0710.cern.ch/data/dteam/generated/2004-07-13/file42ff7086-8063-414d-9000-
75c459b71296

$ edg-gridftp-exists \
gsiftp://lxb0710.cern.ch/data/dteam/generated/2004-07-13/my_fake_file

error gsiftp://lxb0710.cern.ch/data/dteam/generated/2004-07-13/my_fake_file
does not exist

$ edg-gridftp-ls \
gsiftp://lxb0710.cern.ch/data/dteam/generated/2004-07-13/file42ff7086-8063-414d-9000-
75c459b71296

/data/dteam/generated/2004-07-13/file42ff7086-8063-414d-9000-75c459b71296

Example 7.7.1.2 (Copying a file with globus-url-copy)

The globus-url-copy command can be used to copy files between any two Grid resources, and from/to a
non-grid resource. Its functionality is similar to that of lcg-cp, but source and destination must be specified as
TURLs.

globus-url-copy \
gsiftp://lxb0710.cern.ch/data/dteam/generated/2004-07-13/file42ff7086-8063-414d-9000-
75c459b71296 file://‘pwd‘/my_file

7.7.2. CASTOR and RFIO

Direct access to the CASTOR Mass Storage System (not via SRM) can be obtained through its native CLI. The
clients are available in every gLite 3.1 UI or WN and described below, divided into two logical subgroups. Re-
member however that CASTOR supports insecure RFIO access only and therefore such commands must be used
from a UI or WN in the same LAN of the CASTOR SE.

• Clients interacting with the CASTOR namespace:

CERN-LCG-GDEIS-722398 Manuals Series Page 127

nsls list directories/files in CASTOR
nsfind search for files in CASTOR
nsmkdir create a directory in CASTOR
nsrm remove directories/files from CASTOR
nschmod change access mode of a directory/file in CASTOR
nschown change owner and group of a directory/file in CASTOR
nsrename rename a directory/file in CASTOR
nsln create a link to a file in CASTOR
nstouch change the filestamp of a file in CASTOR
nssetcomment add/replace a comment associated with directory/file in CASTOR
nsdelcomment delete the comment associated with a directory/file in CASTOR
nssetchecksum set or reset the checksum for a tape segment
nssetacl set the ACL for a directory/file in CASTOR
rfcp Remote file copy
rfstat Display remote file or filesystem status
rfcat Remote file concatenation to standard output

• Clients managing CASTOR file classes:
nschclass change the class of a CASTOR directory in the name server
nsdeleteclass delete a file class definition
nsenterclass define a new file class
nslistclass query the CASTOR Name Server about a given class or list all existing classes
nsmodifyclass modify an existing file class
File classes reflect into different service classes exposed to the user. For example, the CASTOR file class
attribute defines whether a file is permanent or not: all permanent files belong to a class with an associated
tape pool; all scratch files belong to a class with no associated tape pool. Setting the file class attributes
requires administrator privileges.

7.7.3. dCache and DCAP

Analogously to CASTOR and the RFIO protocol, CLIs for direct access to dCache storage systems are available:

dccp allows to copy files from/to dCache SEs via the native dcap protocol

7.8. JOB SERVICES AND DATA MANAGEMENT

With both the LCG-2 and gLite 3.1 WMS, some specific JDL attributes allow the user to specify requirements on
the input data (see Chapter 6 for information on how to define and manage Grid jobs).

Example 7.8.1 (Specifying input data in a job)

If a job requires one or more input files stored in a SE, the InputData JDL attribute can be used. Files can be
specified by both by LFN and GUID.

An example of JDL specifying input data looks like:

Executable = "/bin/hostname";

CERN-LCG-GDEIS-722398 Manuals Series Page 128

StdOutput = "sim.out";
StdError = "sim.err";
DataCatalog = "http://lfc.cern.ch:8085";
InputData = {"lfn:/grid/dteam/doe/fileA"};
DataAccessProtocol = {"rfio", "gsiftp", "gsidcap"};
OutputSandbox = {"sim.err","sim.out"};

The InputData field may also be specified through GUIDs. This attribute is used only during the match-
making process, to find an appropriate CE to run the job. It has nothing to do with the real access to files that the
job can do while running. However, it is reasonable to list in InputData the files that will be accessed by the job
and vice-versa.

The DataAccessProtocol attribute is used to specify the protocols that the application can use to access the
file and is mandatory if InputData is present. Only data in SEs which support one or more of the listed protocols
are considered. The WMS will schedule the job to a CE close to the SE holding the largest number of input files
requested. In case several CEs are suitable, they will be ranked according to the ranking expression.

Note: a SE or a list of SEs is published as “close” to a given CE via the GlueCESEBindGroupSEUniqueID
attribute of the GlueCESEBindGroup object class. For more information see Appendix G.

Example 7.8.2 (Specifying a Storage Element)

With the LCG-2 WMS the user can ask the job to run close a specific SE using the attribute OutputSE. For
example:

OutputSE = "srm.cern.ch";

The WMS will not submit the job if there is no CE close to the OutputSE specified by the user.

Note: the same is not true with the gLite 3.1 WMS. Even if there are CEs close to a given OutputSE specified
by the user, no resources get matched when this field is defined on the JDL.

Example 7.8.3 (Automatic upload and registration of output files)

In the LCG-2 WMS (but not in the gLite 3.1 WMS), the OutputData attribute allows the user to automatically
upload and register files produced by the job on the WN. For each file, three attributes can be set:

• the OutputFile attribute is mandatory and specifies the name of the generated file to be uploaded to the
Grid;

• the StorageElement attribute is an optional string indicating the SE where the file should be stored, if
possible. If not specified, the WMS automatically chooses a SE defined as close to the CE;

• the LogicalFileName attribute (also optional) represents a LFN the user wants to associate to the output
file.

The following code shows an example of JDL requiring explicitly an OutputData attribute:

CERN-LCG-GDEIS-722398 Manuals Series Page 129

Executable = "test.sh";
StdOutput = "std.out";
StdError = "std.err";
InputSandbox = {"test.sh"};
OutputSandbox = {"std.out","std.err"};
OutputData = {

[
OutputFile="my_file";
LogicalFileName="lfn:/grid/dteam/doe/my_file";
StorageElement = "castorsrm.pic.es";

]
};

Once the job is terminated and the user retrieves its output, the Output Sandbox downloaded will contain a
further file, automatically generated by the JobWrapper, containing the logs of the output upload.

$ cat DSUpload_ZboHMYWoBsLVax-nUCmtaA.out
#
Autogenerated by JobWrapper!
#
The file contains the results of the upload and registration
process in the following format:
<outputfile> <lfn|guid|Error>

my_file guid:2a14e544-1800-4257-afdd-7031a6892ef7

Example 7.8.4 (Selecting the file catalogue to use for match making)

For the WMS to select CEs that are close to the files required by a job (by the InputData attribute), it has to
locate the SEs where these files are stored. To do this, the WMS uses the Data Location Interface service, which
acts as interface to a file catalogue. Since it is possible that several different DLI services exist on the Grid, the
user has the possibility to select which one he wants to talk to by using the JDL attribute DataCatalog. The user
will specify the attribute and the endpoint of the DLI as value, as in this example:

DataCatalog = "http://lfc-lhcb-ro.cern.ch:8085/";

If no value is specified, then the first DLI service that is found in the information system is used (which should
probably be the right choice for the normal user).

CERN-LCG-GDEIS-722398 Manuals Series Page 130

7.9. THE AMGA METADATA CATALOG

7.9.1. Introduction

AMGA is a gLite 3.1 metadata service which provides database access for Grid applications. AMGA is imple-
mented as a thin layer between a Grid application and the underlying database and acts as an interface between
them, providing a Grid style authentication mechanism. Another interesting feature of AMGA is the protocol
used to transmit information, which reduces latency in WAN networks as much as possible and implements a data
streaming mechanism which allows to retrieve information at high speed. AMGA also provides functionality to
make Grid applications interoperable with different database backends. Finally, AMGA’s support for replication
of relational data can be used to build scalable and reliable Grid applications.

The AMGA project has been developed by the ARDA group at CERN and is now a collaborative effort of
CERN, INFN Catania and Kisti in Korea.

This documentation is based on the document [59] provided by the developers and available on the AMGA
web site:http://amga.web.cern.ch/amga/. Since AMGA is now delivered with the gLite 3.1 middleware, in
the User Guide we will not give instructions about the installation. We will just mention that the AMGA server can
be installed on the same server as the database or on another host, and has to be configured to point to the desired
database schema, which can be located on another host anywhere in the network.

7.9.2. Configuration of the client

On the client side, the user can set the desired configuration in the $HOME/.mdclient.config file. If this file
doesn’t exist, the client will read the default configuration from the file /opt/glite/etc/mdclient.config.

An example configuration file is shown below:

Connection options
Host = localhost
Port = 8822

User settings
Login = root
Home = /

Security options
UseSSL = no # Values: require, try, no. If off, all options below are ignored

AuthenticateWithCertificate = 0 # Use certificate to authenticate
Certificates used for authentication: ... either normal certs
#CertFile=/home/doe/.globus/usercert.pem
#KeyFile=/home/doe/.globus/userkey.pem
... or a grid proxy certificate
UseGridProxy = 1
Use password instead of certificate to authenticate
Password = secret
#VerifyServerCert = 1

CERN-LCG-GDEIS-722398 Manuals Series Page 131

#IgnoreCertificateNameMismatch = 0
If server certificates are verified, CA certificates need to be loaded:
TrustedCertDir = /etc/grid-security/certificates

The following parameters can be configured:

• Host: the name of the host where the AMGA server is running. Default is localhost

• Port: the port of the host to connect to. Default is 8822.

• Login: the login name used for the AMGA server. This will be the owner of the new entries created in the
catalog.

• Home: the home-directory. The default is ”/”.

• UseSSL: possible values are no, try, require (or yes). The default value is no. It has to be set to yes
if the user wants to make the authentication via certificates or proxies. If UseSSL is on, all the session is
encrypted. If it is off, all the parameters below will be ignored.

• AuthenticateWithCertificate: set to 1 to enable certificate based authentication. If this option is on,
then you should provide either a key and certificate pair, or a proxy. If both options are provided, then the
proxy has the priority.

• CertFile: the path to the certificate file. It has to be in .pem format. Note that the UseGridProxy option
should be disabled, otherwise the grid proxy has the priority.

• KeyFile: the path to the key file. Like for the CertFile option, the UseGridProxy option should be
disabled.

• UseGridProxy: the path to the X509 user grid proxy. The default value is /tmp/x509up u[userId].

• Password: you can also use a password to authenticate with your login. Password is sent encrypted if SSL
is used.

• VerifyServerCert: if set to 1 (default value), verifies the server certificate against the CA certificate
located in TrustedCertDir (see below for this option).

• IgnoreCertificateNameMismatch: if set to yes, do not try to match the DN in the server certificate with
the host name of the server. Useful for services that are multi-homed (for example that have an alias for the
host name)

• TrustedCertDir: the directory where the CA certificate is stored.

7.9.3. Metadata access from the shell

AMGA provides two ways to access metadata from the shell: via the cli command line and via the mdclient
metadata terminal interface.

To start the mdclient interface, just enter:

mdclient [-p port] [hostname]

CERN-LCG-GDEIS-722398 Manuals Series Page 132

where the -p option and the hostname argument can override the corresponding values set in the configuration
file. This will establish a connection to the database the AMGA server points to.

AMGA has its own language, quite similar to SQL, with the main difference that it deals with tables as if they
were directories. For example, the content of the database schema you are connected to can be listed with the ls
command:

$ mdclient
Connecting to lxn1187.cern.ch:8822...
ARDA Metadata Server 1.3.0
Query> ls
>> /files
>> /jobs
>> /evtTypes

or, in an equivalent way, using the mdcli command line client:

$ mdcli ls
/files
/jobs
/evtTypes

To list the columns (or attributes) of a table:

$ mdcli listattr /evtTypes
Description
varchar(256)
EventTypeId
int
Primary
varchar(256)

the command result is the sequence of attribute names and types, for all the columns of the table.

7.9.4. Some commands to manipulate entries and attributes of a table

AMGA supports all the main commands to manage data in the database. To list all the possible commands available
in the mdclient interface you can type help. A complete documentation of the available commands is given in [59],
here we will report some of them, just to show the way AMGA works.

Example 7.9.4.1 (Adding new entries to a table)
First we check the attributes name and type:

Query> listattr test
>> i
>> int

CERN-LCG-GDEIS-722398 Manuals Series Page 133

which means that the table test has one column of type int. In AMGA an entry in a table is handled like a file in
a directory. The syntax to add a new entry is: addentry file column name value, where ’file’ is the full path
name of the new entry, in analogy with the file name in a file system. If the path name is not provided, then the
new entry is created in the current directory (or table). For example, to add an entry into the test table, assigning
the value 10 to the column i, we should type:

Query> addentry /test/a i 10
Query> listentries /test/
>> /test/a

Example 7.9.4.2 (Removing an entry from a table)
The syntax to remove an entry from a table is:

rm [-options] pattern [conditions]

where pattern is the path to the file to be removed. It also can contain wild characters to match more entries.
In this example we first list the content of the directory test and then we delete some entries:

Query> listentries /test/
>> /test/a
>> /test/b
>> /test/t1
>> /test/t2
Query> rm /test/a
Query> rm /test/t*
Query> listentries /test/
>> /test/b

Example 7.9.4.3 (Adding and removing an attribute from a table)

The syntax to add a new column to a table is: adattr table name column name data type. For example,
to add the column column2 to the test table:

Query> addattr test column2 int

and to remove it:

Query> removeattr test column2

AMGA provides numeric, character and time stamp data type which correspond to the data type of the different
database backends. A table showing the correspondance is reported in the manual in [59].

In addition to these basic commands, AMGA can manage more complex operations like creating indexes, table
constraints, creation of views and sequences. For a more complete documentation you can refer again to the user
manual [59].

CERN-LCG-GDEIS-722398 Manuals Series Page 134

7.9.5. Using the API’s

AMGA provides API’s in several programming languages such as: Java, C++, Python and Perl. Developing code
using the API has the big advantage to be totally decoupled of the database backend. The functionality provided
by the API’s is the same described for the client (see 7.9.3).

Here we will provide some examples about the usage of the Python API. The API can be used adding to the
$PYTHONPATH variable the directory where the mdclient package is located and then importing the mdclient
module. From the Python interactive prompt:

>>> import mdclient
>>> client = mdclient.MDClient(’localhost’, 8822, ’root’)
>>> dir(client)
[’_MDClient__dataArrived’, ’_MDClient__fetchData’, ’_MDClient__fetchRow’,
’_MDClient__quoteValue’, ’_MDClient__sendCommand’, ’__doc__’, ’__init__’,
’__module__’, ’abort’, ’addAttr’, ’addEntries’, ’addEntry’, ’buffer’,
’cd’, ’clearAttr’, ’commit’, ’connect’, ’connected’, ’createDir’,
’disconnect’, ’eot’, ’execute’, ’executeNoWait’, ’getEntry’,
’getSelectAttrEntry’, ’getattr’, ’greetings’, ’host’, ’keepalive’,
’listAttr’, ’listEntries’, ’login’, ’password’, ’port’, ’protocolVersion’,
’put’, ’pwd’, ’removeAttr’, ’removeDir’, ’reqSSL’, ’requireSSL’,
’retrieveResult’, ’rm’, ’selectAttr’, ’sequenceCreate’, ’sequenceNext’,
’sequenceRemove’, ’session’, ’sessionID’, ’setAttr’, ’sslOptions’,
’sslSock’, ’updateAttr’, ’upload’]

>>> client.createDir("/pytest")
>>> client.cd("/pytest")
>>> client.addAttr(".", "events", "int")
>>> client.addAttr("/pytest", "eventGen", "varchar(20)")
>>> client.listAttr(’pytest’)
([’events’, ’eventGen’], [’int’, ’varchar(20)’])

In the sequence of commands above reported, first of all we instantiate an object, client, which provides the
connection to the AMGA server running on the localhost, on the port 8822. Then we create a directory and therein
we add some attributes. The location where to create the attributes can be specified, exactely as in a file system,
with the ’.’ symbol or with the absolute path. This is equivalent to creating a table and adding some columns.
Then, we can add entries to the table:

>>> for i in range(0,3):
... client.addEntry("/pytest/t"+str(i),[’events’, ’eventGen’], [i*100,
’LHCs Gen’])

after, we can see the values of the entries for the desired attributes using the getattr method. The syntax is:
getattr(pattern, AttributeList), where ’pattern’ is the path to the attributes, including also wild characters,
and the ’AttributeList’ is a Python list containing the attributes to display. In this case, to display the values of all
the entries for the eventGen and events attributes of the pytest table:

>>> client.getattr(’/pytest/*’, [’eventGen’, ’events’])
>>> while not client.eot():
... file, values=client.getEntry()

CERN-LCG-GDEIS-722398 Manuals Series Page 135

... print "->",file, values

...
-> t2 [’200’, ’LHCs Gen’]
-> t0 [’0’, ’LHCs Gen’]
-> t1 [’100’, ’LHCs Gen’]

A select query can be done using the selectAttr method of the client object, with the following syntax:
selectAttr(AttributeList, Condition). Where the ’AttributeList’ is a python list containing the attributes
to display as the result of the query and the ’Condition’ is a string containing the clause of the query. As an
example:

>>> client.selectAttr([’/pytest:eventGen’, ’/pytest:events’], ’/pytest:events = 100’)
>>> while not client.eot():
... eventGen,events = client.getSelectAttrEntry()
... print ’eventGen = ’, eventGen, ’ events = ’, events
eventGen = LHCs Gen events = 100

the selectAttr method executes the query on the database backend and stores the result in a buffer, which
can be read later using the getSelectAttrEntry method, as shown above.

CERN-LCG-GDEIS-722398 Manuals Series Page 136

Component EGEE EDG EDT INFN Grid Globus Condor Other
Basic middleware

Globus Toolkit 2.4.3
√

ClassAds 0.9.7
√

Authentication and Authorisation
MyProxy 0.6.1

√

VOMS
√ √

VOMRS
√

LCAS/LCMAPS
√

Workload management
Condor-G 6.6.7

√

EDG WMS
√

gLite WMS
√

Data management
LFC

√

DPM
√

FTS
√

GFAL
√

LCG DM tools
√

Fabric management
Quattor

√

YAIM
√

Monitoring
GridICE

√

Information system
MDS

√

Glue Schema
√

BDII
√

R-GMA
√ √

LCG Information tools
√

Table 1: Software components of gLite 3.1 and projects that contributed to them.

APPENDIX A THE GRID MIDDLEWARE

The only operating system currently supported by gLite 3.1 is Scientific Linux 3[45] and the supported architecture
is IA32. It is foreseen to have soon support for Scientific Linux 4 and the x86 64 and IA64 architectures.

The gLite 3.1 middleware layer uses components from several Grid projects, including EGEE, Datagrid (EDG),
DataTag (EDT), DataGrid (EDG), INFN-GRID, Globus and Condor. In some cases, patches have been applied to
some components, so the final software used is not exactly the same as the one distributed by the original project.

The components which are currently used in gLite 3.1 are listed in table 1.

CERN-LCG-GDEIS-722398 Manuals Series Page 137

APPENDIX B ENVIRONMENT VARIABLES AND CONFIGURATION FILES

Some of the configuration files and environmental variables that may be of interest for the Grid user are listed in
the following tables. Unless explicitly stated, they are all located/defined in the User Interface.

Environment variables

Variable Definition UI WN
EDG LOCATION EDG middleware installation directory

√ √

EDG WL JOBID JobID (defined for a running job)
√

EDG WL LOCATION LCG-2 WMS UI installation directory
√

EDG WL RB BROKERINFO Location of the .BrokerInfo file
√

EDG WL UI CONFIG VAR Non-standard location of the LCG-2 WMS UI configura-
tion file

√

EDG WL UI CONFIG VO Non-standard location of the VO-specific LCG-2 WMS
UI configuration file

√

GLITE LOCATION gLite middleware installation directory
√ √

GLITE SD PLUGIN Sets the type of service discovery implementation to be
used (file, bdii, rgma)

√ √

GLITE SD SITE Sets the local site where to find services
√ √

GLITE SD VO Sets the default VO for which to find services
√ √

GLITE WMS CLIENT CONFIG Non-standard location of the gLite WMProxy UI config-
uration file

√

GLITE WMSUI CONFIG VAR Non-standard location of the gLite WMS UI configura-
tion file

√

GLITE WMSUI CONFIG VO Non-standard location of the VO-specific gLite WMS UI
configuration file

√

GLOBUS LOCATION Globus middleware installation directory
√ √

LCG CATALOG TYPE Type of file catalogue used by lcg util and GFAL (it
should be lfc)

√ √

LCG GFAL INFOSYS comma-separated list of BDII contact strings for lcg utils
and GFAL (<hostname>:<port>)

√ √

LCG GFAL VO User’s VO for lcg utils and GFAL
√ √

LFC HOST Location of the LFC catalogue
√ √

LCG LOCATION LCG middleware installation directory
√ √

LCG RFIO TYPE Type of RFIO for GFAL (dpm or castor)
√ √

VO <VO> DEFAULT SE Default SE for the VO <VO>
√ √

VO <VO> SW DIR <VO>’s software installation directory
√

X509 CERT DIR Directory containing the CA certificates
√ √

X509 USER CERT User’s certificate file
√

X509 USER KEY User’s private key file
√

X509 USER PROXY User’s proxy certificate file
√ √

X509 VOMS DIR Directory containing the certificates of the VOMS servers
√ √

CERN-LCG-GDEIS-722398 Manuals Series Page 138

Configuration files

Configuration File Notes

$GLITE LOCATION/etc/vomses System-level configuration of the VOMS CLI

$HOME/.glite/vomses User-level configuration of the VOMS CLI

$GLITE LOCATION/etc/<vo>/glite wms.conf Configuration file for the WMProxy CLI for the VO
<VO>

$GLITE LOCATION/etc/glite wmsui cmd var.conf Generic configuration file for the gLite WMS CLI
via NS

$GLITE LOCATION/etc/<vo>/glite wmsui.conf VO-specific configuration file for the gLite WMS
CLI via NS for the VO <VO>

$EDG WL LOCATION/etc/edg wl ui cmd var.conf Generic configuration file for the LCG-2 WMS

$EDG WL LOCATION/etc/<vo>/edg wl ui.conf VO-specific configuration file for the LCG-2 WMS

CERN-LCG-GDEIS-722398 Manuals Series Page 139

APPENDIX C JOB STATUS DEFINITION

As it was already mentioned in Chapter 6, a job can find itself in one of several possible states. Also, only some
transitions between states are allowed. These transitions are depicted in Figure 14. For completeness, also the
DAG states are described in 15.

Figure 14: Possible job states in gLite 3.1

Figure 15: Possible DAG states in gLite 3.1

CERN-LCG-GDEIS-722398 Manuals Series Page 140

And the definition of the different states is given in this table.

Status Definition

SUBMITTED The job has been submitted by the user but not yet processed by the Network
Server or WMProxy

WAITING The job has been accepted by the Network Server or WMProxy but not yet
processed by the Workload Manager

READY The job has been assigned to a Computing Element but not yet transferred to it

SCHEDULED The job is waiting in the Computing Element’s queue

RUNNING The job is running

DONE The job has finished

ABORTED The job has been aborted by the WMS (e.g. because it was too long, or the
proxy certificated expired, etc.)

CANCELED The job has been canceled by the user

CLEARED The Output Sandbox has been transferred to the User Interface

CERN-LCG-GDEIS-722398 Manuals Series Page 141

APPENDIX D USER TOOLS

D.1. INTRODUCTION

This section introduces some tools that are not really part of the gLite 3.1 middleware stack, but that can be useful
for Grid users nonetheless. Rather than a full description, an introduction to the functionality of some of them and
pointers to more detailed sources of documentation will be provided in this Appendix.

D.2. JOB MANAGEMENT FRAMEWORK

When submitting very large numbers of jobs to the WLCG/EGEE Grid, the management and the monitoring of
these jobs can be a cumbersome task, if done manually. A simple framework to automatically submit and manage
large numbers of jobs is available to assist users in developing more sophisticated job tracking tools.

The framework consists mainly of two commands:

• submitter general.pl: it performs the automatic job submission

• get output.pl: it retrieves and handles the corresponding outputs

More information on this tool can be found in the User level tools Wiki[46].

D.3. JOB MONITORING

The lcg-job-monitor command can be used to monitor from the UI the progress of a job currently running on a
WN. This tool provides some information and statistics about a given jobID, like memory usage, swap usage, CPU
time, user DN, etc.

The information is retrieved by querying the JobMonitor table in R-GMA. The command can return informa-
tion either for a single job (given the jobID), for a user (given the DN) or for a whole VO. This command currently
works only with the LCG-2 WMS.

The command syntax is:

lcg-job-monitor [-j <jobID>] [-v <VO>] [-u <DN>] [-q <query_type>]

where the <query type> can be LATEST, HISTORY or CONTINUOUS.

More information on this tool can be found in the User level tools Wiki[46].

D.4. JOB STATUS MONITORING

The lcg-job-status command allows to recover the logging information of a job from R-GMA. The information
is retrieved by querying the JobStatusRaw table in R-GMA. This command currently works only with the LCG-2

CERN-LCG-GDEIS-722398 Manuals Series Page 142

WMS.

The command syntax is:

lcg-job-status [-j <jobID>] [-q <type>]

where the query type can be either LATEST, CONTINUOUS or HISTORY.

For LATEST and HISTORY queries, an output is printed and the command exits. In the case of CONTINUOUS
queries, the status is checked every 5 seconds until the program is interrupted via Ctrl-C or a status Done or
Aborted is reached.

More information on this tool can be found in the User level tools Wiki[46].

D.5. TIME LEFT UTILITY

These commands and API can be invoked from a running job to know:

• how much CPU time or wall clock time the job has consumed;

• how long the job can still run before reaching the CPU time or the wall clock time limit of the batch system
queue; this is done by directly querying the batch system whenever possible.

The results returned by the tools are not always accurate, particularly if a site has not set a time limit, or if the
batch system is not supported by the tools. Therefore, they should be used with some care.

Attention! These commands can generate a significant load on the CE, and therefore they should not be
configured to run too often, in particular if there is a large number of concurrent jobs on the CE. A reasonable time
interval would be one hour.

The following files should be present in the WN (either already in the release or shipped with the job in a
tarball):

• lcg-getJobStats: a wrapper bash script around the corresponding Python script;

• lcg-getJobTimes: a wrapper bash script around the corresponding Python script;

• lcg-getJobStats.py: a Python script;

• lcg-getJobTimes.py: a Python script;

• lcg jobConsumedTimes.py: a Python module;

• lcg jobStats.py: a Python module.

The only commands the user should normally use are lcg-getJobStats or lcg jobStats.py. The other
commands, lcg-getJobTimes or lcg jobConsumedTimes.py, are used to estimate the used CPU time and wall
clock time without querying the batch system, but by parsing the proc filesystem; they are internally called by
lcg-getJobStats when it cannot get the information from the batch system.

More information on this tool can be found in the User level tools Wiki[46].

CERN-LCG-GDEIS-722398 Manuals Series Page 143

APPENDIX E VO-WIDE UTILITIES

E.1. INTRODUCTION

This section describes some administrative tools that are only relevant to selected VO members (VO managers, VO
software managers, etc.). Links to other sources of documentation are provided when available.

E.2. FREEDOM OF CHOICE FOR RESOURCES

The Freedom of Choice for Resources (FCR) is a tool for VO Software Managers to set up selection rules for
Computing and Storage Elements, which will determine whether a particular resource will be available or not to
the VO.

The FCR interface[49] allows the VO manager to decide if a resource supporting his VO should be visible at
any time, invisible at any time or visible only if it passes periodic tests run by the WLCG/EGEE operations team,
or by the VO itself (see next section). The VO manager can also decide what tests are to be considered critical for
its VO: only the failure of critical tests determines the exclusion of a resource.

E.3. SERVICE AVAILABILITY MONITORING

The Service Availability Monitoring (SAM)[50] is a framework to provide a centralized and uniform monitoring
tool for all Grid services.

It is based on the concept of running periodic tests on all known Grid services to determine whether they are
working properly. These tests can both be directly run from a User Interface, or sent out as Grid jobs (for example,
to test a Computing Element). It provides detailed information about the overall status of the service, and about
the outcome of the individual tests, and keeps a historical record of the information.

The SAM is a very useful tool both for the WLCG/EGEE operations team and for the VO members. It also
allows Virtual Organisations to complement the standard tests with custom tests covering VO-specific functionali-
ties.

The user can view the results of the SAM tests on the production WLCG/EGEE infrastructure from the SAM
Web interface [51]. From this page, the user can choose the service type (CE, LFC, WMS, etc.), a VO, a region
and the specific tests he is interested in.

E.4. THE VO BOX

The VO box[52] is a type of node, which is deployed at many sites, where the VO can run specific agents and
services. The access to the VO box is restricted to the VO software manager of the VO.

The VO box offers basically two main features to the users:

• VOs can run their own services from this node;

CERN-LCG-GDEIS-722398 Manuals Series Page 144

• it provides direct access to the software area of each VO, also accessible from all WNs of the site.

Each VO should negotiate with the site the setup of the VO box depending on the services which are run inside
that node.

E.5. VO SOFTWARE INSTALLATION

Authorized users can install VO-specific software on the computing resources of WLCG/EGEE. The availability
of such software can be advertised in the Information System[47].

The VO Software Manager is the member of the VO with the privileges to install VO-specific software on the
different sites. The software manager can install, validate or remove VO-specific software on a site at any time
through a normal Grid job. Normally, the software manager privileges are expressed by a special VOMS role,
which must be taken when creating the VOMS proxy used to submit the software installation job.

The VO software manager can also modify the VO-specific information for the CEs using either the command
lcg-tags or the command lcg-ManageVOTag, available from the UI and the WN.

Each site should provide a dedicated space where each supported VO can install or remove software. The
amount of available space must be negotiated between the VO and the site, as well as any special priority for
software installation jobs.

E.6. USING LCG-TAGS

This command allows to list, add and remove tags to computing elements, which are normally used to advertise
the availability of some piece of software. A full man page is available, so we will give just a few examples.

Example E.6.1 (List all the tags for a CE and a given VO)

If you want to see all the tags that have been defined by a VO on a CE, you can run something like

$ lcg-tags --ce ce110.cern.ch --vo cms --list
VO-cms-CMSSW_3_0_0_pre2
VO-cms-dummyarch
VO-cms-slc4_ia32_gcc345

Please note that the command works by locally copying via GridFTP the file containing the tags to be pub-
lished via the CE GRIS; it may happen that, due to problems with the information system, the tags are visible via
lcg-tags but not in the BDII.

Example E.6.2 (Modify the tags of a CE)

CERN-LCG-GDEIS-722398 Manuals Series Page 145

If you are entitled to the lcgadmin VOMS role for a VO, you can also modify the tags attached by that VO to
a CE. For example, to remove a tag, you can do

$ lcg-tags --ce ce110.cern.ch --vo cms --remove --tags VO-cms-dummyarch

and, to add a new tag:

$ lcg-tags --ce ce110.cern.ch --vo cms --add --tags VO-cms-mytag

The option --tags can contain a comma-separated list of tags.

More tags can be added or removed ad the same time also using the option --tagfile tagfile instead of
--tags, where tagfile is a file containing a list of tags separated by any number of spaces, tabs or newlines.

Finally, the options --clean and --replace allow respectively to remove all tags and to replace the current
tags with those specified by --tags or --tagfile.

E.7. USING LCG-MANAGEVOTAG

The command lcg-ManageVOTag has a similar syntax and functionality. For details, use

$ lcg-ManageVOTag -help

CERN-LCG-GDEIS-722398 Manuals Series Page 146

APPENDIX F DATA MANAGEMENT AND FILE ACCESS THROUGH AN APPLI-
CATION PROGRAMMING INTERFACE

In this section, an overview of the available Data management API will be given, and some details on the most
high-level API will provided.

Figure 16: Layered view of the Data Management APIs and CLIs

Figure 16 shows a layered view of the different gLite Data Management API and of the CLI which where
described earlier. The CLI and API whose use is discouraged are shadowed.

Just below the user tools, we find the lcg util API. This is a C API that provides the same functionality as the
lcg-* commands for Data Management we have already seen: in fact, the commands are just wrappers around the
C calls. This layer should cover most of the basic needs of user applications. It is independent from the underlying
technology, since it will transparently interact with the LFC catalogue and will use the correct protocol (GSIFTP,
RFIO or gsidcap) for file transfer.

In the following table, all the available methods and a short description are listed.

CERN-LCG-GDEIS-722398 Manuals Series Page 147

Method name Description
lcg aa add an alias in the LFC for a given GUID
lcg cp copy a Grid file to a local destination
lcg cr copy and register a file
lcg del delete one file (either one replica or all replicas)
lcg gt get the TURL given the SURL and the transfer protocol
lcg la get the list of aliases for a given LFN, GUID or SURL
lcg lg get the GUID for a given LFN or SURL
lcg lr get the list of replicas for a given LFN, GUID or SURL
lcg ra remove an alias in LFC for a given GUID
lcg rep copy a file from one SE to another and register it in LFC
lcg rf register in LFC a file residing on a SE
lcg sd set file status to “Done” for a given SURL in a specified request
lcg uf unregister in LFC a file residing on a SE

Apart from the basic calls lcg cp, lcg cr, etc., there are other calls that enhance them with a buffer for com-
plete error messages (lcg cpx, lcg crx, ...), that include timeouts (lcg cpt, lcg crt, ...), and both (lcg cpxt,
lcg crxt). Actually, all calls use the most complete version (i.e. lcg cpxt...) with default values for the argu-
ments that were not provided.

Below the lcg util API, we find the Grid File Access Library (GFAL). GFAL provides a POSIX-like interface
for I/O operations on Grid files, effectively hiding the interactions with the LFC, the SEs and SRM. The function
names are obtained by prepending gfal to the POSIX names, for example gfal open, gfal read, gfal close.

GFAL accepts GUIDs, LFNs, SURLs and TURLs as file names. It will automatically select the most appropri-
ate transfer protocol, depending on the kind of SE the file is located on (if a TURL is used, the protocol is already
implicitly specified).

Note: In the case where LFNs or GUIDs are used, GFAL (and, as a consequence, lcg util) needs to con-
tact the LFC to obtain the corresponding TURL. For GFAL to be able to discover the LFC endpoints and to
find out information about the Storage Elements, the user must set the environment variables LCG GFAL VO and
LCG GFAL INFOSYS to the VO name and a comma-separated list of BDII hostnames and ports. For example:

export LCG_GFAL_VO=cms
export LCG_GFAL_INFOSYS=exp-bdii.cern.ch:2170,grid01.lal.in2p3.fr:2170

The endpoint of the catalogue may also be directly specified by setting the environment variable LFC HOST.
For example:

export LFC_HOST=prod-lfc-cms-central.cern.ch

In Figure 17, it is shown the flow diagram of a gfal open call. This call will locate a Grid file and return a
remote file descriptor so that the caller can read or write file remotely, as it would do for a local file. As shown
in the figure, first, if a GUID is provided, GFAL will contact a file catalogue to retrieve the corresponding SURL.
Then, it will access the SRM interface of the SE that the SURL indicates, it will get a valid TURL and also pin the
file so that it is there for the subsequent access. Finally, with the TURL and using the appropriate protocol, GFAL
will open the file and return a filehandle to the caller.

It is important to notice that if a file is created with GFAL naming it by SURL, for it to be used as a Grid file,
it should be manually registered with a LFN using lcg-rf.

CERN-LCG-GDEIS-722398 Manuals Series Page 148

Figure 17: Flow diagram of a GFAL call

In addition, GFAL may expose functionality applicable only to a specific underlying technology (or protocol),
if this is considered useful. A good example of this is the exposed SRM interface that GFAL provides. Some code
exploiting this functionality is shown later.

For more information on GFAL, refer to the manpages of the library (gfal) and of the different calls (gfal open,
gfal write...).

Finally, below GFAL, we find some other CLI and API which are technology dependent. Their direct use is in
general discouraged (except for the mentioned cases of the LFC client tools and the edg-gridftp-* commands).
Nonetheless, some notes on the RFIO API are given later on.

Example F.0.1 (Using lcg util API to transfer a file)

The following example copies a file from a SE to the local host. The file can be then accessed locally with
normal file I/O calls.

The source code follows (lcg cp example.cpp):

#include <iostream>

extern "C"{
#include "lcg_util.h"
}

using namespace std;

CERN-LCG-GDEIS-722398 Manuals Series Page 149

int main(int argc, char **argv){

/* Check syntax (there must be 2 arguments) */
if (argc != 3) {

cerr << "Usage: " << argv[0]<< " source destination\n";
exit (1);

}
char * src_file=argv[1];
char * my_file=argv[2];
char * dest_file=new char[200];
char * vo=getenv("LCG_GFAL_VO");
int nbstreams=1;
int verbose=1;
int timeout=180;

/* Form the name of the destination file */
char * pwd=getenv("PWD");
strcpy(dest_file,"file:");
strcat(dest_file,pwd);
strcat(dest_file,"/");
strcat(dest_file,my_file);

/* The lcg_cp call itself */
if(lcg_cpt(src_file, dest_file, vo, nbstreams, 0, 0, verbose, timeout)==0){

cout << "File correctly copied to local filesystem " << endl;
}
else{

perror("Error with lcg_cp!");
}

/* That was it */
cout << endl;
return 0;

}//end of main

The code can be compiled with the following command:

$ c++ -I$LCG_LOCATION/include -L$LCG_LOCATION/lib -L$GLOBUS_LOCATION/lib \
-llcg_util -lgfal -lglobus_gass_copy_gcc32 -o lcg_cp_example lcg_cp_example.cpp

Note: The link with libglobus gass copy gcc32.so should not be necessary, and also the one with libgfal.so
should done transparently when linking liblcg util.so. Nevertheless, their explicit link as shown in the example
was necessary for the program to compile in the moment that this guide was written.

The resulting executable will take two arguments: the name of a Grid file and a local name for the file in the
current directory. For example:

$./lcg_cp_example lfn:/grid/cms/doe/gridfile localfile

CERN-LCG-GDEIS-722398 Manuals Series Page 150

Using grid catalog type: lfc
Using grid catalog : prod-lfc-cms-central.cern.ch
Source URL: lfn:/grid/cms/doe/gridfile
File size: 7840
VO name: cms
Source URL for copy: gsiftp://lxfsrc4601.cern.ch//castor/cern.ch/grid/cms/generated/
2006-11-14/fileee903ced-b61a-4443-b9d2-a4b0758721a8
Destination URL: file:/home/doe/localfile
streams: 1
set timeout to 180 (seconds)

0 bytes 0.00 KB/sec avg 0.00 KB/sec inst
Transfer took 6080 ms
File correctly copied to local filesystem

Example F.0.2 (Using GFAL to access a file)

The following C++ code uses GFAL to access a Grid file. The program opens the file, writes a set of numbers
into it, and closes it. Afterwards, the files is opened again, and the previously written numbers are read and shown
to the user. The source code (gfal example.cpp) follows:

#include<iostream>
#include <fcntl.h>
#include <stdio.h>
extern "C" {
#include "/opt/lcg/include/gfal_api.h"
}

using namespace std;

/* Include the gfal functions (are C and not C++, therefore are ’extern’) */
extern "C" {
int gfal_open(const char*, int, mode_t);
int gfal_write(int, const void*, size_t);
int gfal_close(int);
int gfal_read(int, void*, size_t);

}

/*************** MAIN *************/
main(int argc, char **argv)
{
int fd; // file descriptor
int rc; // error codes
size_t INTBLOCK=40; // how many bytes we will write each time (40 = 10 int a time)

/* Check syntax (there must be 2 arguments) */
if (argc != 2) {

cerr << "Usage: " << argv[0]<< "filename\n";
exit (1);

}

CERN-LCG-GDEIS-722398 Manuals Series Page 151

/* Declare and initialize the array of input values (to be written in the file) */
int* original = new int[10];
for (int i=0; i<10; i++) original[i]=i*10; // just: 0, 10, 20, 30...

/* Declare and give size for the array that will store the values read from the file */
int* readValues = new int[10];

/* Create the file for writing with the given name */
cout << "\nCreating file " << argv[1] << endl;
if ((fd = gfal_open (argv[1], O_WRONLY | O_CREAT, 0644)) < 0) {

perror ("gfal_open");
exit (1);

}
cout << " ... Open successful ... " ;

/* Write into the file (reading the 10 integers at once from the int array) */
if ((rc = gfal_write (fd, original, INTBLOCK)) != INTBLOCK) {
if (rc < 0) perror ("gfal_write");
else cerr << "gfal_write returns " << rc << endl;
(void) gfal_close (fd);
exit (1);

}
cout << "Write successful ... ";

/* Close the file */
if ((rc = gfal_close (fd)) < 0) {

perror ("gfal_close");
exit (1);

}
cout << "Close successful" << endl;

/* Reopen the file for reading */
cout << "\nReading back " << argv[1] << endl;
if ((fd = gfal_open (argv[1], O_RDONLY, 0)) < 0) {

perror ("gfal_open");
exit (1);

}
cout << " ... Open successful ... ";

/* Read the file (40 bytes directly into the readValues array) */
if ((rc = gfal_read (fd, readValues, INTBLOCK)) != INTBLOCK) {

if (rc < 0) perror ("gfal_read");
else cerr << "gfal_read returns " << rc << endl;
(void) gfal_close (fd);
exit (1);

}
cout << "Read successful ...";

/* Show what has been read */
for(int i=0; i<10; i++)

cout << "\n\tValue of readValues[" << i << "] = " << readValues[i];

CERN-LCG-GDEIS-722398 Manuals Series Page 152

/* Close the file */
if ((rc = gfal_close (fd)) < 0) {

perror ("gfal_close");
exit (1);

}
cout << "\n ... Close successful";
cout << "\n\nDone" << endl;

}//end of main

The command used to compile and link the previous code (it may be different in your machine) is:

$ c++ -I$LCG_LOCATION/include -L$LCG_LOCATION/lib -l gfal -o gfal_example gfal_example.cpp

As temporary file, we may specify one in our local filesystem, by using the file:// prefix. In that case we
get the following output:

$./gfal_example file://‘pwd‘/test.txt

Creating file file:///afs/cern.ch/user/d/doe/gfal/test.txt
... Open successful ... Write successful ... Close successful

Reading back file:///afs/cern.ch/user/d/doe/gfal/test.txt
... Open successful ... Read successful ...

Value of readValues[0] = 0
Value of readValues[1] = 10
Value of readValues[2] = 20
Value of readValues[3] = 30
Value of readValues[4] = 40
Value of readValues[5] = 50
Value of readValues[6] = 60
Value of readValues[7] = 70
Value of readValues[8] = 80
Value of readValues[9] = 90

... Close successful

Done

This example will not work in all cases from a UI, though. Due to the limitations of the insecure RFIO protocol,
GFAL can work with a classic SE or a CASTOR SE only from a worker node at the same site. The reason is that
insecure RFIO does not handle Grid certificates, and while the local UNIX user ID to which a user job is mapped
on the WN will be allowed to access a file in the local SE, the UNIX user ID of the user on the UI will be normally
different, and will not be allowed to perform that access.

In opposition to the insecure RFIO, the secure version, also called gsirfio, includes all the usual GSI security,
and so it can deal with certificates rather than with UNIX user IDs. For this reason, it can be used with no problem
to access files from UIs or in remote SEs, just as gsidcap can. As a consequence, the example will work without
any problem from the UI with DPM and dCache.

CERN-LCG-GDEIS-722398 Manuals Series Page 153

Attention: Some SEs support only insecure RFIO (classic SEs and CASTOR), while others support only
secure RFIO (DPM), but they all publish rfio as the supported protocol in the Information System. The result
is that currently GFAL has to figure out which one of the two RFIO versions it uses based on the environment
variable LCG RFIO TYPE. If its value is dpm, the secure version of RFIO will be used; otherwise insecure RFIO will
be the used. Therefore, the user must correctly define the indicated variable depending on the SE he wants to talk
to.

Another important issue is that of the names used to access files. For classic SEs, SURLs and TURLs must
include a double slash between the hostname of the SE and the path of the file. This is a known limitation in GFAL
and insecure RFIO. For example:

sfn://lxb0710.cern.ch//flatfiles/SE00/dteam/my_file
rfio://lxb0710.cern.ch//flatfiles/SE00/dteam/my_file

As seen in previous examples, the lcg-* commands will work with SURLs and TURLs registered in the
catalogues, even if they do not follow this rules. Therefore, it is always better to use LFNs or GUIDs when dealing
with files, not to have to deal with SURL and TURL naming details.

In addition to GFAL, there is also the possibility to use the RFIO C and C++ API, which also allows to remotely
open and read a file. Nevertheless, this is not recommended, as it can work only with classic SEs and CASTOR SEs
located in the same local area network, and RFIO does not understand LFNs, GUIDs or SURLs. More information
on RFIO and its API can be found in [42].

Example F.0.3 (Explicit interaction with the SRM using GFAL)

The following example program can be useful for copying a file that is stored in a MSS. It asks for the file to
be staged from tape to disk first, and only tries to copy it after the file has been migrated.

The program uses both the lcg util and the GFAL API. From lcg util, just the lcg cp call is used. From GFAL,
srm get, which requests a file to be staged from tape to disk, and srm get status, which checks the status of the
previous request, are used.

The source code follows:

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <iostream>
#include <sstream> // for the integer to string conversion
#include <unistd.h> // for the sleep function
#include <fstream> // for the local file access
extern "C"{

#include "gfal_api.h"
#include "lcg_util.h"

}

using namespace std;

main(int argc, char ** argv){

CERN-LCG-GDEIS-722398 Manuals Series Page 154

/* Check arguments */
if ((argc < 2) || (argc > 2)) {

cerr << "Usage: " << argv[0] << " SURL\n";
exit (1);

}

/*
* Try to get the file (stage in)
* int srm_get (int nbfiles, char **surls, int nbprotocols, char **protocols, int *reqid,
* char **token, struct srm_filestatus **filestatuses, int timeout);
*
* struct srm_filestatus{
* char *surl;
* char *turl;
* int fileid;
* int status;};
*/
int nbreplies; //number of replies returned
int nbfiles=1; // number of files
char **surls; // array of SURLs
int nbprotocols; // number of bytes of the protocol array
char * protocols[] = {"rfio"}; // protocols
int reqid; // request ID
//char **token=0; // unused
struct srm_filestatus *filestatuses; // status of the files
int timeout=100;

/* Set the SURL and the nbprotocols */
surls = &argv[1];
nbprotocols = sizeof(protocols) / sizeof(char *);

/* Make the call */
if ((nbreplies = srm_get (nbfiles, surls, nbprotocols, protocols,

&reqid, 0, &filestatuses, timeout)) < 0) {
perror ("Error in srm_get");

exit (-1);
}

/* Show the retrieved information */
cout << "\nThe status of the file is: " << endl;
cout << endl << filestatuses[0].status << " -- " << filestatuses[0].surl;
free(filestatuses[0].surl);
if(filestatuses[0].status == 1){

cout << " (" << filestatuses[0].turl << ")" << endl;
free(filestatuses[0].turl);

}
else {cout << endl;}
free(filestatuses);

if(filestatuses[0].status == -1){
cout << endl << "Error when trying to stage the file. Not waiting..." << endl;
exit(-1);

CERN-LCG-GDEIS-722398 Manuals Series Page 155

}

/*
* Now watch the status until it gets to STAGED (1)
* int srm_getstatus (int nbfiles, char **surls, int reqid, char **token,
* struct srm_filestatus **filestatuses, int timeout);
*/
cout << "\nWaiting for the file to be staged in..." << endl;
int numiter=1;
int filesleft=1;

char * destfile = new char[200];
while((numiter<50) && (filesleft>0)){

//sleep longer each iteration
sleep(numiter++);
cout << "#"; // just to show we are waiting and not dead
cout.flush();

if ((nbreplies = srm_getstatus (nbfiles, surls, reqid, NULL, &filestatuses, timeout))
< 0) {

perror ("srm_getstatus");
exit (-1);

}

if (filestatuses[0].status == 1){
cout << "\nREADY -- " << filestatuses[0].surl << endl;
filesleft--;
// Create a name for the file to be saved
strcpy(destfile, "file:/tmp/srm_gfal_retrieved");
cout << "\nCopying " << filestatuses[0].surl << " to " << destfile << "...\n";
// Copy the file to the local filesystem
if(lcg_cp(filestatuses[0].surl, destfile, "dteam", 1, 0, 0 , 1)!=0){

perror("Error in lcg_cp");
}

}
free(filestatuses[0].surl);
if(filestatuses[0].status == 1) free(filestatuses[0].turl);
free(filestatuses);

}

if(numiter>49){
cout << "\nThe file did not reach the READY status. It could not be copied." << endl;

}

/* Cleaning */
delete [] destfile;

/* That was all */
cout << endl;
return reqid; // return the reqid, so that it can be used by the caller

CERN-LCG-GDEIS-722398 Manuals Series Page 156

}//end of main

The srm get function is called once to request the staging of the file. In this call, we retrieve the corresponding
TURL and some numbers identifying the request. If a LFN was provided, several TURLs (from several replicas)
could be retrieved. In this case, only one TURL will be returned (stored in the first position of the filestatuses
array).

The second part of the program is a loop that will repeatedly call srm getstatus in order to get the current
status of the previous request, until the status is equal to 1 (ready). There is a sleep call to let the program wait
some time (time increasing with each iteration) for the file staging. Also a maximum number of iterations is set
(50), so that the program does not wait forever, but rather ends finally with an aborting message.

When the file is ready, it is copied using lcg cp in the same way as seen in a previous example.

A possible output of this program is the following:

The status of the file is:

0 -- srm://castorsrm.cern.ch/castor/cern.ch/grid/dteam/testSRM/test_1

Waiting for the file to be staged in...
##################

READY -- srm://castorsrm.cern.ch/castor/cern.ch/grid/dteam/testSRM/test_1

Copying srm://castorsrm.cern.ch/castor/cern.ch/grid/dteam/testSRM/test_1 to
file:/tmp/srm_gfal_retrieved...
Source URL: srm://castorsrm.cern.ch/castor/cern.ch/grid/dteam/testSRM/test_1
File size: 2331
Source URL for copy:
gsiftp://castorgrid.cern.ch:2811//shift/lxfs5614/data03/cg/stage/test_1.172962
Destination URL: file:/tmp/srm_gfal_retrieved
streams: 1
Transfer took 590 ms

where the 0 file status means that the file exists but it lies on the tape (not staged yet), the hash marks show the
iterations in the looping and finally the READY indicates that the file has been staged in and it can be copied (what
it is done afterwards as shown by the normal verbose output).

If the same program were run a second time, passing the same SURL as argument, it would return almost
immediately, since the file has been already staged. This is shown in the following output:

The status of the file is:

1 -- srm://castorsrm.cern.ch/castor/cern.ch/grid/dteam/testSRM/test_1
(rfio://lxfs5614//shift/lxfs5614/data03/cg/stage/test_1.172962)

Waiting for the file to be staged in...
#

CERN-LCG-GDEIS-722398 Manuals Series Page 157

READY -- srm://castorsrm.cern.ch/castor/cern.ch/grid/dteam/testSRM/test_1

Copying srm://castorsrm.cern.ch/castor/cern.ch/grid/dteam/testSRM/test_1 to
file:/tmp/srm_gfal_retrieved...
Source URL: srm://castorsrm.cern.ch/castor/cern.ch/grid/dteam/testSRM/test_1
File size: 2331
Source URL for copy:
gsiftp://castorgrid.cern.ch:2811//shift/lxfs5614/data03/cg/stage/test_1.172962
Destination URL: file:/tmp/srm_gfal_retrieved
streams: 1
Transfer took 550 ms

where the 1 file status means that the file is already in disk.

CERN-LCG-GDEIS-722398 Manuals Series Page 158

APPENDIX G THE GLUE SCHEMA

The GLUE information schema [21] provides a standardised description of a Grid computing system, to enable
resources and services to be presented to users and external services in a uniform way. The schema has been defined
as a joint project between a number of Grids. It does not attempt to model the real systems in any detail, but rather
to provide a set of attributes to facilitate key use cases. The intended uses are resource discovery (“what is out
there?”), selection (“what are the properties?”) and monitoring (“what is the state of the system?”). Inevitably,
when real systems are mapped on to the standard schema some details are lost and some features may not entirely
match the assumptions in the schema.

The schema has evolved as experience has been gained and new features have required schema support. The
current schema version deployed with gLite 3.1 is 1.2, but version 1.3 has now been defined and is expected to be
deployed during 2007. A working group is also being created in the context of the Open Grid Forum to define a
major revision (2.0) to be deployed in 2008.

G.1. BASIC CONCEPTS

The schema itself is defined in an abstract way, using a simplified UML description, in terms of objects which have
attributes and relations to other objects. Some attributes may be multivalued, i.e. there may be many instances of
the same attribute for one object instance, and most attributes are optional. Most objects have an identifier, which
is either globally unique (UniqueID) or unique in its local context (LocalID). Many objects also have a human-
readable Name to provide a more user-friendly description (i.e. the Name is an attribute of an object instance,
as opposed to the name of the abstract object itself). Neither the UniqueID nor the LocalID should have any
semantics, i.e. they should not be interpreted or decoded by the middleware.

Attributes have types. In many cases these are simply int32 or string. However, where possible more
restrictive types are used, notably for URLs (or the more general URIs) and for enumerated lists, where the allowed
values must be taken from a defined set. Other restrictions on values may be implicit, e.g. for latitude and longitude.
In most cases, if an attribute is not available or is irrelevant it is simply omitted, rather than taking a special value.

The schema is split into a number of high-level pieces. Site defines some information about an entire Grid
site. Service provides a general abstraction for any Grid service. CE and SE provide detailed information about
Computing and Storage Elements, as these are the most important components of the Grid. In GLUE terms a CE
represents a queue in a batch system; the schema also describes a Cluster which represents the hardware (Worker
Nodes) which can be accessed via a CE.

Finally, CESEBind allows relationships between “close” CEs and SEs to be defined. Historically there was
also a Host concept to allow individual Worker Nodes to be represented in detail, but in a Grid context this has not
proved to be useful.

These high-level abstractions are in most cases broken down further into a number of objects representing
those details of the system which need to be exposed to the outside world.

G.2. MAPPINGS

The abstract schema has a set of mappings to specific Information System technologies, currently LDAP, R-
GMA (relational) and XML, of which the first two are currently in use in WLCG/EGEE. These technologies are

CERN-LCG-GDEIS-722398 Manuals Series Page 159

quite different and therefore the mappings have significantly different structures, although the basic objects and
attributes are preserved. For example, relational tables cannot support multivalued attributes directly (a table cell
can only hold a single value), hence these are split into separate tables with an extra key attribute. Similarly the
LDAP mapping introduces extra attributes (ForeignKey and ChunkKey) to allow relations between objects to be
expressed in a way which is usable in LDAP queries.

These mappings are to some extent a matter of judgement, hence they are defined by hand rather than being
automated. Details can be found on the GLUE web site [21], or simply by exploring the LDAP or R-GMA
structures with a browser.

A further mapping is to the Classad language used in JDL files, which is the principle way in which most
users interact with the schema. The WMS is able to convert from both LDAP and R-GMA to this form. In most
respects this “flattens” the schema and simply provides a list of attributes which can be used to construct the Rank
and Requirements expressions.

G.3. INFORMATION PROVIDERS

The information presented in the schema is produced by programs known as Information Providers. These are
structured as a framework Generic Information Provider with a set of plugins for specific parts of the schema,
which may vary depending on the circumstances, e.g. to cope with different batch systems or SE technologies.
The same providers are used for both LDAP and R-GMA.

Broadly speaking these divide into static and dynamic providers. Dynamic information (e.g. the number of
running jobs) changes on a short timescale and therefore has to be collected from some other system (e.g. a batch
system) every time the provider is run. By contrast, static information (e.g. the maximum CPU time for a queue)
changes infrequently, and the providers therefore read it from a configuration file which is updated only when the
system is reconfigured.

To reduce the load on the underlying systems the dynamic information is normally cached for a short time.
In addition there are usually further caches and propagation delays in the wider Information Systems. It should
therefore be assumed that dynamic information is always somewhat out of date, typically by a few minutes.

G.4. GLUE ATTRIBUTES

The rest of this appendix provides some information about those schema attributes which are the most important
in WLCG/EGEE. For a full list of attributes see the GLUE documentation. Attributes not mentioned here are
generally either not defined in WLCG/EGEE, not usable in practice, or are standard elements like UniqueID or
Name.

It should be emphasised that the Information Providers in WLCG/EGEE do not provide everything defined in
the schema (most schema attributes are optional), and in addition WLCG/EGEE imposes some extra constraints
on the attributes which are not part of the schema itself, hence some of the comments here do not apply to the
schema in general. Attributes defined in the 1.3 schema are included here for completeness, but it should be borne
in mind that this schema is not expected to be fully deployed for some time (the LDAP mapping includes the
schema version as attributes, GlueSchemaVersionMajor and GlueSchemaVersionMinor). Some attributes are
deprecated; these are mentioned here if they are still in common use.

CERN-LCG-GDEIS-722398 Manuals Series Page 160

G.4.1. Site information

This provides information about a grid site as a whole. Most of the information is intended to be human-readable,
as opposed to being used by the middleware. Most entries are set by hand by the system managers and hence may
vary from site to site, although some are configured in a standard way by the WLCG/EGEE tools.

• GlueSite object

– GlueSiteUniqueID: This is the unique name for the site, as defined in the GOC database. This is
more or less human-readable, and the Name is currently the same string in most cases.

– GlueSiteDescription: A general description of the site.
– GlueSiteEmailContact: A mailto: URL defining a general email contact address for the site;
however, note that in WLCG/EGEE users should normally contact sites via GGUS. Separate attributes
may define specific contacts for user support, security and system management.

– GlueSiteLocation: The geographical location of the site as a string, normally in the form City,
State, Country.

– GlueSiteLatitude, GlueSiteLongitude: The map reference for the site, in degrees. The resolution
usually locates the site to within 100m.

– GlueSiteWeb: A URL pointing to a web page relating to the site.
– GlueSiteSponsor: The organisation(s) providing funding for the site.
– GlueSiteOtherInfo: A multivalued string which may contain any further information the site con-
siders useful; in WLCG/EGEE this generally includes the Tier affiliation, in the form TIER-n.

G.4.2. Service information

This provides a general abstraction of a Grid service (not necessarily a web service, and perhaps not even something
with an externally visible endpoint). This information is also available via the Service Discovery API (see Sec-
tion 5.3). At present the Service information is not directly related to the CE and SE information described below,
but it is likely that the proposed major revision of the GLUE schema will describe everything as a specialisation of
a service concept.

• GlueService object

– GlueServiceType: The service type, taken from a defined list which can be found on the Glue web
site [21].

– GlueServiceVersion: The version of the service, in the form major.minor.patch.
– GlueServiceEndpoint: The network endpoint for the service.
– GlueServiceStatus: The status of the service (one of OK, Warning, Critical, Unknown, Other).
– GlueServiceStatusInfo: A textual explanation of the Status.
– GlueServiceWSDL: For web services this is a URL pointing to the WSDL definition of the service.
– GlueServiceSemantics: This is a URL which would typically point to a web page explaining how
to use the service.

– GlueServiceOwner: The service owner, if any; typically a VO name.
– AccessControlBaseRule: A set of ACLs defining who is allowed access to the service.

CERN-LCG-GDEIS-722398 Manuals Series Page 161

G.4.3. Attributes for the Computing Element

These are attributes that give information about the computing system (batch queues and Worker Nodes). These
are mostly available for use in the JDL, and consequently are the most important for most users.

Note that the term CE is overloaded; in different contexts it may refer to the front-end machine through which
jobs are submitted, or to the entire set of computing hardware at a site. However, in the GLUE schema a CE is
a single queue in a batch system, and there are typically many CEs at a site submitting jobs to the same set of
WNs. This means that attributes published per-CE, e.g. the total number of available CPUs (or job slots), cannot
be summed in a simple way.

The original schema concept was to represent the computing hardware as a Cluster consisting of one or more
SubClusters, where each SubCluster would describe a set of identical WNs. However, limitations in the WMS
mean that currently only a single SubCluster per Cluster (and hence per CE) is supported. Most Grid sites have
WNs which are heterogeneous in various ways (processor speed, memory size etc), hence they have to publish
the attributes of a representative WN which may not always match the hardware on which a job actually runs.
However, the variations are generally not too large, and nodes should not differ in more vital attributes like the
OS version. In some cases sites may publish more than one Cluster, e.g. to make a set of nodes with very large
memory available via a separate set of queues.

Many sites use scheduling policies which give jobs priority according to who submits them, often to give
specific VOs a higher priority. This was not representable in the original schema, e.g. a queue shown with a
large number of queued jobs might in fact execute a job from a particular VO immediately. As a result most sites
have configured separate queues for each VO. However, this increases the management effort, and can also result
in a very large number of CEs being published. The 1.2 schema revision therefore introduced the concept of a
VOView, which allows a subset of the CE information to be published separately for each VO (or subgroup) for
which scheduling policies are defined. This is supported by the latest version of the WMS, so it is likely that the
Grid sites will gradually move back to a single set of generic queues.

• GlueCE object

– GlueCEUniqueID: The unique identifier for the CE. This is constructed from various information
including a host name, batch system type and queue name, but for most purposes it should simply be
treated as an identifier. The constituent information is available in other attributes if needed.

– GlueCECapability: Introduced in version 1.3 of the schema, this will enable sites to advertise any
features not represented by specific attributes.

– GlueCEInfoTotalCPUs: The total number of CPUs on all WNs available via the CE, which is usu-
ally the maximum number of jobs which can run. This attribute is deprecated in favour of MaxRun-
ningJobs.

– GlueCEInfoApplicationDir: The path of a directory in which application software is installed;
normally each VO has a subdirectory within this directory.

– GlueCEInfoDefaultSE: The unique identifier of an SE which should be used by default to store data.
– GlueCEStateStatus: The queue status: one of Queueing (jobs are accepted but not run), Production
(jobs are accepted and run), Closed (jobs are neither accepted nor run), or Draining (jobs are not
accepted but those already in the queue are run). The JDL normally has a default Requirement for
the Status to be Production.

– GlueCEStateTotalJobs: The total number of jobs in this queue (running + waiting).
– GlueCEStateRunningJobs: The number of running jobs in this queue.
– GlueCEStateWaitingJobs: The number of jobs in this queue waiting for execution.

CERN-LCG-GDEIS-722398 Manuals Series Page 162

– GlueCEStateWorstResponseTime: The worst-case time between the submission of a new job and
the start of its execution, in seconds.

– GlueCEStateEstimatedResponseTime: An estimate of the likely time between the submission of
a new job and the start of its execution, in seconds. This is usually the default Rank in the JDL, i.e.
jobs will be submitted to the queue with the shortest estimated time to execution. However, note that
the estimate may not always be very accurate, and that all queues which currently have free execution
slots will have an EstimatedResponseTime of 0 (or close to 0).

– GlueCEStateFreeCPUs: The number of CPUs not currently running a job. This is deprecated in
favour of FreeJobSlots, since the relationship between CPUs and jobs is not always one-to-one.

– GlueCEStateFreeJobSlots: The number of jobs that could start immediately if submitted to this
queue.

– GlueCEPolicyMaxWallClockTime: The maximum wall clock time (i.e. real time as opposed to CPU
time) allowed for jobs submitted to this queue, in minutes. Jobs will usually be killed automatically
after this time. Specify a Requirement on this attribute for jobs which are expected to spend a
significant time waiting for I/O.

– GlueCEPolicyMaxCPUTime: The maximum CPU time available to jobs submitted to this queue, in
minutes. Jobs will usually be killed after this time. Note that this value should be scaled according
to the SI00 (SpecInt) rating, published as a SubCluster attribute (see below). All jobs should have a
suitable Requirement on this value, otherwise they may be killed before they finish.

– GlueCEPolicyMaxTotalJobs: The maximum allowed total number of jobs in this queue. Jobs which
exceed this limit will be rejected if the WMS attempts to submit them.

– GlueCEPolicyMaxRunningJobs: The maximum number of jobs in this queue allowed to execute
simultaneously.

– GlueCEPolicyMaxWaitingJobs: The maximum allowed number of waiting jobs in this queue. Jobs
which exceed this limit will be rejected if the WMS attempts to submit them. This attribute is new in
version 1.3 of the schema.

– GlueCEPolicyAssignedJobSlots: The number of job execution slots assigned to this queue. This
will normally be the same as MaxRunningJobs.

– GlueCEPolicyMaxSlotsPerJob: The maximum number of job slots which can be occupied by a
multi-processor job. A value of 1 means that the CE does not accept multi-processor jobs. This
attribute is new in version 1.3 of the schema.

– GlueCEPolicyPreemption: This flag is TRUE if jobs may be pre-empted, i.e. suspended after they
start executing. This attribute is new in version 1.3 of the schema.

– GlueCEAccessControlBaseRule: This defines a set of rules which specify who can submit a job to
this queue. This is usually of the form VO:<vo>, but may also specify VOMS roles or groups. This is
taken into account automatically by the WMS.

• GlueVOView object

– The VOView object overloads a subset of the CE attributes for users defined by the AccessControl-
BaseRule. Some attributes are only defined in the 1.3 schema version.

– GlueCECapability: As for CE. New in 1.3.
– GlueCEInfoTotalCPUs: As for CE. Deprecated.
– GlueCEInfoApplicationDir: As for CE, but points to a VO-specific location.
– GlueCEInfoDefaultSE: As for CE.
– GlueCEStateRunningJobs: As for CE.
– GlueCEStateWaitingJobs: As for CE.

CERN-LCG-GDEIS-722398 Manuals Series Page 163

– GlueCEStateTotalJobs: As for CE.
– GlueCEStateEstimatedResponseTime: As for CE.
– GlueCEStateWorstResponseTime: As for CE.
– GlueCEStateFreeJobSlots: As for CE.
– GlueCEStateFreeCPUs: As for CE. Deprecated.
– GlueCEPolicyMaxWallClockTime: As for CE.
– GlueCEPolicyMaxCPUTime: As for CE.
– GlueCEPolicyMaxTotalJobs: As for CE.
– GlueCEPolicyMaxRunningJobs: As for CE.
– GlueCEPolicyMaxWaitingJobs: As for CE. New in 1.3.
– GlueCEPolicyAssignedJobSlots: As for CE.
– GlueCEPolicyMaxSlotsPerJobs: As for CE. New in 1.3.
– GlueCEPolicyPreemption: As for CE. New in 1.3.
– GlueCEAccessControlBaseRule: As for CE. This defines the set of users for which this VOView is
valid.

• GlueSubCluster object

– GlueSubClusterTmpDir: This should be the name of a scratch directory which is shared across all
WNs, e.g. via NFS. However, in practice this is not currently reliable at most sites.

– GlueSubClusterWNTmpDir: This should similarly be a scratch directory on a disk local to the WN.
However, again this is not currently set reliably.

– GlueSubClusterPhysicalCPUs: The total number of real CPUs on all nodes in the subcluster. Cur-
rently this value is often not set.

– GlueSubClusterLogicalCPUs: The total number of logical CPUs on all nodes in the subcluster (e.g.
including the effect of hyperthreading). Currently this value is often not set.

– GlueHostOperatingSystemName: This is the name of the OS installed on the WNs. The convention
for the OS Name, Release and Version in WLCG/EGEE can be found at:
http://goc.grid.sinica.edu.tw/gocwiki/How to publish the OS name.

– GlueHostOperatingSystemRelease: The name of the OS release installed on the WNs.
– GlueHostOperatingSystemVersion: The version of the OS installed on the WNs.
– GlueHostProcessorModel: The CPU model name as defined by the vendor.
– GlueHostProcessorVendor: The name of the CPU vendor.
– GlueHostProcessorClockSpeed: The CPU clock speed in MHz.
– GlueHostMainMemoryRAMSize: The amount of physical memory in the WNs, in MB.
– GlueHostMainMemoryVirtualSize: The total amount of memory (RAM + swap space) on the WNs,
in MB.

– GlueHostNetworkAdapterOutboundIP: TRUE if outbound network connections are allowed from a
WN. This is normally the case in WLCG/EGEE.

– GlueHostNetworkAdapterInboundIP: TRUE if inbound network connections are allowed to a WN.
This is not normally the case in WLCG/EGEE.

– GlueHostArchitectureSMPSize: The number of CPUs per WN.
– GlueHostBenchmarkSI00: The nominal SpecInt2000 speed rating for the CPU on aWN. This should
be used to scale any requested time limit.

CERN-LCG-GDEIS-722398 Manuals Series Page 164

– GlueHostApplicationSoftwareRunTimeEnvironment: This is a multivalued string which allows
the presence of specialised installed software to be advertised. VO-specific software uses the format
VO-<vo>-<sw name version>.

• GlueLocation object

– The Location object was defined to advertise the location of installed software. However, in version
1.3 of the schema it is replaced by a new Software object.

– GlueLocationName: The name of the software.
– GlueLocationPath: The name of the directory where the software is installed.
– GlueLocationVersion: The software version number.

• GlueSoftware object

– This object is new in version 1.3 of the schema.
– GlueSoftwareName: The name of the software.
– GlueSoftwareVersion: The software version number.
– GlueSoftwareInstalledRoot: The name of the directory where the software is installed.
– GlueSoftwareEnvironmentSetup: The fully-qualified path name of a script with which to set up
the application environment.

– GlueSoftwareModuleName: The name of the module with which to set up the application environ-
ment using a module management tool.

– GlueSoftwareDataKey: The name of any additional information item.
– GlueSoftwareDataValue: The value associated with the Key.

G.4.4. Attributes for the Storage Element

The part of the schema relating to the Storage Element has been evolving rapidly in line with the development of
the SRM protocol, hence many of the attributes are new in the 1.3 schema version. Also, even for the current (1.2)
schema the attributes are not always filled correctly by the information providers, or supported correctly by the
middleware. This is expected to improve during 2007 as the data management software matures.

In addition to overall SE information, the schema introduces the concept of a Storage Area (SA). Originally
this referred to a specific area of disk space in which files could be stored, but the SRM has a somewhat more
abstract view of an SA as something which collects files which share some attributes. There is also a Storage
Library (SL) which was introduced to represent the physical storage hardware, but this has been found not to be
useful and is now deprecated, and hence not described here.

Auxiliary concepts are the Control Protocol and Access Protocol. The former relates to the protocol used to
manage the SE; in WLCG/EGEE this currently means some version of the SRM protocol. The latter specifies the
protocols used for data transfer; a typical SE will support several of these.

Storage systems have many variations, and are evolving rapidly. To allow some flexibility to publish infor-
mation not otherwise represented in the schema, Capability attributes can be used to publish extra information,
either as a simple identifier or as key=value pairs.

• GlueSE object

CERN-LCG-GDEIS-722398 Manuals Series Page 165

– GlueSEUniqueID: The unique identifier for the SE. This is usually the SE hostname, but it should
be emphasised that this should not be assumed; the SE should be contacted using the endpoint(s)
specified in the Protocol objects.

– GlueSESizeTotal: The total size of the SE storage in GB. In the 1.3 schema version this is deprecated
and split into online and nearline components.

– GlueSESizeFree: The total amount of space available to store new files, in GB. In the 1.3 schema
version this is deprecated and split into online and nearline components.

– GlueSETotalOnlineSize: The total amount of online (disk) storage, in GB. New in the 1.3 schema.
– GlueSETotalNearlineSize: The total amount of nearline (tape) storage, in GB. New in the 1.3
schema.

– GlueSEUsedOnlineSize: The total amount of online (disk) storage available to store new files, in
GB. New in the 1.3 schema.

– GlueSEUsedNearlineSize: The total amount of nearline (tape) storage available to store new files,
in GB. New in the 1.3 schema.

– GlueSEArchitecture: This describes the general hardware architecture of the SE. The value is one
of: tape (a system including a tape storage robot), disk (simple disk storage), multidisk (a disk
array, e.g. RAID) and other.

– GlueSEImplementationName: The name of the underlying software implementation, e.g. dCache or
DPM. New in the 1.3 schema.

– GlueSEImplementationVersion: The version number of the software implementation. New in the
1.3 schema.

– GlueSEStatus: The current operational status of the whole SE. Values can be Queuing (the SE can
accept new requests but they will be kept on hold); Production (the SE processes requests normally);
Closed (the SE will not accept new requests and will not process existing ones); and Draining (the
SE will not accept new requests, but will still process existing ones). New in the 1.3 schema.

• GlueSEAccessProtocol object

– GlueSEAccessProtocolType: The protocol type, e.g. gsiftp or rfio. See the GLUE web site [21]
for the full list of types.

– GlueSEAccessProtocolVersion: The protocol version.
– GlueSEAccessProtocolEndpoint: A URL specifying the endpoint for this protocol. Note that with
an SRM the endpoint is normally obtained dynamically.

– GlueSEAccessProtocolCapability: A multivalued string allowing arbitrary capabilities to be ad-
vertised.

– GlueSEAccessProtocolMaxStreams: The maximum number of data streams allowed for a single
transfer using this protocol. New in the 1.3 schema.

• GlueSEControlProtocol object

– GlueSEControlProtocolType: The protocol type (usually SRM in WLCG/EGEE).
– GlueSEControlProtocolVersion: The protocol version.
– GlueSEControlProtocolEndpoint: A URL specifying the endpoint for this protocol.
– GlueSEControlProtocolCapability: A multivalued string allowing arbitrary capabilities to be ad-
vertised.

• GlueSA object

– GlueSAPath: This defines a path name to the root directory for this area. If specified this should be
prefixed to the name (SURL) used to store the file.

CERN-LCG-GDEIS-722398 Manuals Series Page 166

– GlueSAType: This specifies a guarantee on the lifetime of files in the storage area. Values can be
permanent (files will not be deleted automatically), durable (files may be purged after notification
of the owner), volatile (files may be purged automatically after the expiration of a lifetime), or
other. Currently WLCG/EGEE only supports the permament type, but volatile (scratch) files may
be supported in future.

– GlueSAStateAvailableSpace: The total space available for new files in this SA. Note that the units
are kB, which with modern storage systems is too small. In the 1.3 schema this attribute is deprecated.

– GlueSAStateUsedSpace: The space used by files in this SA. Note that the units are kB, which with
modern storage systems is too small. In the 1.3 schema this attribute is deprecated.

– GlueSAStateTotalOnlineSize: The total online (disk) space in GB for this SA. New in 1.3.
– GlueSAStateUsedOnlineSize: The online (disk) space in GB used by files stored in this SA. New
in 1.3.

– GlueSAStateFreeOnlineSize: The online (disk) space in GB available for new files in this SA. New
in 1.3.

– GlueSAStateReservedOnlineSize: The online (disk) space in GB which has been reserved for a
specific purpose but not yet used. New in 1.3.

– GlueSAStateTotalNearlineSize: The total nearline (tape) space in GB for this SA. New in 1.3.
– GlueSAStateUsedNearlineSize: The nearline (tape) space in GB used by files stored in this SA.
New in 1.3.

– GlueSAStateFreeNearlineSize: The nearline (tape) space in GB available for new files in this SA.
New in 1.3.

– GlueSAStateReservedNearlineSize: The nearline (tape) space in GB which has been reserved for
a specific purpose but not yet used. New in 1.3.

– GlueSAAccessControlBaseRule: This defines a set of rules which specify who can store files in this
SA. This is usually of the form VO:<vo> (or for historical reasons simply the VO name), but may also
specify VOMS roles or groups.

– GlueSARetentionPolicy: This specifies the quality of storage for files in this SA. Values can be
custodial (high quality, typically on tape), output (medium quality, typically redundant disk stor-
age), or replica (low quality, files may be lost if a disk fails). New in 1.3.

– GlueSAAccessLatency: This specifies how quickly files stored in this SA are guaranteed to be avail-
able for use. Values can be online (files are always on disk and can be read immediately), nearline
(files may not be immediately accessible, e.g. on tape, and may need to be staged in before access),
or offline (files may need manual intervention to make them accessible). New in 1.3.

– GlueSAExpirationMode: The policy for expiration of files in this SA. Values can be neverExpire,
warnWhenExpired (a warning is generated when the lifetime is exceeded), or releaseWhenExpired
(files will be deleted automatically when the lifetime is exceeded). Note that currently WLCG/EGEE
does not expect files to expire. New in 1.3.

– GlueSACapability: A multivalued string allowing arbitrary capabilities/properties to be advertised.
New in 1.3.

• GlueSAVOInfo object

– The GlueSAVOInfo object allows the specification of VO-specific information for an SA which sup-
ports multiple VOs. This may also be used for subgroups or roles within a VO. New in 1.3.

– GlueSAVOInfoPath: A VO-specific path which supercedes the GlueSAPath if present.
– GlueSAVOInfoTag: A VO-defined string which allows an SA to be selected according to the type of
file being stored.

– GlueSAVOInfoAccessControlBaseRule: This defines a subset of the users specified by the
GlueSAAccessControlBaseRule for whom this VOInfo object applies.

CERN-LCG-GDEIS-722398 Manuals Series Page 167

G.4.5. Attributes for the CE-SE Binding

The CE-SE binding schema represents a means for advertising relationships between a CE and one or more SEs.
This is typically for CEs and SEs at the same site, but this is not required. In any case the relationship is defined
and published by the site hosting the CE. The implication is that files on the SE(s) can be accessed quickly from
WNs composing that CE compared with general file access over the WAN. It may also imply access for protocols
like rfio which restrict access using host-based authorisation. Among other things, the WMS uses the CESEBind
information to schedule jobs with input files specified in the JDL, to ensure that the jobs go to CEs from which the
files are rapidly accessible.

Historically the CESEBind was also used to advertise an NFS mount point from which files on an SE were
directly visible from WNs. However, this is not currently supported in WLCG/EGEE.

• GlueCESEBind object

– GlueCESEBindCEUniqueID: The unique ID for the CE.
– GlueCESEBindSEUniqueID: The unique ID for the SE.
– GlueCESEBindWeight: If multiple SEs are bound to a CE this allows a preference order to be ex-
pressed (larger numbers are preferred). This is not generally used in WLCG/EGEE at present.

CERN-LCG-GDEIS-722398 Manuals Series Page 168

	1 Introduction
	1.1 Acknowledgments
	1.2 Objectives of this Document
	1.3 Application Area
	1.4 Document Evolution Procedure
	1.5 Reference and Applicable Documents
	1.6 Terminology
	1.6.1 Glossary

	2 Executive Summary
	3 Overview
	3.1 Preliminary Matters
	3.1.1 Code Development
	3.1.2 Troubleshooting
	3.1.3 User and VO utilities

	3.2 The WLCG/EGEE Infrastructure
	3.3 The WLCG/EGEE Architecture
	3.3.1 Security
	3.3.2 User Interface
	3.3.3 Computing Element
	3.3.4 Storage Element
	3.3.5 Information Service
	3.3.6 Data Management
	3.3.7 Workload Management

	3.4 Job Flow
	3.4.1 Job Submission
	3.4.2 Other Operations

	4 Grid Security and Getting Started
	4.1 Basic Security Concepts
	4.1.1 Private and Public Keys
	4.1.2 Encryption
	4.1.3 Signing
	4.1.4 Certificates
	4.1.5 Certification Authorities
	4.1.6 Proxies
	4.1.7 VOMS Proxies

	4.2 First Steps
	4.3 Obtaining a Certificate
	4.3.1 X.509 Certificates
	4.3.2 Requesting the Certificate
	4.3.3 Getting the Certificate
	4.3.4 Renewing the Certificate
	4.3.5 Taking Care of Private Keys

	4.4 Registering with WLCG/EGEE
	4.4.1 The Registration Service
	4.4.2 Virtual Organisations

	4.5 Setting Up the User Account
	4.5.1 The User Interface
	4.5.2 Checking a Certificate

	4.6 Proxies
	4.6.1 Standard Proxies
	4.6.2 VOMS Proxies
	4.6.3 Proxy Renewal

	5 Information Service
	5.1 The MDS
	5.1.1 lcg-infosites
	5.1.2 lcg-info
	5.1.3 The Local GRIS
	5.1.4 Using the ldapsearch command to read the MDS
	5.1.5 The Site BDII
	5.1.6 The top-level BDII

	5.2 R-GMA
	5.2.1 R-GMA concepts
	5.2.2 The R-GMA Browser
	5.2.3 The R-GMA CLI
	5.2.4 R-GMA APIs

	5.3 ServiceDiscovery
	5.3.1 Running a Service Discovery query

	5.4 Monitoring
	5.4.1 GridICE

	6 Workload Management
	6.1 Introduction
	6.2 The Job Description Language
	6.3 The Command Line Interface
	6.3.1 Single Job Submission
	6.3.2 Job Operations
	6.3.3 Advanced Sandbox Management
	6.3.4 Real Time Output Retrieval
	6.3.5 The BrokerInfo
	6.3.6 Direct Submission to CREAM CE

	6.4 Advanced job types
	6.4.1 Job Collections
	6.4.2 DAG jobs
	6.4.3 Parametric jobs
	6.4.4 Interactive Jobs
	6.4.5 MPI Jobs

	6.5 Command line Interface Configuration
	6.5.1 WMProxy Configuration
	6.5.2 LCG-2 Network Server Configuration

	7 Data Management
	7.1 Introduction
	7.2 Storage Elements
	7.2.1 Data Channel Protocols
	7.2.2 Types of Storage Elements
	7.2.3 The Storage Resource Manager interface

	7.3 File Names in gLite 3.1
	7.4 File Catalogue in gLite 3.1
	7.4.1 LFC Commands
	7.4.2 Access Control Lists

	7.5 File and Replica Management Client Tools
	7.5.1 LCG Data Management Client Tools

	7.6 File Transfer Service
	7.6.1 Basic Concepts
	7.6.2 Transfer job states
	7.6.3 Individual file states
	7.6.4 FTS Commands

	7.7 Low Level Data Management Tools
	7.7.1 GSIFTP
	7.7.2 CASTOR and RFIO
	7.7.3 dCache and DCAP

	7.8 Job Services and Data Management
	7.9 The AMGA metadata catalog
	7.9.1 Introduction
	7.9.2 Configuration of the client
	7.9.3 Metadata access from the shell
	7.9.4 Some commands to manipulate entries and attributes of a table
	7.9.5 Using the API's

	A The Grid Middleware
	B Environment Variables and Configuration Files
	C Job Status Definition
	D User Tools
	D.1 Introduction
	D.2 Job Management Framework
	D.3 Job Monitoring
	D.4 Job Status Monitoring
	D.5 Time Left Utility

	E VO-wide Utilities
	E.1 Introduction
	E.2 Freedom of Choice for Resources
	E.3 Service Availability Monitoring
	E.4 The VO box
	E.5 VO Software Installation
	E.6 Using lcg-tags
	E.7 Using lcg-ManageVOTag

	F Data Management and File Access through an Application Programming Interface
	G The GLUE Schema
	G.1 Basic Concepts
	G.2 Mappings
	G.3 Information Providers
	G.4 GLUE attributes
	G.4.1 Site information
	G.4.2 Service information
	G.4.3 Attributes for the Computing Element
	G.4.4 Attributes for the Storage Element
	G.4.5 Attributes for the CE-SE Binding

